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Abstract

We define Recursive Markov Chains (RMCs), a class of finitely presented denu-
merable Markov chains, and we study algorithms for their analysis. Informally, an
RMC consists of a collection of finite-state Markov chains with the ability to invoke
each other in a potentially recursive manner. RMCs offer a natural abstract model
for probabilistic programs with procedures. They generalize, in a precise sense, a
number of well studied stochastic models, including Stochastic Context-Free Gram-
mars (SCFG) and Multi-Type Branching Processes (MT-BP).

We focus on algorithms for reachability and termination analysis for RMCs: what
is the probability that an RMC started from a given state reaches another target
state, or that it terminates? These probabilities are in general irrational, and they
arise as (least) fixed point solutions to certain (monotone) systems of nonlinear equa-
tions associated with RMCs. We address both the qualitative problem of determining
whether the probabilities are 0, 1 or in-between, and the quantitative problems of
comparing the probabilities with a given bound, or approximating them to desired
precision.

We show that all these problems can be solved in PSPACE using a decision
procedure for the Existential Theory of Reals. We provide a more practical algorithm,
based on a decomposed version of multi-variate Newton’s method, and prove that it
always converges monotonically to the desired probabilities. We show this method
applies more generally to any monotone polynomial system. We obtain polynomial
time algorithms for various special subclasses of RMCs. Among these: for SCFGs
and MT-BPs (equivalently, for I-exit RMCs) the qualitative problem can be solved
in P-time; for linearly-recursive RMCs the probabilities are rational and can be
computed exactly in P-time.

We show that our PSPACE upper bounds cannot be substantially improved with-
out a breakthrough on longstanding open problems: the square-root sum problem
and an arithmetic circuit decision problem which captures P-time on the unit-cost
rational arithmetic RAM model. We show that these problems reduce to the quali-
tative problem and to the approximation problem (to within any nontrivial error) for
termination probabilities of general RMCs, and to the quantitative decision problem
for termination (extinction) of SCFGs (MT-BPs).

*To appear in J. ACM. A preliminary version of this paper appeared in Proc. of 22nd Symp. on
Theoretical Aspects of Computer Science, 2005, pp. 340-352.



1 Introduction

We study and provide algorithms for analysis of Recursive Markov Chains (RMCs), a
natural model for systems that involve both probability and recursion. Informally, a Re-
cursive Markov Chain consists of a collection of finite-state component Markov chains
which can call each other in a potentially recursive manner. RMCs are a probabilistic
version of Recursive State Machines (RSMs) ([AEY01, BGRO1]). These and other expres-
sively equivalent non-probabilistic models, e.g., Pushdown Systems (PDSs), have been
studied extensively in recent research on software model checking and program analysis,
because of their applications to modeling and verification of sequential programs with pro-
cedures (i.e., subroutines). RMCs are in turn a natural abstract model for probabilistic
procedural programs. Probabilistic models of programs are of interest for a number of
reasons. First, the program may use randomization, in which case the transition proba-
bilities reflect the random choices of the algorithm. Second, we may want to model and
analyse a program under statistical conditions on its behavior or on the behavior of its
input environment. Under such assumptions, we may want to determine the probability
of properties of interest, e.g., that the program terminates, and/or that it terminates in a
certain state. Beyond the analysis of probabilistic programs, the RMC model is of interest
in its own right as a basic model that combines two very common modelling primitives:
probability and recursion.

We now give an example and a brief description of RMCs to facilitate intuition (formal
definitions are provided in section 2). Figure 1 visually depicts an example of a Recursive
Markov Chain with two component Markov chains, A; and A;. Each component has
certain designated entry and exit nodes. For example, component A; has one entry, en,
and two exits, er; and exs. In this example, A5 also has one entry and two exits, but
in general, the components of an RMC may have different numbers of entries and exits.
These components may have other, ordinary, nodes, e.g., u in A;. In addition to ordinary
nodes, each component may also contain bozes, e.g., the box by in Aj, and the boxes b}
and b}, in As. The boxes model recursive calls. Each box is mapped to a component,
and acts (just like a “function call”) as a place-holder for a copy of the component to
which it is mapped. For example, component A; has one box, by, which is mapped to As.
Every box has call ports and return ports, which correspond 1-1 to the entries and exits,
respectively, of the component to which the box is mapped. In this case note that the call
ports and return ports of box by correspond to the entries and exits of As, respectively.
A transition into a box goes to a specific call port and models the invocation of the
component to which the box is mapped, starting at the entry node corresponding to the
call port; this can be viewed as a function call where the call port is the parameter value
passed to the function. When (and if) the called component terminates at an exit, then
the execution of the calling component resumes from the corresponding return port of the
box; this is like a return from a function, where the exit at which the call terminated is
the returned value. Probabilities label the transitions of an RMC, as shown in the figure.
Intuitively, “macro-expanding” each box using the component to which it corresponds,
and doing this “for ever” as long as there are boxes remaining, generates the underlying
denumerable Markov chain which is described by the RMC in a concise, finite, fashion.
We are interested in the properties of this underlying denumerable Markov chain.

A basic computational question that will concern us in this paper, and which forms
the backbone of many other analyses for RMCs, is the following: given an RMC, and



Figure 1: A sample Recursive Markov Chain

given a vertex u and exit ex, both from the same component, what is the probability that
starting at u (in the empty calling context, i.e., not inside any boxes), we will eventually
terminate at ez (in the empty calling context)? This is what we call the termination
probability, qy, .., associated with the pair u and ex. Computation of such probabilities
is crucial to many other analyses of RMCs. As we shall see, such probabilities can be
irrational, so we can not hope to compute them “exactly”. We must instead either be
content with approximating the probabilities, or answering decision questions about them,
such as whether the probability is at least a desired rational value. We shall also see that
the problem of computing/approximating such probabilities encounters a number of other
difficulties not encountered in the case of finite-state Markov Chains.

It turns out that basic analysis questions about RMCs generalize related questions
about several classic probabilistic models that have been studied for decades. These
include (multi-type) Branching Processes (MT-BPs) an important class of stochastic pro-
cesses first defined by Kolmogorov, and studied by him and Sevastyanov and others
beginning in the 1940s and continuing to the present (see, e.g., [Har63, KS47, Sevb51,
ANT2, Jag75, KA02, HJVO05]). The theory of Branching Processes dates back (in the
single-type case) to the 19th century and the work of Galton and Watson on popula-
tion dynamics. Multi-type BPs and their variants have been applied in a wide variety of
stochastic contexts, including population genetics ([Jag75]), models in molecular biology
([KA02, HIVO05]), and the study of nuclear chain reactions ([EU48]). Many variants and
extensions of MT-BPs have also been studied. The problem of computing extinction prob-
abilities for MT-BPs, which was already considered by Kolmogorov and Sevastyanov in
the 1940s [KS47], is in fact equivalent to that of computing termination probabilities for
a special restricted class of RMCs, namely I-exit RMCs, where every component has ex-
actly one exit node. Another directly related class is Stochastic Context-Free Grammars
(SCFGs). As we shall show, the problem of computing the probability of the language
generated by a SCFG is also equivalent to computing the termination probability of a
1-exit RMC. SCFGs have been studied extensively since the 1970s, particularly in the
Natural Language Processing (NLP) community where they are a core model (see, e.g.,
[MS99]) as well as well as in biology sequence analysis (see, e.g., [DEKM99, SBHT94]).
(For definitions of MT-BPs and SCFGs, see section 2.3.)

As we shall see, general RMCs are a more expressive model and have different complex-
ity characteristics. A model that is expressively equivalent to general RMCs is probabilis-
tic Pushdown Systems (pPDSs), introduced independently and concurrentlly in [EKMO04].
As we'll see, there are linear time translations between RMCs and pPDSs.



Despite the extensive study of both MT-BPs and SCFGs over many decades, a number
of basic algorithmic questions about them have not been satisfactorily answered. For
example, is the probability of the language of a given SCFG or the extinction probability
of a MT-BP > p? Is it = 17 Can these questions be decided in polynomial-time in
general? What if there are only a constant number of types in the branching process
(non-terminals in the grammar)? RMCs form a natural generalization of SCFGs and
MT-BPs, however their underlying stochastic processes appear not to have been studied
in the rich branching process literature.

Our results, and the structure of this paper. The goal of this paper is to develop
the basic theory and explore the fundamental algorithmic properties of Recursive Markov
Chains. The focus will be on computation of termination probabilities and its complexity,
because, as explained, computation of these probabilities forms the core of many other
important analyses.! We shall observe that we can easily reduce to termination more
general reachability questions: what is the probability that the RMC starting from a
given state (with empty context, i.e. no pending recursive calls) will reach another target
state (with empty context, or for some context)?

As we mentioned, the termination probabilities are generally irrational, and hence
cannot be computed exactly. We address the qualitative problem of determining whether
the probabilities are 0, 1 or in-between, and the quantitative problems of (i) approximating
these probabilities to desired precision (the approzimation problem), and (ii) comparing
the probabilities to given bounds (the decision problem). We provide both upper and
lower bounds, for the general class of RMCs and for several important subclasses.

We first give a brief overview of the results, and we then present a more detailed
summary. For upper bounds, we show that the qualitative and quantitative problems can
be solved in PSPACE, using a decision procedure for the Existential Theory of Reals,
and we provide a more practical numerical algorithm, based on a decomposed version of
multi-variate Newton’s Method, which we show converges monotonically to the desired
probabilities. We obtain more efficient algorithms for several important subclasses of
RMCs: hierarchical, linearly-recursive, bounded, and 1-exit RMCs (these classes are de-
fined formally in Section 2). For lower bounds, we show that our PSPACE bounds cannot
be substantially improved upon without a breakthrough on the square-root sum problem
(SQRT-SUM), a long-standing open problem in the complexity of numerical computation,
and on another more powerful and fundamental problem, called PosSLP, which is complete
for the class of decision problems that can be solved in polynomial time on models with
unit-cost exact rational arithmetic. We show that these problems reduce to the quan-
titative decision problem for 1-exit RMCs (and SCFGs and MT-BPs) of comparing the
termination probabilities with a given bound. They also reduce to both the qualitative
and quantitative problems for general RMCs, and furthermore to the approximation of
the termination probabilities with any nontrivial constant error.

We now summarize in more detail the main results of this paper, and we outline the
organization to help guide the reader.

Section 2: Basic definitions and background: We give the formal definition of Recursive
Markov Chains, and define, in one place for easy reference, several special subclasses of

1Indeed, as described in the conclusions, a number of papers have appeared since the publication of
the conference version of this paper, which use the analyses described here as a basis for other analyses,
such as for model checking, analysis of expected termination time (hitting time), and more.



RMCs: hierarchical, linear, bounded, and 1-exit RMCs (Section 2.1). We define formally
the main (qualitative and quantitative) problems addressed in the paper concerning the
termination probabilities of an RMC, and observe that the computation of more general
reachability probabilities reduces to computation of termination probabilities (Section
2.2). We then give (in Section 2.3) the definition of SCFGs and MT-BPs, and estab-
lish formally their relationship to 1-exit RMCs: we present polynomial time translations
between SCFGs and 1-exit RMCs in both directions, such that the probability of the
language of the SCFG is equal to a termination probability of the RMC (Theorem 2.3).
Similar translations are presented for MT-BPs and 1-exit RMCs, establishing the equality
between the extinction probabilities of a branching process and the termination probabil-
ities of the corresponding 1-exit RMC (Theorem 2.4).

Section 3: The nonlinear equation system for RMCs: From an RMC we construct a system
of equations, denoted x = P(x) in vector notation, where x is an n-vector of variables
corresponding to the termination probabilities, and where each of the n equations, x; =
Pi(x) (one for each termination probability), has on its right hand side a multi-variate
polynomial, P;(x), with only positive coefficients. The particular systems associated with
RMCs have the additional property that they always have a non-negative solution, and in
fact a least non-negative solution, i.e., a non-negative solution which is smallest in every
coordinate than any other solution. This solution is the Least Fized Point (LFP) of the
monotone operator P : R%, — RZ,. We show that the LFP is precisely the vector q* of
termination probabilities for the RMC (Theorem 3.1).

The monotone nonlinear system x = P(x) for an RMC gives rise to a natural iterative
numerical algorithm with which to approximate the LFP. Namely, q* = limy_.o, P*(0),
where P1(0) = P(0) and P*+1(0) = P(P*(0)). We show that this standard iteration
can be exponentially slow to converge to within 4 bits of q*, and this holds even for a
fixed 1-exit RMC (Theorem 3.2.) (We give a superior iterative numerical algorithm later
in Section 6.) We also present a number of examples (also in Theorem 3.2) to illus-
trate other numerical and computational pathologies which make the problem of com-
puting/approximating these probabilities very different than that of finite-state Markov
chains. For example, we observe that the termination probabilities can be irrational (even
for MT-BPs and SCFGs), and not solvable by radicals. Thus we can’t hope to compute
them exactly.

Section 4: Basic upper bounds: We show that for general RMCs we can decide in PSPACE
whether a termination probability is < p, or = p, for some rational p € [0, 1], and we can
approximate the probabilities to within any given number of bits of precision (Theorems
4.2 and 4.3.) These results are shown by appealing to the deep results on the complexity of
decision procedures for the Existential Theory of Reals ([Can88, Ren92, BPR03]). Better
results are obtained later in Section 8 for important special classes of RMCs.

Section 5: “Lower Bounds”: We show that one can not hope to improve substantially on
the PSPACE upper bounds for probabilities of RMCs without a major breakthrough in
the complexity of exact numerical computation. We do this by establishing reductions
from two important open problems. The first of these is the square-root sum problem
(SQRT-SUM), which asks, given natural numbers (dy, . . ., d,) and another natural number &,
whether (3, v/d;) > k. This problem is known to be in PSPACE, but its containment even
in NP is a longstanding open problem first posed in 1976 ([GGJ76]). This problem arises
often especially in geometric computations where the square root sum represents the sum



of Euclidean distances between given pairs of points with integer (or rational) coordinates;
for example, determining whether the length of a spanning tree or a TSP tour of given
points on the plane is bounded by a given threshold amounts to answering an instance of
the SQRT-SUM problem. The second problem, which is harder than square-root sum via
P-time Turing reductions (but not known to be harder via P-time many-one reductions),
is the PosSLP (Positive Straight-Line-Program) problem considered recently by Allender
et. al. in [ABKPMO06]. The PosSLP problem asks whether a given arithmetic circuit
(equivalently, a straight-line program) with integer inputs, and gates {+, *, —}, outputs a
positive number or not. The importance of PosSLP was highlighted in [ABKPMO06] which
showed that this problem is hard (under P-time Turing reductions) for the entire class
of decision problems that can be decided in polynomial time in the Blum-Shub-Smale
model of computation over the reals using rational constants [BCSS98] or equivalently,
a unit-cost algebraic RAM model in which all operations on rationals take unit time,
no matter how large the numbers. Importantly, the division operation is exact rational
division, not integer division; it is known that with integer division (the floor function) all
of PSPACE can be decided in the unit-cost model in polynomial time [Sch79, BMS81]. It
is an open question whether the unit-cost RAM model without integer division can decide
in polynomial time any problem that is not in P in the usual Turing machine model
(equivalently, RAM model with logarithmic cost); Tiwari showed in [Tiw92] that the
square-root sum problem can be solved in polynomial time in this model, as an example
of a problem that we currently do not know how to solve in P in the standard model.
Allender et. al. [ABKPMO06] showed that PosSLP can be decided in the 4th level of the
Counting Hierarchy (CH), an analog of the polynomial-time hierarchy for counting classes
like #P, and since SQRT-SUM is P-time Turing reducible to PosSLP they were also able
to conclude that SQRT-SUM is in CH. Thus it is unlikely that either of these problems is
PSPACE-hard, but it remains an important open question whether either problem can
be decided in P or even in NP.

We show that the SQRT-SUM and PosSLP problems reduce (both via P-time many-one
reductions) to the qualitative termination problem for RMCs (even for 2-exit RMCs),
i.e., determining whether a 2-exit RMC terminates with probability 1. Furthermore, even
any non-trivial approximation of the termination probability for a 2-exit RMC is at least
as hard as the SQRT-SUM and PosSLP problems. Specifically, for any ¢ > 0, both these
problems are reducible to the following problem: given a 2-exit RMC which is guaranteed
to either terminate with probability 1 or with probability < €, decide which of the two
is the case (Theorem 5.2). We also show that the SQRT-SUM and PosSLP problem are
polynomial-time reducible to the decision problem for 1-exit RMCs (Theorems 5.1 and
5.3), i.e., determining whether the termination probability is < p for given p € [0, 1]; this
applies in particular to the problem of bounding the extinction probability of a branching
process or the probability of the language generated by a SCFG. We in fact show that
PosSLP is (many-one) reducible to the termination problem for the further restricted class
of 1-exit hierarchical RMCs (Theorem 5.3), which have rational termination probabilities
(but which can require exponential size).

Section 6: RMCs and decomposed Newton’s method: the available PSPACE decision pro-
cedures for the Existential Theory of the Reals (see [Can88, Ren92, BPR03]) yield the
current best worst-case complexity upper bounds for quantitative termination decision
problems for RMCs. However, there are large constants in the (exponential) running
time of these algorithms, and they are impractical for large instances. In practice, exact



decision procedures aren’t always necessary for such quantitative problems, and it would
be desirable to have efficient numerical procedures for estimating the termination proba-
bilities for RMCs. We provide an iterative numerical algorithm, based on a decomposed
Newton’s method, for estimating termination probabilities of RMCs. The algorithm con-
verges monotonically to the termination probabilities, and in practice it converges very
quickly for even fairly large instances, although the worst-case number of iterations re-
quired is still not fully understood. (We discuss the current state of our understanding of
the behavior of this algorithm in the concluding section 10.) It is important to point out
that such numerical algorithms are not a substitute for exact decision procedures such as
those for the existential theory of reals, because in general they do not yield a method
to decide exact quantitative questions (e.g., is the termination probability at least 1/27)
but rather they only allow iterative approximation of the desired values. In more detail,
we show that a decomposed version of (multi-dimensional) Newton’s method, where New-
ton’s method is applied separately to each strongly connected component of the equation
system, converges monotonically to the Least Fixed Point solution (and thus to the ter-
mination probabilties) starting from the all zero vector (Theorem 6.1). The proof shows,
furthermore, that this method constitutes a rapid “acceleration” of the standard iteration
of the monotone system of nonlinear equations. Note that in general Newton’s method is
not guaranteed to converge for arbitrary nonlinear polynomial systems, but when it does
converge it typically converges very fast. We show that it always converges monotonically
to the LFP in our setting. We thus believe that in our context Newton provides an ef-
ficient practical method for numerically estimating these probabilities for typical RMCs.
(As discussed in the conclusions, more recent work [KLE07] has revealed examples where
even our decomposed Newton’s method can converge slowly. But implementation and
experimental studies have confirmed that, over a wide range of examples, our decomposed
Newton’s method performs well in practice [WE07, NS06]. )

Section 7: General monotone systems of polynomial equations: We show that essentially
all our analyses for the nonlinear systems for RMCs generalize to any system of equations
x = P(x), where P is a vector of multivariate polynomials with positive coefficients. These
more general systems may not have any finite non-negative solutions, but if they do then
they will have a finite least fixed point (LFP). We show that the techniques developed for
analysis and computation of the LFP of RMC equations are also applicable to these more
general systems, including Newton’s method , i.e., if the system has a solution, then the
decomposed Newton’s algorithm will converge monotonically to the LFP (Corollary 7.5).

Section 8: P-time algorithms for special classes of RMCs: We give efficient polynomial
time algorithms for analysis of several special classes of RMCs.

1. We show that for 1-exit RMCs, MT-BPs, and SCFGs, we can solve in polynomial
time the qualitative problem, of deciding whether the probability of termination (resp.,
extinction, language) is exactly 1, i.e., almost sure termination (Theorem 8.1).

2. We show that the quantitative problems can be solved in polynomial time for
bounded RMCs, which are RMCs that have a bounded number of components, and each
component has a bounded number of entries and exits (Theorem 8.8). These correspond to
programs with a constant (‘small’) number of procedures that pass in and out a constant
amount of information; the components (the procedures) themselves can be arbitrarily
large and complex.

3. Finally, we consider the class of linearly recursive RMCs, where there are no positive



probability paths from the return port of some box to the call port of a box in the same
component (this corresponds to linear recursion in programs), and the class of hierarchical
Markov chains (HMC), where the call graph between the components is acyclic. These
classes inherit some of the nice properties of finite-state Markov chains. We show that
for both of these classes, the termination probabilities are rational. In the case of linearly
recursive RMCs the probabilities have polynomial bit size and can be computed exactly
in polynomial time (Theorem 8.9). For hierarchical MCs we can solve the qualitative
problem in polynomial time. Furthermore, if the number of levels in the hierarchy is
bounded then the probabilities have polynomial bit size and can be computed exactly
in polynomial time (Theorem 8.11). If the number of levels is unbounded, then the
probabilities may have exponential bit size, hence cannot be computed in polynomial
time in the standard Turing machine model. We show (Corollary 8.12) that the decision
problem for hierarchical Markov chains is complete (under P-time Turing reductions) for
the class of problems that can be decided in polynomial time in the BSS model mentioned
earlier, with unit-cost exact rational arithmetic.

Section 9: Relation to other models: We detail the relationship between RMCs and several
other probabilistic models. In particular, we show that RMCs are expressively equiva-
lent to probabilistic Pushdown Systems (pPDSs), a model introduced independently in
[EKMO04], and we provide linear-time translations in both directions between the two
models (Theorem 9.1). We also observe that the Random Walk with Backbutton model
studied in [FKK*00] as a probabilistic model of web browsing/crawling, constitutes a
special subclass of 1-exit RMCs.

Related Work. There is extensive work in the verification and program analysis litera-
ture on algorithmic analysis of non-probabilistic models of procedural programs, based on
Pushdown Systems and related models (see, e.g., [BEM97, EHRS00, Rep98]). Recursive
state machines were introduced in [AEY01, BGRO1] (see the journal version [ABET05])
as a more direct graphical model of procedural programs, expressively equivalent to Push-
down Systems, and their algorithmic verification questions were thoroughly investigated.

A conference version of this paper appeared in [EY05b]. (Some results given here were
not stated in [EY05b]. Specifically, hardness results with respect to the PosSLP problem
were not in [EY05b], Theorem 5.2 appeared for the first time (stated without proof) in
a later conference paper [EY07], and Theorem 5.3 appears for the first time in this pa-
per.) A work directly related to this paper, done independently and concurrently, is that
of Esparza, Kucera, and Mayr [EKMO04] who considered model checking for probabilistic
pushdown systems (pPDSs). pPDSs and RMCs are expressively equivalent models: as
we show in section 9 there are efficient linear-time translations between the two. Among
the results in [EKMO04], they showed decidability of reachability questions for pPDSs by
constructing essentially the same nonlinear system of equations for pPDSs that we con-
struct and associate with RMCs. They then appealed to results on the theory of reals to
derive EXPTIME upper bounds for reachability in pPDSs. As we point out, the known
results for the existential theory of reals can actually be used to obtain PSPACE upper
bounds for reachability. That is essentially the main overlap between their results and
our results in this paper. Their main focus was decidability (rather than precise com-
plexity) of model checking problems for pPDSs for properties expressed by deterministic
Biichi automata, and those expressed in a probabilistic branching-time temporal logic,
PCTL. Subsequent papers by ourselves and others, which build on this paper, have de-



veloped improved model checking algorithms and complexity bounds for all linear-time
properties (expressed by nondeterministic Biichi automata or Linear Temporal Logic)
[BKS05, EY05a, YEO05]. Since the conference publication of our paper [EY05b] and of
[EKMO04], a number of conference papers have been published that build on and extend
this work in various directions (see [BKS05, EKM05, BEK05, KLE07, EKLO8] and see
our papers [EY05a, EY05¢c, YE05, EY06a, EY06b]). We will give a brief description of
this work in the concluding section.

