
Model Checking of Recursive Probabilistic Systems

Kousha Etessami
U. of Edinburgh

kousha@inf.ed.ac.uk

Mihalis Yannakakis
Columbia U.

mihalis@cs.columbia.edu

Abstract

Recursive Markov Chains (RMCs) are a natural abstract model of procedu-
ral probabilistic programs and related systems involving recursion and probability.
They succinctly define a class of denumerable Markov chains that generalize several
other stochastic models, and they are equivalent in a precise sense to probabilistic
Pushdown Systems. In this paper, we study the problem of model checking an
RMC against an ω-regular specification, given in terms of a Büchi automaton or a
Linear Temporal Logic (LTL) formula. Namely, given an RMC A and a property
we wish to know the probability that an execution of A satisfies the property. We
establish a number of strong upper bounds, as well as lower bounds, both for qual-
itative problems (is the probability = 1, or = 0?), and for quantitative problems
(is the probability ≥ p?, or, approximate the probability to within a desired preci-
sion). The complexity upper bounds we obtain for automata and LTL properties
are similar, although the algorithms are different.

We present algorithms for the qualitative model checking problem that run in
polynomial space in the size |A| of the RMC and exponential time in the size of
the property (the automaton or the LTL formula). For several classes of RMCs,
including single-exit RMCs (a class that encompasses some well-studied stochastic
models, e.g., stochastic context-free grammars) the algorithm runs in polynomial
time in |A|. For the quantitative model checking problem, we present algorithms
that run in polynomial space in the RMC and exponential space in the property.
For the class of linearly recursive RMCs we can compute the exact probability in
time polynomial in the RMC and exponential in the property. For deterministic
automata specifications, all our complexities in the specification come down by one
exponential.

For lower bounds, we show that the qualitative model checking problem, even for
a fixed RMC, is already EXPTIME-complete. On the other hand, even for simple
reachability analysis, we showed in [EY05a] that our PSPACE upper bounds in A
can not be improved substantially without a breakthrough on a well-known open
problem in the complexity of numerical computation.

1

1 Introduction

Recursive Markov Chains (RMCs) are a natural abstract model of systems that involve
probability and recursion, such as procedural probabilistic programs. Informally, an
RMC consists of a collection of finite state component Markov chains (MC) that can
call each other in a potentially recursive manner. Each component MC has a set of
nodes (ordinary states), a set of boxes (each of which is mapped to a component MC), a
well-defined interface consisting of a set of entry and exit nodes (the nodes where it may
start and terminate), and a set of probabilistic transitions connecting the nodes and
boxes. A transition to a box specifies the entry node and models the invocation of the
component MC associated with the box; when (and if) the component MC terminates
at an exit, execution of the calling MC resumes from the corresponding exit of the box.

RMCs are a probabilistic version of Recursive State Machines (RSMs) ([ABE+05]).
RSMs and closely related models like Pushdown Systems (PDSs) have been studied
extensively in recent research on model checking and program analysis, because of their
applications to verification of sequential programs with procedures ([BEM97]). Recur-
sive Markov Chains subsume, in a certain precise sense, several other well-studied models
involving probability and recursion: Stochastic Context-Free Grammars (SCFGs), have
been extensively studied mainly in natural language processing (NLP) (see [MS99]) as
well as biological sequence analysis [DEKM99]. A subclass of SCFGs corresponds to a
model of web surfing called backoff or back-button process, studied in [FKK+]. Stochas-
tic context-free grammars can be modeled by a subclass of RMCs, in particular the class
of 1-exit RMCs, in which all components have one exit. Multi-Type Branching Processes
(MT-BPs), are an important family of stochastic processes, modeling the stochastic evo-
lution of a population of entities of various types (species), with many applications in a
great variety of areas such as biology, population dynamics and many others (see, e.g.,
[Har63, HJV05, KA02]). As shown in [EY05a], the extinction probabilities of branch-
ing processes (the central quantities of interest) can be expressed as the termination
probabilities of 1-exit RMCs.

RMCs can be viewed also as a recursive version of ordinary finite state Markov
chains, in the same way that RSMs are a recursive version of ordinary finite state
machines. Markov chains have been used to model non-recursive probabilistic programs
and analyze their properties. Probabilistic models of programs and systems are of
interest for several reasons. First, a program may use randomization, in which case
the transition probabilities reflect the random choices of the algorithm. Second, we
may want to model and analyse a program or system under statistical conditions on
its behaviour (e.g., based on profiling statistics or on statistical assumptions), and to
determine the induced probability of properties of interest.

We introduced RMCs in ([EY05a]), where we developed some of their basic theory
and focused on algorithmic reachability analysis: what is the probability of reaching a
given state starting from another? In this paper, we study the more general problem of

2

model checking an RMC against an ω-regular specification: given an RMC A and an
ω-regular property, we wish to know the probability that an execution of A satisfies the
property. The techniques we develop in this paper for model checking go far beyond
what was developed in [EY05a] for reachability analysis.

General RMCs are intimately related to probabilistic Pushdown Systems (pPDSs),
an equivalent model introduced in [EKM04], and there are efficient translations be-
tween RMCs and pPDSs ([EY05a]). Thus, our results apply with the same complex-
ity to the pPDS model. There has been recent work on model checking of pPDSs
([EKM04, EKM06, BKS05]). As we shall describe below, our results yield substantial
improvements, when translated to the setting of pPDSs, on the best upper and lower
bounds known for the complexity of ω-regular model checking of pPDSs.

We now outline the main results in this paper. We consider the two most popular
formalisms for the specification of ω-regular properties over words, (non-deterministic)
Büchi automata (BA for short) and Linear Temporal Logic (LTL). The automata for-
malism can express all ω-regular properties, while LTL expresses a (important) proper
subset. On the other hand, LTL is a common and more succinct formalism. The com-
plexity results turn out to be similar for the two formalisms (even though automata are
more general and LTL is more succinct), but require different algorithms.

We are given an RMC A and a property in the form of a (non-deterministic) Büchi
automaton (BA) B, whose alphabet corresponds to (labels on) the vertices of A, or a
LTL formula ϕ whose propositions correspond to properties of (labels on) the vertices
of A. Let PA(L(B)) (respectively, PA(ϕ)) denote the probability that an execution of A
is accepted by B (resp. satisfies the property ϕ). The qualitative model checking prob-
lems are: (1) determine whether almost all executions of A satisfy the property (i.e. is
PA(L(B)) = 1?, resp. PA(ϕ) = 1?); this corresponds to B or ϕ being a desirable cor-
rectness property, and (2) whether almost no executions of A satisfy the property (i.e. is
PA(L(B)) = 0?, resp. PA(ϕ) = 0?), corresponding to B or ϕ being an undesirable error
property. In the quantitative model checking problems we wish to compare PA(L(B))
(or PA(ϕ)) to a given rational threshold p, i.e., is PA(L(B)) ≥ p?, or alternatively, we
may wish to approximate PA(L(B)) to within a given number of bits of precision. Note
that in general the probabilities PA(L(B)), PA(ϕ) may be irrational and may not even
be expressible by radicals [EY05a], and hence they cannot be computed exactly.

We show that for both Büchi automata and LTL specifications, the qualitative model
checking problems can be solved with an algorithm that runs in PSPACE in the size
|A| of the given RMC and EXPTIME in the size of the property specification (i.e.,
the size |B| of the given automaton B or the size |ϕ| of the given LTL formula ϕ).
More specifically, in a first phase the algorithm analyzes the RMC A by itself (using
PSPACE). In a second phase it analyses further A in conjunction with the property,
using polynomial time in A and exponential time in the size of the automaton B or the
formula ϕ. If the property is specified by a deterministic automaton B, then the time
is polynomial in B.

3

For several important classes of RMCs we can obtain better complexity. First, if
A is a single-exit RMC then the first phase, and hence the whole algorithm, can be
done in polynomial time in A. This result applies in particular to (qualitative) model
checking of stochastic context-free grammars and backoff processes. Another class of
RMCs that we can model-check qualitatively in polynomial time in A is when the total
number of entries and exits in A is bounded (we call them bounded RMCs). In terms
of probabilistic program abstractions, this class of RMCs corresponds to programs with
a bounded number of different procedures, each of which has a bounded number of
input/output parameter values. The internals of the components of the RMCs (i.e. the
procedures) can be arbitrarily large and complex. A third class of RMCs with efficient
model checking is the class of linear RMCs, i.e. RMCs with linear recursion.

For quantitative model checking, we show that deciding whether PA(L(B)) ≥ p
(resp. PA(ϕ) ≥ p) for a given rational p ∈ [0, 1] can be decided in PSPACE in |A|,
and in EXPSPACE in |B| (resp., |ϕ|). For a deterministic automaton B, the space is
polynomial in both A,B. For linear RMCs we show that the probability PA(L(B)) or
PA(ϕ) is rational and can be computed exactly in polynomial time in the RMC A and
exponential time in the specification B or ϕ. For A a bounded RMC, and when the
property is fixed, there is an algorithm that runs in P-time in |A|; however, in this case
(unlike the others) the exponent of the polynomial depends on the property. Table 1
summarizes our complexity upper bounds.

For lower bounds, we prove that the qualitative model checking problem, even for
a fixed, single entry/exit RMC, is already EXPTIME-complete, both for automata and
for LTL specifications. On the other hand, even for reachability analysis, we showed in
[EY05a] that our PSPACE upper bounds in A, even for the quantitative 1-exit prob-
lem, and the general qualitative problem, can not be improved substantially without
a breakthrough on the complexity of the square root sum problem, a well-known open
problem in the complexity of numerical computation (see Section 2.2).

Related Work.

Model checking of ordinary flat (i.e., non-recursive) finite Markov chains has received
extensive attention both in theory and practice (eg. [CY95, Kwi03, PZ93, Var85]). It
is known that model checking of a Markov chain A with respect to a Büchi automaton
B or a LTL formula ϕ is PSPACE-complete, and furthermore the probability PA(L(B))
or PA(ϕ) can be computed exactly in time polynomial in A and exponential in B or ϕ
(see [CY95]). Recursive Markov chains were introduced recently in [EY05a], where we
developed some of their basic theory and investigated the termination and reachability
problems; we summarize the main results in Section 2.2. Recursion introduces a number
of new difficulties that are not present in the flat case. For example, in the flat case,
the qualitative problems depend only on the structure of the Markov chain (i.e., which
transitions are present) and not on the precise values of the transition probabilities;
this is not the case for RMCs and numerical issues have to be dealt with even in the
qualitative problem. Furthermore, unlike the flat case, the desired probabilities are

4

Qualitative:

reachability det. Büchi nondet. Büchi or LTL formula

1-exit P P P in RMC, EXPTIME in property

bounded P P P in RMC, EXPTIME in property

linear P P P in RMC, EXPTIME in property

general PSPACE PSPACE PSPACE in RMC, EXPTIME in property

Quantitative:

reachability det. Büchi nondet. Büchi or LTL formula

1-exit PSPACE PSPACE PSPACE in RMC,
EXPSPACE in property

bounded P P in RMC P in RMC,
for fixed Büchi for fixed property

linear P P P in RMC, EXPTIME in property

general PSPACE PSPACE PSPACE in RMC,
EXPSPACE in property

Figure 1: Complexity of Qualitative and Quantitative problems

irrational and cannot be computed exactly.
The equivalent model of probabilistic Pushdown Systems (pPDS) was introduced and

studied in [EKM04, BKS05]. They largely focus on model checking against branching-
time properties, but they also study deterministic ([EKM04]) and non-deterministic
([BKS05]) Büchi automaton specifications. There are efficient (linear time) translations
between RMCs and pPDSs [EY05a], similar to translations between RSMs and PDSs
(see [ABE+05]).

This paper combines, and expands on, the content of our two conference publica-
tions [EY05c, YE05] on model checking of Recursive Markov Chains. Those two papers
treated separately the case of model checking against ω-regular properties and LTL
properties. Our upper bounds for model checking, translated to pPDSs, improve sub-
stantially on those obtained in [EKM04, BKS05], by at least an exponential factor in
the general setting, and by more for specific classes like single-exit, linear, and bounded
RMCs. Specifically, [BKS05], by extending results in [EKM04], show that qualitative
model checking for a pPDS and a Büchi automaton can be done in PSPACE in the
size of the pPDS and 2-EXPSPACE in the size of the Büchi automaton, while quan-
titative model checking can be decided in EXPTIME in the size of the pPDS and in
3-EXPTIME in the size of the Büchi automaton. They do not obtain stronger complex-
ity results for the class of pBPAs (equivalent to single-exit RMCs). Also, the class of
bounded RMCs has no direct analog in pPDSs, as the total number of entries and exits
of an RMC gets lost in translation to pPDSs. The above papers do not address directly
LTL specifications.

The rest of this paper is organized as follows. In Section 2 we give the necessary
definitions and background on RMCs from [EY05a]. We also indicate how the model

5

checking problems for stochastic context-free grammars (and backoff processes) reduce
to (1-exit) RMCs. In Section 3 we show how to construct from an RMC A a flat
“summary” Markov chain M ′

A which in some sense summarizes the recursion in the
trajectories of A; this chain plays a central role analogous to that of the “summary
graph” for Recursive State machines [ABE+05]. In Section 4 we address the qualitative
model checking problems for Büchi automata specifications, presenting both upper and
lower bounds. In Section 5 we show a fundamental “unique fixed point theorem” for
RMCs, which allows us to isolate the termination probabilities of an RMC as the unique
solution of a set of constraints. In Section 6 we use this to address the quantitative model
checking problem for Büchi automata. Section 7 concerns the qualitative model checking
of LTL specifications, and Section 8 quantitative model checking of LTL.

2 Definitions and Background

We will first define formally Recursive Markov Chains and give the basic terminology.
Then, in Subsection 2.1 we will recall the definitions of Büchi automata and Linear
Temporal Logic, and define formally the qualitative and quantitative model checking
problems for RMCs. In Subsection 2.2 we will summarize the basic theory of RMCs
and results from [EY05a] regarding reachability and termination. In Subsection 2.3 we
describe the reduction of stochastic context-free grammars to 1-exit RMCs, with respect
to the model checking problems.

A Recursive Markov Chain (RMC), A, is a tuple A = (A1, . . . , Ak), where each
component graph Ai = (Ni, Bi, Yi, Eni, Exi, δi) consists of:

• A set Ni of nodes.

• A subset of entry nodes Eni ⊆ Ni, and a subset of exit nodes Exi ⊆ Ni.

• A set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . , k} that assigns to every box
(the index of) one of the components, A1, . . . , Ak. To each box b ∈ Bi, we associate
a set of call ports, Callb = {(b, en) | en ∈ EnYi(b)} corresponding to the entries of
the corresponding component, and a set of return ports, Returnb = {(b, ex) | ex ∈
ExYi(b)}, corresponding to the exits of the corresponding component.

• A transition relation δi, where transitions are of the form (u, pu,v, v) where:

1. the source u is either a non-exit node u ∈ Ni\Exi, or a return port u = (b, ex)
of a box b ∈ Bi,

2. The destination v is either a non-entry node v ∈ Ni \ Eni, or a call port
u = (b, en) of a box b ∈ Bi ,

3. pu,v ∈ R>0 is the transition probability from u to v,

6

ex1

ex2

1/2

A1

1

en′

A2

ex′
1

ex′
2

1

3/5

b1 : A2 b′1 : A1

b′2 : A2

z

u

3/4

1/4

2/3

1/3 1/3

en

v

1/4 1/4
2/5

1
1/3

2/3

11

1/3

1/3

Figure 2: A sample Recursive Markov Chain

4. Consistency of probabilities: for each u,
∑

{v′|(u,pu,v′ ,v
′)∈δi}

pu,v′ = 1, unless

u is a call port or exit node, neither of which have outgoing transitions, in
which case by default

∑
v′ pu,v′ = 0.

For computational purposes, we assume that the transition probabilities pu,v are
rational numbers, given as the ratio of two integers, and we measure their size by the
number of bits in the numerator and denominator. The size |A| of a given RMC A is the
number of bits needed to specify it (including the size of the transition probabilities).

We will use the term vertex of Ai to refer collectively to its set of nodes, call ports,
and return ports, and we denote this set by Qi. Thus, the transition relation δi is a set
of probability-weighted directed edges on the set Qi of vertices of Ai. We will use all the
notations without a subscript to refer to the union over all the components of the RMC
A. Thus, N = ∪k

i=1Ni denotes the set of all the nodes of A, Q = ∪k
i=1Qi the set of all

vertices, B = ∪k
i=1Bi the set of all the boxes, Y = ∪k

i=1Yi the map Y : B 7→ {1, . . . , k}
of all boxes to components, and δ = ∪iδi the set of all transitions of A.

An example RMC is shown in Figure 2. The RMC has two components A1, A2,
each with one entry and two exits (in general different components may have different
numbers of entries and exits). Component A2 has two boxes, b′1 which maps to A1 and
b′2 which maps to A2. Note that the return ports of a box may have different transitions.

An RMC A defines a global denumerable Markov chain MA = (V,∆) as follows. The
global states V ⊆ B∗×Q are pairs of the form 〈β, u〉, where β ∈ B∗ is a (possibly empty)
sequence of boxes and u ∈ Q is a vertex of A. More precisely, the states V ⊆ B∗ × Q
and transitions ∆ are defined inductively as follows:

1. 〈ǫ, u〉 ∈ V , for u ∈ Q. (ǫ denotes the empty string.)

2. if 〈β, u〉 ∈ V and (u, pu,v, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, pu,v , 〈β, v〉) ∈ ∆.

3. if 〈β, (b, en)〉 ∈ V , where (b, en) ∈ Callb, then 〈βb, en〉 ∈ V and (〈β, (b, en)〉, 1, 〈βb, en〉) ∈
∆.

4. if 〈βb, ex〉 ∈ V , where (b, ex) ∈ Returnb, then 〈β, (b, ex)〉 ∈ V and (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈
∆.

7

Item 1 corresponds to the possible initial states, item 2 corresponds to a transition
within a component, item 3 corresponds to a recursive call when a new component is
entered via a box, item 4 corresponds to the end of a recursive call when the process
exits a component and control returns to the calling component.

Some states of MA are terminating, having no outgoing transitions. These are pre-
cisely the states 〈ǫ, ex〉, where ex is an exit. We want to view MA as a proper Markov
chain, so we consider terminating states to be absorbing states, with a self-loop of prob-
ability 1.

A trace (or trajectory) t ∈ V ω of MA is an infinite sequence of states t = s0s1s2
such that for all i ≥ 0, there is a transition (si, psi,si+1, si+1) ∈ ∆, with psi,si+1 >
0. Let Ω ⊆ V ω denote the set of traces of MA. For a state s = 〈β, v〉 ∈ V , let
Q(s) = v denote the vertex at state s. Generalizing this to traces, for a trace t ∈ Ω,
let Q(t) = Q(s0)Q(s1)Q(s2) . . . ∈ Qω. We will consider MA with initial states from
Init = {〈ǫ, v〉 | v ∈ Q}. More generally we may have a probability distribution pinit :
V 7→ [0, 1] on initial states (we usually assume pinit has support only in Init, and we
always assume it has finite support). This induces a probability distribution on traces
generated by random walks on MA. Formally, we have a probability space (Ω,F ,PrΩ),
parametrized by pinit, where F = σ(C) ⊆ 2Ω is the σ-field generated by the set of
basic cylinder sets, C = {C(x) ⊆ Ω | x ∈ V ∗}, where for x ∈ V ∗ the cylinder at x is
C(x) = {t ∈ Ω | t = xw, w ∈ V ω}. The probability distribution PrΩ : F 7→ [0, 1]
is determined uniquely by the probabilities of cylinder sets, which are given as follows
(see, e.g., [Bil95]):

PrΩ(C(s0s1 . . . sn)) = pinit(s0)ps0,s1ps1,s2 . . . psn−1,sn

We will discuss and obtain improved results for three important classes of RMCs.
We say that an RMC is linearly recursive, or simply linear, if there is no path in any
component from a return port of any box to a call port of the same or another box.
This corresponds to the usual notion of linear recursion in procedures. For example, the
RMC of Fig. 1 is not linear because of the transition from the second exit of box b1 to
the entry of the box; if the transition was not present then the RMC would be linear.

An RMC where every component has at most one exit is called a 1-exit RMC. As
shown in [EY05a], these encompass in a certain sense several well-studied important
stochastic models, e.g., Stochastic Context-free Grammars and (Multi-type) Branching
Processes, as well as the ‘back-button’ model of web-surfing studied in [FKK+].

Finally, RMCs where the total number of entries and exits is bounded by a constant
c, (i.e.,

∑k
i=1 |Eni|+ |Exi| ≤ c) are called bounded RMCs. These correspond to recursive

programs with a bounded number of different procedures which pass a bounded number
of input and output values (the procedures themselves can be internally arbitrarily
complicated).

8

2.1 The central questions for model checking of RMCs.

We first define termination (exit) probabilities that play an important role in our anal-
ysis. Given a vertex u ∈ Qi and an exit ex ∈ Exi, both in the same component Ai,
let q∗(u,ex) denote the probability of eventually reaching the state 〈ǫ, ex〉, starting at the

state 〈ǫ, u〉. Formally, we have pinit(〈ǫ, u〉) = 1, and q∗(u,ex)
.
= PrΩ({t = s0s1 . . . ∈ Ω |

∃ i , si = 〈ǫ, ex〉}). As we shall see, the probabilities q∗(u,ex) will play an important role
in obtaining other probabilities.

