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Abstract—We begin by observing that (discrete-time) Quasi-
Birth-Death Processes (QBDs) are equivalent, in a precise sense,
to probabilistic 1-Counter Automata (p1CAs), and both Tree-
Like QBDs (TL-QBDs) and Tree-Structured QBDs (TS-QBDs)
are equivalent to both probabilistic Pushdown Systems (pPDSs)
and Recursive Markov Chains (RMCs).

We then proceed to exploit these connections to obtain a
number of new algorithmic upper and lower bounds for central
computational problems about these models. Our main result is
this: for an arbitrary QBD, we can approximate its termination
probabilities (i.e., its G matrix) to within i bits of precision
(i.e., within additive error 1/2i), in time polynomial in both
the encoding size of the QBD and in i, in the unit-cost rational
arithmetic RAM model of computation. Specifically, we show
that a decomposed Newton’s method can be used to achieve
this. We emphasize that this bound is very different from
the well-known “linear/quadratic convergence” of numerical
analysis, known for QBDs and TL-QBDs, which typically gives
no constructive bound in terms of the encoding size of the system
being solved. In fact, we observe (based on recent results) that
for the more general TL-QBDs such a polynomial upper bound
on Newton’s method fails badly. Our upper bound proof for
QBDs combines several ingredients: a detailed analysis of the
structure of 1-Counter Automata, an iterative application of a
classic condition number bound for errors in linear systems, and
a very recent constructive bound on the performance of Newton’s
method for strongly connected monotone systems of polynomial
equations.

We show that the quantitative termination decision problem
for QBDs (namely, “is Gu,v ≥ 1/2?”) is at least as hard as long-
standing open problems in the complexity of exact numerical
computation, specifically the square-root sum problem. On the
other hand, it follows from our earlier results for RMCs that
any non-trivial approximation of termination probabilities for
TL-QBDs is sqrt-root-sum-hard.
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I. INTRODUCTION

A variety of important stochastic models are finitely pre-
sentable but describe an infinite-state underlying stochastic
process. Among the many examples are (multi-type) branch-
ing processes, (quasi-)birth-death processes, stochastic Petri
Nets, and stochastic context-free grammars. Computation of
basic quantities associated with such stochastic models (both
transient analyses and steady-state analyses) are fundamental
to many applications. Yet the complexity of computing many
such quantities is not adequately understood.

This paper begins by observing that there is a close corre-
spondence between different denumerable-state probabilistic
models studied, on the one hand, in the queueing theory and
structured Markov chain community, and, on the other hand,
more recently, in the literature on analysis and model checking
of recursive probabilistic procedural programs. Specifically,
we observe that discrete-time Quasi-Birth-Death processes
(QBDs) are equivalent, in a precise sense, to probabilistic
1-Counter Automata (p1CAs), which are in turn a strict sub-
class of probabilistic Pushdown Systems (pPDSs), namely they
are pPDSs restricted to a 1-letter stack alphabet. Likewise,
QBDs are equivalent to a strict subclass of Recursive Markov
Chains (RMCs), namely 1-box RMCs. Furthermore, we show
that Tree-Structured and Tree-Like QBDs (TL-QBDs), which
are extensions of QBDs, are indeed equivalent to pPDSs and
RMCs.

These results are not at all surprising once one gets over
the differences in notation and language used by the two
communities. Both types of models are infinite-state structured
Markov chains that are finitely presented; in the case of QBDs
and their tree extensions the notation and methodology is
more algebraic, matrix-based, while in the case of pPDSs
it is more automata-theoretic and combinatorial. Indeed both
QBDs and 1-Counter Automata have as states pairs of the form
(i, j), where i ∈ {1, . . . ,m} ranges over a finite number of
“control states”, and j ∈ N denotes the value of a non-negative
counter. Probabilistic transitions can change the control state,
and increment, decrement, or keep the counter unchanged.
Special transitions apply when the counter value is 0 (or,
in some presentations of QBDs, less than a fixed bound).
Similarly, TL-QBDs, TS-QBDs, pPDSs, and RMCs, all have
states of the form (i, w) where i ∈ {1, . . . ,m} ranges over a
finite control, and w ∈ Σ∗ ranges over strings (sequences)
over a finite alphabet Σ, which acts as nodes of a LIFO
stack (or equivalently, nodes of a |Σ|-ary tree) such that the
transitions can change the control state and add/remove/swap
a symbol on the head of the stack (equivalently, move to a
parent/child/sibling in the tree). These models differ in, e.g.,
whether the top stack symbol can influence whether or not a
transition is enabled, but we show that they are all nevertheless
equivalent in a precise sense.

We exploit these equivalences to obtain several new al-
gorithmic results about these models. A number of results
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follow immediately from the equivalences and existing results
about the various models. For instance, it follows from results
on RMCs that quantitative model checking of linear-time
(ω-regular) temporal properties for QBDs and TL-QBDs can
be decided in PSPACE in the size of the model ([13]). On
the other hand, obtaining any non-trivial approximation of the
“termination probabilities” for TL-QBDs (the analog of the G
matrix of QBDs), even to within any constant additive factor
c < 1/2, is at least as hard as long-standing open problems
in exact numerical computation, such as the square-root sum
problem, whose complexity (in the standard Turing model of
computation) is not even known to be in NP [17].

Our main result is a new upper bound on numerical
approximation of central quantities associated with QBDs.
Specifically, we show that, given a QBD (even a null-recurrent
one), the basic G matrix of “termination probabilities” for
the QBD (and various other quantities of interest that can
be derived from it) can be approximated to within i bits of
precision in time polynomial in both the encoding size of
the QBD and in i, in the unit-cost rational arithmetic RAM
(i.e., discrete Blum-Shub-Smale) model of computation. More
precisely, in the stated time complexity in the unit-cost model,
one can compute a matrix G̃ ≥ 0 such that ‖G− G̃‖∞ ≤ 1/2i.
Specifically, we show that the decomposed Newton’s method
(studied for RMCs and for arbitrary monotone systems of
polynomial equations in ([14]) can be used to achieve this
bound.

We emphasize that this analysis is very different from
the well-known “linear/quadratic convergence” analyses tra-
ditional to numerical analysis, which is known to hold (in
null-recurrent/non-null-recurrent cases, respectively) on the
equations that arise for QBDs and TL-QBDs, using Newton’s
method and several other methods (such as logarithmic re-
duction and cyclic reduction). “Linear/quadratic convergence”
results only bound the number of iterations required as a
function of the desired error ε > 0 (i.e., the desired number of
bits i of precision). They completely ignore how large the
number of iterations may need to be as a function of the
encoding size of the input QBD.

In fact, we observe using recent results for pPDSs ([20])
that this polynomial upper bound for QBDs fails badly for
TL-QBDs. Specifically, there are worst-case examples of TL-
QBDs which require exponentially many iterations of New-
ton’s method, as a function of the size of the TL-QBD, in
order to approximate termination probabilities (the analog of
the G matrix for TL-QBDs) to within any non-trivial constant
additive error, thus even to within 1 bit of precision. This is the
case even though Newton’s method is “linearly convergent”
on these examples. Our results thus reveal a vast difference
in the worst case behavior of Newton’s method on QBDs
and TL-QBDs, not apparent from the usual “linear/quadratic”
convergence analysis.

Our proof of the new upper bound for QBDs relies on
several ingredients. We first perform a detailed analysis of
the structure of 1-Counter Automata, including the structure
of dependencies among variables in the nonlinear equation
associated with a QBD whose least non-negative solution is
the G matrix and establishing key properties. Firstly, there

is a fixed polynomial, q(n), such that for any QBD whose
encoding size is n,1 the termination probabilities (i.e., entries
of the G matrix), which may of course be irrational, are
each either 0 or ≥ 1/2q(n). This bound fails badly for
TL-QBDs, as there are simple examples (already noted for
RMCs [14]) of size O(n) for which the positive termination
probabilities are 1/22n

. As a second crucial property, we
show that the dependencies among variables in the nonlinear
(matrix) equation X = A−1 +A0X +A1X

2, associated with
a QBD (whose least non-negative solution is the G matrix)
have a very special structure when decomposed into strongly
connected components (SCCs). Roughly speaking, the SCCs
can have nonlinear internal structure, but distinct nonlinear
SCCs cannot “depend” on each other. This special structure
does not hold for the equations associated with termination
probabilities of TL-QBDs.

These two structural results allow us to bring in other key
ingredients in order to establish the polynomial upper bound
for QBDs. Specifically, we use an important constructive
upper bound recently established by Esparza, Kiefer, and
Luttenberger in [9] on the performance of Newton’s method
for (strongly connected) monotone systems of polynomial
equations, combined with our result that QBD termination
probabilities can be “polynomially” bounded away from zero,
in order to establish that for the nonlinear SCCs in the equa-
tions for G, a polynomial number of iterations of Newton’s
method (as a function of the encoding size and number of
bits of precision), starting from the 0 vector, suffice to obtain
a desired number of bits of precision for the variables in
a nonlinear SCC. Finally, to approximate the entire matrix
G, we deal with a possibly nested series of linear SCCs
“above” nonlinear ones in the Directed Acyclic Graph (DAG)
of SCCs, by using an iterative application of a classic, but
rather delicate, condition number bound for errors in the
solution of linear systems resulting from coefficient errors.

On the other hand, as a “lower bound” for QBDs, we show
that deciding whether Gi,j ≥ p, for a given rational p, is at
least as hard as the square-root sum problem. Thus, resolving
exact quantitative decision problems for QBDs in polynomial
time or even in NP, in the traditional Turing model, is not
possible without a major breakthrough in exact numerical
analysis. By contrast, for the more general TL-QBDs, we
observe that our recent result in [16] for RMCs implies that
even the problem of obtaining any non-trivial approximation
of termination probabilities for TL-QBDs is square-root-sum-
hard.

These results lead us to suspect that a similar difference
should exist in the worst-case behavior on QBDs and TL-
QBDs for other than Newton iteration numerical solution
methods such as the logarithmic or cyclic reduction type
algorithms (see, e.g, [2]). We have, however, not analyzed
these other algorithms. Indeed, the equivalences we point
out open the door for the extensive methods and algorithms
developed in the structured Markov chain community (which
after all has a much longer history) to be applied to the analysis

1In other words, n is the number of bits needed to describe the QBD, by
describing all the rational coefficients (given by numerator and denominator
in binary) in all the m×m matrices that define the QBD.
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of the more recently studied models like pPDSs and RMCs,
for analysis and model checking of recursive probabilistic
procedural program. In the other direction, we feel that the
“automata-theoretic” viewpoint, offered by the work on RMCs
and pPDSs, and related literature, can be further exploited in
research on QBDs, TL-QBDs, and related models. In any case,
we believe a cross-fertilization between these two communities
will be a fruitful source of research in the near future. A tool
called PReMo [36] which implements optimized versions of
the decomposed Newton’s method and other methods for the
analysis of Recursive Markov Chains (and their controlled and
game extensions) has been augmented with an input format for
QBDs.

We have conducted a preliminary comparison of PReMo’s
performance on QBDs with that of an existing tool for QBDs:
SMCSolver [3] (see Section VI). SMCSolver’s implementa-
tions of algorithms like (shifted) cyclic reduction handily beat
PReMo (by an order of magnitude or more) on large “dense”
QBDs where the input Ai matrices are dense. This is explained
by the following facts: firstly, such dense systems are typically
not decomposable; moreover, SMCSolver exploits concise
matrix representations of the nonlinear equations associated
with QBDs, which require O(n2) encoding size (where n
is the number of control states, and assuming bounded size
coefficients), whereas PReMo employs an explicit algebraic
formula representation of these equations (which allows han-
dling arbitrary monotone systems of nonlinear equations)
which for dense input Ai’s requires O(n3) encoding size.
The algorithms (like cyclic reduction) employed in SMCSolver
operate directly on these matrix equations, and thus have far
lower cost per iteration. Finally, PReMo uses an algebraic
formula encoding of equations for RMCs (and QBDs) which
allows handling, much more generally, arbitrary monotone
systems of nonlinear equations which are not necessarily in
sparse monomial form. This encoding adds some additional
cost to each computation over the explicit equations arising
for RMCs and QBDs (but adding a special encoding for,
e.g., QBD equations is not hard to do and would address
this last issue). However, unlike PReMo, SMCSolver does not
exploit the potential for decomposing these equations (indeed,
decomposition can destroy their simple matrix equation form).
Thus on very decomposable systems, PReMo can do better.
See Section VI for discussion of some experimental results
and issues raised by them.
Related work: Quasi-Birth-Death Processes (QBDs) and more
generally M/G/1-type and G/M/1-type Markov chains2, have
been studied for decades in queueing theory, performance
evaluation, and related areas, both in discrete and continuous
time, and so have numerical solution methods for them (see,
e.g., the books [26], [27], [24], [2]). In particular, Latouche
in [23], studied the behavior of Newton’s method on these
models, and showed (building on [28]) that under certain

2These chains also have the underlying transition structure of a 1-counter
automaton, but one which can increase, or decrease, respectively, the counter
by more than 1 in a single transition. These models need not in general be
finitely presented, because they do not a priori bound how many transitions
(with distinct counter value changes) can exist from a given state. But of
course typical instances are finitely presented.

assumptions (namely when A =
∑
iAi is irreducible and the

parameter ρ 6= 1) the Newton iterates are well defined and
converge monotonically and “quadratically” to the matrix G.
Several other “quadratically convergent” methods have also
been developed, e.g., logarithmic reduction [25], and cyclic
reduction (see [2]). Remke et. al. in [30] have studied numer-
ical algorithms for model checking of continuous-time QBDs
against properties expressed in the continuous-time temporal
logic CSL. Several other models, in particular, (discrete-time)
stochastic Petri Nets restricted to markings where just one
place can be unbounded, are already known to be equivalent
to QBDs (see, e.g, [29]).

