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We introduce Recursive Markov Decision Processes (RMDPs) and Recursive Simple Stochastic Games
(RSSGs), which are classes of (finitely presented) countable-state MDPs and zero-sum turn-based (perfect
information) stochastic games. They extend standard finite-state MDPs and stochastic games with a recur-
sion feature. We study the decidability and computational complexity of these games under termination
objectives for the two players: one player’s goal is to maximize the probability of termination at a given
exit, while the other player’s goal is to minimize this probability. In the quantitative termination problems,
given an RMDP (or RSSG) and probability p, we wish to decide whether the value of such a termination
game is at least p (or at most p); in the qualitative termination problem we wish to decide whether the
value is 1. The important 1-exit subclasses of these models, 1-RMDPs and 1-RSSGs, correspond in a precise
sense to controlled and game versions of classic stochastic models, including multi-type Branching Processes
and Stochastic Context-Free Grammars, where the objective of the players is to maximize or minimize the
probability of termination (extinction).

We provide a number of upper and lower bounds for qualitative and quantitative termination problems
for RMDPs and RSSGs. We show both problems are undecidable for multi-exit RMDPs, but are decidable for
1-RMDPs and 1-RSSGs. Specifically, the quantitative termination problem is decidable in PSPACE for both
1-RMDPs and 1-RSSGs, and is at least as hard as the square root sum problem, a well-known open problem
in numerical computation. We show that the qualitative termination problem for 1-RMDPs (i.e. a controlled
version of branching processes) can be solved in polynomial time both for maximizing and minimizing 1-
RMDPs. The qualitative problem for 1-RSSGs is in NP ∩ coNP, and is at least as hard as the quantitative
termination problem for Condon’s finite-state simple stochastic games, whose complexity remains a well
known open problem. Finally, we show that even for 1-RMDPs, more general (qualitative and quantitative)
model checking problems with respect to linear-time temporal properties are undecidable even for a fixed
property.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
meric Algorithms and Problems; G.3 [Probability and Statistics]: Markov Processes

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Recursive stochastic processes, Markov decision processes, stochastic
games, multi-type branching processes, stochastic context-free grammars

1. INTRODUCTION

Markov Decision Processes (MDPs) are a fundamental model for stochastic dynamic
optimization, with widespread applications in many fields (see, e.g., [Puterman 1994]).
Stochastic games generalize MDPs with multiple players and are a basic model in
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game theory (see, e.g., [Filar and Vrieze 1997; Neyman and Sorin 2003]). In a stochas-
tic game, each player gets to choose an action at a state, and their joint choice deter-
mines a probability distribution on the next state. Fixing an initial state, and fixing
a strategy for every player, determines a probability space of runs (trajectories) of the
stochastic game. In a 2-player zero-sum stochastic game, there is some objective func-
tion (which can in general be any (measurable) function of the entire trajectory) and
one player’s goal is to maximize (the expected value of) this objective while the other
aims to minimize it. Many such objectives have been studied in the literature for many
different applications. Markov decision processes are simply the 1-player (1 controller)
version of such games.
In general, the state space of an MDP or a stochastic game can be finite or infinite.

The computational study of MDPs and games, and analysis of their computational
complexity, has been largely restricted to the finite state case. Of course, it is not possi-
ble to computationally treat arbitrary infinite-state games, because we can not handle
infinite-sized objects as input. This is possible only if we have a finite representation,
that is, each finite instance represents an underlying infinite-state system.
In this paper we introduce and study a class of finitely presentable, countable

state, MDPs and 2-player, zero-sum, turn-based (perfect information) stochastic games,
which arise naturally as models of probabilistic procedural programs, and which also
relate to classic infinite-state automata theoretic models and stochastic models, and
we study the decidability and computational complexity of basic problems related to
computing the value and optimal strategies in such games. The MDPs and games that
we study can be seen on the one hand as extensions of usual finite-state MDPs and
games with a recursive feature. Alternatively, they can also been seen as extensions
of recursive stochastic models (e.g., recursive Markov chains and branching processes)
with control and game features.
The games we study are natural generalizations of finite-state Simple Stochastic

Games (SSGs), introduced by Condon [1992]. These are turn-based (perfect informa-
tion) stochastic games, meaning at each state only one player gets to choose an ac-
tion, and the goal of one player is to maximize the probability of reaching a given
terminal state, while the other player’s aim is to minimize this probability. From a
computational point of view, finite-state SSGs generalize several other well studied
games in computer science and other fields, such as parity games ([Emerson and Jutla
1991]) and mean payoff games ([Ehrenfeucht and Mycielski 1979; Zwick and Paterson
1996]), in the sense that there are polynomial time reductions from the main decision
problems associated with these other games to the quantitative termination decision
problem associated with SSGs. The quantitative termination problem for SSGs (i.e., is
the game value ≥ 1/2?), already presents a major challenge: it is in NP ∩ coNP, but
it is a well-known open problem whether there is a polynomial time algorithm for it
(see [Condon 1992]). (The same open complexity status holds also for the mentioned
decision problems for the “simpler” parity and mean payoff games.)
The MDPs and games we study can be viewed also as controlled and game exten-

sions of Recursive Markov Chains, in the same way that ordinary finite-state MDPs
and games generalize finite-state Markov chains. Recursive Markov Chains (RMCs), a
class of finitely presented countable state Markov chains, were introduced and studied
in ([Etessami and Yannakakis 2009]) as a natural model of probabilistic procedural
programs and other systems that exhibit both recursive and probabilistic behavior. In-
formally, a RMC consists of a (finite) collection of finite state Markov chains that can
call each other in a potentially recursive manner like recursive procedures. A recur-
sive call to a component Markov chain initiates its execution at one of a set of desig-
nated entry nodes; if and when the called component reaches one of a set of designated
exit nodes, the recursive call terminates and the Markov chain that initiated the call
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resumes execution. RMCs define a class of denumerable Markov chains with a rich
theory. Their computational problems subsume in a precise sense central questions for
a number of other classic stochastic models including multi-type Branching Processes
(BPs) (see, e.g., [Harris 1963]), Stochastic Context-Free Grammars (SCFGs) (see, e.g.,
[Manning and Schütze 1999]), and (discrete-time) Quasi-Birth Death processes (see
[Neuts 1981; Latouche and Ramaswami 1999]), as well as more recently studied mod-
els like Backbutton Processes ([Fagin et al. 2000]). Both SCFGs and BPs correspond
in a precise sense to 1-exit RMCs (1-RMCs): RMCs in which each component Markov
chain has 1 terminating exit state where it can return control back to the location (in
some component) that it was called from. General multi-exit RMCs are equivalent in
a precise sense to probabilistic Pushdown Systems (pPDSs). Pushdown automata are
a classic automata theoretic model, and their probabilistic versions, pPDSs, have also
been studied recently in connection to verification of probabilistic programs ([Esparza
et al. 2004; Brázdil et al. 2005]). See [Etessami and Yannakakis 2009] where these
relationships are detailed.
In the context of probabilistic program verification, it is quite natural and useful

to extend RMCs with nondeterminism (i.e., a controller), where some states are non-
deterministically controlled by the system or environment while others exhibit prob-
abilistic behavior. Indeed, finite-state MDPs have been studied extensively for ver-
ification of probabilistic systems, and verification tools already exist for them (see,
e.g., [Courcoubetis and Yannakakis 1998; 1995; Vardi 1985; Hart et al. 1983; Baier
and Kwiatkowska 1998; de Alfaro et al. 2000; Kwiatkowska 2003]). Simple stochastic
games extend MDPs further with a second (adversarial) player. They can also be used
to model and analyze the interactions between a system with both probabilistic and
non-deterministic/controlled behavior, and its (adversarial) environment.
In this paper we study such optimization and game extensions of RMCs: we intro-

duce Recursive Markov Decision Processes (RMDPs) and Recursive Simple Stochastic
Games (RSSGs), which define natural classes of countable-state MDPs and SSGs, re-
spectively. We should emphasize that these games are very different from, and should
not be confused with, Everett’s classic notion of recursive games [Everett 1957]. Ev-
erett’s games are in fact a particular class of finite-state (imperfect information) zero-
sum stochastic games where distinct rewards are accumulated only at specified ter-
minal nodes at which the game halts. This clash in names with Everett’s games is
unfortunate, but the use of the word recursive is appropriate for our setting of RMDPs
and RSSGs, where recursion is used in the usual computer science sense as in recur-
sive programs.

Example 1.1.

An example of a Recursive Simple Stochastic Game (RSSG) is depicted in Figure 1.
In this example, there are two components, A1 and A2. In each component, there

are three kinds of nodes, which are denoted by diamonds, triangles, and black dots,
respectively. The nodes denoted by a diamond (namely, nodes en and w) are controlled
by Player 1 (the maximizer), whereas nodes denoted by a triangle (namely, node en′

and node z) are controlled by Player 2 (the minimizer). The remaining nodes, which
are denoted by black dots, are probabilistic nodes.
Each component of a RSSG has entry nodes (where it can start execution) and exit

nodes (where it terminates). In this RSSG, both components have only one entry node:
in A1 the only entry node is en, and in A2 the only entry node is en′. Furthermore, in
this RSSG both components have two exit nodes. In component A1 the two exit nodes
are ex1 and ex2. In component A2 the two exit nodes are ex′

1 and ex′
2. In general, when

we depict a RSSG, the entry nodes of each component are depicted on the left side of
each component, and the exit nodes are depicted on the right side.
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Fig. 1. A sample Recursive Simple Stochastic Game

In addition to nodes, the two components A1 and A2 both contain boxes, which repre-
sent “subroutine calls” to other components. In particular, A1 contains one box, called
b1, which is “mapped” to A2, meaning it represents a subroutine call to A2. A2 contains
two boxes: b′1 which is mapped to A1, and b′2 which is mapped to A2.
Associated with each box in each component, there are call port nodes and return

port nodes (in the example, these are denoted by black dots on the left and right side
of each box). The call ports of each box are in 1-to-1 correspondence with the entries of
the component the box is mapped to. Since in this example each component has only
one entry, this means the unique call port of each box corresponds to the unique entry
of the component the box maps to. For instance, the unique call port of box b′1, which we
can name using the pair (b′1, en), corresponds to (maps to) the entry en of component
A1. Likewise, the return ports of each box are in 1-to-1 correspondence with the set
of exits of the component that the box is mapped to. So, for instance, the two return
ports of box b1, which can be named by the pairs (b1, ex

′
1) and (b1, ex

′
2), correspond to

the exits ex′
1 and ex′

2 of component A2, respectively. (Note that distinct return ports of
a box capture at an abstracted level the distinct possible values that can be returned
by the procedure that is called by the box. Likewise, distinct call ports can be used to
capture distinct possible parameter values that can be passed to the procedure.)
Intuitively, this finitely-specified RSSG corresponds to an infinite-state stochastic

game, in the following way: imagine that we repeatedly replace all the boxes in both
of the two components by a copy of the component to which each given box is mapped
to, by appropriately attaching (or identifying) the call ports and return ports of each
box to the corresponding entries and exits of the corresponding copy we have made of
the component. This however is clearly not a terminating procedure, because in the
presence of unbounded recursion there will always remain more boxes that we have to
“expand”. However, in the limit this procedure creates, in place of each component, an
infinite-state transition graph for a simple stochastic game.
Furthermore, if we also specify a start node in some component, for example the

entry node en in component A1, and if we additionally specify a target exit node in the
same component, for example ex1, then the RSSG together with this information fully
defines an infinite-state simple stochastic game, where the goal of Player 1 (maximizer)
is to maximize the probability of eventually terminating (exiting) at ex1, starting at en,
whereas the goal of Player 2 (minimizer) is to minimize this probability.
To be more precise, the states of the infinite-state simple stochastic game are given

by pairs of the form 〈β, v〉, where v is a node and β = β1 . . . βm is a possibly empty string
(sequence) of boxes, which denote the call stack. A play of the game begins in node en
with an empty call stack, i.e., in state 〈ǫ, en〉, where ǫ is the empty string, and the aim of
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Player 1 (maximizer) is to maximize the probability that the game eventually reaches
the exit node ex1 with an empty call stack, i.e., reaches the state 〈ǫ, ex1〉; whereas the
aim of Player 2 (minimizer) is to minimize this probability.
It follows from very general results about stochastic games that such RSSG termi-

nation games are determined, meaning they have a value. The computational goal is
to compute (or approximate) this value.

Of course, if a given RSSG happens to only contain probabilistic nodes, then it is a
Recursive Markov Chain (RMC) and it defines an infinite-state Markov chain in the
same way. Likewise, it a given RSSG only contains probabilistic nodes and nodes be-
longing to Player 1 (or, only to Player 2, respectively), then it is a RecursiveMarkov De-
cision Process (RMDP),and it defines a infinite-state Markov decision process (MDP),
where the goal of the single player (the controller) is to maximize (respectively, mini-
mize) the specified termination probability.
In the stochastic dynamic programming literature MDPs are studied under many

different reward criteria, such as average reward, discounted reward, etc. Our original
motivations come from verification of probabilistic systems, and thus we study RMDPs
and RSSGs under termination criteria which are central to all of the more general
temporal analyses one might wish to perform on such models, such as model check-
ing against regular properties ([Courcoubetis and Yannakakis 1998]). Specifically, we
consider RMDPs where the objective of the controller is to maximize or to minimize
the probability of termination at a given exit, and we consider RSSGs which are the
natural two-player zero-sum extension of this, i.e., where player 1’s goal is to maximize
this probability and player 2’s goal is to minimize it.
The central computational questions we study in this paper are:

(1) Quantitative termination problems: Given an RMDP (or RSSG) A and a probability
p, is the associated termination game value ≥ p (or ≤ p), or approximate the game
value to within a desired error ǫ > 0;
(2) Qualitative termination problems: Is the game value exactly 1?
We show that for general multi-exit RMDPs and RSSGs, these questions are all un-

decidable. Our positive results apply to 1-exit RMDPs (abbreviated as 1-RMDP) and
1-exit RSSGs (1-RSSGs), where each component is restricted to have only one exit.
1-RMDPs and 1-RSSGs correspond to controlled and game extensions, respectively, of
both BPs and SCFGs. Branching processes (BPs) are of course an important class of
stochastic processes, dating back to the early work of Galton and Watson in the 19th
century (they studied the single-type case), and continuing in the 20th century in the
work of Kolmogorov and Sevastyanov [1947], Harris and others for multi-type BPs and
beyond (see, e.g., [Harris 1963; Athreya and Ney 1972; Jagers 1975; Kimmel and Ax-
elrod 2002; Haccou et al. 2005]). BPs have been used in a wide variety of applications,
including in population genetics ([Haccou et al. 2005]), nuclear chain reactions ([Ev-
erett and Ulam 1948]), and biology [Jagers 1975; Kimmel and Axelrod 2002]. SCFGs
are fundamental models in statistical natural language processing (see, e.g., [Manning
and Schütze 1999]), and are used also in computational biology (for example for RNA
modeling ([Sakakibara et al. 1994]).
The termination problems for 1-RMDPs (and 1-RSSGs) capture precisely the extinc-

tion problems for a controlled (respectively, 2-player game) version of BPs, which we
shall call (multi-type) Branching Markov Decision Processes, abbreviated as BMDPs
(and resp., (multi-type) Branching Simple Stochastic Games, abbreviated as BSSGs).
Such extinction problems for BMDPs and BSSGs are also equivalent to termination
problems for controlled/game versions of SCFGs. In more detail, in a BMDP (BSSG)
there are a finite number of distinct types. The reproduction dynamics of some types
is controlled by a player, whose actions affect the probability distribution of the off-
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springs of the type in the next generation (in the case of BSSGs, each such controlled
type is controlled by a specific one of the two players). The reproduction of other types
is probabilistic, i.e., governed by a (finite support) probability distribution over multi-
sets of types, as in ordinary BPs. We are interested in what is the maximum or min-
imum probability (respectively, game value) of eventual extinction, starting from a
given single type, or more generally, starting from a given initial population (the goal
of maximizing or minimizing this probability yields distinct problems for BMDPs). It is
important to point out that the termination and extinction probability even for purely
probabilistic 1-RMCs and BPs can be irrational, and thus we can not compute it ex-
actly, but rather we can ask various (qualitative or quantitative) decision questions
about it, or approximate it. The same applies to the extinction values in the optimiza-
tion and game setting of 1-RMDPs and 1-RSSGs (i.e., BMDPs and BSSGs).
In [Etessami and Yannakakis 2009] it was shown that extinction problems for BPs

can be viewed as termination problems for 1-RMCs, and vice versa, so that the two
problems are polynomial time equivalent. We show that the extinction problems for
BMDPs (BSSGs) can be viewed as termination problems for 1-RMDPs (1-RSSGs, re-
spectively). Thus, our results on 1-RMDPs and 1-RSSGs apply equally to BMDPs and
BSSGs.
The BMDPmodel is well suited for analyzing population dynamics under worst-case

(or best-case) assumptions for some types and probabilistic assumptions for other
types. It is a natural generalization of the classic BP model to the optimization
setting. As such it has a number of potential applications. There has been some
work in the Operations Research literature, going back to the 1970s, on such BMDP
models (see [Pliska 1976; Rothblum and Whittle 1982]). However, the existing work
typically focuses on (discounted and long-run average) reward criteria and growth rate
optimization criteria, and also it does not consider algorithmic and computational com-
plexity questions. The BMDP model under the basic extinction probability criterion,
and its associated algorithmic problems, appear not to have been studied previously,
despite the rich literature on branching processes, and nor have their 2-player game
generalizations, BSSGs. Indeed, even classifying the computational complexity of
basic qualitative and quantitative extinction problems for purely probabilistic BPs
and SCFGs had received little attention prior to our predecessor work on RMCs and
1-RMCs ([Etessami and Yannakakis 2009]).

Main Results
We now outline our main results of this paper (with the key results highlighted in

bold):

—We associate with every 1-RMDP and 1-RSSG, with n vertices, a system of monotone
nonlinear polynomial min/max equations, in n variables, which has the vector form
x = P (x), where x = (x1, . . . , xn), and the equations are xi = Pi(x), where for i =
1, . . . , n, Pi(x) is an algebraic expression over the basis {+, ∗, min, max} which uses
only positive rational coefficients and constants. Such a system defines a monotone
operator P : R

n
≥0 7→ R

n
≥0.

[Main Result 0]: We show that the Least Fixed Point solution of this system, q∗ ∈
R

n
≥0, exists and that q∗i is precisely the value of the termination game starting at

vertex i of the 1-RSSG.
These equations generalize both the standard linear-min-max Bellman’s equations
for certain basic classes of finite-state MDPs (see, e.g., [Puterman 1994; Filar and
Vrieze 1997]) and the monotone systems of nonlinear polynomial equations for RMCs
and 1-RMCs that were studied in [Etessami and Yannakakis 2009]. They imme-
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diately yield a natural value iteration method which converges monotonically to
the game values. Namely, beginning with the vector x0 = 0, iterate xi+1 = P (xi),
i = 1, 2, . . .. This sequence converges, in the limit, to the game values, but is in the
worst case very slow to converge to within a desired error. (Specifically, even for a
fixed 1-RMC it can require 2i iterations to converge to within i bits of precision, see
[Etessami and Yannakakis 2009]. Furthermore, using examples from [Esparza et al.
2010] one can show that for a 1-RMC with encoding size O(n), value iteration can
require 22n

iterations, starting from 0, to converge to within a single bit of precision.)
— [Main Result 1]: We prove a strong Stackless & Memoryless (SM) Determinacy re-

sult for 1-RSSG termination games: We show that both players have optimal deter-
ministic strategies that use neither the prior history of the game, nor the contents
of the call stack (of pending recursive calls), but only the current vertex in order to
choose their next move. Our proof uses a strategy improvement argument, and is
established by studying subtle analytic properties of certain power series associated
with these stochastic games. The technique we develop is rather general and flexible,
and adaptations of it have already had applications for other classes of stochastic
games. We shall describe some of these extensions in the conclusion section.
We observe on the other hand that the existence of optimal strategies fails badly
even for (maximizing) 2-exit RMDPs. Namely, optimal strategies, of any kind, do
not always exist for 2-exit RMDPs under the objective of maximizing termination
probability, only ǫ-optimal strategies exist, and in general the SM strategies can all
be the worst possible strategies. The same holds on 1-RMDPs where the goal is to
maximize the probability of reaching a given vertex (not necessarily an exit) in any
calling context (i.e., any call stack), rather than terminating at an exit.

—Using the nonlinear-min-max equations, we show that the quantitative termination
decision problems for 1-RMDPs and 1-RSSGs can be decided in PSPACE by employ-
ing PSPACE decision procedures for the existential theory of reals. This matches
our PSPACE upper bound for the special case of 1-exit RMCs in [Etessami and Yan-
nakakis 2009] and, as shown there, it can not be improved substantially without
resolving long standing open problems in the complexity of numerical computation,
namely the square-root sum problem, as well as certain fundamental arithmetic cir-
cuit decision problems. Both these problems reduce to deciding whether the termina-
tion probability of a 1-RMC is ≥ p, and it has been an open question whether these
problems are even contained in NP.1

—We give a simple algorithm that determines if the value of the termination game for
1-RSSGs (and 1-RMDPs) is 0 in polynomial time.

— [Main Result 2:] We show that for both maximizing and minimizing 1-RMDPs, the
qualitative termination problem (is the maximum/minimum termination probability
equal to 1?) can be decided in polynomial time. We do this by providing criteria for
almost sure termination for 1-RMDPs based on the optimal spectral radius of associ-
ated families of non-negative matrices, and using graph decomposition methods and
linear programming to obtain the P-time upper bound.
It follows from this and our SM-determinacy result that the qualitative termination
problem for 1-RSSGs can be decided in NP ∩ coNP.

—We show that the well known quantitative termination problem for Condon’s finite-
state simple stochastic games reduces (via a polynomial-time many-one reduction) to
the qualitative termination problem for 1-RSSGs. We do not know a reduction in the
other direction.

1In the conclusion section, we shall reference much more recent work together with Alistair Stewart [Etes-
sami et al. 2012b], in which we have shown that quantitative termination approximation problems for 1-
RMDPs (and 1-RSSGs) can be solved in P-time (in FNP, respectively).
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We note that, by contrast, for finite-state SSGs the qualitative termination problem
is decidable in polynomial time. We in fact show a more general result: it is decidable
in polynomial time also for the restricted class of 1-RSSGs that are linearly recursive.
For the class of linearly-recursive (maximizing or minimizing) 1-RMDPs, we can in
fact compute exactly the value (the optimal termination probability) in polynomial
time (it is a rational number in this case).

— [Main Result 3]: We show that for multi-exit RMDPs and RSSGs the situation is
far worse. Quantitative termination for general (maximizing or minimizing) RMDPs
is undecidable, even when the number of exits in bounded by a fixed constant, and
even when the RMDP is only linearly recursive. Furthermore, even the qualitative
termination problem (both in the supremum = 1 sense and in the witness sense)
for (both maximizing and minimizing) multi-exit RMDPs is undecidable. It is also
undecidable for any fixed ǫ > 0, to distinguish whether the supremum termination
probability for a maximizing multi-exit RMDP is 1 or is less than ǫ. So the optimal
probabilities can not even be approximated in a strong sense for maximizing multi-
exit RMDPs, with any amount of resources.
Furthermore, we show that these undecidability holds already in the setting of 1-exit
RMDPs, for both the quantitative and qualitative model checking problems for 1-
RMDPs against regular, ω-regular, or LTL properties. More specifically, we show that
already for a fixed LTL (or regular) property, and given a labeled 1-RMDP as input, it
is undecidable whether there exists a strategy for the controller under which the LTL
property holds with probability 1. Moreover, we show that the optimal probability can
not be computed to within any nontrivial constant (additive) factor.
Our undecidability results are derived in part from classic and more recent undecid-
ability results for Probabilistic Finite Automata (PFA) [Paz 1971; Condon and Lipton
1989; Blondel and Canterini 2003]. We in fact show that PFAs can be viewed as es-
sentially a special case of linearly-recursive multi-exit RMDPs.

Related work. Both MDPs and stochastic games have a vast literature, dating back
to Bellman and Shapley (see, e.g., [Puterman 1994; Feinberg and Shwartz 2002; Fi-
lar and Vrieze 1997; Neyman and Sorin 2003]). In particular, there are well-known
efficient algorithms for optimizing finite-state MDPs with reward-based objectives.
Finite-state MDPs where the objectives are specified by desired properties of the tra-
jectories have also been studied for a long time, in connection with the verification of
finite state MDPs against temporal properties (see, e.g., [Courcoubetis and Yannakakis
1998; 1995; Vardi 1985; Hart et al. 1983]). [Courcoubetis and Yannakakis 1998] pro-
vides efficient algorithms for ω-regular model checking of finite-state MDPs.
Our earlier work [Etessami and Yannakakis 2009; 2012] developed the basic theory

of RMCs and studied efficient algorithms for both their reachability analysis andmodel
checking. We showed, among many other results, that qualitative termination (and
even model checking of ω-regular properties) for 1-RMCs can be decided in polynomial
time in the size of the 1-RMC, and that quantitative model checking of general RMCs
can be done in PSPACE in the size of the RMC. Although countable state MDPs are
studied extensively in the MDP literature (see, e.g., [Puterman 1994; Feinberg and
Shwartz 2002]), the concise representations afforded by RMDPs, and its algorithmic
properties, have apparently not been studied.
Our polynomial time algorithms for deciding qualitative termination problems for 1-

RMDPs were partly inspired by work by Denardo and Rothblum [2005; 2006] onMulti-
Matrix Multiplicative Systems. They study families of square nonnegative matrices,
which arise from choosing each matrix row independently from a choice of rows, and
they give LP characterizations of when the spectral radius of all matrices in the family

Journal of the ACM, Vol. 0, No. 0, Article 0, Publication date: 2014.



Recursive Markov Decision Processes and Recursive Stochastic Games 0:9

will be ≥ 1 or > 1. None of our results follow from theirs, but we use techniques similar
to theirs, along with other techniques, to obtain our upper bounds.
This paper is based on two conference papers that appeared in 2005 and 2006 [Etes-

sami and Yannakakis 2005; 2006]. Since then, a manuscript of this full paper has been
made available on our web page. Since the publication of the conference papers, there
have been a large number of follow-up papers by ourselves and by others, building on
this work and extending it in various different directions. We shall describe some of
this subsequent work in the conclusion section of this paper.
Here we want to particularly mention one of these subsequent works, which was

published by ourselves in 2006 ([Etessami and Yannakakis 2008]), where we extended
the models of this paper to recursive concurrent stochastic games (RCSGs), where the
game is no longer turn-based, both players choose moves simultaneously and indepen-
dently at each state, and the game is thus an imperfect information game. Finite-state
concurrent stochastic games have been studied in the verification literature in com-
puter science (see, e.g., [de Alfaro et al. 2007; de Alfaro and Majumdar 2004; Chatterjee
et al. 2006]). RCSGs constitute a more general model than RSSGs, and the general-
ization changes the nature of the model in various ways, both in terms of the classes
of strategies required for optimality, as well as for the computational complexity of
relevant problems. We showed in [Etessami and Yannakakis 2008] that some com-
plexity results which hold for 1-exit RSSGs can be suitably extended to 1-exit RCSGs,
whereas other results can not be extended because of concrete complexity-theoretic
reasons. The journal version of [Etessami and Yannakakis 2008] has already appeared
in a special issue of invited papers selected from the conferencewhere it was published.
Because of the timing of the publication of [Etessami and Yannakakis 2008], we would
like to clarify its precise relationship to this paper. Most importantly: all of the results
in [Etessami and Yannakakis 2008] assume as given, and directly build upon, the re-
sults established in this paper. In particular, although some of the results in [Etessami
and Yannakakis 2008] generalize some results in this paper, their proofs use, without
proof, results that we prove for the first time in this paper, which were only announced
in the conference versions of this paper [Etessami and Yannakakis 2005; 2006].
Whenever it is appropriate to do so throughout this paper, we will point out cases

where results in [Etessami and Yannakakis 2008] are related to, or generalize, re-
sults established in this paper. We will not reprove any results here which are proved
directly in [Etessami and Yannakakis 2008], but in order to make this paper self-
contained, we will repeat some arguments whose generalizations appear in [Etessami
and Yannakakis 2008]. We will discuss in more detail the results established in [Etes-
sami and Yannakakis 2008], as well as in other more recent papers, in the conclusions
of this paper, where it will be easier to compare them to results established here.
In the conclusion section we shall also mention some more recent and closely re-

lated joint work with Alistair Stewart [Etessami et al. 2012a; 2012b], in which we
have shown that quantitative termination approximation problems for 1-RMDPs can
be solved in polynomial time, using algorithms based on a generalization of Newton’s
method. (And it follows from these results that for 1-RSSGs the termination value ap-
proximation problem is in FNP.) We will elaborate on these results in the conclusion
section.

Organization of the paper.
The rest of the paper is organized as follows. In Section 2 we define RMDPs and
RSSGs, and define the basic problems that we will study. Sections 3-9 deal with 1-exit
RMDPs and RSSGs. In Section 3 we derive a system of nonlinear min-max equations
for 1-RSSGs, whose least nonnegative solution (the ‘least fixed point’) is the vector of
game values for all the different starting vertices of the game. In Section 4 we show
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that both players have deterministic stackless and memoryless optimal strategies in
these games. In Section 5 we show that the quantitative termination problems for
1-RSSGs (and 1-RMDPs) can be solved in PSPACE. We also show that the value 0
question for 1-RSSGs can be solved in polynomial time. Section 6 concerns the qual-
itative termination (value=1) problem for 1-RMDPs. We show that the problem can
be solved in polynomial time for both maximizing and minimizing 1-RMDPs. Section
7 concerns the qualitative problem for 1-RSSGs; we show that it is in NP∩coNP, and
that it is at least as hard as the quantitative problem for finite-state (not recursive)
simple stochastic games considered by Condon. Section 8 concerns linearly recursive
1-RMDPs and 1-RSSGs; we give polynomial-time algorithms for the quantitative prob-
lem for 1-RMDPs, and for the qualitative problem for 1-RSSGs. In Section 9 we define
Branching Markov Decision Processes and Games, and establish their relation with 1-
RMDPs and 1-RSSGs respectively. Section 10 shows undecidability of the termination
problems for multi-exit RMDPs (and 1-RSSGs). We also briefly recall there the basic
concepts related to model checking, and show that model checking of ω-regular or LTL
properties for (maximizing or minimizing) 1-RMDPs is undecidable. We conclude in
Section 11, where we also describe some of the more recent results that have built on
and extended the results in this paper.