Two popular formalisms for specifying properties of executions are Büchi automata
and Linear Temporal Logic. A Büchi automaton (BA for short) B = (Σ, S, q0, R, F),
has an alphabet Σ, a set of states S, an initial state q0 ∈ S, a transition relation R ⊆
S×Σ×S, and a set of accepting states F ⊆ S. A run of B is a sequence π = q0v0q1v1q2 . . .
of alternating states and letters such that for all i ≥ 0 (qi, vi, qi+1) ∈ R. The ω-word
associated with run π is wπ = v0v1v2 . . . ∈ Σω. The run π is accepting if for infinitely
many i, qi ∈ F . Define the ω-language L(B) = {wπ | π is an accepting run of B}.
Note that L(B) ⊆ Σω. Let L : Q 7→ Σ, be a given Σ-labelling of the vertices of
RMC A. L naturally extends to the state set V of the infinite Markov chain MA, by
letting L(〈β, v〉) = L(v) for each state 〈β, v〉 ∈ V of MA, and it further generalizes to a
mapping L : V ω 7→ Σω from trajectories of MA, i.e., executions (paths) of the RMC A,
to infinite Σ-strings: for t = s0s1s2 . . . ∈ V ω, L(t) = L(s0)L(s1)L(s2) The execution
t satisfies the property specified by the automaton B iff L(t) ∈ L(B). Given RMC
A, with initial state s0 = 〈ǫ, u〉, and given a Büchi automaton B over the alphabet Σ,
let PA(L(B)) denote the probability that a trace of MA is in L(B). More precisely:
PA(L(B))

.
= PrΩ({t ∈ Ω | L(t) ∈ L(B)}). As in the case of flat (ordinary finite) Markov

chains [CY95, Var85], it is easy to show that the sets {t ∈ Ω | L(t) ∈ L(B)} are
measurable (in F).

Linear Temporal Logic (LTL) [Pnu77] has formulas that are built from a finite set
Prop of propositions using the usual Boolean connectives (e.g., ¬,∨,∧), the unary tem-
poral connective Next (denoted ©) and the binary temporal connective Until (U); thus,
if ξ, ψ are LTL formulas then ©ξ and ξUψ are also LTL formulas. To specify a property
of an RMC using LTL, every vertex of the given RMC A is labelled with a subset of
Prop: the set of propositions that hold at that vertex. That is, there is a given labelling
(often called a valuation function) L : Q 7→ Σ = 2Prop. As noted above, the labelling
function can be extended naturally to the infinite Markov chain MA and to its trajec-
tories. If t = s0, s1, s2 . . . is a trajectory of MA and ϕ is an LTL formula, then we define
satisfaction of the formula by t at step i, denoted t, i |= ϕ inductively on the structure
of ϕ as follows.

• t, i |= p for p ∈ Prop iff p ∈ L(si).

• t, i |= ¬ξ iff not t, i |= ξ.

• t, i |= ξ ∨ ψ iff t, i |= ξ or t, i |= ψ.

9

• t, i |= ©ξ iff t, (i+ 1) |= ξ.

• t, i |= ξUψ iff there is a j ≥ i such that t, j |= ψ, and t, k |= ξ for all k with
i ≤ k < j.

We say that the trajectory t satisfies ϕ iff t, 0 |= ϕ. Other useful temporal connec-
tives can be defined using U . The formula TrueUψ means “eventually ψ holds” and is
abbreviated 3ψ. The formula ¬(3¬ψ) means “always ψ holds” and is abbreviated 2ψ.

If ϕ is an LTL formula and A is an RMC with a labelling function over the propo-
sitions of ϕ, then the set of executions of A (i.e., trajectories of MA) that satisfy ϕ is a
measurable set. We use PA(ϕ) to denote the probability of this set. As is well known,
LTL formulas specify ω-regular properties: From a given LTL formula ϕ over set of
propositions Prop, one can construct a Büchi automaton Bϕ with alphabet Σ = 2Prop

such that L(Bϕ) is precisely the set of infinite words that satisfy ϕ [VW86]. The au-
tomaton has in general exponentially larger size than the formula (and this is inherent),
i.e., LTL is in general a more succinct formalism. On the other hand, Büchi automata
are a more general formalism in that they can express all ω-regular properties, whereas
LTL expresses a proper subset.

The model checking problems for ω-regular properties of RMCs are defined as follows.
We are given a RMC A and a property ϕ, in terms of either a given LTL formula or a
given Büchi automaton B (i.e., ϕ = L(B) in the latter case).

(1) Qualitative model checking problems: Is PA(ϕ) = 1? Is PA(ϕ) = 0?

(2) Quantitative model checking problems:
a. Decision problem: Given a rational p ∈ [0, 1] (in addition to the RMC A and
the property ϕ), is PA(ϕ) ≥ p?
b. Approximation problem. Given a number j in unary (in addition to the RMC A
and the property ϕ), approximate PA(ϕ) to within j bits of precision, i.e., compute
a value that is within an additive error 2−j of PA(ϕ).

Note that if we have a routine for the decision problem PA(ϕ) ≥ p?, then we can
approximate PA(ϕ) to within j bits of precision using binary search with j calls to
the routine. Thus, for quantitative model checking it suffices to address the decision
problem.

Note that probabilistic reachability (and termination) is a special case of model
checking for a simple fixed automaton B (or LTL formula ϕ): Given a vertex u of the
RMC A and a subset of vertices F , the probability that the RMC starting at u visits
eventually some vertex in F (with some stack context) is equal to PA(L(B)), where
we let the labelling L map vertices in F to 1 and the other vertices of A to 0, and
B is the 2-state automaton over alphabet {0, 1} that accepts strings that contain a 1.
For the termination probability q∗(u,ex), i.e., the probability that the RMC starting at a

vertex u terminates at the exit ex of the component Ai of u (with empty stack), let A′

10

be the RMC obtained from A by adding a new component A′
i that is identical to the

component Ai of u; then q∗(u,ex) is equal to the probability that A′ starting at vertex u

of A′
i reaches the exit ex of A′

i. Similarly, for the repeated reachability problem, where
we are interested whether a trajectory from u visits infinitely often a vertex of a set F
(with any stack context), we can let B be the (2-state deterministic) automaton that
accepts strings with an infinite number of 1’s. Similarly we can write small fixed LTL
formulas for reachability and repeated reachability.

2.2 Basic RMC theory and reachability analysis

We recall some of the basic theory of RMCs developed in [EY05a], where we studied
reachability analysis. Considering the termination probabilities q∗(u,ex) as unknowns, we

can set up a system of (non-linear) polynomial equations, such that the probabilities
q∗(u,ex) are the Least Fixed Point (LFP) solution of this system. Use a variable x(u,ex)

for each unknown probability q∗(u,ex). We will often find it convenient to index the
variables x(u,ex) according to a fixed order, so we can refer to them also as x1, . . . , xn,
with each x(u,ex) identified with xj for some j. We thus have a vector of variables:

x = (x1 x2 . . . xn)T .

Definition 1 Given RMC A = (A1, . . . , Ak), define the system of polynomial equations,
SA, over the variables x(u,ex), where u ∈ Qi and ex ∈ Exi, for 1 ≤ i ≤ k. The system
contains one equation x(u,ex) = P(u,ex)(x), for each variable x(u,ex), where P(u,ex)(x) is
a multivariate polynomial with positive rational coefficients. There are 3 cases, based on
the “type” of vertex u:

1. Type I: u = ex. In this case: x(ex,ex) = 1.

2. Type II: either u ∈ Ni \ {ex} or u = (b, ex′) is a return port. In these cases:
x(u,ex) =

∑
{v|(u,pu,v,v)∈δ} pu,v · x(v,ex).

3. Type III: u = (b, en) is a call port. In this case:
x((b,en),ex) =

∑
ex′∈ExY (b)

x(en,ex′) · x((b,ex′),ex)

In vector notation, we denote SA = (xj = Pj(x) | j = 1, . . . , n) by: x = P (x).

Given RMC A, we can construct the system x = P (x) in polynomial time: P (x)
has size O(|A|θ2), where θ denotes the maximum number of exits of any component.
For vectors x,y ∈ R

n, define x � y to mean that xj ≤ yj for every coordinate j. For
D ⊆ R

n, call a mapping H : R
n 7→ R

n monotone on D, if: for all x,y ∈ D, if x � y then
H(x) � H(y). Define P 1(x) = P (x), and P k(x) = P (P k−1(x)), for k > 1. Let q∗ ∈ R

n

denote the n-vector of probabilities q∗(u,ex), using the same indexing as used for x. Let

0 denote the all 0 n-vector. Define x0 = 0, and xk = P (xk−1) = P k(0), for k ≥ 1. The
map P : R

n 7→ R
n is monotone on R

n
≥0.

11

Theorem 1 ([EY05a], see also [EKM04]) The vector of termination probabilities q∗ ∈
[0, 1]n is the Least Fixed Point solution, LFP(P), of x = P (x). Thus, q∗ = P (q∗) and
for all q′ ∈ R

n
≥0, if q′ = P (q′), then q∗ � q′. Furthermore, xk � xk+1 � q∗ for all

k ≥ 0, and q∗ = limk→∞ xk.

There are RMCs, even 1-exit RMCs, for which the probability q∗(en,ex) is irrational

and not “solvable by radicals” ([EY05a]). Thus, we can’t compute probabilities exactly.
Given a system x = P (x), and a vector q ∈ [0, 1]n, consider the following sentence

in the Existential Theory of Reals (which we denote by ExTh(R)):

ϕ ≡ ∃x1, . . . , xm

m∧

i=1

(Pi(x1, . . . , xm) = xi) ∧
m∧

i=1

(0 ≤ xi) ∧
m∧

i=1

(xi ≤ qi)

ϕ is true precisely when there is some z ∈ R
m, 0 � z � q, and z = P (z). Thus, if we can

decide the truth of this sentence, we could tell whether q∗(u,ex) ≤ p, for some rational p, by

using the vector q = (1, . . . , p, 1, . . .). We will rely on decision procedures for ExTh(R).
It is known that ExTh(R) can be decided in PSPACE [Can88, Ren92]. Furthermore
it can be decided in exponential time, where the exponent depends (linearly) only on
the number of variables; thus for a fixed number of variables the algorithm runs in
polynomial time. As a consequence:

Theorem 2 ([EY05a]) Given RMC A and rational value ρ, there is a PSPACE algo-
rithm to decide whether q∗(u,ex) ≤ ρ, with running time O(|A|O(1) · 2O(m)) where m is the

number of variables in the system x = P (x) for A. Moreover q∗(u,ex) can be approximated
to within j bits of precision within PSPACE and with running time at most j times the
above.

Better results are possible for special classes of RMCs. For linear RMCs, the termi-
nation probabilities q∗(u,ex) are rational and can be computed exactly in polynomial time
by solving two systems of linear equations. For bounded RMCs, the probabilities are
irrational, but it is possible to solve efficiently the quantitative decision and approxima-
tion problems by constructing a system of (nonlinear) constraints in a bounded number
of variables, and using the fact that ExTh(R) is decidable in P-time when the number
of variables is bounded. For single-exit RMC the qualitative termination (exit) problem
can be solved efficiently. The algorithm does not use the ExTh(R) but rather graph
theory and an eigenvalue characterization. We summarize these results in the following
theorem.

Theorem 3 ([EY05a])

1. For a linear RMC A, the termination probabilities q∗(u,ex) are rational and can be
computed in polynomial time.

12

2. Given a bounded RMC A and a rational value p ∈ [0, 1], there is a P-time algorithm
that decides for a vertex u and exit ex, whether q∗(u,ex) ≥ p (or ≤ p).

3. Given a 1-exit RMC A, vertex u and exit ex, we can decide in polynomial time
which of the following holds: (1) q∗(u,ex) = 0,(2) q∗(u,ex) = 1, or (3) 0 < q∗(u,ex).

Hardness, such as NP-hardness, is not known for RMC reachability. However, in
[EY05a] we gave strong evidence of “difficulty” in terms of two important open problems:
The first one is the Square-root sum (SQRT-SUM) problem: given (d1, . . . , dn) ∈ N

n and
k ∈ N, decide whether

∑n
i=1

√
di ≤ k. This problem arises often, especially in geometric

computations. It is solvable in PSPACE, but it has been a longstanding open problem
since the 1970’s whether it is solvable even in NP [GGJ76]. The second problem, called
PosSLP (‘positive Straight-Line Program’), asks whether a given straight-line program
(equivalently, arithmetic circuit) with integer inputs and operations +,−, ∗, computes
a positive number or not. It was shown in [ABKPM06] that PosSLP is complete under
Cook reductions for the class of decision problems that can be solved in polynomial time
in the unit-cost algebraic RAM model, a model with unit-cost exact rational arithmetic,
i.e., all operations +,−, ∗, / on rational numbers take unit time, regardless of the size
of the numbers. The square-root sum problem can be solved in polynomial time in this
model [Tiw92]. Both problems, PosSLP and SQRT-SUM, are in PSPACE (and actually
in the Counting Hierarchy [ABKPM06]), but it is not known whether they are in P or
even in NP.

In [EY05a] we showed that the PosSLP and SQRT-SUM problems are P-time (many-
one) reducible to the quantitative termination problem (i.e. q∗(u,ex) ≥ p?) for 1-exit

RMCs, and to the qualitative termination problem (i.e., q∗(u,ex) = 1?) for 2-exit RMCs

(see also [BKS05]). Furthermore, even any nontrivial approximation of the termination
probabilities (within any additive constant error c < 1) for 2-exit RMCs is at least as
hard as the PosSLP and SQRT-SUM problems.

As a practical algorithm for numerically computing the probabilities q∗(u,ex), it was

proved in [EY05a] that a version of multi-dimensional Newton’s method converges mono-
tonically to the LFP of x = P (x), and constitutes a rapid acceleration of iterating P k(0),
k → ∞.

2.3 Stochastic Context-free Grammars, Backoff Processes, and 1-exit

RMCs

A Stochastic Context-Free Grammar (SCFG) is a context-free grammar whose rules (pro-
ductions) have associated probabilities. Formally, a SCFG is a tuple G = (T, V,R, S1),
where T is a set of terminal symbols, V = {S1, . . . , Sk} is a set of nonterminals, and R

is a set of rules Si
p→ α, where Si ∈ V , p ∈ (0, 1], and α ∈ (V ∪ T)∗, such that for every

nonterminal Si,
∑

〈pj |(Si

pj
→αj)∈R〉

pj = 1. S1 is specified as the starting nonterminal. A

13

SCFG G generates a language L(G) ⊆ T ∗ and associates a probability p(τ) to every ter-
minal string τ in the language, according to the following stochastic process. Start with
the starting nonterminal S1, pick a rule with left hand side S1 at random (according to
the probabilities of the rules) and replace S1 with the string on the right-hand side of
the rule. In general, in each step we have a sentential form, i.e., a string σ ∈ (V ∪ T)∗;
take the leftmost nonterminal Si in the string σ (if there is any), pick a random rule with
left-hand side Si (according to the probabilities of the rules) and replace this occurrence
of Si in σ by the right-hand side of the rule to obtain a new string σ′. The process
stops only when (and if) the current string σ has only terminals. The above process
defines a (infinite) Markov chain MG with state set (V ∪T)∗, initial state S1, and set of
terminating states T ∗; of course, the unreachable states can be ignored, and also we can
add self-loops with probability 1 at the terminating states to make MG into a proper
Markov chain.

The probability p(τ) of a terminal string τ ∈ T ∗ is the probability that the process
reaches (and thus terminates at) the string τ . The above definition of the SCFG process
applies a leftmost derivation rule; the probabilities of the terminal strings are the same
if one uses any other derivation rule, for example rightmost derivation, or simultaneous
expansion in each step of all nonterminals in the current sentential form. The prob-
ability of the language L(G) of the SCFG G is p(L(G)) =

∑
τ∈L(G) p(τ); this is the

probability that the stochastic process starting with S1 generates some terminal string
(and terminates).

A probabilistic model of web surfing, called Random walk with “back buttons”, or
backoff process, was introduced and studied in [FKK+]. The model extends an ordinary
finite Markov chain with a “back button” feature: There is a finite set of pages (states)
V = {S1, . . . , Sn}, and the process starts from some initial page, say S1. In each step, if
the current page is Si then the process can either proceed along a forward link to a page
Sj with probability pij, or it can ‘press the back button’ with probability bi = 1−∑

j pij

and return to the previous page from which page Si was entered. A backoff process C
defines an infinite Markov chain MC on state set V ∗ with initial state S1, where each
state of MC is the sequence of pages that led to the current page via forward links. As
observed in [EY05a], backoff processes can be mapped to (a subclass of) SCFGs: Given

a backoff process C as above, the SCFG G with rules {Si
pij→ SjSi|pij > 0} ∪{Si

bi→ ǫ|bi >
0} defines the same infinite Markov chain MG = MC . Fagin et. al. ([FKK+]) provide
a thorough study of backoff processes and efficient algorithms; for example they can
approximate in polynomial time to any desired precision the termination probability,
i.e. the probability p(L(G)) of the language of the associated SCFG. It is an open
problem whether such an algorithm exists for the whole class of all SCFGs.

Stochastic context-free grammars (and thus also backoff processes) can be mapped
to 1-exit RMCs in a probability-preserving manner [EY05a]: A SCFG G is mapped to a
1-exit RMC A that has one component Ai for each nonterminal Si of G, the component
has one entry eni and one exit exi, and has one path from entry to exit for each rule

14

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

en1 1/4

a

ba

a

A2A1

1/2

1/2

1/4

1/2

ex1

Figure 3: RMC of a SCFG

Si
p→ α of G with left hand side Si; the path contains a box for every nonterminal on

the right-hand side α of the rule mapped to the corresponding component, a node for
each terminal in α, the first edge of the path has probability p equal to the probability
of the rule and the other edges have probability 1. An example of the mapping is given
in Figure 3, which shows the RMC A corresponding to the SCFG G with nonterminals

V = {S1, S2}, terminals T = {a, b} and rules R = {S1
1/2→ S1S1, S1

1/4→ a, S1
1/4→ S2aS2b,

S2
1/2→ S2S1a, S2

1/2→ ǫ}. The unshaded boxes of the figure are mapped to A1 and the
shaded boxes are mapped to A2. All edges that do not have an attached probability
label have probability 1.

There is a 1-to-1 correspondence between the trajectories of the infinite Markov
chains MG and MA associated with a SCFG G and the corresponding RMC A, where
the only difference between corresponding trajectories is that the one in MA executes
some additional probability 1 steps.

The mapping from SCFGs to 1-exit RMCs can be used in a straightforward way
to reduce model checking questions from SCFGs to 1-exit RMCs. For example, we
may consider an execution of the stochastic process of a SCFG G as a sequence of rule
applications. Let ϕ be any ω-regular property over the set R of rules of G, and suppose
we wish to know the probability PG(ϕ) that an execution of G (i.e. a trajectory of MG)
satisfies the property ϕ. For example, G may be the SCFG for a backoff process C
and ϕ a property concerning the pattern of visits to the pages (states) of C. We can
map the SCFG G to a RMC A as above, label the vertices of A that are immediate
successors of the entries of the components with the rules corresponding to the edges
leading to these vertices, label all the other vertices with some other label i that stands
for ‘ignore’, and let ϕ′ be the property on alphabet R∪{i} obtained from ϕ by ignoring
label i; for example, if ϕ is given by an automaton B, we add self-loops on letter i to all
states of B. It is easy to see then that PG(ϕ) = PA(ϕ′). Hence, the results we show for
1-exit RMCs apply in particular to SCFGs. Thus for example, the qualitative problems
can be solved in polynomial time in the size of the SCFG G and exponential in the size
of the property ϕ (polynomial if ϕ is given by a deterministic automaton).

A special, finite-string, case of an ω-regular property is the following: given a SCFG
G = (T, V,R, S1) and a regular language (on finite strings) K ⊆ T ∗, what is the proba-

15

bility PG(K) that the SCFG G generates a string in K? The problem can be reduced
to a model checking problem for 1-exit RMCs as above, but it is not necessary to use
the set R of rules for the labels of the RMC, we can simply use the terminal alphabet
T of the SCFG and label the RMC as indicated in the figure. In more detail, assume
w.l.o.g that the starting nonterminal S1 of G does not appear on the right-hand-side of

any rule; if it does appear, add a new starting nonterminal S′
1 and a rule S′

1
1→ S1. Con-

struct the 1-exit RMC A corresponding to the SCFG G, label the nodes corresponding
to terminals in the rules by the terminals as shown in the figure, label the exit of the
component of the starting nonterminal by a new ‘endmarker’ symbol e, label all other
vertices by a new symbol i (for ‘ignore’), and let K ′ be the ω-regular language over
alphabet T ∪ {e, i} whose projection to T ∪ {e} is Keω. Then PG(K) = PA(K ′).

In fact, in the case of finite-string regular language properties K, the model checking
problem can be reduced to a termination problem for RMCs. This holds actually more
generally, for all RMCs, not only SCFGs. Let A be a labeled RMC (e.g. the 1-exit
RMC corresponding to a SCFG G), let B be a deterministic finite automaton (on finite
strings) for the language K over the label set of A, and let PA(K) be the probability,
that A generates a terminating trajectory that is in K (e.g., if A is the RMC for a
SCFG G, then PA(K) is the probability PG(K) that G derives a string in K). From
A and B we can construct a (multi-exit) RMC A′ of size |A| · |B| (A′ is essentially
the product of A and B) such that the probability of termination of A′ is equal to the
probability PA(K). The RMC A′ has generally multiple exits, even if A is a 1-exit RMC
(the number of exits is multiplied by |B|). For the qualitative problems however, it
suffices to deal only with the original RMC A, and thus, if A is a 1-exit RMC, we can
solve the qualitative problems in polynomial time in |A| and |B|. First, regarding the
question ‘PA(K) = 0?’, note that this is equivalent to the question whether A generates
any terminating trajectory that is in K; this can be determined in polynomial time by
the RSM algorithm of [ABE+05]. (In the special case of a SCFG G, the equivalent
question is ‘L(G) ∩ K = ∅?’, which can be tested in polynomial time in the sizes of
G and B by standard methods.) Second, regarding the question ‘PA(K) = 1?’, note
that this is equivalent to the conjunction of two conditions: (i) the RMC A terminates
with probability 1, and (ii) all terminating trajectories are in K, equivalently, there is no
terminating trajectory that is accepted by the DFA B̄ that accepts the complement of K
(in the SCFG case, condition (i) is p(L(G)) = 1, and (ii) is L(G)∩K̄ = ∅.) Condition (ii)
can be tested again in polynomial time in |A| and |B| = |B̄| using the RSM algorithms
(and by standard methods in the SCFG case). Thus, the question reduces to condition
(i), i.e., whether A terminates with probability 1 (whether p(L(G)) = 1 in the SCFG
case), which can be solved in polynomial time for 1-exit RMCs and SCFGs.