Tree-Structured QBDs (TS-QBDs) are a generalization of
QBDs, first studied in [39], [32], [38]. Tree-Like QBDs (TL-
QBDs) are a restriction of TS-QBDs, studied in, e.g., [24],
[4], [35]. It was already observed in [34] that TL-QBDs and
TS-QBDs are equivalent, under a tight notion of equivalence
which amounts to an instance of what we use to show equiv-
alence also to pPDSs and RMCs. Bini et. al. [4] studied the
performance of several numerical algorithms for TL-QBDs,
including Newton’s method. Building on [23], they show
that under a similar set of assumptions, Newton’s iterations
are defined and converge monotonically and quadratically for
various quantities such as the termination probabilities (the
analog of the G matrix).

Pushdown automata are of course classic models that date
back to the origins of automata theory (see, e.g., [18]). They
have many applications, e.g., in parsing of languages. Push-
down Systems (the transition graphs of pushdown automata),
and equivalent models such as Recursive State Machines, have
been studied extensively in the past decade for the analysis and
model checking of procedural programs (see, e.g., [8], [1]). In
more recent years, researchers have extended these models
with probabilistic behavior, i.e., to probabilistic Pushdown
Systems (pPDSs) ([10], [7], [11], [6]) and Recursive Markov
Chains ([14], [13], [37]), and developed model checking
algorithms for them. In particular, results in [13] yield that
linear-time ω-regular quantitative model checking of RMCs
and pPDSs can be decided in PSPACE (we note that this is an
upper bound for an exact decision procedure, not numerical
estimation). A key role was played in all these analyses by the
computation of termination probabilities (the analog of the G
matrix) for RMCs. A number of “lower bounds” were estab-
lished in [14], [16], showing that these upper bounds could
not be substantially improved without major breakthroughs on
long-standing open problems in exact numerical computation.
In [14], a decomposed Newton’s method was studied for the
approximation of termination probabilities, and it was shown
that, after decomposition, Newton’s method converges mono-
tonically, starting from 0, for arbitrary monotone polynomial
systems that do have a non-negative solution. These results
built on the classic text [28]. We were at that point unaware
of the earlier related work on Newton’s method for (TL-)QBDs
[23], [4], but these earlier works did not derive convergence
results for arbitrary (TL-)QBDs, but only for those that sat-
isfy certain conditions. In particular, like [28], they did not
handle the “critical” case of monotone polynomial systems
where the Jacobian can be singular at the least fixed point
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(least non-negative solution), whereas in [14] we showed that
monotone convergence of the decomposed Newton’s method
holds for arbitrary monotone polynomial systems, including
in the more difficult critical case. Subsequently, Esparza,
Kiefer, and Luttenberger, [20], [9] studied in much greater
detail the performance of (decomposed) Newton’s method on
such monotone systems of polynomial equations. Firstly, they
established worst-case linear convergence results even in the
critical case when the Jacobian at the least fixed point (LFP)
is singular (in the non-critical cases quadratic convergence
can be established based on results in [28]). Importantly for
our results in this paper, in [9] they also established in the
case of strongly connected system of polynomial equations a
constructive upper bound on the number of iterations required
for Newton’s method as a function of the encoding size of
the polynomial system (see Theorem 16 in this paper). We
will make crucial use of this result. For general (not strongly
connected) monotone polynomial equation systems no such
constructive upper bound is known. In particular, for QBDs
whose corresponding polynomial equation system are not
strongly connected, no constructive upper bound (as a function
of the encoding size of the QBD) for Newton’s method follows
from any results prior to this paper. Nevertheless, we are
able to use the results of [9] for the strongly connected
case, combined with detailed analysis of the structure of
1-Counter Automata, including the special structure of the
equation systems for QBDs once they are decomposed into
SCCs, to show that polynomially many iterations of Newton’s
method suffice, as a function of both the size of the input
and i, in order to converge to within i bits of the termination
probabilities.

1-Counter Automata, which amount to Pushdown Systems
with only one stack symbol, are also a classic automata-
theoretic model (see, e.g., [33]), and their relationship to other
infinite-state models in automata theory has been well studied
(see, e.g., [22], [21]). Probabilistic 1-Counter Automata have
not yet been extensively studied in the literature on model
checking and verification.

The rest of this paper is organized as follows. Section 2
gives basic definitions. In Section 3 we show the equivalence
between QBDs and p1CA, and between Tree-Structured and
Tree-Like QBDs and pPDS, state some consequences, and
show that the square-root sum problem reduces to the quanti-
tative termination decision problem for QBDs. In Section 4 we
prove important structural properties of p1CAs, and in Section
5 we use them to analyze the decomposed Newton method
for QBDs and prove a polynomial bound on the number of
iterations. In Section 6 we briefly describe some experimental
comparison between the tool PReMo, which implements the
decomposed Newton’s method, and SMCSolver, a state-of-the-
art tool for analysis of QBDs. We conclude in Section 7 with
some discussion of open problems.

II. DEFINITIONS

Efficient embeddings and equivalences. We show various
probabilistic models are “essentially equivalent”. To make
the notion of “essentially equivalent” precise, we use the

following definitions. We view a (discrete-time) Markov chain
as an object M = (V,∆), where V is a set of states and
∆ ⊆ V × [0, 1]× V is a probabilistic transition relation.

Definition 1: For a (countable-state, discrete-time) Markov
chain M with states t and t′, we write t

t̄,p
; t′ to denote that

there is a sequence of states t̄ = t0, . . . , tk, where t0 = t and
tk = t′, and such that the following probabilistic transitions
exist in M: (t0, p, t1) and (ti, 1, ti+1) for 1 ≤ i < k. (Note
that if k = 1, this just says that (t, p, t′) is a transition ofM.)

We shall say that one (countable state) Markov chain M
embeds efficiently in another Markov chain M′, if there exist
two polynomial-time computable mappings, f, g, where f is a
one-to-one mapping from states of M to states of M′, and g
is a one-to-one mapping that maps a transition (t, p, t′) of M
to a sequence, t̄ = t0 . . . tk of states in M′, with t0 = f(t)
and tk = f(t′), and such that f(t)

t̄,p
; f(t′) holds in M′, and

furthermore such that none of the auxiliary states t1, . . . , tk−1

are in the range of the mapping f .3

Intuitively, this is essentially a monomorphic embedding
of one Markov chain inside another, except that a transition
(t, p, t′) can be “stretched” into a sequence of transitions,
using intermediate auxiliary states, and with probability 1
transitions out of these auxiliary states leading to the target,
f(t′). This can also be viewed as a very strong form of weak
simulation of one Markov chain by another (see, e.g., [31]),
but is substantially stronger than standard notions of weak
simulation.

All models we consider, even countable-state ones, have a
finite description. So, for a family F of finite presentations of
Markov chains, each A ∈ F , describes a potentially infinite-
state underlying chain M(A). We now define what it means
for different classes of finitely presented Markov chains to be
“essentially equivalent” (called M-equivalent).

Definition 2: If F and F ′ are two classes of finitely-presented
Markov chains, we say that F is efficiently subsumed by F ′
iff: there is a polynomial-time computable mapping h : F 7→
F ′, which maps a model A ∈ F to a h(A) ∈ F ′, and such
that there exists a pair of functions fA and gA, which can
themselves be efficiently computed (as Turing machines) from
A, and such that fA and gA constitute an efficient embedding
of M(A) into M(h(A)). Finally, we say two classes F and F ′
of finitely-presented chains are M-equivalent if both of them
are efficiently subsumed by the other.

It is not hard to see that if one family F of finitely presented
Markov chains is efficiently subsumed by another family F ′,
via a mapping h, then a variety of computational problems for
M(A), where A ∈ F , efficiently reduce to basically the same
analyses of M(h(A)) where h(A) ∈ F ′. These include both
transient analyses (such as reachability or hitting probability)

3A suitable modification of this definition can be given for continuous-time
chains, by assuming that the auxiliary transitions that are mapped to can be
given rate ∞. If one wishes to avoid rate ∞ transitions, things are more
involved, but suitable definitions can still be given in the settings of relevance
in this paper.
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as well as limit distributions.4

In all the probabilistic models we define, we assume that
all probability coefficients in the models are rational (for
computational purposes), and that they are encoded in the
standard way, by providing numerator and denominator in
binary.

Probabilistic Pushdown Systems. There are a number of
equivalent variations on the definition of (probabilistic) Push-
down Systems. We use a standard definition which is conve-
nient for analysis. A probabilistic Pushdown System (pPDS)
P = (QP ,Γ,∆) consists of a set of control states QP , a
stack alphabet Γ, and a probabilistic transition relation ∆ ⊆
(QP ×Γ)× [0, 1]×QP ×{swap(Γ), swap&push(Γ×Γ), pop}.
That is, a transition has the form ((s, γ), p(s,γ),(s′,C), (s′, C)),
where based on the control state s and the symbol on top of the
stack, γ, with probability p(s,γ),(s′,C), the transition updates
the control state to s′, and performs action C on the stack.
Specifically, if C = swap(γ′) then the action swaps the top-of-
stack symbol, γ, with symbol γ′. If C = swap&push(γ′, γ′′),
then the action both swaps γ with γ′ and then pushes γ′′

on top of the stack.5 Lastly, if C = pop, then the action
pops the top-of-stack symbol γ off the stack. Each such
transition has an associated probability p(s,γ),(s′,C), and we
assume that for each pair (s, γ) of control state and top of
stack symbol,

∑
(s′,C) p(s,γ),(s′,C) = 1. We assume there is

a special stack symbol ⊥ ∈ Γ that marks the bottom of the
stack. Accordingly, ⊥ is never overwritten with a different
stack symbol, nor popped off the stack, and is never pushed
onto the stack or overwrites a different stack symbol. A stack
with letter γ at the top and remaining content ω ∈ Γ∗

will be written ωγ (note that the leftmost symbol in ωγ
is ⊥). A pPDS P defines a countable-state Markov chain
M(P) = (V ′,∆′) in an obvious way. Namely, the states of
M(P) are V ′ = {(w, s) | s ∈ QP , w ∈ ⊥Γ∗}, and the prob-
abilistic transitions of M(P) are ∆′ = {((w, s), p, (w′, s′)) |
((s, γ), p, (s′, C))∈ ∆ & applying action C to w yields w′}. It
was shown in [14] that pPDSs are M-equivalent to Recursive
Markov Chains (RMCs). Since we do not explicitly use RMCs,
we will not recall their formal definition.

Probabilistic 1-Counter Automata. A probabilistic 1-
Counter Automaton (p1CA), A, is just a pPDS with only one
stack symbol γ (other than the special bottom symbol ⊥). In
other words, it is a pPDS with Γ = {⊥, γ}. This is not the
usual definition: one would typically define them as having a
finite number of control states and an additional non-negative
counter which can be incremented or decremented during
transitions, and such that transitions can be enabled/disabled
depending on whether the counter is equal to 0 or not.
However, this can easily be seen to be equivalent to a pPDS
with one stack symbol, γ. The stack acts as precisely a (unary)

4In some cases, an aperiodic irreducible chain may be turned into a periodic
one, or vice versa, by the embedding (because the embedding can convert a
transition into a sequence of two or more transitions), but this is a minor issue
and the original steady-state distribution, if it exists, can be recovered from
the uniquely determined stationary distribution of the embedded chain.

5Note that the standard push transition
((s, γ), p(s,γ),(s′,push(γ′)), (s

′, push(γ′))) can be trivially encoded as
((s, γ), p(s,γ),(s′,swap&push(γ,γ′)), (s

′, swap&push(γ, γ′))).

counter, and the counter is equal to 0 precisely when the top
stack symbol is ⊥.

Formally, a p1CA is usually defined in the following
form, which we will find convenient. A p1CA, A, is 3-tuple
A = (S, δ, δ0) where S is a finite set of control states and
δ ⊆ S×R>0×{−1, 0, 1}×S and δ0 ⊆ S×R>0×{0, 1}×S
are transition relations. The transition relation δ is enabled
when the counter is nonzero, and the transition relation δ0 is
enabled when it is zero. We use p

(c)
u,v to denote the unique

probability such that there is a transition (u, p(c)
u,v, c, v) ∈ δ,

and likewise we use q
(c)
u,v to denote the unique probability

such that there is a transition (u, q(c)
u,v, c, v) ∈ δ0. If such

a transition exists, it is unique, and thus p
(c)
u,v > 0 (or

q
(c)
u,v > 0) is uniquely determined. If such a transition does

not exist, we may sometimes assume for convenience that
p

(c)
u,v = 0 (or q(c)

u,v = 0), even though there are no explicit
0-probability transitions provided in the input which describes
A. The transition probabilities out of each control state u

define a probability distribution, i.e.,
∑1
c=−1

∑
v p

(c)
u,v = 1, and∑1

c=0

∑
v q

(c)
u,v = 1. A p1CA, A, generates a denumerable-

state Markov chain M(A) = (V ′,∆′) with state set V ′ =
{(s, d) | s ∈ S, d ∈ N}, and probabilistic transition
relation ∆′ = {((s, 0), p, (s′, j)) | (s, p, j, s′) ∈ δ0} ∪
{((s, i), p, (s′, j)) | i > 0, (s, p, c, s′) ∈ δ, j = i + c}.
Obviously, pPDSs with only one stack symbol γ (other than
⊥) and p1CAs (with unary counter) are M-equivalent. (Under
the insignificant technical assumption that counter values in
states of a p1CA are encoded in unary.)

