
Recursive Stochastic Games with Positive Rewards

K. Etessami1, D. Wojtczak1, and M. Yannakakis2

1 LFCS, School of Informatics, University of Edinburgh
2 Dept. of Computer Science, Columbia University

Abstract. We study the complexity of a class of Markov decision processes and,
more generally, stochastic games, called 1-exit Recursive Markov Decision Pro-
cesses (1-RMDPs) and Simple Stochastic Games (1-RSSGs) with strictly pos-
itive rewards. These are a class of finitely presented countable-state zero-sum
stochastic games, with total expected reward objective. They subsume standard
finite-state MDPs and Condon’s simple stochastic games and correspond to op-
timization and game versions of several classic stochastic models, with rewards.
Such stochastic models arise naturally as models of probabilistic procedural pro-
grams with recursion, and the problems we address are motivated by the goal of
analyzing the optimal/pessimal expected running time in such a setting.
We give polynomial time algorithms for 1-exit Recursive Markov decision pro-
cesses (1-RMDPs) with positive rewards. Specifically, we show that the exact
optimal value of both maximizing and minimizing 1-RMDPs with positive re-
wards can be computed in polynomial time (this value may be ∞). For two-
player 1-RSSGs with positive rewards, we prove a “stackless and memoryless”
determinacy result, and show that deciding whether the game value is at least
a given value r is in NP ∩ coNP. We also prove that a simultaneous strategy
improvement algorithm converges to the value and optimal strategies for these
stochastic games. Whether this algorithm runs in P-time is open, just like its
classic version for finite SSGs. We observe that 1-RSSG positive reward games
are “harder” than finite-state SSGs in several senses.

1 Introduction

Markov decision processes and stochastic games are fundamental models in stochas-
tic optimization and game theory (see, e.g., [28, 26, 16]). In this paper, motivated by
the goal of analyzing the optimal/pessimal expected running time of probabilistic pro-
cedural programs, we study the complexity of a reward-based stochastic game, called
1-exit recursive simple stochastic games (1-RSSGs), and its 1-player version, 1-exit re-
cursive Markov decision processes (1-RMDPs). These form a class of (finitely presented)
countable-state turn-based zero-sum stochastic games (and MDPs) with strictly positive
rewards, and with an undiscounted expected total reward objective.

Intuitively, a 1-RSSG (1-RMDP) consists of a collection of finite-state component
SSGs (MDPs), each of which can be viewed as an abstract finite-state procedure (sub-
routine) of a probabilistic program with potential recursion. Each component procedure
has some nodes that are probabilistic and others that are controlled by one or the other
of the two players. The component SSGs can call each other in a recursive manner, gen-
erating a potentially unbounded call stack, and thereby an infinite state space. The “1-
exit” restriction essentially restricts these finite-state subroutines so they do not return

a value, unlike multi-exit RSSGs and RMDPs in which they can return distinct values.
(We shall show that the multi-exit version of these reward games are undecidable.) An
example 1-RSSG is depicted in Figure 1 of the appendix. 1-RMDPs and 1-RSSGs were
studied in [12, 13] in a setting without rewards, where the goal of the players was to
maximize/minimize the probability of termination. Such termination probabilities can
be irrational, and quantitative decision problems for them subsume long standing open
problems in exact numerical computation. Here we extend 1-RSSGs and 1-RMDPs to a
setting with positive rewards. Note that much of the literature on MDPs and games is
based on a reward structure. This paper is a first step toward extending these models to
the recursive setting. Interestingly, we show that the associated problems actually be-
come more benign in some respects in this strictly positive reward setting. In particular,
the values of our games are either rational, with polynomial bit complexity, or ∞.

The 1-RMDP and 1-RSSG models can also be described as optimization and game
versions of several standard stochastic models, including stochastic context-free gram-
mars (SCFGs) and (multi-type) branching processes. These are classic stochastic models,
with applications in many areas, including natural language processing [24], biological
sequence analysis ([30, 7, 22]), and population biology [18, 17]. Another model that cor-
responds in a precise sense to a strict subclass of SCFGs is “random walks with back-
buttons” studied in [15] as a model of web surfing. See [11] for details on the relationships
between these various models.