We finish this section with a remark concerning Multi-type Branching Processes
[Har63], a classical stochastic model related to SCFGs. We will not give the formal
definition here, but we just mention that they involve a finite set of types, corresponding
to nonterminals in SCFGs, and they have also a set of probabilistic rules like SCFGs,

16

except that there are no terminals and the right hand sides of the rules are unordered
multi-sets of types (nonterminals) rather than strings. A significant difference in a
branching process is that the evolution of the system (i.e., the induced infinite Markov
chain) involves in each step a simultaneous expansion of all the types in the current state,
rather than a leftmost derivation rule that we used for SCFGs. If we are interested in
the probability of termination of the process (called the extinction probability), the
derivation rule does not make any difference, and thus the extinction probability can
be reduced to the termination probability of a 1-exit RMC [EY05a]. However, if we
are interested in other temporal properties of the process, then the derivation rule can
matter. Thus, our results in this paper on model checking RMCs do not imply, at
least immediately, analogous results for the model checking of more general properties
of branching processes.

3 The Conditioned Summary Chain M ′
A

For an RMC A, suppose we somehow have the probabilities q∗(u,ex) “in hand”. Based on

these, we construct a conditioned summary chain, M ′
A, a finite Markov chain that will

will play a key role to model checking RMCs. Since probabilities q∗(u,ex) are potentially

irrational, we can not compute M ′
A exactly. However, M ′

A will be important in our
correctness arguments, and we will in fact be able to compute the “structure” of M ′

A,
i.e., what transitions have non-zero probability. The structure of M ′

A will be sufficient
for answering various “qualitative” questions.

We will assume, w.l.o.g., that each RMC has one initial state s0 = 〈ǫ, eninit〉, with
eninit the only entry of some component A0 that does not contain any exits. Any RMC
with any initial node can readily be converted to an “equivalent” one in this form, while
preserving relevant probabilities: Given an RMC A = (A1, . . . , Ak) with initial node
u, which belongs say to component Ai, add a new component A0 that is a copy of Ai

except that it has one new entry node eninit which has the same transitions as u, and all
the exit nodes of Ai are changed in A0 into ordinary nodes with probability 1 self-loops.

Before describing M ′
A, let us recall from [ABE+05], the construction of a “summary

graph”, HA = (Q,EHA
), which ignores probabilities and is based only on information

about reachability in the underlying RSM of A. Let R be the binary relation between
entries and exits of components such that (en, ex) ∈ R precisely when there exists a
path from 〈ǫ, en〉 to 〈ǫ, ex〉, in the underlying graph of MA. The edge set EHA

is defined
as follows. For u, v ∈ Q, (u, v) ∈ EHA

iff one of the following holds:

1. u is not a call port, and (u, pu,v, v) ∈ δ, for pu,v > 0.

2. u = (b, en) is a call port, and (en, ex) ∈ R, and v = (b, ex) is a return port.

3. u = (b, en) is a call port, and v = en is the corresponding entry.

17

For each vertex v ∈ Qi, let us define the probability of never exiting: ne(v) = 1 −∑
ex∈Exi

q∗(v,ex). Call a vertex v deficient (or a survivor) if ne(v) > 0, i.e. there is a

nonzero probability that if the RMC starts at v it will never terminate (reach an exit of
the component).

We define M ′
A = (QM ′

A
, δM ′

A
) as follows. The set of states QM ′

A
of M ′

A is the set of
deficient vertices: QM ′

A
= {v ∈ Q | ne(v) > 0}. For u, v ∈ QM ′

A
, there is a transition

(u, p′u,v, v) in δM ′
A

if and only if one of the following conditions holds:

1. u, v ∈ Q and (u, pu,v, v) ∈ δ, and p′u,v =
pu,v·ne(v)

ne(u) . We call these ordinary transi-
tions.

2. u = (b, en) ∈ Callb and v = (b, ex) ∈ Returnb and q∗(en,ex) > 0, and p′u,v =
q∗
(en,ex)

ne(v)

ne(u) . We call these summary transitions.

3. u = (b, en) ∈ Callb and v = en, and p′u,v = ne(v)
ne(u) . We call these transitions, from

a call port to corresponding entry, nesting transitions.

Note that in all three cases, p′u,v is well-defined (the denominator is nonzero) and it is
positive. Recall that we assumed that the initial vertex eninit is the entry of a component
A0, and A0 has no exits. Thus for all v ∈ Q0, ne(v) = 1, and thus Q0 ⊆ QM ′

A
, and if

(u, pu,v, v) ∈ δ0, then (u, pu,v, v) ∈ δM ′
A
.

Proposition 4 Probabilities on transitions out of each state in QM ′
A

sum to 1.

Proof. We split into cases.
Case 1: u is any vertex in QM ′

A
other than a call port. In this case,

∑
v p

′
u,v =

∑
v

pu,v ne(v)
ne(u) . Note that ne(u) =

∑
v pu,v ne(v). Hence

∑
p′(u, v) = 1.

Case 2: Suppose u is a call port u = (b, en) in Ai, and box b is mapped to component
Aj . Starting at u, the trace will never exit Ai iff either it never exits the box b (which
happens with probability ne(en)) or it exits b through some return vertex v = (b, ex) and
from there it does not manage to exit Ai (which has probability q∗(en,ex) ne((b, ex))). That

is, ne((b, en)) = ne(en)+
∑

ex∈Exj
q∗(en,ex) ne((b, ex)). Dividing both sides by ne((b, en)),

we have 1 = ne(en)/ne((b, en)) +
∑

ex q
∗
(en,ex) ne((b, ex))/ne((b, en)), which is the sum

of the probabilities of the edges out of u = (b, en).

M ′
A is an ordinary (flat) finite Markov chain. Let (Ω′,F ′,PrΩ′) denote the proba-

bility space on traces of M ′
A. We now define a mapping ρ : Ω 7→ Ω′ ∪ {⋆}, that maps

every trace t of the original (infinite) Markov chain MA, either to a unique trajectory
ρ(t) ∈ Ω′ of the MC M ′

A, or to the special symbol ⋆. Trajectories mapped to ⋆ will be

18

precisely those that go through missing vertices u ∈ Q that are not in QM ′
A
, i.e., with

ne(u) = 0. We will show that the total probability of all these trajectories is 0, i.e., that
PrΩ(ρ−1(⋆)) = 0, and moreover, that M ′

A preserves the probability measure of MA: for
all D ∈ F ′, ρ−1(D) ∈ F , and PrΩ′(D) = PrΩ(ρ−1(D)).

We define ρ in two phases. We first define, as a precursor to ρ(t), a map ρH : Ω 7→ Qω,
where every trajectory t ∈ Ω is mapped to an infinite path ρH(t) in the summary graph
HA. Thereafter, we let ρ(t) = ρH(t) if all vertices of ρH(t) are in M ′

A, and let ρ(t) = ⋆
otherwise. We define ρH for a trace t = s0s1 . . . si . . ., sequentially based on prefixes of
t, as follows. By assumption, s0 = 〈ǫ, eninit〉. ρH maps s0 to eninit. Suppose si = 〈β, u〉,
and, inductively, suppose that ρH maps s0 . . . si to einit . . . u. First, suppose u is not a
call port, and that si+1 = 〈β, v〉; then s0 . . . sisi+1 maps to einit . . . uv. Next, suppose
u = (b, en) is a call port and si+1 = 〈βb, en〉. If the trace eventually returns from this
call, i.e. there exists j > i+ 1, such that sj = 〈βb, ex〉 and sj+1 = 〈β, (b, ex)〉, and such
that each of of the states si+1 . . . sj, have βb as a prefix of the call stack, then s0 . . . sj

is mapped by ρH to eninit . . . u(b, ex). If the trace never returns from this call, then
s0 . . . sisi+1 maps to eninit . . . u en. This concludes the definition of ρH . We show that
the mapping ρ is measure preserving. We start by showing that the trajectories that
map to ⋆ have negligible probability:

Lemma 5 PrΩ(ρ−1(⋆)) = 0.

Proof. Let D = ρ−1(⋆). We can partition D according to the first failure. For t ∈ D,
let ρH(t) = w0w1 . . . ∈ Qω. Let i ≥ 0 be the least index such that wi ∈ QHA

but
wi+1 6∈ QHA

(such an index must exist). We call w′ = w0 . . . wi+1 a failure prefix. Let
C(w′) = {w ∈ Ω′ | w = w′w′′ where w′′ ∈ Qω} be the cylinder at w′, inside F ′. Let
D[w′] = ρH(C(w′)).

We claim PrΩ(D[w′]) = 0 for all such “failure” prefixes, w′. (To be completely
formal, we have to first argue that D[w′] ∈ F , but this is not difficult to establish:
D[w′] can be shown to be a countable union of cylinders in F .)

By definition, ne(wi) > 0, but ne(wi+1) = 0. We distinguish cases, based on what
type of vertex wi and wi+1 are.

Case 1: Supposewi ∈ Q is not a call port. In this case, (wi, wi+1) ∈ EHA
corresponds

to an ordinary edge in the RMC A. A trajectory t ∈ D[w′], is one that reaches 〈β,wi〉
then moves to 〈β,wi+1〉 and then never exits the component of wi and wi+1, i.e., retains
β as a prefix of the call stack. (This follows from the definition of ρH , and the fact that
in HA there are no edges out of exit vertices). Since ne(wi+1) = 0 the probability of
such trajectories t is 0, i.e., PrΩ(D[w′]) = 0.

Case 2: wi = (b, en) is a call port, and wi+1 = (b, ex). Thus (wi, wi+1) ∈ EHA
is

a “summary edge”, within some component Ak. Again, ne(wi) > 0, but ne(wi+1) = 0.
Any trajectory t ∈ D[w′], reaches 〈β,wi〉, then sometime later reaches 〈β,wi+1〉, having
always retained β as a prefix of the call stack in between, and thereafter it never exits

19

the component of wi and wi+1. (Again, similar to case 1, this follows by definition of
ρH , and HA.) But since ne(wi+1) = 0, this PrΩ(D[w′]) = 0.

Case 3: wi = (b, en) and wi+1 = en. In other words, (wi, wi+1) is an edge of EHA

where we move from a call port to the corresponding entry en of the component Aj ,
where Y (b) = j. Thus a trajectory t ∈ D[w′] enters component Aj at entry en, on step
i+1, and never exits this component thereafter. Note again, however, that ne(wi+1) = 0.
Thus, PrΩ(D[w′]) = 0.

Now note that D =
⋃

w′ D[w′], where the union is over all failure prefixes, w′ ∈ Q∗.
Note that this is a countable union of sets, each having probability 0, thus PrΩ(D) = 0.

Thus, we can effectively ignore trajectories of MA that are not mapped into trajec-
tories of M ′

A. We will now show that the mapping ρ preserves probabilities.

Lemma 6 For all D ∈ F ′, ρ−1(D) ∈ F and PrΩ(ρ−1(D)) = PrΩ′(D).

Proof. It suffices, by standard facts about probability measure, to prove the claim
for cylinders C(w′) ∈ Ω′, where w′ = w0, . . . wk. We use induction on k. The base case
(k = 0) follows from Lemma 5. Namely, C(ǫ) = Ω′, and ρ−1(Ω′) = Ω \ ρ−1(⋆). Thus
PrΩ(ρ−1(Ω′)) = 1 −PrΩ(ρ−1(⋆)) = 1.

For the induction step, suppose that the claim holds for the prefix w′ = w0w1 . . . wk.
Let D[w′] = ρ−1(C(w′)). Define the event Ji,y ∈ F to be Ji,y = {t ∈ Ω | ρ(t) =
w0 . . . wi . . . , and wi = y}. Note that by definition of conditional probability, PrΩ(D[w′wk+1]) =
PrΩ(D[w′])PrΩ(Jk+1,wk+1

| D[w′]).
We want to show that PrΩ(D[w′wk+1]) = PrΩ′(C(w′wk+1)). We distinguish three

cases, based on what type of edge (wk, wk+1) is in HA, as in the proof of Lemma 5.
Case 1: wk is not a call port. Thus (wk, wk+1) ∈ EHA

is an ordinary edge, inside some
component Ai of A. Consider the trajectories t ∈ D[w′wk+1]. After some prefix, the
trajectory arrives at a vertex 〈β,wk〉, and subsequently never reaches an exit, i.e., retains
β as a prefix of the call stack. The conditional probability PrΩ(Jk+1,wk+1

| D[w′]), is
the probability that the (k + 1)-st step of ρ(t) is wk+1, given that the prefix of ρ(t) is
w0w1, ...wk. Note that this conditional probability is independent of the call stack β,
and that this process has the Markov property, so that it is also independent of how we
arrive at wk. Let NE(u) ∈ F be the event that, starting at a node 〈β, u〉, we will never
reach an exit. i.e., β ∈ B+ will forever remain on the call stack.

20

Since wk is not a call port, and using the Markovian property, we see that:

PrΩ(Jk+1,wk+1
| D[w′]) = PrΩ(Jk+1,wk+1

| Jk,wk
)

= PrΩ(J1,wk+1
| J0,wk

), (now assuming pinit(〈ǫ, wk〉) = 1)

= PrΩ(J1,wk+1
∩ NE(wk))/PrΩ(NE(wk))

= PrΩ(J1,wk+1
∩ NE(wk+1))/ne(wk)

= PrΩ(J1,wk+1
)PrΩ(NE(wk+1))/ne(wk)

= pwk,wk+1
ne(wk+1)/ne(wk)

Therefore, PrΩ(D[w′wk+1]) = PrΩ(D[w′])pwk ,wk+1
ne(wk+1)/newk. By the induction

hypothesis, and the construction of M ′
A, PrΩ′(C(w′wk+1)) = PrΩ′(C(w′))p′wk,wk+1

=
PrΩ(D[w′])pwk,wk+1

ne(wk+1)/newk = PrΩ(D[w′wk+1]).

Case 2: wk = (b, en) is a call port, and wk+1 = (b, ex) is a return port. In this case,
similar to case 1, we have:

PrΩ(Jk+1,wk+1
| D[w′]) = PrΩ(J1,wk+1

∩ NE(wk+1))/ne(wk), (assuming pinit(〈ǫ, wk〉) = 1)

= PrΩ(J1,wk+1
) ne(wk+1)/ne(wk)

= q∗(en,ex) ne(wk+1)/ne(wk)

Again, PrΩ(D[w′wk+1]) = PrΩ(D[w′])q∗(wk ,wk+1)
ne(wk+1)/ne(wk), and by induction,

PrΩ′(C(w′wk+1)) = PrΩ′(C(w′))p′wk,wk+1
= PrΩ(D[w′])q∗(wk,wk+1)

ne(wk+1)/ne(wk) =

PrΩ(D[w′wk+1]).

Case 3: wk = (b, en) is a call port, and wk+1 = en is the corresponding entry. In
this case,

PrΩ(Jk+1,wk+1
| D[w′]) = PrΩ(J1,wk+1

| J0,wk
)

= PrΩ(J1,wk+1
∩ NE(wk))/PrΩ(NE(wk)), (assuming pinit(〈ǫ, wk〉) = 1)

= PrΩ(J1,wk+1
)/ne(wk), (because NE(wk) ⊆ J1,wk+1

)

= PrΩ(NE(wk+1))/ne(wk) = ne(wk+1)/ne(wk)

Again, PrΩ(D[w′wk+1]) = PrΩ(D[w′]) ne(wk+1)/ne(wk), and
PrΩ′(C(w′wk+1)) = PrΩ′(C(w′))p′wk,wk+1

= PrΩ(D[w′]) ne(wk+1)/ne(wk) = PrΩ(D[w′wk+1]).

Let H ′
A = (QH′

A
, EH′

A
) be the underlying directed graph of M ′

A. In other words, the
states QH′

A
= QM ′

A
, and (u, v) ∈ EH′

A
iff (u, p′u,v, u) ∈ δM ′

A
. We will show that we can

compute H ′
A in P-time for linear RMCs, single-exit RMCs and bounded RMCs, and

in PSPACE for arbitrary RMCs. The basic observation is that the structure of M ′
A

depends only on qualitative facts about the probabilities q∗en,ex and ne(u), for u ∈ Q.

21

Proposition 7 For a RMC A (respectively, linear or single-exit or bounded RMC), and
u ∈ Q, we can decide whether ne(u) > 0 in PSPACE (respectively, P-time).

Proof. Suppose u is in a component Ai whereExi = {ex1, . . . , exk}. Clearly, ne(u) > 0
iff

∑k
j=1 q

∗
(u,exj)

< 1. Consider the following sentence, ϕ, in ExTh(R).

ϕ ≡ ∃x1, . . . , xn

n∧

i=1

(Pi(x1, . . . , xn) = xi) ∧
n∧

i=1

(0 ≤ xi) ∧
k∑

j=1

x(u,exj) < 1

Since q∗ is the LFP solution of x = P (x), ϕ is true in the reals if and only if
∑k

j=1 q
∗
(u,exj)

<

1. This query can be answered in PSPACE.
For linear RMCs, the termination probabilities can be computed exactly in polyno-

mial time. For single-exit RMCs, we have Exi = {ex1}, and ne(u) > 0 iff q∗(u,ex1)
< 1. As

mentioned in section 2.2, this can be answered in P-time for single-exit RMCs ([EY05a]).
Similarly, for bounded RMCs the question can be answered in P-time by the techniques
developed in [EY05a].

Once we determine the deficient vertices of A, the structure ofM ′
A can be determined

in polynomial time.

Corollary 8 For a RMC A (respectively, linear, single-exit or bounded RMC), we can
compute H ′

A in PSPACE (respectively, in polynomial time).

Proof. Recall that u ∈ QH′
A

precisely when u ∈ Q and ne(u) > 0. Thus we can
determine the set of nodes with the said complexities, respectively. The transitions
of type 1 and 3 in the definition of M ′

A are immediately determined. For the type 2
transitions, where u = (b, en) and v = (b, ex), in order to determine whether to include
the corresponding summary edge (u, v) we need to decide whether q∗(en,ex) > 0. This can

be done in polynomial time by invoking the reachability algorithm for RSMs [ABE+05].

4 Qualitative Model Checking for Büchi Automata

We are given a RMC A and a (nondeterministic) Büchi automaton B. To simplify the
descriptions of our results, we assume henceforth that the alphabet Σ = Q, the vertices
of A. This is w.l.o.g. since the problem can be easily reduced to this case by relabelling
the RMC A and modifying the automaton B (see eg. [CY95]); however care must be
taken when measuring complexity separately in the RMC, A, and in the BA, B, since
typically B and Σ are small in relation to A. Our complexity results hold with respect
to the given inputs A, B.

We will first present our algorithms for qualitative model checking, and then we will
prove a lower bound on the complexity of the problem.

22

4.1 Upper bounds.

Given an RMC A = (A1, . . . , Ak) and a (nondeterministic) Büchi automaton B =
(Σ, S, q0, R, F) whose alphabet Σ is the vertex set of A, we wish to determine whether
PA(L(B)) = 1, = 0, or is in-between. We will construct a finite Markov chain M ′

A,B

such that PA(L(B)) is equal to the probability that a trajectory of M ′
A,B starting from

a given initial state reaches one of a designated set of “accepting” bottom SCCs.
First, let B′ = (Σ, 2S , {q0}, R′, F ′) be the deterministic automaton obtained by the

usual subset construction on B. In other words, the states of B′ are subsets T ⊆ S, the
set F ′ of accepting states is F ′ = {T |T ⊆ S, T ∩ F 6= ∅}, and the transition function
R′ : (2S ×Σ) 7→ 2S is given by: R′(T1, v) = {q′ ∈ S | ∃q ∈ T1 s.t. (q, v, q

′) ∈ R}. (We are
making no claim that L(B) = L(B′).)

Next we define the standard product RMC, A ⊗ B′, of the RMC A, and the deter-
ministic Büchi automaton B′. A ⊗ B′ has the same number of components as A. Call
these A′

1, . . . , A
′
k. The vertices in component A′

i are pairs (u, T), where u ∈ Qi and
T ∈ 2S , and (u, T) is an entry (exit) iff u is an entry (exit). The transitions of A′

i are
as follows: there is a transition ((u, T), pu,v, (v,R

′(T, v))) in A′
i iff there is a transition

(u, pu,v, v) in Ai.
Define M ′

A,B as M ′
A,B = M ′

A⊗B′ . Thus M ′
A,B is the conditioned summary chain of

RMC A ⊗ B′. For qualitative analysis on M ′
A,B, we need the underlying graph H ′

A,B.
Importantly for the complexity of our algorithms, we do not have to explicitly construct
A⊗B′ to obtain H ′

A,B. Observe that states of M ′
A,B = (Q× 2S , δM ′

A,B
) are pairs (v, T)

where v is a state of M ′
A, and T a state of B′. The initial state of M ′

A,B is (v0, {q0}),
where v0 is the initial state of M ′

A and q0 of B. The transitions of M ′
A,B from a state

(v, T) are of three types, corresponding to the types of the transitions out of v in M ′
A,

as follows:

• Type 1: v is not a call port. Then for every transition (v, p′v,v′ , v
′) ∈ δM ′

A
, we have

a corresponding ordinary transition ((v, T), p′v,v′ , (v
′, R′(T, v′))) ∈ δM ′

A,B
.

• Type 2: v is a call port, v = (b, en). If there is a nesting transition (v, pv,en, en) ∈
δM ′

A
then there is a nesting transition ((v, T), pv,en, (en,R

′(T, en)) ∈ δM ′
A,B

with

the same probability.

• Type 3: v is a call port, v = (b, en). If v has a summary transition (v, pv,v′ , v
′) in

M ′
A, where v′ = (b, ex), then we have summary transitions of the form ((v, T), p′′, (v′, T ′))

in M ′
A,B to states of the form (v′, T ′) iff there exists a path in MA from 〈ǫ, en〉 to

〈ǫ, ex〉 which, viewed as a string, drives B′ from T to T ′; the probability p′′ of the
transition is p′′ = p′ ·ne(v′)/ne(v) where p′ is the probability of all such v-v′ paths
that drive B′ from T to T ′.