A 1-counter automaton (1CA) is just a p1CA without
probabilities, i.e., the transition relation is non-deterministic.
So, a 1CA A = (S, δ, δ0), has transition relations δ ⊆
S × {−1, 0, 1} × S, and δ0 ⊆ S × {0, 1} × S. To each
p1CA, A = (S, δ, δ0), we can associate an underlying 1CA,
A′ = (S, δ′, δ′0), which ignores probabilities of transitions
and treats them non-deterministically. Specifically, a transition
(u, c, v) ∈ δ′ (∈ δ′0) iff p(c)

u,v > 0, (q(c)
u,v > 0, respectively). For

a 1CA, A = (S, δ, δ0), a path starting at state (s1, n1) is a se-
quence of states (s1, n1), (s2, n2), ......, (sr, nr), such that, for
all i ∈ {1, . . . , r−1}, either ni > 0 and (si, ni+1−ni, si+1) ∈
δ or ni = 0 and (si, ni+1−ni, si+1) ∈ δ0. It is called a nonzero
path if ni > 0 for all i ∈ {1, . . . , r− 1}. (Note that we allow
nr = 0 in nonzero paths.) Such a (nonzero) path is called
a (nonzero) terminating path if nr = 0, and if so it is said
to terminate in state (sr, 0). For p1CAs, A, we define paths,
nonzero paths, etc., as simply the paths, nonzero paths, etc.,
in the underlying 1CA. Note that for a p1CA, the probability
that a particular nonzero path (s1, n1), (s2, n2), ......, (sr, nr)
occurs, in a random walk starting at state (s1, n1) of the
Markov chain M(A), is precisely

∏
1≤i<r p

(ni+1−ni)
sisi+1 .

Quasi-Birth-Death Processes (QBDs). We consider discrete-
time QBDs only. Of course, many analyses for continuous-
time QBDs boil down to analyses of their respective embedded
discrete-time chains.

A Quasi-Birth-Death process (QBD) is a countable state
Markov chain whose transition matrix has the following block
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structure:6 
B0 B1 0 0 0 . . .
A−1 A0 A1 0 0 . . .

0 A−1 A0 A1 0 . . .
0 0 A−1 A0 A1 . . .
. . . . . . . . . . . . . . . . . .


where B0, B1, A−1, A0, A1 ∈ Rm×m≥0 . Thus, the finite input
which describes a QBD consists of the five m×m matrices:
B0, B1, A−1, A0, and A1. We can represent each state of a
QBD by a pair (i, j), where 1 ≤ i ≤ m is the index of the
state within its block and j ∈ N is the index of the block.
Central to many analyses for QBDs is the computation of
the associated G matrix, which we will call the termination
probability matrix. This is an m × m matrix, whose (i, i′)
entry Gi,i′ denotes the probability that, starting in state (i, 1),
the Markov chain will eventually visit a state in block 0, and
such that the first such state it visits is (i′, 0). As is well known
(e.g., [26]), G is the least non-negative solution to the matrix
equation X = A−1 +A0X+A1X

2, i.e., for any non-negative
solution matrix G′, we have G ≤ G′ (entry-wise inequality).
Other key matrices, which are also central to computations for
QBDs, can be derived from the matrix G. Specifically, the R
matrix, has Ri,i′ equal to the expected number of visits to state
(i′, n+1), starting from state (i, n), before returning to a state
in a block ≤ n. The matrix U (the “taboo probability” matrix)
has Ui,i′ equal to the probability that starting from state (i, 1)
the chain does not visit a state in block 0 until it eventually
revisits a state in block 1, and it does so in state (i′, 1). The
matrices U and R can be obtained from G: U = A0 + A1G,
and R = A−1(I−U)−1. (Of course, the approximate solution
of G will introduce errors in the solutions for U and R.) If
the QBD is positive recurrent, these matrices can be used
to compute steady-state probabilities for being in any given
state (i, j) (see, e.g., [24]). Specifically, if for n ≥ 0 we let
πn denote an m-vector whose i-th entry is the steady-state
probability of being in (i, n), then πn+1 = π1R

n, for n ≥ 1,
and π0,π1 are the unique solution to the following system of
equations:

π0 = π0B0 + π1A−1

π1 = π1B1 + π1A0 + π1RA−1

with the normalization condition π01 + π1(I − R)−11 = 1,
where 1 is the all 1 vector (provided that

∑
i≥0R

i converges).

Tree-Like and Tree-Structured QBDs. Several slight variants
of TL-QBDs (and TS-QBDs) have appeared in the literature.
We used the most restrictive definition of TL-QBDs (as in
[34]), in order to have the strongest results about the equiv-
alence of all these models. Consider the infinite rooted d-ary
tree Td, label every edge with a symbol in Γ = {1, . . . , d},
and label every node with the string w ∈ Γ∗ corresponding
to the path from the root; the root is labeled with the empty

6 In fact, various slightly different definitions of QBDs are given in the
literature, typically differing slightly on the structure of transition probabilities
in the boundary cases, i.e., for the first few blocks. These differences are
immaterial and these variants can be efficiently embedded in the transition
structure described here, as many authors have already observed.

string ε. The states of TS-QBDs and TL-QBDs consist of pairs
(w, i), where w ∈ Γ∗ is (the label of) a node of the tree Td
and i ∈ {1, . . . ,m} acts as a “control state”. The transitions of
a TS-QBD are as follows. From a state (ε, i), i ∈ {1, . . . ,m},
there is a transition to state:

1. (ε, j) with probability f i,j , where j ∈ {1, . . . ,m};
2. (s, j) with probability ui,js , where s ∈ Γ, and j ∈
{1, . . . ,m}.

From any state (wk, i), where w ∈ Γ∗ and k ∈ Γ, and
i ∈ {1, . . . ,m}, there is a transition to state:

3. (w, j) with probability di,jk ;
4. (ws, j), where s ∈ Γ, with probability ai,jk,s;
5. (wks, j), where s ∈ Γ, with probability ui,js .

A TS-QBD can thus be described by a finite collection of
m×m matrices (specifically, d2 + 2d+ 1 such matrices) with
rational entries, namely the matrices Dk, Ak,s, Us, and F ,
where k, s ∈ Γ, and where their (i, j) entry is di,jk , ai,jk,s, u

i,j
s ,

and f i,j , respectively.
TL-QBDs are defined by restricting TS-QBDs: TL-QBDs

are TS-QBDs with the additional requirement that if k 6= s,
then Ak,s = 0 (i.e., the zero matrix), and secondly that Ak,k =
As,s for all k, s ∈ Γ. Thus, in a TL-QBD, there are no direct
transitions from a state (wk, i) to a state (ws, j), where k 6= s,
and if there is a direct transition from state (wk, i) to state
(wk, j), with probability p, then there is a direct transition
from state (ws, i) to (ws, j) with the same probability p. In
other words, the probability of transition from control state i
to control state j, while not changing the “stack”, does not
depend on the topmost (rightmost) symbol on the “stack”.

III. EQUIVALENCES AND BASIC CONSEQUENCES

Proposition 1: QBDs and p1CAs are M-equivalent. Specifi-
cally:

1) For every QBD Q, there is an easily (linear time)
computable pPDS P , with only one stack symbol, such
that Q efficiently embeds into M(P). Moreover, |P| =
O(|Q|), where the size of Q is measured in terms of the
size of the input matrices B0, B1 and A−1, A0, A1.

2) For every pPDS P with one stack symbol we can com-
pute (in linear time) matrices matrices B0, B1 and
A−1, A0, A1, yielding a QBD, Q, such that M(P) ef-
ficiently embeds in Q. Moreover, |Q| = O(|P|).

Proof:
1. Given a QBD, A, with underlying k × k matrices
B0, B1, A−1, A0, A1, the states of the corresponding PDS,
h(A), shall have the structure P = (QP ,Γ,∆), where
Γ = {⊥, γ}, and QP = {1, . . . k}. The transition relation
∆ is defined to contain precisely the following transitions: for
1 ≤ i, j ≤ k:
? ((i,⊥), (B0)i,j , (j, swap(⊥))) ∈ ∆.
? ((i,⊥), (B1)i,j , (j, swap&push(⊥, γ))) ∈ ∆.
? ((i, γ), (A−1)i,j , (j, pop)) ∈ ∆.
? ((i, γ), (A0)i,j , (j, swap(γ))) ∈ ∆.
? ((i, γ), (A1)i,j , (j, swap&push(γ, γ))) ∈ ∆.
Clearly, P defines a pPDS with the property that it has one

stack symbol γ other than ⊥, and the stack is always of the
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form ⊥γr, for some r ≥ 0. It is not hard to see that this
translation yields an efficient embedding.
2. Any pPDS with only one stack symbol can be viewed as a
QBD. Indeed, this is fairly easy to see. Given such a pPDS,
the swap transitions out of pairs of the form (q,⊥), where,
recall, we must swap (q,⊥) with (q′,⊥) in order to maintain
⊥ at the bottom of the stack, can be viewed as giving the
matrix B0, and any swap&push(⊥, γ) transitions out of (q,⊥)
can be viewed as giving the matrix B1. Furthermore, for the
transitions out of pairs of the form (q, γ), we can view the
pop, swap(γ) and swap&push(γ, γ) transitions as giving the
matrices A−1, A0, and A1, respectively.

Obviously TL-QBDs are a special case of TS-QBDs. Fur-
thermore, TS-QBDs are themselves a special case of pPDSs
(equivalently, RMCs [14]), where transitions are constrained
as follows:
? For every transition of the form

((s, γ), p(s,γ),(s′,C), (s′, C)) ∈ ∆, where C =
swap&push(γ′, γ′′), we must have γ = γ′. In other
words, every “swap and push” operation must be just a
“push” operation.

? Furthermore, we must have p(s,γ),(s′,swap&push(γ,γ′′)) =
p(s,γ′),(s′,swap&push(γ′,γ′′)) for all stack symbols γ, γ′ ∈ Γ.
In other words, the probability of the “push” does not
depend on the top stack symbol.

It should be clear that pPDSs with the above restriction
are isomorphic to TS-QBDs, under the mapping that maps
a state (w, i) of a TS-QBD to the state (⊥w, i) of the
corresponding pPDS. We shall show that all pPDSs can be
efficiently embedded in TL-QBDs, and thus that all three
models are M-equivalent.
Theorem 2: pPDSs, RMCs, TL-QBDs, and TS-QBDs are all
M-equivalent. Specifically:

1) Every TL-QBD as well as every TS-QBD,Q, is a (special
form of) pPDS.

2) For every pPDS P we can compute (in quadratic time)
a TL-QBD (and thus a TS-QBD), A, such that M(P)
efficiently embeds in A, Moreover, |A| = O(|P|).

Proof: It is easy to see from the definitions that pPDSs are
the most general model and TL-QBDs the least general. To
prove all equivalences, we show that the swap&push operation
of a pPDS can be encoded using a sequence of 3 transitions
of a TL-QBD, using new auxiliary states. Note that the pop
operation of a pPDS effectively already exists in TL-QBDs,
and the swap operation of a pPDS can then also be encoded
once we have swap&push: we can simply add a new symbol,
ζ, to Γ and instead of a transition from state (wγ, i) to state
(wγ′, j) with probability p, we have a transition from state
(wγ, i) to (wγ′ζ, j) with probability p, and furthermore for
any state (w′ζ, j) we have a probability 1 transition to to
(w′, j). Note that the two transitions together take us from
state (wγ, i) to state (wγ′, j) with probability p. Note that we
do have available, in a TL-QBD, the ability to do a “pop”
with probability 1, as in the second transition described here,
which can depend on the top stack symbol, in this case ζ, and
we need not change the control state.

Now we describe how to implement swap&push. If the
original control states of the pPDS are {1, . . . , n}, then the

new control states of the TL-QBD will be of the form
{1, . . . , n}×Γ≤2×{1, 2, 3}. The swap operations of the pPDS
shall be mimicked by swap operations (as described above)
on control states of the form (q, ∅, 1). The only place control
states of the form (q, γ, 2) and (q, γ, 3) shall be used is as
follows: a transition of the form: ((q, γ), p(q,γ),(q′,C), (q′, C) of
the pPDS, where C = swap&push(γ′, γ′′), shall be mimicked
by using the following three transitions of the TL-QBD:

Starting at state (wγ, (q, ∅, 1)) of the TL-QBD, there is a
transition with probability p(q,γ),(q′,C) (= d

(q,∅,1),(q′,γ′γ′′,2)
γ )

to state (w, (q′, γ′γ′′, 2)), followed by a probability 1 (=
u

(q′,γ′γ′′,2),(q′,γ′′,3)
γ′ ) transition from state (w, (q′, γ′γ′′, 2))

to state (wγ′, (q′, γ′′, 3)), and then finally a probability
1 (= u

(q′,γ′′,3),(q′,∅,1)
γ′′ ) transition from (wγ′, (q′, γ′′, 3)) to

(wγ′γ′′, (q′, ∅, 1)).
The given transformation constitutes an efficient embedding

of the Markov chain M(P), for the given pPDS, P , into the
Markov chain M(AP) for a corresponding TL-QBD, AP . In
particular, the number of control states ofAP is at most 3|QP |·
|ΓP |2, and the size of the stack alphabet for AP is the same as
that of P . This mapping thus defines an efficient embedding,
and establishes the equivalence.

Thus all the known results for pPDSs and RMCs ap-
ply to TL-QBDs, and vice versa. The following corollary
highlights a few results for TL-QBDs (and TS-QBDs) that
follow from work on pPDSs and RMCs. The square-root sum
problem (the SQRT-SUM problem) asks, given natural numbers
(d1, . . . , dn) ∈ Nn and k ∈ N, whether (

∑
i

√
di) ≥ k. This

decision problem is contained in PSPACE, but its containment
even in NP is a long-standing open problem first posed in
the 1970s ([17]), with many applications. See ([14]) for more
background.
Corollary 3: 1) ([13], [37]) The quantitative model check-

ing problem for QBDs and TL-QBDs, against a linear-
time (ω-regular or Linear Time Logic (LTL)) property, is
decidable in PSPACE in the size of the model.