2. DEFINITIONS AND BACKGROUND

In this section we will give the basic definitions on the models and the problems that
we will study. For intuition regarding the definition, the reader is referred back to the
example RSSG described in Example 1.1, and depicted in Figure 1.

2.1. Recursive Simple Stochastic Games and Subclasses

A Recursive Simple Stochastic Game (RSSG), A, is a tuple A = (A1, . . . , Ak), where
each component Ai = (Ni, Bi, Yi, Eni, Exi, pli, δi) consists of:

—A set Ni of nodes, with a distinguished subset Eni of entry nodes and a (disjoint)
subset Exi of exit nodes.

—A set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . , k} that assigns to every box (the
index of) a component. To each box b ∈ Bi, we associate a set of call ports, Callb =
{(b, en) | en ∈ EnY (b)}, and a set of return ports, Returnb = {(b, ex) | ex ∈ ExY (b)}.
Let Calli = ∪b∈Bi

Callb, Return
i = ∪b∈Bi

Returnb, and let Qi = Ni ∪ Calli ∪ Returni

be the set of all nodes, call ports and return ports; we refer to these as the vertices of
component Ai.

— A mapping pli : Qi 7→ {0, 1, 2} that assigns to every vertex a player. Player 0 repre-
sents “chance” or “nature”, player 1 is called the maximizing player and player 2 the
minimizing player. We assume pli(u) = 0 for all u ∈ Calli ∪ Exi.

— A transition relation δi ⊆ (Qi× (R∪{⊥})×Qi), where for each tuple (u, x, v) ∈ δi, the

source u ∈ (Ni \Exi) ∪Return
i, the destination v ∈ (Ni \Eni) ∪Calli, and x is either

(i) a real number pu,v ∈ (0, 1] (the transition probability) if pli(u) = 0, or (ii) x = ⊥
if pli(u) = 1 or 2. Furthermore they must satisfy the consistency property: for every
u ∈ pl

−1
i (0),

∑
{v′|(u,pu,v′ ,v′)∈δi}

pu,v′ = 1, unless u is a call port or exit node, neither of

which have outgoing transitions, in which case by default
∑

v′ pu,v′ = 0.

We use the symbols (N, B, Q, δ, etc.) without a subscript, to denote the union over all
components. Thus, eg. N = ∪k

i=1Ni is the set of all nodes of A, δ = ∪k
i=1δi the set of all

transitions, etc.
For computational purposes, we assume as usual that the transition probabilities

pu,v are rational, and are specified by giving in binary the numerator and denominator.
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The size of a RSSG is the space (number of bits) that is needed for its description,
including all the nodes, boxes, and transitions, as well as the transition probabilities.
An RSSG A defines a global denumerable Simple Stochastic Game (SSG) MA = (V =

V0 ∪ V1 ∪ V2, ∆, pl) as follows. The global states V ⊆ B∗×Q of MA are pairs of the form
〈β, u〉, where β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A.
The sequence β is the stack of pending recursive calls; we will refer to it sometimes as
the context of the state. The empty sequence is denoted by ǫ. We will sometimes write
〈u〉 instead of 〈ǫ, u〉 for the state where the RSSG is at vertex u with empty context, i.e.
no pending recursive call.
More precisely, the states V ⊆ B∗ × Q and transitions ∆ are defined inductively as

follows:

(1) 〈ǫ, u〉 ∈ V , for u ∈ Q.
(2) if 〈β, u〉 ∈ V and (u, x, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉) ∈ ∆.
(3) if 〈β, (b, en)〉 ∈ V and (b, en) ∈ Callb, then 〈βb, en〉 ∈ V and (〈β, (b, en)〉, 1, 〈βb, en〉) ∈ ∆.
(4) if 〈βb, ex〉 ∈ V and (b, ex) ∈ Returnb, then 〈β, (b, ex)〉 ∈ V and (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈ ∆.

Item 1 corresponds to the possible initial states: the RSSG starts initially at some
vertex with no pending recursive calls. Item 2 corresponds to control staying within a
component. Item 3 is when a new recursive call is initiated, i.e. a component is entered
via a box. Item 4 is when a call terminates, control exits a box and returns to the calling
component.
The player mapping is extended from the set Q of vertices of the RSSG A to the set

V of states of MA: the mapping pl : V 7→ {0, 1, 2} is given by pl(〈β, u〉) = pl(u). The set
of vertices V is partitioned into V0, V1, and V2, where Vi = pl−1(i).
We consider MA with various initial states of the form 〈ǫ, u〉, denoting this by Mu

A.
Some states of MA are terminating states and have no outgoing transitions. These are
states 〈ǫ, ex〉, where ex is an exit node. If we wish to view MA as a non-terminating
SSG, we can consider the terminating states as absorbing states of MA, with a self-
loop of probability 1.
An RSSG where no vertices are assigned to the minimizing player (and hence V2 = ∅)

is called a maximizing Recursive Markov Decision Process; similarly, an RSSG where
no vertices are assigned to the minimizing player (and hence V2 = ∅) is called a min-
imizing Recursive Markov Decision Process. An RSSG where all the vertices are as-
signed to player 0 (i.e., V1 ∪ V2 = ∅) is called a Recursive Markov Chain (RMC) ([Etes-
sami and Yannakakis 2009]). An RSSG where V0 ∪ V2 = ∅ is called a Recursive Graph
or Recursive State Machine (RSM) ([Alur et al. 2005]).
Define 1-RSSGs (also referred to as a 1-exit RSSG), to be those RSSGs where ev-

ery component has 1 exit, and likewise define 1-RMDPs and 1-RMCs. The example
depicted in Figure 2 is a 1-RSSG, because its only component, f , has only one exit.
By contrast, the earlier example in Figure 1 is not a 1-RSSG, because both of its com-
ponents have 2 exits. W.l.o.g., one can assume that every component of a RSSG has
1 entry, because multi-entry RSSGs can be transformed to equivalent 1-entry RSSGs
with polynomial blowup (similar to the RSM transformations [Alur et al. 2005]). How-
ever, the analogous statement does not hold for exits, as we shall see.
We call a RSSG (RMDP, RMC, etc.) linearly-recursive or linear if there is no path of

transitions in any component from any return port to a call port. Neither the example
in Figure 1, nor the example in Figure 2 are linear. In particular, the RSSG in Figure
1 is not linear, because in the component A1 there is a direct transition from one of
the box-exits of box b1 to the box-entry of the same box. If we remove this transition,
then the resulting RSSG becomes linear. The RSSG in Figure 2 is not linear because
there is a direct transition from the unique exit of box b1 to the entry of box b2.) The
linearly-recursive restriction corresponds to the standard notion of linear recursion in
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Fig. 2. Example 1-exit RSSG (1-RSSG)

programs. Linearly-recursive RMCs (without players) are much easier to analyse than
general RMCs: termination and reachability probabilities (as well as probabilities of
more general temporal properties) are rational and can be computed in polynomial
time, with the same complexity as for finite-state Markov chains; see [Etessami and
Yannakakis 2009; 2012]. We will see that linearly-recursive 1-RMDPs and 1-RSSGs
also preserve all the positive features of finite state MDPs and SSGs; however multi-
exit linear RMDPs and RSSGs are not at all that easy.
In our definitions of RMDPs and RSSGs we have used for convenience separate ver-

tices to represent the probabilistic steps and the players’ actions. As in the case of finite
MDPs and SSGs, this is equivalent (both in terms of expressiveness and in terms of
computational efficiency) to an alternative model where there are no separate proba-
bilistic vertices, but rather at each vertex controlled by a player, the player selects an
action from a set of available actions at the vertex, and then a probabilistic transition
takes place where the transition probabilities depend on the vertex and the selected
action.

2.2. Objectives, strategies and value of the game

Markov decisions processes and stochastic games have been studied under many dif-
ferent kinds of objectives. We can categorize these objectives under two types: in the
first type, there is a reward (payoff) structure given for the individual vertices and
actions, and the objectives of the players are to maximize or minimize the aggregated
reward during the execution (e.g., the discounted total reward, or average reward per
step, etc.). In the second type, we are given a certain desirable or undesirable property
of the possible executions (which amounts to an event over the probability space of
possible executions, or trajectories, once strategies are fixed), and the objectives of the
players are to maximize or minimize the probability that the execution satisfies this
property.
In this paper we will study RMDPs and RSSGs with objectives of the second type,

and in particular we will study the most basic type of reachability objective, where
the goal of the players is to minimize or maximize the probability that the pro-
cess terminates (or that it terminates at a particular exit). We have to formalize
the questions precisely, and there are subtle issues that will require careful treat-
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ment. We will first require some definitions. For a finite or countable set Z, let D(Z)
denote the set of probability distributions over Z. For a distribution d ∈ D(Z), let
support(d) = {i ∈ Z | d(i) > 0}. We say d has finite support if |support(d)| <∞.
We now define the notion of a strategy for players in an infinite-state simple

stochastic game (including those arising fromRSSGs). For any denumerable-state SSG
M = (V, ∆, pl), a general strategy σ for player i, i ∈ {1, 2}, is defined by a function
σ : V ∗Vi 7→ D(V ), where, given the history ws ∈ V ∗Vi of play so far, with s ∈ Vi

(i.e., it is player i’s turn to play a move), σ(ws) ∈ D(V ) is a (finite support) probabil-
ity distribution on the next state, where moreover it must also be the case that for
all s′ ∈ support(σ(ws)), we have (s,⊥, s′) ∈ ∆. In other words, the move from s to s′

must be available to the player at that state. A strategy is deterministic (or pure) if
we always have |support(σ(ws))| = 1, meaning with probability 1 a move is chosen to
one particular new state, for all such histories ws where s ∈ Vi. Otherwise it is called a
randomized (mixed) strategy. A deterministic strategy can thus more simply be viewed
as a function σ : V ∗Vi 7→ V .
Let us focus again on the infinite-state SSG, MA corresponding to a given RSSG A.

Let Ψi denote the set of all strategies for player i. Given a start node u, a strategy
σ ∈ Ψ1 for player 1, and a strategy τ ∈ Ψ2 for player 2, we define a new Markov chain
(with initial state u) Mu,σ,τ

A = (S, ∆′). The states S ⊆ 〈ǫ, u〉V ∗ of Mu,σ,τ
A are non-empty

sequences of states of MA, which must begin with 〈ǫ, u〉. Inductively, if ws ∈ S, then:
(0) if s ∈ V0 and (s, ps,s′ , s′) ∈ ∆ then wss′ ∈ S and (ws, ps,s′ , wss′) ∈ ∆′; (1) if s ∈ V1 and
σ(ws)(s′) = p > 0 (where (s,⊥, s′) ∈ ∆) then wss′ ∈ S and (ws, p, wss′) ∈ ∆′; (2) if s ∈ V2

and τ(ws)(s′) = p > 0 (where (s,⊥, s′) ∈ ∆) then wss′ ∈ S and (ws, p, wss′) ∈ ∆′.
Let u be a given initial vertex. It follows from the definition of MA that the only

terminating states reachable from 〈ǫ, u〉 are of the form 〈ǫ, ex〉 where ex is an exit
node in the same component as u. Given initial vertex u, and exit ex in the same

component, and given strategies σ ∈ Ψ1 and τ ∈ Ψ2, for k ≥ 0, let qk,σ,τ

(u,ex) be the prob-

ability that, in Mu,σ,τ
A , starting at initial state 〈ǫ, u〉, we will reach a state w〈ǫ, ex〉

in at most k “steps” (i.e., where |w| ≤ k). Let q∗,σ,τ

(u,ex) = limk→∞ qk,σ,τ

(u,ex) be the proba-

bility of ever terminating at ex, i.e., reaching 〈ǫ, ex〉 in any number of steps. (Note,
the limit exists: it is a monotonically non-decreasing sequence bounded by 1). Let

qk
(u,ex) = supσ∈Ψ1

infτ∈Ψ2
qk,σ,τ

(u,ex) and let q∗(u,ex) = supσ∈Ψ1
infτ∈Ψ2

q∗,σ,τ

(u,ex). Next, for a strat-

egy σ ∈ Ψ1, let qk,σ

(u,ex) = infτ∈Ψ2
qk,σ,τ

(u,ex), and let q∗,σ

(u,ex) = infτ∈Ψ2
q∗,σ,τ

(u,ex). Lastly, given

instead a strategy τ ∈ Ψ2, let qk,·,τ
(u,ex) = supσ∈Ψ1

qk,σ,τ

(u,ex), and let q∗,·,τ
(u,ex) = supσ∈Ψ1

q∗,σ,τ

(u,ex).

From very general determinacy results, namely Martin’s Blackwell determinacy
[Martin 1998] (see also [Maitra and Sudderth 1998]), which applies to all two-player
zero-sum stochastic games with countable state spaces and bounded Borel measurable
payoff functions, it follows that the games MA are determined, meaning that

q∗(u,ex)
.
= sup

σ∈Ψ1

inf
τ∈Ψ2

q∗,σ,τ

(u,ex) = inf
τ∈Ψ2

sup
σ∈Ψ1

q∗,σ,τ

(u,ex)

We call q∗(u,ex) the value of the RSSG termination game with start vertex u and termi-

nating exit ex.2 We can define similarly the termination game where only a start node
u is specified, but not a terminating exit. That is, the maximizer’s goal is for the game

2Let us remark, in response to a question raised by a referee, that for general multi-exit RMDPs and RSSGs,
we know little about the nature of the values q∗ of such games. In particular, in light of the undecidability
results we shall establish for computing or even approximating the value for general RMDPs and RSSGs,
it is almost certainly true that even when the specification of the RMDP or RSSG involves only rational
numbers, their value can be a transcendental number. On the other hand, as we shall see, it follows from
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to terminate (at any exit), while the minimizer’s goal is for the game to run forever.
We will use the above notations without the subscript ex for these termination games
where an exit is not specified. Thus, qk,σ,τ

u denotes the probability of termination in k
steps under strategies σ, τ for the two players, q∗,σ,τ

u is the probability of termination
in any number of steps, and q∗u denotes the value of the termination game starting
from vertex u (determinacy holds again). In the case of 1-RMDPs and 1-RSSGs, the
component of u has only one exit ex, hence q∗u is the same as q∗(u,ex).

Note that, in general, determinacy does not guarantee the existence of an optimal
strategy for either player. By an optimal strategy for the maximizer (minimizer) we
mean one that achieves a payoff at least (respectively, at most) the value of the game.
We say a strategy σ (respectively, τ ) achieves a given value r for a maximizing (respec-
tively, minimizing) player, if infτ∈Ψ2

q∗,σ,τ

(u,ex) ≥ r (respectively, supσ∈Ψ1
q∗,σ,τ

(u,ex) ≤ r). For

the games we consider, determinacy does imply the existence of ǫ-optimal strategies,
for all ǫ > 0, meaning strategies that achieve a payoff no less than q∗(u,ex) − ǫ for the

maximizer (no worse than q∗(u,ex) + ǫ for the minimizer). This is so because the possible

payoffs are bounded, q∗,σ,τ

(u,ex) ∈ [0, 1] for these games.

Finite state MDPs and SSGs with reachability objectives are trivially a subclass of
1-exit linearly-recursive RMDPs and RSSGs respectively with a termination objective.
In a finite state MDP or SSG with reachability objectives the players wish to maximiz-
ing/minimize the probability of reaching a desired set of target states starting from a
given start state. We can assume without loss of generality that there is one target
state ex which has no outgoing transitions: if there is a set R of target states, we can
collapse them into one state ex and remove the outgoing transitions, since once a tar-
get state has been reached, the reachability objective has been met. Thus, we can view
a finite-state SSG (or MDP) as a 1-RSSG (resp. 1-RMDP ) that has one component with
exit ex, and has no boxes. The value of the game in any finite MDP or SSG is rational
of polynomial size (bit complexity) in the size of the input. In the case of MDPs, the
value can be computed in polynomial time. In the case of SSGs, the complexity of com-
puting the value is a well known open problem ([Condon 1992]). It is known to be in
the classes PLS and PPAD (and thus, it is unlikely to be NP-hard unless NP=coNP);
the decision question of whether the value exceeds a given rational (for example, is the
value ≥ 1/2?) is in NP∩coNP.
In finite-state SSGs, both players can achieve the value of the game. Furthermore,

the games are memorylessly determined ([Condon 1992]), meaning that both players
have optimal deterministic memoryless strategies. A (deterministic)memoryless strat-
egy is one which does not depend on the history prior to the current state of the stochas-
tic game. In other words a deterministic memoryless strategy is given by a function
from states belonging to a player to neighboring states. As we shall see, 1-RSSGs ex-
hibit an even stronger form of memoryless determinacy. We say that a strategy of a
RSSG A is a (deterministic) Stackless & Memoryless (SM) strategy if it is not only in-
dependent of the history of the game, but also independent of the current call stack, i.e.,
for every state 〈β, v〉 of the infinite game MA, the action of the player at the state does
not depend on the past history (how the trajectory reached 〈β, v〉), nor on the context
β (the stack of boxes), but only depends on the current vertex v (and furthermore the
strategy is deterministic). In other words, such a strategy just picks, for every vertex
in the RSSG, a particular neighboring vertex to move to whenever it encounters that
vertex (regardless of history or calling context). Such a strategy can be given simply by
a function that maps every vertex associated with that player to one of its neighbors.

our results that for various special cases of RSSGs, notably 1-exit RSSGs, their game value is always an
algebraic number (albeit, in general an irrational one).
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Fig. 3. Maximizing termination probability at ex1 in a 2-exit RMDP: no optimal strategy exists.

Note that there are only finitely many such functions (but exponentially many in the
number of vertices belonging to that player). We shall show that 1-RSSG termination
games are SM-determined, meaning both players have optimal SM strategies. This
fails badly even for multi-exit RMDPs, as we will now observe.

Already for the 2-exit RMDP termination problem, there need not be any optimal
strategy at all. This is illustrated in Figure 3. This is a (linearly recursive) 2-exit RMDP
that has one component containing a box mapped to the same component. The RMDP
starts at node en and the objective is to maximize the probability of terminating at
exit ex1. It can easily be verified that the supremum probability of terminating at
exit ex1 starting from en is 1. Specifically, for every n ≥ 0, consider the strategy LnR,
which chooses the transition L the first n times that vertex en is visited (thus making n
nested recursive calls) and chooses the transition R the (n+1)th time, thus completing
the last call at the second exit. After this, the process will successively return from
the n recursive calls and terminate at one of the two exits. The only way that it will
terminate at ex2 is if it always returns from each box at the second port and follows the
transition to ex2; this will happen with probability 1

2n . Thus, under the strategy LnR

the process terminates eventually at ex1 with probability (1 − 1
2n ). Hence the value

of the RMDP is 1. However, there is no optimal strategy for player 1 that actually
achieves this value. The deeper the call stack is made by player 1, the higher the
probability of termination at ex1. However, at some depth n, player 1 finally has to
decide to follow the transition R, otherwise it will never terminate; the probability of
eventually terminating at ex1 will then be (1− 1

2n ). Note also that in this example, any
SM strategy for player 1 yields probability 0 of terminating at ex1, so such strategies
are all the worst possible here.
It is worth pointing out however that for the classes of turn-based (perfect informa-

tion) countable-state stochastic games generated by RSSG termination games, we only
need to consider deterministic memoryless strategies, i.e., randomization and memory
do not add any extra power for either player, though the context (the stack of active
boxes) is important. We state a general theorem capturing this for a suitable class of
countable-state turn-based stochastic games which easily subsumes RSSGs termina-
tion games.

THEOREM 2.1. Suppose G = (V = V0 ∪ V1 ∪ V2, ∆, pl, r) is a countable-state, turn-
based (perfect-information) stochastic game, with a non-negative reward function r on
transitions, and with expected total reward objective (which player 1 wants to maximize
and player 2 wants to minimize), and such that, under all pairs of strategies used by
the two players, the expected total reward is bounded by a fixed constant K. Suppose
furthermore that G is finitely branching, meaning that for any state u ∈ V there are
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a finite number of transitions of the form (u, x, v) in ∆ (regardless of whether u is a
player’s state or a probabilistic state). Then:

(1) Starting from any state u ∈ V , there exists a deterministic memoryless strategy τ∗

for player 2 (the minimizer), in the game G starting at u.
(2) For every ǫ > 0, starting from any state u ∈ V , player 1 has an ǫ-optimal determin-

istic memoryless strategy for the game G starting at u.

In particular, such countable-state perfect information stochastic games are (determin-
istically) memorylessly determined.

Note that RSSG termination games can easily be placed in the reward framework
described by Theorem 2.1. Namely, we can augment the countable-state SSG, MA, as-
sociated with a RSSG A, with a non-negative reward function which gives 0 reward
everywhere, except that after termination at the desired exit(s) there is an extra tran-
sition with reward 1 (with probability 1) to a new dead-end absorbing state which
thereafter yields 0 reward. After termination at other (undesired) exits we transition
to the dead-end via a 0 reward transition. It is clear that the expected total reward
starting at a given vertex of the RSSG (in the empty calling context), under all strate-
gies is the probability of termination at the desired exit(s) of the RSSG. Note that the
total expected reward is bounded by 1 for all strategies of both players. Moreover, MA

is clearly finitely branching (in fact, there is a fixed upper bound on the branching at
all states of MA).
Theorem 2.1 is closely related to well known results in the MDP and stochastic game

literature. Specifically, it is well known that for the 1-player countable-state MDP ver-
sion of these games, with non-negative rewards and with the finite branching con-
straint, that if the goal is to minimize the total expected reward then the minimizer
has an optimal deterministic memoryless strategy (see, e.g., Theorem 7.3.6 in [Put-
erman 1994]), and if the goal is to maximize the total expected reward and the total
expected reward is bounded by a constant K then the maximizer has ǫ-optimal strate-
gies (see Theorem 7.2.7 and Corollary 7.2.8 of [Puterman 1994], which are derived
from [Ornstein 1969]). Theorem 2.1 can be proved by adapting these results to the
setting of perfect-information stochastic games.
We give an outline of the proof of Theorem 2.1 below. The full proof is given in Ap-

pendix 11, since we do not actually use Theorem 2.1 further in the paper, and since
closely related results are well known, as explained above.
In rough outline, one can first show that for such stochastic games the minimizer al-

ways has an optimal deterministic memoryless strategy by arguments similar to those
for minimizing MDPs. Namely, one can associate optimality equations on countably
many variables to the countable-state stochastic game, and use these to show that it
is sufficient for the minimizer to always choose from each state a neighbor from which
the value of the game is smallest. The finite branching condition guarantees that such
a neighbor exists. To argue that the maximizer has ǫ-optimal strategies, one can argue
that if we consider the value vk of the k-step games associated with these stochas-
tic total-reward games, they form underapproximations of the total reward value in
the infinite-horizon game, such that as k → ∞, the values vk converge to the value
v of the infinite horizon game. We can then consider the finite set, S′

k, of states that
can possibly be encountered during the k-step finite-horizon game, and consider the
infinite-horizon game Gk induced by this finite set of states, which proceeds just like
the original infinite-horizon game, but as soon as a transition leaves S′

k, it now moves
to a new dead-end state from which we will gain total reward 0 thereafter. This is a
finite-state total-reward perfect information stochastic game with infinite horizon (and
with the property that under all strategies the total expected reward is upper bounded
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by the same fixed constant K). These games have value at least the value of the k-
step game, and at most the value of the infinite-horizon game. For such finite-state
stochastic games there are always memoryless optimal strategies for both maximizer
and minimizer starting from a given state. Thus, since the values of the k-step games
converge to the value of the infinite horizon game, for any ǫ > 0 the maximizer has
an ǫ-optimal strategy for the game, by just picking a sufficiently large k such that
v − vk < ǫ, and mimicking the maximizer’s optimal memoryless strategy in the game
Gk when at a state inside S′

k, and playing arbitrarily (but memorylessly) outside of S′
k.

For the details of the proof, see Appendix 11.

2.3. The central computational problems

We now formally describe the central computational problems we will address in this
paper. Given a (1-exit or multi-exit) RMDP or RSSG A, an initial vertex u and an exit
ex of the component of u, we wish to ask:

(1) The qualitative termination problem (Qual-TP): Is q∗(u,ex) = 1?

(2) The quantitative termination problems: Given r ∈ [0, 1], is q∗(u,ex) ≥ r? Is q∗(u,ex) = r?

We may also wish to compute or approximate the exact probabilities q∗(u,ex).

More generally, we can ask model checking questions for general properties: given a
RMDP or RSSG A and a property ϕ on the trajectories (executions) of A, what is the
supremum probability with which player 1 can force the trajectory taken to satisfy the
property ϕ? We will give the necessary definitions on properties and model checking in
Section 10, where we discuss this problem and prove that it is generally undecidable.
In most of the paper we will focus on 1-RMDPs and 1-RSSGs. In this (single-exit)

case, it will follow from the SM determinacy result in Section 4 that optimal determin-
istic SM strategies exist in 1-RSSG termination games for both the maximizing and
minimizing player. Therefore, for 1-RSSGs, deciding whether q∗(u,ex) ≥ r, or q∗(u,ex) ≤ r,

etc., is equivalent to deciding the existence of a strategy that achieves value r.
However, as the example in Figure 3 showed, this is not the case for general multi-

exit maximizing RMDPs, and RSSGs. Thus for multi-exit RSSGs we may wish to con-
sider also the following revised questions:

(1’) Thewitness qualitative termination problem: Is there a strategy for maximizer (min-
imizer) that achieves value 1 (strictly less than 1, respectively)?

(2’) The witness quantitative termination problems: Given r ∈ [0, 1], is there a strategy
for maximizer (minimizer) that achieves value at least (at most) r?

3. THE SYSTEM OF NONLINEAR MIN-MAX EQUATIONS FOR 1-RSSGS

We shall show that there is a monotone nonlinear min-max system of equations associ-
ated with a 1-RSSG, which captures its termination values (as the least non-negative
solution to the equations). These systems generalize both the linear Bellman’s equa-
tions for MDPs, as well as the nonlinear system of polynomial equation for RMCs
studied in [Etessami and Yannakakis 2009]. Recall that for 1-RSSGs q∗u denotes the
value of the termination game starting at a vertex u. Let us use a variable xu for each
such unknown q∗u, and let x be the vector of all xu, u ∈ Q. The system SA has one equa-
tion of the form xu = Pu(x) for each vertex u. Suppose that u is in component Ai with
(unique) exit ex. There are five cases based on the “Type” of u. We partition the vertices
into five types: exit, call, random, max, and min. Exit and call vertices have no outgo-
ing edges, while the other three types rand, max, min have outgoing edges that are
controlled respectively by randomness (chance), player 1 (the maximizer) and player 2
(the minimizer).
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(1) u ∈ Typeexit: u ∈ Ex. In this case: xu = 1.
(2) u ∈ Typerand: pl(u) = 0 and u ∈ Q \ (Ex ∪ Call). In this case xu =∑

{v|(u,pu,v ,v)∈δ} pu,vxv.

(3) u ∈ Typecall: u = (b, en) is a call port: In this case x(b,en) = xen · xv where v is the
(unique) return port of box b; that is, v = (b, ex′) , where ex′ is the exit of AY (b).

(4) u ∈ Typemax: pl(u) = 1. In this case xu = max{v|(u,⊥,v)∈δ} xv. (If u has no outgoing
transitions, we define max(∅) = 0.)

(5) u ∈ Typemin: pl(u) = 2. In this case xu = min{v|(u,⊥,v)∈δ} xv. (If u has no outgoing
transitions, we define min(∅) = 0.)

In vector notation, we denote the system SA by x = P (x). Given 1-RSSG A, we can
easily construct SA in linear time.

Example 3.1.
Consider the 1-RSSG of Figure 2. The system has one variable and one equation for
each vertex. xs = 1

4xu1
+ 1

4xt + 1
2x(b1,s), xu1

= max(xu2
, xu3

, xu4
, xu5

), xu2
= x(b2,s),

xu3
= 1

2xu2
+ 1

2xt, xu4
= min(x(b2,s), xt), xu5

= xu5
, xt = 1,

x(b1,s) = xsx(b1,t), x(b1,t) = x(b2,s), x(b2,s) = xsx(b2,t), x(b2,t) = xt

We now identify a particular solution to x = P (x), called the Least Fixed Point (LFP)
solution, and we show that it is precisely the termination game value vector q∗.
For vectors x,y ∈ R

n, define the partial-order x ≤ y to mean xj ≤ yj for every
coordinate j. For D ⊆ R

n, a mapping H : R
n 7→ R

n is called monotone on D, if: for
all x,y ∈ D, if x ≤ y then H(x) ≤ H(y). Define P 1(x) = P (x), and define P k(x) =
P (P k−1(x)), for k > 1. Let q∗ ∈ R

n
≥0 denote the n-vector 〈q∗u | u ∈ Q〉. For k ≥ 0, let

qk denote, similarly, the n-vector 〈qk
u | u ∈ Q〉 of the values of the k-step termination

game for the different starting vertices u ∈ Q. Let 0 (1) denote the n-vector consisting
of 0 (respectively, 1) in every coordinate. Define x0 = 0, and for k ≥ 1, define xk =
P (xk−1) = P k(0).
For the equation system x = P (x) corresponding 1-RSSG, it is easy to check (case by

case, based on the five types of equations) that the operator P is monotone on R
n
≥0, and

that moreover it is monotone on the unit n-cube [0, 1]n and maps [0, 1]n to itself. Since
the n-cube [0, 1]n forms a complete lattice (under the partial order on n-vectors given by
componentwise inequality), by the Tarski-Knaster fixed point theorem ([Tarski 1955])
the operator P has a a Least Fixed Point (LFP) x∗ ∈ [0, 1]n. As we shall establish in
the following theorem, this LFP is precisely the vector q∗ of optimal termination prob-
abilities. (The theorem actually establishes the existence of the LFP in this setting, so
Tarski’s fixed point theorem is not used.)

THEOREM 3.2. 3 Let x = P (x) be the system SA associated with 1-RSSG A.

(1) The map P : R
n 7→ R

n is monotone on R
n
≥0. Hence, for all k ≥ 0, 0 ≤ xk ≤ xk+1.

(2) For all k ≥ 0, qk ≤ xk+1 ≤ q2k

.