M ′
A,B is a well-defined Markov chain, which is a refinement of M ′

A. That is, every
trajectory of M ′

A,B projected on the first component is a trajectory of M ′
A and the

23

projection preserves probabilities. We can define a mapping σ from the trajectories t
of the original (infinite) Markov chain MA to the trajectories of M ′

A,B, or the special
symbol ⋆, in a similar manner as we defined the mapping ρ from trajectories of M to
M ′

A. For a trajectory t of MA, it is easy to see that if ρ(t) 6= ⋆ then also σ(t) 6= ⋆.
Thus, with probability 1 a trajectory of MA is mapped to one of M ′

A,B . Furthermore,
we can show along similar lines the analogue of Lemma 6, i.e. the mapping σ preserves
probabilities.

Consider a product graph (without probabilities) M ′
A⊗B between the Markov chain

M ′
A and the given nondeterministic Büchi automaton B (not B′) as follows: The product

has nodes (v, q), for all vertices v of M ′
A and states q of B, and an edge (v, q) → (v′, q′)

if either (i) v → v′ is an ordinary edge or a nesting edge of M ′
A and q has a transition to

q′ on input v′, or (ii) v → v′ is a summary edge and the RMC has a path from v to v′

that corresponds to a run of B from q to q′; if the run goes through an accepting state
then we mark the edge (v, q) → (v′, q′) as an accepting edge. Also, call a node (v, q)
accepting if q ∈ F is an accepting state of B.

With every transition (edge) of M ′
A,B and every edge of M ′

A ⊗ B we associate a
string γ over Σ (the vertex set of A) that caused the edge to be included; i.e., if edge
(v, T) → (v′, T ′) of M ′

A,B (respectively, edge (v, q) → (v′, q′) of M ′
A ⊗B) corresponds to

an ordinary or nesting edge of M ′
A then γ = v′. If it corresponds to a summary edge

then we let γ be any string that corresponds to a v − v′ path that drives B′ from T to
T ′ (resp., for which B has a path from q to q′; if the edge (v, q) → (v′, q′) is marked as
accepting then we pick a path that goes through an accepting state of B). In the case
of a summary edge, there may be many strings γ as above; we just pick anyone of them.

Let t be any trajectory of MA starting from 〈ǫ, v〉, for some vertex v of M ′
A and let

r be a corresponding run of B starting from a state q. With probability 1, t maps to a
trajectory t′ = ρ(t) of M ′

A. The mapping ρ can be extended to pairs (t, r), where r is
a run of B on t, i.e., the pair (t, r) is mapped to a run (path) r′ = ρ(t, r) of M ′

A ⊗ B.
If r is an accepting run of B then r′ goes infinitely often through an accepting node or
an accepting edge. The converse does not hold necessarily: a non-accepting run r of B
corresponding to a trajectory t may be mapped to a run r′ of M ′

A ⊗ B that traverses
infinitely often an accepting edge.

If B is a deterministic Büchi automaton then M ′
A,B and M ′

A⊗B are clearly the same,
except that in M ′

A ⊗ B we did not include the probabilities of the edges. In this case,
the analysis is simpler. Let us say that a bottom strongly connected component (SCC)
of M ′

A,B (and M ′
A ⊗ B) is accepting iff it contains an accepting node or an accepting

edge.

Theorem 9 For a RMC A and a deterministic BA B, the probability PA(L(B)) that
a trajectory of A is accepted by B is equal to the probability that a trajectory of M ′

A,B

starting from the initial node (v0, q0) reaches an accepting bottom SCC.

Proof. With probability 1 a trajectory t of the RMC A maps to a trajectory t′ = σ(t)

24

of M ′
A,B which reaches a bottom SCC C.

If C is not accepting then there is no accepting node or edge in C, hence the run of
B on t goes only finitely often through accepting states, and thus t is not accepted by
B.

If C is an accepting bottom SCC, then there is an accepting node or an accepting
edge in C. If C has an accepting node (v, q), q ∈ F , then with probability 1 the trajectory
t′ = σ(t) of M ′

A,B goes infinitely often through it, and thus t is accepted by B. Suppose
C has an accepting edge (v, q) → (v′, q′) and let γ be the string associated with the edge,
i.e., γ is a path from v to v′ which drives B from q to q′ going through an accepting state.
With probability 1, a trajectory t whose image t′ = σ(t) reaches C has the property
that t′ visits infinitely often (v, q) and furthermore there is an infinite number of such
visits where the next substring of t is γ. Thus again, conditioned on the event that t′

reaches the bottom SCC C, t is accepted by B with probability 1.

Suppose now that B is nondeterministic. We will follow the approach of [CY95] for
flat Markov chains, except that here we have to deal with recursive calls and with the
summary edges of the constructed Markov chain M ′

A,B which correspond to sets of paths
in the original chain MA rather than single steps. This complicates things considerably.
We will define a set of “special pairs” of the form (v, q), where v is a vertex of M ′

A and
q ∈ F , which will be useful in characterizing the accepting trajectories.

There are two types of special pairs. The first type is defined as follows. Let v be a
vertex of M ′

A and q ∈ F an accepting state of B. Let D(v, q) be the subgraph of M ′
A,B

induced by the node (v, {q}) and all nodes reachable from it . We say that the pair (v, q)
is special of type 1 if some bottom SCC C of D(v, q) contains a state (v, T) with q ∈ T .
We associate with such a pair (v, q) a string γ(v, q) ∈ Σ∗ that is the concatenation of
the strings associated with the edges of D(v, q) on a path from (v, {q}) to a node of C.
(There may be many such paths; just pick anyone.)

The second type of special pair is defined as follows. Let v = (b, en) be a vertex of
M ′

A that is a call port of a box b of A and let q 6∈ F be a non-accepting state of B.
Define a graph D(v, q) as follows. The graph contains a root node vq and a subgraph
of M ′

A,B consisting of the nodes reachable from vq after we add the following edges. We
add an edge from vq to a node (v′, {q′}) of M ′

A,B, where v′ = (b, ex) is a return port of
the same box b as v, iff there is a path γ from 〈ǫ, en〉 to 〈ǫ, ex〉 such that B has a run
from q to q′ on γ that goes through an accepting state; we label the edge vq → (v′, {q′})
with such a string γ. The graph D(v, q) consists of the root vq and the subgraph of
M ′

A,B induced by all the nodes that are reachable from vq after adding the above edges.
We call the pair (v, q) special of type 2 if some bottom SCC C of D(v, q) contains a state
(v, T) with q ∈ T . As in the previous case, we associate with the pair (v, q) a string
γ(v, q) ∈ Σ∗ that is the concatenation of the strings associated with the edges of D(v, q)
on a path from vq to a node of C.

Special pairs have the following important properties.

25

Lemma 10 Suppose (v, q) is special and that RMC A starts at 〈ǫ, v〉 and first performs
the transitions in γ(v, q). Then with probability 1 such a trajectory t of the RMC is
accepted by B with initial state q. Specifically, there is a corresponding accepting run r
of B such that ρ(t, r) is a run of M ′

A ⊗B starting from (v, q) that infinitely repeats node
(v, q) if (v, q) is special of type 1, or repeats an accepting edge out of (v, q) if (v, q) is
special of type 2.

Proof. We construct the accepting run r of B and run r′ of M ′
A ⊗ B one segment at

a time. Suppose that (v, q) is special of type 1. Then γ(v, q) corresponds to a path in
D(v, q) (and M ′

A,B) from (v, {q}) to a node of a bottom SCC C that contains a state
(v, T) with q ∈ T . Consider a trajectory t of the RMC that starts with γ(v, q) and the
corresponding trajectory t′ of M ′

A,B starting from (v, {q}). With probability 1, t′ exists
(i.e. t maps to a trajectory of of M ′

A,B starting from (v, {q})), and t′ goes to the bottom
SCC C and visits infinitely often all the states of C. For every visit to the state (v, T)
there is a nonzero probability that in the following steps the trajectory t′ will perform
the transitions of γ(v, q). Hence, with probability 1, at some finite step i, t′ visits (v, T)
and in the following steps the trajectory t performs γ(v, q). Let i be the first time this
happens. Since q ∈ T , the prefix of t up to step i has a corresponding run in B from
q to q and in M ′

A ⊗ B from (v, q) to (v, q). This constitutes the first segment of the
constructed run r.

At step i, the trajectory t is at vertex v and the suffix from this point on starts again
with the sequence γ(v, q) of transitions. Since we have a Markov process we can repeat
the argument for the remainder of T and construct the second and subsequent segments
of r. In general, if Ek denotes the event that the procedure succeeds in constructing k
segments, then the probability of Ek+1 conditioned on Ek is 1. Therefore, the proba-
bility of ∩kEk is also 1, and thus the required accepting run r will be constructed with
probability 1.

Suppose that (v, q) is special of type 2 and let vq → (v′, {q′}) be the first edge (an
accepting edge) in D(v, q) of the path corresponding to γ(v, q) that leads from the root
vq to the bottom SCC C that contains (v, T) with q ∈ T . Let α be the label of this
edge; then γ(v, q) = αβ for some β. The argument is similar to the case of type 1.
Consider a trajectory t of the RMC starting from v with the transitions of γ(v, q), and
let t = ατ . After the prefix α, the trajectory t is at vertex v′ (with empty stack, i.e
the chain MA is at vertex 〈ǫ, v′〉). The remaining trajectory τ starts with β. With
probability 1, τ maps to a trajectory τ ′ of M ′

A,B starting from state (v′, {q′}), and since
τ starts with β, τ ′ goes to the bottom SCC C. As in case 1, the trajectory hits with
probability 1 infinitely often all the states of C, and furthermore there is a finite time i
at which it reaches (v, T) and the following suffix of t starts again with γ(v, q). We can
map now the prefix of t up to step i to a run of B from q that goes first to q′ passing
on the way through an accepting state of B (this path corresponds to the prefix α) and
then continues and reaches state q again at time i; the corresponding path of M ′

A ⊗ B
follows first the edge to (v′, q′) and then goes on to reach (v, q). This constitutes the

26

first segment of the constructed run r. As in case 2, we can then repeat the process to
construct the subsequent segments, and the process will succeed with probability 1.

Lemma 11 Suppose there is non-zero probability that a trajectory of the RMC A start-
ing at any vertex u ∈ M ′

A has a corresponding run in M ′
A ⊗ B starting from any node

(u, p) which repeats an accepting state (v, q) infinitely often or repeats an accepting edge
(v, q) → (v′, q′) infinitely often. Then (v, q) is special.

Proof. Suppose that an accepting state (v, q) is not special. With probability 1, a
trajectory t of the RMC that starts at v corresponds to a trajectory t′ of M ′

A,B that
starts at (v, {q}) and reaches a bottom SCC C of M ′

A,B (and of D(v, q)). Since (v, q) is
not special, there is no state (v, T) of C with q ∈ T . Therefore, every run of M ′

A ⊗ B
starting at (v, q) that corresponds to t does not visit (v, q) after t′ reaches C, hence,
repeats (v, q) only finitely often.

Suppose that t starts at a vertex u ∈ M ′
A and corresponds to a run of M ′

A ⊗ B
starting at a node (u, p) that visits (v, q) infinitely often. Let i be the first step at
which the run visits (v, q). The suffix of t from this point on corresponds to a run of
M ′

A ⊗ B starting from (v, q) that visits (v, q) infinitely often. By our above argument,
the probability that a trajectory of the RMC has this property is equal to 0, and by the
Markov property it follows that the probability that t has such a suffix is also 0.

Consider an accepting edge (v, q) → (v′, q′) and suppose that (v, q) is not special.
The graph D(v, q) contains an edge vq → (v′, {q′}). Since (v, q) is not special, no
bottom SCC contains any state (v, T) with q ∈ T . Suppose that a trajectory t of the
RMC starting at v′ corresponds to a run of M ′

A⊗B starting at (v′, q′) that traverses the
edge (v, q) → (v′, q′) infinitely often. With probability 1, t corresponds to a trajectory
of M ′

A,B starting from (v′, {q′}) that reaches a bottom SCC C of D(q, v). Since no such
bottom SCC contains a state (v, T) with q ∈ T it follows that every run of M ′

A⊗B from
(v′, q′) that corresponds to t does not visit (v, q) after some point, and hence does not
traverse the edge.

Suppose that a trajectory t starts at a vertex u ∈ M ′
A and corresponds to a run of

M ′
A⊗B starting at a node (u, p) that visits the edge (v, q) → (v′, q′) infinitely often. The

argument is similar to the type 1 case. Consider the first time that the edge is traversed
and write t as t = ατ , where the prefix α corresponds to the run from (u, p) to (v′, q′)
ending with the traversal of the edge. The suffix τ corresponds to a run starting from
(v′, q′) that repeats the edge infinitely often. From the above argument, the probability
that a trajectory τ of the RMC starting at v′ has this property is 0, hence the probability
that t has such a suffix is also 0.

Proposition 12 PA(L(B)) > 0 iff node (v0, q0) in M ′
A ⊗ B can reach a special node

(v, q).

27

Proof. Suppose that a trajectory t of the RMC starting at v0 is accepted by B
(starting at q0), With probability 1, t has a corresponding run in M ′

A ⊗ B starting at
(v0, q0) that repeats infinitely often some accepting state (v, q) or some accepting edge
(v, q) → (v′, q′). It follows from the preceding lemma that (v, q) must be special, and
obviously (v0, q0) can reach (v, q).

Conversely, suppose that (v0, q0) can reach the special pair (v, q) in the graphM ′
A⊗B

and let α be the label of such a path from (v0, q0) to (v, q). With nonzero probability,
the RMC will execute first the sequence of transitions αγ(v, q). If this occurs, then from
that point on with probability 1 the trajectory will correspond to an accepting run of
B.

Call a bottom SCC of the flat Markov chain M ′
A,B accepting if it contains a state

(v, T) and T contains some q such that (v, q) is special; otherwise call the bottom SCC
rejecting.

Theorem 13 PA(L(B)) is equal to the probability that a trajectory of M ′
A,B starting

from the initial state (v0, {q0}) reaches an accepting bottom SCC.

Proof. With probability 1 a trajectory t of the RMC maps to a trajectory t′ = σ(t)
of M ′

A,B which reaches a bottom SCC C.
If C is not accepting then there is no special pair (v, q) such that C contains a state

(v, T) with q ∈ T . Then every run of M ′
A ⊗ B starting from (v0, q0) that corresponds

to t visits special nodes only finitely many times. It follows that with probability 1, t is
not accepted by B.

If C is an accepting bottom SCC, then there is a special pair (v, q) such that C
contains a state (v, T) with q ∈ T . The trajectory will visit (v, T) infinitely often,
and at every visit there is nonzero probability that the RMC will execute next the
sequence γ(v, q). Hence, with probability 1 this will occur at some finite point. Then
the trajectory t will be accepted by B with probability 1.

It follows that PA(L(B)) = 1 iff all the bottom SCCs of M ′
A,B reachable from

(v0, {q0}) are accepting, and PA(L(B)) = 0 iff no reachable bottom SCC is accepting
(or equivalently by Proposition 12, there is no path in M ′

A ⊗ B from (v0, q0) to any
special node (v, q)).

As with M ′
A and H ′

A, let H ′
A,B denote the underlying directed graph of M ′

A,B . For
the qualitative problem, we only need (1) to construct H ′

A,B and thus only need to
know which nodes and edges are present, and (2) to determine which pairs (v, q) are
special, and hence which bottom SCCs are accepting. Thus we first have to identify the
vertices u of the RMC A for which ne(u) > 0, which can be done in PSPACE for general
RMCs, and P-time for single-exit RMCs, linear RMCs, and for bounded RMCs. Then,
the edges of H ′

A,B can be determined by the standard reachability algorithm for RSMs

([ABE+05]). This works by first constructing the genuine product of the underlying

28

RSM of A (ignoring probabilities on transitions) together with the Büchi automaton
B′. This defines a new RSM A ⊗ B′ (no probabilities), whose size is polynomial in A
and B′, and thus is exponential in the original non-deterministic Büchi automaton B.
The time required for reachability analysis for RSMs is polynomial ([ABE+05]). Thus,
once we have identified the deficient vertices of the RMC A, the rest of the construction
of H ′

A,B takes time polynomial in A and B′.
To determine which pairs (v, q) are special, we construct for each candidate pair

(v, q) the graph D(v, q). For a pair (v, q) with q ∈ F , this is immediate from H ′
A,B. For

a pair (v, q) with q /∈ F and v = (b, en) a call port of a box b, we test for each return
port v′ = (b, ex) of the box and each state q′ of B whether there should be an edge
vq → (v′, {q′}); this involves a call to the RSM algorithm of [ABE+05] to determine
whether there is a path in the RSM A ⊗ B from (en, q) to (ex, q′) (with empty stack)
that goes through a vertex whose second component is an accepting state of B. Once
we determine these edges, we can construct D(v, q). This takes time polynomial in A
and B′. Then compute the SCCs of D(v, q), examine the bottom SCCs and check if one
of them contains (v, T) with q ∈ T .

Finally, once we have identified the special pairs, we examine the reachable bottom
SCCs of H ′

A,B and determine which ones are accepting and which are rejecting. The
dependence of the time complexity on the size of the given RMC A is polynomial except
for the identification of the vertices u for which ne(u) > 0. The dependence on |B|
is exponential because of the subset construction. If B is deterministic to begin with,
we avoid the exponential blow-up and thus have polynomial complexity in B. Thus we
have:

Theorem 14 Given a RMC A and a Büchi automaton B, we can decide whether
PA(L(B)) = 0, PA(L(B)) = 1, or 0 < PA(L(B)) < 1 in PSPACE in A, and EXP-
TIME in B. If the given RMC A is a linear, or a bounded, or a 1-exit RMC then the
time complexity is polynomial in A. Furthermore, if B is deterministic, the dependence
of the time complexity on |B| is also polynomial.

4.2 Lower Bounds.

We show conversely that the exponential time complexity of qualitative model checking
for a nondeterministic Büchi automaton is in general unavoidable.

Theorem 15 The qualitative problem of determining whether a given RMC A satis-
fies a property specified by a Büchi automaton B with probability = 1, (i.e., whether
PA(L(B)) = 1)) is EXPTIME-complete. Furthermore, this holds even if the RMC is
fixed and each component has one entry and one exit. Moreover, the qualitative “empti-
ness” problem, namely determining whether PA(L(B)) = 0, is also EXPTIME-complete,
again even when the RMC is fixed and each component has one entry and one exit.

29

Proof. We begin by proving the result for determining whether PA(L(B)) = 1 in the
case where both A and B are part of the input. The case where A is fixed, and the

case for qualitative emptiness, PA(L(B))
?
= 0, are variations on the same proof, and we

sketch them at the end.
The reduction is from the acceptance problem for alternating linear space bounded

Turing machines. As is well known, ASPACE(S(n)) = ∪c>0DTIME(cS(n)). There is
a fixed linear space bounded alternating Turing machine, T , such that the problem of
deciding whether T accepts a given input of length n is EXPTIME-complete. We can
assume wlog that T has one tape, and uses space n. The tape contains initially the given
input x. Recall that an alternating TM has four types of states: existential, universal,
accepting and rejecting. We assume wlog that the TM has two possible moves from
each existential and universal state, and it halts when it is in an accepting or rejecting
state. Let Γ be the tape alphabet, Q the set of states and ∆ = Γ∪ (Q×Γ) the extended
tape alphabet. A configuration of the TM is expressed as usual as a string of length n
where the ith symbol is (q,X) ∈ (Q× Γ) (we will usually write qX instead of (q,X)) if
the head is on the tape cell i, the state is q and the tape symbol is X, and otherwise
the ith symbol is the tape symbol X in cell i. The type of a configuration (existential,
universal etc) is determined by the type of the state. A computation is a sequence of
configurations starting from the initial one, according to the transition rules of the TM.
We assume wlog that all computations of the TM halt.

There is a natural game associated with an alternating TM between two players,
an existential player E and a universal player U. The positions of the game correspond
to the configurations. Player E moves at the existential configurations and player U
at the universal ones. Accepting configurations are winning positions for player E,
and rejecting configurations are winning for player U. An input x is accepted by the
TM iff the existential player E has a winning strategy from the initial configuration
corresponding to x.

We will construct a RMC, A, and a BA, B, so that A satisfies B with probability 1
iff x is not accepted by T , i.e. E does not have a winning strategy.

Let us first mention that the only thing that will matter about A, is its “struc-
ture”, i.e., which edges have non-zero probability. We thus describe these edges without
defining the probabilities explicitly: any positive probabilities that sum to 1 will do.

The RMC A has an initial component C0 and a component C(q,X) for each state
q ∈ Q and tape symbol X ∈ Γ. The automaton B has an initial state s0, a final state
f which is the only accepting state, and a state (δ, i) for each δ ∈ ∆, and i = 1, . . . , n.
The alphabet of B is the vertex set of A.

Let q0 be the initial state of the TM T , and let x = x1 · · · xn be the input. Component
C0 of A has an edge from its entry to a node u0, an edge from u0 to a box that is mapped
to C(q0, x1) and an edge from the exit of the box to an absorbing node v0 that has a
self-loop.

30

Component C(q,X), where q is an existential state and X ∈ Γ, is structured as
follows. Suppose that the two moves of the TM T when it is in state q and reads X
are (pk, Yk,Dk), k = 1, 2, where pk ∈ Q is the next state, Yk is the symbol written
over X, and Dk = L/R (left/right) is the direction of the head movement. For each
i = 1, .., n, k = 1, 2, and Z ∈ Γ, the component has a set of nodes u[q,X, i, k, Z],
v[q,X, i, k, Z], and a set of boxes b[q,X, i, k, Z], each mapped to component C(pk, Z).
The entry of the component C(q,X) has edges to each of the nodes u[q,X, i, k, Z], every
node u[q,X, i, k, Z] has an edge to the call port of the corresponding box b[q,X, i, k, Z],
the return port of each such box has an edge to the corresponding node v[q,X, i, k, Z],
and each of these nodes has an edge to the exit of the component.