A 1-RSSG with positive rewards, can be equivalently reformulated as the following
game played on a stochastic context-free grammar (appendix A.2 details why they are
equivalent). We are given a context-free grammar where the non-terminals are parti-
tioned into three disjoint sets: random, player-1, and player-2. Starting from a des-
ignated start non-terminal, Sinit, we proceed to generate a derivation by choosing a
remaining left-most non-terminal, S, and expanding it. As we soon discuss, the precise
derivation law (left-most, right-most, etc.) doesn’t effect the game value in our strictly
positive reward setting, but does if we allow 0 rewards. If S belongs to random, it is
expanded randomly by choosing a rule S → α, according to a given probability distri-
bution over the rules whose left hand side is S. If S belongs to player-i, then player
i chooses which grammar rule to use to expand this S. Each grammar rule also has an
associated (strictly positive) reward for player 1, and each time a rule is used during the
derivation, player 1 accumulates this associated reward. Player 1 wants to maximize its
total expected reward (which may be ∞). This being a zero-sum game, player 2 wants
to minimize this total expected reward. The case where we have only one of the two
players is a minimizing or maximizing 1-RMDP.

We assume strictly positive rewards on all transitions (rules) in this paper. This
assumption is very natural for modeling optimal/pessimal expected running time in
probabilistic procedural programs: each discrete step of the program is assumed to
cost some non-zero amount of time. Strictly positive rewards also endow our games
with a number of important robustness properties. In particular, in the above grammar
presentation, with strictly positive rewards these games have the same value regardless
of what derivation law is imposed. This is not the case if we also allow 0 rewards on
grammar rules. In that case, even in the single-player setting, the game value can be
wildly different (e.g., can be 0 or ∞) depending on the derivation law (e.g., left-most
or right-most). Moreover, for 1-RMDPs, if we allow 0 rewards, then there may not

2

even exist any ε-optimal strategies. Furthermore, even in a purely probabilistic setting
without players (1-RMCs), with 0 rewards the expected reward can be irrational. Even
the decidability of determining whether the supremum expected reward for 1-RMDPs
is greater than a given rational value is open, and subsumes other open decidability
questions, e.g., for optimal reachability probabilities in non-reward 1-RMDPs ([12, 2]).
(See appendix A.3 for simple examples that illustrate these issues.) As we shall show,
none of these pathologies arise in our setting with strictly positive rewards.

We show that 1-RMDPs and 1-RSSGs with strictly positive rewards have a value
which is either rational (with polynomial bit complexity) or ∞, and which arises as the
least fixed point solution (over the extended reals) of an associated system of linear-
min-max equations. Both players do have optimal strategies in these games, and in fact
we show the much stronger fact that both players have stackless and memoryless (SM)
optimal strategies: deterministic strategies that depend only on the current state of the
running component, and not on the history or even the stack of pending recursive calls.

We provide polynomial-time algorithms for computing the exact value for both the
maximizing and minimizing 1-RMDPs. The two cases are not equivalent and require
separate treatment. We show that for the 2-player games (1-RSSGs) deciding whether
the game has value at least a given r ∈ Q ∪ {∞} is in NP ∩ coNP. We also describe a
practical simultaneous strategy improvement algorithm, analogous to similar algorithms
for finite-state stochastic games, and show that it converges to the game value (even
if it is ∞) in a finite number of steps. A corollary is that computing the game value
and optimal strategies for these games is contained in the class PLS of polynomial local
search problems ([20]). Whether this strategy improvement algorithm runs in worst-case
P-time is open, just like its version for finite-state SSGs.

We observe that these games are essentially “harder” than Condon’s finite-state
SSG games in the following senses. We reduce Condon’s quantitative decision problem
for finite-state SSGs to a special case of 1-RSSG games with strictly positive rewards:
namely to deciding whether the game value is ∞. By contrast, if finite-state SSGs are
themselves equipped with strictly positive rewards, we can decide in P-time whether
their value is ∞. Moreover, it has recently been shown that computing the value of
Condon’s SSG games is in the complexity class PPAD (see [14] and [21]). The same
proof however does not work for 1-RSSG positive reward games, and we do not know
whether these games are contained in PPAD. Technically, the problem is that in the
expected reward setting the domain of the fixed point equations is not compact, and
indeed the expected reward is potentially ∞, so the problem can not in any obvious way
be formulated as a Brouwer fixed point problem. In these senses, the 1-RSSG reward
games studied in this paper appear to be “harder” than Condon’s SSGs, and yet as we
show their quantitative decision problems remain in NP ∩ coNP.