3We note here that subsequent to the conference publication of this paper we established that a similar
theorem holds for the more general class of 1-exit recursive concurrent stochastic games (1-RCSG): see Theo-
rem 3.1 of [Etessami and Yannakakis 2008]. Namely, we showed there that systems of nonlinear equations
that additionally use a minimax “value” operator for 2-player zero-sum matrix games can be used to give
a similar characterization of the game values for 1-RCSGs. Here we provide the theorem and full proof for
1-RSSG and nonlinear-min-max equations. We do so not just for completeness, but because the proof differs
from the proof for 1-RCSGs in important ways which we shall use. In particular, the proof here will directly
yield the existence of optimal deterministic Stackless and Memoryless optimal strategies for the minimizing
player in 1-RSSG termination games, whereas such deterministic strategies do not even exist for general
1-RCSGs.
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(3) q∗ = P (q∗). In other words, q∗ is a fixed point of the map P .
(4) For all k ≥ 0, xk ≤ q∗.
(5) For all q′ ∈ R

n
≥0, if q′ = P (q′), then q∗ ≤ q′.

In other words, q∗ is the Least Fixed Point, LFP(P ), of P : R
n
≥0 7→ R

n
≥0.

(6) q∗ = limk→∞ xk = limk→∞ qk.

PROOF. We prove each of the assertions of the theorem in turn.

(1) That P is monotone on R
n
≥0 follows immediately from the fact that all coefficients

in the polynomials Pj defining P are non-negative, and the fact that, if x ≤ y,
then clearly mini∈I xi ≤ mini∈I(yi), and maxi∈I xi ≤ maxi∈I yi, for any subset I ⊆
{1, . . . , n}. Thus, if 0 ≤ x ≤ y then 0 ≤ P (x) ≤ P (y). By induction on k ≥ 0,
0 ≤ xk ≤ xk+1.

(2) By induction on k ≥ 0. For k = 0: x1 = P (0) is an n-vector where Pu(0) = 1 if
u ∈ Ex, and Pu(0) = 0 otherwise. Hence, for each vertex u, x1

u = q0
u, the probability

of terminating in (at most) 0 steps starting from u. Hence, also clearly, x1
(u,ex) ≤

q20

(u,ex).

Inductively, suppose qk ≤ xk+1 ≤ q2k

. Consider xk+2
u for a vertex u. There are five

cases, based on what type of vertex u is:
(a) u ∈ Typeexit. If u ∈ Ex, then clearly qj

u = 1 for all j ≥ 0. Note that since

Pu(x) = 1, also xj+1
u = Pu(xj) = 1, for all j ≥ 0. Thus qj

u = xj+1
u = q2j

u = 1 for
all j ≥ 0.

(b) u ∈ Typerand. In this case, qk+1
u =

∑
v pu,v qk

v . Thus, by inductive hypothesis

xk+2
u = Pu(xk+1) =

∑

v

pu,v xk+1
v ≥

∑

v

pu,v qk
v = qk+1

u

Likewise, by inductive hypothesis

xk+2
u =

∑

v

pu,v xk+1
v ≤

∑

v

pu,v q2k

v = q2k+1
u ≤ q2k+1

u

(c) u ∈ Typecall. Here, u = (b, en) ∈ Callb. Let ex be the (unique) exit node of the
component of u, and ex′ the exit node of the component AY (b) corresponding to

the box b. We argue first that qk+1
u ≤ qk−1

en · qk−1
(b,ex′) ≤ q2k

u .

We can see that the first inequality holds as follows. For any strategies σ, τ of
the two players, in the resulting Markov chain Mu,σ,τ

A , starting from 〈ǫ, u〉, in
order for a trajectory to reach the exit 〈ǫ, ex〉 which is in the same component as
u and terminate in at most k + 1 steps, it first needs to transition to 〈b, en〉 (in
one step); then it needs to get in some number m of steps from 〈b, en〉 to 〈b, ex′〉
(i.e., get from the entry en of the component AY (b) labeling box b to the unique
exit ex′ of AY (b)); then it will need to transition from 〈b, ex′〉 to 〈ǫ, (b, ex′)〉 (in one
step); then it will need to get from that box-exit to 〈ǫ, ex〉 in some number m′ of
steps; such that, overall, m + m′ + 2 ≤ k + 1, i.e. m + m′ ≤ k − 1. In the formula
for the upper bound, we have relaxed the requirements and only require that
each of m and m′ is ≤ k − 1. Note that this holds regardless what strategies σ
and τ are employed. Hence the first inequality.
For the second inequality, qk−1

en ·qk−1
(b,ex′) ≤ q2k

u , observe that one way to get from

〈ǫ, u〉 to 〈ǫ, ex〉 in at most 2k steps is to get from 〈b, en〉 to 〈b, ex′〉 in at most k− 1
steps, and then to get from 〈ǫ, (b, ex′)〉 to 〈ǫ, ex〉 in at most k − 1 steps. Thus

qk−1
en · qk−1

(b,ex′) ≤ q2k
u .
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Now, by the inductive assumption, q2k ≥ xk+1 ≥ qk. Hence, using the inequal-
ity, and substituting, we get

qk+1
u ≤ xk+1

en xk+1
(b,ex′) = P (xk+1)u = xk+2

u .

We also get

xk+2
u = xk+1

en xk+1
(b,ex′) ≤ q2k

exq
2k

(b,ex′) ≤ q2k+1

(b,ex′).

(d) u ∈ Typemax: In this case, it is easy to see that qk+1
u = max{v|(u,⊥,v)∈δ} qk

v . Thus,

by inductive hypothesis, qk+1
u = max{v|(u,⊥,v)∈δ} qk

v ≤ max{v|(u,⊥,v)∈δ} xk+1
v =

xk+2
u . Likewise, xk+2

u = max{v|(u,⊥,v)∈δ} xk+1
v ≤ max{v|(u,⊥,v)∈δ} q2k

v = q2k+1
u ≤

q2k+1

u .
(e) u ∈ Typemin: As in the previous case, qk+1

u = min{v|(u,⊥,v)∈δ} qk
v ≤

min{v|(u,⊥,v)∈δ} xk+1
v = xk+2

u . Again, like the max case, xk+2
u ≤ q2k+1

u .
We have established assertion (2).

(3) Assertion (3) follows from the definition of q∗. Suppose q∗ 6= P (q∗). The vector q∗

clearly satisfies the equations for vertices u of type exit, rand, call. Thus, the only
possibility is that q∗

u 6= Pu(q∗) for some vertex u of type max or min.
Suppose u is of type max. Then, clearly, q∗

u ≥ q∗
v for any neighbor of u, with

(u,⊥, v) ∈ δ, because if q∗
u < q∗

v, then player 1 could play the transition (u,⊥, v)
at the beginning of the game MA starting at u and improve its payoff. Likewise,
q∗

u ≤ q∗
v, for some neighbor v, because otherwise, no matter what initial move

player 1 makes from u, its payoff would be less than the purported q∗
u. Simi-

larly, suppose u is of Type min. Then, again, q∗
u ≤ q∗

v for any neighbor of u, with
(u,⊥, v) ∈ δ, because if q∗

u > q∗
v, then player 2 can switch to a strategy which,

starting at u, moves initially to v, and then regardless of how player 1 plays, player
2 would have a strategy to limit the payoff to q∗

v < q∗
u, a contradiction. Likewise,

q∗
u ≥ q∗

v, for some neighbor v, because otherwise, no matter what initial move
player 2 makes from u, player 1 can play in such a way that, no matter what player
2 does, player 1’s ultimate payoff would be strictly greater than the purported q∗

u.
Hence q∗ is a fixed-point of P .

(4) Note that P is monotonic, and that q∗ is a fixed-point of P . Since x0 = 0 ≤ q∗, it
follows, by induction on k ≥ 0, that xk ≤ q∗, for all k ≥ 0.

(5) Consider any fixpoint q′ of the equations, i.e., where q′ = P (q′). We shall argue
that q∗ ≤ q′. Let τ ′ be the (stationary) strategy for player 2 that always picks, at
any state 〈β, u〉, for vertex u ∈ pl−1(2), the particular successor v of u such that
v = argmin{v|(u,⊥,v)∈δ} q′

v (breaking ties, say, lexicographically).

LEMMA 3.3. For all strategies σ ∈ Ψ1 of player 1, and for all k ≥ 0, qk,σ,τ ′ ≤ q′.

PROOF. By induction, similar to the proof of assertion (2). The base case q0,σ,τ ′ ≤
q′ is trivial. For the induction step, consider a vertex u. We distinguish 5 cases
depending on the type of u.
(a) Type exit. If u ∈ Ex, then for all j ≥ 0, clearly qj,σ,τ ′

u = q′
u = 1.

(b) Type rand. Let σ′ be the strategy defined by σ′(β) = σ(〈ǫ, u〉β) for all β ∈ V ∗.
Then,

qk+1,σ,τ ′

u =
∑

v

pu,v qk,σ′,τ ′

v ≤
∑

v

pu,v q
′

v = q
′

u.

(c) Type call. In this case, u = (b, en) ∈ Callb. Let (b, ex′) be the return port of
box b, i.e., ex′ is the unique exit node of the component AY (b) assigned to b.
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Then qk+1,σ,τ ′

u ≤ supρq
k−1,ρ,τ ′

en · supρq
k−1,ρ,τ ′

(b,ex′) . Now, by the inductive assumption,

qk−1,ρ,τ ′ ≤ q′ for all ρ. Moreover, since q′ = P (q′), q
′

u = q
′

en · q
′

(b,ex′). Hence,

using these inequalities and substituting, we get

qk+1,σ,τ ′

u ≤ q
′

en q
′

(b,ex′) = q
′

u.

(d) Type max: In this case, starting at 〈ǫ, u〉, whatever player 1’s strategy σ is,
initially it has to move to some neighbor 〈ǫ, v〉 from which the probability of

termination in at most k steps is precisely qk,σ′,τ ′

v , where σ′ is defined as in

case (b). Thus qk+1,σ,τ ′

u ≤ max{v|(u,⊥,v)∈δ} qk,σ′,τ ′

v . By the inductive hypothesis

qk,σ′,τ ′

v ≤ q
′

v for all v. Thus, qk+1,σ,τ ′

u ≤ max{v|(u,⊥,v)∈δ} q
′

v = q
′

u.

(e) Type min: Since q′ = P (q′), we know that q′
u = min{v|(u,⊥,v)∈δ} q

′

v. We also

know that τ ′(u) = v, where v = arg min{v|(u,⊥,v)∈δ} q
′

v. But then, by the inductive

hypothesis, qk+1,σ,τ ′

u = qk,σ′,τ ′

v ≤ q′
v = min{v|(u,⊥,v)∈δ} q′

v = q′
u.

Now, by the lemma, q∗,σ,τ ′

= limk→∞ qk,σ,τ ′ ≤ q′. This holds for any strat-
egy σ ∈ Ψ1. Therefore, supσ∈Ψ1

q∗,σ,τ ′

u ≤ q′
u, for every vertex u. Thus, q∗

u =

supσ∈Ψ1
infτ∈Ψ2

q∗,σ,τ
u ≤ supσ∈Ψ1

q∗,σ,τ ′

u ≤ q′
u, for all vertices u. In other words,

q∗ ≤ q′.
(6) Finally, observe that limk→∞ xk exists and is bounded within [0, 1]n. The sequence

xk, k → ∞ is monotonically non-decreasing, and by definition limk→∞ xk is a fixed
point of x = P (x). By part (4), limk→∞ xk ≤ q∗. Thus, by part (5), limk→∞ xk = q∗.

On the other hand, since qk ≤ xk+1 ≤ q2k

, we have limk→∞ xk = limk→∞ qk.

Example 3.4.
Repeated iteration of the operator P of the system of equations in Example 3.1 starting
from 0 converges to the LFP q∗ of this system, which is equal to the termination game
values of the 1-RSSG of Figure 2, and is as follows: xs = 0.75, xu1

= 0.875, xu2
= 0.75,

xu3
= 0.875, xu4

= 0.75, xu5
= 0, x(b1,s) = 0.5625, x(b1,t) = 0.75, x(b2,s) = 0.75, x(b2,t) = 1,

xt = 1.

4. STACKLESS AND MEMORYLESS DETERMINACY FOR 1-RSSGS

We now identify a very restricted kind of strategy that suffices as an optimal strategy
in 1-RSSGs. Recall that a strategy is called a (deterministic) Stackless & Memoryless
(SM) strategy if it is not only independent of the history of the game, but also indepen-
dent of the current call stack, i.e., only depends on the current vertex (and furthermore
the strategy is deterministic, i.e., does not use any randomization). Such a strategy can
be given simply by a function that maps every vertex associated with that player to one
of its neighbors. For example, in the 1-RSSG of Figure 2, an optimal strategy for the
max player is to select at vertex u1 always the neighboring vertex u3, and an optimal
strategy for the min player is to move from vertex u4 always to the call port (b2, s) of
box b.

COROLLARY 4.1. In every 1-RSSG termination game, player 2 (the minimizer) has
an optimal (deterministic) SM strategy.

PROOF. Consider the strategy τ ′ in the proof of part (5) of Theorem 3.2, chosen not
for just any fixed point q′, but for q∗ itself.
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Far less trivially, we establish next that player 1 (the maximizer) also has an optimal
SM strategy and thus the game is SM-determined, meaning both players have optimal
SM strategies. (Note that the game is not symmetric with respect to the two players.)4

For this proof, we will introduce a new flexible technique for showing stackless and
memoryless determinacy, based on a strategy improvement argument, which at the
same time provides a “strategy improvement method” for solving the games, if one
were able to solve the 1-player 1-RMDP games efficiently. Our proof technique relies
on parametrizing the game with respect to the game value at a designated vertex, and
viewing the game value starting at other vertices as a function of the value at the
designated vertex. These functions are definable as infima over certain power series
which have very special analytic properties. By exploiting these analytic properties,
and properties of the fixed points of such functions, we are able to deduce via a strat-
egy improvement argument that the maximizing player must have an optimal SM
strategy, and thus that these games are SM determined. This proof technique is quite
flexible (e.g., one can do the parametrization with respect to more than one vertex at
a time), and can also be used as an alternative method to prove older known results
about memoryless determinacy and strategy improvement for classes of finite-state
stochastic games.

THEOREM 4.2. Every 1-RSSG termination game is SM-determined.Moreover, there
is a (deterministic) SM strategy σ∗ ∈ Ψ1 that maximizes the value of q∗,σ

u for all u, and
likewise a (deterministic) SM strategy τ∗ ∈ Ψ2 that minimizes the value of q∗,·,τ

u for all
u.

PROOF. By Corollary 4.1, we only need to show that player 1 has an optimal SM
strategy. Let σ be any SM strategy for player 1. Consider q∗,σ = infτ∈Ψ2

q∗,σ,τ (where
the infimum is applied independently for each component). First, let us note that
if q∗,σ = P (q∗,σ) then q∗,σ = q∗. This is so because, by Theorem 3.2, q∗ ≤ q∗,σ,
and on the other hand, σ is just one strategy for player 1, and for every vertex u,
q∗

u = supσ′∈Ψ1
q∗,σ′

u ≥ q∗,σ
u . Now, we claim that, for all vertices u that do not be-

long to player 1 (i.e., such that u is not of Typemax) q∗,σ
u satisfies its equation in

x = P (x). In other words, q∗,σ
u = Pu(q∗,σ). To see this, note that for vertices u of

types {exit, rand, call}, no choice of either player is involved, thus the equation holds
by definition of q∗,σ. For vertices of Typemin, which belong to player 2 (the minimizer),
we have the equation xu = min{v|(u,⊥,v)∈δ} xv. But note that the best player 2 can do
against strategy σ, starting at 〈ǫ, u〉, is to move to a neighboring vertex v such that
v = argmin{v|(u,⊥,v)∈δ} q

∗,σ

(v,ex).

Thus, the only equations that may fail are those of Typemax, of the form xu =
max{v|(u,⊥,v)∈δ} xv. Suppose σ(u) = v, for some neighbor v. Clearly then, q∗,σ

u = q∗,σ
v .

Thus, q∗,σ
u ≤ max{v′|(u,⊥,v′)∈δ} q

∗,σ
v′ . Thus equality fails iff there is another vertex w 6= v,

with (u,⊥, w) ∈ δ, such that q∗,σ
v < q∗,σ

w . Consider such a vertex w, and consider now a
revised SM strategy σ′, which is identical to σ, except that σ′(u) = w.
Next, consider a parametrized 1-RSSG, A(t), which is identical to A, except that all

edges out of vertex u are removed, and replaced by a single edge labeled by probability

4In the subsequent work [Etessami and Yannakakis 2008], we established analogous results to Corollary
4.1 and Theorem 4.2 for the more general class of 1-exit recursive concurrent stochastic games (1-RCSGs),
by explicitly using the results here and extending them. For 1-RCSGs the nature of the results changes
substantially. Specifically, there are no deterministic optimal strategies in general, and while player 2 (the
minimizer) has randomized SM optimal strategies, player 1 (the maximizer) may only have ǫ-optimal ran-
domized SM strategies. Note that the proof of the analogous result to Theorem 4.2, namely Theorem 4.2 in
[Etessami and Yannakakis 2008], makes explicit use of the proofs of this section (see in particular the proof
of Lemma 4.4 in [Etessami and Yannakakis 2008], which employs results established in this section).
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variable t to the exit of the same component and an edge with probability 1 − t going
to a dead absorbing state. Fixing the value t determines an RSSG, A(t).
Note that if we restrict the SM strategies σ or σ′ to all vertices other than u, then

they both define the same SM strategy for the RSSG A(t). For every vertex z, define
q∗,σ,τ,t
z to be the probability that the Markov chain Mz,σ,τ

A(t) . starting from 〈ǫ, z〉 eventu-
ally terminates, i.e. reaches the state 〈ǫ, ex〉 where ex is the exit of the component of z.
Now, for each vertex z, define the function fz(t) = infτ∈Ψ2

q∗,σ,τ,t
z . In other words, fz(t)

is the infimum over all strategies of player 2, of the probability of termination in A(t)
starting from z where player 1 uses strategy σ. This probability is parametrized by t.
Let t1 = q∗,σ

u . We first observe that fz(t1) = q∗,σ
z for every z. This is so because, any

strategy for minimizing the probability of terminating from z (with ǫ context) would,
upon hitting a state 〈β, u〉, be best off minimizing the probability of exiting from the last
recursive call starting at u (i.e., reaching 〈β, ex〉 where ex is the exit of the component
of u), regardless of the context β, for, without exiting from this last call, it could not
hope to terminate in the empty context.
Note that, by Corollary 4.1, in the 1-RSSG termination game on A(t), for any value

of t, and any start vertex z, player 2 has an optimal SM strategy τz,t, such that
τz,t = argminτ∈Ψ2

q∗,σ,τ
z . Let g(z,τ)(t) = q∗,σ,τ

z . Note that fz(t) = minτ gz,τ (t), where the
minimum is over SM strategies. Now, note that the function gz,τ(t) is the probability of
reaching an exit in a Recursive Markov Chain starting from a particular vertex. Thus,
by [Etessami and Yannakakis 2009], we can define a polynomial system x = R(x) of
equations with non-negative coefficients whose least fixed point is the vector of termi-
nation probabilities of the RMC, and gz,τ (t) = (limk→∞ Rk(0))z . The parameter t ap-
pears as one of the coefficients of the system x = R(x). The limit (limk→∞ Rk(0))z can
be described by a power series in the variable t with non-negative coefficients. There-
fore, gz,τ (t) has the following properties: it is a continuous, differentiable, and non-
decreasing function of t ∈ [0, 1], with continuous and non-decreasing derivative, g′z,τ (t)
and since the limit defines probabilities we also know that for t ∈ [0, 1], gz,τ (t) ∈ [0, 1].
Thus gz,τ (0) ≥ 0 and gz,τ (1) ≤ 1.

LEMMA 4.3.

(1) If gz,τ (t) > t for some t ∈ [0, 1] then gz,τ (t′) > t′ for all t′ ∈ [0, t].
(2) If gz,τ (t) < t for some t ∈ [0, 1] then gz,τ (t′) < t′ for all t′ ∈ [t, 1).
(3) If fz(t) > t for some t ∈ [0, 1] then fz(t

′) > t′ for all t′ ∈ [0, t].
(4) If fz(t) < t for some t ∈ [0, 1] then fz(t

′) < t′ for all t′ ∈ [t, 1).

PROOF.
1. Assume gz,τ (t) > t. Suppose that g′z,τ (t) ≥ 1. Since g′z,τ is a non-decreasing func-

tion, this implies that for all t′′ > t, we have g′z,τ(t′′) ≥ 1 and hence gz,τ(t′′) > t′′. This
contradicts the fact that gz,τ (1) = 1. Therefore, g′z,τ (t) < 1. Since g′z,τ is non-decreasing,
this implies that for all t′ ≤ t we have g′z,τ (t′) < 1, i.e. gz,τ (t′) − t′ is a decreasing
function in [0, t], and since gz,τ (t)− t > 0 it follows that gz,τ(t′)− t′ > 0 for all t′ ∈ [0, t].
2. Assume gz,τ(t) < t. If for some t′′ > t, t′′ < 1, gz,τ (t′′) ≥ t′′, then since g′z,τ is non-

decreasing and gz,τ (t) < t, it must be the case that g′z,τ (t′′) > 1. But then (as in part 1),
this implies that gz,τ (1) > 1, which is a contradiction.
3. Assume fz(t) > t at some point t ∈ [0, 1]. Then gz,τ (t) > t for all τ , and hence, by

part 1, for all t′ < t and for all τ , we have gz,τ (t′) > t′. Therefore also fz(t
′) > t′ for all

t′ ∈ [0, t].
4. Assume fz(t) < t at t ∈ [0, 1]. Then there must be some τ ′ such that gz,τ ′(t) < t.

Hence gz,τ ′(t′′) < t′′, for all t′′ ∈ [t, 1), and hence also fz(t
′′) < t′′ for all t′′ ∈ [t, 1).

Journal of the ACM, Vol. 0, No. 0, Article 0, Publication date: 2014.



0:24 Etessami and Yannakakis

Recall that σ(u) = v, there is another neighbor w of u such that q∗,σ
v < q∗,σ

w , and
from the strategy σ we defined a revised SM strategy σ′, which is identical to σ, except
that σ′(u) = w. Recall also that t1 = q∗,σ

u = q∗,σ
v and that fz(t1) = q∗,σ

z for every vertex
z. Let t2 = q∗,σ

w . We know t2 = q∗,σ
w = fw(t1) > t1 = q∗,σ

v . Therefore fw(t) > t for all
t < t1 by Lemma 4.3. Also, fw(t) > t for all t ∈ [t1, t2), because fw(t1) = t2 and fw is
non-decreasing. Therefore, the least fixed point (i.e., least solution) of fw(t) = t is ≥ t2.

Now if we switch strategy σ to σ′, where σ′(u) = w, then q∗,σ′

w is a fixed point, t3, of

fw(t) = t , so t3 ≥ t2 > t1 and q∗,σ′

z = fz(t3) ≥ q∗,σ
z for all z, with strict inequality for

u: q∗,σ′

u = t3 > q∗,σ
u = t1. Thus, switching to the new SM strategy σ′, we get q∗,σ′

which
dominates q∗,σ, and is strictly greater in some coordinate. But there are only a finite
number of SM strategies, thus repeating this process we must eventually get to SM
strategy σ∗ that can’t be improved in this way. Thus q∗,σ∗

= P (q∗,σ∗

), and hence by our
earlier claim q∗,σ∗

= q∗. Thus, player 1 has an optimal SM strategy.

5. QUANTITATIVE TERMINATION PROBLEMS FOR 1-RMDPS & 1-RSSGS

We show that quantitative termination problems for 1-RMDPs and 1-RSSGs can be
solved in PSPACE by appealing to algorithms for deciding the existential theory of
the reals. A first-order sentence in the theory of reals is formed from quantifiers and
boolean connectives over a vocabulary with “atomic predicates” of the form: fi(x)θ0,
where fi, i = 1, . . . , m, are multi-variate polynomials with rational coefficients over
the variables x = x1, . . . , xn, and where θ is any comparison operator among =, 6=
,≥,≤, <, >. The fragment that we will be concerned with is the existential theory of
reals, which we refer to as ∃Th(R). This fragment consists of the true sentences (in
prenex form) of the form: ∃x1, . . . , xnR(x1, . . . , xn), where R is a boolean combination of
“atomic predicates”. The decidability and complexity of the first-order theory of reals
and its fragments like ∃Th(R) has been deeply investigated going back to Tarski. In
the current state of the art, it is known that ∃Th(R) can be decided in PSPACE and
furthermore in exponential time where the exponent depends (linearly) only on the
number of variables [Canny 1988; Renegar 1992]; hence for a fixed number of variables
the time is polynomial.
For a 1-RSSG whose corresponding system of nonlinear min-max equations is x =

P (x), first let us consider how to write predicates of the form xi = Pi(x) as quantifier-
free predicates in the theory of reals. For Type {exit, rand, call} nodes, Pi(x) is just a
polynomial, so it is obvious how to do this. It is also easy to encode, with arithmetic
using inequalities, the predicates “xi = Pi(x)” in the cases (Typemax) where Pi(x) has
the form maxj∈J xj , and (Typemin) where it has the form minj∈J xj , for some subset
J ⊆ {1, . . . , n}. Namely, note that

xi = max
j∈J

xj ⇐⇒ (
∧

j∈J

(xi ≥ xj)) ∧ (
∨

j∈J

(xi ≤ xj))

Likewise, for Typemin nodes, xi = minj∈J xj iff (
∧

j∈J (xi ≤ xj)) ∧ (
∨

j∈J (xi ≥ xj)).

Thus, we can encode the predicates of the form xi = Pi(x) as a Boolean combination of
quantifier-free predicates in the theory of reals.
Now suppose we want to know the relationship between the termination game value

q∗u and some c ∈ [0, 1], say, we want to know whether q∗u ≤ c. Consider the existential
sentence:

ϕ ≡ ∃x1, . . . , xn(
n∧

i=1

(xi = Pi(x))) ∧ (
n∧

i=1

(0 ≤ xi ≤ 1)) ∧ (xu ≤ c)
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Clearly ϕ holds precisely when there exists a fixed point q′ ∈ [0, 1]n, such that q′ =
P (q′), and q′u ≤ c. Since q∗ ∈ [0, 1]n is the least such fixed point, clearly ϕ holds iff
q∗u ≤ c. If we wanted instead to check whether q∗u ≥ c, we could instead query a slight
modification of ϕ, replacing in it the predicate q∗u ≤ c with q∗u < c. In this case q∗u ≥ c iff
the revised ∃Th(R) sentence is false. Similarly, we can answer whether q∗uθc holds for
any comparison operator θ ∈ {≤,≥, =, 6=, >, <}, by using ∃Th(R) queries.
Furthermore, if we wish to approximate q∗u to within a given number of bits of

precision, we can do so easily by a “binary search”. Namely, we start knowing that
0 ≤ q∗u ≤ 1. If we already know, for some a and b, that a ≤ q∗u ≤ b, we do one additional
query, to decide whether a ≤ q∗u ≤ (a + b)/2, by substituting (a + b)/2 for c in ϕ. If the
sentence is true then we know that a ≤ q∗u ≤ (a + b)/2 and continue the binary search
in the interval [a, (a + b)/2], otherwise we continue in the interval ((a + b)/2, b]. In this
way, with i queries we can approximate q∗u to within i bits of precision. More precisely,
we can compute values a, b ∈ [0, 1] such that b− a = 1/2i and q∗u ∈ [a, b]. This discussion
yields:

THEOREM 5.1. (Quantitative termination problems for 1-RSSGs are in PSPACE)
Given a 1-RSSG A, vertex u and a rational probability p, there is a PSPACE algorithm
to decide whether q∗u ≤ p (or q∗u ≥ p, or q∗u < p, etc.). The running time of the algorithm is

O(|A|O(n)) where n is the number of vertices of the 1-RSSG (i.e., the number of variables
in x = P (x)). Hence the running time is polynomial if n is bounded by a fixed constant.
Furthermore, we can approximate the vector q∗ of values to within a specified number

of bits i of precision (i given in unary), in PSPACE and in time O(i|A|O(n)).5

A natural question is whether these PSPACE upper bounds can be improved upon.
Unfortunately, we showed in [Etessami and Yannakakis 2009] that already for 1-
RMCs, i.e., in the purely probabilistic setting without any players, deciding whether
the probability of termination is at least a given rational p ∈ (0, 1) is as hard as several
long standing open problems in the complexity of numerical computation. We now re-
call these problems. The SQRT-SUM problem asks the following: given a list of natural
numbers 〈d1, . . . , dn, k〉 ∈ N

n+1, decide whether (
∑n

i=1

√
di) ≤ k. This problem arises

in many settings, e.g., in geometric computation where one often wishes to compare
sums of distances in Euclidean space. It has been open since the 1970’s whether the
problem is even contained in NP [Garey et al. 1976]. Another difficult problem, which
is known to be harder than SQRT-SUM (via P-time Turing reduction) is the PosSLP
problem: given an arithmetic circuit (straight line program) over the basis {+, ∗,−},
with integer inputs, decide whether the output of the circuit is > 0. PosSLP captures
everything that is computable in polynomial time in the unit-cost arithmetic RAM
model of computation with discrete inputs (in the sense that PosSLP is hard for this
class via P-time Turing reductions). The best current upper bounds known for solv-
ing SQRT-SUM and PosSLP are in the 4th level “counting hierarchy” [Allender et al.
2009], i.e. just (slightly) below PSPACE, but it remains a major open problem to place
these problems even in NP.

THEOREM 5.2. ([Etessami and Yannakakis 2009]) The SQRT-SUM and PosSLP
problems are polynomial time (many-one) reducible to the quantitative termination
problem for 1-RMCs, i.e., decide whether the probability of termination starting at a
given vertex is at least a given p ∈ (0, 1), (Thus, trivially, these problems are also re-
ducible to the quantitative termination problems for 1-RMDPs and 1-RSSGs.)

5This PSPACE upper bound was subsequently generalized by us in [Etessami and Yannakakis 2008] to the
setting of 1-RCSGs.
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Thus, without a major breakthrough, we can not hope to substantially improve on
the PSPACE complexity upper bounds for quantitative decision problems for 1-RMDPs
and 1-RSSGs. See [Etessami and Yannakakis 2009] for much more information on
these numerical computation problems and the implications of these relative hardness
results.
The special case of p = 0 in the quantitative problem, i.e. determining those vertices

u whose corresponding value q∗u = 0, is much simpler and can be solved easily in
polynomial time.