As mentioned earlier, SCFGs have been studied extensively in the Natural Language
Processing literature (see, e.g., [MS99]). In particular, the problem of consistency of a
SCFG (whether the language that it generates has probability 1) has been studied, and its
connection to the extinction problem for branching processes is well known [Har63, BT73,
Gre76, CG98]. However, none of the relevant references provide a complete algorithm,
characterization, and proof for consistency.

The branching process literature on computing extinction probabilities is old and ex-
tensive (see [Har63, ANT2, Mod71] for thorough expositions). However, even there, no
reference provides a complete algorithm and proof for deciding almost sure termination
for all branching processes in polynomial time. The most comprehensive results (in Rus-
sian) are due to Sevastyanov and Kolmogorov [Sev51, KS47] (see [Har63]). We elaborate
in detail on those results in section 8.1.

Another related work is [AMP99]. They study probabilistic Pushdown Automata
(pPDA), and their relationship to SCFGs and weighted CFGs. Among their results they
show that for every pPDA there is a SCFG which yields the same probability distribu-
tion on strings. However, that construction is not computationally useful in the following
sense: the resulting SCFG uses grammar rules whose probabilities are given by the termi-
nation probabilities of the original pPDA, and thus in order to actually “construct” this
SCFG one first has to compute these termination probabilities for pPDSs, so this compu-
tational problem is not addressed. Note also that these probabilities may be irrational,
so constructing the resulting SCFG exactly is in fact problematic. The paper [AMP99]
does not address the computation of these probabilities for pPDAs, nor other algorithmic
questions for analysis of SCFGs and pPDA.

Another case of a model that has probabilistic and recursive features is that of Fagin,
et. al. [FKKT00], on Random walks with “back buttons”. They study a probabilistic
model of surfing/crawling on the WWW, where from each web page, the user with some
probability either follows a link to go to a new page or pushes the back-button to return
to the previous page. They study both steady-state/limit distributions and termination
probabilities for these models, and show that semi-definite programming can be used to
approximate these probabilities in polynomial time. It turns out, as we will explain in
section 9, that the back-button model corresponds to a (strict) subclass of 1-exit RMCs;
the subclass is strict and cannot generate various distributions that l-exit RMCs can
generate.

2 Basic definitions and background

In Section 2.1 we will define formally Recursive Markov Chains, and several special sub-
classes. In Section 2.2 we define the problems that we will consider in this paper concerning
termination probabilities, and show that more general reachability probabilities can be



reduced to them. In Section 2.3 we will give the definitions of Stochastic Context-Free
Grammars and Multitype Branching Processes, and relate them to 1-exit RMCs.

2.1 The RMC Model

A Recursive Markov Chain (RMC), A, is a tuple A = (Ay, ..., Ax), where each component
graph A; = (N;, B;,Y;, En;, Ex;,0;) consists of:

e A set N; of nodes.
e A subset of entry nodes En; C N;, and a subset of exit nodes Ex; C N;.

e A set B; of bozes, and a mapping Y; : B; — {1,...,k} that assigns to every box
(the index of) one of the components, A1, ..., Ax. To each box b € B;, we associate
a set of call ports, Cally = {(b,en) | en € Eny, )} corresponding to the entries of
the corresponding component, and a set of return ports, Return, = {(b,ex) | ex €
Exy, )}, corresponding to the exits of the corresponding component.

e A transition relation d;, where transitions are of the form (u, py ., v) where:

1. the source u is either a non-exit node u € N; \ Ex;, or a return port u = (b, ex)
of a box b € B;,

2. The destination v is either a non-entry node v € N; \ En;, or a call port
u = (b,en) of a box b € B; ,

3. Puw € Ry is the transition probability from u to v,
4. Consistency of probabilities: for each u, Z{U,‘(up , wyesy Pupt = 1, unless u

is a call port or exit node, neither of which have outgoing transitions, in which
case by default ), pu, = 0.

For an example, see Figure 1 and its description in the Introduction.

For computational purposes, we assume that the transition probabilities p, , are ra-
tional, and we measure their size (bit-complexity) by the number of bits in the numerator
and denominator. We will use the term vertex of A; to refer collectively to its set of nodes,
call ports, and return ports, and we denote this set by @;. Thus, the transition relation J;
is a set of probability-weighted directed edges on the set Q; of vertices of A;. We will use
all the notations without a subscript to refer to the union over all the components of the
RMC A. Thus, N = U¥_| N; denotes the set of all the nodes of A, Q = U¥_,Q; the set of
all vertices, B = U¥_, B; the set of all the boxes, Y = U¥_|Y; themap Y : B — {1,...,k}
of all boxes to components, and § = U;d; the set of all transitions of A.

An RMC A defines a global denumerable Markov chain M4 = (V, A) as follows. The
global states V' C B* x @ of M4 are pairs of the form (3, ), where 8 € B* is a (possibly
empty) sequence of boxes and u € @ is a vertex of A. The sequence [ represents the stack
of pending recursive calls and u is the current vertex. More precisely, the states V' and
transitions A are defined inductively as follows:

1. (e,u) € V, for u € Q. (e denotes the empty string.)
2. if (B,u) € V and (u, pu,0,v) € 9, then (§,v) € V and ({5, u), pu,v, (5,v)) € A
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3. if (8, (b,en)) € V, (b,en) € Cally, then
(Bb,en) € V and ({8, (b,en)),1,(Bb,en)) € A

4. if (Bb,ex) € V, (b, ex) € Returny, then
(8, (b,ex)) € V and ((Bb, ex), 1, (B, (b,ex))) € A

Item 1 corresponds to the possible initial states, item 2 corresponds to a transition within
a component, item 3 corresponds to a recursive call when a new component is entered via
a box, and item 4 correspond to the termination of a recursive call when the process exits
a component and control returns to the calling component.

Some states of M4 are terminating states and have no outgoing transitions. These
are states (e, ex), where ex is an exit node. If we wish to view M4 as a proper Markov
chain, we can consider the terminating states as absorbing states of M4, with a self-loop
of probability 1. To simplify notation, we will sometimes use in place of (¢, u) the notation
(u) or simply u; so for example, we will often say that a path of the RMC A starts at
vertex v and terminates at an exit ex of the component of u, to mean a path of M4 from
state (e, u) to state (e, ex).

Special Classes of RMCs.

We give here, together in one place for easy reference, definitions of several special
classes of RMCs. As with procedural programs, from an RMC A we can define the call
graph of A: the graph has one node i = 1,...,k for each component A; of A and has a
directed edge (i,7) if a box of A; is mapped to A;. RMCs whose call graph is acyclic
are called Hierarchical Markov Chains (HMCs). These are the probabilistic version of
Hierarchical State Machines [AY01]. Hierarchy is often used to structure large models
and represent them in a succinct, modular fashion. In this special case M, is finite, but
can be exponentially larger than the HMC which specifies it.

We say that an RMC is linearly recursive or simply a linear RMC, if there is no
positive probability path in any component (using only transitions of that component)
from a return port of any box to a call port of any box (neither the same nor another box).
This corresponds to the usual notion of linear recursion in procedures. As an example,
the RMC of Fig. 1 is not linear because of the back edge from the second return port of
box b to its call port; if this edge was not present then the RMC would be linear.

The class of bounded RMCs (for some fixed bound c) is the set of RMCs that have
a bounded number (at most ¢) of components, each of which has a bounded number (at
most ¢) of entries and exits. The components themselves can be arbitrarily large, i.e.
have an arbitrary number of vertices, boxes, and edges. These correspond to recursive
programs with a bounded number of different procedures, which pass a bounded number
of input and output values.

The class of 1-exit RMCs is the set of RMCs all of whose components have only one
exit; there can be an arbitrary number of components with an arbitrary number of entries.
As we will see, this class encompasses well-studied models, such as Stochastic Context-Free
Grammars and (Multi-type) Branching Processes.

The number of exits measures the amount of information (number of different return
values) that a component returns when it terminates to the component that called it; one
exit means that the component does not return any information beyond the fact that it
terminated. There appears to be a distinct difference in expressiveness and complexity
between 1-exit and multiexit RMCs; for example we’ll show how to test in polynomial
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time for almost sure termination in 1-exit RMCs, but we do not know how to do it for
multi-exit RMCs.

2.2 The central reachability and termination questions.

Our focus in this paper is on answering termination and reachability questions for RMCs.
Given a vertex u € @; and an exit ex € Ex;, both in the same component A;, let qi*u ez)

denote the probability of eventually reaching the terminating state (e, ex), starting at
the initial state (e,u). We let ¢ = ZBIGEII_ qzﬁu,ex) be the probability that the process
eventually terminates (at some exit) when started at vertex w.

Computing the termination probabilities q{u,ex allows us to efficiently obtain other
reachability probabilities, in the following sense: from a RMC A, in which we want to
compute a specified reachability probability, we can construct efficiently another RMC A’
such that the desired reachability probability in A is equal to a termination probability
in A’. We show this for two types of reachability probability. Suppose we are given
an RMC A and two vertices u,v € @ of A. The first reachability probability, denoted
Prlu,v], is the probability that the RMC A started at vertex u with empty context (no
pending recursive calls) will reach eventually vertex v with empty context, i.e., Pr{u,v]
is the probability that the infinite Markov chain M4 induced by A, started at state (e, u)
will reach eventually state (e, v); it is easy to see that this probability can be nonzero
only if u, v are in the same component of A. The second reachability probability, denoted
Pr/[u,v], is the probability that the RMC A started at vertex u with empty context will
reach eventually vertex v with some context; i.e., Pr'[u,v] is the probability that the
infinite Markov chain My, started at state (e, u) will reach eventually a state of the form
(B,v) for some [ € B*; the vertices u, v could be from different components in this case.

Proposition 2.1 Given a RMC A and two vertices u,v of A, we can construct in linear
time two other RMCs C, C' such that the reachability probability Pru,v] is equal to
a termination probability in C, and the probability Pr'[u,v] is equal to a termination
probability in C".

Proof. For Pru,v], we may assume that u,v are vertices in the same component A;
of A (otherwise, the probability is 0). Let C' be the RMC that has all the components of
A, and an additional component Cy that is the same as A;, except that we add self-loops
with probability 1 to all the exits nodes of A; and make them non-exit nodes, we remove
all outgoing edges from v, and make v the only exit node of Cjy. All the boxes of Cy are
mapped to the same components as in A;. It is easy to see that the probability Pr{u,v]
in A is equal to the termination probability qzkuyv) in the RMC C.

For the probability Pr’[u,v], assume that u is in component A; and v in A;. We do
the following transformation to A to obtain a new RMC C’. Add a new special exit ez},
to every component A, of the RMC A. Remove the out-edges from v and instead add a

probability 1 transition v ER ex to the new exit of its component. For every box b of every
component Ay, add a probability 1 transition from the new return port w = (b, e:c{,(b)) of
b to the new exit ex} of the component. Intuitively, the effect of the new exits and the new
transitions is that when we encounter vertex v in any context, we “raise an exception”,
pop the entire call stack, and exit the system. It follows easily that Pr|u,v] in the original
RMC A is equal to the termination probability ¢* in the new RMC . ]

(u7ew:)
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The above transformation for the probability Pr'[u,v] increases the number of exits
by 1. We remark that there is also a more involved way to reduce it to a termination
probability without increasing the number of exits as shown in [EY05a]. There we con-
sider the more general question of model checking RMCs, and show that the termination
probabilities lie at the heart of the analysis of general properties of RMCs.

Determining whether a termination probability q&ku,ex) is 0, can be done efficiently (in
polynomial time) using the algorithms for the analysis of (non-probabilistic) Recursive
State Machines. Note that qz‘u)ew) is the sum of the probabilities of all the paths of M4 that
start at state (¢, u) and end in state (€, ex), where the probability of a path is the product of
the probabilities of its edges (transitions). Thus, qi*u)em) = 0 if and only if there is no such
path. The actual values of the transition probabilities are clearly irrelevant in this regard,
and this is simply a reachability question on the Recursive State Machine that underlies the
RMC A. For RMC A = (Ay,..., Ax), let § = max;c gy, ky |[E2;| be the maximum number
of exits in any component, and let § = max;c(1,.. 5 min{|En;|,|Exz;|}. Reachability in
RSMs was studied in [ABE105], where it was shown that the problem can be decided in
O(|A]6?) time for a given vertex-exit pair (u, ex). If the RMC has v vertices and e edges,
then we can compute all the reachable vertex-exit pairs (u, ex) in time O(e€ + v6¢). The
theorem is stated in a slightly different way in [ABE105], but what we have stated here
follows from basically the same analysis. More specifically, [ABE105] constructs in total
time O(ef + v#?), a relation R; for each component A; of A, which contains all reachable
vertex-exit pairs of A; if |[Ex;| < |En;| (ie., R = {(u,v)|lu € Qi,v € Exz;, {¢,u) can
reach (e,v)}), and R; contains all reachable entry-vertex pairs if |En;| < |Ex;|. Once
these relations are computed, [ABET05] shows that other reachability information can be
computed easily by replacing every box b with directed edges from the call ports (b, en)
to the exit ports (b, ex) such that (en,exr) € Ry () and performing standard graph search
in the resulting ordinary (nonrecursive) graph. If a component A; has fewer exits than
entries, then R; gives already the information we want for this component. Otherwise,
replace as above all the boxes of A; with edges from the call ports to the reachable exit
ports to get an ordinary graph G; on the same vertex set (); and perform a search from
the exit nodes to determine all the reachable vertex-exit pairs; if A; has v; vertices and e;
edges, then G; has at most e; + v;0 edges, and since there are at most £ exit nodes, the
search takes time O(e;€ + v;0€) time. Summing over all the components, it follows that
all the reachable vertex-exit pairs of the RMC can be computed in time O(e€ + v0¢) .

Theorem 2.2 (see [ABET05]) Given RMC A, in time O(|A|0€) we can determine for

all vertex-exit pairs (u, ex), whether or not qZ‘u ex) = 0-

We distinguish between the qualitative (almost sure) reachability problem and the
quantitative problem. For the latter problem, as we will see, in general the termination
probabilities are irrational, thus we cannot compute them exactly. Therefore, we will
consider two types of quantitative problems: the decision and the approximation prob-
lem. More formally, we focus here on finding efficient algorithms for the following central
questions:

(1) Qualitative termination problems: Given an RMC A, vertex u and exit ex of the

same component, is qE“u ex) = 1?7 Is ¢ = 17

(2) Quantitative termination problems:
a. Decision Problem. Given an RMC A, vertex u and exit ex of the same component,
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and a rational r € [0, 1] compare qz‘u exy HOT, i.e. determine whether U,ex

or > r. Same question for the probability ¢;.
b. Approximation Problem. Given an RMC A, vertex u and exit ex of the same

component, and a number j in unary, approximate qE“u ex) O j bits of precision (i.e.

)<7°,:7°

compute a value that is within an additive error < 277 of qi*u em)).

Clearly, the qualitative problem is a special case of the quantitative decision problem.
Furthermore, it is easy to see that if we have an algorithm for the quantitative decision
problem, then we can use it to solve the approximation problem with polynomial overhead:
Simply do a binary search in the interval [0,1] to narrow down the possible range for the

probability qE“u ex)’ after j iterations the interval of uncertainty for qE“u ex) is at most 277,

2.3 Single-exit RMCs, Stochastic Context-Free Grammars, and
Branching Processes.

A Stochastic Context-Free Grammar (SCFQG) is a tuple G = (T,V, R, S1), where T is a
set of terminal symbols, V = {S1,...,Sk} is a set of non-terminals, and R is a set of

rules S; % o, where S; € V, p € [0,1], and o € (V UT)*, such that for every non-

terminal S;, E(p\(S-ﬁa-)GR} pj = 1. Sp is specified as the starting nonterminal. A SCFG

G generates a language L(G) C T* and associates a probability p(7) to every terminal
string 7 in the language, according to the following stochastic process. Start with the
starting nonterminal S7, pick a rule with left hand side S; at random (according to the
probabilities of the rules) and replace S; with the string on the right-hand side of the rule.
In general, in each step we have a string o € (V UT)*; take the leftmost nonterminal S;
in the string o (if there is any), pick a random rule with left-hand side S; (according to
the probabilities of the rules) and replace this occurrence of S; in ¢ by the right-hand side
of the rule to obtain a new string ¢’. The process stops only when (and if) the current
string o has only terminals. The probability p(7) of a terminal string is the probability
that the process terminates with the string 7.

According to this definition, p(7) is the sum of the probabilities of all leftmost deriva-
tions of 7, where the probability of a (leftmost) derivation is the product of the probabil-
ities of the rules used in the derivation. An alternative, equivalent definition is that p(7)
is the sum of the probabilities of all the parse trees of the string 7, where again the prob-
ability of the parse tree is the product of the probabilities of the rules used in the parse
tree. The probability of the language L(G) of the SCFG G is p(L(G)) = 3, cr(q)P(T)-
Note that L(G) is the probability that the stochastic process that we described above,
starting with S; terminates. More generally, we can define for each nonterminal S; € V
an associated probability p(S;), which is the probability that the process starting with
S; terminates. Note that, even though the probabilities of the rules of every nonterminal
sum to 1, the probability of the language L(G) may be less than 1; G is called consistent
if p(L(G)) = 1.

We will present reductions between 1-exit RMCs and SCFGs, showing the following
Theorem.

Theorem 2.3
1. Every SCFG G can be transformed in linear time to a 1-exit RMC A, such that
|A| € O(|G|), and there is a bijection from non-terminals S; in G to components A; of

14



A, A,

1/2+ P+ \ 1/2 E\
———

Figure 2: RMC of a SCFG

A, each with a single entry en; and single exit ex;, such that p(S;) = qz‘enj ex;)’ for all j.
2. Conwversely, every 1-exit RMC A can be transformed in linear time to a SCFG G of
size O(|Al), such that there is a map from vertices u to non-terminals S,, of G, such that

¢ = p(Su)-

Proof. Given a SCFG G, we can define in a natural way a recursive Markov chain A
whose termination probability is equal to p(L(G)). The RMC A has one component A;
for every nonterminal S; of G, the component A; has one entry en; and one exit ex;, and
has a path from en; to ex; for each rule of G with left-hand-side (lhs) S;, where the path
contains a box for every nonterminal on the right-hand-side (rhs) of the rule, the first edge
has probability equal to the probability of the rule and the other edges have probability
1. As an example, Figure 2.3 shows the RMC corresponding to the grammar G with

nonterminals V = {Sl, Sa}, terminals T = {a,b} and rules R = {S; = Y2 S181, S1 = W a,
1/4

S1 — S2a5%b, S —> S2S51a, S 142 €}. The unshaded boxes of the figure are mapped
to A; and the shaded boxes are mapped to As. All edges that do not have an attached
probability label have probability 1. Observe that there is a 1-to-1 correspondence between
the leftmost derivations of terminal strings in G starting from S7, and terminating paths
in the RMC A starting at the entry en; of component A;, i.e. paths reaching the exit ex;
of A1, and the correspondence obviously preserves the probabilities. Thus, the probability
o, = qzkml_’exl) of termination of the RMC A, starting at eny, is equal to the probability
p(L(G)) of the language of G. And generally, p(Si) = q(,,,, .., for all nonterminals S;.

The RMCs derived from a SCFG have some special properties: all components are
acyclic, have 1 entry and 1 exit. The restriction of 1 entry is not a significant one: every
RMC A can be easily transformed, at polynomial cost, to another equivalent RMC whose
components have 1 entry each. However, the restriction of 1 exit is significant: 1-exit
RMCs are weaker than general RMCs.

There is a reverse transformation from every 1-exit RMC A (whether acyclic or cyclic)
to a SCFG G, of size linear in A, such that the probability of termination of A starting
at a vertex is equal to p(L(G)). Let A be an l-exit RMC. We can assume also that
each node of A is labelled by a letter in a terminal alphabet T or by € as in the figure
(for simplicity we don’t label call and return ports); then the set of terminating paths
starting at any vertex u defines a language L(u) of terminal strings with an associated
probability. The reduction is as follows. For each vertex u of A the grammar G has a
nonterminal S,,. If u is the exit of its component and has label a then G contains the

rule S, = a. If u is a call port u = (b,en) € Call, and v = (b,ex) is the return port
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of the box, then G contains the rule S, 4 SenSy. Otherwise, i.e. if u is not an exit or
a call port and thus has probabilistic outgoing edges, then for each edge (u,py.v,v) € 0,

the SCFG G has a rule S, ™5 aS,, where a is the label of u. It is easy to see that
there is a 1-to-1 correspondence between terminating paths of the RMC A starting at a
vertex u (i.e. paths in the corresponding Markov chain M4 that start at state (e,u) and
end at state (e,ex) where ex is the exit of u’s component) and leftmost derivations in
G of a terminal string starting from the nonterminal S,,. The correspondence preserves
probabilities (the product of the probabilities of the edges on the path is equal to the
product of the probabilities of the rules used in the derivation), and the concatenation of
the labels of the nodes on the path is equal to the terminal string that is derived. Thus,
the termination probability ¢ is equal to the probability p(S,) of the language generated
by G starting from S,,. [

Note that, the SCFG G constructed above from a l-exit RMC has a very special
form. Thus, every SCFG and 1-exit RMC can be transformed to an equivalent SCFG in
Generalized Chomsky Normal Form , where every nonterminal S, has rules that come in
one of three types:

e Typei: Sy has one rule associated with it, .S, ER a, where a € T'U {¢}.
o Typerana: Sy has “linear” rules associated with it of the form S, P a8, .

o (Typecair): Sy has one rule associated with it of the form: S, 4 Sy Sw-

We remark that it is similarly possible to define a kind of generalized normal form for
arbitrary (multi-exit) RMCs, but we refrain from doing so in the interest of space.

A similar proof can be used to show that the same tight relationship holds between
1-exit RMCs and finite Multi- Type Branching Processes [Har63]. An MT-BP G = (V, R)

consists of a (finite) set V = {S1,..., Sk} of types, and a (finite) set R of rules S; % a,
where S; € V, p € (0,1], and « is a (finite) multi-set whose elements are in V', and such

that for every type S;, Z( p; = 1. The rule S; 2.« specifies the probability

i Siﬁ»a' cR
with which an entity of tyng L( generjz)mtes> the multiset v of offsprings in the next generation.
The stochastic process generated by such an MT-BP is intuitively described as follows:
we start with an initial set of entities of given types; we will usually start with one entity
of some type S;. In each generation we have a set of entities of various types, and from
them we produce the set in the next generation as follows. For each entity in the current
set, independently and simultaneously, we probabilistically choose a rule whose left hand
side is the type of the entity, according to that rule’s probability, and replace the entity
with a new set of entities whose types are specified by the right hand side of the rule. The
process continues as long as the current set of entities is not empty and terminates if and
when it becomes empty.

