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Abstract. We study the complexity of a class of Markov decision pro-
cesses and, more generally, stochastic games, called 1-exit Recursive
Markov Decision Processes (1-RMDPs) and Simple Stochastic Games
(1-RSSGs) with strictly positive rewards. These are a class of finitely
presented countable-state zero-sum stochastic games, with total expected
reward objective. They subsume standard finite-state MDPs and Con-
don’s simple stochastic games and correspond to optimization and game
versions of several classic stochastic models, with rewards. Such stochas-
tic models arise naturally as models of probabilistic procedural programs
with recursion, and the problems we address are motivated by the goal of
analyzing the optimal/pessimal expected running time in such a setting.
We give polynomial time algorithms for 1-exit Recursive Markov decision
processes (1-RMDPs) with positive rewards. Specifically, we show that
the exact optimal value of both maximizing and minimizing 1-RMDPs
with positive rewards can be computed in polynomial time (this value
may be ∞). For two-player 1-RSSGs with positive rewards, we prove a
“stackless and memoryless” determinacy result, and show that deciding
whether the game value is at least a given value r is in NP ∩ coNP. We
also prove that a simultaneous strategy improvement algorithm converges
to the value and optimal strategies for these stochastic games. We observe
that 1-RSSG positive reward games are “harder” than finite-state SSGs
in several senses.

1 Introduction

Markov decision processes and stochastic games are fundamental models in
stochastic optimization and game theory (see, e.g., [25, 23, 13]). In this paper,
motivated by the goal of analyzing the optimal/pessimal expected running time
of probabilistic procedural programs, we study the complexity of a reward-based
stochastic game, called 1-exit recursive simple stochastic games (1-RSSGs), and
its 1-player version, 1-exit recursive Markov decision processes (1-RMDPs). These
form a class of (finitely presented) countable-state turn-based zero-sum stochas-
tic games (and MDPs) with strictly positive rewards, and with an undiscounted
expected total reward objective.

Intuitively, a 1-RSSG (1-RMDP) consists of a collection of finite-state com-
ponent SSGs (MDPs), each of which can be viewed as an abstract finite-state



procedure (subroutine) of a probabilistic program with potential recursion. Each
component procedure has some nodes that are probabilistic and others that are
controlled by one or the other of the two players. The component SSGs can call
each other in a recursive manner, generating a potentially unbounded call stack,
and thereby an infinite state space. The “1-exit” restriction essentially restricts
these finite-state subroutines so they do not return a value, unlike multi-exit
RSSGs and RMDPs in which they can return distinct values. (We shall show
that the multi-exit version of these reward games are undecidable.) 1-RMDPs
and 1-RSSGs were studied in [8, 9] in a setting without rewards, where the goal
of the players was to maximize/minimize the probability of termination. Such
termination probabilities can be irrational, and quantitative decision problems
for them subsume long standing open problems in exact numerical computation.
Here we extend 1-RSSGs and 1-RMDPs to a setting with positive rewards. Note
that much of the literature on MDPs and games is based on a reward structure.
This paper is a first step toward extending these models to the recursive setting.
Interestingly, we show that the associated problems actually become more be-
nign in some respects in this strictly positive reward setting. In particular, the
values of our games are either rational, with polynomial bit complexity, or ∞.

The 1-RMDP and 1-RSSG models can also be described as optimization and
game versions of several classic stochastic models, including stochastic context-
free grammars (SCFGs) and (multi-type) branching processes. These have ap-
plications in many areas, including natural language processing [21], biological
sequence analysis ([4]), and population biology [17, 16]. Another model that cor-
responds to a strict subclass of SCFGs is “random walks with back-buttons”
studied in [12] as a model of web surfing. See [7] for details on the relationships
between these various models. A 1-RSSG with positive rewards, can be equiv-
alently reformulated as the following game played on a stochastic context-free
grammar (see full version [11] for details). We are given a context-free grammar
where non-terminals are partitioned into three disjoint sets: random, player-1,
and player-2. Starting from a designated start non-terminal, Sinit, we proceed
to generate a derivation by choosing a remaining left-most non-terminal, S, and
expanding it. The precise derivation law (left-most, right-most, etc.) doesn’t ef-
fect the game value in our strictly positive reward setting, but does if we allow
0 rewards. If S belongs to random, it is expanded randomly by choosing a rule
S → α, according to a given probability distribution over the rules whose left
hand side is S. If S belongs to player-i, then player i chooses which grammar
rule to use to expand this S. Each grammar rule also has an associated (strictly
positive) reward for player 1, and each time a rule is used during the derivation,
player 1 accumulates this associated reward. Player 1 wants to maximize total
expected reward (which may be ∞), and player 2 wants to minimize it. When
we have only one player it is a minimizing or maximizing 1-RMDP.

