
MULTI-OBJECTIVE MODEL CHECKING OF

MARKOV DECISION PROCESSES

KOUSHA ETESSAMI a, MARTA KWIATKOWSKA b, MOSHE Y. VARDI c,
AND MIHALIS YANNAKAKISd

a LFCS, School of Informatics, University of Edinburgh, UK
e-mail address: kousha@inf.ed.ac.uk

b Computing Laboratory, Oxford University, UK
e-mail address: Marta.Kwiatkowska@comlab.ox.ac.uk

c Department of Computer Science, Rice University, USA
e-mail address: vardi@cs.rice.edu

d Department of Computer Science, Columbia University, USA
e-mail address: mihalis@cs.columbia.edu

Abstract. We study and provide efficient algorithms for multi-objective model checking
problems for Markov Decision Processes (MDPs). Given an MDP, M , and given multiple
linear-time (ω-regular or LTL) properties ϕi, and probabilities ri ∈ [0, 1], i = 1, . . . , k, we
ask whether there exists a strategy σ for the controller such that, for all i, the probability
that a trajectory of M controlled by σ satisfies ϕi is at least ri. We provide an algorithm
that decides whether there exists such a strategy and if so produces it, and which runs in
time polynomial in the size of the MDP. Such a strategy may require the use of both ran-
domization and memory. We also consider more general multi-objective ω-regular queries,
which we motivate with an application to assume-guarantee compositional reasoning for
probabilistic systems.

Note that there can be trade-offs between different properties: satisfying property ϕ1

with high probability may necessitate satisfying ϕ2 with low probability. Viewing this as
a multi-objective optimization problem, we want information about the “trade-off curve”
or Pareto curve for maximizing the probabilities of different properties. We show that one
can compute an approximate Pareto curve with respect to a set of ω-regular properties in
time polynomial in the size of the MDP.

Our quantitative upper bounds use LP methods. We also study qualitative multi-
objective model checking problems, and we show that these can be analysed by purely
graph-theoretic methods, even though the strategies may still require both randomization
and memory.

A preliminary version of this paper appeared in the Proceedings of the 13th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’07).

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© K. Etessami, M. Kwiatkowska, M. Y. Vardi, and M. Yannakakis
Creative Commons

1

.8 1

3P1

.5

.6

1

.53P2

.2.8.5.5.6.4

P1 P2
P0P0

1 1 11

s

a1 a3

a2

Figure 1: An MDP with two objectives, 3P1 and 3P2, and the associated Pareto curve.

1. Introduction

Markov Decision Processes (MDPs) are standard models for stochastic optimization
and for modelling systems with probabilistic and nondeterministic or controlled behavior
(see [Put94, Var85, CY95, CY98]). In an MDP, at each state, the controller can choose
from among a number of actions, or choose a probability distribution over actions. Each
action at a state determines a probability distribution on the next state. Fixing an initial
state and fixing the controller’s strategy determines a probability space of infinite runs
(trajectories) of the MDP. For MDPs with a single objective, the controller’s goal is to
optimize the value of an objective function, or payoff, which is a function of the entire
trajectory. Many different objectives have been studied for MDPs, with a wide variety of
applications. In particular, in verification research linear-time model checking of MDPs has
been studied, where the objective is to maximize the probability that the trajectory satisfies
a given ω-regular or LTL property ([CY98, CY95, Var85]).

In many settings we may not just care about a single property. Rather, we may have
a number of different properties and we may want to know whether we can simultaneously
satisfy all of them with given probabilities. For example, in a system with a server and two
clients, we may want to maximize the probability for both clients 1 and 2 of the temporal
property: “every request issued by client i eventually receives a response from the server”,
i = 1, 2. Clearly, there may be a trade-off. To increase this probability for client 1 we
may have to decrease it for client 2, and vice versa. We thus want to know what are
the simultaneously achievable pairs (p1, p2) of probabilities for the two properties. More
specifically, we will be interested in the “trade-off curve” or Pareto curve. The Pareto curve
is the set of all achievable vectors p = (p1, p2) ∈ [0, 1]2 such that there does not exist another
achievable vector p′ that dominates p, meaning that p ≤ p′ (coordinate-wise inequality) and
p 6= p′.

Concretely, consider the very simple MDP depicted in Figure 1. Starting at state s,
we can take one of three possible actions {a1, a2, a3}. Suppose we are interested in LTL
properties 3P1 and 3P2. Thus we want to maximize the probability of reaching the two
distinct vertices labeled by P1 and P2, respectively. To maximize the probability of 3P1

we should take action a1, thus reaching P1 with probability 0.6 and P2 with probability 0.
To maximize the probability of 3P2 we should take a2, reaching P2 with probability 0.8
and P1 with probability 0. To maximize the sum total probability of reaching P1 or P2, we
should take a3, reaching both with probability 0.5. Now observe that we can also “mix”
these pure strategies using randomization to obtain any convex combination of these three

2

value vectors. In the graph on the right in Figure 1, the dotted line plots the Pareto curve
for these two properties.

The Pareto curve P in general contains infinitely many points, and it can be too costly
to compute an exact representation for it (see Section 2). Instead of computing it outright
we can try to approximate it ([PY00]). An ǫ-approximate Pareto curve is a set of achievable
vectors P(ǫ) such that for every achievable vector r there is some vector t ∈ P(ǫ) which
“almost” dominates it, meaning r ≤ (1 + ǫ)t.

In general, given a labeled MDP M , k distinct ω-regular properties, Φ = 〈ϕi | i =
1, . . . , k〉, a start state u, and a strategy σ, let Prσu(ϕi) denote the probability that starting
at u, using strategy σ, the trajectory satisfies ϕi. For a strategy σ, define the vector
tσ = (tσ1 , . . . , t

σ
k), where tσi = Prσu(ϕi), for i = 1, . . . , k. We say a value vector r ∈ [0, 1]k is

achievable for Φ, if there exists a strategy σ such that tσ ≥ r.
We provide an algorithm that given MDP M , start state u, properties Φ, and rational

value vector r ∈ [0, 1]k, decides whether r is achievable, and if so produces a strategy σ such
that tσ ≥ r. The algorithm runs in time polynomial in the size of the MDP. The strategies
may require both randomization and memory. Our algorithm works by first reducing the
achievability problem for multiple ω-regular properties to one with multiple reachability
objectives, and then reducing the multi-objective reachability problem to a multi-objective
linear programming problem. We also show that one can compute an ǫ-approximate Pareto
curve for Φ in time polynomial in the size of the MDP and in 1/ǫ. To do this, we use
our linear programming characterization for achievability, and use results from [PY00] on
approximating the Pareto curve for multi-objective linear programming problems.

We also consider more general multi-objective queries. Given a boolean combination
B of quantitative predicates of the form Prσu(ϕi)∆p, where ∆ ∈ {≤,≥, <,>,=, 6=}, and
p ∈ [0, 1], a multi-objective query asks whether there exists a strategy σ satisfying B (or
whether all strategies σ satisfy B). It turns out that such queries are not really much more
expressive than checking achievability. Namely, checking a fixed query B can be reduced to
checking a fixed number of extended achievability queries, where for some of the coordinates
tσi we can ask for a strict inequality, i.e., that tσi > ri. (In general, however, the number
and size of the extended achievability queries needed may be exponential in the size of B.)
A motivation for allowing general multi-objective queries is to enable assume-guarantee
compositional reasoning for probabilistic systems, as explained in Section 2.

Whereas our algorithms for quantitative problems use LP methods, we also consider
qualitative multi-objective queries. These are queries given by boolean combinations of
predicates of the form Prσu(ϕi)∆b, where b ∈ {0, 1}. We give an algorithm using purely
graph-theoretic techniques that decides whether there is a strategy that satisfies a qualita-
tive multi-objective query, and if so produces such a strategy. The algorithm runs in time
polynomial in the size of the MDP. Even for satisfying qualitative queries the strategy may
need to use both randomization and memory.

In typical applications, the MDP is far larger than the size of the query. Also, ω-
regular properties can be presented in many ways, and it was already shown in [CY95]
that the query complexity of model checking MDPs against even a single LTL property is
2EXPTIME-complete. We remark here that, if properties are expressed via LTL formulas,
then our algorithms run in polynomial time in the size of the MDP and in 2EXPTIME in
the size of the query, for deciding arbitrary multi-objective queries, where both the MDP
and the query are part of the input. So, the worst-case upper bound is the same as with
a single LTL objective. However, to keep our complexity analysis simple, we focus in this

3

paper on the model complexity of our algorithms, rather than their query complexity or
combined complexity.
Related work. Model checking of MDPs with a single ω-regular objective has been studied
in detail (see [CY98, CY95, Var85]). In [CY98], Courcoubetis and Yannakakis also consid-
ered MDPs with a single objective given by a positive weighted sum of the probabilities of
multiple ω-regular properties, and they showed how to efficiently optimize such objectives
for MDPs. They did not consider tradeoffs between multiple ω-regular objectives. We
employ and build on techniques developed in [CY98].