Let p(S;) denote the probability that, starting with one entity of type S;, the process
will terminate, i.e., we will eventually reach extinction of all objects; p(S;) is called the
probability of extinction of type S;. Clearly, given these probabilities we can easily com-
pute the probability of termination for any initial set of entities: if there are initially n;
entities of type j = 1,..., k then the termination probability is IL; (p(S;))™ .

Formally, the specification of a branching process is very similar to a SCFG, where
types correspond to nonterminals. The difference is that in a branching process there are
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no terminals, and the right-hand sides of the rules are multisets rather than strings, i.e.
the order of the offsprings is not important. Also, in a branching process the rules are
applied simultaneously to all the entities in each generation, whereas in a SCFG the rules
are applied sequentially in a derivation. These differences however are clearly immaterial
as far as termination of the process is concerned. If we view the branching process G as
a SCFG with nonterminals V' and rules R, then the extinction probability p(S;) is equal
to the probability of the language generated by the grammar with starting nonterminal
S;. Clearly, the translation from a SCFG to a MT-BP where we ignore the terminals on
the right-hand sides of the rules and change strings to multisets, is a polynomial (in fact,
linear) translation. Conversely, if the rules of the branching process specify the multisets
on the right-hand side explicitly by listing the elements as many times as they occur in the
multiset, or equivalently specify the numbers of offsprings of the various types in unary
notation, then the translation from a MT-BP to a SCFG, where we just change multisets
to strings in the rules by listing the elements in an arbitrary order, is polynomial.

If the multiplicities of the multi-sets on the right hand sides of the rules of the MT-
BP are specified in binary, in other words, if the multi-set is specified by set of pairs,
(S;,m;) specifying each distinct type S; in the multi-set, together with the number of
occurences m; of S;, then this straight-forward translation is not polynomial, but we
can nevertheless obtain a polynomial translation as follows. We introduce additional
nonterminals. Specifically, if n; is the maximum multiplicity of a type S; on the right-
hand side of any rule of the MT-BP, then we introduce /; + 1 new nonterminals Uj;,t =
0,1,...,1;, where l; = [logn;], and include in the SCFG rules Ujo — S;, and U;; —
Ujt-1Uj -1 fort =1,...,1; with probabilitiy 1. Note that by these rules, U;; generates a
string of 2! S;’s with probability 1. For each rule of the MT-BP, we have a corresponding
rule in the SCFG with the same left-hand-side and same probability; if the right-hand-
side of the MT-BP rule contains a type S; with positive multiplicity m; that has binary
representation ay; ...a1ag, then the string on the right hand side of the corresponding
rule in the SCFG contains a substring that includes a (single) occurrence of Uy, iff a; = 1,
for each t; clearly this substring generates with probability 1 a string of m; S;’s. It
follows then easily from the construction that the extinction probability p(S;) in the MT-
BP is equal to the probability of the language generated by the grammar with starting
nonterminal S;. Combining with the translation between SCFG’s and 1-exit RMCs we
have:

Theorem 2.4

1. EBvery MT-BP G (even when the MT-BP’s rules are presented by giving the multi-sets
in binary representation) can be transformed in polynomial time to a 1-exit RMC A, such
that there is a mapping from types S; in G to components A; of A, each with a single
entry en; and exit exj, such that p(S;) = q?enj)emj), for all j.

2. Conversely, every 1-exit RMC A can be transformed in linear time to a MT-BP G of
size O(|A]), such that there is a map from the vertices u of A to types S, of G, such that

¢ = p(Su)-
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3 The system of nonlinear equations associated with
an RMC, and basic properties of its Least Fixed
Point solution.

Given a Recursive Markov Chain A, we would like to compute the termination probabili-
ties q&ku,ex) for all pairs (u, ex) where u is a vertex of A and ex is an exit of the component
that contains u. We will set up a system of (nonlinear) polynomial equations, such that
these probabilities must be a solution of the system, and in fact precisely the Least Fized
Point solution (which we define). There is one variable x(,,¢s) for each unknown probabil-
ity qi*u)em), i.e. for each vertex u and each exit ex of the component that contains u, and
one polynomial P, ¢;) in this set of variables. We will often find it convenient to index
the variables x(, ¢,) according to an arbitrary fixed order, so we can refer to them also
as T1,...,Tn, with each x(, ¢, identified with z; for some j. We thus obtain a vector of
variables: X = (21 ... 2,)7.

Definition 1 Given RMC A = (A4,..., Ag), we define a system of polynomial equations,
Sa, over the variables x(y cr), where u € Q; and ex € Ex;, for 1 <1 < k. The system
contains exactly one equation of the form x(y cp) = Pru,ex)(X), for each variable x(y cq),
where Py eq)(X) is a multivariate polynomial with positive rational coefficients, and is
defined as follows. There are 3 cases, based on the Type of vertex u:

1. Typei: v = ex. In this case, the equalion is T(cz eq) = 1.

2. Typerand: either u € N; \ {ex} or u = (b,ex’) is a return port. In this case:
L(u,ex) = Z{vl(u,pu,v,v)eé} Pu,v " T(v,ex)-
(If u has no outgoing transitions, i.e., u is an exit other than ex then this equation
is by definition x(y ez =0.)

3. Typecan: u= (b,en) is a call port. In this case:
((ben).ex) = Dea’ e Bay @y Llenea’)  L((b.ea’) ex)

In vector notation, we denote the system of equations Sa = (Ty,ex = Pj(x) | u € Q;,ex €
Ex;,i=1,...,k) by: x= P(x).

Note, we can easily construct the system x = P(x) from A in polynomial time: P(x)
has size O(]A|¢%), where £ denotes the maximum number of exits of any component of A.
We will now identify a particular solution to the system x = P(x), called the Least Fized
Point (LFP) solution, which gives us precisely the probabilities we are after. For vectors
x,y € R", define the usual partial-order x <y to mean that z; < y; for every coordinate
j. For D C R™, we call a mapping H : R™ — R" monotone on D, if: for all x,y € D, if
x <y then H(x) < H(y). Define P!(x) = P(x), and define P*(x) = P(P*"!(x)), for
k> 1.

Recall that qE“

u,exr

) denotes the probability of eventually reaching (e, ex) starting at
(e,u) in M4. Let g* € R™ denote the corresponding n-vector of probabilities (using the
same indexing as used for x). For k& > 0, let ¥ denote the n-vector of probabilities
where qé“u_’ex) is the probability of reaching (e, ex) starting at (e,u) in at most k steps
of M4, meaning via a path in M4 of length at most k. Let O (1) denote the n-vector

consisting of 0 (respectively, 1) in every coordinate. Define x° = 0, and for k£ > 1, define
xF = P(xF~1) = P¥(0).
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Theorem 3.1 Let x = P(x) be the system S associated with RMC A, and let g* be the
vector of termination probabilities of A.

1. P:R"™ — R" is monotone on Rgo. Hence, for k> 0,0 < xF < xktl,
For all k >0, q* < xF1,

q* = P(q*). In other words, q* is a fixed point of the map P.

For all k > 0, xk < q*.

q = limg_00 x*.

S & L

For allq' € RY, if ¢’ = P(d'), then q* < q'.
In other words, q* is the Least Fixed Point, LFP(P), of P : R%; — RY,.

Proof. We prove each assertion in turn:

1. That P is monotone on RY, follows immediately from the fact that all coefficients
in the polynomials P; defining P are non-negative. Thus, if 0 < x < y then
0 < P(x) < P(y). By induction on k > 0, 0 < x* < xF+1,

2. By induction on k > 0. For k = 0: x! = P(0) is an n-vector where P, ;)(0) =1
if u = ex, and P, ¢;)(0) = 0 otherwise. Hence, for each (u, ex), x%u er) = 9 (uex)s
the probability of reaching (e, ex) from (e, u) in at most 0 steps.

k+1

(we)" There are three

Inductively, suppose q* < x**1. Consider the probability q
cases, based on what type of vertex u is:

e Typey. If u = ex, then clearly q’(“u o) = qé““ = 1. Note that since Peg, eq)(X) =

w,ex)
1, x’(“ez_ex) = P(’Zz_ex) (0) =1, for all k > 1. Thus q’(:riw) = xF+2,
o Typerqng. In this case, q’(“jim) =, Puv q’(“U ex)" Thus
x’(jgm) = Plyes)(x*)
_ k+1
= D PuX(ie

> Z Duw qk(vyez) (by inductive hypothesis)
v

= (d")

(u,ex)

o Typecan- In this case?, u = (b,en) € Cally, and

k+1 k k
q(u,e;ﬂ) < Z q (en,ex’) ’ q((b,ex’),em)

ex'€Exy (1)

To see that this inequality holds, note that in order to get from u = (b, en) to
ex in at most k steps, we must first get from the entry en of the component

2This is the only case where inequality, as opposed to equality, in the inductive hypothesis becomes
necessary.
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labeling box b to some exit ez’ in at most some number m < k step, and then get
from that box-exit (b, ex’) to ex in at most m’ < k steps, such that, m +m’ <
k. In the formula for the upper bound, we have relaxed the requirements
and only require that each of m and m’ is < k. Hence the inequality. Now,
by the inductive assumption, x**' > . Hence, using the inequality, and
substituting, we get

k+1 E k+1 k+1 _ k+1 _ k2
q (u,ex) < X(en,em’) X((b,ew’),e;ﬂ) - P(X )(u,em) =X (u,ex)-
ex'€Exy (1)

We have established assertion (2).

3. Assertion (3) follows from the definition of g*. The equations for vertices of Typey,
Typerand, and Typecqi;, can be used to define precisely the probabilities Q" (y,ez) I
terms of other probabilities q* (v,ex)- Hence q" is a fixed-point of P.

*

4. Note that P is monotonic, and that q* is a fixed-point of P. Since x° = 0 < q*, it
follows, by induction on k > 0, that x* < q*, for all k£ > 0.

5. Note limy_.o q* = q*, and q* < x**1 < q*. Thus, lim;_. x* = q*.
6. Suppose ' > 0 is a fixed-point of P. By the same argument as for q*, we know
that for all k > 0, x* < q’. But since limy_,o, x* = q*, it must be that q* < ¢’

We have thus identified q* as LFP(P) = limj_,» x*. We can view Theorem 3.1 as
giving an iterative algorithm to compute LFP(P), by computing the iterates x* = P*(0),
k — oo, until we think we are “close enough”. How many iterations do we need to gain
k Dbits of precision? We show below that we need at least an exponential number.

We furthermore give several simple examples to illustrate some of the difficulties of
analysing recursive Markov chains, and we point out some of the important differences
between RMCs and ordinary finite Markov chains. For example, for finite Markov chains
with rational transition probabilities, the reachability probabilities are rational, whereas
for RMCs they are in general irrational. In the finite Markov chain case, qualitative
questions, such as whether a state is reached from another state with probability 1, only
depend on the structure (the edges) of the Markov chain, and not on the values of tran-
sition probabilities, whereas for RMCs they may depend on the actual values. For finite
Markov chains given explicitly in the input, the reachability probabilities have polynomial
bit complexity. By contrast, even in the case of hierarchical Markov chains, which have ra-
tional reachability probabilities, an exponential number of bits is required to differentiate
a reachability probability from 1 or from another rational number; thus approximation to
a polynomial number of bits is not sufficient to answer a decision problem or a qualitative
problem. Some of these examples will be used later on as gadgets in our lower bound
proofs.

Theorem 3.2 There are RMCs with the following properties. Furthermore, all the fol-
lowing RMCs, except the HMCs in (4.), have one component, one entry en, and one exit
ex.
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1. Trrational probabilities: there is a RMC, A, such that the probability qz‘en ex) 18
an irrational number, and is in fact not “solvable by radicals”. Thus, computing
LFP(P) exactly is not possible in general.

2. Slow convergence: there is a fixed RMC such that it requires an exponential number
of iterations, m = 2873 of P™(0) to obtain q* to within k bits of precision.

3. Qualitative questions not purely structure-dependent: there are 2 “structurally”
identical RMCs, A’ and A", that only differ in values of non-zero transition proba-
bilities, but qz‘emem) =1 1n A, while qz‘emew) <1in A".

4. Very small & very large probabilities: There is a HMC, with m + 1 components,
and of total size O(m), where component Ay, has entry en,, and two exits ex,, and
exy,, such that qf,,, .. = 1/(2%") and Qen,, cary = 1= (1/(22™)).

Proof.

1. Consider the RMC, A, in Figure 3. There is only one component with one entry
and one exit. All boxes refer to that one component. All edges without probability
labels are probability 1 edges. We can simplify the system x = P(x) for this RMC
to the single equation in one variable, z = (1/6)x® +1/2, by observing that the only
probability that needs to be determined in order to determine all others is qE*a_’ by It
can easily be shown that this probability is the LFP solution of the above equation.
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Thus, LFP(P) is a root of the polynomial (1/6)z° — z + (1/2). Multiplying this
polynomial by 6, which doesn’t change the roots, we get the polynomial: ¢(z) =
2% — 6x + 3. ¢(x) is an irreducible quintic polynomial. It is well-known that this
polynomial has Galois group S5, and hence, by Galois’ theorem, all roots are irra-
tional and not “solvable by radicals” (see, e.g., [Ste89], Theorem 14.8). (qf,,, ..

happens to be =~ .50550123 .. ..)

2. Consider the RMC A’ in Figure 4. The RMC A’ can again be “solved” using the
simplified equation = = (1/2)2% +1/2. The LFP solution is 1, because both roots of
the polynomial are 1. Let yx = (1 — %) be the distance between ) and 1, where
is the k-th approximant. We wish to find a recursive equation for y; instead of zy.
Substituting into the original equation, we will see that yy41 = (1/2) x (1 — 23) =
yr — (Y7 /2).

Now, suppose that for some i > 0, j is the first iteration where y; < 2~%. First, we
claim that 2-0+1) < y; < 27% This is easy to see by induction. For i =0 and i = 1
it is obvious, since yo = 1 and y; = 1/2. For i > 1, if in the j — 1 iteration 27¢ <
yj—1 <2071 then y; > 270 — 272D Since i > 1, y; > 271 — 271+ = 2= (+1),
Now, let 5’ be the first iteration where y; < 270+ Note that y;; > 2703, We
show that j' > 201 4+ j.

Consider the values at iterations y;, y;j41,...,y; . In each such iteration, to compute
Ykt1, § < k < j' we subtract (yx)?/2 from yi. Since yp < 27¢ in every such
iteration, we know that (yx)2/2 < 27Z*D. Thus, y; > y; — (§/ — j) * 27 Z+D,
Thus y; —y; < (5’ —5)*2~FD. But since y;r < 27042 and y; > 270+ we have
2742 < gy — g, and we get 270+2) < (5 — 4) * 27271, But then j' — j > 271,
Thus, if we are within ¢ bits of precision to 1, it will take 2! iterations to gain 2
extra bits of precision. Thus, to gain k + 2 bits of precision, we will need at least
2F=1 iterations.

3. Cousider again the RMC A’ of Figure 4. Suppose we increase the probability of the
edge from a to the first box-entry to ¢ > 1/2, and we reduce the probability of the
edge from a to b to d < 1/2, so that again ¢ +d = 1. Our equation S for such a
RMC becomes x = cx? + d. Substituting (¢ + d) for 1, note that the roots of the
polynomial cz? — (¢ + d)x + d are given by:

(c+d)t+/(c+d)?—4ded (c+d)x+/(c—d)?

5 = 5. =1lord/c.

Since d/c < 1, the LFP solution is d/c. We can make d/c as small as we want by
choosing d close to 0 and ¢ close to 1, while still (¢4 d) = 1.

4. Consider the HMC, i.e., hierarchical RMC, A, (i.e., no cycles in the call graph),
which has m+1 components Ay, ..., A,,. Figure 5 depicts Ay and A;, for ¢ > 0. A;,
i > 0, has two boxes, b% and b, both of which map to A;_;. All edge probabilities
in A; are 1. Ag has just two edges, each with probability 1/2, from the entry
to two exits. It is easy to show by induction on 4, that q(en, esr) = 1/(2%), and

ony ey = 1 = (1/(2%)). Note that [A] € O(m).?

3The probability 22% can easily be obtained with a 1-exit HMC of size O(m), by a minor modification
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4 Upper bounds: RMCs and the Existential Theory
of Reals

We now show that the central reachability questions for general RMCs can be answered
by appealing to algorithms for deciding the Existential Theory of the Reals, ExTh(R).

A sentence in ExTh(R) is a prenex form sentence: 3zy,...,x,R(z1,...,2,), where R is
a boolean combination of “atomic predicates” of the form f;(x)A0, where f; is a multi-
variate polynomial with rational coefficients over the variables x = x1,...,2z,, and A is a

comparison operator (=, #,>, <, <, >).

Beginning with Tarski, algorithms for deciding the First-Order Theory of Reals, Th(R),
and its existential fragment ExTh(R), have been deeply investigated. In the current
state of the art, it is known that ExzTh(R) can be decided in PSPACE [Can88] (see also
[Ren92, BPR96, BPRO3]). Furthermore it can be decided in exponential time, where the
exponent depends (linearly) only on the number of variables; thus for a fixed number
of variables the algorithm runs in polynomial time. More specifically, the following is
known.*

Theorem 4.1 (/Can88, Ren92, BPRIG]) Let ¢ be an existential first-order sentence in
prenex form in ExTh(R), which uses m distinct polynomials f; in atomic predicates, over
n variables x1,...,T,, each f; having degree < d, and with all rational coefficients in ¢
describable in at most L bits.

There is an algorithm that decides whether ¢ is true over the real numbers, and that runs

in PSPACE and in time: O( (Llog Lloglog L) (md)°™ ).

Suppose we want to decide whether a nonnegative rational vector ¢ = [cy,...,c,]7 is
LFP(P). Consider the sentence: ¢ = 3x1,..., 20 A\iey Pi(21, ..., 20) = ©i ANy T = ¢

of the construction. However, we note without proof here that it is impossible to design a 1-exit RMC of
size O(m) such that some probability qZu,eCL‘) =1- 22% Thus, > 2 exits are required to get probabilities
“exponentially close” (but not equal) to 1 with HMCs or RMCs.

4For simplicity, we assume in the statement of Theorem 4.1 that given truth values for the atomic
predicates, the truth of the boolean combination R can be evaluated in constant time. This assumption
does not have a significant effect on the running times we state, but serves only to simplify the statement.
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The sentence ¢ is true iff ¢ = P(c). To guarantee that ¢ = LFP(P), we additionally need
to check: ¢ = 3w1,..., 20 Ni_y Pi(21, .oy 2n) =2, AN_ 0 < @ AV, 2 < ¢ ) is false
iff there is no solution z € RZ, to x = P(x) such that ¢ £ z. Hence, to decide whether
¢ = LFP(P), we only need two queries to a decision procedure for ExTh(R). Namely, we
check that ¢ is true, and hence ¢ = P(c), and we then check that 1 is false, and hence

c = LFP(P).
If we want to determine whether a particular probability ¢; is smaller than a given
rational number ¢ then we form the sentence ¢ = Jz1,...,20 A\j Pi(@1,...,2,) =

xi/\/\?zl 0 < z; Azg < cx. This sentence says that the system x = P(z) has a nonnegative
solution with the property that xx < ci. Clearly, this is the case if and only if the LFP
has this property. Similarly we can test if g; < c; or not (i.e. gf > cx).

Theorem 4.2 Given a RMC A and given a vector of rational probabilities c, there is a
PSPACE algorithm to decide whether LFP(P) = ¢, as well as to decide whether qj Acg,
for any comparison operator A. Moreover, the running time of the algorithm is O(|A|9™)
where n is the number of variables in the system x = P(x). Hence the running time is
polynomial if n is bounded.

ExTh(R) gives us a way to ask questions like: “Is there a solution to x = P(x) where
a < xr < b? for any rational numbers a and b, and if we wish, with either inequality
replaced by strict inequality. Since 0 < LFP(P) < 1, we can use such queries in a
“binary search” to “narrow in” on the value of each coordinate of LFP(P). Via simple
modifications of sentences like ¢, we can gain one extra bit of precision on the exact value
of gj with each extra query to ExTh(R). So, if we want j bits of precision for each ¢j,
k =1,...n, we need to make j - n queries. The sizes of the queries do not vary by much:
only with an additive factor of at most j bits, to account for the constants a and b. This
discussion yields:

Theorem 4.3 Given RMC A, and a number j in unary, there is an algorithm that ap-
prozimates the coordinates of LEP(P) to within j bits of precision in PSPACE. The run-
ning time is O(j - |A|90M)), where n is the number of variables in X.

5 “Lower” bounds: RMCs, the Square-Root Sum Prob-
lem, and arithmetic circuit decision problems

The last section showed that problems related to the termination probability of RMCs
can be decided in PSPACE. In this section we show that any substantial improvement
of those PSPACE upper bounds will have to overcome major obstacles. Namely, we
show that even approximating the termination probability of a given RMC to within
any nontrivial additive factor is at least as hard as a long standing open problem in the
complexity of exact numerical computation, the square-root sum problem (SQRT-SUM), and
an even more difficult (and fundamental) problem on arithmetic decision circuits.
Formally SQRT-SUM is the following problem: given natural numbers (di,...,d,) €
N™ and another number k € N, decide whether > ! \/d; < k. The PosSLP (positive
Straight-Line Program) decision problem asks whether a given a straight-line program
or, equivalently, arithmetic circuit with operations +, —, %, and inputs 0 and 1, and a
designated output gate, outputs a positive integer or not. In the introduction, we gave
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some background on the significance and the current status of these problems. Recall
that both problems can be solved in PSPACE, and their complexity was recently lowered
slightly to the 4th level of the Counting Hierarchy, an analog of the polynomial-time
hierarchy for counting classes like #P.

We show in this section that these problem reduce to the qualitative and quanti-
tative termination problems for RMCs. First we give a simple direct reduction from
the SQRT-SUM problem to the quantitative decision problem for 1-exit RMC (equivalently,
SCFG); we include this reduction since it is quite simple. We then show that the SQRT-SUM
and PosSLP problems are reducible to the problem of distinguishing for a given 2-exit
RMC between the case that the RMC terminates with probability 1 and the case that it
terminates with probability < e where € is any positive constant. This means that the
qualitative termination problem (is the termination probabiility 1), and approximation to
within any nontrivial error for 2-exit RMCs are as hard as SQRT-SUM and PosSLP. Finally,
we show that these problems reduce also to the quantitative decision problem for 1-exit
hierarchical RMCs. (As we will show later, the qualitative termination problem can be
solved in polynomial time for both, the class of 1-exit and the class of hierarchical RMCs).

Let SCFG-DEC be the following decision problem: given a SCFG G (with rational
rule probabilities) and given a rational number p € [0, 1], decide whether the language
generated by the SCFG has probability > p (i.e., G produces a terminal string with prob-
ability > p). From Theorems 2.3 and 2.4, this problem is equivalent to the corresponding
decision problems, denoted 1-EXIT-DEC (respectively, MT-BP-DEC) of determining for
a given l-exit RMC (resp. MT-BP) and rational p, whether the termination probability
of the RMC starting at a given vertex (resp. the extinction probability of a given type in
the MT-BP) is > p.

Theorem 5.1 SQRT-SUM is P-time reducible to SCFG-DEC, 1-EXIT-DEC and MT-BP-
DEC.