We assume strictly positive rewards on all transitions (rules) in this paper.
This assumption is very natural for modeling optimal/pessimal expected running
time in probabilistic procedural programs: each discrete step of the program is
assumed to cost some non-zero amount of time. Strictly positive rewards also en-
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dow our games with a number of important robustness properties. In particular,
in the above grammar presentation, with strictly positive rewards these games
have the same value regardless of what derivation law is imposed. This is not the
case if we also allow 0 rewards on grammar rules. In that case, even in the single-
player setting, the game value can be wildly different (e.g., 0 or ∞) depending
on the derivation law (e.g., left-most or right-most). Moreover, for 1-RMDPs,
if we allow 0 rewards, then there may not even exist any ε-optimal strategies.
Furthermore, even in a purely probabilistic setting without players (1-RMCs),
with 0 rewards the expected reward can be irrational. Even the decidability of
determining whether the supremum expected reward for 1-RMDPs is greater
than a given rational value is open, and subsumes other open decidability ques-
tions, e.g., for optimal reachability probabilities in non-reward 1-RMDPs ([8, 1]).
(See the full version [11] for elaboration on these issues.) As we shall show, none
of these pathologies arise in our setting with strictly positive rewards.

We show that 1-RMDPs and 1-RSSGs with strictly positive rewards have a
value which is either rational (with polynomial bit complexity) or∞, and which
arises as the least fixed point solution (over the extended reals) of an associated
system of linear-min-max equations. Both players do have optimal strategies in
these games, and in fact we show the much stronger fact that both players have
stackless and memoryless (SM) optimal strategies: deterministic strategies that
depend only on the current state of the running component, and not on the
history or even the stack of pending recursive calls.

We provide polynomial-time algorithms for computing the exact value for
both the maximizing and minimizing 1-RMDPs. The two cases are not equiv-
alent and require separate treatment. We show that for the 2-player games (1-
RSSGs) deciding whether the game has value at least a given r ∈ Q ∪ {∞} is
in NP ∩ coNP. We also describe a practical simultaneous strategy improvement
algorithm, analogous to similar algorithms for finite-state stochastic games, and
show that it converges to the game value (even if it is ∞) in a finite number of
steps. A corollary is that computing the game value and optimal strategies for
these games is contained in the class PLS of polynomial local search problems
([19]). Whether this strategy improvement algorithm runs in worst-case P-time
is open, just like its version for finite-state SSGs.

We observe that these games are essentially “harder” than Condon’s finite-
state SSG games in the following senses. We reduce Condon’s quantitative deci-
sion problem for finite-state SSGs to a special case of 1-RSSG games with strictly
positive rewards: namely to deciding whether the game value is∞. By contrast, if
finite-state SSGs are themselves equipped with strictly positive rewards, we can
decide in P-time whether their value is∞. Moreover, it has recently been shown
that computing the value of Condon’s SSG games is in the complexity class
PPAD (see [10] and [20]). The same proof however does not work for 1-RSSG
positive reward games, and we do not know whether these games are contained
in PPAD. Technically, the problem is that in the expected reward setting the
domain of the fixed point equations is not compact, and indeed the expected
reward is potentially ∞. In these senses, the 1-RSSG reward games studied in
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this paper appear to be “harder” than Condon’s SSGs, and yet as we show
their quantitative decision problems remain in NP ∩ coNP. Finally, we show
that the more general multi-exit RSSG model is undecidable. Namely, even for
single-player multi-exit RMDPs with strictly positive rewards, it is undecidable
whether the optimal reward value is ∞.

The tool PReMo [28] implements a number of analyses for RMCs, 1-RMDPs,
and 1-RSSGs. Most recently, the strategy improvement algorithm of this paper
was implemented and incorporated in the tool. See the PReMo web page ([28])
for very encouraging experimental results based on the algorithms of this paper.
Due to space constraints proofs and discussions are omitted. See full paper [11].
Related work. Two (equivalent) purely probabilistic recursive models, Recur-
sive Markov chains and probabilistic Pushdown Systems (pPDSs) were intro-
duced in [7] and [5], and have been studied in several papers recently. These
models were extended to the optimization and game setting of (1)-RMDPs and
(1)-RSSGs in [8, 9], and studied further in [1]. As mentioned earlier, the games
considered in these earlier papers had the goal of maximizing/minimizing termi-
nation or reachability probability, which can be irrational, and for which quan-
titative decision problems encounter long standing open problems in numerical
computation, even to place their complexity in NP. On the other hand, the quali-
tative termination decision problem (“is the termination game value exactly 1?”)
for 1-RMDPs was shown to be in P, and for 1-RSSGs in NP ∩ coNP in [9]. These
results are related to the results in the present paper as follows. If termination
occurs with probability strictly less than 1 in a strictly positive reward game,
then the expected total reward is ∞. But the converse does not hold: the ex-
pected reward may be ∞ even when the game terminates with probability 1,
because there can be null recurrence in these infinite-state games. Thus, not
only do we have to address this discrepancy, but also our goal in this paper is
quantitative computation (compute the optimal reward), whereas in [9] it was
purely qualitative (almost sure termination).