Multi-objective optimization is a subject of intensive study in Operations Research
and related fields (see, e.g., [Ehr05, Cĺı97]). Approximating the Pareto curve for general
multi-objective optimization problems was considered by Papadimitriou and Yannakakis in
[PY00]. Among other results, [PY00] showed that for multi-objective linear programming
(i.e., linear constraints and multiple linear objectives), one can compute a (polynomial sized)
ǫ-approximate Pareto curve in time polynomial in the size of the LP and in 1/ǫ.

Our work is related to recent work by Chatterjee, Majumdar, and Henzinger ([CMH06]),
who considered MDPs with multiple discounted reward objectives. They showed that ran-
domized but memoryless strategies suffice for obtaining any achievable value vector for these
objectives, and they reduced the multi-objective optimization and achievability (what they
call Pareto realizability) problems for MDPs with discounted rewards to multi-objective
linear programming. They were thus able to apply the results of [PY00] in order to ap-
proximate the Pareto curve for this problem. We work in an undiscounted setting, where
objectives can be arbitrary ω-regular properties. In our setting, strategies may require both
randomization and memory in order to achieve a given value vector. As described earlier,
our algorithms first reduce multi-objective ω-regular problems to multi-objective reacha-
bility problems, and we then solve multi-objective reachability problems by reducing them
to multi-objective LP. For multi-objective reachabilility, we show randomized memoryless
strategies do suffice. Our LP methods for multi-objective reachability are closely related
to the LP methods used in [CMH06] (and see also, e.g., [Put94], Theorem 6.9.1., where a
related result about discounted MDPs is established). However, in order to establish the
results in our undiscounted setting, even for reachability we have to overcome some new
obstacles that do not arise in the discounted case. In particular, whereas the “discounted
frequencies” used in [CMH06] are always well-defined finite values under all strategies, the
analogous undiscounted frequencies or “expected number of visits” can in general be infinite
for an arbitrary strategy. This forces us to preprocess the MDPs in such a way that ensures
that a certain family of undiscounted stochastic flow equations has a finite solution which
corresponds to the “expected number of visits” at each state-action pair under a given
(memoryless) strategy. It also forces us to give a quite different proof that memoryless
strategies suffice to achieve any achievable vector for multi-objective reachability, based on
the convexity of the memorylessly achievable set.

Multi-objective MDPs have also been studied extensively in the OR and stochastic
control literature (see e.g. [Fur80, Whi82, Hen83, Gho90, WT98]). Much of this work is
typically concerned with discounted reward or long-run average reward models, and does not
focus on the complexity of algorithms. None of this work seems to directly imply even our
result that for multiple reachability objectives checking achievability of a value vector can
be decided in polynomial time, not to mention the more general results for multi-objective
model checking.

4

2. Basics and background

A finite-state MDP M = (V,Γ, δ) consists of a finite set V of states, an action alphabet
Γ, and a transition relation δ. Associated with each state v is a set of enabled actions
Γv ⊆ Γ. The transition relation is given by δ ⊆ V × Γ × [0, 1] × V . For each state
v ∈ V , each enabled action γ ∈ Γv, and every state v′ ∈ V , we have at most one transition
(v, γ, p(v,γ,v′), v

′) ∈ δ, for some probability p(v,γ,v′) ∈ (0, 1], such that
∑

v′∈V p(v,γ,v′) = 1.
When there is no transition (v, γ, p(v,γ,v′), v

′), we may, only for notational convenience,
sometimes assume that there is a probability 0 transition, i.e., that p(v,γ,v′) = 0. (But
such redundant probability 0 transitions are not part of the actual input.) Thus, at each
state, each enabled action determines a probability distribution on the next state. There
are no other transitions, so no transitions on disabled actions. We assume every state v has
some enabled action, i.e., Γv 6= ∅, so there are no dead ends. For our complexity analysis,
we assume of course that all probabilities p(v,γ,v′) are rational. There are other ways to
present MDPs, e.g., by separating controlled and probabilistic nodes into distinct states.
The different presentations are equivalent and efficiently translatable to each other.

A labeled MDP M = (V,Γ, δ, l) has, in addition, a set of propositional predicates
Q = {Q1, . . . , Qr} which label the states. We view this as being given by a labelling
function l : V 7→ Σ, where Σ = 2Q. We define the encoding size of a (labeled) MDP M ,
denoted by |M |, to be the total size required to encode all transitions and their rational
probabilities, where rational values are encoded with numerator and denominator given in
binary, as well as all state labels.

For a labeled MDP M = (V,Γ, δ, l) with a given initial state u ∈ V , which we denote
by Mu, runs of Mu are infinite sequences of states π = π0π1 . . . ∈ V ω, where π0 = u and
for all i ≥ 0, πi ∈ V and there is a transition (πi, γ, p, πi+1) ∈ δ, for some γ ∈ Γπi

and some
probability p > 0. Each run induces an ω-word over Σ, namely l(π)

.
= l(π0)l(π1) . . . ∈ Σω.

A strategy is a function σ : (V Γ)∗V 7→ D(Γ), which maps a finite history of play to
a probability distribution on the next action. Here D(Γ) denotes the set of probability
distributions on the set Γ. Moreover, it must be the case that for all histories wu, σ(wu) ∈
D(Γu), i.e., the probability distribution has support only over the actions available at state
u. A strategy is pure if σ(wu) has support on exactly one action, i.e., with probability
1 a single action is played at every history. A strategy is memoryless (stationary) if the
strategy depends only on the last state, i.e., if σ(wu) = σ(w′u) for all w,w′ ∈ (V Γ)∗. If
σ is memoryless, we can simply define it as a function σ : V 7→ D(Γ). An MDP M with
initial state u, together with a strategy σ, naturally induces a Markov chain Mσ

u , whose
states are the histories of play in Mu, and such that from state s = wv if γ ∈ Γv, there is
a transition to state s′ = wvγv′ with probability σ(wv)(γ) · p(v,γ,v′). A run θ in Mσ

u is thus
given by a sequence θ = θ0θ1 . . ., where θ0 = u and each θi ∈ (V Γ)∗V , for all i ≥ 0. We
associate to each history θi = wv the label of its last state v. In other words, we overload
the notation and define l(wv)

.
= l(v). We likewise associate with each run θ the ω-word

l(θ)
.
= l(θ0)l(θ1) Suppose we are given ϕ, an LTL formula or Büchi automaton, or any

other formalism for expressing an ω-regular language over alphabet Σ. Let L(ϕ) ⊆ Σω

denote the language expressed by ϕ. We write Prσu(ϕ) to denote the probability that a
trajectory θ of Mσ

u satistifies ϕ, i.e., that l(θ) ∈ L(ϕ). For generality, rather than just
allowing an initial vertex u we allow an initial probability distribution α ∈ D(V). Let
Prσα(ϕ) denote the probability that under strategy σ, starting with initial distribution α,

5

we will satisfy ω-regular property ϕ. These probabilities are well defined because the set of
such runs is Borel measurable (see, e.g., [Var85, CY95]).

As in the introduction, for a k-tuple of ω-regular properties Φ = 〈ϕ1, . . . , ϕk〉, given
a strategy σ, we let tσ = (tσ1 , . . . , t

σ
k), with tσi = Prσu(ϕi), for i = 1, . . . , k. For MDP M

and starting state u, we define the achievable set of value vectors with respect to Φ to
be UMu,Φ = {r ∈ R

k
≥0 | ∃σ such that tσ ≥ r}. For a set U ⊆ R

k, we define a subset
P ⊆ U of it, called the Pareto curve or the Pareto set of U , consisting of the set of Pareto
optimal (or Pareto efficient) vectors inside U . A vector v ∈ U is called Pareto optimal
if ¬∃v′(v′ ∈ U ∧ v ≤ v′ ∧ v 6= v′). Thus P = {v ∈ U | v is Pareto optimal}. We use
PMu,Φ ⊆ UMu,Φ to denote the Pareto curve of UMu,Φ.