Proof. It suffices to prove it for SCFG-DEC. Given (di,...,d,) € N and k € N,
we construct an SCFG, G, as follows. Let m = maxj<i<nd;. Our SCFG G, will have
non-terminals {5, S1, ..., S, }, and a single terminal {z}. S is the start non-terminal. The

production rules associated with S are S n Si, fori=1,...n. Let ¢; = (1—(d;/m?))/2.
There are two productions associated with each 5;:
si L2 s,

e
S, —— =z

Note that 1/2 + ¢; need not necessarily sum to exactly 1. If desired, we can make this
a “proper” SCFGQG, where production probabilities out of each non-terminal sum to 1, by
adding an extra production S; — A, with the residual probability 1—(1/2+¢;), such that
Ais anew “dead end” non-terminal, with only one production A — A, having probability
1.

For a non-terminal N, let py be the probability that N terminates. Using the standard
formula for roots of quadratic polynomials, we see that:
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n

ps = Y (nps, = (1/n)Y (1 - V(1 —2c))

i=1 i=1

= ) V@) = 1 (1) Y V)
Thus, Y"1, v/d; < k if and only if pg > (1 — k/(nm)). [

We next show that the qualitative decision problem as well as any non-trivial approx-
imation of the termination probabilities for 2-exit RMCs, are both SQRT-SUM-hard and
PosSLP-hard. Specifically, let the Promised Gap Decision Problem, PGD(a,b), be the
following: Given an RMC, vertex u and exit ex, and rationals a < b, and the promise
that the termination probability g;, ., has the property that either ¢;, ., < aor g, ., >0,
decide which of the two is the case.

Theorem 5.2 For every € > 0, the SQRT-SUM and PosSLP problems are P-time (many-
one) reducible to the promised gap problem PGD(e, 1) for the termination probability of
2-exit RMCs.

Proof. Here we prove PosSLP-hardness. It follows from [ABKPMO06] that SQRT-SUM
is also (Turing) reducible to the PGD(e,1) problem for RMCs. A direct reduction from
SQRT-SUM, which we omit due to space, shows that SQRT-SUM is many-one reducible to
PGD(e,1) for RMCs.

We are given an arithmetic circuit C' over basis {+, —,*} with fan-in 2 and with
inputs 0,1, and we want to determine whether the output of the circuit, denoted val(C),
is positive. First, we observe that in the PosSLP problem we can assume, w.l.o.g., that
the only use of a subtraction gate occurs at the topmost gate of the arithmetic circuit.
We can transform any arithmetic circuit over basis {+, —,*} to this form by replacing
each gate g of the original circuit with two gates g and g~ for the positive and negative
parts, such that g = (g7 — g7). Viewing the transformation bottom-up, each addition
gate g := g¢; + g; in the original circuit can be replaced by two gates: g, := g + gf
and g, := g; +g;. Likewise, a subtraction gate gr := g; — g; can be replaced by
g,j = g;" +g; and g = g; + g;-". Finally, a multiplication gate gi := g¢; * gx can be
replaced by g,j = gj * gj'.Ir +g; * gj_ and g, = gj * gj_ +g; * g;.“ (note that we need two
multiplication gates and one addition gate for each of these). Clearly, the transformation
only blows up the circuit linearly. For the output gate, gout, we can add a subtraction
gate Gout = s — Gous, thus computing the same output as the original circuit.

Thus, the PosSLP problem is equivalent to the following problem: given two monotone
arithmetic circuits (SLPs), S1 and Sa, over {4+, *} with inputs 0 or 1, determine whether
val(S1) > val(S2), where val(S1),val(S2) are the output values computed by the two
circuits.

We shall define two 2-exit RMCs, A; and A, such that the probability of termi-
nating at exit 1 of A; is val(S;)/M and the probability of terminating at exit 2 is
(1 = (val(S;)/M)), where M is sufficiently large such that these define legitimate proba-
bilities.

We first need a normal form for the arithmetic circuits. We can assume, wlog, that
the circuits .S; have the following normal form:
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1. the depth of both circuits S; is the same number, say k. We can do this by inserting
dummy gates, which may have only 1 incoming edge.

2. The circuits are “leveled”, and they alternate between a + level and * level. We can
again do this by inserting dummy gates.

3. We can assume furthermore that each gate has actually two incoming edges (both
incoming edges can be from the same gate at the lower level). For the + gates,
we do this by carrying to the i’th level a gate zero;, whose value is 0, and adding
a second incoming edge from zero; to any +-gate at level 7 + 1 that had only 1
incoming edge before. (Note that zero; itself can be built with alternating levels of
+ and * gates starting from the 0 input.) For the x gates, we do this by carrying to
the i’th level a gate one;, whose value is 1, and adding a second incoming edge from
one; to any x-gate at level ¢ + 1 that had only one incoming edge before. We can
easily build one; itself using alternating + and * gates starting from 1 input and
using the zero; gates.

Given circuits S; and S in this normal form, we will construct corresponding RMCs
Ay, As. Each RMC contains one component B; for every gate g; of the corresponding
circuit; every component has one entry and two exits.

We proceed bottom up in each circuit, as follows. For each + gate of the form ¢g; =
gj + gk, we include a component B; in the RMC, whose entry has a 1/2 transition to a
box labeled by component B; and a 1/2 transition to a box labeled by component By.
From return port 1 of both the boxes labeled B; and By, we go with probability 1 to the
first exit of component B;, and from the second return port of B; and Bj, we go with
probability 1 to the second exit of B;. For each *-gate g; = g; * g, we include a component
B; in the RMC: whose entry transitions with probability 1 to a sequence of two boxes
labeled by B; and By. From return port 1 of the box labeled by B; we go to the call port
of box By, with probability 1. From the second return port of box B; we go to the second
exit of B; with probability 1. From the first return port of box B we go to the first exit
of B; with probability 1; from the second return port of box By we go to the second exit
of B; with probability 1.

Let g,, be a gate at level 7. It is easy to prove by induction that the probability, starting
at the entry of B,,, of termination at exit 1 of B,, is val(g.,,)/M,, and the probability of
termination at exit 2 is 1 — (val(gm))/M,) where M, = 2% and the exponent a, is defined
by the recurrence a, = 2a,_1 if level r > 1 consists of * gates, a, = a,_1 + 1 if level r > 1
consists of + gates, with ap = 0 (corresponding to the inputs considered as being at level
0). Thus, if we assume wlog that odd levels of the circuits consist of * gates and even
levels of 4 gates, then as;_1 = 2° — 2 and ag; = 2° — 1 for all 7 > 1.

Let B,,, and B,,, be the components associated with the output gates of S; and Ss,
respectively. We will use the components By, , By, to construct a new component A with
one entry and one exit, such that the termination probability of A is 1 if val(S2) > val(S7)
and otherwise (i.e., if val(S1) > val(S2)) its termination probability is < (M —1)/M < 1,
where M = My = 2% is the denominator corresponding to the common depth k of
the circuits S; and S3. The component A is based on the RMC of part 3 of Theorem
3.2, i.e., the RMC depicted in Figure 4, where the transitions from the entry node have
probabilities ¢ and d instead of 1/2. Our component A here has one entry, one exit, and
four boxes b1, b, b3, by. Boxes bs, by are both labeled by A and are connected sequentially
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in the same way as the two boxes labeled f in Figure 4: there is a probability 1 transition
from the return port of b3 to the call port of by and a probability 1 edge from the return
port of by to the exit of A. The two boxes b; and by are labeled by B,,, and B,,,
respectively. From the entry of A there is 1/2 probability transition to the call ports of
both b; and by. There are probability 1 edges from return port 1 of b; and return port
2 of by to the call port of box b3, and probability 1 edges from the other return ports of
b1 and bo, i.e., return port 2 of b; and return 1 of by, to the exit of A. The component A
starting from the entry node, will transition to one of the boxes b1, b2 and after that box
returns, it will either transition to the call port of b3, or to the exit; let ¢ be the probability
of the first event and d = 1 — ¢ the probability of the second. Then ¢ is 1/2 times the
probability that B,,, terminates at exit 1 and the probability that B,,, terminates at
exit 2, thus, ¢ = 1/2[(val(S1)/M) + 1 — (val(S2))/M)] = 1/2 + (val(S1) — val(S2))/2M.
The probability d = 1 —c is d = 1/2 — (val(S1) — val(S2))/2M. Thus, A is in effect
equivalent to the RMC analyzed in part 3 of Theorem 3.2 with the above values ¢, d
for the transition probabilities of the entry node. From that analysis we know that the
termination probability of A is 1 if ¢ < 1/2, and d/c if ¢ > 1/2. Thus, the termination
probability of A is 1 if val(S1) < val(Ss), and it is fr—eafGutealial < Mol o
val(Sh) > val(S2).

We will now use the component A in order to construct another RMC. From part 4
of Theorem 3.2, we know how to construct a (hierarchical) RMC, C, with n levels such
that the top component of C has two exits, and the termination probability at exit 1
isb = 1/22"7 and at exit 2 it is 1 — b. Construct an RMC G whose top component
contains an A box and a C box. We take n associated with the C' box to be much larger
than the depth k of the circuits, specifically, n = ¢ * k, for some constant ¢, such that
b=1/22" < ¢/M; since M < 22" it suffices to take for example ¢ > loglog(1/e). The
entry of G goes to the entry of the C' box with probability 1. Exit 1 of the C box goes
to the exit of the G component, and exit 2 goes to the entry of the A box. The exit of
the A box goes back to the entry of the C box. Let z be the probability of termination
for G. If the termination probability of A is 1, then z = 1. If it is 1 — a, then z satisfies:
z=b+(1-b)(1—-a)z. So z(a+b—ab) =b. Therefore z < b/a < €, because a > 1/M. m

We now show hardness of the decision problem for hierarchical 1-exit RMCs.

Theorem 5.3 The PosSLP problem (SQRT-SUM problem) is P-time many-one (Turing, re-
spectively) reducible to the decision problem for hierarchical 1-exit RMCs, i.e. determining
whether the termination probability is greater than p for a given rational p € (0,1).

Proof. Since SQRT-SUM is P-time Turing reducible to PosSLP ([ABKPMO06)), it suffices
to provide the claimed reduction from PosSLP. As in the proof of the previous theorem,
given a circuit C over basis {+, —, *} with inputs 0,1, we first construct two circuits Sy,
Sy over {+, x} such that val(C) = val(S1) — val(S2), and furthermore the circuits S, Sa
have the same depth and are in the same normal form: each level has gates of the same
type (x or +) with inputs from the immediately previous level, and the levels alternate.
Let ¢ be any positive rational constant < 1, for example ¢ = 1/2. We will construct a
hierarchical RMC which contains two components B;, B; for each gate g; of the circuits
S1, 52, each component has one entry and one exit, and the termination probability of
(the entry node of) B; is p; = a,val(g;), where «, depends on the depth r of the gate
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gi, and the termination probability of Bj is p, = ¢ — p;. Then we will add one more
component on top of these to get the result.

We perform the construction bottom-up in the circuits. To begin with, we consider
the inputs 1 and 0 as being ‘gates’ g_; and go at level 0, let ap = ¢, and construct trivial
components By = B’ ; with termination probability 0, and Bj = B_; with termination
probability ¢. Consider a level » > 1 consisting of + gates, and define o, = a,_1/2.
For an addition gate g; = g; + gi at level » we include a component B; in the RMC,
whose entry has a probability 1/2 transition to a box labeled by component B; and a
1/2 transition to a box labeled by component Bj; the return ports of both boxes have
probability 1 transitions to the exit of B;. Clearly the termination probability of B; is
pi = (pj +pK)/2 = ar_1(val(g(j) + g(k))/2 = ayval(g;). We include also a component B
which is similar to B; except that its two boxes are mapped to B; and By,. Its termination
probability is p; = (p} + p},)/2 = (c = pj + ¢ —pk)/2 = ¢ — p;.

Consider a level  consisting of * gates, and let g; = g; * gr be a gate at level r. Let
p=(1-c)/(2—c?); note that 0 < p < 1/2. Define o, = p(a-—1)%. The component B;
corrsponding to the gate g; has two boxes b1, ba that are labeled Bj, By and are connected
in series . The entry of B; transitions with probability p to the call port of b; and with
the remaining probability 1 — p to a dead state. There is a probability 1 transition from
the return port of b; to the call port of by and from the return port of by to the exit of
B;. The termination probability of B; is clearly p; = pp;jpr = par—1val(g;)ar—1val(gr) =
azval(g;).

The component B for the * gate is a little more complex. It has four boxes by, b}, ba, b}
mapped respectively to Bj, B}, By, By,. The entry of B} has transitions with probability
p to the call ports of b} and b}, and a transition with the remaining probability 1 — 2p to
the exit of the component. The return port of b} transitions with probability 1/2 to the
call port of box be, with probability ¢/2 to the exit and with the remaining probability
(1 — ¢)/2 to a dead state. The return port of box b, has the symmetric transitions:
probability 1/2 to the call port of by, probability ¢/2 to the exit and (1 — ¢)/2 to the
dead state. The return ports of both boxes b1,bs have probability 1 transitions to the
exit. We can calculate the termination probability p, of the entry node of Bj. It is
p; = plc = pj)(pe +¢)/2+ plc — pi)(pj +¢)/2+ (1 = 2p) = pc? — ppjpi + 1 — 2p. Since
p(c> —2) =c—1, we have p}, = ¢ — pp;pr = ¢ — pi.

Let gm, and ¢, be the output gates of S; and S, respectively, both at the same
depth k. We add a top component C to our hierarchical Markov chain. The component
C has two boxes b1, ba, mapped respectively to the components B,,, and B;,,. The entry
of C has probability 1/2 transitions to the call ports of the two boxes, and the return ports
of both boxes have probability 1 transitions to the exit of C'. The termination probability
of C'is pc = 1/2(pm, + ¢ — Pmsy) = ¢/2 + (o /2)(val(S1) — val(Sz)). Thus, pc > ¢/2 iff
val(S1) > val(Sz). |

6 Numerical algorithms: RMCs and Newton’s method

This section approaches efficient numerical computation of LFP(P), by studying how a
classical numerical solution-finding method performs on the systems x = P(x). Newton’s
method is an iterative method that begins with an initial guess of a solution, and repeat-
edly “revises” it in an attempt to approach an actual solution. In general, the method
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may not converge to a solution, but when it does, it is typically fast. For example, for the
bad RMC of Theorem 3.2, part 2, (see Figure 4) where the standard iterative algorithm,
P%(0), k — oo, converges exponentially slowly, requiring roughly 2¢ iterations to gain i
bits of precision, one can easily show that Newton’s method converges exponentially faster,
gaining one bit of precision per iteration (we will make this observation more precise later).
Recall that, given a univariate polynomial f(z) (or more generally, a univariate differen-
tiable function), and an initial guess g for a root of f(z), Newton’s method computes

the sequence xg, x1, ..., Xk, where g1 := T — J{,((fc’;)). There is a natural n-dimensional

version of Newton’s method (see, e.g, [SB93] and [OR70]). Given a suitably differentiable
map F': R™ — R"™, we wish to find a solution to the system F'(x) = 0. Starting at some
xo € R", the method works by iterating xy41 := xx — (F'(x¢)) "1 F(xx), where F’(x) is
the Jacobian matriz of partial derivatives, given by

OF, OF,
Oxy """ Oxp
Fl(x) = 2
OF, OF,
Oxy """ Oxp

In other words, for each ¢ € R™, F'(c) is a real-valued matrix whose (i, j) entry is
the function 4£% evaluated at c. For the method to be defined, F’(x)) must be invertible

at each point x; in the sequence. Even when the x;’s are defined and a solution exists,
Newton’s method need not converge, and diverges even for some univariate polynomials
of degree 3. We already know one convergent iterative algorithm for computing LFP(P).
Namely, computing the sequence x? = P7(0), j — co. Unfortunately, we saw in Thm.
3.2 that this algorithm can be very slow. The question arises whether Newton’s method,
applied to F(x) = P(x) — x, can guarantee convergence to LFP(P), and do so faster.
That is essentially what we establish in this section, after some preprocessing and using
a suitable decomposition of the system.

We first preprocess the system (in polynomial time in its size, by Theorem 2.2) to
remove all variables x(, ¢,) where qz“u)em) = 0. Then we form a graph GG whose nodes are
the remaining variables x; and the constant 1, and whose edges are (z;,x;) if x; appears
in P;(x), and edge (x;,1) if Pi(x) = 1. We call G the dependency graph of the RMC A
and the system S4. We decompose the graph (and the system) into strongly connected
components (SCCs) and apply Newton’s method separately on each SCC bottom-up, as
shown in Fig.6. Namely, let C1, ..., ), be the strongly connected components of G, and
let H be the DAG whose nodes are the SCCs and whose edges are (C;, Cj), i # j, iff there
is an edge in G from some vertex in C; to some vertex in C;. Assume Ci,...,Cyp, are
topologically sorted, so an edge (Cj, Cy) implies k£ > j. Note that the only scc with no
outgoing edges is the scc that consists of the constant node 1, because we have eliminated
all the variables that have value 0: if there was another scc with no outgoing edges, then
all the variables in it will have value 0 in the least fixed point. We can obtain, a sequence
of systems (SY,...,S%7) from these SCCs as follows: If we fix an assignment of values to
variables in each Ci, k > 7, then C; can be seen as a system of equations Sf;‘ involving
only the variables in C;. Each such system has a LFP, which we write as LFP(SZ‘). This
corresponds to a “piece” of the overall solution, i.e., there is an easy 1-1 correspondence
between the combined variables of S%, j = 1,...,m, and the coordinates of x = P(x).
The algorithm in Fig.6 specifies how we process SCCs and apply Newton’s method to
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1. Preprocess x = P(x), eliminating all variables x; where ¢ = 0;
2. Construct the DAG of SCCs, H, based on the remaining system of equations.
3. While (there is a sink SCC, C, remaining in the DAG H)

(a) If C is the trivial SCC, C = {1}, then assign value 1 to the node in C.
Else, run Newton’s method, starting at 0, on the equations for the set of
variables in C, where these equations are augmented by the values of previously
computed variables.

i. Stop if a fixed point is reached and assign the variables in C' the values of
the fixed point.

ii. Stop after a specified number of iterations, k, or if the solutions for C' are
considered “good enough”. Assign these final values to the variables in C'
and substitute these values for those variables in all remaining equations.

(b) remove C' from the DAG.
Figure 6: Decomposed Newton’s method

the decomposed system. In Fig.6 we have not specified explicitly how many iterations
are performed. For concreteness in the following theorem, suppose that we perform k
iterations for every SCC. Let x;, be the resulting tuple of values.®

Theorem 6.1 Given an RMC with associated system of equations, x = P(x), in the
Decomposed Newton’s Method of Fig. 6, the sequence xi,k — 0o, monotonically converges
to q*. Moreover, for all k >0, x; > P*(0).

For convenience, we will often avoid boldface and use z for x.

Proof. We will show by bottom-up induction on the SCCs that the algorithm is well-
defined (i.e. does no attempt to invert a singular matrix) and the vector xj, computed by
performing k iterations on each SCC lies between P¥(0) and ¢*. This implies then that
TE — ¢ as k — oo since P*(0) — ¢* .

Clearly the above statement is true at the beginning after we eliminate (assign 0 to) all
variables z; with ¢ = 0 and we process the bottom SCC with the singleton 1. Suppose
that we are now processing SCC C; after having processed all the successor SCCs. If
Cj is a trivial SCC, i.e. it contains a single node z; and no edges, which means that z;
depends only on variables in lower SCCs, then the statement follows trivially from the
induction hypothesis. Suppose that C; is nontrivial, that is, the corresponding system of
equations Six is recursive. Since Sf;‘ is obtained from the corresponding equations in the
original system S4 by substituting in the right hand side (rhs) the values obtained for

5We note that Theorem 6.1 is related to the Monotone Newton Theorem (MNT) in [OR70] (their
Theorem 13.3.4) where sufficient conditions are given under which monotone convergence of Newton’s
method holds. However, Theorem 6.1 does not follow from MNT. This is because in our setting, without
decomposing our system into SCCs, and in particular removing all 0 variables, the Jacobian F’(x) may
not be invertible and thus Newton iterates may not even be well defined, and furthermore because MNT
requires that the Jacobian F’(x) be invertible even at the solution itself, in our case at the LFP. As we
shall see, this does not hold for us even on individual SCCs, and it causes considerable complications in
our proofs.

31



the variables in lower SCCs, and these values are less than or equal to the corresponding
values in ¢* = LFP(S4), it follows that S has a least fixpoint LFP(S%) and it is less
than or equal the projection of ¢* on the variables in C;. On the other hand, if we start
with the 0 vector for the variables in C; and apply to it, k times, the operator on the
right hand side of SA , then the vector z* that we will obtain is greater than or equal
to the projection of P¥(0) on these variables, because by induction hypothesis the values
that we substituted for the variables in lower SCCs have this property. We are going to
show that when we perform k iterations of Newton’s method on the system S, we do
not encounter a singular matrix, and the computed vector lies between 2* and LFP(Si‘),
which implies the statement for the induction step. In fact we will show in particular that
if S9 is linear, then one iteration of Newton yields LFP(S%), and if S’ is nonlinear (i.e.
the rhs of some equation contains a nonlinear term) then the computed vector is strictly
smaller than LFP(S%) in all coordinates.

Thus, for the rest of the proof we will restrict attention to one SCC Cj}, after having
processed the lower SCCs. To simplify notation and avoid too many subscripts, we we
will still use z = P(z) to denote the system S? of the current SCC Cj, use ¢* to denote its
least fixpoint LFP(S’A)7 use z¥ to denote the vector obtained after k iterations of Newton
on Si, and x' = P(0) to denote the vector obtained after i iterations of the rhs operator
P of the system Si‘ on the 0 vector.

For F(z) = P(x) — x, the Newton iterates are defined by:

wpr1 = ap — (F'(ar) F (k)
=+ (—F (zx) " (Plaw) — o)
We have to show several things. First, we have to show the sequence xg, x1, ... is well

defined. In other words, we have to show that the inverse matrix (—F’(xz;)) " exists for

each x,. We can break things into two cases: In the first case the system S7 for the
SCC C; being solved is a linear system; for example this is the case if all the vertices of
the SCC are of type rand and thus correspond to an ordinary finite Markov chain, but
the system Sf4 for a SCC may be linear even if there are some Type.q;; variable because
some of the variables on the right hand side of their equations belong to lower SCCs
and thus we have substituted their values. In any case, if S is a linear system then
—F'(xg) = —F'(x1) = ... is a constant matrix I — B, where B is the matrix of coefficients
on the rhs. It will turn out in this case that (I — B) is invertible and that z; = ¢*.

In the second case, the system S’ contains at least one nonlinear term. In this case
we will show that xg < 1 < ..., that z; < ¢* (i.e., strictly less in every coordinate) and
that (—F"(x)) ! exists for all k > 0, and limy_, o 2% = q*.

We will see that the Newton iterates grow at least as fast as the iterates in the standard
LFP algorithm.

Let us now consaider F'(x) in more detail. Recall that the (4, j) entry of the Jacobian

F,

matrix F' is a; ; = gz Depending on the type (1, rand or call) of the equation z; = P;(x)

from Sf;‘, we have the following cases:

e Type;. This cannot happen for a nontrivial SCC, because in this case the SCC would
contain just a single node x; with an edge to the 1 node.

o Typergna. For i # j, then a, ; = p; ;, where p; ; is the coefficient of x; in P; (p;;
could be 0). a;; = (pi; — 1), where p; ; is the coefficient of z; in P;. Note that the
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equation for x; in the original system S4 may contain some variables that belong
to lower SCCs, and which are replaced by constants in S7.

o Typecau. Then P;(x) has the form Pi(x) = >0, @i @+ i n PijaTint
c. In the original system S4 the rhs of the equation is a sum of binomials; however
some of the variables may belong to lower SCCs, hence when we substitute their

computed values we may obtain some linear terms and a constant term.