Finally, we show that the more general multi-exit RSSG model is undecidable.
Namely, even for single-player multi-exit RMDPs with strictly positive rewards, it is
undecidable whether the optimal reward value is ∞.

The tool PReMo [32] implements a number of analyses for RMCs, 1-RMDPs, and
1-RSSGs. Most recently, the strategy improvement algorithm of this paper was imple-
mented and incorporated in the tool. See the PReMo web page ([32]) for very encour-
aging experimental results based on the algorithms of this paper.

3

Related work.
Two (equivalent) purely probabilistic recursive models, Recursive Markov chains

and probabilistic Pushdown Systems (pPDSs) were introduced in [11] and [8], and have
been studied in several papers recently. These models were extended to the optimization
and game setting of (1)-RMDPs and (1)-RSSGs in [12, 13], and studied further in [2].
As mentioned earlier, the games considered in these earlier papers had the goal of
maximizing/minimizing termination or reachability probability, which can be irrational,
and for which quantitative decision problems encounter long standing open problems in
numerical computation, even to place their complexity in NP. On the other hand, the
qualitative decision problem (“is the termination game value exactly 1?”) for 1-RMDPs
with a termination criterion was shown to be in P, and for 1-RSSGs in NP ∩ coNP in [13]
using an eigenvalue characterization and linear programming. These results are related
to the results in the present paper as follows. If termination occurs with probability
strictly less than 1 in a strictly positive reward game, then the expected total reward is
∞. But the converse does not hold: the expected reward may be ∞ even when the game
terminates with probability 1, because there can be null recurrence in these infinite-
state games. Thus, not only do we have to address this discrepancy, but also our goal in
this paper is quantitative computation (compute the optimal reward), whereas in [13] it
was purely qualitative (almost sure termination). Our proofs here avoid the eigenvalue
techniques used in [13], relying instead on basic properties of non-negative matrices over
the extended reals, and LP theory. Our proof of SM determinacy, and the simultaneous
strategy improvement algorithm, modifies and strengthens an intricate argument from
[12] which relied on analytic properties of certain power series. In our setting here these
functions become linear over the extended reals, and retain similarly useful properties.

Condon [4] originally studied finite-state SSGs with termination objectives (no re-
wards), and showed that the quantitative termination decision problem is in NP ∩ coNP;
it is a well-known open problem whether it is in P. In [5] strategy improvement algo-
rithms for SSGs were studied, based on variants of the classic Hoffman-Karp algorithm
[19]. It remains open whether the simultaneous version of strategy improvement runs in
P-time. This is also the case for our simultaneous strategy improvement algorithm for
1-RSSGs with positive rewards. (Single-vertex updates per step in strategy improvement
is known to require exponentially many steps in the worst case.)

There has been some recent work on augmenting purely probabilistic multi-exit
RMCs and pPDSs with rewards in [9, 3]. These results however are for RMCs with-
out players. We in fact show in Theorem 8 that the basic questions about multi-exit
RMDPs and RSSGs are undecidable.

Models related to 1-RMDPs have been studied in Operations Research and stochastic
control, under the name Branching Markov Decision Chains (a controlled version of
multi-type Branching processes). These models are close to the single-player SCFG
model, with non-negative rewards, but with a simultaneous derivation law. They were
studied by Pliska [27], in a related form by Veinott [31], and extensively by Rothblum and
co-authors (e.g., [29, 6]). Besides the restriction to simultaneous derivation, these models
were restricted to the single-player MDP case, and moreover to simplify their analysis
they were typically assumed to be “transient” (i.e., the expected number of visits to a
node was assumed to be finite under all strategies). None of these earlier results from
the OR literature yield a P-time algorithm for computing the optimal expected reward,
given a 1-RMDP with positive rewards.