THEOREM 5.3. (Value 0 for 1-RSSGs in P-time) Given a 1-RSSG A we can compute
in polynomial time the set of vertices u whose corresponding value q∗u = 0. This set does
not depend on the actual probabilities of the transitions but only on the transition struc-
ture. These results hold in particular also for maximizing and minimizing 1-RMDPs.6

PROOF. Given a 1-RSSG A, we will compute the set T of vertices u for which q∗u = 0.
We will compute the complementary set S of vertices u such that q∗u > 0 as follows.
Initialize set S := Ex.
Repeat the following until there is no change in the set S:

— If a probabilistic vertex or max vertex u has a successor in S then add u to S.
— If a min vertex u has all successors in S then add u to S.
— If u = (b, en) is a call port of box b and both en (the entry of the corresponding

component) and the return port (b, ex′) of the box are in S then add u to S.

When the process finishes, we let T = Q − S. This is the set of vertices that have
value 0.
We can view the algorithm as essentially following the repeated application of the

operator P of the min-max linear equations, starting from the 0 vector, but keeping
only track of the set S of vertices that have nonzero value, and stopping when this set
does not change; this will happen after at most n iterations. At the end, we let T be the
set Q− S of remaining vertices which have still value 0. Player 2’s strategy is to pick
for each vertex u ∈ T of type min a successor that is also in T . If we remove all other
edges out of min-vertices in T , then all successors of all vertices in T are also in T ,
and T does not contain any exit nodes. Therefore, all the vertices of T have no way of
reaching their exits and hence their value is 0. All other vertices have a positive value,
thus the algorithm outputs the correct set T .

The case of value p = 1 for the qualitative termination problem, is much more in-
volved. In the next section we address this problem for both maximizing and minimiz-
ing 1-RMDPs, and in the following section we discuss 1-RSSGs.

6. QUALITATIVE TERMINATION FOR 1-RMDPS IN P-TIME

We show that, for both maximizing 1-RMDPs and minimizing 1-RMDPs, qualitative
termination can be decided in polynomial time. Please note that the two cases are not
symmetric. We provide distinct algorithms for each of them. An important result that
we shall make use of is this:

THEOREM 6.1. ([Etessami and Yannakakis 2009]) The qualitative termination
problem for 1-RMCs is decidable in polynomial time.

6A more general result, a P-time upper bounds for the Value 0 problem for 1-RCSGs, was established by us
subsequently in [Etessami and Yannakakis 2008]. We provide the proof for 1-RSSGs here for completeness.
(The proof for 1-RCSGs in [Etessami and Yannakakis 2008] is somewhat more terse, because it refers to this
proof and assumes it as given.)
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We summarize the key elements of that algorithm (please see [Etessami and Yan-
nakakis 2009] for more details). The algorithm employs graph-theoretic processing and
a spectral radius characterization of moment matrices associated with 1-RMCs. Given
a 1-RMC A, we can construct a system of polynomial equations, x = P (x), similar to
the system for 1-RSSGs, except that there are no min and max equations in this case.
The moment matrix B of a system x = P (x) is the square Jacobian matrix of P (x)
(i.e., the matrix whose (i, j)’th entry is the partial derivative ∂Pi(x)/∂xj ) evaluated
at the all 1 vector (i.e., xu ← 1 for u ∈ Q). That is, if i is a probabilistic vertex (i.e.,
i ∈ Typerand) then B[i, j] is the transition probability pij for every j; if i is a call port
i = (b, en) then B[i, j] is 0 for all j except for the entry en of the component AY (b) as-
signed to box b and for the return port (b, ex) of b, for which B[i, j] = 1. The spectral
radius (largest eigenvalue) of matrix B is denoted ρ(B). From the system x = P (x), we
construct a dependency graph GA, which has one node u for each variable xu, i.e. for
each vertex u of the 1-RMC, and has a (directed) edge u → v if xv appears in Pu(x).
We first compute in polynomial time the set Z0 of vertices u whose value q∗u is 0 (by
an algorithm similar to that of Theorem 5.3), and eliminate them from the graph GA.
We can determine whether another vertex u 6∈ Z0 has value q∗u < 1 or = 1 as follows:
Compute the set R of nodes reachable from u in GA, let BR be the moment matrix
of the equation system restricted to the variables and equations of vertices in R, and
compute its spectral radius ρ(BR). If ρ(BR) > 1 then q∗u < 1 and if ρ(BR) ≤ 1 then
q∗u = 1.
We can in fact classify all the vertices together in one pass, rather than testing each

vertex individually, as follows. After computing the set Z0 of vertices with value 0
and eliminating them from the dependency graph GA, we decompose GA into strongly
connected components (SCCs), topologically sort the SCCs, and process them bottom-
up, assigning to each SCC either the value 1, meaning that all vertices in the SCC
have value 1, or we mark it $, which means that all the vertices of the SCC have
value strictly between 0 and 1. This is done as follows. After we removed the 0-valued
vertices, the only bottom SCCs of GA correspond to exit nodes and get value 1. We
then process the remaining SCCs bottom-up. Iteratively, suppose that C is a lowest
unprocessed SCC. If C has any successor node that is marked 0 or $, then we mark C
also $. Otherwise we restrict the equation system x = P (x) to the SCC C, we compute
the corresponding moment matrix BC and compare its spectral radius, ρ(BC), to 1; if
ρ(BC) ≤ 1 then C is marked 1, otherwise it is marked $. The tests ρ(BC) ≤ 1 can be
done using linear programming ([Etessami and Yannakakis 2009]), or even by solving
linear systems of equations [Esparza et al. 2013] (using the latter method yields a
strongly polynomial algorithm).

6.1. Maximizing 1-RMDPs

We present a polynomial time algorithm for maximizing 1-RMDPs.

THEOREM 6.2. Given a maximizing 1-RMDP A, there is a polynomial time algo-
rithm which determines for every vertex u of A which of the following three cases holds:
(1) q∗u = 0, or (2) q∗u = 1, or (3) 0 < q∗u < 1.

PROOF. Given a maximizing 1-RMDP, A, we shall determine for all vertices u,
whether q∗u = 1, q∗u = 0, or 0 < q∗u < 1. From the system of equations x = P (x) for
A we construct a labeled dependency graph, GA = (Q,→), as follows: the nodes Q of
GA are the vertices of A, and there is an edge u → v iff xv appears on the right hand
side of the equation xu = Pu(x). Each node u is labeled by its Type. If u ∈ Typerand,
i.e., u is a probabilistic vertex, and xv appears in the weighted sum Pu(x) as a term
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Fig. 4. Dependency graph

pu,vxv, then the edge from u to v is labeled by the probability pu,v. Otherwise, the edge
is unlabeled.
For example, let M be the maximizing 1-RMDP that is obtained from the 1-RSSG of

Figure 2 by removing the type-min vertex u4. The dependency graph of M is shown in
Figure 4.
We wish to partition the nodes of the dependency graph into three classes: Z0 = {u |

q∗u = 0}, Z1 = {u | q∗u = 1}, and Z$ = {u | 0 < q∗u < 1}. In our algorithm we will use
a fourth partition, Z?, to denote those nodes for which we have not yet determined to
which partition they belong. We first compute Z0. By Theorem 5.3, this can be done
easily in P-time. Once we have computed Z0, the remaining nodes belong either to Z1

or Z$. Clearly, exit nodes belong to Z1.
Initialize: Z1 ← Ex; Z$ ← ∅; and Z? ← Q\ (Z1 ∪ Z0);
Next, we do one “preprocessing” step to categorize some remaining “easy” nodes into
Z1 and Z$, as follows:

repeat
if u ∈ Z? ∩ (Typerand ∪ Typecall) has all of its successors in Z1

then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};
if u ∈ Z? ∩ Typemax has some successor in Z1

then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};
if u ∈ Z? ∩ (Typerand ∪ Typecall) has some successor in Z0 ∪ Z$

then Z? ← Z? \ {u}; Z$ ← Z$ ∪ {u};
if u ∈ Z? ∩ Typemax has all successors in (Z0 ∪ Z$)
then Z? ← Z? \ {u}; Z$ ← Z$ ∪ {u};

until (there is no change to Z?)

For example, in the case of the dependency graph of Figure 4, the above preprocess-
ing step will put u5 in Z0, vertices t and (b2, t) in Z1, and the rest of the vertices in
Z?.
The correctness of the assignments in this preprocessing step follows from the fact

that q∗ = P (q∗) by an easy induction, i.e., if a vertex u is added to Z1 in some step then
indeed q∗u = 1, and if a vertex u is added to Z$ then 0 < q∗u < 1.
The preprocessing step will not, in general, empty Z?, and we need to categorize the

remaining nodes in Z?. We will construct a set of linear inequalities (an LP without
an objective function) which has a solution iff there is any remaining node in Z? which
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belongs in Z1, and if so, the solution we obtain to the LP will let us find and remove
from Z? some more nodes that belong in Z1. Note that, if we can do this, then we can
solve our problem, because all we need to do is iterate: we repeatedly do a preprocess-
ing step, followed by the LP step to remove nodes from Z?, until no more nodes can be
removed, at which point we are done: the remaining nodes in Z? all belong to Z$.
For the LP step, restrict attention to the vertices remaining in Z?. These vertices

induce a subgraph of GA, call it G′
A. Call a remaining probabilistic node u in Z? leaky

if it does not have full probability on its outgoing transitions inside G′
A. Note that this

happens if and only if some of u’s outedges in GA lead to nodes in Z1 (otherwise, if u
had an outedge to a node in Z0 or Z$, it would already have been removed from Z?

during preprocessing). Let L denote the set of remaining leaky nodes in Z?. We add an

extra terminal node t to G′
A, and for every u ∈ L we add a probabilistic edge u

pu,t→ t,
where pu,t = 1−∑

v∈Z?
pu,v.

W.l.o.g., we assume for simplicity that all the entries of components and return nodes
of boxes are probabilistic nodes. This can easily be assured by minor adjustments to
the input 1-RMDP: if such a node u is not probabilistic, then add a new node u′ that
has the same type and all the edges of u, change u to a probabilistic node and add a
probability 1 edge from u to u′.
The LP that we construct has a variable yi for every node i ∈ Z? that is not Typemax,

and has a variable yi,j for every Typemax node i ∈ Z? and successor j ∈ Z? of i. In
addition there are “flow” variables fi,j,k for each node i ∈ Z?, and every edge j → k in
G′

A. The constraints are as follows.

(1) For every j ∈ Typerand ∪ Typecall that is not a component entry or a return:

yj ≥
∑

i→j ∧ i∈Typerand

pi,jyi +
∑

i→j ∧ i∈Typemax

yi,j

(2) For every j ∈ Typemax:∑

k

yj,k ≥
∑

i→j ∧ i∈Typerand

pi,jyi +
∑

i→j ∧ i∈Typemax

yi,j

(3) For every node i that is an entry of a component, say Ar:

yi ≥
∑

j=(b,i)∈Typecall ∧ Y (b)=r

yj

(4) For every node i that is a return port, say of box b: yi ≥
∑

j∈Callb
yj:

(5)
∑

i yi +
∑

i,j yi,j = 1.

(6) y ≥ 0.

Regard the dependency graph G′
A (with the extra terminal node t) as a network flow

graph with capacity on each edge i → j coming out of a max node equal to yi,j and
capacity of edges i→ j coming out of the other vertices equal to yi. We set up one flow
problem for each i ∈ Z?, with source i, sink t and flow variables fijk.

7. For every vertex i, we have flow conservation constraints on the variables fi,j,k, i.e.,∑
k fi,j,k =

∑
k fi,k,j , for all nodes j ∈ Z?, j 6= i, t.

8. Non-negativity constraints: fi,j,k ≥ 0 for all i, j, k.
9. Capacity constraints: fi,j,k ≤ yj,k for every j ∈ Typemax with successor k, and for

every node i; and fi,j,k ≤ yj for every j ∈ Typerand ∪ Typecall and successor k in G′
A

and every node i.
10. Source constraints:

∑
k fi,i,k = yi/22m, for every i ∈ Typerand ∪ Typecall, and∑

k fi,i,k =
∑

j yi,j/22m, for i ∈ Typemax, where m is defined as follows. Suppose

our LP in constraints (1.-6.) has r variables and constraints, and that its rational
entries have numerator and denominator with at most l bits. If there is a solution
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to (1.-6.), then (see, e.g., [Grötschel et al. 1993]), there is a rational solution whose
numerators and denominators require at most m = poly(r, l) bits to encode, where
poly(r, l) is a polynomial in r and l. Note r ∈ O(|G′

A|), l is bounded by the number of
bits required for the transition probabilities pu,v in A, hence m is polynomial in the
input size.

Before we prove formally that the LP has the desired property, i.e. it has a solution
if and only if there are vertices v ∈ Z? that have value q∗v = 1, we give informally some
intuition for the variables and constraints of the LP. The construction of the LP is based
on the qualitative classification of the vertices for 1-RMCs. An optimal strategy σ of
the maximizing player induces a 1-RMC. There are some vertices of Z? that have value
1 iff there is a bottom SCC C in the dependency graph of this 1-RMC that contains a
leaky vertex, and whose moment matrix BC has spectral radius ρ(BC) ≤ 1. Since BC

is an irreducible nonnegative matrix, the condition that ρ(BC) ≤ 1 is equivalent to
the condition that there exists a nonnegative vector u 6= 0 that satisfies u ≥ u · BC .
Indeed, we can take u to be a nonnegative eigenvector associated with the eigenvalue
ρ(BC), and we can assume u has been normalized so that its coordinates sum to 1. The
variables yi, i /∈ Typemax of the LP stand for the (unknown) values ui, and the variables
yi,j for the vertices i ∈ Typemax and their successors j, stand for the quantities uiσ(i, j),
where σ(i, j) is the (unknown) probability that the optimal strategy assigns to the
edge (i, j). Note that we do not assign separate variables to ui, i ∈ Typemax and σ(i, j),
but rather to their product, to keep the constraints linear. (We could have included
variables yi also for i ∈ Typemax to stand for ui, and added constraints yi =

∑
j yi,j,

but they are redundant.) Constraints 1-4 of the LP express the inequality u ≥ u · BC .
Constraints 5 and 6 correspond to the fact that u is normalized and u ≥ 0. The purpose
of constraints (7-10) is to ensure that every vertex i with a nonzero variable yi or
nonzero edge variable yi,j can reach a leaky vertex in the subgraph of G′

A induced by
the support of the y solution vector.
We proceed now to the formal proof.

LEMMA 6.3. There exists a vertex v ∈ Z? such that q∗v = 1 if and only if the LP
constraints in (1.–10.) are feasible. Moreover, from a solution to the LP we can find a
(partial) strategy for the maximizing player that forces termination from some such v
with probability = 1.

PROOF.
(⇒) Suppose there exists v ∈ Z? with q∗v = 1. Fix an optimal strategy of the maximizing
player. By Theorem 4.2, there is an SM strategy σ that maximizes all the values at all
the nodes and which picks one successor for each max node. Fix the edges chosen by σ
as outedges of Typemax vertices, and eliminate all other outedges from these vertices.
This turns the 1-RMDP into a 1-RMC, M .
Since σ is optimal, some vertices v ∈ Z? in M have probability of termination equal

to 1. Consider the dependency graph of M , call this GM , and its decomposition into
SCCs. There must exist a lowest SCC C of GM which contains a node v ∈ Z? which
has probability 1 of termination in M . Moreover, C must be a nontrivial SCC which
contains more than one vertex, and which contains at least one “leaky” probabilistic
node in L, for otherwise the preprocessing step would have already moved v into Z1

(or earlier into Z0). Let BC be the (nonnegative) moment matrix associated with the
SCC C. From results in [Etessami and Yannakakis 2009] (see section 8, Lemma 8.2,
in [Etessami and Yannakakis 2009]), it follows that BC has spectral radius ρ(BC) ≤ 1.
Since BC is nonnegative, the standard Perron-Frobenius theory for nonnegative ma-
trices (see, e.g., Theorem (8.3.1) of [Horn and Johnson 1985]) tells us that there is a
row vector u ≥ 0, u 6= 0, such that uBC = ρ(BC)u ≤ u. By normalizing, we can find such

Journal of the ACM, Vol. 0, No. 0, Article 0, Publication date: 2014.



Recursive Markov Decision Processes and Recursive Stochastic Games 0:31

a vector that also satisfies
∑

i ui = 1 (since the system u ≥ uBC is homogeneous), and
moreover such that all entries have at most m bits in numerator and denominator, so
they are between 1/2m and 2m. Note that since C is strongly connected, any solution
to the linear constraints {u ≥ uBC ;

∑
i ui = 1; u ≥ 0} automatically satisfies u > 0, i.e.,

uk > 0 for all indices k.
We can now form a solution to our LP constraints (1.-10.): set to 0 all variables yi

and yi,j in our LP where i is not in C, as well as the variables yi,j where the node
i ∈ Typemax is in C, but such that edge i→ j is not the edge that the optimal strategy
σ picks for vertex i. For a non-max node i 6∈ Typemax in C, set yi = ui, and for a max
node i ∈ Typemax in C where the selected edge by σ is i → j, set yi,j = ui. It can
be verified that constraints (1.–4.) are satisfied by y because u ≥ uBC . The vector y
satisfies (5.) because

∑
i ui = 1, and y obviously satisfies also (6.).

Since the nodes of C have probability 1 in M , and since C is nontrivial and must
contain a leaky node z, for each node i in C, we take a path to z and route a flow of
value = ui/22m ≤ 1/2m through that path. Note that since u > 0, ui > 0. Moreover, all
capacities are ≥ 1/2m, so no capacities are violated. All other flows fi,j,k are set to 0.
Thus, all constraints (1.–10.) are satisfied.

(⇐) Conversely, suppose that the LP has a solution y,f . We’ll define a (partial) strategy
for the maximizing player which yields value 1 for some vertices in Z?.
Remove from the 1-RMDP and the dependency graph G′

A all edges i→ j from nodes
i ∈ Typemax where yi,j = 0, and remove all nodes i 6∈ Typemax where yi = 0, as
well as nodes i ∈ Typemax where

∑
j yij = 0. The remaining dependency graph G′′ is

“downward closed”, i.e., if a node i is in G′′ then so are all its successors. This is because
of constraints (1.-4.): if a variable on the right hand side is > 0 then the same must be
true for the variable on the left.
We define the (randomizing) strategy, which for every node i ∈ Typemax with∑
j yi,j > 0, picks successor j with probability pi,j = yi,j/

∑
j yi,j . We can now regard

each such node as a probabilistic node, and letting, yi =
∑

j yi,j, we have transition

probabilities pi,j = yi,j/yi. With this interpretation, constraints (2.) of the LP become
the same as (1.). We now have an 1-RMC M ′ with dependency graph G′′ on the remain-
ing nodes that are in the support of y.
Constraints (1.-4.), restricted to the positive yi’s, can in fact be written as y ≥ yB,

where B is the nonnegative moment matrix of M ′. Since y > 0 (i.e., positive in all
coordinates), this implies that ρ(B) ≤ 1 (see, e.g., [Horn and Johnson 1985], Corollary
(8.1.29)). Hence, it follows that ρ(Bi) ≤ 1 for the moment matrices Bi for all the bottom
SCCs Ci of G′′ (because, ρ(Bi) ≤ ρ(B)).
From the flow constraints (7.–10.), every bottom SCC Ci of G′′ has a leaky node

(because we can push positive flow to t from all of the nodes in the reduced graph).
We claim that every vertex of a bottom SCC can reach the exit of its component (and
terminate) in the 1-RMC M ′. It will follow that the 1-RMC qualitative termination
algorithm of ([Etessami and Yannakakis 2009], section 8, Theorem 8.1) will determine
that the value is 1 for all the vertices of the bottom SCCs of G′′.
Let S be the vertices of M ′ that cannot reach their exit (i.e., have 0 probability

of termination in M ′) and let T be the vertices that can reach their exit. The leaky
vertices in L are clearly in T because they have an edge to a node that we already
assigned 1, so they can reach their exit. (a.) If i is a node in S that is not in Typecall,
i.e., not a call node, then all its successors must also be in S. (b.) If i is a call node in S
then at least one of its successors in the dependency graph (i.e. the return of the same
box or the entry of the component corresponding to the box) must be in S; otherwise i
could reach the exit of its component. Add up all the LP constraints (1.-4.) for nodes i
in S and let

∑
i∈S yi ≥ rhs be the resulting inequality (here rhs denotes the sum of the
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right hand sides of the constraints 1.-4. ). By (a.), for every node i ∈ S with i 6∈ Typecall,
the rhs includes

∑
j pi,jyi = yi because all these successors j are in S. By (b.), for every

i ∈ Typecall ∩ S, the rhs includes yi (from constraint 3. or 4.). It follows that the rhs of
these constraints cannot include anything else, in particular there is no edge j → i of
G′′ with j in T and i in S. Since every bottom SCC contains a leaky node, it follows that
S contains no nodes from any bottom SCC. Thus, all vertices of the bottom SCCs can
reach their exit. Furthermore, since the bottom SCCs all have spectral radius ≤ 1, by
the 1-RMC algorithm from ([Etessami and Yannakakis 2009], section 8, Theorem 8.1)
all these vertices will terminate with probability 1. Note, moreover, that the solution
we obtained to the LP allows us to fix a (randomized) strategy for the maximizing
player which will yield probability 1 for these vertices.

So to summarize, we first compute the set Z0 of vertices that have value 0, and
perform the preprocessing step. Then we set up and solve the LP. If there is no solution,
then for all remaining vertices u ∈ Z?, q∗u < 1, and thus u ∈ Z$. If there is a solution,
use the above partial (randomized) strategy (given by the proof of the lemma) for some
of the max nodes, leaving the strategy for other nodes unspecified. This allows us to
set to 1 some vertices (vertices in the bottom SCCs of the resulting 1-RMC), and thus
to move them to Z1. We can then iterate the preprocessing step and then the LP step
until we reach a fixed point, at which point we have categorized all vertices into one of
Z0, Z1 or Z$.

Example 6.4.
Consider again the 1-RMDP M that is obtained from the 1-RSSG of Figure 4 by re-
moving vertex u4. As mentioned earlier, the preprocessing step will set Z0 = {u5},
Z1 = {t, (b2, t)}, and Z? = Q−Z0 −Z1. The LP will contain the following constraints in
the first 6 groups:
1. y(b1,s) ≥ 1

2ys, y(b2,s) ≥ y(b1,t) + yu2
, yu2

≥ 1
2yu3

+ yu1u2
, yu3

≥ yu1u3

2. yu1u2
+ yu1u3

≥ 1
4ys

3. ys ≥ y(b1,s) + y(b2,s)

4. y(b1,t) ≥ y(b1,s)

5. ys + y(b1,s) + y(b1,t) + y(b2,s) + yu1u2
+ yu1u3

+ yu2
+ yu3

= 1
6. y ≥ 0.
There is no solution to this set of constraints. This can be seen as follows. Combining

(3) with (4) and (1), we have ys ≥ y(b1,s)+y(b2,s) ≥ 1
2ys+y(b1,t)+yu2

≥ 1
2ys+y(b1,s)+yu2

≥
ys + yu2

. Hence yu2
= 0. This implies then via the constraints that all the other y

variables are also 0, contradicting constraint (5). Therefore, the LP has no solution,
and hence the value for all the vertices in Z? is strictly between 0 and 1.
Consider however the 1-RMDP M ′ which differs from M in the outgoing edge of

vertex u2, and suppose this edge goes to vertex u1 instead of the call port (b2, s) of box
b2. The preprocessing step will be the same as for M . The set of constraints will be the
same except that the constraint for (b2, s) will be y(b2,s) ≥ y(b1,t), and the constraint for

u1 will be yu1u2
+ yu1u3

≥ 1
4ys + yu2

. It is easy to see that the set of constraints (1-6)

for M ′ has a solution: ys = 4
15 , y(b1,s) = y(b1,t) = y(b2,s) = yu3

= 2
15 , yu2

= 1
15 , yu1u2

=

0, yu1u3
= 2

15 . The flow network for the constraints (7-10) is essentially the same as
the dependency graph (see Figure 4), except that nodes u5, (b2, t) are not present, and
the edge out of u2 goes to u1. The edges (u1, u2) and (u1, u3) out of the type-max vertex
u1 have respectively capacity yu1u2

= 0 and yu1u3
= 2/15, and every other edge (i, j)

has capacity yi. Thus, all edges have positive capacity, except for the edge (u1, u2), and
every node has a path to the terminal t. Therefore there is a feasible flow from every
source node i ∈ Z? to the terminal t, and thus there is a solution to the constraints
(7-10) for these values of the y variables. That is, the LP is feasible. From the solution
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of the LP, we set the strategy of the max vertex u1 to select the successor u3 for which
yu1u3

> 0. All the vertices have positive y’s and are assigned to Z1. Thus, all the vertices
of M ′ have value 1 except for u5 that has value 0.
We remark that, since our P-time algorithm uses linear programming, it is not

strongly polynomial. Note that even for finite-state MDPs (with a reachability objec-
tive), the question of whether there exists a strongly polynomial time algorithm is a
well-known open problem.

6.2. Minimizing 1-RMDPs

The qualitative problem for minimizing 1-RMDPs can be solved also in polynomial
time. A separate algorithm is needed, because the maximization and minimization
case are not symmetric.

THEOREM 6.5. Given a minimizing 1-RMDP A, there is a polynomial time algo-
rithm which determines for every vertex u of A which of the following three cases holds:
(1) q∗u = 0, or (2) q∗u = 1, or (3) 0 < q∗u < 1.

PROOF. As in the previous theorem, we want to classify the vertices into Z0, Z$, Z1,
this time under optimal play of the minimizing player. We again consider the depen-
dency graph GA of A. We will again use Z? to denote those vertices that have not
yet been classified. We compute first the set Z0 of vertices with value 0, using the
algorithm of Theorem 5.3. The remaining vertices are either in Z$ or Z1. We use Z?

again to denote the set of vertices that have not been assigned yet.

Initialize: Z1 ← Ex; Z$ ← ∅; and Z? ← Q\ (Z1 ∪ Z0);
Next, we again do a “preprocessing” step, which is “dual” to that of the preprocessing

we did for maximizing 1-RMDPs, and categorizes some remaining “easy” nodes into Z1

and Z$:

repeat
if u ∈ Z? ∩ (Typerand ∪ Typecall) has all of its successors in Z1

then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};
if u ∈ Z? ∩ Typemin has some successor in Z$

then Z? ← Z? \ {u}; Z$ ← Z$ ∪ {u};
if u ∈ Z? ∩ (Typerand ∪ Typecall) has some successor in Z0 ∪ Z$

then Z? ← Z? \ {u}; Z$ ← Z$ ∪ {u};
if u ∈ Z? ∩ Typemin has all successors in (Z1)
then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};

until (there is no change to Z?)

Note that, after the preprocessing step, for every edge u → v in GA from u ∈ Z? to
v 6∈ Z?, it must be the case that v ∈ Z1 (otherwise, u would have already been moved to
Z$ or Z0). After preprocessing, we formulate a (different) LP, which has a solution iff
there are more nodes currently in Z? which belong in Z$. Restrict attention to nodes
in Z?, and consider the subgraph G′

A of GA induced by the nodes in Z?. The LP has a
variable yi for every remaining vertex i ∈ Z? such that i 6∈ Typemin, and has a variable
yij for every (remaining) node i ∈ Typemin, and successor j of i in G′

A. We shall need
the following lemma:

LEMMA 6.6. Consider a square nonnegative matrix B with at most n rows and
having rational entries with at most l bits each. If ρ(B) > 1 then ρ(B) ≥ 1 + 1/2m where
m = poly(n, l) and poly(n, l) is some polynomial in n and l.

PROOF. This can be proved in several ways. One way is to observe that since B is
nonnegative, ρ(B) is an eigenvalue of B, and that eigenvalues of B are roots of the
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characteristic polynomial h(x) = det(xI −B). Given B, this univariate polynomial can
be computed explicitly in polynomial time. It then follows from a result of Mahler
[Mahler 1964], that distinct roots α and β of h(x)∗ (x−1), must have distance |α−β| ≥
1/2m where m = poly(n, l) for some polynomial poly(n, l). From this it follows that
ρ(B) ≥ 1 + 1/2m.
Alternatively, this can be shown by using LP bounds: If ρ(B) > 1 then there is a

nonzero vector u ≥ 0 such that Bu = ru, with r > 1. Suppose I ′ is the set of indices
i with ui > 0 and let B′ be the corresponding square submatrix BI′,I′ of B induced
by the rows and columns in I ′. The LP B′x ≥ x + 1, x ≥ 0 has a solution (scale u[I ′]
appropriately). Therefore, it has a rational solution with at most m = poly(n, l) bits,
hence its entries are at most 2m. This solution, together with ui = 0 in the rest of the
indices satisfies Bu ≥ (1 + 1/2m)u, u ≥ 0 , u 6= 0. Therefore, ρ(B) ≥ (1 + 1/2m) (by, eg.,
[Horn and Johnson 1985] Theorem (8.3.2)).

Let d = (1 + 1/2m). Assume again w.l.o.g. that all component entries and return
ports are in Typerand. The constraints of our LP are as follows. For the LP we restrict
attention to only those nodes j, i in Z?.

(1) For every j ∈ Typerand that is not a component entry or a return, as well as for
every j ∈ Typecall:

dyj ≤
∑

i∈Typerand ∧ i→j

pi,jyi +
∑

i∈Typemin ∧ i→j

yi,j

(2) For every j ∈ Typemin:

d
∑

k

yj,k ≤
∑

i∈Typerand ∧ i→j

pi,jyi +
∑

i∈Typemin ∧ i→j

yi,j

(3) For every node i that is an entry of a component, say Ar:

dyi ≤
∑

j=(b,i)∈Typecall ∧ Y (b)=r

yj

(4) For every node i that is a return node, say of box b: dyi ≤
∑

j∈Callb
yj.

(5)
∑

i yi +
∑

i,j yi,j = 1.

(6) y ≥ 0.

LEMMA 6.7. There exists a vertex v ∈ Z? such that q∗v < 1 if and only if the LP in (1.
– 6.) is feasible. Moreover, from a solution to the LP we can find a (partial) strategy for
the minimizing player that forces termination from some such v with probability < 1.