Condon [2] originally studied finite-state SSGs with termination objectives
(no rewards), and showed that the quantitative termination decision problem
is in NP ∩ coNP; it is a well-known open problem whether it is in P. In [3]
strategy improvement algorithms for SSGs were studied, based on variants of
the classic Hoffman-Karp algorithm [18]. It remains open whether the simul-
taneous version of strategy improvement runs in P-time. This is also the case
for our simultaneous strategy improvement algorithm for 1-RSSGs with positive
rewards. (Single-vertex updates per step in strategy improvement is known to
require exponentially many steps in the worst case.)

There has been some recent work on augmenting purely probabilistic multi-
exit RMCs and pPDSs with rewards in [6]. These results however are for RMCs
without players. We in fact show in Theorem 8 that the basic questions about
multi-exit RMDPs and RSSGs are undecidable.

A full tech report of this paper appeared in [11]. A recent and independent
paper by Gawlitza and Seidl [14] considers monotone linear-min-max equations
with potentially negative constant terms (with entirely different motivation from

4



abstract interpretation), and studies a different kind of strategy improvement
algorithm for computing their least fixed point solution over the full extended
reals. Their work is related to ours, but in rather subtle ways. In particular their
notion of LFP over the extended reals may yield negative values or even −∞,
and they assume that “strategies” (choices for the max and min operators) are
memoryless, rather than proving a (memoryless) determinacy result. Moreover,
their strategy improvement algorithm requires a particular initial strategy (oth-
erwise it can fail) and thus is not directly formulable as a local search. Unlike
our results, their results apparently do not yield [15] containment in NP∩coNP,
nor in PLS, for the relevant decision and search problems. Nevertheless, there
are connections between their work and ours that need to be explored further.
In particular, Gawlitza [15] informs us that a modified version of their strategy
improvement algorithm can also be used to obtain our P-time upper bound for
the LFP, over the non-negative extended reals, for the linear-min and linear-max
equations that arise for 1-RMDPs.

Models related to 1-RMDPs have been studied in OR, under the name
Branching Markov Decision Chains (a controlled version of multi-type Branching
processes). These are close to the single-player SCFG model, with non-negative
rewards, but simultaneous derivation law. They were studied by Pliska [24], in a
related form by Veinott [27], and extensively by Rothblum and co-authors (e.g.,
[26]). Besides the restriction to simultaneous derivation, these models were re-
stricted to the single-player MDP case, and to simplify their analysis they were
typically assumed to be “transient” (i.e., the expected number of visits to a node
was assumed to be finite under all strategies). None of these works yield a P-time
algorithm for optimal expected rewards for 1-RMDPs with positive rewards.

2 Definitions and Background

Let R>0 = (0,∞) denote the positive real numbers, R≥0
.= [0,∞), R .= [−∞,∞],

R∞>0
.= (0,∞], and R∞≥0

.= [0,∞]. The extended reals R have the natural total
order. We assume the following usual arithmetic conventions on the non-negative
extended reals R∞≥0: a · ∞ = ∞, for any a ∈ R∞>0; 0 · ∞ = 0; a +∞ = ∞, for
any a ∈ R∞≥0. This extends naturally to matrix arithmetic over R∞≥0. We first
define general multi-exit RSSGs (for which basic reward problems turn out to
be undecidable). Later, we will confine these to the 1-exit case, 1-RSSGs.

A Recursive Simple Stochastic Game (RSSG) with positive rewards is a tuple
A = (A1, . . . , Ak), where each component Ai = (Ni, Bi, Yi, Eni, Exi, pli, δi, ξi)
consists of:
– A set Ni of nodes, with a distinguished subset Eni of entry nodes and a

(disjoint) subset Exi of exit nodes.
– A set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . , k} that assigns to every

box (the index of) a component. To each box b ∈ Bi, we associate a set
of call ports, Callb = {(b, en) | en ∈ EnY (b)}, and a set of return ports,
Retb = {(b, ex) | ex ∈ ExY (b)}. Let Calli = ∪b∈Bi

Callb, Reti = ∪b∈Bi
Retb,

and let Qi = Ni ∪ Calli ∪ Reti be the set of all nodes, call ports and return
ports; we refer to these as the vertices of component Ai.
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– A mapping pli : Qi 7→ {0, 1, 2} that assigns to every vertex a player (Player
0 represents “chance” or “nature”). We assume pli(ex) = 0 for all ex ∈ Exi.