4

2 Definitions and Background

Let R>0 = (0,∞) denote the positive real numbers, R≥0
.= [0,∞), R .= [−∞,∞],

R∞
>0

.= (0,∞], and R∞
≥0

.= [0,∞]. The extended reals R have the natural total order. We
assume the following usual arithmetic conventions on the non-negative extended reals
R∞
≥0: a ·∞ = ∞, for any a ∈ R∞

>0; 0 ·∞ = 0; a+∞ = ∞, for any a ∈ R∞
≥0. This extends

naturally to matrix arithmetic over R∞
≥0.

We first define general multi-exit RSSGs (for which basic reward problems turn
out to be undecidable). Later, we will confine these to the 1-exit case, 1-RSSGs. In
the appendix we explain why 1-RSSGs are essentially equivalent to SCFG games with
left-most derivation.

A Recursive Simple Stochastic Game (RSSG) with positive rewards is a tuple A =
(A1, . . . , Ak), where each component Ai = (Ni, Bi, Yi, Eni, Exi, pli, δi, ξi) consists of:
– A set Ni of nodes, with a distinguished subset Eni of entry nodes and a (disjoint)

subset Exi of exit nodes.
– A set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . , k} that assigns to every box (the

index of) a component. To each box b ∈ Bi, we associate a set of call ports, Callb =
{(b, en) | en ∈ EnY (b)}, and a set of return ports, Returnb = {(b, ex) | ex ∈ ExY (b)}.
Let Calli = ∪b∈BiCallb, Returni = ∪b∈BiReturnb, and let Qi = Ni∪Calli∪Returni

be the set of all nodes, call ports and return ports; we refer to these as the vertices
of component Ai.

– A mapping pli : Qi 7→ {0, 1, 2} that assigns to every vertex a player (Player 0
represents “chance” or “nature”). We assume pli(ex) = 0 for all ex ∈ Exi.

– A transition relation δi ⊆ (Qi × (R>0 ∪ {⊥}) × Qi × R>0), where for each tuple
(u, x, v, cu,v) ∈ δi, the source u ∈ (Ni \ Exi) ∪ Returni, the destination v ∈ (Ni \
Eni)∪Calli, and x is either (i) pu,v ∈ (0, 1] (the transition probability) if pli(u) = 0,
or (ii) x = ⊥ if pli(u) = 1 or 2; and cu,v ∈ R>0 is the positive reward associated
with this transition. We assume that for every eligible pair of vertices u and v there
is at most one transition in δ from u to v. For computational purposes we assume
the given probabilities pu,v and rewards cu,v are rational. Probabilities must also
satisfy consistency: for every u ∈ pl−1

i (0),
∑

{v′|(u,pu,v′ ,v
′,cu,v)∈δi} pu,v′ = 1, unless u

is a call port or exit node, neither of which have outgoing transitions, in which case
by default

∑
v′ pu,v′ = 0.

– Finally, the mapping ξi : Calli 7→ R>0 maps each call port u in the component to a
positive rational value cu = ξ(u).1

We use the symbols (N,B, Q, δ, etc.) without a subscript, to denote the union over
all components. Thus, e.g., N = ∪k

i=1Ni is the set of all nodes of A, δ = ∪k
i=1δi the

set of all transitions, etc. Let next(u) = {v | (u,⊥, v, cu,v) ∈ δ}, if u is a min or max
node and next(u) = {v | (u, pu,v, v, cu,v) ∈ δ} otherwise. An RSSG A defines a global
denumerable simple stochastic game, with rewards, MA = (V = V0 ∪ V1 ∪ V2,∆, pl)
as follows. The global states V ⊆ B∗ × Q of MA are pairs of the form 〈β, u〉, where
β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. The states
V ⊆ B∗ ×Q and transitions ∆ are defined inductively as follows:
1 This mapping is not strictly necessary, and it is restricted to positive values only for con-

venience in proofs: cu’s can also be any non-negative values and all our results would hold
because of the structure of 1-RSSGs.

5

1. 〈ε, u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)
2. if 〈β, u〉 ∈ V & (u, x, v, c) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉, c) ∈ ∆.
3. if 〈β, (b, en)〉 ∈ V & (b, en) ∈ Callb, then 〈βb, en〉 ∈ V & (〈β, (b, en)〉, 1, 〈βb, en〉, ξ((b, en))) ∈ ∆.