Component C(q,X), where q is a universal state and X ∈ Γ, is structured as follows.
Let again the two moves of the TM T for q and X be (pk, Yk,Dk), k = 1, 2. For each
i = 1, .., n, k = 1, 2, and Z ∈ Γ, the component has again a set of nodes u[q,X, i, k, Z],
v[q,X, i, k, Z], and a set of boxes b[q,X, i, k, Z] mapped to C(pk, Z), and has in addition
one more node w[q,X]. The entry of the component C(q,X) has edges to each of
the nodes u[q,X, i, 1, Z], every node u[q,X, i, 1, Z] has an edge to the call port of the
corresponding box b[q,X, i, 1, Z], the return port of each such box has an edge to the
corresponding node v[q,X, i, 1, Z], and each of these has an edge to node w[q,X]. Node
w[q,X] has edges to all the nodes u[q,X, i, 2, Z], every node u[q,X, i, 2, Z] has an edge
to the call port of the corresponding box b[q,X, i, 2, Z], the return port of each such box
has an edge to the corresponding node v[q,X, i, 2, Z], and each of these has an edge to
the exit of the component.

Component C(q,X), where q is a halting (accepting or rejecting) state andX ∈ Γ has
an edge from its entry to a node u[q,X] and from u[q,X] to the exit of the component.

The transitions of the automaton B are as follows. The initial state s0 of B transi-
tions on input u0 to the set of states {(q0x1, 1), (x2, 2), . . . , (xn, n)}. There are no other
transitions out of s0. The final state f transitions to itself on every input.

Let q be an existential or universal state and suppose that the two moves of the TM
T when it is in state q and reads X are (pk, Yk,Dk), k = 1, 2. On input u[q,X, i, k, Z],
a state (δ, j) of B has exactly one transition, as follows: If j = i and δ 6= qX then it
transitions to f ; else, if j = i and δ = qX then it transitions to state (Yk, i); else, if
((j = i + 1 and Dk = R) or (j = i − 1 and Dk = L)) and δ = Z then it transitions to
(pkZ, j); else, if ((j = i + 1 and Dk = R) or (j = i − 1 and Dk = L)) and δ 6= Z then
it transitions to f ; else, it transitions to itself, (δ, j). On input v[q,X, i, k, Z], a state
(δ, j) of B has the following transition: If j = i then it transitions to (qX, i); else, if
((j = i + 1 and Dk = R) or (j = i − 1 and Dk = L)) then it transitions to (Z, j); else,
it transitions to itself, (δ, j). All states have a self-loop on input w[q,X], v0, as well as
for all the vertices that are entries and exits of boxes.

Let q be a halting state of the TM. On input u[q,X], a state (δ, j) of B transitions
to itself if δ ∈ Γ or (δ = qX and q is accepting), and it transitions to f otherwise.

31

This concludes the definition of the RMC A and the Büchi automaton B. Note that
A has a bounded number of components (independent of the length of the input x), and
every component has one entry and one exit. Note also that all the transitions of B are
deterministic except for the transition of the initial state s0 on input u0.

Consider a path of the RMC, and look at the corresponding set P of states of B at
each step. At u0, the set P contains one state (δ, i) for each i = 1, . . . , n corresponding
to the initial configuration of the TM. From then on, it is easy to check that P always
contains at most one state (δ, i) for each i, and either these states form a configuration
of the TM or P contains f . Once f is included in P , then it will stay there forever and
any continuation of the path will be accepted by B.

Let us call a path of the RMC valid if the set P at the end (and during the path)
does not contain f . Consider the game tree G of the game corresponding to the TM T
on the given input x: The nodes of the tree are the configurations reached by the TM
in its computation, the root is the initial configuration, the children of each node are
the two successor configurations, and the leaves correspond to halting configurations.
An existential strategy corresponds to a subtree GE of G that contains one child of
each (reachable) existential configuration (nodes that are not reachable any more from
the root are not included in GE). We consider the two children of each node as being
ordered according to the indexing (k = 1, 2) of the two moves of the configuration.

We claim that every valid path of the RMC corresponds to a prefix of the depth-
first-search traversal of an existential game tree GE , where all the leaves in the prefix
are accepting; and conversely every such prefix of a DFS traversal corresponds to a valid
path. Note that when a valid path is at the entry of an existential component C(q,X),
in order for it to continue to be valid it must move to a node u[q,X, i, k, Z] such that i is
the current position of the head, q and X must be the current state and symbol at cell
i, and Z must be the symbol in the tape cell where the head moves next according to
move k = 1 or 2 of the TM. That is, there are precisely two valid choices corresponding
to the two possible moves of the existential player. The transitions of B are defined so
that the states of the new current set P form the next configuration as the path of the
RMC moves to the box corresponding to the move of the TM. When the path exits the
box, if it is still valid, then the set P is the same as when the path entered the box.
After the node v[q,X, i, k, Z], the set P is updated to restore the configuration as it was
when the component C(q, x) was called. For a universal component C(q,X) there is
only one correct choice if the path is to remain valid. If the path exits the component
remaining valid, it means that it never went through a rejecting component, i.e., the
corresponding subtree of GE that was traversed has only accepting leaves.

If x is accepted by the TM T , then the existential player has a winning strategy,
hence there is a valid path of the RMC that reaches node v0 of C0 and stays there forever.
Thus, with positive probability the RMC follows this path which is not accepted by B.
On the other hand, if x is not accepted by the TM T , then every path becomes eventually
invalid (either because it reaches a rejecting component or because one of its transitions

32

does not correspond to a TM move) and hence is accepted by B; thus the probability
of acceptance is 1.

We are done with the proof that checking PA(L(B)) = 1 is EXPTIME-hard. By
Theorem 14, the problem is also EXPTIME-complete.

We now sketch how a variation of the same proof shows that probabilistic emptiness
(PA(L(B)) > 0?) is also EXPTIME-complete.

For each component except C0, add a direct path from entry to exit en → r → ex
through a new node r where the first edge has probability > 1/2. Every state of the
Büchi automaton B, goes to f on these intermediate nodes. (The purpose of these
paths is to make sure that every component exits with probability 1 - but these are
not valid paths). Remove the self loop of v0, add new nodes y0,z0 to C0, and edges
v0 → y0 → z0 → u0 with probability 1. Also add a new state g to B which is the only
accepting state (f is not accepting anymore). On input y0, all states of B die (have no
transition) except for f that goes to g. On z0, g goes to the initial state s0.

By the previous proof , (1) if input x is accepted by the TM T , the old RMC had
a path p from the initial vertex to v0 such that the corresponding set of states of the
automaton at the end (for all possible runs) did not include f . (2) If x is not accepted
by the TM T , then for every trajectory of the old RMC, the automaton has a run that
gets to f .

Because of the new paths to the exits that we have added, every component exits
with probability 1 (this follows from basic facts about RMCs, see [EY05a]). Hence,
infinitely often (i.o.), the trajectory will go to u0, traverse a path, come out at v0, go to
y0,z0, back to u0, and again all over. If the state set of the Büchi automaton includes f
when the path arrives at v0, then it will go next to g, then reset to the initial state and
start again. Therefore, if x is not accepted by the TM T , this will happen every time,
hence g will appear i.o. and the probability of acceptance PA(L(B) = 1.

If x is accepted by the TM T , and in some iteration the RMC follows the path p as
above then the automaton will die when the path reaches y0. Every time the process
returns to u0 and tries again, there is positive probability that it will follow the path
p, so eventually this will happen at some point with probability 1. When it happens,
the automaton will die and hence will not accept the trajectory. Thus, in this case
PA(L(B)) = 0.

Next, we briefly sketch how we actually only need a fixed RMC, whose size does not
depend on the size of the input tape of the TM. Here is the modification. Drop the tape
cell index i from the u and v nodes of A, and add a self loop to these nodes; that is, the
u and v nodes have now the form u[q,X, k, Z], v[q,X, k, Z] for q ∈ Q,X,Z ∈ Γ, k = 1, 2.
Basically, the RMC is going to guess what is the correct index i of the cell with the
tape head, which will be the number of times it loops at the node u (and v). The
Büchi automaton states keep track of how many times the RMC goes around the loop
at the current vertex u[q,X, k, Z] or v[q,X, k, Z]. In other words, the BA states have
now, besides extended tape symbol δ ∈ ∆ and cell number i = 1, . . . , n, another counter

33

j = 0, 1, . . . , n for the number of iterations of the self-loop at the current u or v vertex
of the RMC. If the RMC performs the wrong number of iterations at the current vertex
(stays too long or leaves too early) then the BA transitions to f and the game is in
effect over. In particular if the BA is at state (qX, i, j) and the counter j tries to exceed
i without the RMC leaving the current vertex u[...], or if it leaves u[...] before j reaches
i, then the the BA goes to f . If the RMC leaves the current vertex u[...] exactly at the
correct time, then (qX, i, i) makes the right transition to the appropriate state (Y, i, 0)
corresponding to the Turing machine move. For the other states (δ, i, j) of the BA, first
if δ has a state and is not qX then go to f right away; otherwise, if the state is (δ, l, i)
when the RMC moves out of u[...] and l 6= i, the state assumes that the RMC moved at
the right time (i.e. tape head is at cell i) and acts accordingly: for example if the head
is supposed to move left and new state = p, new symbol (in new position)= Z, then
(δ, l, i) transitions to (δ, l, 0) if l 6= i − 1, to f if l = i − 1 but δ 6= Z, and to (pZ, l, 0)
otherwise. The moves at v[...] that restore the state are similar.

5 The Unique Fixed Point Theorem

As we have mentioned, the transition probabilities of the chain M ′
A,B are in general

irrational and cannot be computed exactly, but instead have to be determined implicitly.
To do quantitative model checking in PSPACE in |A|, it will be crucial to use ExTh(R)
to uniquely identify these probabilities. For this, we need first to have a set of constraints
that uniquely identify the termination probabilities of a RMC. These probabilities are
the least fixed point of the system x = P (x). However, the system has in general
multiple fixed points. We will show in this section that adding a certain set of additional
constraints ensures a unique fixed point, the desired LFP(P).

Consider a RMC A. First, we can determine in polynomial time the vertex-exit pairs
(u, ex) for each component such that the probability q∗(u,ex) = 0. Introduce variables

xu,ex only for the remaining pairs. (Alternatively, we could include also variables x(u,ex)

for the pairs with 0 probability, and include the equation x(u,ex) = 0.) Note that if a
vertex u cannot exit its component, i.e. q∗(u,ex) = 0 for all ex then there is no variable

involving u. Consider the set of fixed point equations x = P (x), where we omit the
terms that involved “missing” variables. The least fixed point q∗ is the true vector of
probabilities of each vertex u reaching exit ex (with empty stack). Recall that a vertex
u is called deficient (or a survivor) if

∑
ex q

∗
(u,ex) < 1, i.e. ne(u) > 0; otherwise u is full.

Note that by the qualitative analysis, we can determine which vertices are deficient and
which are full in PSPACE. We will show the following:

Theorem 16 (The Unique Fixed Point Theorem) The set of equations x = P (x) has
a unique nonnegative fixed point that satisfies

∑
ex x(u,ex) < 1 for every deficient vertex

34

u, and
∑

ex x(u,ex) ≤ 1 for every other vertex u. (This fixed point, of course, is q∗ =
LFP(P).)

Proof. Suppose that there is another nonnegative fixed point y, besides the least fixed
point, that satisfies the constraints on

∑
ex x(u,ex). Since q∗ is the least fixed point we

have q∗ ≤ y. If u is a full vertex then
∑

ex y(u,ex) ≤ 1 =
∑

ex q
∗
(u,ex) and q∗ ≤ y imply

that y(u,ex) = q∗(u,ex) for every ex.

We will show below that y agrees with q∗ also on the deficient vertices. Let (u, ex)
be a pair such that y(u,ex) > q∗(u,ex). We will derive a contradiction.

Let x(u,ex) = f1(x) be the equation for variable x(u,ex) in the system x = P (x). The
right hand side f1(x) is a sum of monomials and possibly a constant term. If u is not a
call port then each monomial is of the form pu,vx(v,ex), where v is a successor of u. If
u = (b, en) is a call port of a box b then each monomial is of the form xen,ex′x(b,ex′),ex

where ex′ is an exit of the component corresponding to box b; in the latter case we
consider the variables of the monomial as ordered. We will rewrite iteratively the right
hand side f1(x) as follows. In the ith iteration we have an expression fi(x) which is
the sum of a constant term (possibly 0) and of a set of ordered monomials; i.e. each
monomial has a constant coefficient and the product of a sequence of variables (with
possible repetitions allowed) in a specific order. We take every non-constant monomial
and replace the leftmost variable of the monomial by the right hand side of its equation
in the system x = P (x). We combine like terms (treated again as ordered monomials)
and let fi+1(x) be the resulting expression.

Observe first that both fixed points, q∗ and y satisfy the equation x(u,ex) = fn(x)
for all n. Second, we claim that fn(x) is related to the (infinite) Markov chain MA

corresponding to the RMC A in the following way. Let Zn be the state at time n of the
chain MA with initial state 〈ǫ, u〉. Note that if the chain hits 〈ǫ, ex〉 at some time t then
it stays there forever, i.e. Zn = 〈ǫ, ex〉 for all n ≥ t.

Lemma 17 The constant term of fn(x) is equal to Prob(Zn = 〈ǫ, ex〉). Further-
more, for each state 〈β, v〉 where β = b1 . . . bj is a sequence of boxes and v is a ver-
tex such that Prob(Zn = 〈β, v〉) > 0, and for every sequence γ = w1, . . . , wj of ex-
its of the components corresponding to the boxes such that the variables with indices
(v,wj), ((bj , wj), wj−1), . . . ((b2, w2), w1), ((b1, w1), ex) exist, the expression fn(x) has an
ordered monomial Prob(Zn = 〈β, v〉)x(v,wj)x((bj ,wj),wj−1) . . . x((b2,w2),w1)x((b1,w1),ex). If β
is the empty string ǫ then the monomial is simply Prob(Zn = 〈ǫ, v〉)x(v,ex). These are
all the monomials of fn(x).

Proof. By induction, starting with f0(x) = x(u,ex). The basis is trivial: Prob(Z0 =
〈ǫ, u〉) = 1. For the induction step, consider a monomial of fn(x) corresponding to the
state 〈β, v〉 and a sequence γ of exits to the boxes (if β is nonempty). If v is an exit and
β = ǫ, then v must be ex (because for other exits the variable does not exist since it
is 0), and xv,ex will be replaced by 1, increasing the constant term. If v is an exit and

35

β 6= ǫ, then v must be wj (again because otherwise the variable does not exist). In this
case we will replace also x(v,wj) by 1, which corresponds to the chain MA moving from
state 〈b1 . . . bj , v〉 to state 〈b1 . . . bj−1, (bj , wj)〉, i.e. returning from the call of box bj to
the return port (bj , wj).

If v is not a call port (or an exit) then the equation for the leftmost variable x(v,wj)

is
∑

v′ pv,v′x(v′,wj) where the sum ranges over all successors v′ of v for which the variable
x(v′,wj) exists. In particular, if β = ǫ, then x(v,ex) =

∑
v′ pv,v′x(v,ex). Note also that

Prob(Zn+1 = 〈β, v′〉|Zn = 〈β, v〉) = pv,v′ .
Finally, if v = (b′, v′) is a call port of a box b′ corresponding to some component Ak

with an entry v′, then we will replace the leftmost variable x(v,wj) with
∑

w′ x(v′,w′)x((b′,w′),wj)

where the sum ranges over all exits w′ of Ak for which both variables x(v′,w′), x((b′,w′),wj)

exist. This corresponds to the chain moving with probability 1 from state 〈β, v〉 to state
〈βb′, v′〉, and including all feasible extensions w′γ of γ.

Let N be any fixed positive integer and consider n going to infinity. We can write
fn(x) as the sum of three terms cn, gn(x), hn(x), where cn = Prob(Zn = 〈ǫ, ex〉) is the
constant term. A monomial Prob(Zn = 〈β, v〉)x(v,wj)x((bj ,wj),wj−1) . . . x((b2,w2),w1)x((b1,w1),ex)

corresponding to a state 〈β, v〉, and a sequence γ = w1, . . . , wj of exits is included in the
second term gn(x) iff at most N of the vertices v, (bj , wj) . . . (b2, w2)(b1, w1) are deficient;
otherwise it is included in hn(x). Clearly, as n → ∞, the first term cn → q∗(u,ex). For

q∗, the second and third term gn(q∗), hn(q∗) tend to 0 as n→ ∞, because by definition
q∗(u,ex) = cn + gn(q∗) + hn(q∗). Now, consider the two terms gn(y) and hn(y).

Let r be the minimum component in q∗ (recall, r is positive, because we have re-
moved variables x(u,ex) where q∗(u,ex) = 0). Then clearly y ≤ 1 ≤ q∗/r (coordinate-wise

inequality). Since in every monomial of the second term, gn(x), at most N of the ver-
tices are deficient, and since q∗ and y have the same value for each index pair whose first
component is a full vertex, it follows that the value of each monomial of gn(x) evaluated
at y is bounded from above by the value of the monomial evaluated at q∗ divided by
rN . Hence gn(y) ≤ gn(q∗)/rN . Since N is fixed and gn(q∗) → 0 as n → ∞, it follows
that also gn(y) → 0 as n→ ∞.

Consider all the monomials in the third term hn(y) corresponding to a state 〈β, v〉
of MA, and let β = b1 · · · bj. Let G be the following (ordinary) layered Markov chain:
G has a source node v, then it has j layers (numbered from j down to 1) and finally
it has a sink node ex. Each layer i contains a node labelled wi for each exit wi of the
component corresponding to the box bi. In addition there is a dead state d. Nodes ex
and d have self-loops with probability 1. There is a transition from v to a node wj in
layer j with probability y(v,wj) iff the corresponding variable x(v,wj) exists. For each pair
of nodes wi, wi−1 in successive layers, i, i− 1 there is a transition from node wi of layer
i to node wi−1 of layer i− 1 with probability y((bi,wi),wi−1) if the corresponding variable
exists. Finally there is a transition from each node w1 of layer 1 to the sink ex with
probability y((b1,w1),ex) (if the variable exists). Note that the probabilities of the above

36

transitions out of a node of G sum to less than 1 iff the corresponding vertex v or (bi, wi)
of the RMC is deficient. Let D be the set of these ‘deficient’ nodes of G. For every
deficient node add a transition to the dead state d with the missing probability. Let U
be the set of deficient vertices of the RMC, and let p = min{1 − ∑

ex′ y(u′,ex′)|u′ ∈ U}.
Note that p > 0. Each deficient node of G has a transition to d with probability at least
p. We need the following fact about (ordinary) finite Markov chains.

Lemma 18 Let G be a finite Markov chain, and let D be a subset of states such that
each state u ∈ D has a transition with probability at least p > 0 to a dead (absorbing)
state d. Then for every positive integer N , the probability that, a trajectory of G starting
at any state visits at least N times a state of D and is not absorbed in the dead state d,
is at most (1 − p)N .

Proof. Every time the chain visits a state in D it has probability at least p of
transitioning to d, and probability at most 1− d of surviving (continuing without being
absorbed in d). Hence if it visits D N times then the probability that it is still surviving
is at most (1 − p)N . We can give a formal proof of this by induction on N . The
basis, N = 0, is trivial. For the induction step, suppose the claim holds for N −
1. Let Ei(s) be the event that G starting from state s survives i visits to D. Then
P (EN (s)) =

∑
u∈D P (u is the first visited state of D)P (EN (u)). Now, P (EN (u)) =∑

v 6=d pu,vP (EN−1(v)). By induction hypothesis P (EN−1(v)) ≤ (1 − p)N−1 for all v,

and
∑

v 6=d pu,v ≤ 1 − p since u ∈ D. Therefore, P (EN (u)) ≤ (1 − p)N , and hence

P (EN (s)) ≤ (1 − p)N .

By our construction of G, every monomial of hn(y) involving the state 〈β, v〉 corre-
sponds to a path in G from v to ex that goes through at least N deficient nodes; the
value of the monomial is equal to Prob(Zn = 〈β, v〉) times the probability of the path in
G. The lemma implies then that the contribution to hn(y) of the set of monomials for
state 〈β, v〉 is at most Prob(Zn = 〈β, v〉)(1 − p)N . Therefore, hn(y) ≤ (1 − p)N . Since
(1 − p) < 1 and N is an arbitrary integer, the right hand side can be made arbitrarily
small.

Recall the earlier established facts that cn → q∗(u,ex) and gn(y) → 0, as n → ∞.

Note also that we must have, for all n, y(u,ex) = fn(y) = cn + gn(y) + hn(y). Thus
note that, for any ǫ > 0, we can pick N and n large enough, with N ≤ n, such that
fn(y) ≤ q∗(u,ex)+ǫ. But if 0 < ǫ < y(u,ex)−q∗(u,ex), then fn(y) < y(u,ex), which contradicts

the fact that y(u,ex) = fn(y) for all n. Hence q∗(u,ex) = limn→∞ fn(y) = y(u,ex).

6 Quantitative Model Checking for Büchi Automata

We now provide algorithms for the quantitative model checking of an RMC with respect
to a given Büchi automaton.

37

Theorem 19 Given a Recursive Markov Chain, A, and Büchi automaton, B, and a
rational value p ∈ [0, 1], we can decide whether PA(L(B)) ≥ p in PSPACE in |A|
and in EXPSPACE in |B|, specifically in space O(|A|c12c2|B|) for some constants c1, c2.
Furthermore, if B is deterministic we can decide this in PSPACE in both A and B.

Proof. We make crucial use of Theorem 16, and we combine this with use of the
summary chain M ′

A,B , and queries to ExTh(R). Observe that by Theorem 13, all we
need to do is “compute” the probability that a trajectory of M ′

A,B , starting from the
initial state (v0, {q0}) reaches an accepting bottom SCC. We can not compute M ′

A,B

exactly, however, we will be able to identify the transition probabilities uniquely inside
a ExTh(R) query, and will, inside the same query identify the probability of reaching
an accepting bottom SCC.

Let q∗ = LFP(P) be the solution vector of probabilities for the system x = P (x)
associated with RMC A. Recall that by Proposition 7, we can compute in PSPACE
in |A| the set Q′ = {u ∈ Q | ne(u) > 0} of deficient vertices. We do this as a first
step. Consider next the following quantifier-free formula, where c(u) is the index of the
component of a vertex u:

ϕ1(x) ≡ (x = P (x)) ∧ (0 � x) ∧
∧

u∈Q′

(
∑

ex∈Exc(u)

x(u,ex) < 1) ∧
∧

u∈Q\Q′

∑

ex∈Exc(u)

(x(u,ex) = 1)

By Theorem 16, the only solution vector x in R
n for which ϕ1(x) holds true is q∗. In

other words, ϕ1 uniquely identifies LFP(P).
Recall that ne(u) = 1−∑

ex∈Exc(u)
q∗(u,ex). Now, let y be a vector of variables indexed

by vertices of A, and let ϕ2(x,y) ≡ ∧
u∈Q(yu = 1−∑

ex∈Exc(u)
x(u,ex)). The only vector

of reals (x,y) that satisfies ϕ1 ∧ ϕ2 is the one where x(u,ex) = q∗(u,ex) and yu = ne(u).