PROOF. (⇒) Assume there exists v ∈ Z? with q∗v < 1. Fix an optimal strategy τ of
the min player. By Theorem 4.2, there is a strategy that minimizes all the values at all
the vertices and which picks one successor for each node i ∈ Typemin. This makes the
1-RMDP into a 1-RMC M ′. Let G′′ be the dependency graph of M ′. Since τ is optimal,
some of the vertices in Z? have probability < 1 of termination in M ′. Let z be such a
vertex in Z? which is in a lowest SCC of G′′, meaning all vertices of Z? in lower SCCs
of G′′ (reachable from z) have probability = 1 of termination. Let C be the SCC of z
and let R be the set of vertices that are reachable from z in G′′ (including C). If one of
the vertices in R was already placed earlier in Z$ (or Z0), then z would also have been
placed in Z$ in the preprocessing step (because z can reach it). We conclude that all
the vertices of R are in Z? or Z1. Furthermore, since the vertices of C have value < 1,
they must all be in Z?.
Consider the application of the qualitative termination algorithm for 1-RMCs from

[Etessami and Yannakakis 2009] (section 8 of that paper) on the 1-RMC M ′. All the
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vertices of R in lower SCCs below C have value 1 in M ′. When the algorithm exam-
ines C as the lowest unprocessed SCC, it will compute the spectral radius ρ(BC) of
the moment matrix BC corresponding to the SCC C and test if it is > 1. Since z has
probability < 1 of termination in M ′, we must have ρ(BC) > 1. Since ρ(BC) > 1, we
know ρ(BC) ≥ d, so (by, e.g., Theorem (8.3.2), of [Horn and Johnson 1985]) there is a
nonzero vector u ≥ 0 such that du ≤ uBC . Scale the entries of u so that

∑
ui = 1.

Form the following solution to the LP: For each i in C, if i 6∈ Typemin then let yi = ui,
and if i ∈ Typemin then let yi,j = ui for the single edge i → j selected by the optimal
strategy τ and yi,j = 0 otherwise. Note that for each min node i of C the optimal
strategy selects a successor j that is also in C, otherwise the value of i would be 1. Set
the variables corresponding to the other vertices and edges to 0.
The above vector y clearly satisfies constraints 5 and 6 since u ≥ 0 and

∑
ui = 1.

Constraints 1-4 for nodes that are not in C are satisfied because the left hand side is
0 (and the right hand side nonnegative), and the constraints 1-4 for nodes in C follow
from du ≤ uBC , as in the proof of Theorem 6.2.
(⇐) Conversely, suppose that the LP has a solution y. We’ll define a (partial) strategy
which forces termination with probability < 1 from some of the vertices remaining in
Z?.
For each i ∈ Z?, let ui = yi if i 6∈ Typemin and let ui =

∑
j yi,j if i ∈ Typemin. Define

a (randomized) strategy where for i ∈ Typemin, if ui > 0 then the probability of edge
i → j is pi,j = yi,j/ui; if ui = 0 or i is not in Z? then pick an arbitrary transition out of
i or arbitrary transition probabilities (it does not matter for the following argument).
This makes the 1-RMDP into a 1-RMC M ′ and let G′′ be the dependency graph of M ′.
Let z be a vertex of Z? with uz > 0 that belongs to a highest SCC of G′′, i.e., all vertices
z′ (of Z?) in higher SCCs (from which z can be reached) have uz′ = 0. Let R be the set
of vertices reachable from z and let C be the SCC of z. From preprocessing, we know
that all vertices of R are in Z? or in Z1, otherwise z would have been assigned to Z$ or
Z0. We will argue that z has probability < 1 of termination in M ′.
Consider the 1-RMC qualitative termination algorithm from ([Etessami and Yan-

nakakis 2009], Section 8) applied to M ′ with initial vertex z. All of the vertices in R
can reach in M ′ a terminal exit (because there are no Z0 vertices among the remaining
nodes). Form the moment matrix BR of R and consider its spectral radius ρ(BR). Let u
be the vector defined above for vertices of R that are in Z? and 0 for the other vertices
(note, all of the others are in Z1). Clearly, u 6= 0 and u ≥ 0. We claim that du ≤ uBR.
For a vertex i ∈ Z?, the inequality dui ≤ (uBR)i follows from constraints (1.-4.) of the
LP (since predecessor nodes and arcs that are not in R have y value 0). For a vertex i
not in Z?, ui = 0 and the inequality clearly holds. Thus, ρ(BR) ≥ d > 1, and thus the
1-RMC qualitative termination algorithm will determine that vertex z has probability
< 1 of termination.

To summarize, we find Z0, then do preprocessing to determine the “easy” Z1 and Z$

vertices. Then, we set up and solve the LP, finding some more Z$ vertices, removing
them, and iterating again with a preprocessing and LP step, until we exhaust Z? or
there is no solution to the LP; in the latter case the remaining vertices all belong to Z1.
As for a strategy that achieves these assignments, in each iteration when we solve the
LP we fix the strategy for certain of the min nodes in a way that ensures that some new
vertices will be added to Z$ and leave the other min nodes undetermined. Moreover,
in preprocessing, if Typemin nodes get assigned to Z$ based on an outedge, we fix the
strategy at that node accordingly.

7. QUALITATIVE TERMINATION FOR 1-RSSGS IN NP∩CONP

The following is a simple corollary of Theorems 4.2, 6.2, and 6.5.
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Fig. 5. 1-RMC A′

COROLLARY 7.1. Given a 1-RSSG, A, and given a vertex u of A, we can decide in
both NP and coNP whether q∗u = 1. In other words, the qualitative termination problem

for 1-RSSGs is in NP∩coNP.7

PROOF. By Theorem 4.2, both players have optimal SM strategies. Thus, in order
to decide in NP whether q∗u = 1, we guess an optimal SM strategy σ for the maximiz-
ing player (player 1), yielding a minimizing 1-RMDP, and then verify in P-time using
Theorem 6.5 that the optimal value q∗,σ of u in the minimizing 1-RMDP is 1. Likewise,
to decide in coNP whether q∗u = 1, i.e., to decide in NP whether q∗u < 1, we guess an
optimal SM strategy τ for the minimizing player (player 2), and verify in P-time using
Theorem 6.2 that in the resulting maximizing 1-RMDP q∗,·,τ

u < 1.

As the following theorem shows, it will not be easy to improve this upper bound.
Recall that finite SSGs (with a reachability objective) are a special case of 1-RSSGs
(with a termination objective). Define the quantitative termination decision problem
for finite SSGs to be the following problem: given a finite SSG G with a target vertex
labelled “1”, and a starting vertex u of G, where the objective of the max player (resp.,
the min player) is to maximize (resp. minimize) the probability of reaching vertex 1,
decide whether the value of the game q∗u ≥ 1/2. Condon [Condon 1992] showed that
this problem is in NP ∩ coNP, and it has been a major open problem whether this
upper bound can be improved to P-time.

THEOREM 7.2. There is a P-time reduction from the quantitative termination prob-
lem for finite SSGs to the qualitative termination problem for 1-RSSGs.

PROOF. Consider the 1-RMC depicted in Figure 5, where p1 + p2 = 1. As shown
in ([Etessami and Yannakakis 2009], Theorem 3), in this 1-RMC the probability of
termination starting at 〈ǫ, en〉 is = 1 if and only if p2 ≥ 1/2.
Now, given a finite SSG, G with a target vertex labelled “1”, and a starting vertex u

of G, do the following: first “clean up” G by removing all nodes where the min player
(player 2) has a strategy to achieve probability 0. By Theorem 5.3, we can do this in
polynomial time. If u is among these nodes, then we are done, so assume it is not. The
revised SSG will have two designated absorbing nodes, the old target node, labeled “1”,
and another node labeled “0”. From every node v in the revised SSG which does not
have full probability 1 on its outedges, we direct all the “residual” probability to vertex
“0”, i.e., we add an edge from v to “0” with probability p

v,”0” = 1 −∑
w pv,w, where the

sum is over all remaining nodes w is the SSG. In the resulting finite SSG, we know
that if the max player plays optimally, and the min player plays arbitrarily, there is

7For the more general class of 1-RCSGs one can not hope to easily establish such upper bounds for quali-
tative termination problems. In fact, we showed in [Etessami and Yannakakis 2008] that such a result for
1-RCSGs would constitute a breakthrough because it would imply that SQRT-SUM is in NP.
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Fig. 6. A linearly recursive 1-RSSG

no bottom SCC in the resulting finite Markov chain other than the two designated
terminating nodes “0” and “1”. In other words, all the probability exits the system, as
long as the maximizing player plays optimally.
Let G′ be the revised finite SSG. Just add a copy of G′ to the component A1 of the

1-RMC in Figure 5, and replace the two edges incident to the entry en of A1 by the
following edges, all with probability 1: an edge from en to the vertex u of G′, an edge
from terminal node “1” of G to the exit ex of the component A1, and an edge from the
terminal node “0” of G′ to the call port (b1, en) of the left box b1. Both boxes map to the
unique component A1. Call this 1-RSSG A.
We now claim that the value q∗u ≥ 1/2 in the finite SSG G′ for terminating at the

terminal “1” iff the value q∗en = 1 for terminating in the resulting 1-RSSG, A. The
reason is clear: after cleaning up the SSG, we know that under an optimal strategy
for the maximizer for reaching “1”, all the probability exits G′ either at ”1” or at ”0”.
We also know that the maximizing player will win (i.e., q∗en = 1) iff it can direct ≥ 1/2
probability to go directly to the exit of the component in A, but this is precisely the
probability that the maximizer can direct to terminal node “1” in G′.

It is not at all clear whether there is a reverse reduction, i.e., a reduction from qual-
itative termination for 1-RSSGs to quantitative termination for finite SSGs. Note also
that the qualitative problem for finite SSGs can be solved in polynomial time.

8. LINEARLY RECURSIVE 1-RMDPS AND 1-RSSGS

Recall that a RMDP or RSSG is linearly recursive, or linear, if there is no path in any
component from a return port of a box to a call port of the same or another box. For
instance, the 1-RMC (and thus also 1-RMDP) This corresponds to the notion of linear
recursion in procedural programs. An example of a linearly-recursive 1-RSSG is give
Figure 6. By contrast, the 1-RMC depicted in Figure 2 is not linearly recursive, because
it contains a transition from the return port of box b1 to the call port of box b2. Clearly,
standard finite-state MDPs and SSGs are a special case of linearly recursive 1-RMDPs
and 1-RSSGs, respectively.8 In this section we show that the positive features of finite
MDPs and SSGs are inherited by their linearly recursive generalizations: all the vertex

8As shown in [Etessami and Yannakakis 2009] and the next section, there is a close connection between
1-RMCs, 1-RMDPs, and 1-RSSGs on the one hand and stochastic context-free grammars and branching
processes and their controlled and game extensions on the other. In this correspondence, linear grammars
(i.e. grammars where the right hand sides of the rules contain at most one non-terminal) map to linear
1-RMCs, 1-RMDPs, or 1-RSSGs; however, the direct mapping in the opposite direction yields in general a
nonlinear grammar. Nevertheless, as we show in this section, the analysis of linear 1-RMDPs and 1-RSSGs
is no harder than the case of finite state MDPs and games.
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values are rational and have polynomial bit size. In the case of linear 1-RMDPs, the
values can be computed exactly in polynomial time. In the case of linear 1-RSSGs, the
quantitative problem is in NP ∩ coNP, just like the finite SSG case, and furthermore
the problems for linear 1-RSSGs and SSG are polynomially equivalent. The qualitative
problem can be solved in polynomial time for both linear 1-RMDPs and 1-RSSGs.
We present first the algorithm for the qualitative problem for linear 1-RSSGs. The al-

gorithm is shown in Figure 7. The main call is Prune(A), and calls repeatedly two other
procedures PruneMin and PruneMax that process the dependency graph to eliminate
vertices until it is left with the vertices that have value 1. Intuitively, these procedures
have the following function. PruneMin identifies a subset S of the current set W of
vertices that does not include any exits, and such that if the game starts at a vertex
of S and is constrained to stay within W then the min player can restrict it further
to stay within the subset S; since S does not include any exits, the max player cannot
win from any vertex of S and thus the subset S can be removed from the current set
W . PruneMax removes from the current set W vertices from which the max player has
no control of staying within W in the next step. Note that the call vertices behave like
the min vertices: for a call vertex to have value 1, both of its successor vertices in the
dependency graph must have value 1. The probabilistic vertices are treated like the
max vertices in PruneMin and like the min vertices in PruneMax.
Note also that the algorithm depends only on the structure (vertices and edges) of

the 1-RSSG, and not on the probabilities on the edges. This is similar to the finite-state
case, and is in contrast to the general case of nonlinear 1-RMDPs and 1-RSSGs, where
the values of the probabilities are important for the qualitative problem.
If we apply the algorithm on the example 1-RSSG of Figure 6, the first call to Prune-

Min will return the set of vertices {u, v, z}, which will be removed from the current
set W . The subsequent call to PruneMax will remove all the other vertices except for
the two exits ex, ex′ and the entry en′ of B. The final set W of vertices with value 1 is
{ex, ex′, en′}.
We show the correctness of the algorithm in the following theorem.

THEOREM 8.1. Given a linear 1-RSSG, we can compute in polynomial time the set
of vertices u with value q∗u = 1.

PROOF. Consider our algorithm, depicted in Figure 7. We claim that a call to
Prune(A) returns precisely those vertices in Z1 = {u | q∗u = 1}. To establish this,
we use several properties of the nested fixed point algorithm.

Property 1: A loop invariant of the algorithm is that at the beginning of each iteration
of the repeat-until loop inside Prune(A), if a random, call, or min node is in the current
W , then all its successors in GA are also in W , and everymax node of W has a successor
in W . Clearly, this holds initially when W = Q. To see that it holds at the beginning
of each subsequent iteration, note that the assignment W ← PruneMax(W ) at the end
of the previous iteration eliminates precisely those vertices from W that violate this
condition.
Property 2: During the repeat-until loop of Prune(A) the set W (which keeps track
of remaining potential candidates for the set Z1) monotonically shrinks (or stays un-
changed and we terminate). Moreover, every node u that is removed from the set W
is correctly removed, i.e., u 6∈ Z1. This property is not hard to verify by inspection of
the PruneMin and PruneMax procedures. In particular, for the nodes S returned by
PruneMin(W ) the min player has a strategy to terminate with probability 0, by pick-
ing, for each Typemin node in S, an outedge to another node inside S. (Note that the
call nodes in S must also have at least one successor inside S.)
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Prune(A)
Input: Linear 1-RSSG A with set of vertices Q.
Output: The set of vertices {u|q∗u = 1}.
Construct the dependency graph GA of A.
W ← Q;
repeat

W ← W\PruneMin(W );
W ← PruneMax(W );

until (there is no change in W );
return W ;

PruneMin(W)
S ←W \ Ex;
repeat
if there is a node u in S ∩ (Typerand ∪ Typemax) that has a
successor (in the graph GA) in W \ S, then S ← S \ {u};

if there is a node u in S ∩ (Typemin ∪ Typecall) that has no
successor in S, then S ← S \ {u};

until (there is no change in S);
return S;

PruneMax(W)
S ←W ;
repeat
if there is a node u in S ∩ (Typerand ∪ Typemin ∪ Typecall) that has a
successor in Q \ S, then S ← S \ {u};

if there is a node u in S ∩ Typemax that has no
successor in S, then S ← S \ {u};

until (there is no change in S);
return S;

Fig. 7. P-time qualitative termination algorithm for linear 1-RSSGs

Suppose the algorithm reaches a fixed point, i.e. there is an iteration of Prune(A)
with no change to W . Consider any SM strategy τ of the min player, and consider the
subgraph G′′ of GA induced by the nodes W and by τ , where we take the selected edges
out of the min nodes, and all the edges out of the random, call, and max nodes.
Property 3: The only bottom SCCs of G′′ are the exit nodes. In proof, suppose there was
a bottom SCC, C , of G′′ other than the exit nodes. Then all nodes in C would stay in S
in the last PruneMin call, and thus they would have been eliminated from W .
We say that a SCC is trivial if it contains only one node and no edges, and is non-

trivial otherwise. All the bottom SCCs of G′′ are trivial (they are precisely the exit
nodes).
Property 4: Every nontrivial SCC of G′′ has at least one edge leaving it from a Typerand

or Typemax node. To see this, suppose there was an SCC, C′, of G′′ such that the only
edges coming out of C′ were only edges coming out of some Typecall nodes. Every call
node v has two outgoing edges; if one of them leaves C′ then the other must go to a node
in C′, otherwise the SCC C′ would be trivial (it would only consist of v). Furthermore,
every min node v of C′ has exactly one outgoing edge in G′′; if that edge leaves C′, then
again C′ cannot contain any other nodes besides v and would be trivial. We conclude
that every call and min node of C′ has a successor in C′, and every random and max
node has all the successors in C′. This implies that in the last call of PruneMin(W ), all
nodes in C′ would again have stayed in S, and thus they would have been eliminated
from W .
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Property 5: If u = (b, en) ∈ W is a call port then the return port v = (b, ex) of the same
box cannot reach u in GA, nor in G′′, and hence it is not in the same SCC as u. This
follows from the assumption that A is a linear 1-RSSG: the return port v can only reach
ordinary nodes in the 1-RSSG A (no boxes), hence the same is true in the dependency
graph GA, and hence also in its subgraph G′′. It follows that v is not in the same SCC
as u. Note that u = (b, en) has two edges in the dependency graph, u → v and u → en;
the property says that the first edge leaves the SCC of u.
We now establish that W ⊆ Z1, i.e., for every strategy τ of the min player, from every

node in W the max player has a strategy to terminate with probability 1. It suffices
to consider an optimal SM strategy τ of the min player. Consider the DAG of SCCs of
G′′, bottom up. By Property 3, the bottom SCCs are the exit nodes, so they are in Z1.
Inductively, consider an internal SCC, C, for which we have already established that
all of its successor SCCs are in Z1. If C is a trivial SCC, i.e. C = {u} for some node u and
all edges of u go to lower SCCs, then the claim follows from the induction hypothesis,
for all 4 possible types of u: rand, call, min, max. Suppose that C is a nontrivial SCC.
By Property 5, the call nodes in C can have at most 1 edge to another node in C, with
the other edge going to a lower SCC that was already marked to be in Z1. Therefore,
such call nodes can in effect be identified inside C with their successor in C, because
their probability of termination will be the same as that of their successor in C (under
any strategy of the max player). Thus, C may be viewed as a finite SSG with no Typecall

nodes. But by Property 4, C must also have an edge exiting it either from a Typerand

node or a Typemax node. In either case, the max player has a strategy inside C such
that every node of C will terminate with probability 1. Thus W ⊆ Z1. By Property 2,
we already know Z1 ⊆W , so we are done.

We address now the quantitative problem for linear 1-RMDPs and 1-RSSGs.

THEOREM 8.2.

(1) In a linear 1-RMDP or 1-RSSG (with rational transition probabilities), the values
of all the vertices are rational with polynomial bit complexity.

(2) The values can be computed exactly in polynomial time for both maximizing and
minimizing linear 1-RMDP.

(3) The quantitative problem for linear 1-RSSGs is in NP ∩ coNP. Furthermore, it re-
duces to the quantitative problem for finite SSGs, i.e. if the latter can be solved in P,
then we can compute the values for linear 1-RSSGs in polynomial time.

PROOF. 1. Let A be a linear 1-RSSG, let σ, τ be optimal SM strategies for the maxi-
mizing and the minimizing player respectively, and let A′ be the RMC obtained from A
by keeping for each max and min vertex the transition selected by the respective opti-
mal strategy, giving it probability 1, and removing the other transitions of these nodes.
Clearly, A′ is a linear 1-RMC, and every vertex u has the same value q∗u in the 1-RSSG
A as its termination probability in the 1-RMC A′. By Theorem 8.9 of [Etessami and
Yannakakis 2009], all these probabilities are rational, of polynomial bit complexity.
2. The equation system x = P (x) associated with a linear 1-RMDP is still a nonlinear

min or max system because the equation corresponding to every call port is quadratic.
But it can be decomposed into a sequence of linear min/max subsystems. Let A be a
(maximizing or minimizing) linear 1-RMDP. Treating each component Ai of A as a
directed graph on its set Qi of vertices, let Ri be the set of vertices that can reach a
call port and Si = Qi −Ri the remaining vertices. Let R = ∪Ri and S = ∪Si. Since A is
linear, all the return ports and the exit are in Si and all the call ports are in Ri. By the
definition, Si is successor-closed, i.e. if a vertex is in Si then so are all its successors.
We process the set Si separately for each component:We view Si as an ordinary finite

(maximizing or minimizing) MDP where the objective is to optimize the probability of
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reaching the exit node of Ai. Using the standard Linear Programmingmethod for finite
MDPs, we can compute in polynomial time the optimal probabilities for all vertices
u ∈ Si, which are the values q∗u of these vertices in the 1-RMDP A. After doing this for
all components, we have the value q∗u of all vertices u ∈ S.
Now we process the set R. Restrict the system x = P (x) of A to the equations cor-

responding to the vertices in R, substitute on the right hand side the values for all
the variables in S, and let y = P ′(y) be the resulting system. The desired vector of
values q∗u, u ∈ R is the least fixed point (LFP) of the system y = P ′(y). The system has
only linear and min or max equations. In particular, for each call port u = (b, en), the
corresponding return port v = (b, ex) of the same box belongs to S, thus the equation
of u becomes yu = q∗v · yen, and if en is also in S, then the right hand side is a constant:
yu = q∗v · q∗en. Note that the computed values q∗v for the vertices v ∈ S have polynomial
size in the input 1-RMDP, thus all coefficients on the right hand sides are of polynomial
size.
The LFP of the system y = P ′(y) can be computed by solving a Linear program,

similar to computing the values for a MDP with a reachability objective. (In fact we
could define a min or max MDP whose solution gives the LFP). Specifically, if A is
a maximizing RMDP, then the objective of the LP is to minimize

∑
u∈R yu subject to

y ≥ 0 and a set of constraints corresponding to the equations of the system y = P ′(y).
For each linear equation yu =

∑
v puvyv + cu of the system, the LP has a constraint

yu ≥
∑

v puvyv + cu, and for each max equation yu = max({yv|v ∈ R, (u,⊥, v) ∈ δ} ∪
{q∗v|v ∈ S, (u,⊥, v) ∈ δ}), the LP has one constraint yu ≥ yv for each successor v ∈ R of
the max node u, and a constraint yu ≥ max{q∗v |v ∈ S, (u,⊥, v) ∈ δ}. As with MDPs, the
LFP of the system is the (unique) optimal solution of the LP.
If A is a minimizing 1-RMDP, then we first compute the set Z0 of vertices whose

value is 0 and remove them and their equation from the system y = P ′(y). Then we
set up and solve the LP to maximize

∑
u∈R yu subject to y ≥ 0 and a set of constraints

corresponding to the equations of the system y = P ′(y). For each linear equation yu =∑
v puvyv + cu of the system, the LP has a constraint yu ≤

∑
v puvyv + cu, and for each

min equation yu = min({yv|v ∈ R, (u,⊥, v) ∈ δ} ∪ {q∗v|v ∈ S, (u,⊥, v) ∈ δ}), the LP has
one constraint yu ≤ yv for each successor v ∈ R of the min node u and a constraint
yu ≤ min{q∗v|v ∈ S, (u,⊥, v) ∈ δ}.
3. Membership in NP ∩ coNP follows from part 2, as in Corollary 7.1. We can test

in NP if q∗u ≥ p for a given vertex u and bound p by guessing a SM strategy σ for
the max player, constructing the minimizing 1-RMDP Aσ obtained from A by fixing
accordingly the strategy of player 1, and then computing the value of u in the 1-RMDP
and checking that it is ≥ p. Similarly, we can test in NP if q∗u < p (i.e., test in coNP that
q∗u ≥ p) by guessing a SM strategy τ for the min player, and verifying that the value of
u in the corresponding maximizing 1-RMDP is < p.
Suppose that the quantitative problem for finite SSGs can be solved in polynomial

time. Note that this implies that we can compute exactly the values in polynomial time,
because the values are rational numbers of polynomial bit complexity. Thus, using
binary search, a polynomial number of comparison queries of the form q∗u ≥ p suffices to
compute the exact values. We will show how to compute the values for linear 1-RSSGs
using a method similar to part 2. Given a linear 1-RSSG A, we partition again the set
Qi of vertices of each component into two sets, Ri (those that can reach a call port) and
Si = Qi − Ri. Every set Si induces a finite SSG with the exit node of component Ai as
the target node (terminal 1), thus we can compute the values of all vertices u ∈ S = ∪Si

in polynomial time.
We show now how to compute the values for the vertices in R = ∪Ri. Construct a new

finite SSG G which includes all the vertices of R, the vertices of S that have incoming
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edges in A from some vertices in R, and two new terminal nodes labelled 0 and 1. Every
vertex u ∈ S of G is now a probabilistic vertex (regardless of its original type in A) and
has a transition to terminal 1 with probability q∗u and a transition to terminal 0 with
probability 1 − q∗u. (If some nodes u ∈ S have value 0, then we can identify them with
terminal 0.) The rand, min and max nodes of R retain the same type and the same
transitions as in the given 1-RSSG A. Each call vertex u = (b, en) ∈ R, becomes now
a random vertex: if en ∈ R then u has a transition to en with probability q∗(b,ex) where

(b, ex) is the return port of the same box, and a transition with probability 1 − q∗(b,ex)

to terminal 0; if en ∈ S, then u has a transition with probability q∗en · q∗(b,ex) to terminal

1, and a transition with the remaining probability 1 − q∗en · q∗(b,ex) to terminal 0. By

construction, for all vertices u ∈ S of G, their value in the SSG G is q∗u. If we form the
linear min-max system of equations for the SSG G, restrict it to the equations for the
vertices in R substituting on the right hand sides the values q∗u for u ∈ S, value 1 for
terminal 1 and 0 for terminal 0, the resulting system is precisely the system y = P ′(x)
for the vertices in R obtained from the system x = P (x) of the given 1-RSSG A. The
LFP of this system is the vector of values for the vertices of R, both in the original
1-RSSG A, and in the constructed finite SSG G.

The qualitative termination problem can be solved in polynomial time more gener-
ally for piecewise linear 1-RSSGs. We will call a 1-RSSG A piecewise linear if every
vertex v ∈ Typecall has at most one successor in the dependency graph GA that is in
the same SCC as v. The piecewise linear class includes obviously the linear 1-RSSGs.
It also includes hierarchical 1-RSSG. A RSSG A is hierarchical if we can order the
components as A1, . . . , Ak, so that the boxes of each component Ai are mapped to later
components Aj , j > i (there could be arbitrary paths between the boxes inside the com-
ponents). The same algorithm of Theorem 8.1 for the qualitative termination problem
applies more generally to piecewise linear 1-RSSGs, and the proof is exactly the same.
In the quantitative problem there is a subtle, but important complication in the

piecewise linear case. The values of the vertices are still rational (as in the linearly
recursive case), however they may have an exponential number of bits. Specifically
the number of bits of the values can be exponential in the height of the DAG of SCCs
of the dependency graph; this can happen even for the special case of hierarchical
1-RMCs [Etessami and Yannakakis 2009]. We can compute the values for piecewise
linear (maximizing or minimizing) 1-RMDPs using a similar algorithm as in the lin-
ear case, by processing the SCCs of the dependency graph one by one bottom-up in
topological order. If the height of the DAG of SCCs is bounded by a constant, then
the algorithm runs in polynomial time. However, if the height is unbounded, then the
numbers can get exponentially long in size, and the algorithm is no longer polynomi-
ally bounded.

9. BRANCHING MARKOV DECISION PROCESSES AND GAMES

In [Etessami and Yannakakis 2009] we established a close relationship between the
extinction probability of multi-type branching processes and the termination proba-
bility of 1-exit RMCs; in particular, the computational problems are polynomial time
equivalent. In this section we consider controlled and game generalizations of branch-
ing processes with the objective of maximizing or minimizing the extinction probabil-
ity and show an analogous equivalence with 1-RMDPs and 1-RSSGs with termination
probability objectives.
A (multi-type) Branching Process (BP) G = (V, R) consists of a (finite) set V =

{S1, . . . , Sn} of types, and a (finite) set R of rules r of the form Si
pr→ αr, where Si ∈ V ,

pr ∈ (0, 1], and αr is a (finite) multi-set whose elements are in V , and such that for
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every type Si,
∑

〈pr |(Si
pr→αr)∈R〉

pr = 1. The rule Si
pr→ αr specifies the probability with

which an entity of type Si generates the multi-set αr of offsprings in the next gen-
eration. As usual, the rule probabilities are assumed to be rational for computational
purposes.We also assume that the multi-sets αr in the right-hand sides of the rules are
given in the input by explicit listing of all the elements. An equivalent representation
of a multi-set αr is as a n-vector v(αr) = (v1(αr), . . . , vn(αr)) which specifies in unary
the number vi(αr) of elements in αr of each type Si ∈ V . One could also use a more suc-
cinct vector representation where the vi’s are given in binary. It is shown in [Etessami
and Yannakakis 2009] that the more succinct binary representation can be reduced
in polynomial time to the unary (multi-set) representation, by introducing additional
types and rules (this reduction carries over to the controlled and game extensions).
Starting from an initial population (set of entities of given types) µ at time (genera-

tion) 0, the BP G defines a stochastic process X0 = µ, X1, X2, . . . where the population
Xk at time k > 0 is obtained from Xk−1 by independently and simultaneously selecting
for each entity in Xk−1 a rule for the entity’s type according to the rules’ probabilities
and replacing the entity with a new set of entities whose types are specified by the
right hand side of the rule. The process continues as long as the current set of entities
is not empty and terminates if and when it becomes empty. For a given initial popula-
tion X0 = µ, the extinction probability of µ, denoted p∗(µ), is the probability that the
process terminates, i.e., Xk = ∅ for some k. To compute the extinction probability for
any initial population µ, it suffices to compute for each type Si ∈ V the extinction prob-
ability when the initial population has just a single entity of type Si; we denote this
probability by p∗i , i.e. p∗i = p∗({Si}). The extinction probability p∗(µ) of a population µ
is equal to the product of the extinction probabilities of the types of the entities in µ.
We will use the following notation in this section. If µ is a finite population with vector
of type multiplicities v(µ) = (v1(µ), . . . , vn(µ)) and q is a real n-vector, we let f(q, µ)
denote the expression Πn

i=1(qi)
vi(µ). Thus, p∗(µ) = f(p∗, µ) = Πi(p

∗
i )

vi(µ).
A Branching Simple Stochastic Game (BSSG) consists of the following:

—A finite set V = {S1, . . . , Sn} of types
—A mapping pl that maps every type to a player in {0, 1, 2} that controls the repro-

duction of the type, where 0 is the random player (chance or nature), player 1 is the
maximizer and 2 the minimizer

—A finite set of actions for players 1 and 2 and a mapping act from every type in
pl−1(1) ∪ pl−1(2) to a set of actions: these are the available actions to the player for
entities of this type

—A set R(Si) of rules for each type Si. For a type Si ∈ pl−1(0) these are probabilistic
rules that have the same format as in a branching process, with left-hand side Si

and with probabilities that sum to 1. For a type Si ∈ pl−1(1) ∪ pl−1(2), they consist
of a set R(Si, a) of probabilistic rules for every action a ∈ act(Si), where the rules
have left-hand side Si and the sum of the probabilities of all the rules in the same
set R(Si, a) is 1.