2) ([14], [16]) The SQRT-SUM problem is polynomial time
reducible to the problem of approximating the termination
probabilities (the analog of the G matrix entries) for TL-
QBDs, even to within any constant additive factor c <
1/2. Furthermore, even deciding whether a termination
probability for a TL-QBD is 1 is SQRT-SUM-hard.

3) ([20]) There are TL-QBDs for which at least expo-
nentially many iterations of the (decomposed) Newton’s
method ([14]), applied to the nonlinear equations for
termination probabilities are needed as a function of the
TL-QBD’s encoding size, to even converge to within just
one bit of precision of a termination probability.

The following is not a corollary of earlier results.
Theorem 4: The SQRT-SUM problem is polynomial-time re-
ducible to the following problem: given a p1CA (QBD) with
control states u and v, and given a rational value p decide
whether Gu,v ≤ p.
Proof: This proof is very similar to the proof in [14] that 1-exit
RMCs are SQRT-SUM-hard.

Given numbers (d1, . . . , dn) and k, we will construct a
p1CA as follows. The p1CA has control state u and n other
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control states, ti, corresponding to the given numbers, di,
i = 1, . . . , n. It also has one other control state, v. Let
m = maxi di. Let ci = (1/2)(1− (di/m2)), for i = 1, . . . , n.
The transitions of the p1CA are as follows, for i = 1, . . . , n:
(u, 1/n, 0, ti) ∈ δ (ti, 1/2,+1, ti) ∈ δ and (ti, ci,−1, ti) ∈ δ
and (ti, 1/2− ci, 0, v) ∈ δ, also (v, 1,−1, v) ∈ δ.

We claim that Gu,v = (1/(nm)) ·
∑n
i=1

√
di, and thus that

Gu,v ≤ (k/(nm)) if and only if
∑n
i=1

√
di ≤ k. To see the

claim, note that for each i, we have Gti,ti is the least non-
negative solution to the equation x = (1/2)x2 + ci, and thus
that Gti,ti = (1−

√
(1− 2ci)) = (1−

√
di/m). Next note that

the probability of terminating (in any state) starting from each
ti is 1, because it satisfies the equation x = (1/2)x2 + (1/2).
Thus, Gti,ti +Gti,v = 1 and therefore Gti,v =

√
di/m. Thus,

Gu,v =
∑
i(1/n)

√
di/m = 1/(nm)

∑
i

√
di.

IV. STRUCTURAL PROPERTIES OF (P)1CAS (OR QBDS)

This section develops crucial structural properties of (proba-
bilistic) 1-Counter Automata, used in Section V to establish
strong results on the performance of (decomposed) Newton’s
method for QBDs. Let mp(s, s′) denote the length of the
shortest terminating path starting at state (s, 1) and terminating
at state (s′, 0). Likewise, let mpn-z(s, s′) denote the length
of the shortest nonzero terminating path starting at (s, 1) and
terminating at (s′, 0). If there is no such (nonzero) terminating
path, then by definition mp(s, s′) = ∞ (mpn-z(s, s′) = ∞,
respectively). By convention, a path with a single state has
length 0. The next lemma shows that in 1CAs whenever a
terminating path exists, a “short” (polynomial length) such
path also exists.
Lemma 5: Suppose A = (S, δ, δ0) is a 1CA where |S| = k.
For any pair of control states s, s′ ∈ S, either mpn-z(s, s′) =
∞ or else mpn-z(s, s′) ≤ k3. Likewise, either mp(s, s′) =
∞, or else mp(s, s′) ≤ k4.
Proof: We first prove the k3 upper bound for the length of
nonzero terminating paths, and we then show why a k4 upper
bound follows for the length of arbitrary terminating paths. Let
(s1, n1), (s2, n2), (s3, n3), ...., (sr, nr) be the shortest nonzero
terminating path starting from (s, 1) and terminating in (s′, 0).
(In particular, (s1, n1) = (s, 1) and (sr, nr) = (s′, 0).)

Let cmax = maxri=1 nr be the maximum value of the
counter along this path. There exists some state (sj , cmax)
on this path that achieves the highest counter value. (cmax
may occur more than once, but let us just pick one, say the
earliest occurrence.)

For every counter value c = 1, . . . , cmax, we define the
pairs (sic , c) and (si′c , c) as follows: ic is the largest index
i ≤ j in the path such that the i-th state is (si, c), and such
that for all i ≤ j′ ≤ j, the j′-th state on the path is (sj′ , c′)
where c′ ≥ c. (In other words, in the segment from (si, c) to
(sj , cmax) the count does not go below c.) Likewise i′c is the
smallest index i ≥ j such (si, c) is on the path and such that
on the subpath from (sj , cmax) to (si, c) the counter does not
go below c. Note that icmax

= i′cmax
= j.

Clearly such pairs of indices ic and i′c are uniquely defined
for each c = 1, . . . , cmax, and we have i1 < i2 < .... <
icmax

= i′cmax
< ... < i′2 < i′1.

Now the key observation: if cmax > k2 then by the pigeon-
hole principle there must exist a pair of control states sa and
sb such that for two distinct values 1 ≤ c′ < c′′ ≤ cmax of
the counter, we have sa = sic′ = sic′′ and sb = si′

c′
= si′

c′′
.

Therefore, since we must have ic′ < ic′′ ≤
i′c′′ < i′c′ , we can remove the following two, posi-
tive length, segments from the above shortest path and
still get a valid nonzero terminating path from (s1, 1)
to (sr, 0), which would be a contradiction. Namely, we
can remove segments: (sic′ , nic′ ) . . . (sic′′−1, nic′′−1) and
(si′

c′′+1, ni′
c′′+1) . . . (si′

c′
, ni′

c′
). The resulting path is guaran-

teed by its construction to be a shorter nonzero terminating
path, starting at (s, 1) and terminating at (s′, 0), contradicting
the fact that the original path was the shortest such path. There-
fore, by contradiction, it must be the case that cmax ≤ k2.

Therefore, the path (s1, 1)....(sr−1, nr−1) can contain at
most k(k2) = k3 distinct states (not counting repetitions).
However, note that in fact no state can repeat along this
shortest nonzero terminating because otherwise it would not
be the shortest nonzero terminating path. Therefore the length
of the shortest nonzero terminating path from (s, 1) to (s′, 0)
is mpn-z(s, s′) ≤ k3.

Next we show why it follows that unless mp(s, s′) = ∞,
then mp(s, s′) ≤ k4. Consider a shortest terminating path
π = (s, 1) . . . (s′, 0), which may include intermediate states
with 0 counter values. Note that such a shortest path can only
hit the counter value 0 at most k times, because otherwise a
0-counter state would be repeated, and this would then not
constitute a shortest path. By the established k3 upper bound
on the length of shortest nonzero terminating paths, we know
that the subpath between every pair of 0-counter states in the
shortest path π can have at most length k3. Since there are at
most k 0-counter states along the path, the total length of the
path is |π| ≤ k4.

Let us now show two examples for which such a shortest
terminating path between two control states has length Θ(k2):
Example 1: Let us consider the 1CA, A = (S, δ, δ0), where
S = {s1, s2, . . . , s2k}. We have (s2k,−1, sk+1) ∈ δ, and for
i ≤ k we have (si, 1, si+1) ∈ δ, and for k + 1 ≤ i ≤ 2k − 1
we have (si, 0, si+1) ∈ δ. (Transitions in δ0 are irrelevant to
our analysis.) The shortest path from (s1, 1) terminating at
(sk+1, 0) has length k2 +k. The length of this path in relation
to the number of control states k′ (equal to 2k) is 1

4k
′2+O(k′).

Example 2: Let us consider the 1CA, A = (S, δ, δ0), where
S = {s1, . . . , sk, s

′
1, . . . , s

′
k+1}, (sk, 1, s1) ∈ δ, (sk, 0, s′1) ∈

δ, (s′k+1,−1, s′1) ∈ δ, and for i ≤ k−1 we have (si, 1, si+1) ∈
δ, and for i ≤ k we have (s′i,−1, s′i+1) ∈ δ. In other words:

δ = {(s1, 1, s2), (s2, 1, s3), . . . , (sk, 1, s1), (sk, 0, s′1),
(s′1,−1, s′2), (s′2,−1, s′3), . . . , (s′k+1,−1, s′1)}

We would like to find the length of the shortest path between
(s1, 1) and (s′1, 0). Notice that each such path visits only
control states si until it reaches for the first time s′1 from
sk and from that point onwards it visits only control states
s′i. It is not hard to see that since k and k + 1 are relatively
prime the length of the shortest such path is 2k(k + 1), and
that the transition from sk to s′1 on this path takes place when
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the counter value is k(k + 1). This shows that the analysis
in Lemma 5 of the highest possible value of a counter along
any shortest terminating path is tight (up to a multiplicative
constant).

For a p1CA, A = (S, δ, δ0), and a pair of states s, s′ ∈ S,
recall that the termination probability, Gs,s′ is the probability
that, starting from state (s, 1), a random walk on the chain
M(A) will traverse a nonzero path that eventually visits and
terminates in state (s′, 0). Given the equivalence of p1CAs and
QBDs, the probabilities Gs,s′ yield precisely the well-known
G matrix associated with the QBD (or, equivalently, p1CA).
We now use Lemma 5 to give a “polynomial size” lower bound
on positive termination probabilities Gs,s′ , associated with a
p1CA (and a QBD).
Corollary 6: Let A = (S, δ, δ0) be a p1CA where |S| = k,
and let pmin > 0 be the smallest positive probability on
any transition of A.7 For any pair of states s, s′ ∈ S, either
Gs,s′ = 0 or Gs,s′ ≥ pk

3

min.
Proof: Indeed, Gs,s′ > 0 iff there is a nonzero terminating
path starting at (s, 1) and terminating at (s′, 0). By Lemma
5, the length of the shortest such path is ≤ k3. Therefore its
probability is at least pk

3

min.
For a pair of states u, v ∈ S, let xuv be a variable denoting

the (unknown) probability, Gu,v . It is well known (see, e.g.,
[26]) that the termination probability matrix G is the least
non-negative solution of the following matrix equation: X =
A−1 +A0X+A1X

2. We can of course equivalently write this
as a system of polynomial equations, one for each variable
xuv , of the following form:

xuv = p(−1)
uv +

(∑
w∈S

p(0)
uwxwv

)
+
∑
y∈S

p(1)
uy

∑
z∈S

xyzxzv (1)

We can clean up this system of equations for G by removing
the variables xuv for which Gu,v = 0, and also removing the
corresponding equation whose left hand side is such a variable.
This can be done in polynomial-time, even for more general
fixed point equations associated with pPDSs and RMCs (see
[14]). (After clean-up, the equations may no longer have the
simple matrix form.) Henceforth, we consider only cleaned-up
equation systems, where only nonzero variables remain.

Based on this equation system we can build a dependency
graph, D = (X̃, E), whose nodes are all nonzero variables
X̃ = {xuv : u, v ∈ S and Gu,v 6= 0} and there is an edge
(xuv, xst) ∈ E iff xst occurs on the rhs of the equation
xuv = α corresponding to xuv . We decompose this graph
into strongly connected components (SCCs) and sort them
topologically. As a result we obtain a sequence of SCCs
X1, X2, . . . , Xm such that there can exist a path in graph D
from variable x ∈ Xi to variable x′ ∈ Xj only if i ≥ j.
We will write xst ≡ xuv iff s = u and t = v. We say a
variable xuv depends on the value of a variable xst iff either
xst ≡ xuv , or there is a path from xuv to xst in the graph D.
Of course this relation is transitive. We say that an equation
xuv = α is nonlinear in a set X ′ of variables if, by removing

7 In other words, we have (u, pmin, c, v) ∈ δ for some u, v, c, and
pmin > 0, and for any transition (u′, p′, c′, v′) ∈ δ, with p′ > 0, we
have pmin ≤ p′.

all variables that are not in X ′ from monomials in α, we are
left with an expression α′ that is nonlinear. We say that SCC
Xi is nonlinear if the equation xuv = α of some variable
xuv ∈ Xi is nonlinear in Xi.

We introduce some additional notation. For a 1CA, A =
(S, δ, δ0), we write u +→ v iff (u, 1, v) ∈ δ; we write u → v

iff (u, 0, v) ∈ δ; and u −→ v iff (u,−1, v) ∈ δ. We use the same
notation for p1CAs, to denote positive probability transitions,
i.e., such transitions existing in the underlying 1CA. For a
(p)1CA, and for k < 0, we write s k−→ t iff there exists a
nonzero terminating path starting at (s, |k|) and terminating at
(t, 0). For k ≥ 0 we write s k−→ t iff there exists a nonzero
path starting at (s, 1) and ending at (t, k + 1). Note that all
states along this path have counter value ≥ 1. In the special
case k = 0 we have u 0−→ u for all u ∈ S, since we allow
paths to have length 0. Also note that s +→ t implies s 1−→ t;
s→ t implies s 0−→ t; and finally s −→ t implies s −1−→ t.