Recall the construction of M ′
A,B. The states of M ′

A,B are pairs (v, T), where v ∈ Q′,
and T ⊆ S is a set of states of B. The transitions of M ′

A,B come in three varieties.
Case 1: v is not a call port, and (v, p′v,v′ , v

′) ∈ δM ′
A
. Then we have a corresponding

transition ((v, T), p′v,v′ , (v
′, R′(T, v′))) ∈ δM ′

A,B
, where p′v,v′ = pv,v′ ne(v′)/ne(v), and

thus p′v,v′ ne(v) = pv,v′ ne(v′). Associate a variable zv,v′ with each such probability p′v,v′ ,
and define the formula: ϕ3(y, z) ≡

∧
(v,v′)∈Case1(zv,v′yv = pv,v′yv′).

Case 2: v is a call port, v = (b, en) where v is vertex in component Ai and box b is
mapped to component Aj , and v′ = en, and there is a nesting transition (v, p′v,v′ , v

′) ∈
δM ′

A
. Then there is a nesting transition ((v, T), p′v,v′ , (v

′, R′(T, v′)) ∈ δM ′
A,B

with the same

probability. Here p′v,v′ = ne(v′)/ne(v), and thus p′v,v′ ne(v) = ne(v′). Associate a vari-
able zv,v′ with each such probability p′v,v′ , and define: ϕ4(y, z) ≡

∧
(v,v′)∈Case2(zv,v′yv =

yv′).
Case 3: v is a call port that has a summary transition (v, p′v,v′ , v

′) in M ′
A to a vertex

v′ = (b, ex). Then we have summary transitions of the form ((v, T), p′′, (v′, T ′)) in M ′
A,B

to the following set of states of the form (v′, T ′): If there exists a path of MA that starts

38

at the entry en of Aj and ends at the exit ex (with empty call stack) which, viewed as
a string drives B′ from T to T ′, then we include the edge ((v, T), p′(v,T),(v′ ,T ′), (v

′, T ′))

in δM ′
A,B

, where p′(v,T),(v′,T ′) = q∗((en,T),(ex,T ′)) · ne(v′)/ne(v), and where q∗((en,T),(ex,T ′)) is

the probability of reaching 〈ǫ, (ex, T ′)〉 from 〈ǫ, (en, T)〉 in the product RMC A ⊗ B′.
First, compute A ⊗ B′ and its associated equations w = P⊗(w) explicitly. Note that
|A⊗B′| = O(|A||B′|). Let Q⊗ be the set of vertices of A⊗B′. We can compute the set
Q′⊗ of vertices v of A⊗B′, for which ne(v) > 0 in PSPACE in |A⊗B′|. Consider now
the quantifier-free formula:

ϕ5(w) ≡ (w = P⊗(w)) ∧ (0 � w) ∧
∧

u∈Q′⊗

(
∑

ex∈Exc(u)

w(u,ex) < 1)∧
∧

u∈Q⊗\Q′⊗

(
∑

ex∈Exc(u)

w(u,ex) = 1)

By Theorem 16, LFP(P⊗), is the only vector in R
n for which ϕ5(w) holds true. In

other words, ϕ5 uniquely identifies LFP(P⊗). Now, associate a variable z(v,T),(v′ ,T ′)

with each probability p′(v,T),(v′,T ′), where v = (b, en) and v′ = (b, ex), and define:

ϕ6(y,w, z) ≡
∧

((v,T),(v′,T ′))∈Case3(z(v,T),(v′ ,T ′)yv = w((en,T),(ex,T ′))yv′).

Observe that
∧6

j=1 ϕj has a unique solution, and the values of variables z in this
solution identify the probabilities p′ on transitions of M ′

A,B . By the qualitative methods
of section 4, we compute the underlying graph H ′

A,B of M ′
A,B , and we compute the SCCs

of H ′
A,B that contain either an accepting node or an accepting edge.

Let us define a revised finite Markov chain, M ′′
A,B, in which we remove all bottom

SCCs in M ′
A,B that contain an accepting node or edge, and replace them by a new

absorbing node v∗, with a probability 1 transition to itself. Transitions that were di-
rected into these accepting bottom SCCs are now directed to v∗. Furthermore, in M ′′

A,B

we also remove all nodes that can not reach v∗, and all transitions into those nodes.
(Technically, some nodes of M ′′

A,B may no longer have full probability on the transitions
leaving them, but that is ok for our purposes.)

Now, recall from standard Markov chain theory (see, e.g., [Bil95]) that for such a
finite (sub)Markov chain M ′′

A,B , there is a linear system of equations t = F (t), over
variables tu,v∗ , where u is any node of M ′′

A,B, and where the coefficients in the linear
system F (t) are the probabilities p′ on transitions of M ′′

A,B , such that the least fixed
point solution, LFP(F), of t = F (t) assigns to variable tu,v∗ the probability that v∗ is
reachable from u. (In particular, one of the linear equations is tv∗,v∗ = 1.) Moreover,
because we have eliminated from M ′′

A,B all nodes that can not reach v∗, LFP(F) is the
unique solution to this linear system. Thus consider the formula: ϕ7(w, t) ≡ (t = F (t)).
Thus the quantifier-free formula

∧7
j=1 ϕj has a unique solution in the reals, and the

values assigned to variables t(u,v∗) in this solution identify the probability of reaching
an accepting SCC from node u in M ′

A,B.
For initial node u∗ = (v0, {q0}) of M ′

A,B, and rational p ∈ [0, 1], the following
ExTh(R) sentence, ψ, is true in R iff PA(L(B)) ≥ p:
ψ ≡ ∃x,y, z,w, t ∧7

j=1 ϕj ∧ (tu∗,v∗ ≥ p).

39

Better complexity bounds can be obtained for the class of linear RMCs and for
bounded RMCs.

Theorem 20 For a linear RMC A and Büchi automaton B, the probability PA(L(B))
is rational and can be computed exactly in polynomial time in |A|, and exponential time
in |B|. If B is deterministic then the time is polynomial in both |A| and |B|.

Proof. Use subset construction on B to construct the deterministic automaton B′,
and take the product with A to obtain the RMC A⊗B′. If the given RMC A is linear,
then the product RMC A⊗ B′ is also a linear RMC and obviously can be constructed
in time polynomial in |A| and |B′|. As shown in (the full version of) [EY05a], the exit
probabilities of a linear RMC are rational and can be computed in time polynomial in
the size of the RMC. Applying that algorithm on A ⊗ B′ we can compute explicitly
the conditioned summary Markov chain of A⊗ B′, which is M ′

A,B, including the exact
transition probabilities, in time polynomial in |A|, |B′|. We can identify the accepting
bottom SCCs with the same complexity, and then solve a linear system to compute the
probability that a trajectory of M ′

A,B starting at the initial state u∗ = (v0, {q0}) hits an
accepting bottom SCC.

For bounded RMCs we can achieve polynomial time if the size of the Büchi automa-
ton is bounded (though the time bound is very impractical).

Theorem 21 For a fixed Büchi automaton B, given a bounded RMC, A, and a rational
value p ∈ [0, 1], we can decide whether PA(L(B)) ≥ p in time polynomial in |A|.

Proof. If the Büchi automaton B is fixed, then the deterministic automaton B′ has
bounded size. Taking the product with a bounded RMC A results in another bounded
RMC A ⊗ B′ (note that the number of entries and exits of A gets multiplied by the
number of states of B′). The termination probabilities of a bounded RMC are in general
irrational, but, as shown in [EY05a], we can answer in polynomial time comparison
questions concerning them, using a procedure for the existential theory of the reals with
a bounded number of variables.

We summarize below the method from [EY05a]. First the bounded RMC (A ⊗
B′ in this case) is preprocessed to identify and remove the vertex-exit pairs with 0
probability. Now use variables x(en,ex) only for the set D of entry-exit pairs (en, ex) of
the components of A⊗ B′ that have nonzero probability; note that there is a bounded
number d of such pairs. Let x′ be the restriction of the variable vector x of vertex-exit
probabilities to these variables x(en,ex) for (en, ex) ∈ D. Then the exit probabilities for
all the vertex-exit pairs (u, ex) can be expressed as rational functions of these entry-exit
variables. Specifically, for every vertex-exit pair (u, ex) (including the entry-exit pairs)
we can construct in polynomial time two polynomials f(u,ex)(x

′), g(u,ex)(x
′) such that

q∗(u,ex) = f(u,ex)(q
′∗)/g(u,ex)(q

′∗), where q′∗ is the restriction of the vector q∗ to the set

40

D of (nonzero) entry-exit pairs. The polynomials f(u,ex)(x
′), g(u,ex)(x

′) have rational
coefficients of polynomial bit size, and have total degree at most n, the number of
vertices. As shown in [EY05a], the vector q′∗ is the (unique) minimal nonzero solution to
the following set C(x′) of constraints: f(en,ex)(x

′) = g(en,ex)(x
′) · x(en,ex) and x(en,ex) > 0

for all entry-exit pairs (en, ex) ∈ D, and
∑

ex x(en,ex) ≤ 1 for all entries en of each
component of the RMC. This solution q′∗ of C(x′) can be extended to compute the vector
q∗ for all vertex-exit pairs (u, ex) using the equations q∗(u,ex) = f(u,ex)(q

′∗)/g(u,ex)(q
′∗).

Furthermore the constraint set C ′(x) has the property that if we take any other solution
r′ of C(x′) and extend it similarly to all vertex-exit pairs, it results in a vector r that is a
fixed point of the original set x = P (x) and hence is r ≥ q∗. We can therefore determine
whether q∗(u,ex) ≤ c for some vertex exit pair (u, ex) and rational c by adding to the

constraint set C(x′) the variable x(u,ex) and constraints f(u,ex)(x
′) = g(u,ex)(x

′) · x(u,ex),
and x(u,ex) ≤ c, and invoking an algorithm for the existential theory of the reals with
a bounded number of variables. Similarly, we can determine if a vertex u is deficient
in polynomial time by adding to C(x′) variables xu,ex for all exits ex ∈ Exi of the
component of u and adding constraints f(u,ex)(x

′) = g(u,ex)(x
′) · x(u,ex) for all ex ∈ Exi,

and the constraint
∑

ex∈Exi
x(u,ex) < 1.

Construct now the Markov chain M ′
A,B, which is the conditioned summary chain of

the RMC A⊗B′. We know its set of states, which are the deficient states of the RMC
A ⊗ B′, and its transitions. We do not compute explicitly the values of the transition
probabilities, which are irrational numbers, but rather compute them symbolically as
rational functions of the vector x′ of the entry-exit probabilities of the RMC A ⊗ B′.
Namely, note that the non-exit probability ne(u) of a vertex u of A⊗B′ is ne(u) = 1−∑

ex∈Exi
f(u,ex)(x

′)/g(u,ex)(x
′). The polynomials f(u,ex)(x

′), g(u,ex)(x
′) have total degree

n, so ne(u) is a rational function fu(x′)/gu(x′) where fu, gu are polynomials of total
degree ≤ dn = O(n), also with rational coefficients of polynomial bit-size, and fu, gu

can be easily constructed in polynomial time. It follows from the definition of the
conditioned summary chain M ′

A,B that the transition probabilities are also rational
functions of x′ that can be constructed in polynomial time.

We determine the accepting states and accepting edges, and thus the accepting
bottom SCCs of the chain M ′

A,B. As in the proof of Theorem 19, we define a re-
vised Markov chain M ′′

A,B by removing all accepting bottom SCCs and replacing them
with a new absorbing node v∗; all transitions going to accepting bottom SCCs are
directed now to v∗. The desired probability PA(L(B)) is equal to the probability
that a trajectory of M ′′

A,B starting at the initial state u∗ = (v0, {q0}) hits v∗. If we
had the transition probabilities explicitly, we would compute this probability PA(L(B))
by setting up and solving a linear system of equations. By Cramer’s rule, PA(L(B))
is equal to the ratio of the determinants of two matrices, det(F)/det(G), whose en-
tries are the transition probabilities, and the constants 0,1. Now the transition prob-
abilities are represented symbolically by rational functions in x′, so the probability
PA(L(B)) is equal to the ratio det(F (x′))/det(G(x′)) of the determinants of two matri-

41

ces F (x′), G(x′) whose entries are ratios of polynomials of total degree O(n). Clear-
ing the denominators in the matrix F (x′), we can write it as F (x′) = F1(x

′)/f2(x
′)

where f2(x
′) is the product of all the denominators (a polynomial of total degree

O(n3)) and F1(x
′) is a matrix whose entries are polynomials of total degree at most

O(n3). Since x′ has a fixed number d of variables, each of these polynomials has
at most O(n3d) terms and can be computed explicitly in polynomial time. We have
det(F (x′)) = det(F1(x

′))/(f2(x))
n. The numerator det(F1(x

′)) is a polynomial f1(x
′)

of total degree at most O(n4) and has at most O(n4d) terms. As in [EY05a] we can
compute f1(x

′) explicitly using interpolation, by substituting a sufficient number of tu-
ples for the variables (e.g., O(n4) values for each variable) and solving a linear system
of equations to compute the coefficients of all the possible O(n4d) terms of f1(x

′). The
denominator (f2(x))

n is also a polynomial of total degree O(n4) and can be computed
easily. Similarly det(G(x′)) can be computed as the ratio g1(x

′)/g2(x
′) of two polynomi-

als, and hence PA(L(B)) = f1(x
′)g2(x

′)/f2(x
′)g1(x

′) = f(x′)/g(x′) is expressed as the
ratio of two polynomials f(x′), g(x′) of total degree O(n4).

We can then test whether PA(L(B)) ≥ p by invoking a procedure for the existential
theory of the reals with bounded number of variables on the set of constraints consisting
of the system C(x′) for the RMC A⊗B′ defined above, constraints (fu(x′))2 > 0 for all
deficient vertices u of the RMC A⊗B′ (recall ne(u) = fu(x′)/gu(x′), thus (fu(x′))2 > 0
iff ne(u) 6= 0), t · g(x′) = f(x′) where t is a new variable that stands for PA(L(B)), and
t ≥ p. The constraints C(x′) and (fu(x′))2 > 0 for deficient vertices u ensure that there
is a unique solution which is q′∗, the vector of entry-exit probabilities of A⊗B′, and the
constraints t · g(x′) = f(x′), t ≥ p imply that PA(L(B)) ≥ p.

7 Qualitative Model Checking for Linear Temporal Logic

We build on both the techniques developed in the previous sections for model checking
of RMCs with respect to automata specifications, as well as the techniques developed
for LTL model checking of flat Markov Chains in [CY95]. The algorithm of [CY95]
for model checking LTL properties of flat Markov chains employs an iterative approach,
whereby the chain is refined in each iteration and the formula is simplified by elimination
of temporal operators, until at the end the formula becomes propositional and can be
verified directly. There are serious technical obstacles however for effectively extending
this approach to the recursive setting, and this is not what we do. Instead, we follow a
different approach which is more global in nature. We use an idea from another method
of [CY95], used there for another purpose (for ‘Extended Temporal Logic’), and we
extend it with other techniques to handle recursion and LTL.

We are given RMC A and an LTL formula ϕ. We assume wlog that the RMC starts
at the entry node eninit of component A0 of A, which has no exit. First, we construct

42

from A (the graph of) the summary Markov chain M ′
A; we only need the nodes and

edges of M ′
A and not the precise transition probabilities. We identify the formula ϕ

with its parse tree T . The leaves of the tree are labelled with atomic propositions and
its non-leaf nodes are labelled with temporal or Boolean connectives. Let n be the
number of propositions and internal nodes of T ; number the propositions and internal
nodes from 1 to n bottom-up: first the propositions and then the internal nodes. For
each i, let ϕi be the subformula of ϕ corresponding to the tree Ti rooted at node i.

Let MA be the (infinite) Markov chain represented by the RMC A. Let X =
x0x1x2 . . . be an infinite trajectory of MA starting at some state x0 = 〈β, u〉. We
define the type of the trajectory to be a Boolean vector t of length n, where for each
i, ti = 1 iff X satisfies the formula ϕi. From the definition of the satisfaction of LTL
formulas it follows that the pair (u, t) satisfies the following properties:

1. If ϕi is a proposition p, then ti = 1 if p holds at u, else ti = 0.

2. If i is an internal node of the parse tree labelled with a Boolean connective ¬
(resp. ∨, ∧) and has child j (resp. children j, l), then ti = ¬tj (resp. ti = tj ∨ tl,
ti = tj ∧ tl).

3. If i is labelled with a temporal connective U and has children j, l, i.e., ϕi = ϕjUϕl,
then (a) if tl = 1 then also ti = 1, and (b) if tj = tl = 0 then also ti = 0.

We call any pair (u, t) consisting of a vertex u of the RMC A and a Boolean n-vector
t consistent if it satisfies these three properties. Similarly we say that the pair (x0, t)
consisting of a state x0 = 〈β, u〉 of MA and a vector t is consistent if the pair (u, t) is
consistent. Observe that if (u, t) is consistent then the temporal coordinates of t (those
corresponding to nodes of ϕ labelled with a temporal connective) determine uniquely
the rest of the coordinates of t because of properties (1), (2).

Consider a trajectory X = x0x1x2 . . . and suppose that we know the type s of its
suffix x1x2 Then we can determine uniquely the type t of X from s and the state
x0 (more precisely, the vertex u of x0) as follows: The coordinates ti corresponding to
propositions are determined from u by property (1). For the internal nodes of the parse
tree, proceed bottom-up in the tree. Let i be an internal node and suppose that we
have determined the coordinates corresponding to the children of i. If i is labelled by a
Boolean connective then ti is determined by property (2) of consistency. If i is labelled
by a temporal connective then ti is determined by property (3) unless i is labelled (i) ©
(Next) or (ii) it is labelled U (Until) with children j, l and tj = 1, tl = 0. In case (i), if i
has child j, i.e. ϕi = ©ϕj then ti = sj ; in case (ii) we must have ti = si. Thus, these
two properties (i), (ii) and the consistency conditions (1-3) above determine uniquely t
from u and s. We will say that t is the type backwards implied for the vertex u and the
state x0 from type s.

The backward implication extends to finite paths: If π = x0x1 . . . xk is a finite path
of MA and s is a type consistent with the final state xk, then there is a unique type t
that is backwards implied from s and π for the initial state x0 of the path and its vertex.

43

We construct a graph G as follows. The nodes of G are all pairs (u, t) where u
is a node of the summary chain M ′

A and t is a Boolean n-vector such that the pair
(u, t) is consistent. We include an edge (u, t) → (v, s) between two nodes of G if M ′

A

has an edge u → v and (a) either the edge is not a summary edge and t is the type
that is backwards implied from s for the node u, or (b) u → v is a summary edge, i.e.
u = (b, en), v = (b, ex) for some box b, and there is a path π in the RMC corresponding
to the summary edge (i.e., a path π in MA from 〈ǫ, u〉 to 〈ǫ, v〉) such that t is the type
that is backwards implied from π and s.

We can check in case (b) whether there exists a path π in the RMC from u to
v satisfying the above requirement, as follows: Construct a Recursive State Machine
(RSM) Â, called the augmented RSM, which has a component Âi for each component
Ai of the RMC A. There is a node (u, t) for each vertex u of A and each type t that is
consistent with u; if u is an entry or exit of a component Ai, then (u, t) is an entry or
exit of the corresponding component Âi. If b is a box of Ai mapped to Aj , then there is a

corresponding box b̂ in Âi that is mapped to Âj ; for every entry en of Aj and consistent

tuple t, the box b̂ has a corresponding call port which we will denote ((b̂, en), t) (the
vertex is labelled with the same propositions as en), and we define similarly the return
ports of b̂. Note that the vertices of the form (u, t), where u = (b, en) or u = (b, ex)
was a call port or return port of box b of A, are now ordinary nodes of Â. We include
an edge (u, t) → (v, s) for each pair of vertices (u, t), (v, s) of Â such that t is the type
backwards implied from s for u, and either A contains an edge u→ v, or u = (b, en) and
v = (b̂, en) for some box b of A, or u = (b̂, ex) and v = (b, ex). (Note: The reason that
we introduced new call ports and return ports is that the trajectories of the Markov
chain MA contain explicit steps corresponding to the recursive calls and returns from
the calls. This is a small technical detail.) It is easy to see now that there is a path π
in the RMC A from u = (b, en) to v = (b, ex) (with empty context) that corresponds
to the summary edge u→ v and such that t is the type that is backwards implied from
π and s iff the RSM Â contains a path from (u, t) to (v, s) with empty context (i.e.,
MÂ has a path from 〈ǫ, (u, t)〉 to 〈ǫ, (v, s)〉). We can check this by applying the RSM

reachability algorithm of [ABE+05] to the augmented RSM Â.
Consider again a trajectory X = x0x1x2 . . . of MA. For each j, let tj be the type

of the path xjxj+1 By our previous remarks, the pair (xj, t
j) is consistent. Also,

note that tj is the type backwards implied by tj+1 and xi. Let X̂ be the sequence
(x0, t

0), (x1, t
1), (x2, t

2) . . .; we call this the augmented trajectory corresponding to X. It
corresponds to a trajectory of the RSM Â.

Recall that there is a mapping ρ from trajectories X of the original Markov chain
MA to a trajectory of the summary chain M ′

A, or to the symbol ⋆, with the property
that PA(ρ−1(⋆)) = 0. Suppose that ρ(X) 6= ⋆. Then ρ(X) consists of the vertex parts
u0ui1ui2 . . . of a subsequence x0xi1xi2 . . . of X obtained by shortcutting subpaths of X
by summary edges. The mapping ρ can be extended to the augmented trajectory X̂ :
ρ(X̂) = (u0, t

0), (ui1, t
i1) . . . is obtained from the corresponding subsequence of X̂ by

44

keeping only the vertex parts and the types. By our construction of the graph G, ρ(X̂)
is a path of G.