– A transition relation δi ⊆ (Qi × (R>0 ∪ {⊥}) × Qi × R>0), where for each
tuple (u, x, v, cu,v) ∈ δi, the source u ∈ (Ni \ Exi) ∪ Reti, the destination
v ∈ (Ni \ Eni) ∪ Calli, and x is either (i) pu,v ∈ (0, 1] (the transition prob-
ability) if pli(u) = 0, or (ii) x = ⊥ if pli(u) = 1 or 2; and cu,v ∈ R>0 is
the positive reward associated with this transition. We assume for vertices
u and v there is at most one transition in δ from u to v. For computational
purposes we assume the given probabilities pu,v and rewards cu,v are ra-
tional. Probabilities must also satisfy consistency: for every u ∈ pl−1

i (0),∑
{v′|(u,pu,v′ ,v′,cu,v)∈δi} pu,v′ = 1, unless u is a call port or exit node, neither

of which have outgoing transitions, in which case by default
∑
v′ pu,v′ = 0.

– Finally, the mapping ξi : Calli 7→ R>0 maps each call port u in the compo-
nent to a positive rational value cu = ξ(u). (This mapping reflects the “cost”
of a function call, but is not strictly necessary. This cost can be 0 and all
our results would still hold.)

We use the symbols (N,B,Q, δ, etc.) without a subscript, to denote the
union over all components. Thus, e.g., N = ∪ki=1Ni is the set of all nodes of A,
δ = ∪ki=1δi the set of all transitions, etc. Let n(u) = {v | (u,⊥, v, cu,v) ∈ δ}
denote the neighbors of u if u is a player 1 or player 2 node and n(u) =
{v | (u, pu,v, v, cu,v) ∈ δ} otherwise. An RSSG A defines a global denumerable
simple stochastic game, with rewards, MA = (V = V0 ∪ V1 ∪ V2, ∆, pl) as fol-
lows. The global states V ⊆ B∗ × Q of MA are pairs of the form 〈β, u〉, where
β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. The
states V ⊆ B∗ ×Q and transitions ∆ are defined inductively as follows:
1. 〈ε, u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)
2. if 〈β, u〉 ∈ V & (u, x, v, c) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉, c) ∈ ∆.
3. if 〈β, (b, en)〉 ∈ V & (b, en) ∈ Callb, then 〈βb, en〉 ∈ V & (〈β, (b, en)〉, 1, 〈βb, en〉, ξ((b, en))) ∈ ∆.
4. if 〈βb, ex〉 ∈ V & (b, ex) ∈ Retb, then 〈β, (b, ex)〉 ∈ V & (〈βb, ex〉, 1, 〈β, (b, ex)〉, 0) ∈ ∆.

The mapping pl : V 7→ {0, 1, 2} is given as follows: pl(〈β, u〉) = pl(u) if u is
in Q \ (Call ∪ Ex), and pl(〈β, u〉) = 0 if u ∈ Call ∪ Ex. The set of states V
is partitioned into V0, V1, and V2, where Vi = pl−1(i). We consider MA with
various initial states of the form 〈ε, u〉, denoting this by Mu

A. Some states of MA

are terminating states and have no outgoing transitions. These are states 〈ε, ex〉,
where ex is an exit node. An RSSG where V2 = ∅ (V1 = ∅) is called a maxi-
mizing (minimizing, respectively) Recursive Markov Decision Process (RMDP);
an RSSG where V1 ∪ V2 = ∅ is called a Recursive Markov Chain (RMC) ([7]);
A 1-RSSGs is a RSSG where every component has one exit, and we likewise
define 1-RMDPs and 1-RMCs. This entire paper is focused on 1-RSSGs and
1-RMDPs, except for Theorem 8, where we show that multi-exit RMDP reward
games are undecidable. In a (1-)RSSG with positive rewards the goal of player
1 (maximizer) is to maximize the total expected reward gained during a play of
the game, and the goal of player 2 (minimizer) is to minimize this. A strategy
σ for player i, i ∈ {1, 2}, is a function σ : V ∗Vi 7→ V , where, given the history
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ws ∈ V ∗Vi of play so far, with s ∈ Vi (i.e., it is player i’s turn to play a move),
σ(ws) = s′ determines the next move of player i, where (s,⊥, s′, c) ∈ ∆. (We
could also allow randomized strategies, but this won’t be necessary, as we shall
see.) Let Ψi denote the set of all strategies for player i. A pair of strategies σ ∈ Ψ1

and τ ∈ Ψ2 induce in a straightforward way a Markov chain Mσ,τ
A = (V ∗, ∆′),

whose set of states is the set V ∗ of histories. Let rk,σ,τu denote the expected
reward in k steps in Mσ,τ

A , starting at initial state 〈ε, u〉. Formally, we can define
the total expected reward gained during the i’th transition, starting at 〈ε, u〉 to
be given by a random variable Yi. The total k-step expected reward is simply
rk,σ,τu = E[

∑k
i=1 Yi]. When k = 0, we of course have r0,σ,τu = 0. Given an initial

vertex u, let r∗,σ,τu = limk→∞ rk,σ,τ = E[
∑∞
i=1 Yi] ∈ [0,∞] denote the total ex-

pected reward obtained in a run of Mσ,τ
A , starting at initial state 〈ε, u〉. Clearly,

this sum may diverge, thus r∗,σ,τ ∈ [0,∞]. Note that, because of the positive
constraint on the rewards out of all transitions, the sum will be finite if and only
if the expected number of steps until the run terminates is finite.