Suppose that for some k, s
k−→ t holds, and that

(s, n1) . . . (t, nl) is a nonzero path that witnesses this. Then
note that, for any d > 0, (s, n1 + d) . . . (t, nl + d) is also a
nonzero path in the same (p)1CA. We will exploit this fact
repeatedly.
Proposition 7: If u k1−→ v

k2−→ w for some u, v, w ∈ S, and
either k1 ≥ 0 or k1, k2 ≤ 0, then u k1+k2−→ w.
Proof: We join the two paths: from u to v satisfying k1−→ and
from v to w satisfying k2−→. The resulting path will fulfil the
k1+k2−→ requirements. For instance if k1 ≥ 0 and k1 + k2 ≥ 0
then the first part of the joined path from u to v starting at
(u, 1) will reach (v, k1 + 1) without encountering a 0-counter
state, since it fulfils k1−→. The second part from v to w will
have the counter shifted up by k1; thus it starts at (v, k1 + 1)
and finishes at (w, k1 + k2 + 1), but does not hit counter 0 in
between, since it fulfils k2−→.
Example 3: Note that it might be the case that u k1−→ v

k2−→
w, but u k1+k2−→ w does not hold. This can only happen if
k1 < 0 and at the same time k2 ≥ 0. For instance, when
δ = {(u, 1.0,−1, v), (v, 1.0, 1, w)}, we have u −1−→ v

1−→ w,
but not u 0−→ w.
Proposition 8: If u k−→ v for some u, v ∈ S, then:
? if k < −1: u −1−→ w

k+1−→ v, for some w ∈ S
? if k > 1: u k−1−→ w

1−→ v, for some w ∈ S,
? if k = 1: u 0−→ w

+→ z
0−→ v, for some w, z ∈ S,

(in the last case z might be equal to v and u might be equal
to w).
Proof: For k ≤ −1 pick as w the first control state on the
u

k−→ v path from (u, |k|) to (v, 0) that has counter value
|k|−1. For k ≥ 1 pick as w the last state on the u k−→ v path
from (u, 1) to (v, k + 1) that has counter value k. For k = 1,
the transition after state (w, 1) has to increase the counter since
otherwise it would not be the last state on the nonzero path
with counter value 1. So let the next state be (z, 2). From that
state the nonzero path must reach the end state (s, 2) without
encountering a state with counter value 1.
Remark 9: After cleanup, if a variable xst is on the rhs
of a clean equation xuv = α, there are three (not mutually
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exclusive) possibilities for how xst occurs in α:

1) as p(0)
us xst, so u→ s

−1−→ t = v

2) as p(1)
us xstxtv , so u +→ s

−1−→ t
−1−→ v

3) as p(1)
uwxwsxst, so u +→ w

−1−→ s
−1−→ t = v

Note that in cases (1.) and (3.) we have u 0−→ s
−1−→ t = v

and in case (2.) we have u 1−→ s
−1−→ t

−1−→ v.
Theorem 10: If the clean equation xuv = α, for a variable
xuv ∈ Xi is nonlinear in the variables belonging to Xi, and
if the clean equation for a variable xst ∈ Xj is nonlinear in
the variables belonging to Xj , and there is a path from xuv
to xst in the dependency graph D, then there is a path from
xst to xuv in D.
Proof: This proof is long. We will first prove a sequence of
four Lemmas, 11 –14, and only then return to finish off the
proof of the Theorem. For control states u, v ∈ S, let δuv
denote the usual Kronecker δ: δuv = 1 if u = v and δuv = 0
if u 6= v.
Lemma 11: In the dependency graph D, if the shortest path
from xuv to xst has a length k < ∞ then for some k′, such
that 1− δvt ≤ k′ ≤ k, we have u k′−→ s

−1−→ t
−k′−→ v.

Proof: Proof by induction on k. The case k = 1 follows from
Remark 9 and the fact that if t = v (in other words δvt = 1)
then t

0−→ v holds by default. Assume the statement is true
for k and consider some shortest path of length k+1 between
two variables xuv and xst. Let us consider the variable that is
just before xst on this shortest path and assume it is xwz for
some w, z ∈ S. Obviously the shortest path in D from xuv to
xwz has a length k. We know from the induction assumption
that for some 1−δvz ≤ k′ ≤ k we have u k′−→ w

−1−→ z
−k′−→ v.

On the other hand we know that from xwz we can reach xst
in one step, thus from Remark 9 we get that w 1−→ s

−1−→
t
−1−→ z or w 0−→ s

−1−→ t = z (both of these form a w −1−→ z
path). Considering these two facts together we get that either
u

k′−→ w
1−→ s

−1−→ t
−1−→ z

−k′−→ v or u k′−→ w
0−→ s

−1−→
t = z

−k′−→ v. Now using Proposition 7 we get that either

u
k′+1−→ s

−1−→ t
−(k′+1)−→ v or u k′−→ s

−1−→ t
−k′−→ v. Hence the

statement for k + 1 is true as well.
Lemma 12: If xwv is a nonzero variable and u

0−→ w then
xuv is also nonzero and depends on xwv .
Proof: First of all, notice that if u = w then the statement
is trivial. Secondly the variable xuv is nonzero since a path
u

0−→ w
−1−→ v forms a u −1−→ v path.

Now if u 6= w then take a path from (u, 1) to (w, 1) that
fulfils u 0−→ w. Take all the states along that path that have the
counter equal to 1: (s0, 1), (s1, 1), . . . , (sn, 1) where s0 = u
and sn = w (we know that n ≥ 1 since u 6= w). Notice
that for all i ≤ n the variables xsiv are nonzero because path
si
−1−→ v exists (just take a subpath of the u 0−→ w

−1−→ v
path). Now consider the state (sn−1, 1). From this state the
path cannot take a transition reducing the counter to 0 since
then the path would finish before reaching (w, 1). If the path
takes a transition that leaves the counter unchanged then the
next state on this path has to be (sn, 1). This is because (sn, 1)
was supposed to be the next state after (sn−1, 1) to have the
counter equal to 1. This means that on the rhs of the equation

for the variable xsn−1v there is an expression p
(0)
sn−1snxsnv

and as a result variable xsn−1v depends on xsnv . Finally, if
the path from (sn−1, 1) takes a transition sn−1

+→ z then
on the rhs of the equation for the variable xsn−1v there is
an expression p(1)

sn−1zxzsn
xsnv . This is because sn is the first

state after (z, 2) that has the value of the counter equal to
1 and so the path z

−1−→ sn exists. Therefore xzsn
6= 0 and

similarly xsnv 6= 0 thus after the cleaning step this expression
will remain on the rhs of the equation for xsn−1v . Hence again
xsn−1v depends on xsnv . By an easy induction we can prove
that for all 0 ≤ i < n the variable xsiv depends on xsi+1v .
Now finally, from the transitivity of this relation we can deduce
that variable xs0v(≡ xuv) depends on xsnv(≡ xwv).
Example 4: Notice that the assumption about the value of
xwv being nonzero is crucial even if we know that xuv
is nonzero. For instance in the following example: δ =
{(u, 0.5, 0, w), (u, 0.5,−1, v), (w, 1.0, 1, w)}, we have that
xuv = 0.5 > 0 and u 0−→ w, but xuv does not depend on xwv
since its value is zero.
Lemma 13: A nonzero variable xuv depends on the value of
a nonzero variable xst iff for some k ≥ 1 − δvt we have
u

k−→ s
−1−→ t

−k−→ v.
Proof: (⇒) Note that if xuv ≡ xst then u = s and v = t,
so 1 − δvt = 0 and s

−1−→ t (since xst > 0) thus we have
u

0−→ u = s
−1−→ t

0−→ t = v.
If xuv 6≡ xst then there is a path in D from xuv to xst and

so there is also the shortest one. Let us denote its length by
k′. From Lemma 11 for some k, such that 1− δvt ≤ k ≤ k′,
we have u k−→ s

−1−→ t
−k−→ v.

(⇐) Of course xuv and xst are both nonzero since from
u

k−→ s
−1−→ t

−k−→ v we know that s −1−→ t and u
−1−→ v

holds.
If it happens that k = 0 then necessarily v = t. In other

words, we know that u 0−→ s
−1−→ t = v which means that

u
0−→ s and xst > 0. Now from Lemma 12 we get that xut

(≡ xuv) is nonzero and depends on xst.
The rest of the proof is by induction on k. If k = 1 then

u
1−→ s

−1−→ t
−1−→ v. Of course we instantly have that xuv ,

xst, xtv are nonzero. From Proposition 8 we know that we
can decompose the u 1−→ s part into u

0−→ w
+→ z

0−→ s
for some w, z ∈ S and the whole path would look as follows:
u

0−→ w
+→ z

0−→ s
−1−→ t

−1−→ v. Furthermore, z −1−→ t

and w −1−→ v, so xzt and xwv are nonzero. From this we can
deduce that on the rhs of the equation for xwv we will have
an expression p

(1)
wzxztxtv . This means that xwv depends on

variable xzt. In addition from the facts u 0−→ w, z 0−→ s and
Lemma 12 we get that xuv depends on xwv , and xzt depends
on xst. Finally, from the transitivity of this relation we obtain
that xuv depends on xst.

Now assume that the statement is true for some k′ and let us
consider a u k′+1−→ s

−1−→ t
−(k′+1)−→ v path. From Proposition 8

we know that for some w, z ∈ S we can decompose this path
into a u k′−→ w

1−→ s
−1−→ t

−1−→ z
−k′−→ v path. It follows that

w
1−→ s

−1−→ t
−1−→ z and u

k′−→ w
−1−→ z

−k′−→ v. Now from
the induction assumption for k = 1 we get that xwz is nonzero
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and depends on xst, and from the induction assumption for
k = k′ we get that xuv is nonzero and depends on xwz . This
means that xuv also depends on xst.
Example 5: It might be the case that u 0−→ s

−1−→ t
0−→ v,

where t 6= v, but xuv does not depend on xst like in the follow-
ing example: δ = {(u, 1.0, 0, s), (s, 1.0,−1, t), (t, 1.0, 0, v)}.
Lemma 14: If the clean equation for a variable xuv ∈ Xi

is nonlinear in the variables belonging to Xi then for some
k0 ≥ 1, k1 ≥ 0 and some w ∈ S we have u k0−→ u

−1−→ v
1−k0−→

w
k1−→ u

−1−→ v
−k1−→ v.

Proof: Since xuv is nonlinear in the variables belonging to Xi

then from Remark 9 we can deduce that for some s, t ∈ S we
have xst, xtv ∈ Xi and the clean equation for xuv has on the
rhs an expression p(1)

us xstxtv . It follows that u +→ s
−1−→ t

−1−→
v. Since xst is in the same SCC as xuv then there has to be a
path from xst to xuv in the graph D and using Lemma 11 we
get that for some k ≥ 1− δvt we have s k−→ u

−1−→ v
−k−→ t.

From the same argument we get that for some k′ ≥ 0 we have
t

k′−→ u
−1−→ v

−k′−→ v. Now joining these paths together we
get u +→ s

k−→ u
−1−→ v

−k−→ t
k′−→ u

−1−→ v
−k′−→ v. Finally,

using Proposition 7 we have u k+1−→ u
−1−→ v

−k−→ t
k′−→ u

−1−→
v
−k′−→ v.

We can now finish the proof of Theorem 10. Using Lemma
14 we get that for some k0, l0 ≥ 1, k1, l1 ≥ 0 and w, z ∈ S
we have u

k0−→ u
−1−→ v

1−k0−→ w
k1−→ u

−1−→ v
−k1−→ v and

s
l0−→ s

−1−→ t
1−l0−→ z

l1−→ s
−1−→ t

−l1−→ t. We can simplify the
later to s l0−→ s

−1−→ t
−l0−→ t for some l0 ≥ 1 using Proposition

7.
Since there is a path from xuv to xst then from Lemma 11

we have u k−→ s
−1−→ t

−k−→ v for some k ≥ 1− δvt. Now we
will show that s k′−→ u

−1−→ v
−k′−→ t holds for some k′ ≥ 1

and using Lemma 13 we will get that the variable xst depends
on the variable xuv . We start the s k′−→ u

−1−→ v
−k′−→ t path

by iterating the s
l0−→ s path n times for sufficiently large

n obtaining a s n·l0−→ s path: s l0−→ s
l0−→ s

l0−→ . . .
l0−→ s︸ ︷︷ ︸

n times

. We

will see how big n should be later. Now from the last s we do:
s
−1−→ t

−k−→ v
1−k0−→ w

k1−→ u
k0−→ u

−1−→ v
−k1−→ v

−k1−→ v
1−k0−→

w
k1−→ u

k0−→ u
k−→ s

−1−→ t and after that we iterate n times
the t −l0−→ t path. Along the whole path the value of the counter
is changed by: nl0−1−k+1−k0 +k1 +k0−1−k1−k1 +1−
k0+k1+k0+k−1−nl0 = −1. Now if nl0 > k+k0+k1 (this
can be done since l0 ≥ 1) then using Proposition 7 we can
rewrite it as s nl0−k+k1−→ u

−1−→ v
−nl0+k−k1−→ t. Essentially, we

make the value of the counter sufficiently high at the beginning
of the path in order to prevent it from reaching counter value
0 before it reaches the final t state (with (w, nl0−k−k0−k1)
being the state with the lowest value of the counter before that
point). Now finally, since nl0 − k + k1 ≥ 1, it follows from
Lemma 13 that xst depends on xuv .
Corollary 15: In the DAG, H , along any directed path
Xi1Xi2 . . . Xir of SCCs there is at most one nonlinear SCC.
Proof: Let Xi and Xj (i < j) be two SCCs on such a path. If
inside these two SCCs there are variables x ∈ Xi and y ∈ Xj

whose equations are nonlinear in the variables belonging to
Xi and Xj , respectively, then since there is a path from x
to y in D (in other words x depends on y) we know from
Theorem 10 that there is also a path from y to x. But that
implies x and y are in the same SCC.

In Figure I, we can see what Corollary 15 implies for the
decomposition DAG, H , of the underlying equation system
for p1CAs, namely any path in H can contain at most one
nonlinear SCC. Notice that this fact does not hold for general
pPDSs and RMCs, nor even for 1-exit RMCs (equivalently,
pBPAs).