It is clear, e.g., from Figure 1, that the Pareto curve is in general an infinite set. In fact,
it follows from our results that for general ω-regular objectives the Pareto set is a convex
polyhedral set. In principle, we may want to compute some kind of exact representation of
this set by, e.g., enumerating all the vertices (on the upper envelope) of the polytope that
defines the Pareto curve, or enumerating the facets that define it. It is not possible to do
this in polynomial-time in general. In fact, the following theorem holds:

Theorem 2.1. There is a family of MDPs, 〈M(n) | n ∈ N〉, where M(n) has n states and
size O(n), such that for M(n) the Pareto curve for two reachability objectives, 3P1 and

3P2, contains nΩ(logn) vertices (and thus nΩ(logn) facets).

Proof. We will adapt and build on a known construction for the bi-objective shortest path
problem which shows that the Pareto curve for that problem can have nΩ(logn) vertices.
This was shown in [Car83] and a simplified proof (using a similar construction) was given in
[MS01]. (The constructions and theorems there are phrased in terms of parametric shortest
paths, but these are equivalent to bi-objective shortest paths.) What those constructions
show is that, for some polynomial f , and for every n, there is a graph Gn with f(n) nodes
and distinguished nodes s and t, and such that every edge (u, v) has two (positive) costs
c(u, v) and d(u, v), which yield two cost functions c(·) and d(·) on the s-t paths, such that

the Pareto curve of the s-t paths under the two objectives has nΩ(logn) vertices (and edges).
An important property of the constructed graphs Gn is that they are acyclic and layered,
that is, the nodes are arranged in layers L0 = s, L1, L2, . . . , Ln = t, and all edges are from
layer Li to Li+1 for some i ∈ {0, . . . , n− 1}.

Building on this construction, we now construct the following instance Mn of the MDP
problem with two reachability objectives. The states of Mn are the same as Gn with 2 extra
absorbing states: the red state R, and the blue state B, which are the two target states of
our two reachability objectives. For each state u there is one action for each outgoing edge
(u, v); if we choose this action then we transition with probability r(u, v) to state R, with
probability b(u, v) to B, with probability 1/2 to v, and with the remaining probability to
t. r(u, v) and b(u, v) are defined as follows. Let h be the maximum c or d cost over all the
edges. For an edge (u, v) where u ∈ Li (and v ∈ Li+1), set

r(u, v) :=
2i(2h − c(u, v))

8h2n

and

b(u, v) :=
2i(2h− d(u, v))

8h2n

Note that both these quantities are in the interval [0, 1/4], so all probabilities are well-
defined.

6

The claim is that there is a 1-1 correspondence between the vertices of the Pareto curve
of this MDP Mn and the Pareto curve of the bi-objective shortest path on Gn. First we note
that the vertices of the Pareto curve for the MDP correspond to pure memoryless strategies
(meaning that for each vertex of the Pareto curve a pure memoryless strategy can achieve
the value vector that the vertex defines). The reason for this is that the vertices are optima
for a linear combination of the two objectives, and it follows from the proof of Theorem 3.2,
which we shall show later, that these objectives have pure memoryless optimal strategies.

A pure strategy corresponds to a path from s to t. Let π = s, u1, u2, ..., un−1t be such a
path/strategy. The probability that this strategy leads to the red node R is r(s, u1) + . . .+
Prob(reach node ui) ∗ r(ui, ui + 1) + . . . The probability that the process reaches node ui
under the strategy π is 1/2i, independent of the path. Thus, Probπ(reach R) = a− b∗ c(π),
where a, b are constants independent of the path. Similarly, Probπ(reach B) = a− b ∗ d(π).

It follows that minimizing the c and d costs of the paths is equivalent to maximizing the
probabilities of reaching R and B, and this also holds for any positive linear combination of
the two respective objectives. Thus, there is a correspondence between their Pareto curves.

So, the Pareto curve is in general a polyhedral surface of superpolynomial size, and
thus cannot be constructed exactly in polynomial time. We show, however, that the Pareto
set can be efficiently approximated to any desired accuracy ǫ > 0. An ǫ-approximate Pareto
curve, PMu,Φ(ǫ) ⊆ UMu,Φ, is any achievable set such that ∀r ∈ UMu,Φ ∃t ∈ PMu,Φ(ǫ) such
that r ≤ (1 + ǫ)t. When the subscripts Mu and Φ are clear from the context, we will drop
them and use U , P, and P(ǫ) to denote the achievable set, Pareto set, and ǫ-approximate
Pareto set, respectively.

We also consider general multi-objective queries. A quantitative predicate over ω-regular
property ϕi is a statement of the form Prσu(ϕi)∆p, for some rational probability p ∈ [0, 1],
and where ∆ is a comparison operator ∆ ∈ {≤,≥, <,>,=}. Suppose B is a boolean
combination over such predicates. Then, given M and u, and B, we can ask whether there
exists a strategy σ such that B holds, or whether B holds for all σ. Note that since B can
be put in DNF form, and the quantification over strategies pushed into the disjunction, and
since ω-regular languages are closed under complementation, any query of the form ∃σB (or
of the form ∀σB) can be transformed to a disjunction (a negated disjunction, respectively)
of queries of the form:

∃σ
∧

i

(Prσu(ϕi) ≥ ri) ∧
∧

j

(Prσu(ψj) > r′j) (2.1)

We call queries of the form (1) extended achievability queries. Thus, if the multi-
objective query is fixed, it suffices to perform a fixed number of extended achievability
queries to decide any multi-objective query. Note, however, that the number of extended
achievability queries we need could be exponential in the size of B. We do not focus on
optimizing query complexity in this paper.

A motivation for allowing general multi-objective queries is to enable assume-guarantee
compositional reasoning for probabilistic systems. Consider, e.g., a probabilistic system
consisting of the concurrent composition of two components, M1 and M2, where output
from M1 provides input to M2 and thus controls M2. We denote this by M1 � M2. M2

itself may generate outputs for some external device, and M1 may also be controlled by
external inputs. (One can also consider symmetric composition, where outputs from both

7

1

1a

b
u P1 P2

Figure 2: The MDP M ′.

components provide inputs to both. Here, for simplicity, we restrict ourselves to asymmetric
composition where M1 controls M2.) Let M be an MDP with separate input and output
action alphabets Σ1 and Σ2, and let ϕ1 and ϕ2 denote ω-regular properties over these two
alphabets, respectively. We write 〈ϕ1〉≥r1M〈ϕ2〉≥r2 , to denote the assertion that “if the
input controller of M satisfies ϕ1 with probability ≥ r1, then the output generated by M
satisfies ϕ2 with probability ≥ r2”. Using this, we can formulate a general compositional
assume-guarantee proof rule:

〈ϕ1〉≥r1M1〈ϕ2〉≥r2
〈ϕ2〉≥r2M2〈ϕ3〉≥r3

————————————
〈ϕ1〉≥r1 M1 �M2 〈ϕ3〉≥r3

Thus, to check 〈ϕ1〉≥r1M1 � M2〈ϕ3〉≥r3 it suffices to check two properties of smaller
systems: 〈ϕ1〉≥r1M1〈ϕ2〉≥r2 and 〈ϕ2〉≥r2M2〈ϕ3〉≥r3 . Note that checking 〈ϕ1〉≥r1M〈ϕ2〉≥r2
amounts to checking that there does not exist a strategy σ controllingM such that Prσu(ϕ1) ≥
r1 and Prσu(ϕ2) < r2.

We also consider qualitative multi-objective queries. These are queries restricted so that
B contains only qualitative predicates of the form Prσu(ϕi)∆b, where b ∈ {0, 1}. These can,
e.g., be used to check qualitative assume-guarantee conditions of the form: 〈ϕ1〉≥1M〈ϕ2〉≥1.
It is not hard to see that again, via boolean manipulations and complementation of au-
tomata, we can convert any qualitative query to a number of queries of the form:

∃σ
∧

ϕ∈Φ

(Prσu(ϕ) = 1) ∧
∧

ψ∈Ψ

(Prσu(ψ) > 0)

where Φ and Ψ are sets of ω-regular properties. It thus suffices to consider only these
qualitative queries.