If (v0, s0), (v1, s1), (v2, s2) . . . is a sequence of vertex-type pairs, then the projection
of the sequence on the first component is the sequence v0, v1, v2 . . . of vertices.

Lemma 22 1. Every finite or infinite path of G projected on the first component yields
a path of M ′

A.
2. Conversely, every path of M ′

A is the projection of at least one path in G.

Proof. (1) follows directly from the construction of G. (2) is obvious for finite paths
by construction. For infinite paths, note that every path of M ′

A is the image ρ(X) of

some trajectory X of MA. Let X̂ be the augmented trajectory. Then ρ(X̂) is a path of
G whose projection is ρ(X).

Recall that a vertex u of A is included in summary chain M ′
A iff ne(u) > 0. Call a pair

(u, t) probable if there is positive probability that a trajectory of A starting at u does
not exit the component of u (does not terminate) and has type t. We denote by P ′(u, t)
the probability that a trajectory from u has type t conditioned on the event that it does
not exit u’s component.

Lemma 23 1. If G contains an edge (u, t) → (v, s) and (v, s) is probable then (u, t) is
also probable.
2. In particular, in every strongly connected component C of G, either all nodes are
probable or none is.

Proof. With nonzero probability, a trajectory starting at u will go to v following
the edge u → v (if it is an ordinary edge or a nesting edge) or following some path π
(if u → v is a summary edge) such that t is the type implied back by s and π. There
is positive probability that the trajectory from v does not exit v’s component and has
type s. If this happens, then the trajectory from u will also not exit its component and
will have type t. This proves claim 1. Claim 2 follows immediately from 1.

Let H be the subgraph of G consisting of probable nodes. By the above lemma, in
order to compute H, it suffices to identify which strongly connected components of G
are the bottom SCCs of H. Then H consists of all the nodes that are ancestors of these
bottom SCCs. Once we compute the graph H, we can answer the qualitative model
checking problem: The trajectories of the given RMC A satisfy the given formula ϕ
almost surely if and only if H does not include any node of the form (eninit, t), where
eninit is the initial node of A (the entry node of the top component) and t is a type
with tn = 0. Note that n corresponds to the root of the parse tree of ϕ, i.e., ϕn = ϕ,
so (eninit, t) probable with tn = 0 would mean that there is positive probability that a
trajectory starting at eninit does not satisfy ϕ. (Recall that the top component has no
exit, so all the trajectories from eninit do not exit its component.)

45

A trajectory X of the RMC (i.e. of the infinite chain MA) maps with probability 1
to a trajectory X ′ = ρ(X) of the summary chain M ′

A, and the augmented trajectory X̂

maps to an augmented trajectory X̂ ′ = ρ(X̂) that is a path in G. Call a trajectory X
of MA typical if X ′ = ρ(X) is defined and all pairs of X̂ ′ = ρ(X̂) are probable, i.e. if X̂ ′

is a path of the subgraph H. It follows easily from the Markov property that the set
of typical trajectories of the RMC starting at the initial state has probability 1. More
generally it is easy to show the following:

Lemma 24 For every vertex u of the RMC A with ne(u) > 0, the probability that a tra-
jectory starting at u does not exit its component and is typical with type t is ne(u)P ′(u, t).

We wish to find the improbable nodes of G and remove them to obtain H. As we
noted, it suffices to identify the bottom SCCs of H. From the definition of G, if G
contains a path from (u, t) to (v, s) then M ′

A contains a path from u to v. Therefore,
for every SCC C of G, the first components of all the nodes of C belong to the same
SCC K of M ′

A. We will say that the SCC C corresponds to K.

Lemma 25 If C is a bottom SCC of H, then it corresponds to a bottom SCC K of M ′
A.

Proof. Let (u, t) be a node of C. A trajectory X of the RMC starting at u does
not exit u’s component with probability ne(u), and conditioned on this event, with
probability 1 it is typical and its summary image ρ(X) is absorbed in a bottom SCC
of the summary chain M ′

A. Since (u, t) is probable, the summary image ρ(X) of such
a typical trajectory of type t must be the projection of a path in H starting at (u, t).
Since C is a bottom SCC of H, it follows that its corresponding SCC K of M ′

A must be
also a bottom SCC.

We will now give a necessary condition for a node of G to be probable. Consider a
summary edge (u, t) → (v, s) of G. We say that the edge is probable if the nodes are
probable. We label the edge with a subset of {1, . . . n} as follows. A label l ∈ {1, . . . n}
is included in the subset iff the infinite chain MÂ of the augmented RMC Â has a path
from 〈ǫ, (u, t)〉 to 〈ǫ, (v, s)〉 that goes through some node 〈β, (z, r)〉 with rl = 1. This
can be determined in polynomial time in the size of Â using the algorithm for Recursive
State Machines of [ABE+05].

Lemma 26 If (u, t) is probable, then it satisfies the following condition. For every node
i of (the parse tree of) ϕ labelled U , with corresponding subexpression ϕi = ϕjUϕl, if
ti = 1 then node (u, t) can reach in H (and in G) some probable node (v, s) with sl = 1
or some probable summary edge whose label set includes l.

Proof. Consider a typical trajectory X = 〈ǫ, u〉x1x2 . . . starting at u that does
not exit its component and has type t. Its summary image Y = ρ(X) = uvi1vi2 . . .,

46

consists of the vertex parts of a subsequence 〈ǫ, u〉xi1xi2 of X. Some suffix xkxk+1 . . .
of X satisfies ϕl. Since X is typical, its augmented trajectory X̂ maps to a path
Ŷ = ρ(X̂) = (u, t)(vi1, t

i1) . . . in H. If vk is included in the summary path Y , then
the node (vk, t

k) is in the path Ŷ of H, hence it is a probable node with tkl = 1. If vk

is not included in the summary path Y , then let vp, vr be the nodes that are included
with p the maximum index less than k and r the minimum index greater than k. Then
(vp, t

p), (vr, t
r) is a probable summary edge with label l.

It is convenient for the purposes of the analysis to refine the summary graph M ′
A into

a multigraph M ′′
A as follows. For each summary edge u = (b, en) → v = (b, ex) consider

all paths of the RMC that give rise to the edge, i.e. paths of the form 〈ǫ, u〉 → 〈b, en〉
→ . . . 〈b, ex〉 → 〈ǫ, v〉. For every type s for the final state, each path implies backwards
a type t for u. Let us call two paths equivalent if they induce the same mapping from
types s at v to types t at u. This gives us a partition of the paths into equivalence
classes. Replace the summary edge u → v with a set of parallel edges, one for each
equivalence class. Do the same for all summary edges of M ′

A and let M ′′
A be the resulting

multigraph. We can view M ′′
A also as a (refined) Markov chain where the probability

of the summary edges is divided among the parallel edges that replaced it according to
the total probability of all paths in each equivalence class. (We do not actually perform
this transformation; it is only for the purposes of the analysis.) The multigraph M ′′

A has
the property that for every edge u → v (whether an ordinary, a summary, or a nesting
edge) and every type s for v there is a unique type t that is implied for u by s and the
edge. Note that, by construction, the graph G contains an edge (u, t) → (v, s); we will
say that the edge u → v of M ′′

A is a projection of the edge (u, t) → (v, s) of G. (More
than one parallel summary edges of M ′′

A from u to v may be the projection of the same
edge of G.) We can extend the notion of projection to paths of G. Obviously M ′

A and
M ′′

A have the same SCCs (replacing an edge by a set of parallel edges does not change
the SCCs).

Lemma 27 Let C be a SCC of G and let K be the corresponding SCC of M ′′
A. The

following are equivalent.

1. For every node (v, s) of C, every edge u → v of K is a projection of some edge
(u, t) → (v, s) of C into (v, s).

2. Every finite path in K is a projection of some path in C.

3. No other SCC of G corresponding to K is ancestor of C.

The proof is nontrivial but it is very similar to the proof of Lemma 5.10 of [CY95], so
we will omit it and refer to that paper.

The characterization of bottom SCCs of H is given by the following Theorem.

47

Theorem 28 A SCC C of G is a bottom SCC of H if and only if the following three
conditions are satisfied.

1. C corresponds to a bottom SCC K of M ′
A.

2. No other SCC of G corresponding to K is ancestor of C.

3. For every subexpression ϕi = ϕjUϕl of ϕ, either all nodes (u, t) of C have ti = 0
or there is a node (v, s) ∈ C with sl = 1 or there is a summary edge of C whose
label set includes l.

Proof. Suppose that C is a bottom SCC of H. Then C satisfies conditions 1 and
3 by Lemmas 25 and 26 respectively. Suppose that it does not satisfy (2). Then from
Lemma 27 there is a finite path β of K that is not the projection of any path in C. Let
(u, t) be any node of C. A trajectory of M ′′

A starting at u contains with probability 1
the path β (in fact the path occurs infinitely often in the trajectory). Such a trajectory
is not the projection of any path in C. It follows that (u, t) is not probable.

Conversely, suppose C satisfies the three conditions. We show that C contains all
probable pairs (u, t) whose first component u is in K. From this it follows that C is
the only SCC of H that corresponds to K, and C is a bottom SCC of H because any
descendant SCC must then also correspond to K. To prove the above fact we show the
following lemma. The converse of the theorem follows once we prove the lemma.

Lemma 29 Suppose that C satisfies the three conditions of Theorem 28. For every
probable pair (u, t) with u ∈ K, the following are true for each i = 1, . . . , n.

1. There is a node (u, t′) of C such that t and t′ agree in the first i coordinates.

2. There is a finite path α(u, t, i) of M ′′
A starting at u such that the type of almost all

trajectories of the RMC from u that do not exit u’s component, whose summary
image has prefix α(u, t, i), agrees with t in the first i coordinates.

Proof. We use induction on i. The basis, i = 1 is trivial: ϕ1 is a proposition and
part (1) is satisfied by any node (u, t′) of C with first component u. Note that C has
such a node since every path of K is the projection of a path of C (by condition (2) and
Lemma 27). As for part (2), we let α(u, t, 1) be the trivial path that consists of node u.

For the induction step, the lemma follows trivially if ϕi is a proposition, or node i of
the parse tree of ϕ is labelled with a Boolean connective, or if it is labelled with U and
the value of ti is determined uniquely by property (3) of consistency, i.e., ϕi = ϕjUϕl

and tl = 1 or ti = tj = 0. In these cases, if we have a probable pair (u, t) and a node
(u, t′) of C such that t and t′ agree in the first i− 1 coordinates, then they must agree
also in the ith coordinate. Also, we may let α(u, t, i) = α(u, t, i − 1). There are two
remaining cases.

48

Case 1: i is labelled with the next operator. Suppose that ϕi = ©ϕj . Let (u, t) be
a probable pair and take any typical trajectory X of the RMC starting at u that does
not exit u’s component and has type t. Consider the summary image ρ(X) of X, let v
be the second node of ρ(X) and s the type of the suffix of X from (this occurrence of)
v on. Since u ∈ K, K is a bottom SCC of M ′

A, and there is an edge u → v, it follows
that also v ∈ K.

Subcase 1.1. Suppose first that u is not a call port. Then v is simply the second
vertex of the trajectory X. Clearly, v is in the same component of the RMC as u, the
trajectory does not exit v’s component and since it is typical, the pair (v, s) is probable.
By the induction hypothesis, there is a node (v, s′) of C such that s and s′ agree in the
first i − 1 coordinates. By condition (2) of the theorem and Lemma 27, (v, s′) has an
incoming edge from a node (u, t′) of C with first component u. This node (u, t′) fulfils
the required property 1: the first i coordinates of t′ are determined from the first i− 1
coordinates of s′ in the same way that the corresponding coordinates of t are determined
from s, and note that ti = sj and t′i = s′j , hence ti = t′i. For part 2, we let α(u, t, i) be
u→ v followed by α(v, s, i − 1).

Subcase 1.2. Suppose that u is a call port u = (b, en). The second node v of ρ(X) is
either the entry en of the component of A corresponding to the box b, or it is a return
port v = (b, ex) of the box. In the first case, the argument is exactly the same as above;
note that the suffix of X from v = en on does not exit v’s component and (v, s) is a
probable pair. So suppose that v = (b, ex) is a return port of the box b, and let π be the
prefix of X from u to v. The type t at u is the type that is backwards implied by the
path π and the type s. Again, (v, s) is a probable pair and thus C contains a node (v, s′)
where s′ agrees in the first i− 1 coordinates with s. The equivalence class of the path π
corresponds to one of the parallel summary edges of M ′′

A, say edge a, from u to v. From
Lemma 27 it follows that C contains a corresponding edge (u, t′) → (v, s′), such that t′

is the type that is backwards implied from the path π and s′. Since s and s′ agree in
the first i − 1 coordinates, the same is true for all the types implied at corresponding
nodes of the path π, and thus also at u, the first node of the path, as well as at the
second node of the path π. Since ti and t′i are equal to the respective coordinates l at
the second node, it follows that t and t′ agree in the first i coordinates. As for part
2, we let α(u, t, i) be the summary edge a from u to v (corresponding to the path π)
followed by the path α(v, s, i − 1).

Case 2: Node i is labelled with the Until operator. Suppose that ϕi = ϕjUϕl,
and that tj = 1, tl = 0 (we took care of the other possibilities for t). Take a typical
trajectory X of the RMC starting at u that does not exit u’s component and has type
t. Let X = 〈ǫ, u〉x1x2 . . ., and let Y = ρ(X) = uy1y2... be its summary image. We will
distinguish cases according to the value of ti.

Subcase 2.1: ti = 1. Let m be the smallest index such that the suffix xmxm+1 . . .
of X satisfies ϕl; such an index m exists by the definition of U , and for all k < m,
the corresponding suffix from xk on satisfies ϕj . Suppose first that the summary image

49

Y = ρ(X) includes the node corresponding to xm, i.e. xm = 〈β, v〉 and all subsequent
xq, q > m include the context β. Let s = tm be the type of the suffix of X from xm

on. Since the trajectory is typical, (v, s) is a probable pair, and the summary chain
contains a path π′ from u to v (namely, the summary image of the prefix of X up to
xm). Therefore, v is in the same bottom SCC K as u. By the induction hypothesis, C
contains a node (v, s′) such that s′ agrees with s in the first i − 1 coordinates. From
Lemma 27, the path π′ from u to v in K is the projection of a path in C from some
node (u, t′) to (v, s′). It follows then that t and t′ agree in the first i coordinates (they
agree on coordinate i because all nodes (z, q) along the path have qj = 1 and the final
node has s′l = sl = 1). We let the path α(u, t, i) be π′ followed by the path α(v, s, i− 1).

Suppose that the image trajectory Y = ρ(X) in the summary chain does not include
the node corresponding to xm, i.e. it is shortcut by a summary edge (w, v), where
w = (b, en), v = (b, ex) for some box b. That is, for some indices p < m, q > m, we have
xp = 〈β,w〉, xq = 〈β, v〉 and all states of the trajectory X between xp and xq include
the context βb. Let r = tp, s = tq. Again v ∈ K and the pair (v, s) is probable. By the
induction hypothesis, C contains a node (v, s′) such that s that agrees with s′ in the first
i− 1 coordinates. From Lemma 27, the SCC C contains a path from some node (u, t′)
to (v, s′) with projection the path π′ of M ′′

A from u to v corresponding to the prefix of
X up to xq. If we consider this prefix of X up to xq, substitute s′ for the type at xq

in place of s, and then infer backwards the types t′k at the preceding states xk, k < q,
obviously all the types t′k will agree in the first i− 1 coordinates with tk. This implies
in particular that the type at xm will have the lth coordinate t′ml = 1. Since the jth
coordinate in all the preceding states is 1, it follows that t′i = 1, hence t′ agrees with
t in the first i coordinates. We let again the path α(u, t, i) be π′ followed by the path
α(v, s, i − 1).

Subcase 2.2: ti = 0. Recall that tj = 1, tl = 0. We consider two further subcases.
Subcase 2.2.1: There is a typical trajectory X = 〈ǫ, u〉x1x2 . . ., starting at u that

does not exit u’s component, has type t, and some suffix of X from some state xm on
satisfies ϕj = ϕl = 0. The arguments are very similar to the case ti = 1. Consider the
summary image Y = ρ(X). Either it contains the node corresponding to xm or the node
is shortcut by a summary edge. Consider the second case; the first case is similar and
simpler. For some indices p < m, q > m, we have xp = 〈β, u〉, xq = 〈β, v〉 and all states
of the trajectory X between xp and xq include the context βb. Let r = tp, s = tq. Again
v ∈ K and the pair (v, s) is probable, so by the induction hypothesis, there is a node
(v, s′) ∈ C such that s′ agrees with s in the first i− 1. There is a path in C from some
node (u, t′) to (v, s′) with projection the path π′ of K from u to v that is the summary
image of the prefix of X up to xq. Again we can infer backwards the types and conclude
that t, t′ agree in the first i coordinates.

Subcase 2.2.2: For every typical trajectory X, starting at u that does not exit u’s
component and has type t, every suffix of X satisfies ϕj = 1 or ϕl = 1. Consider such
a typical trajectory X = 〈ǫ, u〉x1x2 Suppose that there is an index m such that the

50

suffix xm.... satisfies ϕl = 1, and let m be the smallest such index. Since ϕl = 0 for
smaller indices k < m, it follows that ϕj = 1 for them, hence from the semantics of the
Until operator it follows that trajectory X satisfies ϕi, contradicting the assumption
that ti = 0. Therefore, it must be the case that every suffix xm.... satisfies ϕl = 0
and hence ϕj = 1. We will argue that for any v ∈ K, every probable pair (v, s) has
sl = 0, sj = 1, and there is no edge w → v of K that is the projection of a probable
summary edge into (v, s) with label l.

Let (v, s) be a probable pair with v ∈ K and consider the finite path α(v, s, i − 1).
Every trajectory of the summary chain M ′′

A starting at u will contain this path as a
subpath with probability 1. In other words, for almost every trajectory X of the RMC
that starts at u and does not exit u’s component, its summary image ρ(X) will contain
this path. Since the type of almost all trajectories whose ρ image has prefix α(v, s, i−1)
agrees with s in the first i − 1 coordinates, and since every suffix of X satisfies ϕl = 0
and ϕj = 1, it follows that sl = 0 and sj = 1.

Suppose that there is a probable summary edge (w, r) → (v, s) whose label includes
l, and with projection the edge a = w → v of K. Let π be a u − v path of the RMC
corresponding to the summary edge. We know that rl = sl = 0 and rj = sj = 1.
Consider the path consisting of the summary edge a followed by the path α(v, s, i− 1).
Every trajectory of the summary chain M ′′

A starting at u will contain this path as a
subpath with probability 1. Thus, almost every non-exiting trajectory X of the RMC
starting at u will have an image ρ(X) that contains this path. Let X = 〈ǫ, u〉x1x2 . . . be
such a typical trajectory of type t where xp gets mapped to w in the summary chain,
xq is mapped to v, and the subpath π = xp . . . xq is mapped to the summary edge
a = w → v. We may assume wlog (it happens a.s.) that the type of the suffix from xq

on agrees with s in the first i − 1 coordinates. If we infer the types along the path π
backwards from xq, some intermediate state xm of the path will have tml = 1 because
the summary edge includes label l, and clearly this label depends only on the first i− 1
coordinates of s. By our assumption, no suffix of the trajectory satisfies ϕj = ϕl = 0.
It follows that the whole trajectory satisfies ϕi = ϕlUϕj , contradicting our assumption
that ti = 0. We conclude that there is no probable summary edge (w, r) → (v, s) in G
with label l where w, v ∈ K.

In the same way that we showed that if one node of a SCC of G is probable then
all the nodes are probable, we can argue that the same property is true if we restrict
attention to the first i−1 coordinates of the types. This implies that for all nodes (v, s′)
of C we have s′l = 0 and s′j = 1. Also, no summary edge (w, r′) → (v, s′) is labelled l.
(Since l ≤ i − 1, if there was a w − u path π that yielded such a l-labelled summary
edge, then the above argument would still apply by restricting types to the first i − 1
coordinates). By condition (3) of Theorem 28, it follows that all nodes (v, s′) of C have
their ith coordinate s′i = 0. So we may let (u, t′) be the node of C that agrees with (u, t)
in the first i− 1 coordinates. We may take α(u, t, i) = α(u, t, i − 1).

Summarizing, the qualitative model checking algorithm for a RMC A and a LTL

51

formula ϕ works as follows.

1. Construct the graph of the summary chain M ′
A.

2. Generate all consistent pairs (u, t), u ∈M ′
A, t a type.

3. Construct the graph G on the consistent pairs.

4. Find the strongly connected components of G, and construct the DAG of SCCs.

5. While there is a bottom SCC that violates one of the conditions of Theorem 28,
remove it from G.

6. If the final graph H contains a node (eninit, t) with tn = 0 then reject, else accept.

By our analysis, the final graph is the subgraph H of G induced by the probable
pairs.

Step 1 (which depends only on the RMC A, not on the formula ϕ) can be done
in polynomial space in A [EY05a]. The rest of the steps can be done in polynomial
time in the size of the graph G and the RSM Â, both of which are polynomial in |A|
and exponential in |ϕ| (more specifically, the exponent only depends on the number of
temporal operators in ϕ). If A is a 1-exit RMC, or bounded RMC, or linear RMC, then
Step 1 can be done in polynomial time in A. Thus:

Theorem 30 Given RMC A and LTL formula ϕ, we can check whether A satisfies ϕ
with probability 1 in PSPACE in A and EXPTIME in ϕ. If A is a 1-exit RMC or a
bounded RMC or linear RMC then the time complexity is polynomial in A.

Conversely, we can show that qualitative model checking of LTL formulas requires
exponential time.

Theorem 31 The qualitative problem of determining whether a given RMC A satis-
fies a LTL formula ϕ with probability 1 (i.e., whether PA(ϕ) = 1) is EXPTIME-hard
(thus EXPTIME-complete). Furthermore, this holds even if the RMC is fixed and each
component has one entry and one exit.