We will call the types mapped to 0, 1 and 2 respectively (and the entities of these
types) random, max and min types (and entities). The subclass of BSSGs where no
type is mapped to player 2 (respectively, no type is mapped to player 1) is called a
maximizing (respectively, minimizing) Branching Markov Decision Process (BMDP).
The subclass of BSSGs where all the types are mapped to player 0 are of course the
standard Branching Processes.
A BSSG operates as follows. Starting from an initial population X0 = µ, a sequence

of populationsX1, X2, . . . is generated, whereXk is obtained from Xk−1 as follows: First
the players 1 and 2 select an available action for each entity in Xk−1 of a max or min
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type respectively; then a rule is chosen independently and simultaneously for all the
entities of Xk−1 probabilistically according to the probabilities of the rules for the type
of the entity and the selected action in case of a max or min type; and finally, every
entity of Xk−1 is replaced by a new set of entities corresponding to the right-hand side
of the selected rule for the entity. When a player 1 (or 2) selects the actions for the
entities of max (or min) type, he can use randomization (i.e. pick the actions with some
probabilities) and can base the selections (the probabilities for randomized selections)
on the entire past history of the process up to time k−1. We may include in the history
of the process up to time k − 1 not only the populations X0, X1, . . . , Xk−1, but also the
information on all the past actions and rules applied and the parent-child relationships
between all the entities up to this point; the history can be represented by a forest of
depth k−1, with internal nodes labelled by rules and actions, and whose leaves at level
k − 1 form the population Xk−1. Thus, a strategy of a player is a function that maps
every finite history (i.e., labelled forest of some finite depth as above) to a probability
distribution on the set of tuples of actions for the entities in the current population
(i.e. at the bottom level of the forest) that are controlled by the player. Let Ψ1, Ψ2 be
the set of all strategies of players 1, 2. We say that a strategy is deterministic if for
every history it chooses one tuple of actions with probability 1. We say that a strategy
is static if it is both deterministic and, in addition, for each type Si controlled by that
player the strategy always chooses the same action ai for all entities of type Si in all
histories. Our notion of an arbitrary strategy is quite general (it can depend on all the
details of the entire history, and be randomized, etc.), however, as we will show, both
players have optimal static strategies in BSSGs. Static strategies correspond to the
(deterministic) SM strategies of RSSGs.
We will be interested in the extinction probability objective. The goal of player 1 is

to maximize the extinction probability and of player 2 to minimize it (i.e., maximize
the survival probability). For a given initial population µ, integer k ≥ 0 and strategies
σ ∈ Ψ1, τ ∈ Ψ2, we denote by pk,σ,τ (µ) the probability that the process with initial pop-
ulation µ, and strategies σ, τ terminates in at most k steps (i.e., Xk = ∅), and we denote
by p∗,σ,τ (µ) the probability that it terminates in any number of steps. We let pk(µ) =
supσ∈Ψ1

infτ∈Ψ2
pk,σ,τ (µ), and p∗(µ) = supσ∈Ψ1

infτ∈Ψ2
p∗,σ,τ (µ); the last quantity is the

value of the game for the initial population µ. Determinacy holds for these games also
as we’ll see, i.e. p∗(µ) = supσ∈Ψ1

infτ∈Ψ2
p∗,σ,τ (µ) = infτ∈Ψ2

sup∗,σ∈Ψ1
p∗,σ,τ(µ), and simi-

larly for pk(µ). Furthermore, both players have optimal static strategies.
If µ has a single entity of type Si, we will write p∗i and pk

i instead of p∗(µ) and
pk(µ). Given a BSSG, the goal is to compute the vector p∗ of the p∗i ’s, i.e. the vector
of extinction probabilities of the different types under optimal play. As we will see,
from the p∗i ’s, we can compute the value p∗(µ) for any initial population µ, namely
p∗(µ) = f(p∗, µ) = Πi(p

∗
i )

vi(µ).
Let x = (xi|i = 1, . . . , n) be a vector of variables for the different types of a given

BSSG G. From the BSSG we can define a set of equations x = P (x), which contains
one equation xi = Pi(x) for each type Si. There are three cases depending on whether
Si is a random, max, or min type. For each rule r, we let pr denote the probability of
the rule and αr the right hand side.

(1) Si is random type: xi =
∑

r∈R(Si)
prf(x, αr) =

∑
r∈R(Si)

prΠ
n
j=1(xj)

vj(αr), where the

summation is over all rules r with left hand side (lhs) Si, pr is the probability of the
rule and αr the right hand side (rhs). Recall that vj(αr) is the number of entities of
type Sj in αr.(2) Si is a max type: xi = maxa∈act(Si)

∑
r∈R(Si,a) prf(x, αr) =

maxa∈act(Si)

∑
r∈R(Si,a) prΠ

n
j=1(xj)

vj(αr).
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(3) Si is a min type: xi = mina∈act(Si)

∑
r∈R(Si,a) prf(x, αr) =

mina∈act(Si)

∑
r∈R(Si,a) prΠ

n
j=1(xj)

vj(αr).

As in the setting of 1-RSSGs, the operator P is again clearly monotone on R
n
≥0, and on

the unit n-cube [0, 1]n. Thus the operator P has a Least Fixed Point (LFP) x∗ ∈ [0, 1]n. As
shown in the following theorem, this LFP is precisely the vector p∗ of optimal extinction
probabilities.

THEOREM 9.1. The optimal extinction probability vector p∗ is the Least Fixed Point
of the operator P . Furthermore, for any initial population µ, the optimal extinction
probability p∗(µ) = f(p∗, µ) = Πi(p

∗
i )

vi(µ) and p∗(µ) = supσ∈Ψ1
infτ∈Ψ2

p∗,σ,τ (µ) =
infτ∈Ψ2

supσ∈Ψ1
p∗,σ,τ(µ).

PROOF. Let xk be the k-fold application of P on the all-0 vector, i.e. x0 = 0, and
xk = P (xk−1) for k > 0. As in the case of the 1-RSSGs, the sequence xk is (component-
wise) monotonically non-decreasing as a function of k, bounded from above by the all-1
vector, and converges to the LFP, x∗, as k →∞. We will show the following claim.

CLAIM 1. For any integer k ≥ 0 and any finite initial population µ, the probability
pk(µ) = supσ∈Ψ1

infτ∈Ψ2
pk,σ,τ (µ) of extinction in at most k steps under optimal play is

pk(µ) = f(xk, µ) = Πn
i=1(x

k
i )vi(µ). Furthermore, there are strategies of the two players

(and in fact deterministic ones) σk ∈ Ψ1, τk ∈ Ψ2 that achieve this value, i.e, pk(µ) =
infτ∈Ψ2

pk,σk,τ (µ) = supσ∈Ψ2
pk,σ,τk(µ).

PROOF. We show the claim by induction on k. The basis, k = 0, is trivial. For the
induction part, consider the generation of population X1 from X0 in step 1. We show
first that pk(µ) ≥ Πn

i=1(x
k
i )vi(µ). Consider the following strategy σk for the max player.

For each entity in the initial population X0 = µ of a max type Si, the max player
selects in step 1 (deterministically) an action a ∈ act(Si) that maximizes the expression∑

r∈R(Si,a) prf(xk−1, αr) on the right side of the equation xk = P (xk−1). After the min

player selects also actions for the entities of min type in X0, and rules for all the
entities are chosen probabilistically to generate the population X1 for time 1, the max
player follows an optimal (k − 1)-step strategy σk−1 for X1. If we assume inductively
that σk−1 is deterministic, then σk is also deterministic. (It is not static however; the
action chosen for an entity of a given type in a population Xi in the process may depend
on the time i.)
Let τ be any strategy of the min player. Consider a combination of actions chosen

with nonzero probability by the min player in step 1 for the entities of min type in X0 =
µ. After this, a combination of rules is chosen independently for all the entities of µ and
the population X1 is generated accordingly with probability that is the product of the
rule probabilities that were applied (because the rules are chosen independently). By
the induction hypothesis, the probability that X1 becomes extinct in the next k−1 steps
(i.e. by time k) is at least f(xk−1, X1). If we multiply f(xk−1, X1) with the probability of
the combination of rules used in step 1, and sum it over all the rule combinations, we
can write the result as a product of |µ| terms, one for each entity in µ. The term for an
entity with a random type Si is

∑
r∈R(Si)

prf(xk−1, αr) = Pi(x
k−1) = xk

i ; the term for an

entity of max or min type Si is
∑

r∈R(Si,a) prf(xk−1, αr) where a is the action selected

for this entity by the min or max player in step 1. For the max player, we selected an
action a ∈ act(Si) that maximizes this expression, therefore the term for the entity is
equal to Pi(x

k−1) = xk
i . For an entity that belongs to the min player, no matter which

action the player chose, the term is greater than or equal to the minimum value over
all available actions, which is Pi(x

k−1) = xk
i . Hence, for any combination of actions

Journal of the ACM, Vol. 0, No. 0, Article 0, Publication date: 2014.



0:46 Etessami and Yannakakis

chosen by the min player in step 1, the probability that the process terminates by step
k under the strategies σk, τ is at least f(xk, µ). Therefore, this holds also if τ makes
a randomized selection in step 1, i.e., assigns nonzero probability to more than one
combinations of actions for the min entities in µ. Thus, infτ∈Ψ2

pk,σk,τ (µ) ≥ f(xk, µ)
and hence pk(µ) ≥ f(xk, µ).
We can give a symmetric argument for the min player to prove the reverse inequality.

Define strategy τk for the min player as follows. In step 1, the min player chooses
for each entity of min type Si in the initial population µ, an action a ∈ act(Si) that
minimizes the expression

∑
r∈R(Si,a) prf(xk−1, αr) on the right side of the equation

xk = P (xk−1), and then, once the max player has chosen actions for the max entities
of µ, and rules are selected and applied to generate the population X1, the min player
follows the strategy τk−1 starting from X1. By a symmetric argument to the max player
case, it is easy to see that supσ∈Ψ2

pk,σ,τk(µ) ≤ f(xk, µ) and hence pk(µ) ≤ f(xk, µ). It

follows that pk(µ) = infτ∈Ψ2
pk,σk,τ (µ) = supσ∈Ψ2

pk,σ,τk(µ) = f(xk, µ).

In particular, for singleton populations µ, the claim implies that pk
i = xk

i for all types
Si and all k.
Let x∗ = limk→∞ xk be the LFP of the equation x = P (x). We will show that

for any initial population µ, the optimal extinction probability satisfies p∗(µ) =
supσ∈Ψ1

infτ∈Ψ2
p∗,σ,τ (µ) = infτ∈Ψ2

supσ∈Ψ1
p∗,σ,τ (µ) = f(x∗, µ). In particular, for sin-

gleton populations µ, this property implies that p∗i = x∗
i for all types Si.

Since xk converges to x∗ (from below) as k → ∞, the sequence f(xk, µ) converges
to f(x∗, µ). Thus for every ǫ > 0 there is a k such that f(xk, µ) > f(x∗, µ) − ǫ. The
strategy σk of the max player achieves value p∗,σk,τ (µ) ≥ f(xk, µ) > f(x∗, µ)− ǫ for any
strategy τ of the min player. Since this holds for every ǫ > 0, it follows that p∗(µ) =
supσ∈Ψ1

infτ∈Ψ2
p∗,σ,τ (µ) ≥ f(x∗, µ).

For the converse inequality, let τ∗ be the static strategy for the min player which
always chooses for each entity of min type Si an action ai that minimizes the expres-
sion

∑
r∈R(Si,a) prf(x∗, αr). If we fix the actions for all the min types according to τ∗,

the BSSG G becomes a maximizing BMDP G′ where all the min types of G become
now random types. Let x = P ′(x) be the set of equations for G′; for the random and
max types Si of G′ the equation is the same, i.e., P ′

i = Pi, while for min types Si the
function on the right-hand side changes from Pi(x) = mina∈act(Si)

∑
r∈R(Si,a) prf(x, αr)

to P ′
i (x) =

∑
r∈R(Si,ai)

prf(x, αr). Thus, P ′(x) ≥ P (x) for all x ∈ R
n
≥0. Let yk, k = 0, 1, . . .

be the vector resulting from the k-fold application of the operator P ′ on the all-0 vector.
Then yk ≥ xk for all k, and therefore the LFP y∗ of P ′ is at least as great as the LFP
x∗ of P . However, x∗ is a fixed point of P ′ since we have chosen actions for all the min
types Si that achieve the minimum in Pi(x

∗). Therefore, x∗ = y∗ is also the least fixed
point of P ′.
Consider any strategy σ of the max player starting from initial population µ. Ap-

plying the Claim to the BMDP G′ we know that for every k, the probability of ex-
tinction in k steps is at most pk(µ) = f(yk, µ) Therefore, the probability of extinction
in any number of steps is at most f(y∗, µ) = f(x∗, µ). That is, supσ∈Ψ1

p∗,σ,τ∗

(µ) ≤
f(x∗, µ). Combining with the previous inequality p∗(µ) ≥ f(x∗, µ), and since clearly
p∗(µ) = supσ∈Psi1

infτ∈Ψ2
p∗,σ,τ (µ) ≤ supσ∈Ψ1

p∗,σ,τ∗

(µ), we conclude that p∗(µ) =
supσ∈Ψ1

infτ∈Ψ2
p∗,σ,τ (µ) = infτ∈Ψ2

supσ∈Ψ1
p∗,σ,τ (µ) = f(x∗, µ).

The proof of the Theorem shows that the min player has an optimal (deterministic)
static strategy τ∗ that achieves the optimal value p∗(µ) for any initial population µ.
The same is true for the max player, but this would require a separate proof. We will
deduce it instead from the relation we establish next with the 1-RSSGs.
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THEOREM 9.2. 1. From any given BSSG G (resp. BMDP G), we can construct in
polynomial time a 1-RSSG A (resp. 1-RMDP A) such that there is a bijection from the
types of G to the components of A, and the optimal extinction probability of each type
is equal to the optimal termination probability of the entry of the corresponding com-
ponent. Furthermore, from optimal SM strategies of the players in A we can construct
efficiently static optimal strategies for the players in G, and vice versa. This implies in
particular that there exist optimal static strategies for both players in all BSSGs.
2. From any given 1-RSSG A (resp. 1-RMDP A), we can construct in polynomial time
a BSSG G (resp. BMDP G), such that there is a mapping from the vertices u of A to
types Su of G, such that the optimal termination probability q∗u in A is equal to the
corresponding optimal extinction probability p∗u in G. Furthermore, from optimal SM
strategies of the players in A we can construct efficiently static optimal strategies for the
players in G, and vice versa.

PROOF. The constructions are similar to the constructions in [Etessami and Yan-
nakakis 2009] for 1-RMCs and branching processes, extended here to handle the ver-
tices and types controlled by the players.
1. Given a BSSG G with set of types V , we construct a 1-RSSG A that has one com-
ponent Ai for every type Si in V . If Si is a random type, then the entry eni of Ai is
a probabilistic node and Ai has a path πr from the entry eni to the exit exi for every
rule r ∈ R(Si). The path consists of a sequence of |αr| boxes, one for each entity on the
right-hand side of the rule r; the order of the boxes is not important. The entry eni has
an edge to the call port of the first box in the path πr with probability pr (i.e., equal to
the probability of the rule r), the return port of each box has an edge with probability
1 to the call port of the next box, and the return port of the last box has a probability
1 edge to the exit exi of component Ai. Each box is mapped to the component for the
type of the entity of αr that corresponds to the box.
If Si is a max type, then the entry eni of Ai is a max node. The component Ai has

a (probabilistic) node ua for every action a ∈ act(Si) and an edge from eni to each ua.
For every rule r ∈ R(Si, a), the component Ai has a path πr from ua to the exit exi

which consists again of a sequence of boxes corresponding to the entities in the right-
hand side αr, similar to the case of random types. The component Ai for a min type is
constructed similarly; the entry eni is a min node, it has edges to a set of probabilistic
nodes ua corresponding to the actions a ∈ act(Si), and each ua has a set of paths
to the exit exi corresponding to the rules in R(Si, a). Note that if G is a maximizing
or minimizing BMDP (i.e. has no min or no max types) then A is a maximizing or
minimizing 1-RMDP.
Consider the system of equation x = P (x) of A, let x = (y, z) where y is the subvector

of x for all the entry nodes and z for all the other vertices. Note that all the other
vertices are either random or call or exit vertices. We can eliminate all the z variables
from the equations and express them all in terms of the y variables, i.e. we can rewrite
the system as {y = T (y), z = T ′(y)}, where the components of T ′ are polynomials
with positive coefficients (no max and min). It is easy to see from the construction
that the equation for each variable yi corresponding to the entry eni of component Ai

is exactly the same as the equation for the corresponding type Si in the system of
equations for the BSSG G. That is, the system for G is precisely y = T (y). Thus, there
is a 1-1 correspondence between the fixed points of the system y = T (y) for G and the
system {y = T (y), z = T ′(y)}, or equivalently x = P (x) for A, and furthermore, since
T ′ is monotone, the correspondence preserves the least fixed points: if y∗ is the LFP
of T , which is also the optimal extinction probability vector p∗ for the BSSG G, then
x∗ = (y∗, T ′(y∗)) is the LFP of P and the optimal termination probability vector q∗ for
the 1-RSSG A.
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There is a 1-1 correspondence between the max and min types of G and the max
and min vertices of A, and from the construction, there is a 1-1 correspondence be-
tween static strategies in G and SM strategies in A. Suppose that σ∗ is an optimal SM
strategy for the max player in A. Consider the minimizing BMDP G′ derived from G
when we fix the strategy of the max player to σ∗, i.e., all the max types become random
types, where for each max type we only keep the rules for the selected action and re-
move all the other rules. Let A′ be the 1-RMDP obtained by applying our construction
to the BMDP G′. It is easy to see that A′ can be derived from A by keeping from each
component Ai corresponding to a max type Si only the path for the selected action ai

(contracting uai
into the entry eni), and removing all the other paths corresponding to

non-selected actions; that is, A′ is essentially the 1-RMDP obtained from A by fixing
the strategy of the max player to σ∗. Since σ∗ is an optimal strategy in A, the value
of all the vertices in A′ is the same as in A, hence the value of all the types in G′ is

the same as in G, i.e, for every type Si we have p∗i = infτ∈Ψ2
p∗,σ∗,τ

i . Therefore, σ∗ is an
optimal strategy for the max player in the BSSG G.
By a similar argument, if τ∗ is an optimal SM strategy for the min player in A

then τ∗ is an optimal strategy in G (among all strategies, not only static). We have
shown that both the max and the min player have optimal SM strategies in 1-RSSGs.
It follows that they both also have optimal static strategies in BSSGs. Indeed, by the
above arguments, there is a 1-1 correspondence between optimal SM strategies in A
and optimal static strategies in G.

2. Given a 1-RSSG A we construct a BSSG G that has one type Su for each vertex u

of A. If u is an exit then Su is a random type which has only one rule Su
1→ ∅. If u is a

probabilistic vertex, then u is a random type with one rule Su
puv→ {Sv} for every edge

u
puv→ v out of v. If u is a call port (b, en) and the return post of the box is v = (b, ex),

then Su is a random type with one rule Su
1→ {Sen, Sv}. If u is a max vertex, then Su is

a max type, the action set act(Su) has one action av for each edge u → v out of u, and

the rule set R(Su, av) contains only one rule Su
1→ {Sv}. Similarly if u is a min vertex.

The BSSG G is constructed so that the equation system x = P (x) for G is exactly the
same as the equation system for A. It follows that they have the same least fixed point,
i.e., the optimal termination probability vector q∗ of A is equal to the optimal extinction
probability vector p∗ of G. Furthermore, there is a 1-1 correspondence between optimal
SM strategies in A and optimal static strategies in G.

Theorem 9.2 implies that all the upper bounds (algorithms) and lower bounds that
we show for 1-RSSGs (resp. 1-RMDPs) apply equally to BSSGs (resp. BMDPs).
In [Etessami and Yannakakis 2009] an equivalence was shown also between 1-exit

Recursive Markov chains and Stochastic Context-Free Grammars (SCFGs), where the
termination probability of the 1-RMC is equal to the probability of the language gen-
erated by a corresponding SCFG. SCFGs are similar in format to branching processes,
except that the symbols on the right-hand sides of the rules are ordered, i.e., the right-
hand sides are strings rather than multi-sets (and have in addition ‘terminal’ symbols
that do not reproduce any offsprings), thus the ‘population’ at any time is also a string.
In a SCFG, we do not have to apply the rules simultaneously to all the members of
a population, as in a branching process, but we can apply them one at a time follow-
ing, e.g., a leftmost (or rightmost) order: a leftmost derivation applies in each stage a
rule only to the leftmost (non-terminal) symbol of the remaining string. The infinite
Markov chain defined by a SCFG with the leftmost derivation discipline is essentially
the same as the Markov chain of a corresponding 1-RMC [Etessami and Yannakakis
2009] . A subclass of SCFGs (under a leftmost derivation discipline) corresponds to the
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backbutton model of [Fagin et al. 2000]; this is a finite Markov chain model augmented
with a ‘backbutton’ enabling the return to the previous state in the history, just like in
web browsing (see [Etessami and Yannakakis 2009]).
We can define an extension of SCFGs and the backbutton model with a controller

or two adversarial players, as we did with branching processes. For example, the con-
trolled extension of the backbutton model may reflect different choices in the design
of web pages (which links to include, how to place them etc.), which affect the tran-
sition probabilities from the pages and hence the evolution of the process. Similar to
BMDPs and BSSGs, it can be shown along the same lines that the extensions of SCFGs
are equivalent to 1-RMDPs and 1-RSSGs, and that the extensions of the backbutton
model define subclasses of them.

10. UNDECIDABILITY: MULTI-EXIT RMDP TERMINATION AND 1-RMDP MODEL CHECKING

In this section we show that the quantitative and qualitative termination problems for
multi-exit maximizing or minimizing RMDPs are undecidable. This is so even when
the number of exits is bounded by a constant. Furthermore, the values (the optimal
probabilities) of maximizing RMDPs cannot be approximated algorithmically within
any nontrivial additive constant < 1/2. (Approximation within 1/2 is trivial: 1/2 has
additive error at most 1/2.) We also show that for 1-exit RMDPs the qualitative model
checking problem with respect to ω-regular or LTL properties (specified, say by a Büchi
automaton or a LTL formula) is also undecidable. It obviously follows that the same
questions for the more general RSSGs are also undecidable.
Before proving the undecidability results, let us first observe that the far easier

“value 0” problems for maximizing and minimizing RMDPs, and for RSSGs, are decid-
able:

PROPOSITION 10.1. (Value 0 problem for RMDPs and RSSGs is decidable)

(1) Given a multi-exit minimizing RMDP, or a RSSG, and given vertex u and exit ex, it
is EXPTIME-complete to decide whether q∗(u,ex) = 0.

(2) Given a multi-exit maximizing RMDP, a vertex u and exit ex, we can decide in
polynomial time whether q∗(u,ex) = 0.

PROOF.
1. If we are given a multi-exit minimizing RMDP, and a vertex-exit pair (u, ex), the

problem of deciding whether the controller has a strategy starting at vertex u to never
terminate at exit ex (i.e., terminate there with probability 0), does not actually depend
on the probabilities in the RMDP, but only depends on the structure of the underly-
ing Recursive State Machine (RSM). Namely, we can think of the underlying RSM as
defining a (non-stochastic) game between two players, A and B. Player A controls the
nodes of the min player, and player B controls the probabilistic nodes, but can now
choose the edge out of each vertex controlled by it. Starting at u player B wants to ter-
minate at the exit ex and player A wants to avoid this. It is easy to see that q∗(u,ex) = 0

if and only if player A has a winning strategy in this non-stochastic termination game.
Such two-player termination games on (non-stochastic) Recursive Game Graphs are
equivalent to reachability games for Pushdown game graphs, which are known to be
EXPTIME-complete ([Walukiewicz 1996]).
If we are given a multi-exit RSSG, then we can similarly turn the question of

whether q∗(u,ex) = 0 into a two-player Recursive Game Graph (RGG). In this case, both

the probabilistic nodes of the RSSG and the nodes controlled by the max player in the
RSSG will be controlled by player B in the resulting RGG, whereas player A will con-
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trol the nodes of the min player. Again, q∗(u,ex) = 0 if and only if player A has a winning

strategy in the resulting RGG, so again the problem is EXPTIME-complete.
2. In the case of maximizing RMDPs, the problem of deciding whether q∗(u,ex) = 0

corresponds to a 1-player reachability problem, i.e., to whether there exists any path
in the underlying Recursive State Machine, starting at vertex u (in the empty calling
context) and terminating at exit ex. This is decidable in polynomial time (see [Alur
et al. 2005]).

Our proofs of undecidability for quantitative and qualitative termination problems
for RMDPs and RSSGs are based on a connection that we establish between Proba-
bilistic Finite Automata (PFAs) [Paz 1971] and (multi-exit) RMDPs. Our reductions
show that PFAs can be seen, in effect, as a special case of maximizing RMDPs. We
recall the basic definitions on PFAs. A PFA, M = (V, Σ, T, v1, vn), has a (finite) set V
of n states, a (finite) input alphabet Σ, a function T which maps every input letter
a ∈ Σ to a stochastic n × n matrix Ta, an initial state v1, and an accepting state vn.
The automaton starts at the initial state v1 and operates as follows for an input string
w ∈ Σ∗: at each step, if the automaton is in state vi and the next input letter is a,
the automaton transitions to state vj with probability equal to Ta[i, j]. The probability
PM (w) that M accepts the string w is defined as the probability that the automaton
is at the accepting state vn after reading w. The language of a PFA is defined with re-
spect to a given threshold λ: The language is L(M, λ) = {w ∈ Σ∗|PM (w) > λ}. The PFA
emptiness problem is to decide, given a PFA M and a threshold λ, whether L(M, λ) = ∅.
This problem was shown to be undecidable originally in [Paz 1971]; subsequent proofs
have established stronger undecidability properties [Condon and Lipton 1989; Madani
et al. 2003; Blondel and Canterini 2003]. (The undecidability holds both whether we
use strict or weak inequality in the definition of L(M, λ).) We note that the qualitative
problem for PFAs, namely determining whether there exists a string w ∈ Σ∗ such that
PM (w) = 1, is decidable (and PSPACE-complete); this is Theorem 12 of [Alur et al.
1995].
We first show undecidability for multi-exit maximizing RMDPs.

THEOREM 10.2. (Multi-exit maximizing RMDP termination problems are undecid-
able.)
For every fixed rational ǫ with 0 < ǫ < 1/2 the following problems are undecidable

for maximizing RMDPs, even when the number of exits is bounded by a constant (the
constant depends on ǫ).

(1) Given a maximizing RMDP, A, with only one linearly-recursive component, entry en
and exit ex such that either (i) q∗(en,ex) ≥ 1 − ǫ or (ii) q∗(en,ex) ≤ ǫ, distinguish which

of the two is the case.
(2) Given a maximizing RMDP, A, with one component, entry en and exit ex such that

either (i) q∗(en,ex) = 1 and there is a strategy of the max player that achieves value 1,

or (ii) q∗(en,ex) ≤ ǫ, distinguish which of the two is the case.

These imply that both the quantitative and qualitative termination problems, as well
as their witness counterparts, are undecidable and non-approximable for maximizing
RMDPs and for RSSGs.

PROOF.
We will reduce from the emptiness problem for PFA. Given a PFA M , let p∗M =

sup{PM (w)|w ∈ Σ∗}. For part 1, we will construct a (multi-exit) maximizing RMDP A
with an entry en and an exit ex such that p∗M = q∗(en,ex). Thus, for a threshold λ, the

language L(M, λ) = ∅ iff q∗(en,ex) ≤ λ; this establishes the undecidability of the quanti-
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tative problem for RMDPs. We use an inapproximability result for PFAs to derive an
inapproximability for RMDPs. The number of exits of the RMDPs in this construction
that shows inapproximability is not bounded. We present a more involved reduction
from 2-counter machines that shows the inapproximability for RMDPs with a bounded
number of exits. For the qualitative problem (q∗(en,ex) = 1?) we will embed the RMDP A

of part 1 into another RMDP A′.
Part 1. We first present a simple reduction from the PFA emptiness problem. Let

M = (V, Σ, T, v1, vn) be a PFA with n states. Define a RMDP A that has one component
(call it also A) with a single entry en, and n exits ex1, . . . , exn, one for each state of M .
The entry en is a max node and has edges to the call ports of a set of |Σ| boxes ba, a ∈ Σ;
all the boxes are of course mapped to the single component A. In addition en has an
edge to the exit ex1. The return ports of the boxes ba are probabilistic vertices. Each
return port (ba, exi) has an edge to each exit exj with probability Ta[i, j]. This concludes
the definition of the RMDP A. Note that A is a linear RMDP. Starting from the entry
en of A, the max player wants to maximize the probability q∗(en,exn) of terminating at

exit exn. We claim that q∗(en,exn) is precisely p∗M = sup{PM (w)|w ∈ Σ∗}.
For any word w ∈ Σ∗, consider the strategy σw of the max player which at the i-th

step chooses the edge to the box corresponding to the ith letter of the reverse word wR

for i = 1, . . . , |w|; at step |w|+ 1, the max player chooses the edge to the exit ex1. From
that point on, all the actions are probabilistic. It is easy to see then that by the con-
struction, the sequence of probabilistic actions corresponds to a run of the PFA M on
the input string w, and the run ends at the accepting state qn iff the RMDP terminates
at the exit exn of the top component. Thus, the probability q∗,σw

(en,exn) of termination at

exn under strategy σw is PM (w). It follows that p∗M ≤ q∗(en,exn).

Conversely, consider a (in general, randomized) strategy σ of the max player. At
each step, when the process is at an entry of a component, the max player has to either
choose a letter of Σ and transition to the call port of the corresponding box or decide
to move to ex1 and exit the current box (or it can randomize between these choices). In
case it moves to ex1, the control passes to the probabilistic player and stays with him
for the remainder of the game until the process reaches an exit of the top component.
If q∗,σ

(en,exn) > 0, then the max player has to choose the edge to the exit at some point

with positive probability (otherwise the process will never terminate). For each finite
word w, let pσ(w) be the probability that the max player, using strategy σ, chooses
the reverse wR of w in the first |w| steps and exits in step |w| + 1. Then q∗,σ

(en,exn) =∑
w∈Σ∗ pσ(w)PM (w). Hence q∗,σ

(en,exn) ≤
∑

w∈Σ∗ pσ(w)p∗M ≤ p∗M for every strategy σ of

the max player. Therefore, q∗(en,exn) ≤ p∗M and the two quantities are equal.