In the next sections we study how to decide various classes of multi-objective queries,
and how to approximate the Pareto curve for properties Φ. Let us observe here a difficulty
that we will have to deal with. Namely, in general we will need both randomization and
memory in our strategies in order to satisfy even simple qualitative multi-objective queries.
Consider the MDP, M ′, shown in Figure 2, and consider the conjunctive query: B ≡
Prσu(23P1) > 0 ∧ Prσu(23P2) > 0. It is not hard to see that starting at state u in M ′

any strategy σ that satisfies B must use both memory and randomization. Each predicate
in B can be satisfied in isolation (in fact with probability 1), but, with a memoryless or
deterministic strategy, if we try to satisfy 23P2 with non-zero probability, we will be forced
to satisfy 23P1 with probability 0. Note, however, that we can satisfy both with probability
> 0 using a strategy that uses both memory and randomness: namely, upon reaching the
state labeled P1 for the first time, with probability 1/2 we use move a and with probability
1/2 we use move b. Thereafter, upon encountering the state labeled P1 for the nth time,
n ≥ 2, we deterministically pick action a. This clearly assures that both predicates are
satisfied with probability = 1/2 > 0.

8

We note that our results (combined with the earlier results of [CY98]) imply that
for general multi-objective queries a randomized strategy with a finite amount of memory
(which depends on the MDP and query) does suffice to satisfy any satisfiable quantitative
multi-objective ω-regular query.

3. Multi-objective reachability

In this section, as a step towards quantitative multi-objective model checking problems,
we study a simpler multi-objective reachability problem. Specifically, we are given an MDP,
M = (V,Γ, δ), a starting state u, and a collection of target sets Fi ⊆ V , i = 1, . . . , k. The
sets Fi may overlap. We have k objectives: the i-th objective is to maximize the probability

of 3Fi, i.e., of reaching some state in Fi. We assume that the states F =
⋃k
i=1 Fi are

all absorbing states with a self-loop. In other words, for all v ∈ F , (v, a, 1, v) ∈ δ and
Γv = {a}.(The assumption that target states are absorbing is necessary for the proofs in
this section, but it is not a restriction in general for our results. It will follow from the model
checking results in Section 5, which build on this section, that multi-objective reachability
problems for arbitrary target states (whether absorbing or not) can also be handled with
the same complexities.)

We first need to do some preprocessing on the MDP, to remove some useless states.
For each state v ∈ V \ F we can check easily whether there exists a strategy σ such that
Prσv (3F) > 0: this just amounts to checking whether there exists a path from v to F in
the underlying graph of the MDP, i.e., the graph given by considering only the non-zero-
probability transitions. Let us call a state that does not satisfy this property a bad state.
Clearly, for the purposes of optimizing reachability objectives, we can compute and remove
all bad states from an MDP. Thus, it is safe to assume that bad states do not exist.1 Let
us call an MDP with goal states F cleaned-up if it does not contain any bad states.

Proposition 3.1. For a cleaned-up MDP, an initial distribution α ∈ D(V \F), and a vector

of probabilities r ∈ [0, 1]k, there exists a (memoryless) strategy σ such that
∧k
i=1 Prσα(3Fi) ≥

ri if and only if there exists a (respectively, memoryless) strategy σ′ such that
∧k
i=1 Prσ

′

α (3Fi) ≥

ri ∧
∧
v∈V Prσ

′

v (3F) > 0.

Proof. This is quite obvious, but we give a quick argument anyway. Suppose we have such
a strategy σ. Since the MDP is cleaned-up, we know that from every state in V we can
reach F with a positive probability. Suppose the strategy leads to a history whose last state
is v ∈ V \F , and that thereafter the strategy is such that it will never reach F on any path.
We simply revise σ to a strategy σ′ such that, if we ever arrive at such a “dead” history, we
switch and play according to the memoryless strategy starting at v which reaches F with
some positive probability. Note that if σ is memoryless then so is σ′.

1Technically, we would need to install a new “dead” absorbing state vdead 6∈ F , such that all the proba-
bilities going into states that have been removed now go to vdead. For convenience in notation, instead of
explicitly adding vdead we treat it as implicit: we allow that for some states v ∈ V and some action a ∈ Γv

we have
P

v′∈V
p(v,γ,v′) < 1, and we implicitly assume that there is an “invisible” transition to vdead with

the residual probability, i.e., with p(v,γ,vdead) = 1−
P

v′∈V p(v,γ,v′). Of course, vdead would then be a “bad”

state, but we can ignore this implicit state.

9

Objectives (i = 1, . . . , k): Maximize
∑

v∈Fi
yv;

Subject to:∑
γ∈Γv

y(v,γ) −
∑

v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y(v′,γ′) = α(v) For all v ∈ V \ F ;

yv −
∑

v′∈V \F

∑
γ′∈Γv′

p(v′,γ′,v)y(v′,γ′) = 0 For all v ∈ F ;

yv ≥ 0 For all v ∈ F ;
y(v,γ) ≥ 0 For all v ∈ V \ F and γ ∈ Γu .

Figure 3: Multi-objective LP for the multi-objective MDP reachability problem

Now, consider the multi-objective LP described in Figure 3.2 The set of variables in
this LP are as follows: for each v ∈ F , there is a variable yv, and for each v ∈ V \ F and
each γ ∈ Γv there is a variable y(v,γ).

Theorem 3.2. Suppose we are given a cleaned-up MDP, M = (V,Γ, δ), with multiple target

sets Fi ⊆ V , i = 1, . . . , k, where every target v ∈ F =
⋃k
i=1 Fi is an absorbing state. Let

α ∈ D(V \F) be an initial distribution (in particular V \F 6= ∅). Let r ∈ (0, 1]k be a vector
of positive probabilities. Then the following are all equivalent:

(1.) There is a (possibly randomized) memoryless strategy σ such that
∧k
i=1(Prσα(3Fi) ≥ ri)

(2.) There is a feasible solution y′ for the multi-objective LP in Fig. 3 such that
∧k
i=1(

∑
v∈Fi

y′v ≥ ri)

(3.) There is an arbitrary strategy σ such that
∧k
i=1(Pr

σ
α(3Fi) ≥ ri)

Proof.
(1.) ⇒ (2.). Since the MDP is cleaned up, by Proposition 3.1 we can assume there is a

memoryless strategy σ such that
∧k
i=1 Prσα(3Fi) ≥ ri and ∀v ∈ V Prσv (3F) > 0. Consider

the square matrix P σ whose size is |V \F |×|V \F |, and whose rows and columns are indexed
by states in V \F . The (v, v′)’th entry of P σ, P σv,v′ , is the probability that starting in state

v we shall in one step end up in state v′. In other words, P σv,v′ =
∑

γ∈Γv
σ(v)(γ) · pv,γ,v′ .

For all v ∈ V \F , let y′(v,γ) =
∑

v′∈V \F α(v′)
∑∞

n=0(P
σ)nv′,vσ(v)(γ). In other words y′(v,γ)

denotes the “expected number of times that, using the strategy σ, starting in the distribution
α, we will visit the state v and upon doing so choose action γ”. We don’t know yet that these
are finite values, but assuming they are, for v ∈ F , let y′v =

∑
v′∈V \F

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′).

This completes the definition of the entire vector y′.

Lemma 3.3. The vector y′ is well defined (i.e., all entries y′(v,γ) are finite).

Moreover, y′ is a feasible solution to the constraints of the LP in Figure 3.

Proof. First, we show that for all v ∈ V \ F and γ ∈ Γv, y
′
(v,γ) is a well defined finite value.

It then also follows from the definition of y′v that y′v is also finite and thus that the vector

2We mention without further elaboration that this LP can be derived, using complementary slackness,
from the dual LP of the standard LP for single-objective reachability obtained from Bellman’s optimality
equations, whose variables are xv, for v ∈ V , and whose unique optimal solution is the vector x∗ with
x∗

v = maxσ Prσ
v (3F) (see, e.g., [Put94, CY98]).

10

y′ is well defined. Note that because σ has the property that ∀v ∈ V Prσv (3F) > 0, P σ is
clearly a substochastic matrix with the property that, for some power d ≥ 1, all of the row
sums of (P σ)d are strictly less than 1. Thus, it follows that limn→∞(P σ)n → 0, and thus
by standard facts about matrices the inverse matrix (I − P σ)−1 =

∑∞
n=0(P

σ)n exists and
is non-negative. Now observe that

y′(v,γ) =
∑

v′∈V \F

α(v′)

∞∑

n=0

(P σ)nv′,vσ(v)(γ)

=
∑

v′∈V \F

α(v′)σ(v)(γ)

∞∑

n=0

(P σ)nv′,v

= σ(v)(γ)
∑

v′∈V \F

α(v′)(I − P σ)−1
v′,v

Next, we show that y′ is a feasible solution to the constraints in the multi-objective LP in
Figure 3. Note that, for each state v ∈ V \ F , the expression

∑
v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′)

is precisely the “expected number of times we will take a transition into the state v” if
we start at initial distribution α and using strategy σ, whereas

∑
γ∈Γv

y′(v,γ) defines pre-

cisely the “expected number of times we will take a transition out of the state v”. Thus
α(v), the probability that we will start in state v, is precisely given by

∑
γ∈Γv

y′(v,γ) −∑
v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) = α(v). More formally, for each state v ∈ V \ F :

∑

v′∈V

∑

γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) =

∑

v′∈V

∑

γ′∈Γv′

p(v′,γ′,v)

∑

v′′∈V \F

α(v′′)
∞∑

n=0

(P σ)nv′′,v′σ(v′)(γ′)

=
∑

v′′∈V \F

α(v′′)
∑

v′∈V

∑

γ′∈Γv′

p(v′,γ′,v)

∞∑

n=0

(P σ)nv′′,v′σ(v′)(γ′)

=
∑

v′′∈V \F

α(v′′)

∞∑

n=1

(P σ)nv′′,v

The last expression is easily seen to be the expected number of times we will transition
into state v. It is clear by linearity of expectations that

∑
γ∈Γv

y′(v,γ) gives the expected

number of times we will transition out of state v. It is thus clear that
∑

γ∈Γv
y′(v,γ) −∑

v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) = α(v).