4. if 〈βb, ex〉 ∈ V & (b, ex) ∈ Returnb, then 〈β, (b, ex)〉 ∈ V & (〈βb, ex〉, 1, 〈β, (b, ex)〉, 0) ∈ ∆.

The mapping pl : V 7→ {0, 1, 2} is given as follows: pl(〈β, u〉) = pl(u) if u is in Q \
(Call∪Ex), and pl(〈β, u〉) = 0 if u ∈ Call∪Ex. The set of vertices V is partitioned into
V0, V1, and V2, where Vi = pl−1(i). We consider MA with various initial states of the
form 〈ε, u〉, denoting this by Mu

A. Some states of MA are terminating states and have no
outgoing transitions. These are states 〈ε, ex〉, where ex is an exit node. An RSSG where
V2 = ∅ (V1 = ∅) is called a maximizing (minimizing, respectively) Recursive Markov
Decision Process (RMDP); an RSSG where V1 ∪ V2 = ∅ is called a Recursive Markov
Chain (RMC) ([11, 10]); A 1-RSSGs is a RSSG where every component has one exit, and
we likewise define 1-RMDPs and 1-RMCs. This entire paper is focused on 1-RSSGs and
1-RMDPs, except for Theorem 8, where we show that multi-exit RMDP reward games
are undecidable. In a (1-)RSSG with positive rewards the goal of player 1 (maximizer)
is to maximize the total expected reward gained during a play of the game, and the goal
of player 2 (minimizer) is to minimize the total expected reward. A strategy σ for player
i, i ∈ {1, 2}, is a function σ : V ∗Vi 7→ V , where, given the history ws ∈ V ∗Vi of play so
far, with s ∈ Vi (i.e., it is player i’s turn to play a move), σ(ws) = s′ determines the next
move of player i, where (s,⊥, s′, c) ∈ ∆. (We could also allow randomized strategies,
but this won’t be necessary, as we shall see.) Let Ψi denote the set of all strategies for
player i. A pair of strategies σ ∈ Ψ1 and τ ∈ Ψ2 induce in a straightforward way a
Markov chain Mσ,τ

A = (V ∗,∆′), whose set of states is the set V ∗ of histories. Let rk,σ,τ
u

denote the expected reward in k steps in Mσ,τ
A , starting at initial state 〈ε, u〉. Formally,

we can define the total expected reward gained during the i’th transition, starting at
〈ε, u〉 to be given by a random variable Yi. The total k-step expected reward is simply
rk,σ,τ
u = E[

∑k
i=1 Yi]. When k = 0, we of course have r0,σ,τ

u = 0. Given an initial vertex
u, let r∗,σ,τ

u = limk→∞ rk,σ,τ = E[
∑∞

i=1 Yi] ∈ [0,∞] denote the total expected reward
obtained in a run of Mσ,τ

A , starting at initial state 〈ε, u〉. Clearly, this sum may diverge,
thus the need to consider r∗,σ,τ ∈ [0,∞]. Note that, because of the positive constraint
on the rewards out of all transitions, the sum will be finite if and only if the expected
number of steps until the run terminates is finite.

We now want to associate a “value” to 1-RSSG games. Unlike 1-RSSGs with ter-
mination probability objectives, it unfortunately does not follow directly from general
determinacy results such as Martin’s Blackwell determinacy (see [25, 23]) that these
games are determined, because those determinacy results require a Borel payoff func-
tion to be bounded, whereas the payoff function for us is unbounded. Nevertheless, we
will establish that determinacy does hold for 1-RSSG positive reward games, as part of
our proof of a stronger Stackless & Memoryless determinacy result. For all vertices u,
let r∗u

.= supσ∈Ψ1
infτ∈Ψ2 r∗,σ,τ

u . We will in fact show that r∗u = infτ∈Ψ2 supσ∈Ψ1
r∗,σ,τ
u ,

and thus that r∗u denotes the value of the game starting at vertex u.
We are interested in the following problem: Given A, a 1-RSSG (or 1-RMDP), and

given a vertex u in A, compute r∗u if it is finite, or else declare that r∗u = ∞. Also,
compute optimal strategies for both players.