V. NEW UPPER BOUNDS ON NEWTON’S METHOD FOR
QBDS

We will now exploit the structural results about p1CAs estab-
lished in Section IV, to establish strong new upper bounds
on the performance of (decomposed) Newton’s method on
QBDs. In our analysis in this section, we assume a unit-
cost exact rational arithmetic RAM model of computation. In
other words, individual arithmetic operations on rationals have
unit cost, regardless of the potential blow-ups involved in the
encoding size of rational numbers.

Recall that in (multi-variate) Newton’s method, we are given
a suitably differentiable map F : Rn 7→ Rn, and we wish to
find a solution to the system of equations F (x) = 0. Starting
at some x0 ∈ Rn, the method works by iterating xk+1 :=
xk − (F ′(xk))−1F (xk), where F ′(c) is the Jacobian matrix
of partial derivatives, whose (i, j) entry is ∂Fi

∂xj
evaluated at c.

In the setting of p1CAs, we have a system of n equations in
n variables, xi = Pi(x), which we can denote by x = P (x).
Thus, we wish to find a solution to F (x) .= P (x) − x = 0.
Note that these are polynomial functions, and thus certainly
differentiable.

We shall solve this system of equations using the decom-
posed Newton’s method of [14], which applies more generally
not just to systems x = P (x) arising for p1CAs, but to
any monotone system x = P (x) of polynomial equations
(i.e., where the coefficients in P (x) are non-negative) which
has a non-negative solution. Specifically, for any such system
x = P (x) which has been cleaned up (i.e., variables which
are necessarily zero in any least solution have been removed,
something which can be done easily in polynomial time [14])
we form the dependency graph D for the nonzero variables in
the corresponding cleaned system of equations, we decompose
D into SCCs, and form the DAG of SCCs, H . We then “solve”
for the values of variables in each SCC of H , “bottom up”
by applying Newton’s method starting at the vector 0 to the
equations for each SCC, beginning with bottom SCCs. Once
one SCC is “solved” the values computed for the variables
in that SCC are plugged into equations in higher SCCs that
depend on those values. (See [14] for details.)

Of course, since values may in general be irrational and
are only converged to in the limit, we have to specify more
carefully what we mean by “solve” an SCC. This is where
we make crucial use of the special structure of SCCs in the
case of p1CAs and QBDs (see Figure I). By Corollary 15,
for any nonlinear SCC, Xi, it must be the case that any other
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Level 0

Level 1
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FIGURE I. This picture shows how the DAG of SCCs, H , of the dependency graph of the equation system corresponding to a p1CA (QBD) might look.
Each node represents one SCC: the equation systems for all white SCCs are (internally) linear, for gray SCCs the equations are (internally) nonlinear and for
black SCCs they are (internally) linear again but their constants depend (possibly indirectly) on values in at least one gray nonlinear SCC. Note that along
any directed path in H there is at most one gray nonlinear SCC. The length of the longest path from a given black SCC to some nonlinear SCC determines
its “level”. The “height” of the DAG is the largest level of any black SCC. In this example the height of the decomposition DAG, H , is hmax = 3.

SCC, Xj , for which there is a path in H from Xi to Xj , is
linear, i.e., any variable xuv ∈ Xj has a corresponding clean
equation xuv = α which is linear in the variables of Xj ,
assuming variables in even lower SCCs have been assigned
fixed values. It was shown in [14] (in the more general setting
of monotone systems arising from RMCs and pPDSs) that
for such linear SCCs, Xj , Newton’s method converges in just
one iteration, starting at the vector 0, to the exact rational least
fixed point (LFP) solution we are after (i.e., to the values Gu,v
for these variables in xuv ∈ Xj). Thus, in a bottom-up fashion
we can compute the exact solutions Gu,v for those variables
xuv which are in linear SCCs below any nonlinear SCC.
After computing these values we plug them into equations
for variables in higher SCCs that depend on them, and we
eliminate the linear SCC which was already solved. We do
this until there are no bottom linear SCCs remaining.

We next have to apply Newton’s method to nonlinear SCCs,
which can have irrational solutions which are only converged
to in the limit. How many iterations are “enough” to get
to within a desired additive error ε > 0 of the nonzero
termination probabilities Gu,v for the variables in a nonlinear
SCC? For this, we will use the following recent result by
Esparza et. al. (Theorem 3.2 of [9]) on the behavior of New-
ton’s method on precisely such strongly connected monotone
nonlinear systems. Let P (X) be a cleaned monotone system
of polynomials (i.e., P (X) consists of n multi-variate poly-
nomials, Pi, i = 1, . . . , n, in the variables X = x1, . . . , xn),
such that X = P (X) has a non-negative solution, and since it
is cleaned, only positive solutions, and therefore a least fixed
point (LFP) solution, q∗ > 0. A vector q′ is said to have
i valid bits of q∗ if |q∗j − q′j |/q∗j ≤ 2−i for every 1 ≤ j ≤ n.
Theorem 16: ([9]) Let P (X) be a cleaned strongly connected
monotone system of quadratic polynomials (i.e., P (X) con-
sists of n quadratic multi-variate polynomials in n variables).
Let cmin be the smallest nonzero coefficient of any monomial
in P (X), and let µmin and µmax be the minimal and maximal

components of the LFP vector q∗ > 0, respectively. Let
kf = n · log( µmax

cmin·µmin·min{µmin,1} ). Let xj denote the vector
of values obtained after j iterations of Newton’s method on
the system F (X) = P (X)−X , starting with the initial all 0
vector, x0 = 0. Then for every i ≥ 0, x(dkfe+i) has i valid
bits of q∗.

For a given p1CA, we hereafter use m to denote the
maximum number of bits required to encode the integer
numerators and denominators of transition probabilities of
the p1CA. Thus, in particular, the smallest nonzero transition
probability is pmin ≥ 1/2m.

Now, using Theorem 16, together with the structural prop-
erties we have established for p1CAs, we prove the following
strong bound on the number of iterations of Newton’s method
required to get i valid bits of precision of the termination
probabilities Gu,v , for the nonlinear SCCs of the fixed point
equations associated with p1CAs:
Theorem 17: Let P (X) be the cleaned strongly connected
monotone system of quadratic polynomials associated with a
nonlinear SCC, Xi, of the decomposed system of equations
associated with a p1CA, and where the exact rational values
Gu,v associated with variables xuv in already solved “lower”
linear SCCs have been substituted for xuv on the right hand
side of equations for variables in Xi. Suppose that the p1CA
has n control states, and thus |Xi| ≤ n2, and let G|Xi

denote
those entries Gu,v of the matrix G, such that xuv ∈ Xi. Then,
starting with x0 := 0, for every i ≥ 0, the Newton iteration
x(4mn5+mn2+i) has i valid bits of G|Xi

.
Proof: For the cleaned system X = P (X) associated with
a p1CA, A, by Corollary 6, pn

3

min ≤ q∗ ≤ 1 (coordinate-
wise inequality), where pmin > 0 is the smallest positive
probability on any transition of A. Note, in particular, that
µmax ≤ 1, and µmin ≥ pn

3

min ≥ 1
2mn3 . Furthermore, note that

because the entire system of nonlinear equations for a p1CA
is quadratic, the smallest coefficient cmin of any monomial
in the system X = P (X) for this nonlinear SCC, can only
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arise as the product of pmin times at most two previously
computed values Gu′,v′ and Gu′′,v′′ for variables xu′v′ and
xu′′v′′ which appeared in lower (linear) SCCs. Again, by
Corollary 6, we know that Gu′,v′ , Gu′′,v′′ ≥ pn

3

min, and thus
cmin ≥ p2n3+1

min ≥ 1/2m(2n3+1). Thus, noting that the cleaned
system X = P (X) for a p1CA with n control states has at
most n2 variables, the expression for kf in Theorem 16 can be
seen to be kf ≤ n2 ·log(22mn3+m2mn

3
2mn

3
) = 4mn5+mn2.

Theorem 17 implies that we can compute i bits of the values
Gu,v for variables xuv in nonlinear SCCs of the system X =
P (X) associated with a p1CA (QBD), using only a number of
iterations of Newton’s method which is polynomially bounded
in the size of the p1CA, and linearly bounded in i.

We now have to confront a major difficulty: there may be
other, linear, SCCs, Xr, which are “above” such nonlinear
SCCs in H . Specifically, there may be a linear SCC Xr,
from which there is a path in H to a nonlinear SCC, Xi.
In order to be able to (approximately!) compute Gu,v for
variables xuv ∈ Xr, we have to first approximately compute
the (possibly irrational) values Gu′,v′ , for xu′v′ ∈ Xi, and
substitute this value in occurrences of xu′v′ in equations for
higher linear SCCs. The question arises: how many bits of
precision, i, do we need to compute Gu′,v′ to in order to
compute Gu,v to within i bits of precision? To answer this,
we employ a classic bound, based on condition numbers, on
errors in the solution of a linear systems.
Theorem 18: (see, e.g., [19], Chap 2.1.2, Thm 3.8) Consider
a system of linear equations, Bx = b, where B ∈ Rn×n and
b ∈ Rn. Suppose B is non-singular, and b 6= 0. Let x∗ = B−1b
be the unique solution to this linear system, and suppose
x∗ 6= 0. Let ‖ · ‖ denote any vector norm and associated matrix
norm (when applied to vectors and matrices, respectively).
Let cond(B) = ‖B‖ · ‖B−1‖ denote the condition number
of B. Let ε, ε′ > 0, be values such that ε′ < 1, and
ε · cond(B) ≤ ε′/4. Let E ∈ Rn×n and ζ ∈ Rn, be such

that ‖E‖‖B‖ ≤ ε, ‖ζ‖‖b‖ ≤ ε, and ‖E‖ < 1/‖B−1‖. Then the

system of linear equations (B + E)x = b + ζ has a unique
solution x∗ε such that:

‖x∗ε − x∗‖
‖x∗‖

≤ ε′

We will apply this theorem using the l∞ vector norm and
induced matrix norm (maximum absolute row sum): ‖x‖∞ =
maxi |xi| and ‖A‖∞ = maxi

∑
j |aij |.

Suppose that the fixed point equation system for a linear
SCC of a p1CA, which lives “above” some nonlinear SCCs
in the DAG H , looks like this: x = Ax + b. We know that
A ≥ 0 is an irreducible matrix (precisely because the variables
being solved for are in the same SCC), b ≥ 0, and b 6= 0 since
otherwise the unique solution for this system would be q∗ = 0,
and zero variables were already eliminated. We can of course
rewrite this linear equation as (I−A)x = b. It follows from a
more general result in [14] about the decomposed systems of
equations arising for RMCs (pPDSs) (specifically, see Lemma

8Our statement is weaker, but derivable from that theorem.

17 and Theorem 14 of [14]), that ρ(A) < 1, where ρ(A)
denotes the spectral radius of A, and that therefore (I − A)
is non-singular, and furthermore (I − A)−1 = (

∑∞
i=0A

i).
Thus the LFP of this equation system is q∗ = (I − A)−1b =
(
∑∞
k=0A

k)b. To prove bounds on errors in “higher” linear
SCCs, when values in nonlinear SCCs are approximated, we
will need the following two lemmas:
Lemma 19: Let A ∈ Rn×n≥0 and b ∈ Rn≥0, such that:
(I − A)−1 =

∑∞
k=0A

k, (
∑∞
k=0A

k)b ≤ 1, and A is an
irreducible non-negative matrix whose smallest nonzero entry
is c > 0, and b 6= 0 and p > 0 is the largest entry of b. Then:
‖
∑∞
k=0A

k‖∞ ≤
n
pcn .

Proof: Let adij and a∗ij denote the (i, j) entry of matrix Ad

and A∗ =
∑∞
k=0A

k respectively. Since A is irreducible, for
every pair of indices i, j, there exists a power 1 ≤ d ≤ n such
that adij > 0. First, notice that it has to be c < 1 as otherwise
all entries of (

∑∞
k=0A

k) would diverge to ∞. Furthermore,
since the smallest nonzero entry of A is c, we have adij ≥ cd.

We know that A∗b ≤ 1. Wlog we can assume that the first
entry of b is b1 = p, by basically permuting rows/columns of A
and b. Now the i-th entry of A∗b is (A∗b)i =

∑n
j=1 a

∗
ijbj ≤ 1

and thus obviously (A∗b)i ≥ a∗i1b1 = a∗i1p. It follows that
a∗i1 ≤ 1

p , for all i. At the same time, for all d ≥ 0,
A∗Ad = (

∑∞
k=0A

k)Ad =
∑∞
k=dA

k ≤
∑∞
k=0A

k =
A∗. Thus (A∗Ad)(i,1) =

∑n
j=1 a

∗
ija

d
j1 ≤ a∗i1. Let a′i1 =

(
∑n
d=1A

∗Ad)(i,1). Thus, a′i1 ≤ na∗i1 ≤ n/p. On the other
hand:

a′i1 =
n∑
d=1

n∑
j=1

a∗ija
d
j1 =

n∑
j=1

a∗ij

( n∑
d=1

adj1

)
≥ cn

n∑
j=1

a∗ij

The last inequality holds because, for every j, for some
1 ≤ d ≤ n we have adj1 ≥ cd ≥ cn. Therefore for all i we
have

∑n
j=1 a

∗
ij ≤ n

pcn and thus ‖A∗‖∞ ≤
n
pcn .