The proof is similar to the proof of Theorem 15 for automata, and to the proof of a
theorem in [BEM97] showing that LTL model checking for (non-probabilistic) Pushdown
Systems (equivalent to RSMs) is EXPTIME-hard. The latter proof encodes a finite
accepting computation tree of an alternating linear space Turing Machine as a finite
path in a RSM, and uses LTL formulas to check that the path is consistent with an
accepting sequence of configurations of the alternating Turing machine. Since all finite
paths have non-zero probability in an RMC, we can in principle use the same result and
ignore probabilities on transitions to get EXPTIME-hardness for RMCs. (The proof of
[BEM97] is only sketched in their online Tech. Report and leaves several details out.)

52

Further, as our construction shows, the RSM itself (and in our setting the RMC) can
be of fixed size, with each component having 1 entry and 1 exit. We omit the detailed
proof.

8 Quantitative Model Checking of LTL Properties

We are given a Recursive Markov Chain A and an a LTL formula ϕ. We are also given
a rational number p, and we want to determine whether the probability PA(ϕ) that a
trajectory of A satisfies ϕ is at least (or at most) p. As mentioned in Section 2, the
probability PA(ϕ) is in general irrational and thus it cannot be computed explicitly. We
will construct a system of polynomial equations and inequalities in a set of real variables,
one of which stands for the desired probability PA(ϕ). The system will be constructed in
such a way that it has a unique solution. Then we will attach the inequality PA(ϕ) ≥ p
(or PA(ϕ) ≤ p) and invoke a procedure for the existential theory of the reals to check
whether the resulting system is satisfiable.

First we set up the system (1a) x = P (x) of fixed point equations for the RMC A
which contains one variable x(u,ex) for every vertex u and exit ex of u’s component. Re-
call that we can compute in PSPACE in |A| the set Q′ = {u ∈ Q | ne(u) > 0} of deficient
vertices. We add to (1a) the constraints (1b) x ≥ 0; (1c) yu = 1−∑

ex∈Exc(u)
x(u,ex) for

every vertex u; (1d) yu > 0 for every vertex u in Q′; and (1e) yu = 0 for every vertex
u in Q − Q′. Let (1) be the system of constraints (1a)-(1e). From the Unique Fixed
Point Theorem for RMCs, Theorem 16, system (1) has a unique solution (x,y), and
this solution is x(u,ex) = q∗(u,ex) and yu = ne(u).

Now, we carry out the algorithm for the qualitative model checking. As a result we
compute all probable pairs (u, t). For a deficient vertex u and a type t, let P ′(u, t) be
the probability that a trajectory X starting at u has type t conditioned on the event
that X does not exit u’s component. We have a corresponding variable z(u, t) (we only
need to include the probable pairs, since the others have probability 0). These variables
satisfy several constraints:
(2a)

∑
t z(u, t) = 1 for all u ∈ Q′.

(2b) If u is not a call port, then z(u, t) =
∑

(v,s) p
′
u,vz(v, s), where p′u,v is the probability

of transition u → v in the summary Markov chain M ′
A, and the sum ranges over all

probable pairs (v, s) such that H contains an edge (u, t) → (v, s).
(2c) If u is a call port, u = (b, en), then z(u, t) = p′u,en

∑
s z(en, s)+

∑
(v,s) p

′
u,vfu,v,t,sz(v, s),

where the first sum ranges over all types s such that H contains an edge (u, t) → (en, s),
and the second sum ranges over all exits v = (b, ex) of the box b and types s such that
H contains an edge (u, t) → (v, s) and fu,v,t,s is the fraction of the probability of u− v
paths of the RMC for which the type s at v implies backwards the type t at u.

These constraints are justified by the following lemma.

Lemma 32 Probabilities P ′(u, t) satisfy constraints 2a-2c.

53

Proof. (2a) is obvious: Every trajectory that starts at u and does not exit must have
some type, and the types t for which (u, t) is not probable (for which we did not include
variables) have probability 0.

For (2b), consider the typical trajectories X that start at u and do not exit u’s
component. Then Y = ρ(X) is a trajectory of M ′

A. With probability p′u,v the second
vertex is v, the trajectory does not exit the component of v (which is the same as that
of u), and the trajectory from v on has type s with probability P ′(v, s); the type of X
will be t iff there is an edge (u, t) → (v, s) in H.

For (2c), consider again the typical trajectories X that start at u = (b, en) and do
not exit u’s component, and let Y = ρ(X). There are two kinds of such trajectories. The
first kind consists of those that never exit the box b, that is, they enter the component
corresponding to b at the entry node en and never reach an exit. This happens with
probability p′u,en. The subsequent trajectory from en does not exit its component, and
has type s will probability P ′(en, s); the type of the whole trajectory X will be t iff
there is an edge (u, t) → (en, s) in H. The second kind of trajectories X consists of
those that eventually exit the box b at some return port v = (b, ex), (i.e. v is the second
node of the image trajectory Y = ρ(X) in M ′

A), but then the rest of X from v does
not reach the exit of the component of v (which is the same as the component of u).
This happens with probability p′u,v. The rest of the trajectory from v has type s with
probability P ′(v, s). Then X has type t if the u− v path that was followed to exit the
box b implies back t from s; this happens with probability p′u,vfu,v,t,s.

The transition probabilities p′u,v of M ′
A are rational functions of the probabilities

captured by the variables (x,y) of system (1). The quantities fu,v,t,s are in general
irrational, so we cannot compute them explicitly; however, we will later present a system
of constraints with a unique solution that gives precisely these quantities. Suppose for
now that we have also determined the parameters fu,v,t,s. Then the constraints (2)
form a linear system in the variables z(u, t). It turns out that this system has a unique
solution.

Lemma 33 The system (2) of linear equations in the variables z(u, t) has a unique
solution.

Proof. From the summary chain M ′
A we form a refined chain M ′′

A as described in
the previous section, where we replace every summary edge u → v of M ′

A by a set
of parallel edges, one for each equivalence class of u − v paths, and we distribute the
transition probability of the edge u → v among these parallel edges proportionately to
the probability of the paths of the RMC that they represent. Then p′u,vfu,v,t,s is the
sum of transition probabilities on the parallel edges of M ′′

A corresponding to the classes
where s at v maps back to t at u.

Let us also introduce parallel edges and edge weights in the graph H: Replace every
summary edge (u, t) → (v, s) of H by a set of parallel edges, one for each equivalence

54

class of u−v paths that imply back t at u from s at v. LetH ′ be the resulting multigraph.
Now every edge a′ of H ′ corresponds to a unique edge a of M ′′

A; give weight to edge a′

equal to the transition probability on edge a of M ′′
A. The edge weights of H ′ do not

make H ′ into a Markov chain because weights out of a node may not sum to 1. Note
that every path of H ′ corresponds to (we’ll say, projects onto) a unique path of M ′′

A.
Furthermore, for every node (v, s) of H ′ and every edge a = u → v of M ′′

A, the graph
H ′ contains a unique corresponding edge a′ into (v, s); the head of the edge is a node
(u, t) for some t.

The proof of the lemma uses a similar technique to that of Proposition 5.11 in [CY95].
Write the system of equations (2b-2c) as z = Bz where z is the vector of variables z(u, t)
and B is the coefficient matrix of the right-hand side. The rows and columns of B are
indexed by the probable pairs, and the entry B[(u, t), (v, s)] is equal to the sum of the
weights of the edges (u, t) → (v, s) of H ′. If α is a finite path (sequence of edges) of M ′′

A

or H ′, then we denote by w(α) the product of the probabilities (or weights) of the edges
along the path α and call it the weight of α. Consider the jth power Bj of B. Then
Bj[(u, t), (v, s)] is the sum of the weights of the paths α′ of length j of H ′ from (u, t) to
(v, s). Every such path projects to a unique path α of M ′′

A from u to v, and α has the
same weight.

A trajectory of the (refined) summary Markov chain M ′′
A starting at any node u

hits with probability 1 eventually a bottom SCC K. Recall from Lemma 29 that if
v is any node of K and s any type such that (v, s) is probable, then there is a finite
path α(v, s, n) such that any trajectory of M ′′

A from v with prefix α(v, s, n) has type
s with probability 1. A trajectory from u that hits K will eventually with probability
1 contain the path α(v, s, n) as a subpath. If β is finite a path of M ′′

A from a node u
that hits a bottom SCC K and includes a subpath α(v, s, n) for some v ∈ K and type
s such that (v, s) is probable, then we will say that β is determined. We assign to such
a β a unique type t, which is the type that is backwards implied by the prefix from u
to the occurrence of v right before the subpath α(v, s, n) and the type s at v. Clearly,
H ′ contains a path corresponding to β starting at (u, t) (the path goes on to (v, s) and
continues from there). Furthermore, H ′ has no path corresponding to β starting at any
other node (u, t′) for any other type t′ 6= t. The reason is that such a path would have
to go to a node (v, s′) with s′ 6= s followed by a path corresponding to α(v, s, n); but
then (v, s′) cannot be a probable pair, because almost all trajectories of M ′′

A from v with
prefix α(v, s, n) have type s.

Let dj(u, t, v) be the sum of the weights (probabilities) of the paths β of M ′′
A of

length j from u to v that are determined of type t. Let dj(u, t) =
∑

v dj(u, t, v), let
dj(u) =

∑
t dj(u, t), and let ǫj(u) = 1− dj(u). The last quantity ǫj(u) is the probability

that a path of M ′′
A of length j starting at u is not determined. Thus, by the definition

and our discussion above, ǫj(u) → 0 as j → ∞.
Consider a path β from u to v of length j that is determined of type t, i.e. β

contributes weight w(β) to dj(u, t, v). As we said above, no node (u, t′) with t′ 6= t has

55

a path corresponding to β. For every node (v, s) of H ′ there is a path ending at (v, s)
that corresponds to β; this path has to start at (u, t). Therefore β contributes weight
w(β) to Bj[(u, t), (v, s)] for every s, and does not contribute to any Bj[(u, t′), (v, s) with
t′ 6= t. Therefore, for any s we have dj(u, t, v) ≤ Bj [(u, t), (v, s)].

Conversely, consider a path β of M ′′
A that contributes its weight to Bj[(u, t), (v, s)],

i.e. β is the projection of a path in H ′ of length j from (u, t) to (v, s). If β is determined
then its type must be t and its weight is included in dj(u, t, v). The set of paths of
length j that are not determined have total weight ǫj(u). Therefore, Bj[(u, t), (v, s)] ≤
dj(u, t, v) + ǫj(u). Since limj→∞ ǫj(u) = 0, it follows that limj→∞(Bj[(u, t), (v, s)] −
dj(u, t, v)) = 0.

Note that if a path β is determined then so are all its extensions and they have
the same type t. Therefore, dj(u, t) is a non-decreasing function of j, and since it is
bounded from above by 1, it has a limit d∞(u, t). If z is any solution to the system
(2) then for any j it satisfies z = Bjz. Thus, z(u, t) =

∑
(v,s)B

j[(u, t), (v, s)]z(v, s)

=
∑

(v,s)(B
j[(u, t), (v, s)] − dj(u, t, v))z(v, s) +

∑
(v,s) dj(u, t, v)z(v, s). As j tends to

∞, the first term tends to 0 and the second term tends to d∞(u, t). It follows that
z(u, t) = d∞(u, t).

We will now construct a system of constraints that determines uniquely the param-
eters fu,v,t,s. Recall the augmented Recursive State machine Â that we constructed.
We add weights to its edges and convert it to a weighted RSM; it will not necessarily
be a RMC because the weights out of a node may not sum to 1. The edges of Â are
of the form (u, t) → (v, s). If A contains the edge u → v then we let the weight of
(u, t) → (v, s) be the probability of the edge u→ v. The other cases are that u = (b, en)
and v = (b̂, en), or u = (b̂, ex) and v = (b, ex); in these cases we give these edges weight
1.

Let u = (b, en), v = (b, ex) be a call port and a return port of a box b, and let
π be a path in the RMC corresponding to the summary edge u → v in the summary
graph, i.e. π is a path 〈ǫ, u〉 → 〈b, en〉 → . . . 〈b, ex〉 → 〈ǫ, v〉, where all the intermediate
nodes include b in the context. For every type s for the final vertex v, we can infer
uniquely types for the vertices along the path, and in particular a type t for the initial
vertex u. Thus, the augmented RSM Â contains for every type s a unique path π̂s

corresponding to π which goes from a vertex (u, t) for some t (with empty context) to
(v, s) and that path π̂s has the same weight as the probability of the path π. The path
π̂s is composed of an edge from (u, t) to an entry ((b̂, en), t′) of the box b̂, then a path
that eventually reaches an exit ((b̂, ex), s′) of the box b̂ and finally an edge from the
exit to (v, s). Suppose that we have at hand for each entry (en, t′) and exit (ex, s′) of
each component Âi of the weighted RSM Â the sum h(en, t′, ex, s′) of the weights of all
the paths from the entry to the exit. Then we can use them to compute the quantity
xen,ex · fu,v,t,s which is the sum of the probabilities of all the paths π corresponding to
summary edges u → v for which type s at v is mapped back to type t at u. Namely,

56

(3a) xen,ex · fu,v,t,s =
∑
h(en, s′, ex, t′) where the summation ranges over all s′, t′ such

that Â has edges (u, t) → ((b̂, en), t′) and ((b̂, ex), s′) → (v, s).
We introduce a variable h(u, t, ex, s) for every pair consisting of a vertex (u, t) of

Â and an exit (ex, s) of its component, to represent the sum of the weights of all the
paths from (u, t) that exit at (ex, s). We will construct a set of fixed point equations,
whose solution will be the desired weights. The fixed point equations are similar to the
system of equations for an RMC, given in Section 2. The only difference now is that
the weights on the edges out of a vertex may not sum to 1. Let (3b) h = P̂ (h) be this
system of equations. We add the constraints (3c): h ≥ 0. Finally we add the following
constraints (3d):

∑
t h(u, t, ex, s) = x(u, ex) for every triple u, ex, s where u is a vertex

of component Ai of the RMC A, ex is an exit of the same component and s is a type.
Note that (u, t) is a vertex of component Âi and (ex, s) is an exit of the component. The
justification for these constraints is the following. For every path π from u to ex (with
empty context) and every type s there is a unique corresponding path in Â to (ex, s),
and this path starts at a vertex (u, t) for some t and has weight equal to the probability
of the path π. Summing over all such paths π gives the constraint (3d).

We claim now that having fixed the x variables (from constraints (1)), the system
(3b-d) has a unique solution. First, note that the intended solution h representing
the weights of the vertex-exit paths is the least fixed point solution of the system (3b-
c). This can be shown in the same way as it is shown for Recursive Markov Chains.
Namely, if we start with h = 0 and apply repeatedly the operator P̂ then the vector
will converge to the least fixed point solution and this coincides with the desired vector
of weights. If we pick a fixed point solution that is strictly greater in some component
h(u, t, ex, s) than the correct weights, then the solution will violate a constraint (3d).
We conclude that the system (3b-d) has a unique solution. It follows then that (3a)
determine uniquely the parameters fu,v,t,s.

To summarize, we have three sets of constraints (1),(2),(3). The quantities p′u,v in
constraints (2) (the transition probabilities of the summary chain) are ratios, so we first
rewrite (2) to clear the denominators so that they become also polynomial equations. If
we want to check whether the probability PA(ϕ), that a trajectory of A satisfies ϕ, is at
least a given threshold p, then we add the constraint (4)

∑
z(eninit, t) ≥ p, where the

summation ranges over all t with tn = 1. Then we call a procedure for the existential
theory of the reals on the system (1-4). Similarly we can determine if the probability
is less than p. We can also approximate the probability PA(ϕ) within any number k of
bits of precision by doing a binary search using the above procedure k times.

The size of the system of constraints is polynomial in |A| and exponential in |ϕ|. It
follows that the complexity is polynomial space in |A| and exponential in |ϕ|. For linear
RMCs, we can solve the constraints explicitly by solving a series of linear systems of
equations.

Theorem 34 Given RMC A, LTL formula ϕ and rational value p, we can determine
whether the probability PA(ϕ) that a trajectory of A satisfies ϕ is ≥ (or ≤) p in space

57

polynomial in A and exponential in ϕ. If A is a linear RMC, then we can compute
PA(ϕ) exactly in time polynomial in A and exponential in ϕ.

9 Conclusions

We presented algorithms and lower bounds for the model checking of Recursive Markov
chains against ω-regular specifications, given by Büchi automata or LTL formulas. The
complexity results for the two formalisms turn out to be similar, though they require
different algorithms because of the difference of the two formalisms in expressiveness and
succinctness. We studied both the qualitative problem, i.e., testing whether the specifi-
cation is satisfied with probability 1 or 0, and the quantitative problem, i.e. determining
whether the probability of satisfaction meets a given threshold, or approximating the
probability to a desired precision. For a given RMC A and property (Büchi automaton
B or LTL formula ϕ) we showed that the qualitative problem can be solved in PSPACE
in the size of the RMC and EXPTIME in the size of the property, and on the other
hand it is EXPTIME-complete even for fixed RMC A. We saw that the bottleneck
with respect to the RMC is the computation of the deficient (survivor) vertices u of the
RMC, i.e., the vertices that have positive probability ne(u) > 0 of not terminating. We
showed that once we identify these vertices, then the rest of the qualitative model check-
ing problem involves an intricate combinatorial analysis which depends polynomially on
the size of the RMC. As a consequence, for several important classes of RMCs (linear,
bounded, and 1-exit RMCs) the complexity is polynomial in the size of the RMC. Also
if the property is given by a deterministic Büchi automaton B, then the complexity in
|B| is polynomial. For the quantitative problem we showed that it can be solved in
PSPACE in the size of the RMC and EXPSPACE in the size of the property.

In the non-recursive case, there has been algorithmic work on the model checking of
systems that have both probabilistic and non-probabilistic actions, modeled by a Markov
Decision Process (or equivalently a Concurrent Markov Chain) (see e.g., [CY95, Var85])
resulting in algorithms and tight complexity results. In the recursive case, this is in
general not possible: as shown in [EY05b], there are ω-regular properties whose model
checking problem already for Recursive Markov Decision Processes (even for 1-exit linear
RMDPs) is undecidable.

Acknowledgement: Research partially supported by NSF Grants CCF-04-30946
and CCF-07-28736.

References

[ABE+05] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis.
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst., 27(4):786–
818, 2005.

58

[ABKPM06] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. B. Miltersen. On the
complexity of numerical analysis. In 21st IEEE Computational Complexity Conference,
2006.

[AEY01] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines. In
Proc. of 13th Int. Conf. on Computer-Aided Verification, pages 304–313, 2001.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Applications to model checking. In CONCUR’97, pages 135–150, 1997.

[BGR01] M. Benedikt, P. Godefroid, and T. Reps. Model checking of unrestricted hierarchical
state machines. In Proc. of ICALP’01, volume 2076 of LNCS, pages 652–666, 2001.

[Bil95] P. Billingsley. Probability and Measure. J. Wiley and Sons, 3rd edition, 1995.

[BKS05] T. Brázdil, A. Kučera, and O. Stražovský. Decidability of temporal properties of
probabilistic pushdown automata. In Proc. of STACS’05, 2005.

[BPR96] S. Basu, R. Pollack, and M. F. Roy. On the combinatorial and algebraic complexity
of quantifier elimination. J. of the ACM, 43(6):1002–1045, 1996.

[Can88] J. Canny. Some algebraic and geometric computations in PSPACE. In Prof. of 20th
ACM STOC, pages 460–467, 1988.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.
Journal of the ACM, 42(4):857–907, 1995.

[DEKM99] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic models of Proteins and Nucleic Acids. Cambridge U. Press, 1999.

[EKM04] J. Esparza, A. Kučera, R. Mayr. Model checking probabilistic pushdown automata.
In LICS 2004, 2004.

[EKM06] J. Esparza, A. Kucera, R. Mayr. Model cheking probabilistic pushdown automata.
Logical Methods in Computer Science, 2(1), pp. 1-31, 2006.

[EY05a] K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and
monotone systems of non-linear equations. In Proc. of 22nd STACS’05. Springer,
2005. Full expanded version available from http://homepages.inf.ed.ac.uk/kousha/.

[EY05b] K. Etessami and M. Yannakakis. Recursive Markov decision processes and recursive
stochastic games. In Proc. of 32nd Int. Coll. on Automata, Languages, and Program-
ming (ICALP’05), 2005.

[EY05c] K. Etessami and M. Yannakakis. Algorithmic Verification of Recursive Probabilistic
State Machines. In Proc. 11th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’05), 2005.

[FKK+] R. Fagin, A. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Su-
dan, and A. Tomkins. Random walks with “back buttons”. ACM Symp. on Theory
of Computing, pages 484–493, 2000. Full version in Annals of Applied Probability, 11,
pp 810-862, 2001.

[GGJ76] M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric prob-
lems. In 8th ACM Symp. on Theory of Computing, pages 10–22, 1976.

59

[HJV05] P. Haccou, P. Jagers, and V. A. Vatutin. Branching Processes: Variation, Growth,
and Extinction of Populations. Cambridge U. Press, 2005.

[Har63] T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.

[KA02] M. Kimmel and D. E. Axelrod. Branching processes in biology. Springer, 2002.

[Kwi03] M. Kwiatkowska. Model checking for probability and time: From theory to practice.
Proc. 18th IEEE LICS, pages 351-360, 2003.

[MS99] C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.
MIT Press, 1999.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations of
Comp. Sci., pages 46–57, 1977.

[PZ93] A. Pnueli and L. D. Zuck. Probabilistic verification. Information and Computation,
pages 1-29, 1993.

[Ren92] J. Renegar. On the computational complexity and geometry of the first-order theory
of the reals. parts i,ii, iii. J. of Symbolic Computation, pages 255–352, 1992.

[Tiw92] P. Tiwari. A problem that is easier to solve on the unit-cost algebraic ram. Journal
of Complexity, pages 393–397, 1992.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
Proc. of 26th IEEE Symp. on Foundations of Comp. Sci., pages 327–338, 1985.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st Symp. on Logic in Comp. Sci. (LICS), pages 322–331, 1986.

[YE05] M. Yannakakis and K. Etessami. Checking LTL Properties of Recursive Markov
Chains. In Proc. 2nd Intl. Conf. on Quantitative Evaluation of Systems, IEEE, 2005.

60