We now want to associate a “value” to 1-RSSG games. Unlike 1-RSSGs
with termination probability objectives, it unfortunately does not follow di-
rectly from general determinacy results such as Martin’s Blackwell determinacy
([22]) that these games are determined, because those determinacy results re-
quire a Borel payoff function to be bounded, whereas the payoff function for
us is unbounded. Nevertheless, we will establish that determinacy does hold for
1-RSSG positive reward games, as part of our proof of Stackless & Memory-
less determinacy. For all vertices u, let r∗u

.= supσ∈Ψ1
infτ∈Ψ2 r

∗,σ,τ
u . We show

r∗u = infτ∈Ψ2 supσ∈Ψ1
r∗,σ,τu , and thus r∗u is the value of the game starting at

vertex u. We are interested in the following problem: Given A, a 1-RSSG (or
1-RMDP), and given a vertex u in A, compute r∗u if it is finite, or else declare
that r∗u = ∞. Also, compute optimal strategies for both players. For a strategy
σ ∈ Ψ1, let r∗,σu = infτ∈Ψ2 r

∗,σ,τ
u , and for τ ∈ Ψ2, let r∗,·,τu = supσ∈Ψ1

r∗,σ,τu . Call
a deterministic strategy Stackless & Memoryless (SM) if it depends neither on
the history of the game nor on the current call stack, i.e., only depends on the
current vertex. Such strategies, for player i, can be given by a map σ : Vi 7→ V .
We call a game SM-determined if both players have optimal SM strategies.

In ([8]) we defined a monotone system of nonlinear min-max equations for
the value of the termination probability game on 1-RSSGs, and showed that its
Least Fixed Point solution yields the desired probabilities. Here we show we can
adapt this to obtain analogous linear min-max systems in the setting of positive
reward 1-RSSGs. We use a variable xu for each unknown r∗u. Let x be the vector
of all xu, u ∈ Q. The system has one equation of the form xu = Pu(x) for each
vertex u. Suppose that u is in component Ai with (unique) exit ex. There are 5
cases based on the “Type” of u.

1. Type0: u = ex. In this case: xu = 0.
2. Typerand: pl(u) = 0 & u ∈ (Ni \ {ex})∪Reti: xu =

∑
v∈n(u) pu,v(xv + cu,v).

3. Typecall: u = (b, en) is a call port: x(b,en) = xen + x(b,ex′) + cu,
where ex′ ∈ ExY (b) is the unique exit of AY (b).

4. Typemax: pl(u) = 1 and u ∈ (Ni \ {ex}) ∪ Reti: xu = maxv∈n(u)(xv + cu,v)
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5. Typemin: pl(u) = 2 and u ∈ (Ni \ {ex}) ∪ Reti: xu = minv∈n(u)(xv + cu,v)

We denote the system in vector form by x = P (x). Given a 1-RSSG, we can
easily construct its associated system in linear time. For vectors x,y ∈ Rn, x ≤ y
means xj ≤ yj for every j. Let r∗ ∈ Rn denote the n-vector of r∗u’s. Let 0 denote
an all 0 vector, and define x0 = 0, xk+1 = P k+1(0) = P (xk), for k ≥ 0.

Theorem 1. (1) The map P : Rn → Rn is monotone on R∞≥0 and 0 ≤ xk ≤
xk+1 for k ≥ 0. (2) r∗ = P (r∗). (3) For all k ≥ 0, xk ≤ r∗. (4) For all r′ ∈ R∞≥0,
if r′ = P (r′), then r∗ ≤ r′. (5) For all vertices u, r∗u

.= supσ∈Ψ1
infτ∈Ψ2 r

∗,σ,τ
u =

infτ∈Ψ2 supσ∈Ψ1
r∗,σ,τu (i.e., these games are determined). (6) r∗ = limk→∞ xk.

The following is a simple corollary of the proof.

Corollary 1. In 1-RSSG positive reward games, the minimizer has an optimal
deterministic Stackless and Memoryless (SM) strategy.