The constructed RMDP above has one component with one entry and many exits.
The number of exits of the RMDP is equal to the number of states of the PFA. In
[Blondel and Canterini 2003] it is shown that the PFA emptiness problem is undecid-
able even for PFAs with only 2 letters and 46 states, specifically it is undecidable to
determine for a given such PFA and threshold λ whether there is a word w such that
PM (w) > λ, (and the same holds for the other inequalities ≥ λ, < λ and ≤ λ). It follows
that the quantitative problem is undecidable for maximizing linear RMDPs with one
component and 46 exits.
Another undecidability proof for PFAs that yields strong nonapproximability results

is given in [Condon and Lipton 1989; Madani et al. 2003], where it is shown (see The-
orem 3.3 of [Madani et al. 2003]) that for every 0 < ǫ < 1/2 it is undecidable, given
a PFA M , to distinguish between the case that M accepts some word with probabil-
ity > 1 − ǫ and the case that M accepts every word with probability < ǫ, even when
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it is guaranteed (promised) that one of the two cases holds. This fact together with
our reduction implies part 1 of the theorem, except that the number of exits in this
construction is generally not bounded by a constant, because the number of states of
the PFA in the construction of [Condon and Lipton 1989; Madani et al. 2003] is not
bounded: the reduction there is from the halting problem for a 2-counter machine on
empty input, and the number of states of the PFA depends on the number of states
of the 2-counter machine (which is in general unbounded) and on ǫ. However, we can
combine and modify the reductions, to get a reduction from the 2-counter problem to
the RMDP problem where the number of exits in the RMDP depends only on ǫ. We
explain below how to do this. First, we review the definition of 2-counter machines and
summarize the main ideas in the reduction of [Madani et al. 2003].
A 2-counter machine (2CM) with empty input has a finite set S = {s1, . . . , sm} of

states, it has two counters that can hold nonnegative values, and a set of (determin-
istic) transition rules. One state, s1, is distinguished as the initial state and another
state, sh, as the halting state. Initially the machine starts at state s1 with both counters
0. The transitions from each state depend only on whether the counters have zero or
nonzero value, i.e. there are four rules for every state si 6= sh; at the halting state sh the
machine halts (there are no transitions). Each transition rule specifies the new state
and the (possible) change to each counter which can be one of 3 possibilities: increment
by 1, decrement by 1 (this is allowed only if the counter is positive) and leave the same
value. A configuration of the 2CM can be represented by a string sia

jbl, where si is
the state and j, l are the values of the counters. Starting from the initial configuration
c1 = s1a

0b0 = s1, the computation of the 2CM is a sequence of configurations which ei-
ther goes on forever or ends with a halting configuration, i.e. one where the state is sh.
We can assume without loss of generality that the machine zeroes its counters before
it halts, i.e. that the halting configuration is unique: sha0b0 = sh. The computation can
be represented by a string #c1#c2# . . . , where # is a separator symbol and c1, c2, . . .
are the successive configurations. It is undecidable to determine whether a given 2CM
halts on empty input (see [Hopcroft and Ullman 1979] for more details).
From a given 2-counter machine C and rational ǫ, [Madani et al. 2003] constructs a

PFA M which has the properties that, if C does not halt on the empty input, then M
accepts no string with probability ≥ ǫ, and if C halts on empty input and the string w
represents the halting computation of C, then there is an integer d such that PM (wd) >
1−ǫ. The PFA M checks probabilistically (with some probability of error) that its input
string consists of repetitions of the valid halting computation of C on empty input. For
each complete computation it checks that (1) it has the right format #c1#c2# . . . , it
starts at the initial configuration c1 = s1, ends in the halting configuration sh, and (2)
each configuration cj follows from the previous cj−1 according to the transition rules
of the 2CM (or reinitializes the 2CM after reaching the halting configuration), i.e., it
checks that (2a) the new state in cj is updated correctly from the state and the counter
values in cj−1, and (2b) the values of the counters in cj are updated correctly. All of
these can be checked by a deterministic finite automaton (DFA), except for property
(2b), checking the correctness of the counter updates. If the 2CM C has m states, then
properties (1) and (2a) can be checked easily by a DFA M1 with O(m) states which
rejects the input if it finds a violation. As shown in [Madani et al. 2003], property (2b)
can be checked probabilistically (with some small probability of error even if the input
is valid) by a PFA M2 with a number of states that depends on ǫ. The overall PFA M
constructed in [Madani et al. 2003] from the given 2CM is the product of the DFA M1

and the PFA M2, and this is why the number of states depends on both m and ǫ.
To show that part 1 of the theorem holds for RMDPs with a bounded number of exits,

we will reduce directly from the 2-CM halting problem. Let us say that a string is DFA-
legal if it passes the test of the DFA M1, i.e., it satisfies properties 1 and 2a. We will
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construct the RMDP in such a way that the max player can only generate in reverse
strings that are DFA-legal. Hence the only thing that remains to be checked probabilis-
tically is property 2b, for which it suffices to use a PFA M2 with a bounded number of
states. In more detail, first it is convenient to tag the symbols in the computation of the
2CM by the transition taking place in each step: map every configuration, consisting
of state si and values j, l for the counters to the triple (si, d1, d2) where d1, d2 are 0 or 1
depending on whether the counter values j, l respectively are 0 or positive; we call this
the tag of the configuration. Note that the tag of a configuration determines the tran-
sition. Let our new “tagged” alphabet be the set Σ consisting of all tuples (f, si, d1, d2)
where f ∈ {#, a, b} ∪ S, si ∈ S, d1, d2 ∈ {0, 1} such that: if f ∈ S then f = si, if f = a
then d1 = 1, if f = b then d2 = 1, and if si = sh then d1 = d2 = 0. Represent configura-
tions and computations by strings over the tagged alphabet Σ, where we add the tag
of the configuration to each symbol si, a, b, and for each separator # we attach the tag
of the following configuration. Thus, for example the tagged string of the computation
starts as (#, s1, 0, 0)(s1, s1, 0, 0) . . . , and if the computation halts at the end, then the
last symbol is (sh, sh, 0, 0).
Define Φ to be the set of all pairs of symbols t, t′ ∈ Σ that can appear consecutively

(t right before t′) in a DFA-legal string. Specifically, if t = (#, si, d1, d2) then t′ must be
(si, si, d1, d2); if t = (si, si, d1, d2) and d1 = 1 then t′ = (a, si, d1, d2), if d1 = 0 and d2 = 1
then t′ = (b, si, d1, d2), and if d1 = d2 = 0 then t′ must have the form t′ = (#, sj , d

′
1, d

′
2)

where sj , d
′
1, d

′
2 are consistent with the transition of the 2CM from state si with zero

counters. For t = (a, si, d1, d2) the next symbol t′ can be either the same, (a, si, d1, d2),
or it can be (b, si, d1, d2) (provided d2 = 1) or (#, sj , d

′
1, d

′
2) (provided d2 = 0) where

sj, d
′
1, d

′
2 is consistent with the move of the 2CM from state si with counter 1 nonzero

and counter 2 zero. For t = (b, si, d1, d2) there is a similar set of possibilities for the
next symbol t′. For t = (sh, sh, 0, 0) corresponding to the symbol for the halting config-
uration (the last symbol of the halting computation) the only possible next symbol t′ is
(#, s1, 0, 0) starting a new computation.
From the 2-counter machine C and ǫ, we construct the RMDP A which has one

component, also denoted A, with many entries and exits. There is one entry t for each
symbol t in Σ, and an additional special entry en. The exits correspond to the states
of the PFA M2 that checks property 2b. Let M2 = (V, Σ, T, v1, vk) be this PFA with k
states (k is a constant that depends on ǫ), where v1 is the initial state, vk the accepting
state, and Tt the transition matrix corresponding to each symbol t ∈ Σ. The RMDP has
k exits ex1, . . . , exk. For each t ∈ Σ, there is a box bt (mapped to the only component of
the RMDP). All the entries of the RMDP are max nodes. For each pair (t, t′) ∈ Φ there is
a transition from the entry t′ of A to the call port (bt, t) of box bt. In addition, the entry
(#, s1, 0, 0) corresponding to the first symbol of a computation has a transition to the
exit ex1. The special entry en has only one transition, namely to the call port (bth

, th)
where th = (sh, sh, 0, 0) is the symbol corresponding to the halting configuration, i.e. the
last symbol of a halting computation. Note that all transitions to a box bt go the entry
t of the box (the rest of the call ports are not used). The return ports of the boxes are
probabilistic nodes. Each return port (bt, exi) has a transition with probability Tt[i, j] to
the exit exj (if this probability is positive). This concludes the definition of the RMDP
A.
We claim that the RMDP has the property that (i) if C halts on empty input then

q∗(en,exk) > 1 − ǫ, and (ii) if C does not halt then q∗(en,exk) ≤ ǫ. Suppose that C halts, let

w be the halting computation (over the tagged alphabet Σ), let d be large enough so
that wd is accepted by the PFA M2 with probability > 1− ǫ, and let σwd be the strategy
of the max player which moves to a sequence of boxes indexed by the symbols of the
reverse of string wd. That is, if wd = t1 . . . tN , then the max player moves from the
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special entry en (the initial vertex) to entry tN of box tN (note that tN is the symbol
(sh, sh, 0, 0) of the halting configuration), within that box it moves to entry tN−1 of box
tN−1 and so forth. At the end when it is at the entry t1 = (#, s1, 0, 0) of a box bt1 it
follows the direct transition to the exit ex1 of the box. From then on, all transitions
are probabilistic and follow a computation of the PFA M2 on input wd. Since the PFA
accepts with probability > 1− ǫ, it follows that under this strategy σwd , the RMDP will
terminate at the exit exk with probability > 1 − ǫ. Note furthermore that the RMDP
terminates in any case to some exit with probability 1; we will need this fact in part 2.
On the other hand, consider any (possibly randomized) strategy σ of the max player.

For each finite string w, let pσ(w) be the probability that the player makes a sequence
of transitions to a sequence of boxes corresponding to the reverse string of w, and then
in step |w| + 1 the max player exits directly the current box; after this, the remaining
transitions will be probabilistic and will follow a run of the PFA on input string w. By
the construction of the RMDP, only strings w that are DFA-legal can be generated by
the max player, i.e. can have pσ(w) > 0. The probability that the process terminates
at the exit exk under this strategy is q∗,σ

(en,exk) =
∑

w pσ(w)PM2
(w). If the 2CM does

not halt, then PM2
(w) < ǫ for all DFA-legal strings w, hence q∗,σ

(en,exk) < ǫ, and thus

q∗(en,exk) ≤ ǫ.

Part 2. For the qualitative RMDP problem, we reduce from the quantitative problem
of part 1. To prove part 2 for a given value of ǫ where 0 < ǫ < 1/2, we let δ = ǫ/(1 + ǫ)
(note: 0 < δ < 1/2), and reduce from the quantitative problem for the RMDP of part
1 with δ in place of ǫ. That is, let A be a (maximizing) RMDP constructed as in part
1 that has one component with an entry u, exit v, for which we want to distinguish
between the case (i) that there is a strategy σ of the max player under which the RMDP
starting from entry u terminates at exit v with probability ≥ 1−δ and terminates at the
other exits with the remaining probability, and the case (ii) that for any strategy, the
RMDP starting from u terminates at v with probability ≤ δ. We construct an RMDP
A′ with two components A1, A2. Component A2 is the same as the RMDP A of part 1.
Component A1 has a single entry en and exit ex and has a structure similar to the one
shown in Figure 5, except that the entry does not have a direct transition to the box b1,
and we have an additional box b0, mapped to A2. The entry en of A1 is a probabilistic
node and has an edge with probability 1 to the call port (b0, u) of the box b0. The return
port (b0, v) of b0 has a probability 1 edge to the exit ex of A1, while all the other return
ports of b0 have probability 1 edges to the entry of a box b1 mapped to A1. The return
port (b1, ex) of b1 has a probability 1 edge to another box b2 mapped also to A1 and the
return port (b2, ex) of b2 has a probability 1 edge to the exit ex of A1. This concludes
the definition of A′.
Note that all the max vertices of A′ are in A2. Suppose that there is a strategy σ of

the max player in A (i.e. in A2) such that A starting from the entry u terminates at
exit v with probability p2 ≥ 1− δ and terminates at the other exits with the remaining
probability. Consider the strategy σ′ for A′ in which the max player always uses σ
whenever the box b0 is entered. Under this strategy, the RMDP A′ will reach with
probability p2 ≥ 1 − δ > 1/2 the return port (b0, v) of box b0 and proceed from there
directly to the exit ex, and with the remaining probability p1 = 1 − p2 ≤ δ < 1/2, the
RMDP will reach a different return port of box b0 and then proceed to box b1. Thus,
under the strategy σ′ of the max player, the RMDP A′ functions like the 1-RMC of
Figure 5, where p2 > 1/2. Since p2 > 1/2, it follows that under the strategy σ′ the
RMDP A′ will reach the exit ex and terminate with probability 1.
On the other hand, let p2 be the supremum, over all strategies of the max player in

A, of the probability that A starting from entry u terminates at exit v, and suppose
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that p2 ≤ δ < 1/2. Then, for any strategy σ′ of the max player for A′, every time that
the box b0 is entered, the process reaches the return port (b0, v) and goes directly to
the exit ex at most with probability p2 < 1/2 and with the remaining probability it
either reaches one of the other return ports and proceeds to the box b1 or stays in b0

for ever and never terminates. Consequently, for any strategy σ′ of the max player in
A′, the probability that it terminates (at the only exit ex) is no greater than that of the
1-RMC of Figure 5 with p2 ≤ δ < 1/2. The probability q∗(en,ex) of the 1-RMC satisfies

the equation x = p1x
2 + p2 and is the least nonnegative solution. It is thus p2/p1 (since

p2 < p1), hence q∗(en,ex) ≤ δ/(1− δ) = ǫ.

The RMDP A′ constructed above has 2 components. If we wish, we can combine them
into one component with the entries and exits of both components (we can always do
this with any RMDP or RSSG). The number of exits is bounded by a constant that
depends on ǫ.

We next show undecidability for multi-exit minimizing RMDPs. In this case our un-
decidability results are slightly weaker in that, unlike the maximization case, they do
not imply that any non-trivial approximation of the minimal termination probability
is undecidable.

THEOREM 10.3. (Multi-exit minimizing RMDP termination problems are undecid-
able.)
The following problems are undecidable for minimizing RMDPs, even when the num-

ber of exits is bounded by a fixed constant (≤ 47).

(1) For any fixed probability r ∈ (0, 1), given a linearly-recursive minimizing RMDP, A,
with entry en and exit ex, it is undecidable whether q∗(en,ex) < r.

(2) Given a minimizing RMDP, A, with one component, entry en and exit ex, it is unde-
cidable whether q∗(en,ex) = 1.

In other words, both the quantitative and qualitative termination problems (as well
as their “witness” counterparts, which in this minimization case are trivially equivalent)
are undecidable for minimizing RMDPs (and for RSSGs).

PROOF.
Part 1. We will employ a reduction from the PFA emptiness problem similar to the

one given at the beginning of the proof of Theorem 10.2, part (1.). However, that con-
struction requires modifications because in the resulting RMDPs of that construction,
the controller always has a strategy which never terminates (at any exit), by choos-
ing to go forever deeper into boxes with probability 1. We provide a revised reduction
which avoids this problem.
Again, let M = (V, Σ, T, v1, vn) be a PFA with n states. Define a RMDP A that has

two components (call them A′ and A) each with a single entry, and such that A′ has
entry en′ and has 2 exits t′1 and t′2, and A has entry en and n + 2 exits ex1, . . . , exn,t1,
and t2.
We start at entry en′ of componentA′, and A′ has a very simple structure: it contains

a single box b′ mapped to A, and there is a transition with probability 1 from en′ to the
call port (b′, en). There is a probability 1 transition from the return port (b′, t1) to the
exit t′1 of A′, and a probability 1 transition from the return port (b′, t2) to exit t′2. There is
a probability 1 transition from the return port (b′, exn) to t′1, and there are probability
1 transitions from each of the return ports (b′, eni) to t′2, where 1 ≤ i ≤ n − 1. That
completes the description of component A′.
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Next we describe the structure of component A. The entry en is a probabilistic node,
which has three probabilistic transitions: a transition with probability 1/2 to a node z,
a second with probability p/2 to the exit t1 and a third with probability (1 − p)/2 to t2,
where we define p = 1− r.
The rest of component A looks very similar to the component A described at the

beginning of the proof of part (1.) of Theorem 10.2, except that node z now plays a
role analogous to the entry of the component there. Namely, node z is controlled by
the minimizer, and it has edges to the call ports of a set of |Σ| boxes ba, a ∈ Σ; all the
boxes are mapped to A. In addition, node z has an edge to the exit ex1. The return
ports of the boxes ba are probabilistic vertices. Each return port (ba, exi) has an edge
to each exit exj with probability Ta[i, j]. This concludes the definition of A. Note that
both components of this RMDP are linearly-recursive.
We claim that there is a word w such that PM (w) > p if and only if q∗(en,t′2) < (1 − p).

To see this, first note that we can associate to any (deterministic) strategy of the min
player in this RMDP a unique string over the alphabet Σ, such that its choices along
any trajectory are consistent with a prefix of this string.9 Now, if the min player uses
the strategy corresponding to the reverse string wR (in other words, the sequence of
choices it makes along any trajectory are consistent with a prefix of wR), then the
probability of termination at t′2 is

(1− p)(1 − 1/2|w|+1) + (1− PM (w))/2|w|+1

The first term is contributed by the probability that the game stops prematurely and
exits at some t2 (and thus terminates at t′2), before we reach the end of the string wR.
(This can happen because from the entry of component A we terminate immediately
with probability 1/2, and we split that probability of termination between t1 and t2,
exiting at t2 with probability (1 − p)/2. Thus the total probability of terminating pre-

maturely at t′2 is (1 − p)(
∑|w|

i=1 1/2i) = (1 − p)(1 − 1/2|w|+1)). The second term is the
contribution from the case when the strategy gets to choose the entire string wR to the
end and then follow the transition to the exit ex1. This only happens with probability
1/2|w|+1, and thereafter we terminate at t′1 with probability PM (w) and at t′2 with the
remaining probability (1 − PM (w)). Thus, if p∗M = sup{PM (w) | w ∈ Σ∗} ≤ p, then for
all strings w the probability of terminating at t′2 is ≥ 1 − p. Note also that if the min
player tries to play forever, then the probability of terminating at t′2 is exactly 1 − p,
and the probability of terminating at t′1 = p.
On the other hand, if PM (w) > p, then the min player in the RMDP can just play the

strategy consistent with wR. In this case the probability of terminating at t′2 is < 1− p,
because (1−PM (w)) < (1−p) and therefore (1−p)(1−1/2|w|+1)+ (1−PM(w))/2|w|+1 <
(1− p).
Now, the known undecidability results about PFAs ([Blondel and Canterini 2003;

Madani et al. 2003]) yield easily that deciding whether p∗M > p, for any fixed p ∈ (0, 1),
is undecidable for PFAs with a fixed bounded number of states (independent of p). This
completes the proof of part (1.), since we can choose any p ∈ (0, 1) and we have defined
r = (1 − p).

Part 2. We wish to show that the qualitative termination problem is also undecid-
able. We do this again in a way similar to the proof of part (2.) of Theorem 10.2, by
using the 1-RMC in Figure 5 as a gadget on top of the RMDP from part (1.).

9We could also consider randomized strategies, but by Theorem 2.1, part (2.), we do not need to consider
them. In fact, we could easily show directly that randomization doesn’t help in the present context by the
same kind of averaging argument as done the proof of Theorem 10.2, part (1.).
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That is, we construct an RMDP with three components A′′, A′, A. The components A′

and A are exactly the same as those of part 1 of this theorem. The new component A′′

has a single entry en′′ and single exit ex′′ and has a structure similar to the component
shown in Figure 5, except that the entry does not have a direct transition to the box
b1, and we have an additional box b0, mapped to A′. The entry en′′ of A′′ is has an edge
with probability 1 to the call port (b0, en

′) of the box b0. The return port (b0, t
′
2) of b0

has a probability 1 edge to the exit ex′′ of A′′, while the other return port (b0, t
′
1) has

a probability 1 edges to the entry of a box b1 mapped to A′′. The return port (b1, ex
′′)

of b1 has a probability 1 edge to another box b2 mapped also to A′′ and the return port
(b2, ex) of b2 has a probability 1 edge to the exit ex of A1. This concludes the definition
of the new minimizing RMDP.
We claim that p∗M > 1/2 if and only if q∗(en′′,ex′′) < 1, i.e., if and only if there exists a

strategy for the minimizer with which we do not terminate with probability 1 starting
at the entry en′′ of component A′′. To see this note that, by the construction in part (1.),
starting at en′ in A′, using any strategy, τ , for the minimizer we always terminate with
total probability 1 at either t′1 or t′2, i.e., q∗,τ

(en′,t′1)
+ q∗,τ

(en′,t′2)
= 1. Furthermore, p∗M > 1/2

if and only if there is a strategy τ for the minimizer such that q∗,τ

(en′,t′2)
< 1/2. But note

that the structure of A′′ ensures that for any strategy τ , q∗,τ

(en′,t′2) < 1/2 if and only if

q∗,τ

(en′′,ex′′) < 1. Thus it is undecidable to determine whether there exists such a strategy

τ , i.e., to decide whether q∗(en′′,ex′′) = 1.

We next show undecidability of the model checking problem for 1-RMDPs with re-
spect to ω-regular properties specified by a property automaton (or a Linear Temporal
Logic formula). We summarize briefly the main notions for model checking problems.
Let A be a given RMDP or RSSG with vertex set Q, let Σ be a finite alphabet of ‘labels’,
and let L : Q 7→ Σ, be a Σ-labelling of the vertices of A. L naturally extends to the state
set V of the infinite RMDP or RSSG MA corresponding to A, by letting L(〈β, v〉) = L(v)
for each state 〈β, v〉 ∈ V of MA. Considering every terminating state of MA (i.e., state
〈ǫ, ex〉 where ex is an exit) as an absorbing state (i.e., with a self-loop with proba-
bility 1), the labeling further generalizes to a mapping L : V ω 7→ Σω from trajecto-
ries of MA, i.e., executions (paths) of A, to infinite Σ-strings: for t = s0s1s2 . . . ∈ V ω,
L(t) = L(s0)L(s1)L(s2) . . .. A property specifies a subset of ‘good’ Σ-strings; a trajectory
satisfies the property if it maps to a string in the subset. For example, we can express
the property that A terminates at exit ex by having L map ex to letter a, map all other
vertices to letter b, and specify as ‘good’ strings over the alphabet Σ = {a, b} all the
strings that end in an infinite sequence of a’s, i.e., the set represented by the regular
expression (a + b)∗aω.
Regular properties (usually called ω-regular for infinite strings) are the most im-

portant class of properties, and are usually expressed by finite automata or in Lin-
ear Temporal Logic (LTL can only express a proper but important subset of ω-regular
properties). A Büchi automaton B = (Σ, S, q0, R, F ), has a finite alphabet Σ, a finite
set of states S, an initial state q0 ∈ S, a transition relation R ⊆ S × Σ × S, and a
set of accepting states F ⊆ S. A run of B is a sequence π = q0a0q1a1q2 . . . of alter-
nating states and letters, starting at the initial state q0 of B, such that for all i ≥ 0
(qi, ai, qi+1) ∈ R. The ω-word associated with run π is wπ = a0a1a2 . . . ∈ Σω. The run
π is accepting if for infinitely many i, qi ∈ F . The language L(B) of the automaton B
is L(B) = {wπ | π is an accepting run of B}. Note that L(B) ⊆ Σω. For example, an
automaton B for the expression (a + b)∗aω (i.e. strings of a’s and b’s that end with an
infinite number of a’s), is the automaton with two states q0, q1, initial state q0, accept-
ing set F = {q1}, and a transition relation R where state q0 has transitions to itself on
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inputs a, b, transition to q1 on a, and state q1 has a translation to itself on a, but has no
transition on b.
Given a RSSG A with a labeling L and automaton B, an execution t of A satisfies the

property specified by the automaton B iff L(t) ∈ L(B). Let u be a given initial vertex for
A, i.e., s0 = 〈ǫ, u〉 is the initial state of MA. A pair of strategies, σ, τ of the players of A
induce the infinite state Markov chain Mu,σ,τ

A ; the set of trajectories t of this chain that
satisfy property B (i.e. such that L(t) ∈ L(B)) is measurable, and we let P σ,τ

A (L(B)) be
its probability. There is again determinacy in the game, i.e., supσ infτ P σ,τ

A (L(B)) =
infτ supσ P σ,τ

A (L(B)) and we let PA(L(B)) be the common value, which is the value
of the game. As in the case of termination problems, we can define more generally the
quantitative and qualitative model checking problems for a given RMDP or RSSG with
respect to a given property (automaton) B. For example, given a maximizing RMDP
A with a given initial vertex u, and given an automaton B, is PA(L(B)) = 1? That is,
does the max player have a strategy that results with probability 1 in an execution
that satisfies the property B? We show that there is no algorithm that answers these
questions for general properties, even for 1-RMDPs.

THEOREM 10.4. The qualitative and quantitative model checking problems for both
maximizing and minimizing 1-RMDPs are undecidable, and in fact there is a fixed
property (expressed by a fixed Büchi automaton or LTL formula) for which this holds.
Furthermore, the value cannot be approximatedwithin any nontrivial additive constant
factor.

PROOF. We reduce from the termination problems for multi-exit maximizing
RMDPs. Let A be a given RMDP as in Theorem 10.2 with a special entry en and exit
exk, for which we want to distinguish between the case (i) that there is a strategy such
that A starting at en terminates at exk with probability 1, and the case (ii) that the
supremum probability of termination at exk is ≤ ǫ; the RMDP has k exits, where k is a
constant that depends on ǫ. We can assume that A has only one component.
Construct a new RMDP A′ which is the same as A, except that the old exits are now

ordinary probabilistic nodes with a probability 1 transition to a new exit node ex′ which
is the only exit node, the old return ports of the boxes are now ordinary nodes, and the
unique new return port of each box (corresponding to the new exit node) is a player
node with edges to the old return ports. Let ex1, . . . , exk be the (nodes corresponding to
the) old exits nodes. The labeling function L maps the nodes corresponding to the old
exits ex1, . . . , exk to letters α1, . . . αk, it maps the nodes corresponding to the old return
ports of the form (b, exi) to letter βi for i = 1, . . . , k, it maps the new exit ex′ to letter γ,
and maps every other vertex to 0. Thus, the alphabet is Σ = {α1, . . . , αk, β1, . . . , βk, γ, 0}.
The property is described by the regular expressionE = [0∗(α1(γ+0)∗β1+. . .+αk(γ+

0)∗βk)]∗0∗αkγω (the subexpressions (γ+0)∗ could be replaced also by γ0). An automaton
B that recognizes this language is the following: B has states q0, . . . , qk, f , the initial
state is q0, the accepting set is F = {f}, and the transitions are as follows: state q0

has a transition to itself on input 0, and a transition to qi on input αi for i = 1, . . . , k;
state qi for i = 1, . . . , k has transitions to itself on input 0 and γ, and a transition to q0

on input βi; in addition qk has a transition to f on input γ; state f has a transition to
itself on input γ. Thus, the automaton B has O(k) states and transitions. The property
can be expressed easily also by an LTL formula ϕ of length O(k). Note that once we fix
a value for ǫ (for example ǫ = 1/4), the value of k is fixed, and the property is fixed.
The max player in the RMDP A′ has choices at the same nodes as A, and in addition

has a choice every time the trajectory visits the return port (b, ex′) of a box b. In the
latter case, if the trajectory exited the component in the last recursive call through
the edge (exi, ex

′) and the max player does not choose the edge to the matching old
return port (b, exi) then the trajectory will be rejected by the automaton B no matter
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what happens from that point on; thus, the optimal choice for the max player is to
move always to the node for the matching old return port (b, exi). Such a strategy σ′

for the max player in A′ corresponds 1-to-1 to a strategy σ in A, and there is a 1-
1 correspondence between the generated trajectories, which has the property that a
trajectory in A terminates at exit exk iff the corresponding trajectory in A′ satisfies
the property B (i.e., is mapped by L to a string accepted by B). Thus, (i) if the max
player has a strategy in A that terminates at exit exk with probability 1, then it has
a strategy in A′ that generates with probability 1 a trajectory that satisfies B, and
PA′(L(B)) = 1, and (ii) if the supremum probability of termination at exk in A is ≤ ǫ
then PA′(L(B)) ≤ ǫ.
The above reduction proves the theorem for maximizing 1-RMDPs for the qualitative

and the witness qualitative problem. By the same reduction, it follows that it holds also
for the quantitative problems even for linear 1-RMDPs. To show the theorem for min-
imizing 1-RMDPs, simply consider the complementary property. Recall that ω-regular
properties are closed under complementation, thus we can construct a Büchi automa-
ton B′ that accepts all strings not accepted by B (and in the case of LTL specifications,
we can negate the LTL formula ϕ for the property). Let A′′ be the minimization RMDP
which is the same as A′ but with all the player vertices being now min vertices. Then
PA′′(L(B′)) = 1 − PA′(L(B)). Thus, (i) if PA′(L(B)) = 1 then PA′′(L(B′)) = 0 and there
is a strategy for the min player that achieves value 0, and (ii) if PA′(L(B)) ≤ ǫ then
PA′′(L(B′)) ≥ 1− ǫ.