In this case a;; = —1, since we can assume that z; itself does not appear in P; for
equations of type call. This is because a call port can be assumed to never be a
component entry, and also never a return port. For ¢ # j, a; ; is either z;, , if j = jy,
for some k <1, or is x;, if j = iy for some k <, or a number p; ;, € [0,1] if j = ji
for some k <[, and is otherwise 0.

Thus, we note that F’(z) has a particular form. Namely:

where I is the identity matrix, and the matrix B(x) is a non-negative matrix whose (3, j)
entry b; ; is either a probability p; ; which is the coefficient of x; in the polynomial P; or
else is x,, for some index 7.

For x > 0, —F'(x) = I — B(z), where B(z) is a non-negative matrix. We use the
following fact from matrix analysis:

Theorem 6.2 (see, e.g., [LT85], p. 531) Let B € R"*"™ with B > 0. The matriz I — B
is invertible (non-singular) and (I — B)™* > 0 if and only if p(B) < 1, where p(B) is the
spectral radius of B. If this is the case then,

(I-B)y'=(I+B+B*+..)

We will show that the spectral radius of B(x) is less than 1 for any vector x such that

r < q* (i.e., strictly less in all coordinates). It will follow that for such z, (I — B(x))™! =

Yoo (B(x))* exists (i.e., is finite) and is non-negative. First, some key lemmas.
Lemma 6.3 For 0 <x <y,

1.
B(z)(y —x) < P(y) — P(z) < B(y)(y — ) (1)

2. Moreover, if Sf;‘ is a linear system, then B(x) = B(y), and thus B(z)(y — x) =
P(y) — P(z) = B(y)(y — x)

3. If we let g* denote LFP(SIJ;‘), then B(x")(q* —2*) < (¢* — 2**Y), for all i =1,2,.. .,
where x* = P*(0)
4. And, also (¢* — x**1) < B(q*)(¢* — 2*), where again z* = P(0).

Fl(z)(y —x) < F(y) — F(z) < F'(y)(y — ) (2)
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Proof. We only need to prove (1.), since (2.), (3.), (4.), and (5.) follow directly from
(1.). In particular, for (2.) note that in that case B(z) is a constant matrix, and thus
B(x) = B(y). For (3.) and (4.), take y = ¢* and z = 2. Lastly, for (5.), note that
F'(z) = (B(z) - I), and F(y) — F(z) = (P(y) — P(x)) — (y — ). By subtracting (y — 2)
from each part of the inequality (1), we obtain the inequality (2).

Now we prove (1.). To show B(x)(y — z) < P(y) — P(z), consider a variable x; and
the corresponding entry of B(z)(y —x). There are two non-trivial cases to consider, based
on the kind of the equation of z;:

Case 1: P;(x) is linear. Then

[B(x)(y — )]s = >, pi,i (Y5 — x5) = 325 Pijyj — 2o Piry = Pily) — Pi(w).
Note that equality holds in this case, establishing (2).
Case 2: P;(z) is nonlinear. Then

[B(z)(y — Z iy, (y Jk + ‘Tjk Z pljk 'k

k=1 k=141
The expression in the brackets is
< Vi (y— I)jk + Zj, (y — I)ik

Thus,

[B(x)(y — )l

IN

l m
Z Yir Y — Z Ty Tjy, + Z PijiYje — Z Pij, Ly,
k=1 k=I+1 k=I+1
Pi(y) — Pi(x)

The proof that P(y) — P(x) < B(y)(y — ) is identical: it is the “mirror image” of this
proof and is left to the reader. [

Lemma 6.4 Assume 0 < x <y, and x < P(z). Then
1. (B(x))'(y — =) < PU(y) — PY(x).
2. If, S is a linear system, then B(z)%(y — x) = P(y) — P(x).

3. If §% is nonlinear, and x < ¢* = LFP(S%) (in every coordinate), then for each
vartable index s, there is some dgs > 1, such that
(B(2)®(P(z) — 7))s < (P4H(2) — P (2))s.

Proof.

1. By induction on d using Lemma 6.3.
Base case, d = 1: B(x)(y —x) < P(y) — P(x).

Inductively, assuming B(x)?(y —z) < P(y) — P4(x), then since < P(x) and P(x)
is monotone, z < P%(x) for all d > 1. Thus, since each entry of B(z) is non-negative
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and non-decreasing as a function of z > 0, we have 0 < B(x) < B(P%(z)). Thus,
by Lemma 6.3,

(B(x))™ ! (y—2) < B(PY(x))(B(x))*(y—=) < B(P4(x))(P?(y)—P(x)) < (P (y)-
Pa+1(z)).

. Noting that in this case B(z) is a constant matrix, independent of z, use part (2.)
of Lemma 6.3, and part (1.) of this Lemma.

. Suppose there is at least one nonlinear term in some equation. This means that
B(x) depends non-trivially on some coordinate x, of x. Suppose, moreover, that
x < q*.

Since we are dealing with a system Sf;‘ for a strongly connected component C;, the
underlying weighted directed graph defined by the matrix B(x) is strongly connected
(it is equal to Cj), and it is thus easy to show that for each variable index s there
exists some power 1 < d. < n, such that the sth row of Bds has in some column a
term that contains the variable x,. In other words, there is some column index I,
such that for any vector &’/ > x, where x/. > x,., (B% (x))s; < (B% (24,

Now, since 0 < z < ¢*, the sequence P™(x),m = 1,2,... converges to the LFP ¢*.
Thus, there exists some m such that P™(x) > z in every coordinate. Moreover,
for all such m, and for each index [, there exists m; > m, such that (P™ %! (z) —
P™(z)); > 0. To see this note that, since we have a non-trivial SCC which means
that every variable depends on some other variable, and since ¢* > z, it follows by
induction, that ¢* > P™(z) for all m. Thus since lim,, .o P™(z) = ¢*, it must also
be the case that for some m; > m, P™*1(z), > P™ (z),.

Now, let ds = d, + my.

B (z)(P(z) - )

(w)B"“( )(P(x) —x)

< B%(z)(P™H (z) — P™(z))
< BY(P™(2)(P™H (z) — P (x)
< P%t(z) - P%(x)

Note, moreover, that B% (x),; < B%(P™(z))s; and (P™*(z) — P™(x))); > 0.
Thus the second inequality, <*, is strict in component s. Therefore, (B% (P(z) —
x))s < (P4H(z) — Pl (z))s.

Lemma 6.5 If z < LFP(SY), then p(B(z)) < 1.

Proof. By standard facts about matrices ([LT85, HJ85]) p(B(x)) < 1 if and only if
limg oo (B(z))? = 0, (i.e., each coordinate of the matrix (B(x))? converges to 0 in the
limit, as d — oo)

Let 20, 2! . be the sequence of value vectors generated in the standard iterative LFP
algonthm, 1.e., x' = P%(0). Having reduced our equations to one SCC, SA, it is easily
shown that the vector * = P*(0) is never equal to ¢* in any coordinate, for any i > 0.
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(This is because for any !, each coordinate has at least one “neighbor” that influences
its probability which also hasn’t reached its value in ¢*.)

Thus (¢* —2%) > 0. Now, by Lemma 6.4, part (1.), letting y = ¢*, we have: B4(z)(q* —
7)< (¢* — 2**9). The right hand side goes to 0 as d — oo since by Theorem 3.1
limg .o, 2t = ¢*. However, (¢* — 2%) > 0. Thus limg_., B%(2") = 0.

Furthermore, note that since 2 converges monotonically to ¢* as 4 increases, for any
x which is less than ¢* in every coordinate, there is some i such that z < z?, and thus
B(z) < B(x%). Hence limy_,o, B(z) = 0. Therefore p(B(z)) < 1. [

Thus, (—F'(z)) ! = (I-B(zk)) ! exists as long as 7, < q*, and if so, (—F'(zx)) " =
(I + B(zx) + B(xx)? +...). Thus note again that, (—F(z))~! is always nonnegative.
Thus, the Newton iterates become, g = 0, and:

Tp1 = + (I + B(ay) + Blar)® +..)(P(xk) — x1) (3)

We know that B(xg) > 0. To establish that xpi1 > xp, we want to show that
(P(Ik) — xk) > 0.

Lemma 6.6 If x) < ¢* is the k’th Newton iterate for an SCC, Si, then P(xy) > xk.

Proof. We prove by induction on k. For k = 0, we have g = 0, and P(z¢) > z¢. Note

that, because we have a nontrivial SCC which is not a bottom SCC, xy < ¢*.
Inductively, suppose P(zx—1) > xx—1, and z5—1 < ¢*. We have

2 =21+ (I — B(wg—1)) ' (P(zk—1) — 2x—1). Thus

xp — ap—1 = (I — B(xp—1)) " (P(zp-1) — Tp_1)

Note that, by inductive assumption and Lemma 6.5, the right hand side is well-defined
and nonnegative, and thus x > zx_1. Using Lemma 6.3 part (5.), we have:

(P(zr) — ox) = (P(@e-1) —2p-1) = F(aw) — F(ae-1)

F'(xp—1)(zr — Tp—1)

= (B(wg-1) — I)(zr — 2p-1)

= (B(xr-1) = DI = B(wx-1)) " (P(zx-1) — 2x-1)
= —(P(zp-1) — Tp-1)

Y

Adding (P(zr—1) — xx—1) to each side of the inequality, we get (P(zx) — xx) > 0. |
What remains to show is that, for all k, zx < ¢*, and, unless z = ¢*, xr < ¢*.
Note that zx11 = o + (I + B(zg) + B(zk)? +...)(P(x1) — 2x). Since B(xy) > 0, and

(P(z) — x) > 0, we have an absolutely convergent series and by standard facts about
infinite series we can rewrite this safely as:

Tepr = e+ Y (Blax)(P(ax) — )
d=0
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Now, using Lemma 6.4 part (1.), we have

Thar = ak+ Y (Bla)(Plar) — zk)
d=0
< ap+ Y (P a) — PU)
d=0
= lim [og + ) (P (ar) — P(ax))]
d=0
= Jm P =g

Thus 21 < ¢*. Note also that xg1 > P(zy), by using only the first term, I(P(xy) —
7), in the sum N5 (B(zk))*(P(z;) — zx). The other terms are non-negative. Thus, by
induction, we have:

Lemma 6.7 For all k >0, 2" < P(z) < 201 < ¢°.

Thus, 9 < x1 < ..., converges monotonically to ¢*, as long as every iteration is
defined, and the (k + 1)’st iteration is defined as long as zj < ¢*.

We now show that either zop = 0 = q*, or 1 = ¢, or else x; < ¢* for k£ > 0, i.e.,
strictly less in every coordinate, in which case, we have already seen that (—F(zy))~!
always exists, and thus the iterates are defined.

There are basically two cases to consider: either the system is linear and B(z) is a
constant matrix, or, the system is nonlinear and B(z) contains some variable.

We will show that in the first case, one iteration of Newton’s method is sufficient to
reach ¢*. This follows because, by Lemma 6.3 part (2.), in the case where the system is
linear, we have B(x)(y — x) = P(y) — P(z). Thus

21 = @0+ SEo(B(w0))!(P(x0) — wo)
= @0+ BZo (P (20) — P(x0))
= lim P™(x)
m— 00
= q*
Note in particular that this is the case with finite Markov chains: one iteration of Newton’s
method is enough to converge to the solution. This corresponds to the known fact that
the solution for a Markov chain can be found by solving a linear system. Observe that by
partitioning the system into SCCs, we have insured that the linear system can be solved
by a matrix inversion for each component.
Next, let us consider the case where B(z) is not constant. We have to show that
x < ¢* for all k.

Lemma 6.8 If B(z) is not a constant matriz, and 0 < ¢*, then x < ¢* for all k > 0.

Proof. This follows by combining Lemma 6.4 together with the sum formula z;4; =
e+ g0 o(B(zk))?(P(xk) —2x). In particular, if 2;, < ¢*, then by Lemma 6.4 and the sum
formula, xp11 =z + Y geo(B(@r))(P(zr) — 2k) < 2+ Yogeo P (k) — Pay) = ¢*
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The reason for the strict inequality is that, by Lemma 6.4, part (3.), for each variable
index s, there is a power ds such that (B(z)% (P(zx) — xk))s < (P4t (zr) — P4 (21))s.
Since this is so for every index s, i.e., in every coordinate, we see that zp11 < ¢* [

We are done with the proof of Theorem 6.1, and have established the monotone conver-
gence of the decomposed Newton’s method for computing LEP(P). [

From our proof it actually follows that Newton’s method in general constitutes a rapid
“acceleration” of the standard iteration, P¥(0), & — co. More specifically, by equation
3, Tip1 =z + (Yo Blzk)')(P(zk) — k). Now, B(xy) is a non-negative matrix, and
(P(xk) — x1) is a non-negative vector. If we replace (Y=, B(xx)*) by only the first term
of the infinite series, i.e., by the identity matrix, then the right hand side becomes P(zy),
i.e., we get standard iteration. Thus zx+1 > P(xy), and when B(xy) is “large”, zj1 will
potentially be much larger than P(zy).

In particular, for finite Markov chains, which generate linear systems, and where B(x)
is a constant matrix, note that the decomposed Newton’s method converges in one Newton
iteration to LFP(P). This is certainly not the case for finite MCs with standard iteration
P¥(0), where as long as there are cycles in the finite MC it will only converge in the limit.

Also, observe that for the RMC A’ in Figure 4, for which we showed in Theorem 3.2,
part 2, that P¥(0) converges “exponentially slowly”, Newton’s method converges linearly:
namely, for (1/2)z%—z+1/2 = 0, Newton’s method is the iteration zx 1 = (1/2)+(1/2)xy.
It is easy to see that, with z¢g = 0, |1 — x| = 27*.

7 General monotone systems of polynomial equations

In this section we observe the fact that in prior sections, when discussing the analysis
of RMC equations via the Existential Theory of Reals and via Newton’s method, we
did not need to confine our discussion to RMC equations, but to any Monotone System
of Polynomial Equations (MSPE), 2 = P(x). These are systems of equations with one
equation z; = P;(x) for each variable, z;, where P;(z) is a (multivariate) polynomial with
positive coefficients. In this section we overview this generalization of the theory. Since the
proofs are relatively simple modifications of the proofs given for RMCs, we forgo detailed
proofs. First, we note that Theorem 3.1 can easily be modified to show the following:

Corollary 7.1 Given any MSPE, x = P(x), if the system has a nonnegative solution ¢,
then it has a LFP, i.e., a least nonnegative solution ¢* = LFP(P), such that ¢* = P(q*)
and P*(0) 1 ¢* as k — oco.

Of course, a general monotone (non)linear system may not have any nonnegative solutions:
consider x1 = x1 + 1. On the other hand, the MSPE’s corresponding to RMCs certainly
do have a nonnegative solution, and an LFP. Using identical arguments to those of section
4, we can employ the Existential Theory of Reals to answer queries about = P(z), and
we obtain the following:

Corollary 7.2 Given any monotone system of polynomial equations, x = P(x), we can
decide in PSPACE whether x = P(z) has a nonnegative solution, and if so we can decide
whether LFP(P) = ¢, for given rational probabilities ¢, and we can decide whether q; Ac;
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for any comparison operator A. Moreover, if LFP(P) exists we can approzimate the
coordinates of LFP(P) to within j bits of precision (j given in unary), also in PSPACE.
The running time is O(j - |c| - |A|?U), where n is the number of variables in x.

Next, we observe that a decomposed Newton’s method can also be used for finding
the LFP of a general MSPE, = P(z), if any nonnegative solution exists. Suppose we
are given such a MSPE. To simplify our discussion, we first show that without loss of
generality we can assume our MSPE system comes in a certain normal form. Namely, a
canonical form MSPE has only three types of equations, x; = P;(z), which are completely
analogous to the three types Type; , Typerand, and Typeqqn for RMC equations:

1. Typer: z; =1

2. Typerand: x; = Z?:l a;jz;, with a; > 0. (Note: a;’s need not be probabilities that
sum to 1.)

3. Typecan: T; = TjT.
(Note: because weights are arbitrary we don’t need a sum of products, as we did for
RMCs.)

Proposition 7.3 Any MSPE system x = P(x) can be converted in P-time to a system
in canonical form with possibly more variables, such that there is a 1-1 correspondence
between the monnegative solutions of the two systems, which preserves the values of the
original variables x.

Proof.

We are given an MSPE z = P(x). If some variable z; occurs in some polynomial of
P(zx) with exponent higher than 1 then introduce new variables to represent the powers of
x; with exponents that are powers of 2, and use them to eliminate the higher powers from
P(x). That is, introduce variables &', y1, 91, Y2, ¥4, - - - , Y1, y, where [ is the logarithm of the
highest exponent of z; in P(z), and add equations: ' = z, y1 =z, ¥} = 1, Y2 = Y1V},
yh = ya, and so forth. Then replace every higher power z¥ of x; in P(x) by the expression
x®ytys® ...y where a; ... azaia0 is the binary representation of the exponent k. After
this transformation, every term of every polynomial in P(x) contains distinct variables.

If some polynomial P;(x) contains a term with two or more variables, and P;(z) is not
just the product of two variables, then take two of these variables x;, ) that appear in such
a term, introduce a new variable yy; 1} and replace the product z;xy in every monomial in
which it occurs (in the entire system) by yy; ;. We also add a new equation yy; ) = ;T
to the system. Repeat this same procedure, adding new variables and equations, until
every P;(z) is a constant or is linear or is the product of two variables. Finally, at the
end of this process it may be the case that a number of equations z; = P;(x,y) have a
constant term a on the right hand side. Add a new Type; variable z, replace all such
constant terms on right hand sides by az, and lastly add the equation z = 1. It is easy
to see that by doing this we will end up with a system in canonical form. Furthermore,
this system is “equivalent” to our original one in the following sense: any solution of the
new system projected on to the original variables is a solution of the old system, and any
solution of the old system can be extended uniquely to a solution of the new system. m

Consider a canonical form MSPE. Since no solution may exist, we have to augment
the decomposed Newton’s Method of Figure 6, by adding the following extra stopping
condition inside the while loop:
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* Stop if ever P(xy,) # xy, or if (F'(x1)) "1 does not exist, and report “no nonnegative
solution”. (This check is unnecessary for RMCs.)

We also need to explain how some other steps in the algorithm in Figure 6 will be
carried out for general systems. In particular, step 1 requires us to eliminate all variables
x; where ¢ = 0. Since for general systems the LFP ¢* might not even exist, we have to
make sense of this step in a different way. Basically, as we saw in the proof of Theorem
6.1, the system © = P(z) can be viewed as a graph G whose nodes are the variables x;,
and where each node is labeled according to the type of the variable. The only sink node
in this graph is the Type; variable z, which we may assume to be unique.

The graph G can be viewed as a game graph, where Type,.qnq nodes belong to player
1, and Type.qy; nodes belong to player 2. Now, a variable x; should be eliminated during
preprocessing from = = P(x) (because ¢ must equal 0 if ¢* exists) if and only if there
is no strategy for player 1 to reach node z starting at node z;. It should be intuitively
obvious why the lack of such a strategy implies that ¢; = 0 if LFP ¢* exists. This is
because the equations for such variables depend only on other such variables and do not
contain any constant terms. Consequently, assigning 0 to all such variables necessarily
satisfies the equation associated with all of them.

Checking whether such a strategy exists can be done easily in linear time in the size
of the graph G, for all z;. This is essentially identical to the algorithm and proof for
Theorem 2.2. We thus have:

Proposition 7.4 For a general MSPE in canonical form, x = P(x), we can detect and
eliminate in P-time those variables x; such that if a non-negative solution to x = P(x)
exists, then ¢f = 0, where ¢* = LFP(P).

After the preprocessing step, the rest of the decomposed Newton’s method proceeds
entirely as in Figure 6, with the added stopping condition given above. We obtain:

Corollary 7.5 If a given MSPE (in canonical form), © = P(x), has a non-negative
solution, then the (revised) decomposed Newton’s method will converge monotonically to
the LFP, q*, i.e., limg_ oo Xk T q*.

(If a non-negative solution does not exist, then the algorithm will either report that
“no non-negative solution exists”, or will simply terminate after the mazximum number of
iterations k have been exhausted and report its final value.)®

The proof of this is a corollary of our proof for RMC equations. Modifying that proof,
we need to note that, because ¢* may not exist, in several places we have to condition
the statements in that proof by the assumption that ¢* exists. Importantly, in that proof
we at no point rely on the fact the coefficients in RMC equations are probabilities. In
the interests of space, we leave a detailed modification of the proof of Theorem 6.1 to the
reader.

Finally, we mention without further elaboration that an MSPE in canonical form can
easily be viewed as a Weighted Context-Free Grammar (WCFQG) in generalized Chomsky
Normal Form. A weighted CFG is like a CFG where the rules have associated positive

6In other words, the algorithm will not necessarily give the right answer if we don’t iterate “enough”
but it will never terminate unnaturally due to an iteration being ill defined because (F’(z))~! does not
exist.
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weights that are not necessarily probabilities, i.e. they do not have to be < 1 and the
weights of the rules with the same left hand side do not have to add up to 1. The question
of the existence of a nonnegative solution to x = P(z) corresponds to the question whether
the total weight of all finite parse trees of the corresponding WCFG is finite. WCFG’s
and their relationship to pPDSs and SCFGs were considered in [AMP99], but they did
not consider algorithms for analyzing them.

8 Polynomial-time algorithms for restricted classes of
RMCs

8.1 Almost-sure termination/extinction for 1-exit RMCs, SCFGs,
and MT-BPs

As shown in Section 2.3, 1-RMCs, MT-BPs, and SCFGs are all tightly related. In par-
ticular, the probability of extinction of an object of a given type in a MT-BP is the same
as the probability of termination starting at the corresponding nonterminal in the corre-
sponding SCFG, and it is the same as the probability of termination of the corresponding
1-exit RMC starting at the entry of the component corresponding to the given type of
the MT-BP (nonterminal of the SCFG). In particular, an SCFG is called consistent if
it generates a terminal string with probability 1. In this section we provide a simple,
concrete, and efficient algorithm to check consistency of a SCFG, and almost sure (i.e.
probability 1) termination of a 1-exit RMC, and extinction of a MT-BP.

Given the connection between these models, one can use classical results on branching
processes [KS47, Sev51, Har63], to “characterize” the question of consistency of a SCFG
as a question about the spectral radius of the moment matriz associated with the SCFG,
namely, the nonnegative matrix B(1) which is the Jacobian of P(x) evaluated at the all 1
vector, i.e., where (B(z));; = OP;(x)/0x;. See [Har63] for the classic text on Branching
Processes, and see e.g., [BT73] for the connection to SCFGs.