Now we argue that
∑

v∈Fi
y′v = Prσα(3Fi). To see this, note that for v ∈ F , y′v =∑

v′∈V \F

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) is precisely the “expected number of times that we will tran-

sition into state v for the first time”, starting at distribution α. The reason we can say “for
the first time” is because only the states in V \ F are included in the matrix P σ. But note
that this italicised statement in quotes is another way to define the probability of eventually
reaching state v. This equality can be establish formally, but we omit the formal algebraic
derivation here. Thus

∑
v∈Fi

y′v = Prσα(3Fi) ≥ ri. We are done with (1.) ⇒ (2.).

(2.) ⇒ (1.). We now wish to show that if y′′ is a feasible solution to the multi-objective LP
such that

∑
v∈Fi

y′′v ≥ ri > 0, for all i = 1, . . . , k, then there exists a memoryless strategy σ

such that
∧k
i=1 Prσα(3Fi) ≥ ri.

11

Suppose we have such a solution y′′. Let S = {v ∈ V \ F |
∑

γ∈Γv
y′′(v,γ) > 0}. Let σ be

the memoryless strategy, given as follows. For each v ∈ S

σ(v)(γ) :=
y′′(v,γ)∑
γ′∈Γv

y′′v,γ′

Note that since
∑

γ∈Γv
y′′(v,γ) > 0, σ(v) is a well-defined probability distribution on the

moves at state v ∈ S. For the remaining states v ∈ (V \ F) \ S, let σ(v) be an arbitrary
distribution in D(Γv).

Lemma 3.4. This memoryless strategy σ satisfies
∧k
i=1 Pr

σ
α(3Fi) ≥ ri.

Proof. Let us assume, for the sake of convenience in our analysis, that there is an extra
dead-end absorbing state vdead 6∈ F available, and an extra move γdead available at each
state, v, with p(v,γdead,vdead) = 1, and for each v ∈ (V \ F) \ S, instead of letting σ(v) be
arbitrary, let σ(v)(γdead) = 1. In other words, from each such state we simply move directly
to an absorbing dead-end which is outside of F . The assumption that such a dead-end
exists is just for convenience: clearly, without such a dead-end, we can use any (mixed)
move at such vertices in our strategy, and such a strategy would yield at least as high a
value for Prσα(3Fi), for all i = 1, . . . , k.

Let us now explain the reason why we don’t care about what moves are used at
states outside S in the strategy σ. Let support(α) = {v ∈ V \ F | α(v) > 0}. We
claim S contains all states reachable from support(α) using strategy σ. To see this,
first note that support(α) ⊆ S, because for all v ∈ support(α), since

∑
γ∈Γv

y′′(v,γ) −∑
v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′) = α(v) and α(v) > 0, and since y′′v′,γ′ ≥ 0 for all v′ ∈ V \F and

γ′ ∈ Γv′ , it must be the case that,
∑

γ∈Γv
y′′(v,γ) > 0. Thus support(α) ⊆ S. Inductively, for

k ≥ 0, consider any state v ∈ V \F , such that we can, with non-zero probability, reach v in
k steps using strategy σ from a state in support(α), and such that we can not reach v (with
non-zero probability) in any fewer than k step. For the base case k = 0, we already know
v ∈ support(α) ⊆ S. For k > 0, we must have α(v) = 0. But note that there must be a pos-
itive probability of moving to v in one step from some other state v′ which can be reached in
k−1 steps from support(α). But this is so if and only if for some γ′ ∈ Γv′ , both p(v′,γ′,v) > 0
and y′′(v′,γ′) > 0 (and thus σ(v′)(γ′) > 0). Hence,

∑
v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′) > 0. Thus

since
∑

γ∈Γv
y′′(v,γ) −

∑
v′∈V

∑
γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′) = 0, we must have

∑
γ∈Γv

y′′(v,γ) > 0, and

thus v ∈ S. Hence S contains the set of nodes reachable from nodes in the support of the
initial distribution, support(α), using the strategy σ.

We will now show that Prσα(3Fi) ≥ ri, for all i = 1, . . . , k. Let us consider the underlying
graph of the “flows” defined by y′′. Namely, let G = (V,E) be a graph on states of M such
that (v, v′) ∈ E if and only if there is some γ ∈ Γv such that y′′(v,γ) > 0 and p(v,γ,v′) > 0. Let

W ⊆ V \ F be the set of vertices in V \ F that have a non-zero “flow” to F , i.e., v is in W
iff there is a path in G from v to some vertex in F .

12

For v ∈ V \ F , let zv =
∑

γ∈Γv
y′′(v,γ). Note that by the constraints of the LP, for any

vertex v ∈ S

α(v) = zv −
∑

v′∈V \F

∑

γ∈Γv′

p(v′,γ,v)y
′′
(v′,γ)

= zv −
∑

v′∈S

∑

γ∈Γv′

p(v′,γ,v)y
′′
(v′,γ) (because all flow into v comes from S)

= zv −
∑

v′∈S

∑

γ∈Γv′

p(v′,γ,v)y
′′
(v′,γ)

zv′∑
γ′∈Γv′

y′′(v′,γ′)

= zv −
∑

v′∈S

∑

γ∈Γv′

p(v′,γ,v)σ(v′)(γ)zv′

= zv −
∑

v′∈S

P σv′,vzv′

Now, let us focus on the vertices in W . Note that, by definition, W ⊆ S. Consider the
submatrix P σW,W obtained from P σ by eliminating the rows and columns whose indices are
not in W . Note that since there is no flow into a vertex in W from a vertex outside of W ,
the above equalities yield, for each v ∈W , α(v) = zv −

∑
v∈W P σv′,vzv′ . This can be written

in matrix notation as αT |W = zT |W (I − P σW,W).
Now, note that since every vertex in W has a “flow” to F , in terms of the underlying

Markov chain of the substochastic matrix P σW,W , this means that every vertex in W is

transient, and that there is a power d ≥ 1, such that (P σW,W)d has the property that all

its row sums are strictly less than 1. Consequently, limd→∞(P σW,W)d = 0 and the matrix

(I −P σW,W) is invertible, with (I −P σW,W)−1 =
∑∞

i=0(P
σ
W,W)i), a nonnegative matrix. Thus,

zT |W = αT (I−P σW,W)−1 = αT (
∑∞

i=0(P
σ
W,W)i. From this it follows, again because no vertex

outside of W has a flow into W , that for each v ∈W :

zv =
∑

v′∈V \F

α(v′)

∞∑

n=0

∑

γ∈Γv

(P σ)nv′,vσ(v)(γ)

=
∑

γ∈Γv

∑

v′∈W

α(v′)

∞∑

n=0

(P σ)nv′,vσ(v)(γ)

(because all moves into v of strategy σ come from vertices in W)

=
∑

γ∈Γv

y′(v,γ)

where, in the last expression, the values y′(v,γ), not to be mistaken with y′′(v,γ), are values

from the vector y′ which we obtained in the proof that (1.) ⇒ (2.), from a given memoryless
strategy σ. In this case, the strategy σ in question is precisely the memoryless strategy we
just defined based on y′′. Thus, for all v ∈W :

zv =
∑

γ∈Γv

y′′(v,γ) =
∑

γ∈Γv

y′(v,γ) (3.1)

13

We next show that in fact for all v ∈W and γ ∈ Γv, y
′′
(v,γ) = y′(v,γ). For v ∈W and γ ∈ Γv,

we have:

y′(v,γ) =
∑

v′∈W

α(v′)

∞∑

i=0

(P σW,W)iv′,vσ(v)(γ)

=
∑

v′∈W

α(v′)
∞∑

i=0

(P σW,W)iv′,v
y′′(v,γ)∑

γ′∈Γv
y′′(v,γ′)

=
y′′(v,γ)∑

γ′∈Γv
y′′(v,γ′)

∑

v′∈W

α(v′)

∞∑

i=0

(P σW,W)iv′,v

But recall that the “expected number of times we will transition out of state v” is given by∑
γ∈Γv

y′(v,γ) =
∑

v′∈W α(v′)
∑∞

i=0(P
σ
W,W)iv′,v.