11. CONCLUSIONS

We have defined and studied RMDPs and RSSGs. These are classes of finitely pre-
sented infinite-state MDPs, and turn-based stochastic games, which augment ordi-
nary MDPs and stochastic games with a recursive feature. These models subsume
controlled and 2-player game versions of several classic stochastic processes, and are
natural models of probabilistic procedural programs with recursion.
We have studied the decidability and computational complexity of some key problem

for RMDPs, RSSGs, and for several of their important subclasses, centered around the
goal of maximizing/minimizing the probability of termination. We have provided algo-
rithms for a number of problems, including polynomial time algorithms for qualitative
termination problems for both maximizing and minimizing 1-RMDPs. We have shown
that for 1-RMDPs and 1-RSSGs, the players possess optimal deterministic stackless
and memoryless optimal strategies. We have shown that the quantitative problems
for 1-RSSGs can be decided in PSPACE by exploiting corresponding monotone sys-
tems of nonlinear min/max equations which capture the value vector of 1-RSSGs, and
we have observed based on our earlier work on 1-RMCs that this complexity can not
be improved upon substantially without resolving major open problems in numerical
computation, namely the square-root sum problem and key arithmetic circuit deci-
sion problems. For general RMDPs and RSSGs, we have shown that things get much
harder: both quantitative and qualitative termination problems are undecidable.
Since the publication of the two conference papers on which this paper is based

[Etessami and Yannakakis 2005; 2006], there have been a series of follow-up papers
by ourselves and others, building on this work and extending it in several directions.
We now mention some of this follow-up work:

—As mentioned earlier, in [Etessami and Yannakakis 2008] we extended RSSGs to
Recursive Concurrent Stochastic Games (RCSGs), which are no longer turn-based
(perfect information) games. At each state, two adversarial players choose actions
simultaneously and independently, and their joint actions determine the probabil-
ity distribution on the next state. This matches the more standard imperfect infor-
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mation model of stochastic games, e.g., as originally formulated by Shapley (see,
e.g., [Shapley 1953; Filar and Vrieze 1997; Neyman and Sorin 2003]). We stud-
ied both quantitative and qualitative termination problems for 1-RCSGs in [Etes-
sami and Yannakakis 2008], and we showed that, like 1-RSSGs, these are decid-
able in PSPACE, via an extension of the monotone nonlinear min/max equations for
the value vector of 1-RSSGs to monotone nonlinear minimax equations for RCSGs
(where by minimax equation we mean equations which use an operator yielding the
minimax value of a one-shot zero-sum matrix game). We showed that for a 1-RCSG
termination game the minimizer has randomized SM optimal strategy, and the max-
imizer has, for every ǫ > 0 randomized SM ǫ-optimal strategies. (Randomization is in
general needed by both players.) We showed that the qualitative termination prob-
lem for 1-RCSGs is square-root-sum-hard and thus can not be placed in NP ∩ coNP
(as we have done in this paper for 1-RSSGs) without resolving a major open prob-
lem in numerical computation. (In fact, in [Etessami and Yannakakis 2008; 2010]
we showed that even for finite-state concurrent stochastic games with reachability
objectives, as well as for Shapley’s finite-state stochastic games (with discounted
reward objectives), the quantitative decision problems are SQRT-SUM-hard.)

— In [Etessami et al. 2008] we have extended RMDPs and RSSGs to a reward setting
with strictly positive rewards on all transitions, where the goal of the players is
to maximize/minimize the total expected reward (which may be ∞). Such a reward
model is very natural, e.g., for modeling the optimal/pessimal expected running time
of a procedural program (where every transition, i.e., step of the program, takes
some non-zero amount of time). Interestingly, we have shown that in the setting
with strictly positive rewards the quantitative problems of computing the value for
1-RMDPs and 1-RSSGs actually become easier than in the setting of optimizing
termination probability. Namely, they are in P-time and in NP ∩ coNP, respectively.
This is in essence because we are able to show that certain monotone linear min/max
optimality equations can be used to capture the value vector in the positive reward
setting.
On the other hand, when 1-RMDPs and 1-RSSGs are augmented with non-negative
rewards (i.e., when reward 0 is allowed on transitions), we do not even knowwhether
the quantitative problems are decidable. In particular, is the following problem de-
cidable: given a 1-RMDP with non-negative rewards, and total expected reward
criterion, and given a rational value r, decide whether the optimal (supremum or
infimum) expected reward (over all strategies) is > r.

—Building on the polynomial time algorithms given in this paper (Section 6) for
the qualitative termination problems for (maximizing and minimizing) 1-RMDPs,
Brázdil et al. [2006] show that the following qualitative problem is decidable in poly-
nomial time: Given a 1-RMDP, decide whether there exists a witness strategy under
which we will reach a desired target vertex (which may not be an exit) in any calling
context (i.e., under any call stack, not just the empty stack), with probability 1 (or
with probability < 1). (Their results are phrased in terms of pBPAs, which are es-
sentially controlled SCFGs with leftmost derivation law, but as discussed at the end
of Section 9, these are equivalent to 1-RMDPs. In another subsequent paper, Brázdil
et al. [2011] have also extended the witness reachability result from [Brázdil et al.
2006], to certain witness reachability results in the setting of two-player 1-RSSGs.)
Their algorithm uses our algorithm for the (maximizing and minimizing) 1-RMDP
qualitative termination problem as a subroutine, and uses an iterative fixed point
algorithm on top of it which is independent of the probabilities labeling transitions
in the 1-RMDP, i.e., only depends on its structure.
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Fig. 8. Maximizing reachability probability at v in a 1-RMDP: no optimal strategy exists.

Note that in the maximization case there may not exist any witness strategy that
achieves probability 1, and yet the supremum value may be 1. This is illustrated by
Figure 8, which is a very slight variation on our earlier 2-exit example in Figure 3.
As can easily be seen, in this example there is no optimal strategy for reaching
vertex v (in any calling context), but strategy LnR guarantees that we reach v with
overall probability (1 − 1/2n) (i.e., this is the sum total probability of reaching v in
any calling context). Thus the supremum value we can achieve is 1. (In fact, the
example in Figure 3 is just this example, but with an extra exit added to “raise
an exception” and terminate completely at the new exit whenever we reach v in
any context.) Surprisingly, we do not know whether it is decidable to determine
whether, for a given 1-RMDP and distinguished vertex v, this supremum value is 1
(while the witness problem is solvable in P-time). In fact, it should be noted that this
open problem is easily reducible to the earlier mentioned quantitative problem for
1-RMDPs with non-negative rewards: place 0 reward on all transitions except those
entering vertex v, which have reward 1, and remove all outgoing transitions from v.
The expected total reward under any strategy is then the probability of reaching v
(in any calling context).

—A software tool called PReMo is described in [Wojtczak and Etessami 2007] which
implements a number of analysis algorithms for both RMCs and for 1-RMDPs and
1-RSSGs. Included among these are optimized versions of a basic value iteration
scheme for computing optimal termination values for 1-RMDPs and 1-RSSGs, which
uses iteration on the corresponding monotone nonlinear-min-max equations (the
“Bellman equations” in this setting) to converge monotonically from below to the
least fixed point solution which, as shown in this paper, captures their vector of ter-
mination values. In [Esparza et al. 2008] the authors subsequently considered the
termination problem for 1-RMDPs and 1-RSSGs, and devised a more sophisticated
iterative “strategy improvement” procedure for numerically converging to these val-
ues. Their method combines in an interesting way aspects of both the (decomposed)
Newton’s method we devised in [Etessami and Yannakakis 2009] for computing ter-
mination probabilities for RMCs, together with standard strategy improvement and
policy iteration methods used frequently for analyzing finite-state MDPs and SSGs.
However, [Esparza et al. 2008] provided no upper bounds for the performance of
their algorithms.

—A different subclass of RMDPs and RSSGs, the 1-box subclass, which corresponds to
controlled/game versions of another well-studied class of stochastic processes called
(discrete-time)Quasi-Birth-Death processes (QBDs), as well as to probabilistic/game
extensions of 1-counter automata, was studied recently in a series of papers [Etes-
sami et al. 2010; Brázdil et al. 2010a; Brázdil et al. 2010b; Brázdil et al. 2011]
In [Etessami et al. 2010] it was observed that 1-box RMCs restricted to having at
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most one box in every component (equivalently, probabilistic Pushdown systems re-
stricted to one symbol in the stack alphabet, or probabilistic 1-counter automata),
are equivalent to discrete-time Quasi-Birth-Death processes (QBDs), a stochastic
model that is heavily studied in queueing theory and performance evaluation. Con-
trolled and game versions of QBDs can also naturally be viewed as restrictions of
RMDPs and RSSGs to the 1-box case, The complexity and decidability of the analo-
gous qualitative and quantitative termination problems for these models equivalent
to 1-box RMDPs and 1-box RSSGs were studied in [Brázdil et al. 2010a; Brázdil et al.
2010b; Brázdil et al. 2011], where it has been shown that both qualitative problems
as well as certain quantitative approximation problems are decidable. However, a
number of problems remain open about both the precise computational complexity
and decidability of some problems for 1-box RMDPs and 1-box RSSGs.

—Most recently, in a series of papers with Alistair Stewart [Etessami et al. 2012a;
2012b], we have substantially extended the results established in this paper about
1-RMDPs and 1-RSSGs. In particular, in [Etessami et al. 2012b], we have shown
that, given a 1-RMDP (or Branching MDP) where the objective is either to maximize
or minimize the optimal termination (respectively, extinction) probability, and given
a rational error threshold ǫ > 0, there is an algorithm that approximates the optimal
value of the 1-RMDP to within additive error ǫ > 0, and runs in time polynomial in
both the encoding size of the 1-RMDP, and in log(1/ǫ).
The P-time approximation algorithm in [Etessami et al. 2012b] for 1-RMDPs is
based on a Generalized Newton’s Method (GNM), applied to the Bellman optimal-
ity equations, x = P (x), of a 1-RMDP, that we have defined and studied in this pa-
per. GNM is an iterative algorithm that in each iteration requires solving a certain
linear programming problem, and then performing suitable rounding on the result-
ing numbers. We show in [Etessami et al. 2012b] that, after first preprocessing the
Bellman equations x = P (x) of the 1-RMDP in order to remove all those variables
xi such that the LFP value q∗i is either 0 or 1, by then applying iterations of GNM
starting at the all 0 vector, we can approximate the LFP vector q∗ in P-time (in the
standard Turing model of computation). Thus, the results of [Etessami et al. 2012b]
build directly on the results established in this paper for P-time qualitative termina-
tion analysis of 1-RMDPs, and more importantly they also build on and extend our
results regarding variants of Newton’s method applied to purely probabilistic RMCs
([Etessami and Yannakakis 2009]) and to 1-exit RMCs ([Etessami et al. 2012a]).
In [Etessami et al. 2012b] it is also shown that one can compute ǫ-optimal stack-
less memoryless strategies in P-time, given a (maximizing or minimizing) 1-RMDP.
As noted in [Etessami et al. 2012b], it follows readily from these results that the
problem of approximating the termination value for 1-RSSGs is in FNP.

There are many other directions for further research and many open problems re-
lated to the models discussed in this paper and their extensions. In particular, RMDPs
and RSSGs, and their various subclasses, can be studied under some of the more stan-
dard objectives studied in the MDP and stochastic game literature, such as discounted
and limiting-average rewards.

APPENDIX

Proof of Theorem 2.1

We now phrase and prove Theorem 2.1 in a slightly stronger form than the way it was
phrased in the body of the paper.

THEOREM A.1 (REPHRASING OF THEOREM 2.1). Suppose G = (V = V0 ∪ V1 ∪
V2, ∆, pl, r) is a countable-state, turn-based (perfect-information) stochastic game, with
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a non-negative reward function r on transitions, and with expected total reward ob-
jective (which player 1 wants to maximize and player 2 wants to minimize). Suppose
furthermore that G is finitely branching, meaning that for any state u ∈ V there are
a finite number of transitions of the form (u, x, v) in ∆ (regardless of whether u is a
player’s state or a probabilistic state). Then:

(1) There exists a deterministic memoryless strategy τ∗ for player 2 (the minimizer),
which is optimal starting from any state u ∈ V of the game G.

(2) Suppose that, in addition, it holds that under all pairs of strategies used by the two
players, the expected total reward is bounded by a fixed constant K.
Then for every ǫ > 0, and for any state u ∈ V , player 1 has an ǫ-optimal deterministic
memoryless strategy in the game G starting at u.
In particular, such countable-state perfect information stochastic games are (deter-
ministically) memorylessly determined.

PROOF. As mentioned earlier, this Theorem is a generalization of well-known re-
sults in the MDP literature to the setting of turn-based countable-state stochastic
games. The proof we give is also quite similar to a proof of a related result (about
1-RSSGs with strictly positive rewards) given in [Etessami et al. 2008], which was a
follow-up to (the conference versions of) this paper.
Before we show (1.), namely, that player 2 (the minimizer) has an optimal deter-

ministic memoryless strategy in G, we proceed to establish more basic facts about
such countable-state stochastic games in a way which is very similar to the proof
of Theorem 3.2, and Corollary 4.1. We associate optimality (or value) equations, on
countably many variables, with the countable-state stochastic game G. Specifically,
the equations have the following form. For each state u ∈ V , we have a variable xu.
Let N(u) = {v ∈ V | ∃(u, x, v) ∈ ∆} denote the set of “neighbor” states of u. For u ∈ V
and v ∈ N(u), let r(u, v) ≥ 0 denote the non-negative reward labeling the (unique)
transition from u to v. Furthermore, for probabilistic vertices u ∈ V0 and v ∈ N(u), let
pu,v > 0 denote the positive probability such that (u, pu,v, v) ∈ ∆.10

xu =
∑

v∈N(u) pu,v · (r(u, v) + xv) for all u ∈ V0,
xu = maxv∈N(u)(r(u, v) + xv) for all u ∈ V1,
xu = minv∈N(u)(r(u, v) + xv) for all u ∈ V2;

(1)

This yields a system of equations x = Q(x) in countably many variables

(x0, x1, x2, . . .). Let R≥0 = [0,∞] denote the non-negative extended reals. Let R
ω

≥0 de-
note the set of infinite-dimensional extended-real vectors (r0, r1, r2, . . .) with coordi-
nates indexed by the non-negative integers (i.e., by the set ω). The extended reals are
totally ordered in the obvious way. We assume the following usual arithmetic conven-
tions on the non-negative extended reals R≥0: a · ∞ = ∞, for any a ∈ R>0; 0 · ∞ = 0;

a +∞ =∞, for any a ∈ R≥0.

It is clear that Q(x) defines a monotone map from R
ω

≥0 to itself, because the right
hand side Qi(x), of each equation, xi = Qi(x), has only non-negative coefficients and

10We are assuming, w.l.o.g., that if there is a transition from u to v in ∆, it is unique. To see that this is
w.l.o.g., note that for any transition e = (u, x, v) in ∆ we can, if necessary, add an auxiliary intermediate
state se, remove transition e and add two new transitions: e1 = (u, x, se) and e2 = (se, 1, v), with rewards
on these transitions given by: r(e1) := r(e), and r(e2) := 0. This makes sure transitions between states are
unique, and furthermore it is clear that it yields a suitably “equivalent” stochastic game with non-negative
rewards (with a 1-1 correspondence between strategies of the new and original game, which yield identical
expected total rewards).
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constant terms, and because min and max are monotone operators. Thus 0 ≤ a ≤ b, for
any vectors a, b ∈ R

ω

≥0, implies that 0 ≤ Q(a) ≤ Q(b).
Let Ψi denote the set of all strategies for player i. A pair of strategies σ ∈ Ψ1 and τ ∈

Ψ2 induces in a straightforward way a countable-state Markov chain Mσ,τ
G = (V ∗, ∆′),

whose set of states is the set V ∗ of histories. Let rk,σ,τ
u denote the expected total reward

obtained in k steps in Mσ,τ
G , starting at initial state u. When k = 0, we have r0,σ,τ

u =
0, by definition. Let r∗,σ,τ

u

.
= limk→∞ rk,σ,τ . Thus r∗,σ,τ

u is the expected total reward,
starting at u, of the infinite-horizon game, assuming the two players use strategies σ
and τ , respectively. Later, in order to show that player 1 (maximizer) has ǫ-optimal
strategies for all ǫ > 0, we will need to assume that r∗,σ,τ < ∞ for all strategies σ and
τ . However, for now, we can allow for the possibility that the limit may diverge and
thus that r∗,σ,τ ∈ [0,∞].
Let r∗u

.
= supσ∈Ψ1

infτ∈Ψ2
r∗,σ,τ
u . We will establish that these games are determined,

and that thus r∗u defines the value of the game starting at u. For every state u ∈ V ,
let rk

u
.
= supσ∈Ψ1

infτ∈Ψ2
rk,σ,τ
u denote the value of the k-step game starting at vertex

u, where player 1 aims to maximize total reward and player 2 tries to minimize it. It
is clear that this k-step game is a finite game, by virtue of the fact that G is finitely
branching. Thus, by classic facts about finite extensive form games, the k-step game is
determined, i.e., has a value, meaning that rk

u = infτ∈Ψ2
supσ∈Ψ1

rk,σ,τ
u . Let x0 := 0 and

let xk+1 := Q(xk).
The following lemma is an analog of Theorem 3.2, which we established for finitely

presented 1-RSSG, but now in the context of arbitrary countable state turn-based
stochastic games with non-negative rewards.

LEMMA A.2.

(1) The map Q : R
ω

≥0 → R
ω

≥0 is monotone on R≥0 and 0 ≤ xk ≤ xk+1 for k ≥ 0.
(2) r∗ = P (r∗).
(3) For all k ≥ 0, xk = rk ≤ r∗.

(4) For all r′ ∈ R
ω

≥0, if r′ = P (r′), then r∗ ≤ r′.

(5) For all vertices u,

r∗u
.
= sup

σ∈Ψ1

inf
τ∈Ψ2

r∗,σ,τ
u = inf

τ∈Ψ2

sup
σ∈Ψ1

r∗,σ,τ
u .

(In other words, these games are determined.)
(6) r∗ = limk→∞ xk.

Although the proof of this Lemma is very similar to that of Theorem 3.2, there are
some differences, so we provide a detailed proof for completeness.

PROOF. (1.) is self-evident. To see why (2.) holds, we consider each kind of vertex
in turn. Suppose u ∈ V0. Then it is easy to see that r∗u =

∑
v∈N(u) pu,v · (r(u, v) + r∗v),

by definition of r∗u, because the supremum expected payoff for player 1 starting at u
is, with probability pu,v, equal to r(u, v) plus the supremum expected payoff starting
at successor v. Likewise, for u ∈ V1, then r∗u = maxv∈N(u)(r(u, v) + r∗v). This is because
the supremum expected payoff starting at u is obtained by choosing the successor v
such that r(u, v) + r∗v is maximized (note that there are only finitely many neighbors,
because we assume the game is finitely branching). Finally, for u ∈ V2, again r∗u =
minv∈N(u)(r(u, v)+r∗v), because this is the supremum total reward that can be obtained
starting at u, given that player 2 aims to minimize the total reward.
Next, we prove (3.) by induction on k. Note that Q is monotonic, and r∗ is a fixed

point of Q. Since x0 = 0 ≤ r∗, it follows by induction on k that xk ≤ r∗, for all k ≥ 0.
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We also show by induction on k that xk = rk. For k = 0, the claim is obvious, because
the expected total reward of the 0-step game starting at any vertex is 0.
Suppose, by inductive assumption, that xk = rk holds for some k ≥ 0. We establish

that it holds for k + 1. For any vertex u, consider xk+1
u . There are 3 cases to consider:

(1) u ∈ V0. In this case xk+1
u = Qu(xk) =

∑
v∈N(u) pu,v · (r(u, v) + xk

v) =
∑

v∈N(u) pu,v ·
(r(u, v) + rk

v ) = rk+1
u . The last equality holds by definition of optimal expected total

reward in k + 1 steps, starting at u ∈ V0.
(2) u ∈ V1. In this case xk+1

u = Qu(xk) = maxv∈N(u)(r(u, v) + xk
v) = maxv∈N(u)(r(u, v) +

rk
v ) = rk+1

v . Again, the last equality holds by definition of optimal expected total
reward in k + 1 steps, starting at u ∈ V1. (Note that max suffices instead of sup,
because the stochastic game is assumed to be finitely branching.)

(3) u ∈ V2. Again, xk+1
u = Qu(xk) = minv∈N(u)(r(u, v) + xk

v) = minv∈N(u)(r(u, v) + rk
v ) =

rk+1
v . Again, the last equality holds by definition of optimal expected total reward
in k + 1 steps, starting at u ∈ V1.

This completes the proof of part (3.).
Next we prove part (4.), namely that for r′ ∈ R

ω

≥0, if r′ = Q(r′) then r∗ ≤ r′.

Consider any fixed point r′ ∈ R
ω

≥0 of the equation system x = Q(x). Let us denote
by τ∗ a strategy for the minimizer that picks for each vertex the successor with the
minimum value in r′, i.e., for each state u, where u belongs to player 2 (minimizer), we
choose τ∗(u) = argminv∈N(u)(r(u, v) + r′v) (breaking ties, say, lexicographically). Note
that the strategy τ∗ is well defined, because the game G is finitely branching.

LEMMA A.3. For all strategies σ ∈ Ψ1 of player 1, and for all k ≥ 0, rk,σ,τ∗ ≤ r′.

PROOF. We prove the lemma by induction on k. The base case, r0,σ,τ∗

= 0 ≤ r′, is
trivial. For the induction step we have three cases, according to the type of the vertex
u that corresponds to a component of rk,σ,τ∗

.

(1) If u ∈ V0 is a random node, we define a strategy σ′(θ) = σ(uθ) and we get:

rk+1,σ,τ∗

u =
∑

v∈N(u)

pu,v(r(u, v) + rk,σ′,τ∗

v ) ≤
∑

v∈N(u)

pu,v(r(u, v) + r′v) = r′u

based on the inductive assumption and the fact that r′ is a fixed point of Q(x).
(2) For u ∈ V1 we claim

rk+1,σ,τ∗

u = max
v∈N(u)

(r(u, v) + rk,σ′,τ∗

v )

because player 1 has to move to some neighbor v of u in one step, and thus it cannot
obtain total reward more that maxv∈N(u) r(u, v) + rk,σ′,τ∗

v , where σ′ is again defined
by σ′(θ) = σ(uθ). Thus

rk+1,σ,τ∗

u = max
v∈N(u)

r(u, v) + rk,σ′,τ∗

v ≤ max
v∈N(u)

(r(u, v) + r′v) = r′u

(3) For u ∈ V2 we know that τ∗(u) = arg minv∈N(u)(r(u, v) + r′v) = v∗, so:

rk+1,σ,τ∗

u = r(u, v∗) + r
k,σ′,τ∗

v∗ ≤ r(u, v∗) + r′v∗ = min
v∈N(u)

(r(u, v) + r′v) = r′u
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Now by the lemma we have r∗,σ,τ∗

u = limk→∞ rk,σ,τ∗

u ≤ r′u for every vertex u and for
any player 1 strategy σ, so supσ r∗,σ,τ∗

u ≤ r′u. Thus for all vertices u:

r∗u = sup
σ

inf
τ

r∗,σ,τ
u ≤ inf

τ
sup

σ
r∗,σ,τ

u ≤ sup
σ

r∗,σ,τ∗

u ≤ r′u (2)

Next, to prove (5.), in equation (2) above, choose r′ = r∗. Then we have, for all vertices
u,

sup
σ

inf
τ

r∗,σ,τ
u = inf

τ
sup

σ
r∗,σ,τ

u .

Finally, to prove (6.), we know that z = limk→∞ xk exists in [0,∞], because it is
a coordinate-wise monotonically non-decreasing sequence (note some entries may be
infinite). In fact we have z = limk→∞ Qk+1(0) = Q(limk→∞ Qk(0)), and thus z is a fixed
point of the equation x = Q(x). So from (4) we have r∗ ≤ limk→∞ xk. Since xk ≤ r∗ for
all k ≥ 0, limk→∞ xk ≤ r∗ and thus limk→∞ xk = r∗.

The proof of Lemma A.2 implies the following fact:

COROLLARY A.4. In such a stochastic game, G, player 2 (theminimizer) always has
a deterministic memoryless strategy that is optimal regardless which vertex the game
starts at.

PROOF. It is enough to consider the strategy τ∗ described in from Part 4 of
Lemma A.2, when we let r′ = r∗. In other words, for each vertex u ∈ V2, τ∗(u) =
argminv∈N(u)(r(u, v) + r∗v). Then, by equation (2) above, we have r∗u = supσ r∗,σ,τ∗

=
infτ supσ r∗,σ,τ .

This completes the proof of part (1.) of Theorem A.1.

Next we wish to prove part (2.), regarding ǫ-optimal strategies for player 1 (the max-
imizer). We now crucially need the assumption that under any pairs of strategies used
by the two players, the expected total reward is bounded by a fixed constant K. This
obviously ensures that the value vector r∗ for the game is finite and bounded by K in
all coordinates, i.e., r∗ ∈ [0, K]ω.
We now argue that maximizer has ǫ-optimal deterministic memoryless strategies,

for all ǫ > 0.
Note that we have already shown in Lemma A.2 part (3.) and (6.) that the values rk

of the k-step game associated with G, provide underapproximations of the total reward
values r∗ in the infinite-horizon game, such that for all u, r∗u = limk→∞ rk

u, and for all
k, rk

u ≤ rk+1
u ≤ r∗u.

Consider the finite set, Su
k ⊆ V , of states of G that can possibly be encountered dur-

ing the k-step finite-horizon game, starting at state u. In other words, Su
k is defined

to be the set of all states in V that appear anywhere in the entire finite game tree of
the k-step game rooted at u (recall that the k-step game is a finite game in extensive
form, and thus has an associated finite game tree). Now consider the infinite-horizon
game Gu

k induced by the finite set of states Su
k and an additional state vdead, which is

defined as follows. Gu
k proceeds just like the original infinite-horizon game, G, starting

at state u, but as soon as a transition leaves Su
k , the game Gu

k now moves to the extra
dead-end state, vdead, from which we have an additional transition e = (vdead, 1, vdead)
with reward r(e) = 0. Thus, we will gain total reward 0 with probability 1 after hit-
ting vdead. The goal of the player 1 (respectively, player 2) in Gu

k is again to maximize
(resp. minimize) the expected total reward, over an infinite time horizon. Note that
Gu

k defines a finite-state total-reward perfect information stochastic game with infinite
horizon, and with the property that under all strategies the total expected reward is
upper bounded by the same fixed constant K.
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Starting at a state u in Su
k , the game Gu

k clearly has a value zk
u that is at least the

value rk
u of the k-step game over G starting at u. Furthermore, zk

u is clearly at most
the value r∗u of the infinite-horizon game. Thus rk

u ≤ zk
u ≤ r∗u. Thus, limk→∞ rk

u = r∗u =
limk→∞ zk

u.
Furthermore, note that we have already established in Corollary A.4 that player 2,

the minimizer, has a deterministic memoryless strategy in Gu
k which is optimal start-

ing from every vertex. Let this strategy be τk
u . Thus, if we fix the optimal strategy τk

u for

player 2, we are left with a finite-state infinite-horizon MDP, G
u,τk

u

k , with non-negative
rewards on transitions, and total reward on all trajectories bounded by a fixed constant
K, where the goal of the controller is to maximize the expected total reward. This is
a standard model, known as the positive bounded model, which has been studied ex-
tensively in the MDP literature. For finite-state positive bounded MDP models, it is
well known (see Theorem 7.1.9 of [Puterman 1994]) that the controller (maximizer)
has a deterministic memoryless (a.k.a. deterministic stationary) strategy which is op-
timal starting from every state of the game. It follows that, for every u ∈ V , in the
finite-state infinite-horizon two-player stochastic game Gu

k , the maximizer has a deter-
ministic memoryless optimal strategy. Let us call this strategy σk

u.
Thus, since the value rk

u of the k-step game converges to the value r∗u of the infinite-
state game, and since 0 ≤ r∗u ≤ K, and since the values zk

u of the game Gu
k are sand-

wiched between rk
u and r∗u, i.e., rk

u ≤ zk
u ≤ r∗u, it follows that, starting at any vertex

u ∈ V , and for any ǫ > 0, the maximizer has an ǫ-optimal strategy σǫ
u for the game.

The strategy σǫ
u consists of choosing a sufficiently large k such that r∗u − rk

u < ǫ, and
mimicking the maximizer’s optimal memoryless strategy σk

u in the game Gu
k , whenever

it is at a state inside Su
k , and otherwise playing arbitrarily, but memorylessly, outside

of Su
k . Such a strategy clearly forces a value that is at least zk

u ≥ rk
u, and thus a value

that is within ǫ of r∗u. This completes the proof of part (2.) of Theorem A.1.

REFERENCES
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MANNING, C. AND SCHÜTZE, H. 1999. Foundations of Statistical Natural Language Processing. MIT Press.

MARTIN, D. A. 1998. Determinacy of Blackwell games. J. Symb. Logic 63, 4, 1565–1581.

NEUTS, M. F. 1981. Matrix-Geometric Solutions in Stochastic Models:an algorithmic approach. Johns Hop-
kins U. Press.

NEYMAN, A. AND SORIN, S., Eds. 2003. Stochastic Games and Applications. NATO ASI Series, Kluwer.

ORNSTEIN, D. 1969. On the existence of stationary optimal strategies. Proc. Amer. Math. Soc. 20, 563–569.

PAZ, A. 1971. Introduction to Probabilistic Automata. Academic Press.

PLISKA, S. 1976. Optimization of multitype branching processes. Management Sci. 23, 2, 117–124.

PUTERMAN, M. L. 1994. Markov Decision Processes. Wiley.

RENEGAR, J. 1992. On the computational complexity and geometry of the first-order theory of the reals,
parts I-III. J. Symbolic Computation 13, 3, 255–352.

ROTHBLUM, U. AND WHITTLE, P. 1982. Growth optimality for branching Markov decision chains. Math.
Oper. Res. 7, 4, 582–601.

SAKAKIBARA, Y., BROWN, M., HUGHEY, R., MIAN, I., SJOLANDER, K., UNDERWOOD, R., AND HAUSSLER,
D. 1994. Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research 22, 23, 5112–
5120.

SHAPLEY, L. 1953. Stochastic games. Proc. Nat. Acad. Sci. 39, 1095–1100.

TARSKI, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathemat-
ics 5, 2, 285–309.

Journal of the ACM, Vol. 0, No. 0, Article 0, Publication date: 2014.



0:70 Etessami and Yannakakis

VARDI, M. 1985. Automatic verification of probabilistic concurrent finite-state programs. In Proc. of 26th
IEEE FOCS. 327–338.

WALUKIEWICZ, I. 1996. Pushdown processes: games and model checking. In Computer-Aided Verification.
62–75.

WOJTCZAK, D. AND ETESSAMI, K. 2007. PReMo: an analyzer for probabilistic recursive models. In Proc.
13th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). 66–71.
Tool web page: http://groups.inf.ed.ac.uk/premo/.

ZWICK, U. AND PATERSON, M. 1996. The complexity of mean payoff games on graphs. Theoretical Computer
Science 158, 1-2, 343–359.

Received ; revised ; accepted

Journal of the ACM, Vol. 0, No. 0, Article 0, Publication date: 2014.