These well known “characterizations” unfortunately often leave out some special un-
covered cases (and sometimes contain errors or omit assumptions). None of the generally
available references in English that we are aware of give a complete characterization and
proof for all MT-BPs (and all SCFGs). The most comprehensive results, and also among
the earliest results, are due to Kolmogorov and Sevastyanov [KS47, Sev51] (their papers
are in Russian). These results are stated without proof in the classic text on Branching
Processes by Harris [Har63], which refers to [Sev51] for the “quite complicated proofs”.
As quoted in [Har63], a general result that applies to all multitype branching processes is
a necessary and sufficient condition for the probability of extinction to be 1 for all initial
sets of entities, i.e. for all the types: this is the case if and only if p(B(1)) < 1 and
the branching process has no so-called “final classes”; these are special classes of types
from which the probability of extinction is zero. The textbook [Har63] itself proves the
characterization for the case of MT-BPs for which the nonnegative moment matrix B(1)
is a primitive matrix (see, e.g., [HJ85]). This is what [Har63] calls the “positively reqular”
case. Primitive matrices allow [Har63] to apply the strongest form of the Perron-Frobenius
theorem to the matrices B(1).

More recent texts on Branching Processes, such as [Mod71, AN72, Jag75, HIV05],
typically state (and in the case of [Mod71] reprove) the results in [Har63] for the positively-
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regular (primitive) case of MT-BPs, and also often mention (e.g., [Jag75]) the kinds of
difficulties that arise for generalizing the results to all MT-BPs. But none provide a
complete algorithmic characterization and proof for all MT-BPs. It is worth noting also
that there are occasional errors or missing assumptions in the statements of the theorems
in some references. For example, [BT73] which is widely cited in the SCFG literature,
states that if a SCFG has p(B(1)) > 1 then the SCFG is inconsistent; however, this is false
for grammars where some nonterminals may be unreachable from the start nonterminal. A
recent survey on Branching Processes ([AV01]) states without proof a result (Theorem 8)
for general “irreducible” MT-BPs, namely that “for an irreducible MT-BP with moment
matrix M, ¢ < 1 for all ¢ if and only if p(M) > 17, but the statement is in fact not quite
correct, precisely because it ignores Sevastyanov’s case of “final classes”, which can exist
in an irreducible MT-BP with p(M) < 1, but where the extinction probability is in fact
0.

Given this state of affairs, with no complete algorithmic characterization and proof
available in English for all MT-BPs and SCFGs, in neither the Branching Process literature
nor in the SCFG literature, and with several mistakes in both the MT-BP and SCFG
literature, we feel that it is appropriate to provide a complete characterization, a concrete
polynomial time algorithm, and a complete proof for general MT-BPs and SCFGs. That
is what we do in this section.

Our proof is structurally similar to the proof of [Har63]. We extend [Har63]’s proof
by decomposing the system z = P(z) into SCCs, and analyzing each SCC by a further
decomposition into its aperiodic parts. We also simplify and modify several aspects of
[Har63]’s proof. In particular, it turns out that one direction of our proof of the charac-
terization via the moment matrix B(1) follows very easily from our results about B(z)
established for our analysis of the decomposed Newton’s method in Section 6.

Given a SCFG we can write directly a system of polynomial equations = P(z), in the
vector of variables x that contains one variable x; for every nonterminal S;, such that the
probabilities p(S;) form the LFP of the system. The polynomial P;(x) has one term for
every rule of the grammar with lhs .S;; if the rule has probability p and the right-hand-side
of the rule contains £; occurrences of nonterminal S;, j = 1,...,d, then the corresponding

term in P; is p[[; xﬁj. If we form the Jacobian matrix B(z) and evaluate it at © = 1,
then the i,j entry of the resulting matrix B(1) is equal to > p¢; where the summation
ranges over all rules with lhs S;, thus, B(1); ; is the expected number of occurrences of
S; on the rhs of a rule with lhs S;. The matrix B(1) is called the (first) moment matrix
of the SCFG.

Our algorithm for checking SCFG consistency is outlined in Fig. 7. From classical
algorithms for processing context-free grammars we know how to compute all reachable
and all useless nonterminals in linear time (see eg. [HMUO00]). To finish the algorithm, we
only need to explain how one can test in polynomial time whether the spectral radius of
a non-negative rational matrix B(1) is > 1. There are a number of ways to do this. One
is by appealing to the existential theory of the reals. By the Perron-Frobenius theorem
(see [LT85]), the maximum magnitude eigenvalue of a non-negative matrix is always real.
Recall that the eigenvalues of a matrix M are the roots of the characteristic polynomial
h(z) = Det(M — «I). This univariate polynomial can be computed in polynomial time,
and we can test whether p(B(1)) > 1 by testing the 1-variable sentence in ExTh(R):
Jz(z > 1 A h(xz) = 0). More efficiently, for the non-negative matrices B(1) we can also
use Linear Programming to decide whether p(B(1)) > 1. We will return to this point
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Input: A SCFG G, with start non-terminal S.
Output: YES if G is consistent, NO if it is not.
1. Remove all nonterminals unreachable from 5.

2. If there is any “useless” nonterminal left (i.e., a nonterminal that does not derive
any terminal string), return NO.

3. For the remaining SCFG, let p be the maximum eigenvalue of the moment matrix
B(1) (the Jacobian matrix of P(x), evaluated at the all 1-vector).
If p > 1 then return NO; otherwise (i.e., if p < 1) return YES.

Figure 7: SCFG consistency algorithm

after we prove the correctness of the algorithm.

We will actually present a somewhat more involved algorithm, given in Figure 8, where
we classify, in one pass, the termination probability of all vertices of a 1-exit RMC. It is
not hard to show that the correctness of the algorithm in Figure 7 for classifying the start
nonterminal of an SCFG follows from the correctness of the algorithm in Figure 8 for
classifying all non-terminals of an SCFG (or, equivalently, all vertices of a 1-exit RMC).
We will show this after the proof of the main theorem of this section.

Theorem 8.1 Given a 1-exit RMC, A, or equivalently a SCFG or MT-BP, there is a
polynomial time algorithm to determine, for each vertex w which of the following three
cases holds: (1) ¢t =0, o0r (2) ¢ =1, o0r (3) 0<q <1. In particular, we can test
SCFG consistency in polynomial time.

Proof. We are given an 1-exit RMC A and wish to determine, for all vertices u, whether
g:=1,q:=0,0r0< g’ <1. We will label each vertex of the RMC (and corresponding
variable of the system) by 1, 0 or the symbol $ respectively according to which of the
three cases holds. The Algorithm is given in Fig. 8.

In step (1.), the preprocessing step, we identify and remove all the variables corre-
sponding to vertices that cannot reach an exit, hence are 0. For the vertices that remain,
all termination probabilities are > 0. Thus, we need to test if they are 1 or < 1.

We can view the system of equations S 4. for this preprocessed RMC as a cyclic circuit
that has one node for every variable. Let C'4 denote the cyclic circuit over {1, +, *}, whose
nodes are labelled by either a 1 (Type1), + (Typerand), or * (Typecqn). We can merge all
the type I nodes into one node labelled 1, and label all the corresponding type I vertices of
the RMC (and corresponding variables) by 1. The edges from a +-node to its successors
are labeled by probabilities (that may not necessarily sum to 1, since we have already
removed probability 0 nodes).

In step 2, we first break C4 into SCCs, and we topologically sort the underlying DAG
to get SCCs Ch,...,Ck, where if there is an edge from C; to Cj, then j > i. Let Cj
be the singleton node labelled 1 (it does not have any successors). Note that there is no
other bottom SCC (i.e. SCC that has no outgoing edges), because if there was, all the
corresponding variables must be 0 in the LFP, but we have already eliminated all the
variables that are 0. Note also that if there is a path in C4 from a node z, to a node
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Input: A l-exit RMC A

Output: Marking of each vertex by 0, 1, or $ depending on whether its termination
probability is 0, 1, or strictly between 0 and 1.

. Construct the system Su : @ = P(z) for A.

. Preprocess x = P(x), to determine and eliminate all z,, such that ¢ = 0. Eliminate
all such variables from S4.

This gives a new system, S4s in which the remaining reachability probabilities are
either 1 or some p, where 0 < p < 1.

. Decompose the system S4: into Strongly Connected Components. Consider the
DAG of SCCs, and topologically sort the SCCs as C1,...,Cj.

Mark the trivial bottom SCC, containing one probability 1 node, as having proba-
bility 1.

. Process the remaining SCCs “bottom up”. Let C,. be the current lowest unprocessed
SCC. C, must have successors (because we have already eliminated all probability
0 nodes during preprocessing).

(a) If C, has some successors marked “$”, meaning their probability is strictly in
between 0 and 1, then mark (all nodes in) C, with $.

(b) Else, if C, contains any +-node for which the sum of edge probabilities from
that node to successors is < 1, then mark all of C,. with $.

(c) Else, if C, is a singleton (contains only 1 node) and is also acyclic (i.e., there
are no transitions from the node to itself), then: if all its successors are marked
1, then mark it also as 1 (otherwise, the singleton was already marked $ in 3(a)
or in 3(b)).

(d) Else, i.e., if C, is a nontrivial SCC all of whose successors are marked 1 and in
which all 4+ nodes have outedge probabilities summing to 1, let p, € R>g be
the maximum eigenvalue of B,.(1), the Jacobian matrix of C,. evaluated at the
all 1-vector.

If p, <1 then mark C, with probability 1, otherwise mark C, with $.

Figure 8: 1-exit RMC algorithm: 0, 1, or “in between” probability.
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Zy, which indicates that the variable x, depends (indirectly) on the variable x,, and if
gk < 1, then also ¢} must be less than 1; i.e., if v should be labelled $ then also u should
be labelled $. It follows that in a SCC, all nodes must receive the same label, either all $
or all 1. We shall process the SCCs “bottom up”, starting at C, to compute whether the
probabilities associated with nodes in each C; are 1 or < 1. We then use this information
to compute the same for prior components.

Now, in step 3, assume by induction that we are about to process C,., where all
components C; with [ > r have already been processed and whose nodes have already
been labelled with one of {1, $}.

Clearly, if there is some node in C, that depends on a node in a lower SCC that has
been marked $ (“in between”), then every node in C, should also be marked $ (because
all of the probabilities in C, depend on all others in C;). That is what is done in step
3(a) of the algorithm.

Next, if there is some +-node in C, for which the sum of edge probabilities from that
node to successors is < 1, then that means that we have already eliminated a 0-successor
of that node during preprocessing, and thus that again, since all probabilities in . depend
on all others, we can mark every node in C, as “3” (“in between”). That is what is done
in step 3(b).

Also clearly, if a remaining SCC C, is a singleton that does not depend on itself, and
if all of its successors have probability 1, then it also has probability 1. This is checked
in step 3(c). Note we’ve already checked in 3(b) if the node has less than full probability
coming out of its edges, and in 3(a) if it has a $ successor, and in each of those cases
would have marked it $.

What remains is a nontrivial SCC, C,., for whose nodes we have to determine whether
the associated probability is exactly 1 or < 1. Suppose there are n nodes in C,.. For each
variable z; in C., define the equation z; = f;(z) to be the equation x; = P;(x) restricted
to the variables in C,.. By this we mean that if a variable x, appears in P;(z) which is not
in C,, then let 2, = 1 in f;(z). Note that, by the processing we have done before, for any
such variable z,,, we will have already determined that ¢, = 1. Because C, is a non-trivial
SCC, in each such equation the right hand side f;(x) does not reduce to a constant. Let
f:R™ — R"™ denote the underlying maps defined by this system of polynomials for each
variable z; in C)., restricted to the variables in C,.. In other words, where the equation
associated with z; is x; = fi(z), and f(z) = (f1(2),..., fo(2)).

Let B,(1) be the Jacobian matrix of f, evaluated at the all 1 vector in R™ (see section
6). In other words, define the (7, j)’th entry of the matrix B, (z) to be (By(x));,; := gg;,
and let B,(1) be the matrix where all of these entries are evaluated with z; := 1 for all
i. Let p, = p(B;(1)) be the spectral radius of B, (1), i.e., the maximum absolute value of
an eigenvalue of the matrix B,.(1). Since B,.(1) is non-negative, by basic facts of Perron-
Frobenius theory its maximum magnitude eigenvalue must be real and non-negative, and
equal to p, (see, e.g., [LT85, HI85]).

We wish to show that if p, < 1 then all nodes (i.e., variables) in C.. should get
probability 1, whereas if p, > 1, then all nodes in C,. have “in between” probability, and
thus should get marked with $. This is what is checked in the last step, 3(d).

First we establish the following “easier” direction of our claim about p,, using the
results established in section 6 on Newton’s method.

Lemma 8.2 If p, = p(B.(1)) > 1, then for every node marked x, in the SCC C,, the
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probability ¢}, < 1.

Proof. This is a simple corollary of Lemma 6.5 in Section 6, where we showed that for
x < LFP(C,) = q*, p(B,(x)) < 1. Thus, by continuity of eigenvalues (see, e.g., [LT85]),
p(Br(q*)) < 1. Thus, if p(B,(1)) > 1, then q* # 1. If there is some component ¢f < 1 in
q*, then all components must be < 1, because it is an SCC and every probability depends
on every other. [ ]

Now we wish to establish that if p,, < 1 then every node in C,. should get probability 1.
Although we don’t actually need to do this in our algorithm, it is useful for the purposes
of our proof to first consider partitioning the SCC C,. again, according to its “period”.
The period of a directed graph is the greatest common divisor of the lengths of all directed
cycles in C,.. A digraph is aperiodic if its period is 1. If we wished to do so, there are
simple algorithms (see [BV73, APY91]) that can be used to compute the period d of C,
in linear time, and also, within the same time, to partition the nodes of C into sets
Cro,...,Crq-1, such that all edges from nodes in each partition C; ; lead to nodes in
partition Cy. (41 mod 4)- (Again, we don’t actually need to compute this partition in our
algorithm, but it will serve us in the proof.)

Let C? denote the directed graph on nodes of C, such that there is an edge from node
x; to node x; if and only if there is a path of length d from z; to z;; in C).. It then
follows that the map f¢, i.e., the d’th iterate of f, has associated with it the dependence
graph C¢. If d is the period of f, then C¢ consists of d disjoint induced subgraphs Cﬁ{ s
0 < j < d, each induced by the partition C, ;, respectively. Furthermore, each subgraph
C;{ ; consists of one aperiodic SCC, because the lengths of cycles in C’ﬁl) ; are precisely the
lengths of cycles in C). divided by the ged d, and hence they have ged = 1.

It is not hard to show that if d is the period of C,., then B,(1)? is a matrix whose only
non-zero entries are in positions (i,¢') where x; and z; are in the same partition Cy ;of C..
We can thus use the partitions C; ; to easily compute a permutation matrix ¢ such that
the matrix QB,(1)?Q~! is a block-diagoanl matrix with blocks Bga (1),...,Bga (1)
as follows: , ,

d—1

Bea (1) 0 0 0
0  Bga (1) 0 0
B’I" 1 dn—1 — Cr,l
@B (1)°Q 0 0 0
0 0 0 Bea, (1)

Each submatrix Boa (1), which we will refer to as B, ;(1) has an underlying aperiodic

SCC Cq‘ij. Hence, since the matrix is non-negative, there is a power m; such that B;n; (1)
has all entries positive. In other words B, ;(1) is a primitive matrix and thus we will be
able to apply the full power of the Perron-Frobenius theory ([LT85, HJ85]) to matrices
B, ;(1).

To do so, we first set up the following branching process which has one type for each
node (variable) z; of the SCC C,.. If z; is a *-node with equation z; = « in the subsystem

x = f(x) of C, then the process contains a rule z; R a; note « is either the product
of two variables or a single variable (the latter happens if one of the two variables in
the original system z = P(x) belongs to a lower SCC). If z; is a +-node with equation
T; = po + D ;e s PjT; in the subsystem z = f(z) of C, (the rhs may or may not contain
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a constant term pg), then we have one rule z; LN x; for each j € J, and a rule z; 20
(no offsprings) if there is a constant term (i.e., pg > 0). Note that since all + nodes have
outedge probabilities summing to 1, Y i =1 and this is a proper branching process.
Let 2 € N be a (row) vector where 2{ denotes the number of occurences of the
type (i.e. node) z; in the initial population. Let z°, 2%, 22, ... be the random sequence of
vectors generated by the branching process. The matrix B, (1) is the first moment matriz
for this process. It is not hard to see that the vector 2™ = 29(B,(1))™ is the vector of
expected numbers of each type at stage m of this process (see [Har63]). In other words,
Lemma 8.3 1. Given an initial vector z° € N", for any 2’ € N*, 2/ # 0,
Pr(3*°m s.t. 2™ =2") = 0.
2. Thus, also, Pr(3z"' e N*, 2/ £0, 3®m s.t. 2™ =2') =0

Proof. Harris (see [Har63], Thm 6.1) proves this for the case where B, (1) is a primitive
matrix (positively reqular in [Har63]’s terminology). We give a somewhat different proof
for any irreducible matrix B,(1). We know that ¢ > 0 for all z, € C,, i.e. every
corresponding vertex u has a terminating path in the RMC; pick one such path for each
vertex u, let n be the maximum length among these paths and let ¢ > 0 be the minimum
probability among these paths. If the branching process starts with a single entity of any
type x, € C,, then with probability at least ¢ after n steps it terminates.

Let M =377, 2. If 2 = 2/, by the above, with probability > cM >0, 24" =0. If
Zitn = () then 2"+ = 0 for all d > 0. On the other hand, if we return to 2’ at 2¢ for
some i’ > i + n, then we repeat the experiment. Thus, the probability of infinitely often
revisiting vector 2’ # 0 in the trajectory 20, 2%, 22,... is 0.

The second assertion follows since there is a countable number of finite vectors 2’ € N™
P Pr(32 €N, 2 #£0, Imst 2™ =2") <30 e g Pr(3Fm 2™ = 2") = 0. |

Note that if we instead let z° € N¥i be a vector of length k; = |C,. ;|, then 2°(B,. ;(1))™
is the expected number of each type in partition C, ; after d * m stages of the original
process, starting with (z°); entities of type z; in C, j, and no entities of other types.

Lemma 8.4 For each partition C, ;, if p(By;(1)) < 1, then for every node z; € C,;,
qf = 1. Otheruwise, i.e., if p(B;j(1)) > 1, then for every node x; € Cy;, qF < 1.

Proof. The second assertion follows from Lemma 8.2, because in fact if p(B, ;(1)) >
1, then p(B,(1)) > 1, because B, ;(1) is a submatrix of Q(B,(1))¢Q~!. Thus if its
maximum eigenvalue is > 1, then so is the maximum eigenvalue of Q(B,(1))¢Q~!. But the
eigenvalues of Q(B,(1))?Q~! are d’th powers of the eigenvalues of B,.(1). Thus p(B,(1)) >
1, and therefore by Lemma 8.2, every node in C, (including all of C, ;) has probability
q; <1

For the first assertion, suppose p(By (1)) < 1. Let M = B, ;(1), and let p = p(M).
M is a primitive matrix, meaning its underlying graph is irreducible and aperiodic. By
the Perron-Frobenius Theorem for primitive matrices (see, e.g., Thm 2.3 of appendix
of [Kar66]; or see chapter 8, section 8.5 of [HI85]) M™ = p™ « My + (M2)", for two
matrices My and My where p(Ma2) < p. Thus, since p(M) < 1, it follows, e.g., by taking
suitable matrix norms, that there is a bound ¢ € Rx>p, such that for all n, all entries
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of M™ are bounded above by ¢. For completeness, we provide the argument here for
the existence of a bound ¢. Consider the 1 matrix norm, [|Ally =3, ;[a; ;|- Note that
IM"s = "My + Mgy < o[ Mally + [ MZ]l1. But p(Ms) < 1, and hience [ Mg]|y — 0.
Thus, there must be a bound C' < oo such that || M1 < C for any n (otherwise || M3
could not converge to 0). Therefore || M™|; < p"||M1]| + C. But since p < 1 we have
[[M™1 < ||Mi|l1 + C. Let t = || M1 + C.

Consider the branching process with an initial vector z° of entities from C,. ;, and let 2™
be the vector of the number of entities after dm stages. As remarked before the lemma,
for all m, the expectation E(Y 7, 27") = >0, 27" = >0, (2°(B,;(1))™); < nt' for
some fixed ¢. Thus, by the Markov inequality, for all m, and all k > 0, Pr(3>_7"_, (2™); >
knt') < 1/k. Thus, also, for all m and k, Pr(vm’ > m>." (z™); > knt') < 1/k.
Since this is true for any m, we have Pr(3Im s.t. Vm' > mZ?:l(zml)i > knt') =
limy, 00 Pr(¥Ym’ > mZ?:l(zm/)i > knt') < 1/k. Since k > 0 is arbitrary, we have
Pr(YkE > 0 3m st. Ym' > m, S (2™ > knt') = limg_oo Pr(3m st. ¥m' >
mY" (2™ > knt') = limg oo 1/k =0

We write this last probability, which is 0, as Pr(>_,;(2™); — 00), i.e., this denotes the
probability that the sum ) (2™); diverges and is unbounded in the limit as m — oo.
Likewise, let Pr(}_,(2™); — 0) be the probability of the event that we will eventually
reach the 0 vector.

By Lemma 8.3, the probability that some vector 2’ occurs infinitely often in the tra-
jectory (z*|i=0,1,2,...) is 0. Therefore, Pr(>",(z™); — 0) + Pr(>_,(z™); — o0) = 1,
because either the process diverges, or it reaches 0, or otherwise it repeats some vec-
tor 2’ infinitely often. But we already established that Pr(},(2™); — oo) = 0. Thus
Pr(}>;(z™); — 0) = 1. Since the initial vector z° was arbitrary, it could be chosen to be
the unit vector e;, with 1 in position ¢ and 0 everywhere else. We can thus conclude that
for all z; € C,. 5, ¢f = 1. |

As we have already observed, since all probabilities in C). depend on all others, if the
probability associated with some node in C) is exactly 1 then the probability associated
with all nodes in C, is also exactly 1. Thus, if p(B,;(1)) < 1 for some C, ;, then
p(B,;(1)) < 1for all C, ;. Thus @B,(1)?Q ™! also has maximum eigenvalue < 1, because
its eigenvalues are the union, over all j, of eigenvalues of each B, ;(1). But since the
eigenvalues of QB,(1)?Q~! are d’th powers of the eigenvalues of B, (1), then p,, the
maximum eigenvalue B, (1), must also be < 1. |

We next explain how one can check for a nonnegative matrix B whether p(B) < 1
in polynomial time using linear programming. This follows from well known variational
characterizations of the spectral radius of a nonnegative matrix:

Lemma 8.5 (see, e.g., [HI85] Theorem (8.3.2)) For B an n X n nonnegative matriz, if
there exists a vector x > 0, x # 0 such that Bx > ax, for some a € R, then p(B) > a.

Lemma 8.6 Consider a square nonnegative matrix B with at most n rows and having
rational entries with at most 1 bits each. If p(B) > 1 then p(B) > 1+ 1/2™ where
m = poly(n,l) and poly(n,l) is some polynomial in n and I.

Proof. If p(B) > 1 then there is a nonzero vector u > 0 such that Bu = ru, with
r > 1. Suppose I’ is the set of indices 7 with u; > 0 and let B’ be the corresponding
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square submatrix By ;» of B. The LP B’z > x + 1, > 0 has a solution (scale u[I']
appropriately). Therefore, it has a rational solution with at most m = poly(n,l) bits,
hence its entries are at most 2. This solution, together with u; = 0 in the rest of the
indices satisfies Bu > (1 + 1/2™)u, u > 0, u # 0. It follows from Lemma 8.5 that
p(B) > (1+1/2™). ]

The following proposition is now immediate, and shows that we can using Linear
Programming to decide in P-time whether p(B(1)) < 1.