For a strategy σ ∈ Ψ1, let r∗,σu = infτ∈Ψ2 r∗,σ,τ
u , and for τ ∈ Ψ2, let r∗,·,τu =

supσ∈Ψ1
r∗,σ,τ
u . Call a deterministic strategy Stackless & Memoryless (SM) if it depends

6

neither on the history of the game nor on the current call stack, i.e., only depends on
the current vertex. Such strategies, for player i, can be given by a map σ : Vi 7→ V . We
call a game SM-determined if both players have optimal SM strategies.

In ([12]) we defined a monotone system SA of nonlinear min-max equations for the
value of the termination probability game on 1-RSSGs, and showed that its Least Fixed
Point solution yields the desired probabilities. Here we show we can adapt this to obtain
analogous linear min-max systems in the setting of positive reward 1-RSSGs. We use
a variable xu for each unknown r∗u. Let x be the vector of all xu, u ∈ Q. The system
SA has one equation of the form xu = Pu(x) for each vertex u. Suppose that u is in
component Ai with (unique) exit ex. There are 5 cases based on the “Type” of u.
1. u ∈ Type0: u = ex. In this case: xu = 0.
2. u ∈ Typerand: pl(u) = 0 & u ∈ (Ni\{ex})∪Returni: xu =

∑
v∈next(u) pu,v(xv+cu,v).

3. u ∈ Typecall: u = (b, en) is a call port: x(b,en) = xen+x(b,ex′)+cu, where ex′ ∈ ExY (b)

is the unique exit of AY (b).
4. u ∈ Typemax: pl(u) = 1 and u ∈ (Ni \{ex})∪Returni: xu = maxv∈next(u)(xv +cu,v)
5. u ∈ Typemin: pl(u) = 2 and u ∈ (Ni \ {ex})∪Returni: xu = minv∈next(u)(xv + cu,v)

In vector notation, we denote the system SA by x = P (x). Given 1-RSSG A, we
can easily construct SA in linear time. For vectors x,y ∈ Rn, we write x ≤ y to mean
xj ≤ yj for every coordinate j. Let r∗ ∈ Rn denote the n-vector of r∗u’s. Let 0 denote an
all zero n-vector, and define the sequence x0 = 0, xk+1 = P k+1(0) = P (xk) for k ≥ 0.

Theorem 1. (1) The map P : Rn → Rn
is monotone on R∞

≥0 and 0 ≤ xk ≤ xk+1 for
k ≥ 0. (2) r∗ = P (r∗). (3) For all k ≥ 0, xk ≤ r∗. (4) For all r′ ∈ R∞

≥0, if r′ = P (r′),
then r∗ ≤ r′. (5) For all vertices u, r∗u

.= supσ∈Ψ1
infτ∈Ψ2 r∗,σ,τ

u = infτ∈Ψ2 supσ∈Ψ1
r∗,σ,τ
u

(i.e., these games are determined). (6) r∗ = limk→∞ xk.
The proof is in the appendix. The following is a simple corollary of the proof.

Corollary 1. In 1-RSSG positive reward games, the minimizer has an optimal deter-
ministic Stackless and Memoryless (SM) strategy.

Note that for a 1-RMC (i.e., without players) with positive rewards, the vector r∗ of
expected total rewards is the LFP of a system x = Ax+b, for some non-negative matrix
A ∈ Rn×n, A ≥ 0, and a positive vector b > 0. The following will be useful later.2

Lemma 1. For any x ∈ Rn
≥0, A ∈ (R∞

≥0)
n×n and b ∈ (R∞

>0)
n, if x ≤ Ax + b then

x ≤ (
∑∞

k=0 Ak)b. This holds even if for some indices i we have bi = 0, as long as the
entries in any such row i of the matrix A are all zero.

3 SM-determinacy and strategy improvement

We now prove SM-determinacy, and at the same time show that strategy improvement
can be used to compute the values and optimal strategies for 1-RSSG positive reward
games. Consider the following (simultaneous) strategy improvement algorithm.