Hence y′(v,γ) =
y′′
(v,γ)

P

γ′∈Γv
y′′
(v,γ′)

∑
γ∈Γv

y′(v,γ). Thus, by using equation (3.1) and canceling,

we get y′(v,γ) = y′′(v,γ). Thus, since y′′ is a feasible solution to the LP, we have that for any

v ∈ F :

y′′v =
∑

v′∈V \F

∑

γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′)

=
∑

v′∈W

∑

γ′∈Γv′

p(v′,γ′,v)y
′′
(v′,γ′) (because all flow into F is from W)

=
∑

v′∈W

∑

γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′)

= Prσα(3{v})

The last equality holds because, as we showed in the proof of ((1.) ⇒ (2.)), the expression∑
v′∈W

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) =

∑
v′∈V \F

∑
γ′∈Γv′

p(v′,γ′,v)y
′
(v′,γ′) is exactly the “expected

number of times that we will visit the vertex v ∈ F for the first time”, which is precisely
the probability Prσα(3{v}).

Thus, clearly,
∑

v∈Fi
y′′v =

∑
v∈Fi

Prσα(3{v}) = Prσα(3Fi). Thus, since we have assumed

that
∑

v∈Fi
y′′v ≥ ri, we have established that Prσα(3Fi) ≥ ri, for all target sets Fi.

This completes the proof that (2.) ⇒ (1.).

(3.) ⇔ (1.). Clearly (1.) ⇒ (3.), so we need to show that (3.) ⇒ (1.).
Let U be the set of achievable vectors, i.e., all k-vectors r = 〈r1 . . . rk〉 such that there

is a (unrestricted) strategy σ such that
∧k
i=1 Prσα(3Fi) ≥ ri. Let U⊙ be the analogous set

where the strategy σ is restricted to be a possibly randomized but memoryless (stationary)
strategy. Clearly, U and U⊙ are both downward closed, i.e., if r ≥ r′ and r ∈ U then also
r′ ∈ U , and similarly with U⊙. Also, obviously U⊙ ⊆ U . We characterized U⊙ in (1.) ⇔
(2.), in terms of a multi-objective LP. Thus, U⊙ is the projection of the feasible space of a
set of linear inequalities (a polyhedral set), namely the set of inequalities in the variables
y given in Fig. 3 and the inequalities

∑
v∈Fi

yv ≥ ri, i = 1, . . . , k. The feasible space is a

polyhedron in the space indexed by the y variables and the ri’s, and U⊙ is its projection on
the subspace indexed by the ri’s. Since the projection of a convex set is convex, it follows
that U⊙ is convex.

14

Suppose that there is a point r ∈ U \U⊙. Since U⊙ is convex, this implies that there is a
separating hyperplane (see, e.g., [GLS93]) that separates r from U⊙, and in fact since U⊙ is
downward closed, there is a separating hyperplane with non-negative coefficients, i.e. there

is a non-negative “weight” vector w = 〈w1, . . . , wk〉 such that wT r =
∑k

i=1 wiri > wTx for
every point x ∈ U⊙.

Consider now the MDP M with the following undiscounted reward structure. There is
0 reward for every state, action and transition, except for transitions to a state v ∈ F from
a state in V \ F ; i.e. a reward is produced only once, in the first transition into a state of
F . The reward for every transition to a state v ∈ F is

∑
{wi | i ∈ {1, . . . , k} & v ∈ Fi}. By

the definition, the expected reward of a policy σ is
∑k

i=1wi Prσα(3Fi). From classical MDP
theory, we know that there is a memoryless strategy (in fact even a deterministic one) that
maximizes the expected reward for this type of reward structure. (Namely, this is a positive
bounded reward case: see, e.g., Theorem 7.2.11 in [Put94].) Therefore, max{wTx | x ∈
U} = max{wTx | x ∈ U⊙}, contradicting our assumption that wT r > max{wTx | x ∈ U⊙}.

Corollary 3.5. Given an MDP M = (V,Γ, δ), a number of target sets Fi ⊆ V , i =

1, . . . , k+ k′, such that every state v ∈ F =
⋃k+k′

i=1 Fi is absorbing, and an initial state u (or
even initial distribution α ∈ D(V)):

(a.) Given an extended achievability query for reachability, ∃σB, where

B ≡
k∧

i=1

(Prσu(⋄Fi) ≥ ri) ∧
k+k′∧

j=k+1

(Prσu(3Fj) > rj),

we can in time polynomial in the size of the input, |M | + |B|, decide whether ∃σ B
is satisfiable and if so construct a memoryless strategy that satisfies it.

(b.) For ǫ > 0, we can compute an ǫ-approximate Pareto curve P(ǫ) for the multi-
objective reachability problem with objectives 3Fi, i = 1, . . . , k, in time polynomial
in |M | and 1/ǫ.

Proof. For (a.), consider the constraints of the LP in Figure 3, and add the following
constraints: for each i ∈ {1, . . . , k} add the constraint

∑
v∈Fi

yv ≥ ri, and for each j ∈
{k + 1, . . . , k + k′}, add the constraint

∑
v∈Fj

yv ≥ rj + z, where z is a new variable,

and also add the constraint z ≥ 0. Finally, consider the new objective “Maximize z”.
Solve this LP to find whether an optimal feasible solution y∗, z∗ exists, and if so whether
z∗ > 0. If no solution exists, or if z∗ ≤ 0, then the extended achievability query is not
satisfiable. Otherwise, if z∗ > 0, then a strategy that satisfies ∃σB exists, and moreover
we can construct a memoryless strategy that satisfies it by using the vector y′′ = y∗ and
picking the strategy σ constructed from y′′ in the proof of (2.) ⇒ (1.) in Theorem 3.2.

Part (b.) is immediate from Theorem 3.2, and the results of [PY00], which show we
can ǫ-approximate the Pareto curve for multi-objective linear programs in time polynomial
in the size of the constraints and objectives and in 1/ǫ.

4. Qualitative multi-objective model checking

Theorem 4.1. Given an MDP M , an initial state u, and a qualitative multi-objective query
B, we can decide whether there exists a strategy σ that satisfies B, and if so construct such

15

a strategy, in time polynomial in |M |, and using only graph-theoretic methods (in particular,
without linear programming).

Proof. By the discussion in Section 2, it suffices to consider the case where we are given an
MDP, M , and two sets of ω-regular properties Φ,Ψ, and we want a strategy σ such that

∧

ϕ∈Φ

Prσu(ϕ) = 1 ∧
∧

ψ∈Ψ

Prσu(ψ) > 0

Assume the properties in Φ, Ψ are all given by (nondeterministic) Büchi automata Ai. We
will use and build on results in [CY98]. In [CY98] (Lemma 4.4, page 1411) it is shown that
we can construct from M and from a collection Ai, i = 1, . . . ,m, of Büchi automata, a new
MDP M ′ (a refinement of M) which is the “product” of M with the naive determinization
of all the Ai’s (i.e., the result of applying the standard subset construction on each Ai,
without imposing any acceptance condition). Technically, we have to slightly adapt the
constructions of [CY98], which use the convention that MDP states are either purely con-
trolled or purely probabilistic, to the convention used in this paper which combines both
control and probabilistic behavior at each state. But these adaptations are straightfor-
ward. For completeness, we recall the (adapted) formal definition of M ′. The states of
the MDP M ′ are tuples (x, z1, . . . , zm), where x is a state of the MDP, M , and zi is a set
of states of Ai. The transition relation δ′ of M ′ is as follows. There exists a transition
((x, z1, ..., zm), a, p, (x′, z′1, . . . , z

′
m)) ∈ δ′ if and only if the transition (x, a, p, x′) is in M and,

for each i = 1, . . . ,m, z′i is precisely the set of states in the Büchi automaton Ai that one
could reach with one transition, starting from some state in the set zi and reading the
symbol l(x′). Technically, we also have to add a dummy initial state x0 to the MDP, M ,
such that there is a single enabled action, γ0, at x0, and such that there are transitions from
x0 on action γ0 to other states according to some initial probability distribution on states,
α ∈ D(V). Thus, in particular, if we assume there is just one initial state u in the MDP, M ,
then we would now have one transition (x0, γ0, 1, u) ∈ δ in the new M with added dummy
state x0. The reason for adding the dummy x0 is because our definition of the product M ′

does not use the label of the initial state in defining the transitions of M ′. We also assume,
w.l.o.g., that each Büchi automaton Ai has a single initial state si0. In this way, the initial
state of M ′ becomes the tuple v0 = (x0, {s

1
0}, . . . , {s

m
0 }).