3 SM-determinacy and strategy improvement

We now prove SM-determinacy, and also show that strategy improvement can be
used to compute the values and optimal strategies for 1-RSSG positive reward
games. Consider the following (simultaneous) strategy improvement algorithm.
Initialization: Pick some (any) SM strategy, σ, for player 1 (maximizer).
Iteration step: First compute the optimal value, r∗,σu , starting from every vertex,
u, in the resulting minimizing 1-RMDP. (We show in Theorem 3 that this can
be done in P-time.) Then, update σ to a new SM strategy, σ′, as follows. For
each vertex u ∈ Typemax, if σ(u) = v and u has a neighbor w 6= v, such
that r∗,σw + cu,w > r∗,σv + cu,v, let σ′(u) := w (e.g., choose a w that maximizes
r∗,σw + cu,w). Otherwise, let σ′(u) := σ(u).
Repeat the iteration step, using the new σ′ in place of σ, until no further local
improvement is possible, i.e., stop when σ′ = σ.
Theorem 2 shows that this algorithm always halts, and produces an optimal final
SM strategy for player 1. (The proof shows it works even if we switch any non-
empty subset of improvable vertices in each iteration.) Combined with Corollary
1, both players have optimal SM strategies, i.e., the games are SM-determined.

Theorem 2. (1) SM-determinacy. In 1-RSSG positive reward games, both play-
ers have optimal SM strategies. (2) Strategy Improvement. Moreover, we can
compute the value and optimal SM strategies using the above simultaneous strat-
egy improvement algorithm. (3) Computing the value and optimal strategies in
these games is contained in the class PLS.

The proof is intricate, and is given in the full version ([11]). Here we briefly sketch
the approach. Fix a SM strategy σ for player 1. It can be shown that if x = P (x)
is the linear-min-max equation system for this 1-RSSG, then r∗,σu ≤ Pu(r∗,σ),
for all vertices u, and equality fails only on vertices ui belonging to player 1
such that σ(ui) = vi is not “locally optimal”, i.e., such that there exists some
neighbor wi such that r∗,σwi

+ cui,wi
> r∗,σvi

+ cui,vi
. Let u1, . . . , un be all such
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vertices belonging to player 1. Associate a parameter ti ∈ R∞≥0 with each such
vertex ui, creating a parametrized game A(t), in which whenever the vertex ui
is encountered player 1 gains additional reward ti and the game then terminates.
Let gu,τ (t) denote the expected reward of this parametrized game starting at
vertex u, when player 1 uses SM strategy σ and player 2 uses SM strategy τ .
Let fu(t) = minτ gu,τ (t). The vector tσ, where tσi = r∗,σui

, is a fixed point of
fu(t), for every vertex u, and so is tσ

′
where σ′ is any SM strategy consistent

with σ on all vertices other than the ui’s. The functions gu,τ (t) is continuous and
nondecreasing over [0,∞]n, and expressible as an infinite sum of linear terms with
non-negative coefficients. Using these properties of gu,τ , and their implications
for fu, we show that if σ′ is the SM strategy obtained by locally improving the
strategy σ at the ui’s, by letting σ′(ui) := wi, then tσi = r∗,σui

< r∗,σ
′

ui
= tσ

′

i , and
thus also r∗,σz = fz(tσ) ≤ fz(tσ

′
) = r∗,σ

′

z , for any vertex z. Thus, switching to σ′

does not decrease the value at any vertex, and increases it on all the switched
vertices ui. There are only finitely many SM strategies, thus after finitely many
iterations we reach a SM strategy, σ, where no improvement is possible. This σ
must be optimal. Since each local improvement step can be done in P-time and
increases sum total reward, the problem is in PLS. ut

4 The complexity of reward 1-RMDPs and 1-RSSGs

Theorem 3. There is a P-time algorithm for computing the exact optimal value
(including the possible value ∞) of a 1-RMDP with positive rewards, in both the
case where the single player aims to maximize, or to minimize, the total reward.

We consider maximizing and minimizing 1-RMDPs separately.

Maximizing reward 1-RMDPs.
We are given a maximizing reward 1-RMDP (i.e., no Typemin nodes in the 1-
RSSG). Let us call the following LP “max-LP ”:
Minimize

∑
u∈Q xu

Subject to:
xu = 0 for all u ∈ Type0
xu ≥

∑
v∈n(u) pu,v(xv + cu,v) for all u ∈ Typerand

xu ≥ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall; ex′ is the exit of Y (b).
xu ≥ (xv + cu,v) for all u ∈ Typemax and all v ∈ n(u)
xu ≥ 0 for all vertices u ∈ Q