2 Note that if we assume both that A ∈ (R≥0)
n×n and that (

P∞
k=0 Ak) converges, the lemma

is trivial: we have (I−A)−1 = (
P∞

k=0 Ak), and thus x ≤ Ax+b ⇒ x−Ax ≤ b ⇒ (I−A)x ≤
b ⇒ x ≤ (I −A)−1b. But we need this lemma even when (

P∞
k=0 Ak) is not convergent.

7

Initialization: Pick some SM strategy, σ, for player 1 (maximizer).
Iteration step: First compute the optimal value, r∗,σu , starting from every vertex, u, in the
resulting minimizing 1-RMDP. (We show in Theorem 3 that this can be done in P-time.)
Then, update σ to a new SM strategy, σ′, as follows. For each vertex u ∈ Typemax, if
σ(u) = v and u has a neighbor w 6= v, such that r∗,σw + cu,w > r∗,σv + cu,v, let σ′(u) := w
(e.g., choose a w that maximizes r∗,σw + cu,w). Otherwise, let σ′(u) := σ(u).
Repeat the iteration step, using the new σ′ in place of σ, until no further local improve-
ment is possible, i.e., stop when σ′ = σ.

The next theorem shows that this algorithm always halts, and produces a final SM
strategy, σ, which is optimal for player 1. Thus, combined with Corollary 1, both players
have optimal SM strategies, or in other words, these games are SM-determined. Since
each “local improvement” step can be carried out in P-time, this also shows that this is
a local search problem contained in the complexity class PLS ([20]).

Theorem 2. (1) SM-determinacy. In 1-RSSG positive reward games, both players have
optimal SM strategies. (2) Strategy Improvement. Moreover, we can compute the value
and optimal SM strategies using the above simultaneous3 strategy improvement algo-
rithm. (3) Consequently (combined with Theorem 3) the search problem for computing
the value and optimal strategies in these games is contained in the class PLS.

The proof is intricate, and is given in appendix A.6. Here we briefly sketch the approach.
Fix a SM strategy σ for player 1. It can be shown that if x = P (x) is the linear-
min-max equation system for this 1-RSSG, then r∗,σu ≤ Pu(r∗,σ), for all vertices u,
and equality fails only on vertices ui belonging to player 1 such that σ(ui) = vi is
not “locally optimal”, i.e., such that there exists some neighbor wi such that r∗,σwi

+
cui,wi > r∗,σvi

+ cui,vi . Let u1, . . . , un be all such vertices belonging to player 1. Associate
a parameter ti ∈ R∞

≥0 with each such vertex ui, creating a parametrized game A(t), in
which whenever the vertex ui is encountered player 1 gains additional reward ti and
the game then terminates. Let gu,τ (t) denote the expected reward of this parametrized
game starting at vertex u, when player 1 uses SM strategy σ and player 2 uses SM
strategy τ . Let fu(t) = minτ gu,τ (t). The vector tσ, where tσi = r∗,σui

, is a fixed point of
fu(t), for every vertex u, and so is tσ′

where σ′ is any SM strategy consistent with σ
on all vertices other than the ui’s. The functions gu,τ (t) can be shown to be continuous
and nondecreasing over [0,∞]n, and expressible as an infinite sum of linear terms with
non-negative coefficients. Using these properties of gu,τ , and their implications for fu,
we show that if σ′ is the SM strategy obtained by locally improving the strategy σ at the
ui’s, by letting σ′(ui) := wi, then tσi = r∗,σui

< r∗,σ
′

ui
= tσ′

i , and thus also r∗,σz = fz(tσ) ≤
fz(tσ′

) = r∗,σ
′

z , for any vertex z. Thus, switching to σ′ does not decrease the value at
any vertex, and increases it on all the switched vertices ui. There are only finitely many
SM strategies, thus after finitely many iterations we reach a SM strategy, σ, where no
improvement is possible. This σ must be optimal. ut
3 Simultaneous refers to the fact that in each iteration we switch the strategy at all vertices

u which can be improved, not just one. Our proof actually shows the algorithm works if we
switch the strategy at any non-empty subset of such improvable vertices. But the simultane-
ous version has the advantage that it may run in P-time, whereas the single-vertex update
version is known to require exponentially many steps in the worst case, even for finite MDPs.