By Lemma 4.4 and 4.5 of [CY98], this MDP M ′ has the following two properties. For
every subset R of Φ ∪ Ψ there is a subset TR of corresponding “target states” of M ′ (and
we can compute this subset efficiently, in time polynomial in the size of M ′) that satisfies
the following two conditions:

(I) If a trajectory of M ′ hits a state in TR at some point, then we can apply from that
point on a strategy µR (which is deterministic but uses memory) which ensures that
the resulting infinite trajectory satisfies all properties in R almost surely (i.e., with
conditional probability 1, conditioned on the initial prefix that hits TR).

(II) For every strategy, the set of trajectories that satisfy all properties in R and do not
infinitely often hit some state of TR has probability 0.

We now outline the algorithm for deciding qualitative multi-objective queries.

(1) Construct the MDP M ′ from M and from the properties Φ and Ψ (in other words,
using one automaton for each property in Φ and one for each property in Ψ).

16

(2) Compute TΦ, and compute for each property ψi ∈ Ψ the set of states TRi
where

Ri = Φ ∪ {ψi}.
3

(3) If Φ 6= ∅, prune M ′ by identifying and removing all “bad” states by applying the
following rules.
(a) All states v that cannot “reach” any state in TΦ are “bad”.4

(b) If for a state v there is an action γ ∈ Γv such that there is a transition
(v, γ, p, v′) ∈ δ′, p > 0, and v′ is bad, then remove γ from Γv.

(c) If for some state v, Γv = ∅, then mark v as bad.
Keep applying these rules until no more states can be labelled bad and no more
actions removed for any state.

(4) Restrict M ′ to the reachable states (from the initial state v0) that are not bad, and
restrict their action sets to actions that have not been removed, and let M ′′ be the
resulting MDP.

(5) If (M ′′ = ∅ or ∃ψi ∈ Ψ such that M ′′ does not contain any state of TRi
)

then return No.
Else return Yes.

Correctness proof: In one direction, suppose there is a strategy σ such that
∧
ϕ∈Φ Prσu(ϕ) =

1∧
∧
ψ∈Ψ Prσu(ψ) > 0. First, note that there cannot be any finite prefix of a trajectory under

σ that hits a state that cannot reach any state in TΦ. For, if there was such a path, then all
trajectories that start with this prefix would go only finitely often through TΦ. Hence (by
property (II) above) almost all these trajectories do not satisfy all properties in Φ, which
contradicts the fact that all these properties have probability 1 under σ. From the fact that
no path under σ hits a state that cannot reach TΦ, it follows by an easy induction that no
finite trajectory under σ hits any bad state. That is, under σ all trajectories stay in the
sub-MDP M ′′. Since every property ψi ∈ Ψ has probability Prσu(ψi) > 0 and almost all
trajectories that satisfy ψi and Φ must hit a state of TRi

(property (II) above), it follows
that M ′′ contains some state of TRi

for each ψi ∈ Ψ. Thus the algorithm returns Yes.
In the other direction, suppose that the algorithm returns Yes. First, note that for all

states v of M ′′, and all enabled actions γ ∈ Γv in M ′′, all transitions (v, γ, p, v′) ∈ δ, p > 0 of
M ′ must still be in M ′′ (otherwise, γ would have been removed from Γv at some stage using
rule 3(b)). On the other hand, some states may have some missing actions in M ′′. Next,
note that all bottom strongly connected components (BSCCs) of M ′′ (to be more precise,
in the underlying one-step reachability graph of M ′′) contain a state of TΦ (if Φ = ∅ then
all states are in TΦ), for otherwise the states in these BSCCs would have been eliminated
at some stage using rule 3(a).

Define the following strategy σ which works in two phases. In the first phase, the
trajectory stays within M ′′. At each control state take a random action that remains in
M ′′ out of the state; the probabilities do not matter, we can use any non-zero probability
for all the remaining actions. In addition, at each state, if the state is in TΦ or it is in
TRi

for some property ψi ∈ Ψ, then with some nonzero probability the strategy decides to
terminate phase 1 and move to phase 2 by switching to the strategy µΦ or µRi

respectively,

3Actually these sets can all be computed together: we can compute maximal closed components of the
MDP, determine the properties that each component favors (see Def. 4.1 of [CY98]), and tag each state
with the sets for which it is a target state.

4By “reach”, we mean that starting at the state v = v0, there a sequence of transitions (vi, γ, pi, vi+1) ∈ δ,
pi > 0, such that vn ∈ TΦ for some n ≥ 0.

17

which it applies from that point on. (Note: a state may belong to several TRi
’s, in which

case each one of them gets some non-zero probability - the precise value is unimportant.)
We claim that this strategy σ meets the desired requirements - it ensures probability

1 for all properties in Φ and positive probability for all properties in Ψ. For each ψi ∈ Ψ,
the MDP M ′′ contains some state of TRi

; with nonzero probability the process will follow
a path to that state and then switch to the strategy µRi

from that point on, in which case
it will satisfy ψi (property (I) above). Thus, all properties in Ψ are satisfied with positive
probability.

As for Φ (if Φ 6= ∅), note that with probability 1 the process will switch at some point
to phase 2, because all BSCCs of M ′′ have a state in TΦ. When it switches to phase 2 it
applies strategy µΦ or µRi

for some Ri = Φ ∪ {ψi}, hence in either case it will satisfy all
properties of Φ with probability 1.

5. Quantitative multi-objective model checking.

Theorem 5.1.

(1.) Given an MDP M , an initial state u, and a quantitative multi-objective query B,
we can decide whether there exists a strategy σ that satisfies B, and if so construct
such a strategy, in time polynomial in |M |.

(2.) Moreover, given ω-regular properties Φ = 〈ϕ1, . . . , ϕk〉, we can construct an ǫ-
approximate Pareto curve PMu,Φ(ǫ), for the set of achievable probability vectors
UMu,Φ in time polynomial in M and in 1/ǫ.

Proof. For (1.), by the discussion in Section 2, we only need to consider extended achiev-

ability queries, B ≡
∧k′

i=1 Prσu(ϕi) ≥ ri ∧
∧k
j=k′+1 Prσu(ϕj) > rj , where k ≥ k′ ≥ 0, and for

a vector r ∈ (0, 1]k. Let Φ = 〈ϕ1, . . . , ϕk〉. We are going to reduce this multi-objective
problem with objectives Φ to the quantitative multi-objective reachability problem studied
in Section 3. From our reduction, both (1.) and (2.) will follow, using Corollary 3.5. As in
the proof of Theorem 4.1, we will build on constructions from [CY98]: form the MDP M ′

consisting of the product of M with the naive determinizations of the automata Ai for the
properties ϕi ∈ Φ. For each subset R ⊆ Φ we determine the corresponding subset TR of
target states in M ′.5

Construct the following MDP M ′′. Add to M ′ a new absorbing state sR for each subset
R of Φ. For each state u of M ′ and each maximal subset R such that u ∈ TR add a new
action γR to Γu, and an new transition (u, γR, 1, sR) to δ. With each property ϕi ∈ Φ we
associate the subset of states Fi = {sR | ϕi ∈ R}. Let F = 〈3F1, . . . ,3Fk〉. Let u∗ be the
initial state of the product MDP M ′′, given by the start state u of M and the start states
of all the naively determinized Ai’s. Recall that UMu,Φ ⊆ [0, 1]k denotes the achievable set

for the properties Φ in M starting at u, and that UM ′′
u∗ ,F

denotes the achievable set for F

in M ′′ starting at u∗.

Lemma 5.2. UMu,Φ = UM ′′
u∗ ,F

. Moreover, from a strategy σ that achieves r in UMu,Φ, we

can recover a strategy σ′ that achieves r in UM ′′
u∗ ,F

, and vice versa.

5Again, we don’t need to compute these sets separately. See Footnote 3.