Lemma 20: Let Xr be a linear SCC of the cleaned equation
system for a p1CA, whose corresponding linear equation
system is x = Ax + b, after variables xuv in lower SCCs
have been substituted by their exact (possibly irrational) values
Gu,v . Let pmin denote the smallest positive probability on any
transition of the p1CA, and let n be its number of control
states (again we use m to denote the maximum number of
bits required to represent the numerator and denominator
of rational transition probabilities in the p1CA). Then the
following bounds hold:

1) 1
22mn3+m

≤ p2n3+1
min ≤ ‖(I −A)‖∞ ≤ n+ 1

2) ‖(I −A)−1‖∞ ≤
n2

p5n5
min

≤ n2 · 25mn5

3) cond(I −A) ≤ 2n3

p5n5
min

≤ 2n3 · 25mn5

4) ‖b‖∞ ≥ p
2n3+1
min ≥ 1

22mn3+m

Proof: We first show that ‖A‖∞ ≤ n, and therefore
‖I −A‖∞ ≤ n+ 1 (because A is non-negative). To see this,
note that because this is a linear SCC, this means that the equa-
tions (1) for every variable xuv of a linear SCC, Xr, must take
the form: xuv = buv + (

∑
w p

(0)
uwxwv) +

∑
y p

(1)
uy
∑
z x
′
yzx
′
zv ,

but such that for each z, either x′yz has been assigned a
fixed constant (≤ 1) or x′zv is a fixed constant (≤ 1). This
is because, one such variable in each quadratic term must
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belong to a lower SCC and was thus substituted by a constant.
Thus, summing the coefficients for all variables on the right
hand side, we see that since

∑1
c=−1

∑
w p

(c)
uw ≤ 1, the full

sum
∑
j aij of all entries in row i of A corresponding to the

variable xuv , cannot be more than n, the number of control
states.

Before showing the lower bound on ‖I −A‖∞, next we
show the bound ‖b‖∞ ≥ p2n3+1

min . Observe that since the
equation system has been cleaned, the least fixed point solution
for all variables, including in linear SCCs, is nonzero, and
therefore there must exist at least one equation xuv = α in
the linear SCC with a non-negative constant term in α. The
only way such a constant term can arise is as a sum of terms of
the form p, or px′, or px′x′′, where p is a transition probability
of the p1CA and x′ and x′′ are variables in lower SCCs which
have been assigned fixed constants. By Corollary 6, we have
that ‖b‖∞ ≥ p

2n3+1
min .

Next, in order to estimate ‖(I −A)−1‖∞ note that, using
Corollary 6, all nonzero entries of A are ≥ pmin · (pmin)n

3
=

(pmin)n
3+1. This is because all coefficients are either equal

to some p
(c)
uv or to p

(c)
uv · xwz where xwz is a variable from

a lower SCC that has been substituted by a constant. We
now use Lemma 19. Note that the dimensions of our matrix
A here can in fact be as large as n2 × n2 (because n is
the number of control states, and the dimensions of A are
based on the number of variables in the SCC). We thus get
from Lemma 19, using the bound ‖b‖∞ ≥ p2n3+1

min , and the
fact that all nonzero entries of A are ≥ (pmin)n

3+1, that
‖(I −A)−1‖∞ = ‖

∑∞
k=0A

k‖∞ ≤
n2

pn5+n2+2n3+1
min

≤ n2

p5n5
min

.

It follows that cond(I − A) = ‖I −A‖∞ · ‖(I −A)−1‖∞ ≤
2n3

p5n5
min

.

Finally, to see that p2n3+1
min ≤ ‖I −A‖∞, we will show that

for every variable xuv , the diagonal entry (I − A)uv,uv ≥
p2n3+1
min . To see this it suffices to note that in the original

cleaned equation xuv = α for a variable xuv ∈ Xr, it
cannot be the case that α consists of just one linear term
cxuv , because otherwise the LFP of xuv = cxuv is 0, and
we have already eliminated 0 variables. Hence, it must be
the case that α contains either another linear term c′xst or a
constant term c′′, or both. In either case, if we plug in the
actual LFP values for all other variables besides xuv into α,
we will have left an equation of the form xuv = cxuv + c′,
where, by the arguments of the previous two paragraphs, it
must be the case that c′ ≥ (pmin)2n3+1. Thus, solving for the
(unique) solution for xuv , we have xuv = c′/(1 − c) ≤ 1.
Therefore, c′ ≤ (1− c), and thus (1− c) ≥ (pmin)2n3+1. But
note that (1− c) is precisely the diagonal entry (I −A)uv,uv .
Therefore p2n3+1

min ≤ ‖I −A‖∞.
For a “higher” linear SCC, Xr, i.e., one which can reach

some nonlinear SCC in H , let us define its height, hr <∞, to
be the maximum finite distance in H between Xr and some
lower nonlinear SCC that it can reach (again, see Figure I).
Let hmax = maxr hr, where the maximum is taken over all
linear SCCs that can reach a nonlinear SCC. Note that, as a
very loose upper bound, certainly hmax ≤ n2, where n = |S|
is the number of control states of the p1CA, because there

are at most n2 variables in the entire system. Now consider
the decomposed Newton’s method applied to the fixed point
equations for a p1CA, with the following specification for the
number of iterations to be applied to each SCC:

1) Use one iteration of Newton’s method (starting at vector
x0 = 0), or any linear system solving method, to solve a
remaining bottom linear SCC exactly. Remove the linear
SCC, and plug the corresponding values of variables into
equations for higher SCCs. Do this until only nonlinear
bottom SCCs remain, or all SCCs are solved.

2) For each remaining nonlinear SCC, apply Newton’s
method (starting with vector x0 = 0) to the nonlinear
equations for these SCCs, using the following number of
iterations:

4mn5 +mn2 + hmax(9mn5 + 4) + i

Afterwards, plug the resulting (approximate) values for
variables in each such nonlinear SCC into the equations
for higher (linear) SCCs.

3) For each remaining linear SCC, use one iteration of
Newton’s method (or any other linear system solution
method) to solve for the exact (unique) solution of the
corresponding linear system (note that the coefficients of
these equations will have errors because of the approx-
imations below, but we still seek their exact solution),
then remove the linear SCC, and plug these values into
higher (linear) SCCs that remain, until no SCCs remain.

Theorem 21: Given a p1CA (or, equivalently, a QBD), the
above algorithm, based on (a decomposed) Newton’s method,
approximates every entry of the matrix G of termination
probabilities for the p1CA (QBD) to within i bits of precision
(i.e., to within additive error 1/2i). In the unit-cost arithmetic
RAM model of computation (i.e., discrete Blum-Shub-Smale
model), the algorithm has a running time which is polynomial
in both the encoding size of the p1CA (QBD) and in i.
Proof: First, note that up until the nonlinear SCCs, all values
for lower linear SCCs are computed exactly. Next note that,
given the number of iterations of Newton’s method that are
applied in step (2.) of the algorithm for nonlinear SCCs, by
Theorem 17, the values Gu,v for variables xuv in nonlinear
SCCs are computed to within W0 = hmax(9mn5 + 4) + i
valid bits of precision. In other words, for each such xuv ,
a value G′u,v is computed such that |Gu,v − G′u,v|/Gu,v ≤

1
2W0 . Moreover, since 0 < Gu,v ≤ 1, we can conclude that
|Gu,v −G′u,v| ≤ 1

2W0 .
Thus, since W0 = hmax(9mn5+4)+i ≥ i, for all nonlinear

SCCs and all linear SCCs which are below them, we certainly
do compute G′u,v which approximates the value Gu,v for the
variables xuv in these SCC, to within at least i bits of precision
(i.e., such that |Gu,v −G′u,v| ≤ 2i).

The rest of the proof proceeds by induction on the height, h,
of a given higher linear SCC, Xr, above the nonlinear SCCs,
to show that for every variable xuv ∈ Xr we compute Gu,v
to within Wh = (hmax − h)(9mn5 + 4) + i bits of precision.

For the base case, h = 0, this follows from the fact
that all nonlinear SCCs are computed to within W0 =
hmax(9mn5 + 4) + i bits of precision, and all “lower” linear
SCCs are computed exactly.
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For the inductive case, let Xr be an “upper” linear SCC in
H at height h > 0 above nonlinear SCCs, and and suppose
that the values of all SCCs below it have been computed to
within at least Wh−1 = (hmax − h + 1)(9mn5 + 4) + i bits
of precision, and plugged into the equations for Xr. We will
show that after the linear system associated with Xr has been
solved exactly, the solution gives, for each xuv ∈ Xr, a value
G′u,v such that |Gu,v − G′u,v| ≤ 1

2Wh
, i.e., such that G′u,v

approximates Gu,v to within i bits of precision.
To do this, we employ Theorem 18, which gives us bounds

on the errors in solutions of linear systems in terms of
condition numbers and other quantities associated with the
linear system, and Lemma 20, which gives us bounds on these
quantities for the specific linear systems that arise for one
linear SCC of a p1CA.

Suppose that, if the values of lower SCCs had been com-
puted “exactly” (even though they can be irrational), then
the resulting linear system for Xr, which may have irrational
coefficients, would be (I −A)x = b.

Note that if the values of lower SCCs are approximated to
within Wh−1 bits of precision, then the resulting system can
be written as ((I − A) + E)x = (b+ ζ). We will now bound
the absolute values of entries of E and ζ.

Note that each entry of the matrix A is the coefficient auv,st
of xst ∈ Xr in the linear expression α for the equation xuv =
α of some variable xuv ∈ Xr. Now, the question is, how
much can auv,st change when the values of lower SCCs are
approximated to Wh−1 bits of precision?

First, let us consider the original quadratic equation
xuv = α′ before some of the variables xs′t′ , those from lower
SCCs, have been substituted by their approximate value. A
linear expression containing xst in α′ can only result from a
monomial term in α of the form pxst or pxs′t′xst. In the first
case the coefficient p would contribute its exact value to auv,st,
so it would add zero to the absolute error of auv,st. However,
in the second case, since p ≤ 1 and the value of xs′t′ is an
under-approximation of Gs′,t′ up to Wh−1 bits of precision,
then the coefficient auv,st could be under-approximated by at
most 1/2Wh−1 . As we can see, an absolute error of at most
1/2Wh−1 can arise from each such monomial. Next, note that
the coefficient auv,st of xst in the equation (1) for xuv may
actually arise as a sum of at most n+ 2 such monomials:
? If t = v (in other words xst ≡ xsv) then we can have one

monomial of the form: p(0)
us xsv , and there can be n other

monomials, one for each control state w: p(1)
uwxwsxsv .

Moreover, if t = v and s 6= v then we can have one extra
monomial term of the form: p(1)

us xsvxvv (if s = v then
this expression is counted already when w = s above).

? If t 6= v then we have at most one monomial involving
xst of the form: p(1)

us xstxtv

We note now that the sum of all these coefficients of xst is
always smaller than 2 since:

p(0)
us +p(1)

us xvv+
(∑

w

p(1)
uwxws

)
≤
(
p(0)
us + p(1)

us

)
+
∑
w

p(1)
uw ≤ 1+1

Furthermore, if n = 1 then there can be only one SCC.
Hence, in such a case hmax = 0 and we would be done. As

a consequence, from now on, we assume that n ≥ 2 (which
holds, except in the trivial case) allowing us to conclude that:
Euv,st ≤ 2/2Wh−1 ≤ n/2Wh−1 .

We can ask a similar question about b. Since a constant term
may arise because both variables in a quadratic monomial of
α′ belonged to the lower SCCs, we now have that the resulting
error 1/2Wh−1 could have arisen for both variables that were
fixed in a monomial. It is not hard to see that the resulting error
for the entire monomial is at most 2/2Wh−1 , basically because
such monomials in α′ have a coefficient ≤ 1, and because for
values x, x′ > 0, we have (x − ε)(x′ − ε) ≥ xx′ − 2ε. Thus
ζuv ≤ 2n/2Wh−1 . Since the pairs uv and st were arbitrary, and
E is at most an n2×n2 matrix, we have ‖E‖∞ ≤ n3/2Wh−1 ,
and ‖ζ‖∞ ≤ 2n/2Wh−1 .

Therefore, using Lemma 20, part (1.), we can conclude

that
‖E‖∞

‖(I −A)‖∞
≤ n322mn3+m

2Wh−1
, and also, using Lemma

20, part (4.), we can conclude that
‖ζ‖∞
‖b‖∞

≤ 2n22mn3+m

2Wh−1
.

Next, by Lemma 20, part (2.), we have 1/‖(I −A)−1‖∞ ≥
1/(n2 · 25mn5

), and since ‖E‖∞ ≤ n3/2Wh−1 , it is easy to
check that ‖E‖∞ ≤ 1/‖(I −A)−1‖∞. Finally, by Lemma 20,
part (3.), cond(I −A) ≤ 2n3 · 25mn5

.
Now we use these bounds and apply Theorem 18. Let ε =

2n322mn3+m

2Wh−1
, and let ε′ = 8εn3 · 25mn5

= 16n622mn3+m25mn5

2Wh−1
.

It can be checked that, by construction, the matrix equation
(I − A)x = b and its approximate version (I − A + E)x =
(b + ζ), as well as ‖E‖∞, ‖ζ‖∞, ε, and ε′, all satisfy the
conditions of Theorem 18.

Recall that the unique solution x∗ to the original system
is G|Xr

: it consists of those values Gu,v where xuv ∈ Xr.
Thus in particular 0 < ‖x∗‖∞ ≤ 1. Thus, by the conclusion
of Theorem 18, there is a unique solution vector x∗ε to
the approximate system, such that ‖x∗ε − x∗‖∞ ≤ ε′ =
16n622mn3+m25mn5

2Wh−1
.