Proposition 8.7 p(B) < 1 if and only if the following LP constraints are not feasible:
Bx > (1+1/2™)z, and z >0, Y, x; = 1.

Proof. Follows from Lemmas 8.5 and 8.6. Note that since the constraint Bx >
(14 1/2™)x is homogeneous in x, we can scale z appropriately and replace the constraint
x # 0 with ), ; = 1. ]

There is an analogous algorithm to that of Figure 8 for classifying all the nontermi-
nals of a SCFG or all the types of a multitype branching process with respect to their
qualitative termination directly, without translating them first to a 1-exit RMC. We first
find the useless nonterminals, i.e. those that cannot derive any terminal strings; these
are exactly the nonterminals S; with termination probability p(S;) = 0. Then we form
the system of equations z = P(x) that has one variable for each other nonterminal of the
SCFG, decompose it into strongly connected components and process it as in Figure 8, to
determine which nonterminals have p(S;) = 1 and which have p(S;) < 1. The algorithm
is completely analogous and is left to the reader.

We now argue that the correctness of the simpler algorithm in Figure 7 for determining
the consistency of a given SCFG with a given start nonterminal follows from the correct-
ness we have established for the 1-pass algorithm in Figure 8. To see this, consider the
algorithm in Figure 7. It is clear that if there are any “useless” nonterminals reachable
from S; (step 2), then the probability of termination from S; is < 1. Suppose this is not
the case. Then every nonterminal reachable from S; has nonzero probability of termina-
tion. In the algorithm in Figure 8, this means the preprocessing step (step 2) does not
remove any nonterminals (i.e., variables) reachable from S; (i.e., 21). Note that step 3
of the consistency algorithm in effect will perform the last step (step 4(d)) of the 1-pass
algorithm, but not on one SCC at a time bottom-up, but rather on all variables reachable
from x;. But it can be shown easily that p(B(1)) < 1 if and only if p(B,(1)) < 1 for every
SCC C, of the dependency graph of = P(x) that is reachable from z;, where B,.(1) is
the associated moment matrix of C,. For the one direction, if p(B,(1)) > 1 for some SCC
C,, then we can take an eigenvector of B,(1) with eigenvalue p(B,(1)) > 1 and pad it
with 0’s to obtain an eigenvector of B(1). For the other direction, if p(B(1)) > 1, take a
corresponding eigenvector u of B(1), and let C, be a lowest SCC that contains a nonzero
coordinate of w; then the restriction of u to C, is an eigenvector of B, (1) with the same
eigenvalue p(B(1)) > 1.

8.2 Bounded RMCs

In this section we show that we can compute the vector of termination probabilities for a
bounded RMC in polynomial time. Recall that a bounded RMC is one that has a constant
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number of components, each with a constant number of entries and exits; the components
themselves can be arbitrarily large.

Theorem 8.8 Given a bounded RMC, we can decide in polynomial time whether LFP(P) =
c, or whether o, Acy, for any k = (u,ex), and any comparison operator A, and we can
approzimate each probability to within any given number of bits of precision. In partic-
ular, this applies to SCFGs with a bounded number of terminals and to MT-BPs with a
bounded number of types (provided the multisets on the right-hand sides of the rules are
listed explicitly).

Proof. We will reduce our problem to the existential theory of the reals with a bounded
number of variables. This is especially easy to do for the special case of SCFGs with a
bounded number of nonterminals and MT-BPs with a bounded number of types. Given
a SCFG G with d nonterminals Sy, ...,Sy (or a MT-BP with d types), use a variable z;
for each nonterminal S;, ¢ = 1,...,d. The termination probabilities ¢} for the different
nonterminals S; are the least nonnegative solution to a system that contains one equation
x; = hi(z) for each i = 1,...,d, where h; is a polynomial that contains a term for each
rule of G with left-hand-side S;; if the rule has probability p and the right-hand-side of the
rule contains ¢; occurrences of nonterminal S;, j = 1,...,d, then the corresponding term

in h; is p]] j xﬁj . To determine whether ¢ < ¢, for a given rational ¢, append to these
equations the constraints x; > 0, j = 1,...,d, and x; < ¢, and use the polynomial-time
decision procedure for ExTh(R) with d variables.

For general bounded RMCs, it is not quite as simple to reduce the problem to a
bounded number of variables. Note that even for single-entry single-exit RMCs with a
bounded number of components, the transformation to SCFGs given in Section 2 cannot
be used because it introduces one nonterminal for every vertex, hence the number of
nonterminals is unbounded.

Let A be a bounded RMC. First, we determine those entry-exit pairs (en, ex) (of the
same component) for which the corresponding probability qzﬁen)ew) is 0. Recall (Theorem
2.2) that this can be done in polynomial time for general RMCs. Let D be the set of
remaining entry-exit pairs (en, ex), with qi*en’em) > 0. We use a variable z(ep, er) for each
pair (en,ex) € D; note that this is a bounded number d of variables. We will construct a
system of equations in these variables by essentially eliminating all other variables from
the fixpoint system z = P(x) of the RMC given in Definition 1, in a manner that is
efficient and does not blow up the size of the system exponentially.

For each component A;, we replace each box b of A; by a set of labelled edges from
the call ports to the return ports of the box: if en is an entry of the component to which
box b is mapped and ez is an exit of the component then there is an edge directed from
the call port (b,en) of b to the return port (b,ex) iff (en,ex) € D and in this case the
edge is labelled #(cp,eq); if (en,ex) ¢ D then we do not include an edge from (b,en) to
(b,ex). The resulting graph is an ordinary labelled graph B; = (Q;, E;) (no boxes) whose
edges are labelled with explicit probabilities or variables. If we plugged in the actual
probabilities for the variables, we would have an ordinary finite Markov chain. (For some
of the call ports, the sum of the probabilities of the outgoing edges may be less than 1;
if we wished we could add transitions to a new dead absorbing state with the remaining
probability, but this is not necessary for the calculations).

As is well known, we can compute the reachability probabilities in a Markov chain by
setting up and solving a linear system of equations, whose coeflicients are the transition
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probabilities. Regarding the variable-labels as parameters, distinct from the reachability
variables, we can set up the linear systems and solve them symbolically. More specifically,
for every exit ex of B; we first determine the set QY of vertices of B; that cannot reach
ex; note that these are precisely the vertices u for which q?u,ew) = 0, while the remaining
set Q; \ QY contains the vertices u for which qzﬁuyez) > 0. For each vertex u € @Q; \ QY
we have a variable y(y cq)- (We could have included variables also for the other vertices
u € QY and set them to 0, but it is not necessary.) Regarding the x-variables as symbols,
we form a linear system L., of equations in the variables y(, .,) as follows. If u = ex
then y(eyer) = 1. For every other vertex u of Q; \ QY, the corresponding equation is
Y(uex) = Dy buvY(v,ex), Where the summation ranges over all v € Q; \ QY such that there
is an edge (u,v) in B; and £, is the label of the edge (u,v), i.e. £, is either the transition
probability py, or some T(cp’ czr)-

Thus, we have a separate linear system L., for each exit ex of each component. Note
that if we substitute in L., positive values for the symbols x ¢y’ ¢y such that the sum
of the labels out of each call port are at most 1, then the resulting system has a unique
solution in the variables y(, ¢;). This follows from standard facts about computing reach-
ability probabilities for finite Markov chains. If the values x ¢y’ cqv) that we substitute are
equal to the termination probabilities qz‘en,7ew,), then the unique solution gives precisely
the set of termination probabilities qi*u)em).

Consider each system L.;. Regard the z’s as symbolic transition probabilities and
solve the system for the y variables. Every reachability probability y, c.) is expressed as
a function h(y cq)(2) of the variable-labels z. By Cramer’s rule, each function h is the
ratio of two determinants of matrices whose entries are the original probabilities on the
transitions of the RMC and the variables (¢, ¢,r)- That is, every vertex-exit probability
is expressed as a ratio h(z) = f(x)/g(x), where f(x) and g(z) are determinants of matrices
F(z),G(x) involving the variable-labels x. Thus, f, g are polynomials of total degree at
most n, the number of vertices of A;. Since we have a bounded number d of entry-exit
pairs, and hence variables, each polynomial f, ¢ has a polynomial number of terms, less
than (n + 1)?%. Furthermore, it can be easily seen that the coefficients of the polynomials
are rational numbers whose bit complexity (of numerator and denominator) is bounded
by a polynomial in the bit complexity b of the input probabilities. To see this, note that
by the definition of the determinant, the determinant f(z) = det(F(z)) is the sum of
n! terms, where each term is the product of n entries of the matrix, i.e. either given
transition probabilities or variables . Thus, the coefficient of each monomial of f(x) is
the sum of at most n! terms, where each term is the product of at most n given rational
numbers whose numerator and denominator have b bits. We can make all the terms have
a common denominator, for example the product of all the denominators of the (non-
variable) entries of the matrix F(x). Then the denominator has at most bn? bits, and the
total numerator is the sum of at most n! terms, each with at most bn? bits, hence the
numerator has at most bn®logn bits.

The polynomials f, g for each vertex-exit pair can be computed in polynomial time.
Suppose that f(x) = det(F(x)), where F(x) is a matrix whose entries are rationals and
variables from z. We can compute f(x) explicitly using interpolation as follows. Plug
in n + 1 different values for each of the variables, for example 0, 1, .., n. For each of
the (n + 1)? tuples ¢ of variable values, compute det(F(t)), which is a rational number of
polynomial bit complexity. Then set up a linear system whose unknowns are the coefhi-
cients of the multivariate polynomial f(x) and solve it. The system has O(n?) variables
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and equations, and all the coefficients are rationals with polynomial bit complexity, hence
it can be solved in polynomial time. It can be easily seen that the system has a unique
solution. We include briefly the argument. In the univariate case (d=1), the matrix of
the system is a Vandermonde matrix and is invertible (this is the usual univariate inter-
polation property: no two distinct polynomials of degree n can agree on n+ 1 points, and
there exists a polynomial interpolant of degree n for any n+ 1 points). The general d case
can be shown by induction: if the variables are x1, ..., x4, write f(z) as a polynomial in
xq whose coefficients are polynomials in 1, ...,zq4—1: f = fox) + fla:g_l +...4+ fn where
each f; is a polynomial in z1,...,24_1 of total degree at most i. For any fixed tuple 7
of the first d — 1 variables, f(x) becomes a univariate polynomial in z4. Since we plug in
n + 1 different values of x4 together with 7, the resulting values of f determine uniquely
the univariate polynomial f(7,24) in z4. Hence they determine uniquely each f;(7). By
induction hypothesis, the values f;(7) for all tuples 7 determine uniquely the polyno-
mial f;(z1,...,24—1). Therefore, the set of tuples on which we evaluate f determines f
uniquely.

Thus, for every entry-exit pair (en,ex) € D of each component we can compute ex-
plicitly the corresponding rational function (e ez)(%) = f(en,ex)(%)/G(en,ex)(x) for the
corresponding variable y(ep,er)- Hence the entry-exit probabilities qz‘emem) satisfy the set
of polynomial equations f(en, cz) (%) = g(en,ex)(T) - T(en,ex)- Let C(A) be the set consisting
of these constraints and the constraints 2 (e, cz) > 0 for every entry-exit pair (en,ex) € D
of each component, and ) __ Bz, L(en,exy < 1 for each entry en of each component A;.
We claim that the system C(A) of constraints has a unique minimal solution and this
solution is precisely the vector of nonzero entry-exit probabilities qzﬁen_’ex).

First, it is clear that the probabilities q?en,em) satisfy these constraints. On the other
hand, suppose that r is any other solution of C'(A). Extend r to all vertex-exit pairs (u, ex)
as follows. For pairs (u, ex) € Q) we let 7(, ¢,y = 0. For pairs (u,ex) € Q\ QY, we substi-
tute in the linear system L., the values of r for the edge labels and solve in the resulting
linear system L () for the variables y(y, cx), i.e., We let 7y cx) = fru,ez)(T)/G(u,ex)(7); NOtE
that there is a unique solution to the system L., (r), and these expressions are well-defined
(the denominator is nonzero). The extended vector r is also a nonnegative fixpoint to the
system z = P(z) of the RMC A and therefore r > ¢*. It follows that the system C(A)
has a unique minimal solution, which is the vector of entry-exit probabilities qi*en’ew). We
can then answer questions, comparing such a probability with a given rational number
c by appending the constraint T en cr) < € OT T(en ex) < ¢, and using a polynomial-time
procedure for the existential theory of the reals with a bounded number, d, of variables.

If we want to determine whether another (nonzero) vertex-exit probability Uy, en) 18 less
than c then we add to C(A) the constraints f(y, ez)(Z) = g(u,ex)(T)  T(u,ex) a0 T(y eq) < €.
Note that by the above argument, if r is any solution to C'(A), then its extension to all
vertex-exit pairs as above dominates ¢*, i.e. fy cx)(r)/G(u,ex)(r) > qzﬁuym). If we want to
compare the termination probability starting from a vertex u of A; with a rational ¢, then
we add the constraints f(uﬁem)(x) = g(uym)(!’t) * T(u,eq) for all ex € Ex; and the constraint

ZemEEmi I(u,e;ﬂ) S cor EezEEmi x(u,ez) <c. u
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8.3 Linear Recursion, Hierarchical RMCs, and Piecewise Linear
Recursion

We will analyze first linear RMCs, and then a more general class of ‘piecewise linear
RMCs’ which includes hierarchical RMCs. Recall from the definitions in Section 2.1 that
a linear RMC is one with the property that there is no positive probability path in any
component from any return port to a call port in the same component (via transitions of
that component only). This is a simple syntactic property that can easily be checked in
linear time for an RMC. The class of linear RMCs inherits all the good properties of finite
Markov chains, as we will show. That is, the reachability probabilities are rational, they
have polynomial bit complexity and can be computed efficiently. Furthermore, qualitative
questions do not depend on the precise values of the transition probabilities. The system
of equations x = P(z) for a linear RMC is still nonlinear. However, as we will see, it can
be decomposed into a sequence of linear systems, and solved efficiently. We will show the
following:

Theorem 8.9 In a linear recursive Markov chain A, all the termination probabilities
qzﬁuyez) are rational, with polynomial bit complexity and can be computed exactly in poly-
nomial time. Furthermore, the qualitative problem of classifying which probabilities are 0,
1 or in-between does not depend on the values of the transition probabilities, but only on
the structure of the RMC A and can be solved in time O(|A|£0), where & = max;{|Fz;|}

is the mazimum number of exits of the components, and 6 = max; min{|En;|, |Ex;|}.

Proof. Let A be a linear RMC. First, we can determine all the vertex-exit pairs (u, ex)

such that qE“u o) = 0 as in Theorem 2.2 and remove the corresponding variables from the

system © = P(z). Regard each component A; as a directed graph on its set of vertices
@; and let R; be the subset of vertices that can reach a call port in this graph and
S; = Q; — R; the remaining set of vertices. Let R = UR; and S = US;. Since A is a
linear RMC, S includes all the exits of the components and all the return ports of all the
boxes, but no call ports. Note that S is successor-closed: all successors of a vertex in S
are also in S. The set S of vertices induces an ordinary finite Markov chain, where all the
exits of the components are absorbing states. The corresponding subsystem of equations
of the system z = P(x) is a linear system. As is well known from the theory of Markov
chains, after we set to 0 those variables x?u,ex) in this subsystem for which the reachability
probability qi*u)ew) = 0, the remaining subsystem has a unique solution, which is precisely
the set of reachability probabilities qi*u)ew), uesS.

Now take the remaining subsystem of the system & = P(x) corresponding to the
vertices in R and substitute in the right-hand side the values of all the variables af(“u’em),
u € S, and also set to 0 the variables f?u,ez)v u € R for which qzkuyez = 0. Note that the
resulting subsystem is a linear system because all return ports are in S)' and every nonlinear
term of 2 = P(x) includes the variable 2((j c/),e2) Of @ return port (b,ex). That is, the
resulting subsystem has the form 2’ = Bz’ 4 h where 2’ is the vector of (nonzero) variables
of the form x?mew), u € R such that qi*u)ew) > 0, B is a nonnegative (constant) matrix
and h is a nonnegative vector. However, this subsystem may itself not correspond to the
linear system associated with a finite Markov chain. In particular, the matrix B may not
be (sub)stochastic, and may have rows that sum to greater than 1. We can nevertheless
show that this subsystem has a unique solution, which is then of course the vector ¢’ of the

corresponding nonzero probabilities qE“u ey U E R. One way to show this is as follows: by

53



Theorem 3.1, if we start with 2’ = 0 and repeatedly apply the transformation 2’ = Bz’ +h,
the resulting vector ¥ = (I + B + B? + ... B*¥~1)h will converge to the true probability
vector ¢’ as k — oo; note that the statement of the theorem remains valid if we substitute
the true probabilities for some of the variables and restrict the system to the remaining
variables. On the other hand ¢’ = Bq’ + h and iterating this equation k times, we have
¢ = B¢ +(I+ B+ B?*+...B*1)h. As k — oo the second term on the right hand
side tends to ¢’, hence the first term B¥¢’ must tend to the 0 vector. Since ¢’ is a strictly
positive vector (recall, we eliminated all the zero variables) and B is a nonnegative matrix,
if follows that B* converges to the all-zero matrix. This implies that there is a unique
solution: If r is any solution, i.e. » = Br + h, then r = B¥r + (I + B+ B?> 4+ ... B¥=1)h.
The right-hand side converges to 0 + ¢’ as k — oo, therefore r = ¢'.

Thus, to summarize, we can compute the vector ¢* of termination probabilities by first
determining those coordinates that are 0, second, solving a linear system of equations for
the coordinates corresponding to vertices u € S, and third substituting the computed
values and solving a second linear system for the vertices u € R. Clearly this can be done
in polynomial time, and all the computed probabilities are rationals with polynomial bit
complexity. This establishes the quantitative part of the theorem.

For the qualitative problem, the transition probabilities of the RMC are not relevant
and we do not need to solve any linear system. For the vertices u € S, we can deter-
mine whether the termination probability q*mew) to each exit ex, or the total termination
probability ¢, is 0, 1 or in-between as in tile case of ordinary finite Markov chains: We
decompose the subgraph induced by the set of vertices S into strongly connected compo-
nents (scc’s). Note that every exit is a bottom sce, i.e. an scc that has no outgoing edges.
Let us call the vertices that have nonzero probability of not terminating, i.e. ¢ < 1,
survivors. For a vertex u € S, its termination probability ¢ < 1 iff u can reach a bottom
strongly connected component that is not an exit. On the other hand ¢} = 0 if u cannot
reach any exit. Furthermore, for an exit ex in the component of u, qzﬁuyez) = 1 iff the only
bottom scc that u can reach is ex, and q{uﬂem) = 0 iff u cannot reach ex.

It remains to classify the probabilities ¢ and qi*u)ew) for vertices u € R. We can
determine the survivor vertices of R as follows. Construct the following ordinary directed
graph H on the set of vertices ) of the RMC A. The graph H contains all the edges of
A. In addition H contains for every call port (b,en) and return port (b, ex) of the same
box b of A such that qf,,, ., > 0 a “summary edge” from (b, en) to (b,ex), and also H
contains for every call port (b, en) of every box b a “calling” edge from (b, en) to the entry
en of the component to which b is mapped. Let D be the union of the set of vertices of
S that are survivors and the set of call ports that have no outgoing summary edges.

Lemma 8.10 A wvertex u is a survivor, i.e. q; < 1, if and only if u can reach in H a
vertex in D.

Proof. Suppose that u can reach in H a vertex v in D. Then the Markov chain M4
starting at state (e,u) will follow with nonzero probability a corresponding path that
reaches a state of the form (5,v). If v is a survivor vertex in S then there is nonzero
probability that the path will not be able to reach any exit of the component of v, and
hence will not terminate. If v is a call port (b, en) with no outgoing summary edges, then
clearly from that point on the RMC will surely not exit. Thus, in either case there is
nonzero probability that the RMC will not terminate.
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Conversely, suppose that u does not have any path in H to any node of D. Consider
the bottom scc’s of H. Note that every vertex of S can only reach in H vertices of S, thus
if a bottom scc contains a vertex in S then all the vertices must be in S, and the scc is
either an exit or a set of survivor vertices. If a bottom scc contains a vertex in R, then it
must also contain a call port v = (b, en) (because every vertex in R can reach a call port);
since the bottom scc does not contain any vertex in .S, it cannot contain any return port
of the box b, hence the call port v has no outgoing summary edges and hence it is in D.
Thus, we see that in either case every bottom scc of H that is not an exit contains a node
in D.

Consider a trajectory of the RMC starting at vertex w of R, i.e. a path of My
starting at (e,u). Since w cannot reach in H any node in D, with probability 1 the
path will eventually reach either some exit of u’s component or a call port of a box.
Every time the path reaches the call port (b,en) of a box and initiates a new recursive
call, since the call port has an outgoing summary edge, there is nonzero probability that
the path will eventually reach a return port (b, ex) of the box; if this happens then the
process from that point on will terminate with probability 1 for the following reason.
Suppose that the state of the Markov chain M4 is (b1 ...bg, (b,ex)). Note that if the
path 7 of M, entered these boxes through the call ports (by,eny),... (bg,eng), (b, en)
respectively, then H contains a path from u to (b,en1) to en; to (b, enz) to ... to (b,en)
to (b, ex). Then u can reach in the graph H the vertex (b, ex) which is in S and hence by
assumption vertex (b, ex) is not a survivor. Thus a path from (b ... by, (b, ex)) will reach
with probability 1 an exit (by...bg,exy) of its component, and then in one step it will
reach a state (b1,...,bg—1, (b,ex)). Since H contains a path from u to (bx,eni) and
there is a summary edge from (bg, eny) to the return port (bg, exy), it follows again that
since (by,exy) is in S it is not a survivor, and thus the path will go on with probability
1 to exit the box bg_1, i.e., to reach the global state (b1,...,bg—2, (bx—1,exK_1)), and so
forth until it reaches a global exit (e,ez’) of the original component that contains the
vertex u.

Every time the path enters a new box (initiates a new call) there is nonzero probability
that it will exit the box and if this happens then it will go on to terminate almost surely.
It follows that the probability that the path enters a new box infinitely often is 0, i.e., with
probability 1 the path will only enter a finite number of boxes and hence it will terminate.
]

Once we have determined which vertices are survivors, we can determine easily whether
a particular vertex-exit probability q?u,ew) is 1 or not: q?u,ew) =1iff ¢ =1and q@ew,) =0
for all other exits ex’ of the component of u.