18

Proof. One direction is easy. Given such a strategy σ′ in M ′′, we follow in M ′ (and in
M) the same strategy (of course, only the first component of states of M ′′ matters in
M), until just before it transitions to a state sR, at which point it must be in TR, and at
that point our strategy σ switches to the strategy µR. This guarantees, for every ϕi ∈ Φ,
Prσu(ϕi) ≥ Prσ

′

u∗(3Fi) ≥ ri.
For the other direction, suppose that the claim is not true, i.e. there is a strategy σ

in M which ensures probability Prσu(ϕi) ≥ ri, i = 1, . . . , k, but r 6∈ UM ′′
u∗ ,F

. Note that all

states in F = ∪ki=1Fi are absorbing. From Theorem 3.2 we know that UM ′′
u∗ ,F

= U⊙
M ′′

u∗ ,F

where U⊙
M ′′

u∗ ,F
is the set of value vectors achievable by memoryless strategies. Recall, that

UM ′′
u∗ ,F

= U⊙
M ′′

u∗ ,F
is convex, and that it is downward-closed. Since r 6∈ UM ′′

u∗ ,F
, as in the

proof of (3.) ⇒ (1.) in Thm. 3.2, there must be a separating hyperplane, i.e., a non-

negative weight vector w = 〈w1, . . . , wk〉 such that wT r =
∑k

i=1 wiri > wTx for every point
x ∈ UM ′′

u∗ ,F
.

Consider M with the following reward structure, denoted rew(w): a trajectory τ of M
receives reward

∑
{wi | τ satisfies ϕi}. This is not the traditional type of reward structure

where reward is obtained at the states and transitions of the trajectory; it is obtained
only at infinity when the trajectory has finished and we get a reward that depends on the
properties that were satisfied. In [CY98] optimization of the expected reward for MDPs
with this kind of reward structure was studied and solved by reducing the problem to
an MDP with a classical type of reward. We reuse that construction here. Consider the
MDP M ′′ augmented with a traditional type of reward structure, denoted rew′′, in which
each transition of the form (u, γR, 1, sR) produces reward

∑
{wi | ϕi ∈ R}, while all other

transitions (and states and actions) give 0 reward. Let M̂ ′′ be a subMDP of M ′′ that
contains for each state u only one (at most) transition of the form (u, γR, 1, sR), namely
the one that produces the maximum reward (breaking ties arbitrarily). Clearly, there is no
reason ever to select from a state u any transition (u, γR′ , 1, sR′) that produces lower reward,

thus, M ′′ and M̂ ′′ have the same optimal expected reward. It is shown in [CY98] that the

optimal expected rewards in (M, rew(w)) and (M̂ ′′, rew′′), and thus also in (M ′′, rew′′), are
equal to each other. Moreover, the optimum value in these MDPs is achievable, i.e., there
are optimal strategies, and in fact a deterministic finite-memory optimal strategy can be
constructed.

The optimal expected reward in (M, rew(w)) is at least wT r (because strategy σ
achieves wT r), while the optimal expected reward in (M ′′, rew′′) is equal to max{wTx |
x ∈ UM ′′

u∗ ,F
}, because rewards are only obtained by transitioning to a state in F . There-

fore, wT r ≤ max{wTx | x ∈ UM ′′
u∗ ,F

}, contradicting our hypothesis that wT r > max{wTx |

x ∈ UM ′′
u∗ ,F

}.

It follows from the lemma that: there exists a strategy σ in M such that
∧k′

i=1 Prσu(ϕi) ≥

ri∧
∧k
j=k′+1 Prσu(ϕj) > rj if and only if there exists a strategy σ′ inM ′′ such that

∧k′

i=1 Prσu∗(3Fi) ≥

ri ∧
∧k
j=k′+1 Prσu∗(3Fj) > rj. Moreover, such strategies can be recovered from each other.

Thus (1.) and (2.) follow, using Corollary 3.5.

19

6. Concluding remarks

We mention that recent results by Diakonikolas and Yannakakis [DY08] provide im-
proved upper bounds for appoximation of convex Pareto curves, and for computing a
smallest such approximate convex Pareto set. These results yield significantly improved
algorithms, particularly in the bi-objective case, for the multi-objective LP problem, and
thus also for the multi-objective MDP problems studied in this paper. In particular, in the
bi-objective MDP case, [DY08] provides a polynomial time algorithm to compute a minimal
ǫ-approximate (convex) Pareto set (i.e., one with the fewest number of points possible).

We mention that, although we use LP methods to obtain our complexity upper bounds,
in practice there is a way to combine other efficient iterative methods used for solving MDPs,
e.g., based on value iteration or policy (strategy) iteration, with our results in order to ap-
proximate the Pareto curve for multi-objective model checking. This is because the results
of [PY00, DY08] for multi-objective convex optimization problems only require a black-
box routine that optimizes (exactly or approximately) positive linear combinations of the
objectives. Specifically, in our setting the multiple MDP objectives ask to optimize the
probabilities of different linear-time ω-regular properties. By using the results in [CY98],
it is possible to reduce the problem of optimizing such positive linear combinations to the
problem of finding the optimal expected reward for a new MDP with positive rewards. The
task of computing or approximating this optimal expected reward can be carried out using
any of various standard iterative methods, e.g., based on value iteration and policy iteration
(see [Put94]). These can thus be used to answer (exactly or approximately) the black-box
queries required by the methods of [PY00, DY08], thereby yielding a method for approxi-
mating the Pareto curve (albeit, without the same theoretical complexity guarantees).

An important extension of the applications of our results is to extend the asymmetric
assume-guarantee compositional reasoning rule discussed in Section 2 to a general compo-
sitional framework for probabilistic systems. It is indeed possible to describe symmetric
assume-guarantee rules that allow for general composition of MDPs. A full treatment of
the general compositional framework requires a separate paper, and we plan to expand on
this in follow-up work.

Acknowledgements. We thank the Newton Institute, where we initiated discussions
on the topics of this paper during the Spring 2006 programme on Logic and Algorithms.
Several authors acknowledge support from the following grants: EPSRC GR/S11107 and
EP/D07956X, MRL 2005-04; NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and
ANI-0216467, BSF grant 9800096, Texas ATP grant 003604-0058-2003, Guggenheim Fel-
lowship; NSF CCF-04-30946 and NSF CCF-0728736.

References

[Car83] P. Carstensen. Complexity of some parametric integer and network programming problems. Math-
ematical Programming, 26(1):64–75, 1983.

[Cĺı97] J. Cĺımaco, editor. Multicriteria Analysis. Springer-Verlag, 1997.
[CMH06] K. Chatterjee, R. Majumdar, and T. Henzinger. Markov decision processes with multiple objec-

tives. In Proc. of 23rd Symp. on Theoretical Aspects of Computer Science, volume LNCS 3884,
pages 325–336, 2006.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal of the
ACM, 42(4):857–907, 1995.

[CY98] C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events. IEEE Trans.
on Automatic Control, 43(10):1399–1418, 1998.

20

[DY08] I. Diakonikolas and M. Yannakakis. Succinct Approximate Convex Pareto Curves. In Proc. of
ACM-SIAM Symp. on Discrete Algorithms (SODA’08), 2008.

[Ehr05] M. Ehrgott. Multicriteria optimization. Springer-Verlag, 2005.
[Fur80] N. Furukawa. Characterization of optimal policies in vector-valued Markovian decision processes.

Mathematics of Operations Research, 5(2):271–279, 1980.
[Gho90] M. K. Ghosh. Markov decision processes with multiple costs. Oper. Res. Lett., 9(4):257–260, 1990.
[GLS93] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization.

Springer-Verlag, 2nd edition, 1993.
[Hen83] M. I. Henig. Vector-valued dynamic programming. SIAM J. Control Optim., 21(3):490–499, 1983.
[MS01] K. Mulmuley and P. Shah. A lower bound for the shortest path problem. J. Comput. System Sci.,

63(2):253-267, 2001.
[Put94] M. L. Puterman. Markov Decision Processes. Wiley, 1994.
[PY00] C. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal access

of web sources. In Proc. of 41st IEEE Symp. on Foundations of Computer Science, pages 86–92,
2000.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc. of 26th
IEEE FOCS, pages 327–338, 1985.

[Whi82] D. J. White. Multi-objective infinite-horizon discounted Markov decision processes. J. Math. Anal.
Appl., 89(2):639–647, 1982.

[WT98] K. Wakuta and K. Togawa. Solution procedures for multi-objective Markov decision processes.
Optimization. A Journal of Mathematical Programming and Operations Research, 43(1):29–46,
1998.

21