The proof of the inductive claim will now be com-
pleted by simply checking that 16n622mn3+m25mn5 ≤
22mn3+m+5mn5+n5+4 ≤ 29mn5+4, and thus since Wh =
(hmax − h)(9mn5 + 4) + i, that ‖x∗ε − x∗‖∞ ≤

1
2Wh

.
The fact that the algorithm has polynomial running time in

the unit-cost RAM model follows immediately from the fact
that there are only polynomially many iterations of Newton’s
method, and each iteration essentially involves solving a linear
system (or matrix inversion), which can of course be done with
polynomially many arithmetic operations (e.g., using Gaussian
elimination).

We emphasize that these (impractical) upper bounds for the
number of iterations are very coarse, and are only intended
to facilitate our proof that polynomially many iterations of
Newton’s method suffice. A more detailed analysis would
likely yield polynomial bounds with much smaller exponents
as the required number of iterations.

VI. COMPARISON OF PREMO WITH SMCSOLVER

In this section we briefly describe some experiments conducted
with the tool PReMo (Probabilistic Recursive Models ana-
lyzer) ([36]). PReMo allows the user to specify and analyze
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FIGURE II. A p1CA with n control states and whose A−1 matrix has rank 1.
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FIGURE III. A p1CA with n control states and whose A−1 matrix has rank 2.

abstract models of probabilistic procedural programs and other
systems that involve recursion and probability. PReMo can
analyze p1CAs (equivalently QBDs), and more generally it
can analyze Recursive Markov Chains (RMCs), or equivalently
pPDSs, TL-QBDs, and TS-QBDs, and even more general
monotone systems of nonlinear equations. It can also analyze
controlled and game extensions of certain important subclasses
of RMCs.

As discussed in the introduction, we performed some exper-
iments to compare the performance of the tool PReMo with
the state of the art tool for analysis of QBDs — SMCSolver
[3] (Structured Markov Chains solver). These two tools are
very different in a number of ways. They differ in how
equation systems are represented, the implemented numerical
algorithms, and the implementation language. PReMo is im-
plemented entirely in JAVA, and each equation in the system
of equations corresponding to a model is represented as an
explicit algebraic formula (which allows handling arbitrary
monotone systems of nonlinear equations, which may even
include operators other than standard arithmetic operators).
On the other hand, SMCSolver makes use of a concise
matrix representation for the entire equation system and is
implemented in FORTRAN and Matlab, programming lan-
guages geared towards numerical computation. The Matlab
version of SMCSolver has many more numerical approxi-
mation algorithms than PReMo. PReMo’s fastest numerical
algorithm in practice is a sparse version of (decomposed)
Newton’s method, and (undecomposed) Newton’s method is
implemented in SMCSolver only in its Matlab version. The
most efficient numerical methods for analysis of QBDs imple-
mented in SMCSolver are: Cyclic Reduction and Logarithmic
Reduction. These algorithms can be further sped up by using
a shifting technique to achieve “quadratic” convergence in
the case of null recurrent QBDs (see, e.g., [3], [2]). Cyclic
and Logarithmic Reduction were later modified and applied
to TL-QBDs (see [4], [2]) which as we have observed are
equivalent to RMCs, so they can in principle also be used
for analysis of RMCs. However, it should be noted that the
systems that arise for analysis of probabilistic procedural
programs will typically have a very sparse transition structure,
which may not suit the matrix equation representation used in

SMCSolver. SMCSolver has two implementation: one, with a
graphical user interface, written in FORTRAN and another one
as a collection of Matlab functions that can be run from the
command-line (a Matlab toolbox). The Matlab version appears
to usually be slightly faster for small dense matrices and a lot
faster for larger matrices. Moreover, it manages memory much
better: the FORTRAN version crashes for matrices of size 5000
while the Matlab version does not. Because of this, we will
focus in our comparison on the Matlab version of the tool.

To fairly compare the underlying algorithms, we do not
include in the running time of PReMo the parsing time of
the input equation system. This is because when any iterative
solution method in SMCSolver is initiated, the whole equation
system is stored already in main memory and does not have
to be further preprocessed.

We compared the most efficient solvers of SMCSolver and
PReMo, namely Cyclic and Logarithmic Reduction (with and
without the shift acceleration), and the Sparse (decomposed)
Newton’s method, respectively. The sparse Newton’s method
was set to use the Biconjugate Gradients method to solve the
sparse linear system of equations that occurs in each iteration
of Newton’s method.

On most dense examples, SMCSolver is far superior to
PReMo, often by an order of magnitude or more. In particular,
we tested PReMo on SMCSolver’s built-in examples, whose
transition matrices are dense, and where all the variables form
just one big SCC. For SMCSolver’s Example 1, with 100
control states, it took Cyclic Reduction about 0.1 seconds
and Logarithmic Reduction about 0.2 seconds to converge to
the solutions with the desired tolerance9 (which can typically
be set to, e.g., 10−12). On the other hand, PReMo’s Sparse
Newton method (using the Biconjugate Gradients method per
iteration) needed 98.5 seconds to converge to the same solution
with the same tolerance. For SMCSolver’s Example 3 with 100
control states the running times for SMCSolver were about

9Here tolerance means maximum change in the value of any variable in
one iteration. Such a tolerance threshold is the typical way used in practice
for determining when to stop an iterative numerical method which converges
in the limit to the desired solution. As we will see later, the actual running
time of the numerical methods in question often does not depend significantly
on this value once it is below some reasonable threshold, say 10−4.
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the same, 0.1 second, while in PReMo the Sparse Newton’s
method finished in 46.8 seconds. To explain this, it has to be
noted that, in Example 1, from each control state there is a di-
rect transition of all three possible types (increment,decrement,
or keep counter unchanged) to any other control state and
this results in a huge equation system, which is represented
explicitly in PReMo as algebraic formulas. More precisely, if k
is the number of control states then the equation representation
as algebraic formulas grows as O(k3) compared to O(k2)
when represented in SMCSolver’s matrix form. Although the
transition matrix is not dense for Example 3, the underlying
equation system and the G matrix are dense, because from
any control state we can terminate at any other control state
with positive probability. This leads to both dense equations
which require O(k3) encoding size, and to a dense G matrix
whose encoding size is O(k2).

In order to highlight how sparsity and decomposability of
the equations can improve PReMo’s performance, we tested
both tools on various sparse examples. Two such families of
examples are depicted in Figure II and Figure III. In the
example from Figure II, parameterized by the number of
control states n, starting at any control state we terminate at
control state s0 with probability 1. In the example from Figure
III, we terminate almost surely either at s1 or s0, and the
probability of termination at s0 when starting at sn converges
fast to 1 as n increases. The matrix A−1 has rank 1 for the
family of examples from Figure II and rank 2 for examples
from Figure III. SMCSolver has a special routine for QBDs
whose matrix A−1 or A1 has rank 1, and each of its numerical
method starts by performing such a check first, as a kind of
preprocessing step.

These are extreme examples in several ways, both because
the equation systems for them are extremely decomposable,
and also because they even have a sparse G matrix (i.e., the
solution is also sparse). PReMo was able to find the G matrix
to within desired tolerance for 5000 control states in about
two seconds, and could easily handle much bigger examples.
SMCSolver needed more than an hour for such a big example
from Figure III and when the number of control states was
reduced to 1000, its most efficient method (shifted Cyclic
Reduction) took 30.4 seconds to find a solution with the de-
sired tolerance. Even when the tolerance was reduced to 10−4

(as compared to the default one: 10−14) the time needed by
shifted Cyclic Reduction for 5000 control states was more than
an hour (precisely 4476 seconds as compared to the original
4794 seconds needed before). The reason for this is clear. With
5000 control states, there are already 25 million entries in the
matrices using SMCSolver’s dense matrix representation, most
of which are 0. Computing anything with such huge matrices is
a problem. But by using decomposition methods we can avoid
this. The running times of all mentioned numerical methods
for all mentioned examples are presented in Table I.

In conclusion, we can see that PReMo can be faster
than SMCSolver for sparse examples that are very highly
decomposable. On the other hand, SMCSolver far outperforms
PReMo on dense examples, thanks to its concise matrix
representation of the underlying equation system, and by
using highly optimized linear matrix algebra software for such

matrix equations. This gives rise to the following question: is
it possible to combine algorithms that operate on the matrix
formulation of the equation systems, together with methods
that decompose the equations into SCCs, in order to gain
the benefits of both approaches for (TL-)QBDs and RMCs?
Newton’s method can be carried out directly over O(n2) sized
matrix equations for QBDs, with low cost per iteration (O(n3)
operations), using known efficient methods for solving the
concise linear matrix equations that arise in each iteration of
Newton’s method over QBDs (certain generalized Sylvester
matrix equations, see [2]). However, while TL-QBDs and
RMCs also have nonlinear equations with O(n2) matrix repre-
sentations, no such efficient solution method is known for the
more general linear matrix equations that arise in each iteration
of Newton’s method on them. Finding such a method would
make Newton’s method more practical on large “dense” TL-
QBDs, RMCs, and pPDSs. However, even if such an efficient
method were found, it remains a difficult challenge to combine
this well with decomposition methods, because in general
decomposition destroys the matrix form of the equations.

VII. CONCLUDING REMARKS

We began by observing the close relationship between prob-
abilistic models studied in different research communities:
in queueing theory and performance evaluation on the one
hand, and in the recent research on analysis of probabilistic
procedural programs on the other. In particular, we observed
the equivalence between QBDs and p1CAs. Our main result
was a new upper bound on approximation of central quantities
associated with QBDs. Specifically, we showed that, given a
QBD and i, the basic G matrix of “termination probabilities”
for the QBD can be approximated to within i bits of precision
(i.e., with maximum additive error ≤ 1/2i) in time polynomial
in both the encoding size of the QBD and in i, in the
unit-cost rational arithmetic RAM (i.e., discrete Blum-Shub-
Smale) model of computation. Specifically, we showed that
the decomposed Newton’s method studied in [14] can be used
to achieve this bound.

An important open problem that arises from this work is
this: can the polynomial time upper bounds for approximating
the G matrix for QBDs be established in the standard Turing
model of computation, rather than in the unit-cost rational
arithmetic RAM model, as we have done? It was established
in [14], that for RMCs and pPDSs, and thus also for Tree-Like
QBDs, any non-trivial approximation of the actual termination
probabilities of a TL-QBD is at least as hard as the SQRT-
SUM problem and more general arithmetic circuit decision
problems. Therefore, no such approximation algorithm can
be found for TL-QBDs without a major breakthrough in the
complexity of exact numerical analysis. However, this does
not rule out the possibility of finding such an algorithm for
QBDs. Note that the SQRT-SUM-hardness result for QBDs
that we established in Theorem 4 only applies to the quan-
titative decision problem, which asks whether a termination
probability is ≥ p, and not to the approximation problem.
In fact, it is entirely plausible that, using the decomposed
Newton’s method, but rounding off the computed values after
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Examples
name-size

SMC Fortran SMC MATLAB PReMo

CR LR CRbasic CR LRbasic LR Newton
Sylvester

Sparse
Newton

ex1-100 0.064 0.069 0.085 0.059 0.128 0.193 0.078 98.5
ex3-100 0.97 0.110 0.138 0.0865 0.177 0.105 0.334 46.79

fig2-1000 207 290 7.25 7.22 7.22 7.21 7.28 0.260
fig2-5000 ! ! 782 785 783 781 785 1.134
fig3-1000 206 198 ? 30.4 ? 39.2 1370 0.580
fig3-5000 ! ! (> 5h) 4794 (> 5h) 6416 ! 2.130

TABLE I. Running times (in seconds) of SMCSolver and PReMo with the default tolerance on dense examples: Example 1 (ex1-100), Example 3 (ex3-100),
and sparse examples from Figure II (fig2-1000, fig2-5000) and Figure III (fig3-1000, fig3-5000). Abbreviations used in the table: SMC – SMCSolver; CR
– Cyclic Reduction; LR – Logarithmic Reduction; CRbasic & LRbasic – CR or LR method without the shifting technique; Newton Sylvester – Newton’s
method implemented by solving Sylvester matrix equations at each step; Sparse Newton – decomposed Newton’s method; ! – means that the program crashed
or ran out of memory; ? – means the program gave up after exceeding its maximum allowed number of iterations and terminated without converging;
(> 5h) – means that the program did not manage to terminate within five hours. The uniform running times of Matlab version of SMCSolver for examples
from Figure 2 stems from a special handling of input matrices with rank 1.

each iteration to some polynomial number of bits, yields such
an approximation algorithm for QBDs. Determining whether
this is indeed the case will require a detailed analysis of the
effect of round-off errors on iterations of Newton’s method
over the nonlinear equations that arise for QBDs.

On the practical side, at the end of Section VI, we pointed
out that an interesting line of future research would be to
find methods to combine the benefits of the concise matrix
representations employed in, e.g., SMCSolver, and the decom-
position methods employed in PReMo. This is a challenging
problem for several reasons. In particular because in general
decomposition of equations into SCCs destroys the matrix
form of the equations. A related technical challenge in this
regard is to find an efficient (O(n3)) method to perform each
iteration of Newton’s method for RMCs (TL-QBD) based on
matrix representations of their equation systems (this is known
to be doable for QBDs but not TL-QBDs).

Going beyond the purely stochastic QBD model, in a recent
work with T. Brázdil, V. Brožek and A. Kučera ([5]) we
have begun to study the controlled extension of QBDs and
p1CAs, 1-counter Markov decision processes (OC-MDPs),
and considered the computational complexity of some basic
analysis problems for OC-MPDs. In particular we consider
the complexity of qualitative termination problems, such as
whether there is a strategy under which termination happens
with probability 1. Many questions about the complexity of
basic analysis problems for this more general OC-MDP model
remain open. (For the more general model of (multi-exit)
RMDPs, which amount to controlled versions of TL-QBDs
and pPDSs, already strong undecidability results have been
shown in [15].)
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