We show that, when the value vector r∗ is finite, it is precisely the optimal
solution to the above max-LP, and furthermore that we can use this LP to find
and eliminate vertices u for which r∗u =∞. Note that if r∗ is finite then it fulfills
all the constraints of the max-LP, and thus it is a feasible solution. We will show
that it must then also be an optimal feasible solution. We first have to detect
vertices u such that r∗u = ∞. For the max-linear equation system P , we define
the underlying directed dependency graph G, where the nodes are the set of
vertices, Q, and there is an edge in G from u to v if and only if the variable xv
occurs on the right hand side in the equation defining variable xu in P . We can
decompose this graph in linear time into strongly connected components(SCCs)
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and get an SCC DAG SCC(G), where the set of nodes are SCCs of G, and an
edge goes from one SCC A to another B, iff there is an edge in G from some
node in A to some node in B. We will call a subset U ⊆ Q of vertices proper
if all vertices reachable in G from the vertices in U are already in U . We also
use U to refer to the corresponding set of variables. Clearly, such a proper set U
must be a union of SCCs, and the equations restricted to variables in U do not
use any variables outside of U , so they constitute a proper equation system on
their own. For any proper subset U of G, we will denote by max-LP|U a subset
of equations of max-LP, restricted to the constraints corresponding to variables
in U and with new objective

∑
u∈U xu. Analogously we define P |U , and let x|U

be the vector x with entries indexed by any v 6∈ U removed.

Proposition 1. Let U be any proper subset of vertices. (I) The vector r∗|U is
the LFP of P |U . (II) If r∗u = ∞ for some vertex u in an SCC S of G, then
r∗v = ∞ for all v ∈ S. (III) If r′ is an optimal bounded solution to max-LP|U ,
then r′ is a fixed point of P |U . (IV) If max-LP|U has a bounded optimal feasible
solution r′, then r′ = r∗|U .

Theorem 4. We can compute r∗ for the max-linear equation system P , includ-
ing the values that are infinite, in time polynomial in the size of the 1-RMDP.

Proof. Build dependency graphG of P and decompose it into SCC DAG SCC(G).
We will find the LFP solution to P , bottom-up starting at a bottom SCC, S1.
We solve max-LP|S1 using a P-time LP algorithm. If the LP is feasible then the
optimal (minimum) value is bounded, and we plug in the values of the (unique)
optimal solution as constants in all other constraints of max-LP. We know this
optimal solution is equal to r∗|S1 , since S1 is proper. We do the same, in bottom-
up order, for remaining SCCs S2, . . . , Sl. If at any point after adding the new
constraints corresponding to the variables in an SCC Si, the LP is infeasible, we
know from Proposition 1 (IV), that at least one of the values of r∗|Si

is ∞. So
by Proposition 1 (II), all are. We can then mark all variables in Si as ∞, and
also mark all variables in the SCCs that can reach Si in SCC(G) as ∞. Also,
at each step we add to a set U the SCCs that have finite optimal values. At the
end we have a maximal proper such set U , i.e., every variable outside of U has
value ∞. We label the variables not in U with ∞, obtaining the vector r∗. ut
Minimizing reward 1-RMDPs.
Given a minimizing reward 1-RMDP (i.e., no Typemax nodes) we want to com-
pute r∗. Call the following LP “min-LP: ”
Maximize

∑
u∈Q xu

Subject to:

xu = 0 for all u ∈ Type0
xu ≤

∑
v∈n(u) pu,v(xv + cu,v) for all u ∈ Typerand

xu ≤ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall; ex′ is the exit of Y (b).
xu ≤ (xv + cu,v) for all u ∈ Typemin and all v ∈ n(u)
xu ≥ 0 for all vertices u ∈ Q
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Lemma 1. For any proper set U , if an optimal solution x to min-LP|U is
bounded, it is a fixed point of the min-linear operator P |U . Thus, if min-LP|U has
a bounded optimal feasible solution then r∗|U is bounded (i.e., is a real vector).

From min-LP we can remove variables xu ∈ Type0, by substituting their occur-
rences with 0. Assume, for now, that we can also find and remove all variables
xu such that r∗u =∞. By removing these 0 and ∞ variables from P we obtain a
new system P ′, and a new LP, min-LP′.
Lemma 2. If ∞ and 0 nodes have been removed, i.e., if r∗ ∈ (0,∞)n, then r∗

is the unique optimal feasible solution of min-LP′.

Proof. By Corollary 1, player 2 has an optimal SM strategy, call it τ , which
yields the finite optimal reward vector r∗. Once strategy τ is fixed, we can define
a new equation system P ′τ (x) = Aτx+bτ , where Aτ is a nonnegative matrix and
bτ is a vector of average rewards per single step from each node, obtained under
strategy τ . We then have r∗ = limk→∞(P ′τ )k(0), i.e., r∗ is the LFP of x = P ′(x).
Proposition 2. (I) r∗ = (

∑∞
k=0A

k
τ )bτ . (II) If r∗ is finite, then limk→∞Akτ = 0,

and thus (I −Aτ )−1 =
∑∞
i=0(Aτ )i exists (i.e., is a finite real matrix).