Clearly we can compute in linear time the sets of vertices R and S, decompose the
subgraph induced by S into strongly connected components and determine the vertices of
S that are survivors. We compute then the entry-exit pairs en, ex such that q*en’em) > 0,
we add the summary edges and construct the graph H. If every component 0% the RMC
has at most & exits, then the graph H has size at most |A|¢. We can then compute all
the vertices in H that can reach a vertex of D in time O(|H|) = O(JA|£), and thereby
determine all the survivor vertices, and from them classify qualitatively as above all the
termination probabilities ¢ ) This establishes the second part of the theorem. [

(u,ex

Piecewise Linear and Hierarchical RMCs
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Linear RMCs can be extended to define the more general notion of piecewise-linear
RMCs, which contains the class of hierarchical Markov chains, and for which a number
of the results for RMCs carry over. The piecewise linear class is defined as follows. From
the nonlinear system x = P(x) of an RMC, A, construct the dependency graph G4 as in
Section 6: the nodes are those variables T (u,ex) such that qzﬁuyez) = 0, plus an additional
node labeled “17, and whose edges include edge (z;,x;) iff x; appears in P;(x), and edge
(x4,1) iff P(x) = 1. Now, we can decompose the graph G4 into strongly connected
components (SCCs), and we can also form the DAG, D4, of SCCs of this decomposition.
We call the original RMC A a piecewise-linear RMC if, for every SCC C, the subsystem
of x = P(x) induced by the variables in C' (treating variables in other SCCs as constant)
is linear; that is, for every SCC, C', of G4 and every T'ypecan variable x((p en),ex) of C with
corresponding polynomial P, en),ez)(X) = D, T(enex!)T((b,ex’),ex), Where the sum ranges
over all exits ex} of the component that contains entry en, it must be the case that for
each i, either (ep cpr) 18 N0t in C O T((p,ca!) ex) i nOt in C' (or both are not in C).

Clearly, all linear RMCs are also piecewise linear. It is easy to see also that all Hierar-
chical Markov Chains (HMCs) are piecewise-linear. Recall that a RMC A is hierarchical
if the call graph of A is acyclic. The call graph CG(A) has one node i = 1,...,k for each
component 4; of A and has an edge (i, j) if a box of A; is mapped to A;. Every nonlinear
equation of the equation system S4 for A has the form z((pcn).ex) = P(b,en)en)(X) =
Zix(en7w;)x((b7ew;)7em) where b is a box of a component A;. The box b is mapped to a
lower component A,, that cannot reach A; in CG(A) since CG(A) is acyclic. It follows
that the variables T(en,ex)) (which correspond to entry-exit probabilities of A,,) cannot
reach the variable Z((j en) e) (2 Vertex-exit probability of A;) in the dependency graph
G 4, i.e. the variables T(en,exr) Delong to a lower SCC. It follows that each SCC induces a
linear system, and therefore A is piecewise linear.

It should be clear to the reader that if we solve the subsystems induced by the SCCs
“bottom up” according to the DAG D4 of the SCC’s, then solving each SCC will only
involve solving a purely linear system. The encountered linear systems can in fact all
be solved uniquely by matrix inversion; this can be shown by a similar argument to the
one given for the linear RMC case (Theorem 8.9). We remark also that the decomposed
Newton’s method will handle piecewise linear RMCs quite effectively: after we decompose
the system into strongly connected components, the subsystem for each SCC after we
substitute the values for the variables in lower SCCs is linear, hence Newton will solve the
system and converge in one iteration.

Some of the results about linear RMCs readily carry over to piecewise-linear RMCs via
simple modifications of the same proofs. In particular, all termination probabilities are
again rational values. However, although the probabilities are rational, they are no longer
necessarily concise and may require exponentially many bits to encode if the height of the
DAG D, is unbounded. An example is given by the HMCs depicted in figure 5, which
have size O(n) but where termination probabilities are as small as 22% However, if the
height of D4 is bounded by a fixed constant, then the rational termination probabilities
will all have size polynomial in the size of the input RMC and can be computed efficiently
via a bottom-up analysis of the SCCs of G 4.

Moreover, for the qualitative questions the height of D4 is immaterial (since there are
no quantities to compute whose size might explode), and by a modification of the proofs
for linear RMCs, we can answer qualitative questions for piecewise-linear RMCs with the
same complexity, via a bottom-up analysis. We summarize these facts as follows:
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Theorem 8.11 In a piecewise-linear recursive (and in particular, for a hierarchical)
Markov chain A, all the termination probabilities q*u)ew) are rational, and moreover if
the DAG D 4 has height bounded by a fixed constant, then these rationals have polynomial
bit complexity and can be computed exactly in polynomial time. Furthermore, the qualita-
tive problem of classifying which probabilities are 0, 1 or in-between does not depend on
the values of the transition probabilities, but only on the structure of the RMC and can

be solved for any piecewise-linear RMC A, even when the height of D s is unbounded, in
time O(]|A|£0).

If we have a unit-cost RAM model with exact rational arithmetic (i.e. algebraic oper-
ations on arbitrary rationals can be done in unit time) [BCSS98], we do not have to worry
about the size of the numbers. Computing the termination probabilities of a piecewise
linear recursive Markov chain (and in particular a hierarchical Markov chain) involves the
solution of a sequence of linear systems, one for each SCC of the dependency graph, thus
it can be done in polynomial time in that model. That is, the exact computation of the
termination probabilities is in the class of problems solvable in polynomial time in the real
model of [BCSS98] with rational constants. On the other hand, we saw in Theorem 5.3
that the decision problem for HMCs is at least as hard as PosSLP (even for 1-exit HMCs),
and PosSLP is as hard as any other (Boolean) decision problem solvable in polynomial
time in the real model of [BCSS98] with rational constants. The notation BP(PR) is used
in [ABKPMO6] for this class (BP stands for Boolean part: decision problems where the
inputs are finite binary strings rather than real numbers). Thus, we have:

Corollary 8.12 The decision problem for hierarchical and piecewise linear recursive Markov
chains is complete (under P-time Turing reductions) for the class BP(PQ) of decision
problems solvable in polynomial time with unit-cost exact rational arithmetic.

9 Relation to other models

9.1 Probabilistic Pushdown Systems

We now observe that RMCs and Probabilistic Pushdown Systems (pPDSs), studied in
[EKMO04, BKS05, EKMO05] (see also [AMP99]) are essentially equivalent, and can be
translated in linear time to one another. This is entirely analogous to the correspon-
dence between (non-probabilistic) RSMs and Pushdown Systems (PDSs) (for which, see
[ABET05] for a detailed treatment).

The difference between RMCs and pPDSs (and between RSMs and PDSs) is analogous
to the difference between a program that is broken down into a set of procedures that
may call each other in a potentially recursive manner, and a non-recursive single-procedure
program that uses a stack to perform an equivalent computation. Both models of course
have the same computational power, but recursion (as well as hierarchy) and modular-
ity (decomposing a program or system into smaller components) are some of the most
powerful and important structuring primitives in computer science, useful for specifying
large programs and modeling large systems. The RMC (and RSM) model incorporates
these structuring primitives explicitly in the model, to facilitate modeling the behavior
of systems that have probabilistic and recursive features. Similarly, Hierarchical Markov
Chains are a useful way to structure and represent succinctly classes of large Markov
chains.
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RMCs are defined to closely resemble recursive probabilistic procedural programs,
and to reflect their structure and parameters: components of an RMC correspond to
procedures, entries and exits correspond to parameter- and return values passed to and
from procedures. The translation to a pPDS loses some of this correspondence: the
maximum number of exits of the RMC corresponds precisely to the number of states of
the pPDS (in both directions of our translations), but there are no natural analogous
parameters in a pPDS corresponding to the number of components or the number of
entries of an RMC. In particular, Theorem 8.8, our polynomial-time algorithm for bounded
RMCs, has no natural analog in terms of general pPDSs. One can state the theorem in
terms of pPDSs that have additional structure, and this follows from our translation
below, but to do so one would have to add structure to pPDSs in such a way that, in
effect, amounts to redefining RMCs.

We now formalize the relationship between these models. A probabilistic Pushdown
System (pPDS) P = (Qp,T', A) cousists of a set of control states @ p, a stack alphabet T,
and a probabilistic transition relation A C (Qp xT') x[0, 1]x (Qpx{swap(T"), swap-and-push(T" x
I'), pop}). That is, a transition has the form ((s,7),P(s,),(s',c), (8", C)), where based on the
control state and the symbol on top of the stack symbol (s,~y), with probability p, the ma-
chine updates the control state to s, and performs action C on the stack. If C = swap(y’)
then the action swaps the top-of-the-stack symbol v with a new symbol /. If C =
swap-and-push(v',~"), then the action both swaps v with 4" and then pushes 4" on top of
the stack. Note that the standard push transition ((s,7), P(s,~),(s',push(+'))> (8's Push(v')))
can be written as
((577)=p(s,»y),(s’,swap—and—push(»y,»y’))7 (s', swap-and-push(~y,~'))). Lastly, if C = pop, then
the action pops the stack. Each such transition has an associated probability p(, 1), (s.c)s
and we assume that for each pair (s, ) of control state and top of stack symbol, Z(S,)C) D(sy).(s',C) =
1. We assume there is a special stack symbol | that marks the bottom of the stack, and
constitutes the initial content of the otherwise empty stack, and we assume that when L
is popped the pPDS terminates. A stack with letter v at the top and remaining content
w € I'* (running from bottom to top) will be written w-.

A pPDS P defines a countable Markov chain M (P) in the obvious way. The states are
pairs (w, s) with s € Qp and w € T'*, and, e.g., a pPDS transition ((s, ), p, (s, swap(y)))
yields a transition ((wwy, s),p, (wy’,s")) in M(P).

First note that a pPDS with only one control state is essentially equivalent to an
SCFG. To see this, note that the stack alphabet I' can act as the set of nonterminals, and
the three distinct kinds of actions swap, swap-and-push, and pop correspond to a grammar
rule with 1, 2, and 0 nonterminals on the right hand side, respectively. We saw that this
is sufficient to define an SCFG in generalized Chomsky Normal Form.

For an RMC A and pPDS P, let M(A) and M (P) denote their associated countable
Markov Chain. We now show that for every pPDS P there is a RMC A such that M (A)
and M (P) are “essentially equivalent”, and vice versa. The result is completely analogous
to similar results in [ABE™05] for non-probabilistic RSMs and PDSs.

To make the notion of “essentially equivalent” concrete, we define the following: in a
(countable) Markov chain M with states t and ¢, let ¢ % ¢ mean that either there is a
direct transition (¢, p,t’) in M, or there is another state t” such that (¢, p,t”) and (¢, 1,¢)
are transitions of M.

Theorem 9.1
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1. For every pPDS P, there is an easily (linear time) computable RMC A = (A;)
with one component, and an easily computable one-to-one mapping f from states of
M(P) to states of M(A) such that for every transition (t,p,t") of M(P), we have

f@)~5 f(t') in M(A). Moreover, |A| = O(|P|), and |Exi| = |Qp|.

2. For every RSM A = (Ay,..., Ay), with k' = max; |Ex;|, there is a easily (linear
time) computable PDS P and one-to-one mapping f from the states of M(A) to the
states of M (P), such that for every transition (t,p,t') of M(A), we have f(t) & f(t)
in M(P). Moreover, |P| = O(|4]), and |Qp| < k'.

Proof. First, given a pPDS P, we build RMC A. A has only one component, A4;.7 A;
has an entry en(s ) for every pair (s,7) with s in Qp and 7 in T, such that there is a
transition leaving (s,7) in P. It has one exit exs for every s € Qp. It also has one box
b, associated with each stack symbol v € I' that plays a role in some transition of P. All
boxes are, obviously, mapped to A;. The transitions of A; are as follows:

1. For every transition ((s,7),p, (s', pop)) in A, there is a transition (en(s ), p, exs ) in

1.

2. For every transition ((s,7),p, (s, swap(v'))) in A, there is a transition (en(, ), p, en(s 41))
in 51.

3. For every transition ((s,v),p, (s', swap-and-push(vy1,72))) in A, there is a transition
(en(s,7), Dy (D15 €N 1)) N 01

4. For every box exit (by,exs) of each box by, there is a probability-1 transition
((by,exs), 1, en(sy) in 61.

The intuition should be clear: each entry node en, ) of Ay corresponds to the config-
uration of P with control state s and top-of-stack . The remainder of the content of the
pushdown stack of P (with the top element excluded) is coded in the call stack of A, with
box b, on the call stack acting like v on the pushdown stack. The size |A| is O(|P|), and
the number of exits of A; is |@p|. Consider the mapping f from global states of M (P) to
global states of M(A), defined by f({v1...7n,8)) = (by, ... by,_,,€N(s,)) It is not hard
to check that the mapping f has the “transition preservation” property specified in the
statement of the theorem.

In the other direction, given a RMC A, we now describe how to build a corresponding
pPDS P.

The stack symbols I' of P correspond to all possible “locations” (j,v) in the RMC:
j gives the index of the component, and v is either a node of A; or a box b of A;.
The control states @p of P are {1,...,|ex|}, where |ex| is the maximum number of
exit nodes of any component. For every transition (v,p,v’) between vertices v and
v of a component A; where v is not of the form (b,ex) and v’ is not of the form
(t/,en), there is a transition ((1,(j,v)),p, (1, swap(j,v"))) in M(A). For every transi-
tion (v, p, (b,e)) within a component A; where v is not of the form (b',ex) and where

"For convenience, we define A in such a way that there may also be incoming transitions into entry
nodes of a component. This richer definition of RMCs causes no problems in any of our results. It is
also not essential here and can be eliminated if we wished, using a slightly modified notion of ~» in the
statement of the theorem.
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b is a box of A; mapped to component A; and e is an entry node of Aj, there is
a transition ((1, (4,v)),p, (1, swap-and-push((4,b),(4',€)))) in P. For every exit node z;
of component A; (where z; is the i'" exit of A;), there is a probability-1 transition
((1,(4,2:)),1, (¢, pop)) in P. For every box b of A; mapped to component A/, for every
exit z; of Aj and every transition ((b,z;),p,v") with v' not of the form (¥, e), there is
a transition ((4, (5,0)),p, (1, swap(j,v"))) in P. Finally, for every box b of A; mapped to
component A;/, for every exit z; of Aj and every transition ((b,;),p, (b',e)) with e an
entry node of Ay, there is a transition ((4, (j,b)), p, (1, swap-and-push((j,b'), (k,e)))) in P.

The size of P is linear in the size of the recursive Markov chain A. Note that in the
case where A is single-exit, P has only one control state, and is thus context-free.

It is not hard to check that the “equivalence” property stated in the theorem holds
for the following mapping: for every global state g = (by...b,,v) of M(A) where v is
not an exit node, g is mapped to the global state f(g) = (y1...Vnt1,1) of M(P) with,
for all ¢ < n, v, = (ji,b;) (where b; is a box of component A;,), and V41 = (Jnt1,0)
with j,4+1 being the index of the machine called by box b,; and for every global state
g=(b1...by,x;) of A where z; is the it" exit node of of a component A; called by box
bn, f(g) = (71...7n, 1) with, for all ¢ < n, v; = (ji,b;) (where b; is a box of component
A;,). This concludes the proof of Theorem 9.1. ]

9.2 Random Walks with “Back Buttons”

Fagin, et. al. ([FKKT00]) studied a probabilistic model of web surfing which they call
a Random walk with “Back Buttons”, or a backoff process. The model extends a finite
Markov chain with a “back-button” feature: in each state, besides moving forward proba-
bilistically to a new state, with some probability we can press the back button and return
to the previous state from which the current state was entered. In this section we will
show that this model corresponds to a proper subclass of 1-exit RMCs and of SCFGs.

Backoff processes can be defined formally by a simple restriction of pPDSs. (This is
essentially identical to the definition in ([FKK'00]) , only differing slightly in notation.)
A backoff process P is a pPDS which has just 1 control state, and only push(y’) and
pop transitions. In other words, no swap(y’) and no swap-and-push(v’,~") actions are
available in transitions.

Note that the associated countable Markov chain generated by a backoff process has
the property that the global states are determined by the stack content alone, and that
the stack either grows by 1 (a push) or shrinks by 1 (a pop) in each transition (i.e., the
stack can not stay the same height during a transition).

Fagin et. al. showed, among a number of results, how to use semidefinite programming
to compute quantities such as termination probabilities for backoff processes (which they
call “revocation” probabilities), by using the system of nonlinear equations associated with
a backoff process. The primary focus of their work was to study and compute (Cesaro)
limit distributions for “local states” of the backoff processes, where a local state is just
given by the top stack symbol.

Another way to view backoff processes is as a restricted form of SCFG.

Namely, if our stack alphabet is T' = {v1,...,7%}, we can associate to each stack
symbol v; a nonterminal S;, and we have the following rules in our grammar:

e Arule S; 2 S;S;, for every “push” transition ((1,7;),p, (1, push(y;))) € A.
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o Arule S; 2 ¢, for every “pop” transition ((1,7;),p, (1,pop)) € A.

It is easy to see that a random walk (i.e., trajectory) of a backoff process P corresponds
precisely to a leftmost (probabilistic) derivation of its corresponding SCFG, with rules
applied according to their probabilities during the derivation. Thus, the probability of
termination starting from a given stack symbol in P corresponds exactly to the termination
probability starting from the corresponding nonterminal in the SCFG.

It is also easy to see that the system of nonlinear equations x = P(z) associated with
termination probabilities for a backoff process (what [FKKT00] call revocation probabili-
ties), has the following form. We have one variable x; for each stack symbol ~; € T, and
the equation associated with x; is:

T = E Py Tij + bi
(YisPr; vy Push(v;))

Here b; is the probability of popping directly when the top of stack symbol is ~;, i.e., the
probability of the transition ((1,7;), bs, (1, pop)). (Of course, b; = 0 if this transition does
not exists.) The LFP solution of these systems 2 = P(z), again, defines the termination
probabilities for backoff processes.

These restricted nonlinear systems have an important property: if we replace x; =
P;(x) by the constraint P;(z) — z; < 0, and add the constraint > 0, then all our
constraints are convex. We can then find the LFP solution to this system by minimizing
the linear objective ), z; subject to these convex constraints. This enables Fagin, et. al.,
to apply powerful convex optimization techniques, in particular semidefinite programming
(see, e.g., [GLS93]), to approximate the termination probabilities for backoff processes to
within any given number of bits of precision in polynomial-time.

It is a very interesting question whether convex optimization techniques such those
employed by Fagin, et. al., can be extended to RMCs, or even to 1-exit RMCs. Unfortu-
nately, the richer systems 2 = P(x) defined by RMCs and 1-exit RMCs are not convex in
general.

10 Conclusions

We introduced Recursive Markov Chains, and studied basic algorithmic problems for their
analysis, namely termination and reachability. We observed that the key to these problems
is computation of the least fixed point solution of certain monotone polynomial systems
of equations z = P(x). A wide variety of techniques came into play, from the existential
theory of the reals, theory of branching processes, numerical computing, combinatorial
algorithms, etc. We showed that the qualitative and quantitative problems for the general
class of RMCs are in PSPACE. We presented a more practical Newton-based method
for numerical estimation, which we showed is guaranteed to converge monotonically to
the desired probabilities, and we presented more efficient polynomial time algorithms
for important special subclasses of RMCs. We also presented lower bounds, showing
that both the qualitative (almost sure) termination and the approximation problems for
RMCs are at least as hard as all of P-time in the powerful unit-cost RAM model with
exact rational arithmetic (no integer division), and for hierarchical RMCs, the decision
problem is complete for this class even in the 1-exit case.
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We have built on the theory and algorithms developed in this paper, to extend our
methods to algorithms for the verification of linear time properties of RMC’s ([EY05a,
YEO05], see also [BKS05]). As shown there, the computation of termination probabilities
lies at the heart of the qualitative and quantitative analysis of general properties of RMCs.
Computation of other quantities for pPDS (equivalently, RMCs) is investigated in [BEKO05,
EKMO5]. We have studied extensions of RMCs to Recursive Markov Decision Processes
and Recursive Stochastic Games, where transitions are not purely probabilistic but can
also be controlled by players that are trying to optimize their objectives [EY05¢c, EY06a,
EYO06b].

A number of questions remain open for the problems studied in this paper. The
most important of course is, can the problems be solved in polynomial time? In view
of our lower bounds, namely hardness results with respect to SQRT-SUM and PosSLP,
a positive answer would imply that, as far as solving decision problems is concerned
(and thus also, for problems with polynomial length output), unit-cost exact rational
arithmetic can be simulated with polynomial overhead in the standard Turing machine
model (equivalently, logarithmic cost RAM model). For the class of hierarchical Markov
chains, this is necessary and sufficient for polynomial time solvability of the decision
problem. Does this hold for the general class of RMCs, i.e. is the problem solvable in
polynomial time with unit-cost exact rational arithmetic? Is there any other evidence of
hardness, such as NP-hardness? Even if someone believes that, e.g., PosSLP is solvable in
polynomial time (which looks unlikely at present), it is worth noting that even the much
easier problem EquSLP, which asks to decide whether the output of an arithmetic circuit
with integer inputs and gates {+,*, —} is exactly equal to 0, and which is known to be
decidable in probabilistic polynomial time (i.e., is in BPP), is P-time equivalent to the
well known open problem of polynomial identity testing (see [ABKPMO6]), and therefore
(by results of [KI0O3]) a P-time algorithm for it (in the standard Turing model) would
imply non-trivial circuit lower bounds.

We proposed a decomposed Newton method for approximating the reachability and
termination probabilities. The method has been implemented and appears to perform
well in practice [NS06, WEQ7]. Following an early version of this paper, there has been
significant progress in investigating the rate of convergence of the decomposed Newton’s
method for RMCs and for monotone systems of polynomial equations [KLE07, EKLO0S].
These papers show that for a strongly connected system z = F(z), after some initial
number kg of iterations, Newton’s method gains at least one bit of precision per iteration.
The upper bound shown on the initial number kpr of iterations is exponential in the
input size; a polynomial bound is shown for a subclass of systems (that includes strongly
connected systems arising from the back-button process [FKK*00]). For non-strongly
connected systems and RMCs, an example family of RMCs is provided in [KLE07] for
which an exponential number of iterations in the size of the RMCs is needed to gain 14
bits of precision, but no general upper bound is known, in terms of the size of the RMC,
for the number of Newton iterations needed for non-strongly connected systems. Note
that an upper bound on the number of Newton iterations implies a similar bound in
the unit-cost model, but not in the standard Turing machine (or logarithmic cost RAM)
model of computation because the number of bits of the generated numbers may become
exponential after a linear number of iterations.

For the important models of branching processes, stochastic context-free grammars,
and 1-exit RMCs, we gave a polynomial time algorithm for the qualitative termination
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problem. We also showed a lower bound for the decision problem. Can we approximate the
termination probabilities in polynomial time? For the subclass of back-button processes,
a polynomial time approximation algorithm using semidefinite programming was given in
[FKKT00]. This does not seem to extend in any immediate way to the more general class
of 1-exit RMCs (and MT-BPs, SCFGs), but perhaps there is a way to tackle the problem
with more general convex optimization methods.

Finally, in a recent paper [EWY08] we have established a close relationship between
another subclass of RMCs and a stochastic model studied for decades in queuing theory
and performance evaluation, called Quasi-Birth-Death processes (QBDs) ([Neu81, LR99)]).
We have shown that discrete-time QBDs are equivalent in a precise sense to a subclass
of RMCs (namely, RMCs with only one box, or equivalently, probabilistic 1-counter au-
tomata), and that a recently studied extension of QBDs, called (discrete-time) tree-like
QBDs, is equivalent to RMCs. Furthermore, we showed in [EWY08] that for QBDs the
decomposed Newton’s method described in this paper converges in a polynomial number
of iterations (in the size of the QBD and in the desired number of bits of precision) to
the termination probabilities (also known as the QBD’s G matrix). Thus for QBDs these
quantities can be approximated to within a desired error in polynomial time in the unit-
cost model of computation, but our results leave open whether such an approximation can
be carried out in polynomial time in the standard Turing model of computation. On the
other hand, the quantitative decision problem for termination probabilities of QBDs (is it
> p) is SQRT-SUM-hard. See [EWYO08] for details of these results and for a more extensive
bibliography of the relevant literature on QBDs.
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