Now pick an optimal SM strategy τ for player 2 that yields the finite r∗. We
know that r∗ = (I −Aτ )−1bτ . Note that r∗ is a feasible solution of the min-LP′.
We show that for any feasible solution r to min-LP′, r ≤ r∗. From the LP we
can see that r ≤ Aτr+bτ (because this is just a subset of the constraints) and in
other words (I−Aτ )r ≤ bτ . We know that (I−Aτ )−1 exists and is non-negative
(and finite), so multiply both sides by (I −Aτ )−1 to get r ≤ (I −Aτ )−1bτ = r∗.
Thus r∗ is the optimal feasible solution of min-LP′. ut

For u ∈ Q, consider the LP: Maximize xu, subject to: the same constraints
as min-LP, except, again, remove all variables xv ∈ Type0. Call this u-min-LP′.

Theorem 5. In a minimizing 1-RMDP, for all vertices u, value r∗u is finite
iff u-min-LP′ is feasible and bounded. Thus, combined with Lemma 2, we can
compute the exact value (even if ∞) of minimizing reward 1-RMDPs in P-time.

Complexity of (1-)RSSGs with positive rewards.

Theorem 6. Deciding whether the value r∗u of a 1-RSSG positive reward game
is ≥ a for a given a ∈ [0,∞], is in NP ∩ coNP.
This is immediate from P-time upper bounds for 1-RMDPs, and SM-determinacy:
guess a player’s SM strategy, and compute the value for the remaining 1-RMDP.

Theorem 7. Condon’s quantitative termination problem for finite SSGs reduces
in P-time to the problem of deciding whether r∗u =∞.

By contrast, for finite-state SSGs with strictly positive rewards, we can decide
in P-time whether the value is ∞, because this is the case iff the value of the
corresponding termination game is not 1. Deciding whether an SSG termination
game has value 1 is in P-time (see, e.g., [9]).
Finally, we show undecidability for multi-exit RMDPs and RSSGs.

Theorem 8. For multi-exit positive reward RMDPs it is undecidable to distin-
guish whether the optimal expected reward for a node is finite or ∞.
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6. J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic push-

down automata: expectations and variances. In Proc. of 20th IEEE LICS’05, 2005.
7. K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars,

and monotone systems of non-linear equations. In Proc. of 22nd STACS, 2005.
(See full version at: http://homepages.inf.ed.ac.uk/kousha/bib index.html).

8. K. Etessami and M. Yannakakis. Recursive markov decision processes and recursive
stochastic games. In Proc. 32nd ICALP, 2005.

9. K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of recursive
markov decision processes and simple stochastic games. In Proc. 23rd STACS, 2006.

10. K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other
fixed points. In Proc. of 48th IEEE FOCS, 2007.

11. K. Etessami, D. Wojtczak, and M. Yannakakis. Recursive stochastic games with
positive rewards. Tech report EDI-INF-RR-1224, July, 2007.

12. R. Fagin, A. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld,
M. Sudan, and A. Tomkins. Random walks with “back buttons”. In STOC, 2000.

13. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
14. T. Gawlitza and H. Seidl. Precise relational invariants through strategy iteration.

In Proc. of 16th CSL, 2007.
15. T. Gawlitza. Personal communication. April, 2008.
16. P. Haccou, P. Jagers, and V. A. Vatutin. Branching Processes: Variation, Growth,

and Extinction of Populations. Cambridge U. Press, 2005.
17. T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.
18. A. Hoffman and R. Karp. On nonterminating stochastic games. Manag. Sci.,

12:359–370, 1966.
19. D. S. Johnson, C. Papadimitriou, and M. Yannakakis. How easy is local search?

J. Comput. Syst. Sci., 37(1):79–100, 1988.
20. B. Juba. On the hardness of simple stochastic games. Master’s thesis, CMU, 2006.
21. C. Manning and H. Schütze. Foundations of Statistical Natural Language Process-

ing. MIT Press, 1999.
22. D. A. Martin. Determinacy of Blackwell games. J. Sym. Log., 63:1565–1581, 1998.
23. A. Neyman and S. Sorin, ed. Stochastic Games and Applications. Kluwer, 2003.
24. S. Pliska. Optimization of multitype branching processes. Management Sci.,

23:117–124, 1976/77.
25. M. L. Puterman. Markov Decision Processes. Wiley, 1994.
26. U. Rothblum and P. Whittle. Growth optimality for branching Markov decision

chains. Math. Oper. Res., 7(4):582–601, 1982.
27. A. F. Veinott. Discrete dynamic programming with sensitive discount optimality

criteria. Ann. Math. Statist., 40:1635–1660, 1969.
28. D. Wojtczak and K. Etessami. Premo: an analyzer for probabilis-

tic recursive models. In Proc. of TACAS, 2007. Tool web page:
http://groups.inf.ed.ac.uk/premo/.

12