8

4 The complexity of reward 1-RMDPs and 1-RSSGs
Theorem 3. There is a polynomial-time algorithm for computing the exact optimal
value (including the possible value ∞) of a 1-RMDP with positive rewards, in both the
case where the single player aims to maximize, or to minimize, the total reward.
We consider maximizing and minimizing 1-RMDPs separately.

Maximizing reward 1-RMDPs.
We are given a maximizing reward 1-RMDP (i.e., no Typemin nodes in the 1-RSSG).
Let us call the following LP “max-LP ”:
Minimize

∑
u∈Q xu

Subject to:
xu = 0 for all u ∈ Type0

xu ≥
∑

v∈next(u) pu,v(xv + cu,v) for all u ∈ Typerand

xu ≥ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall; ex′ is the exit of Y (b).
xu ≥ (xv + cu,v) for all u ∈ Typemax and all v ∈ next(u)
xu ≥ 0 for all vertices u ∈ Q

We will show that, when the value vector r∗ is finite, it is precisely the optimal
solution to the above max-LP, and furthermore that we can use this LP to find and
eliminate vertices u for which r∗u = ∞. Note that if r∗ is finite then it fulfills all the
constraints of the max-LP, and thus it is a feasible solution. We will show that it must
then also be an optimal feasible solution. We first have to detect the vertices u such
that r∗u = ∞. For the max-linear equation system P , we define the underlying directed
dependency graph G, where the nodes are the set of vertices, Q, and there is an edge in
G from u to v if and only if the variable xv occurs on the right hand side in the equation
defining variable xu in P . We can decompose this graph in linear time into strongly
connected components(SCCs) and get an SCC DAG SCC(G), where the set of nodes
are SCCs of G, and an edge goes from one SCC A to another B, if and only if there is an
edge in G from some node in A to some node in B. Let us sort topologically the SCCs
of G as S1, S2, . . . , Sl, where the bottom SCCs are listed first, and there is no edge in
SCC(G) from Si to Sj for any 1 ≤ i < j ≤ l. We will call a subset U ⊆ Q of vertices
proper if all vertices reachable in G from the vertices in U are already in U .4 Clearly,
such a proper set U must be a union of SCCs, and the equations restricted to variables
in U do not use any variables outside of U , so they constitute a proper equation system
on their own. For any proper subset U of G, we will denote by max-LP|U a subset of
equations of max-LP, restricted to the constraints corresponding to variables in U and
with new objective

∑
u∈U xu. Analogously we define P |U , and let x|U be the vector x

with entries indexed by any v 6∈ U removed. The following is proved in the appendix.

Proposition 1. Let U be any proper subset of vertices. (I) The vector r∗|U is the LFP
of P |U . (II) If r∗u = ∞ for some vertex u in an SCC S of G, then r∗v = ∞ for all v ∈ S.
(III) If r′ is an optimal bounded solution to max-LP|U , then r′ is a fixed point of P |U .
(IV) If max-LP|U has a bounded optimal feasible solution r′, then r′ = r∗|U .

Theorem 4. We can compute r∗ for the max-linear equation system P , including the
values that are infinite, in time polynomial in the size of the 1-RMDP.
4 For convenience we interchangably use U to refer to both the set of vertices and the corre-

sponding set of variables.

9

Proof. Build a dependency graph G of P and decompose it into SCC graph SCC(G).
We will find the LFP solution to P , bottom-up starting at the lowest SCCs. We solve
max-LP|S1 using a P-time algorithm for LP. If the LP is feasible then the optimal
(minimum) value is bounded, and we plug in the values of the (unique) optimal solution
as constants in all the other constraints of max-LP. We know this optimal solution is
equal to r∗|S1 , since S1 is proper. We do the same, in order, for S2, S3, . . . , Sl. If at
any point after adding the new constraints corresponding to the variables in an SCC Si,
the LP is infeasible, we know from Proposition 1 (IV), that at least one of the values of
r∗|Si is ∞. So by Proposition 1 (II), all of them are. We can then mark all variables in
Si as ∞, and also mark all variables in the SCCs that can reach Si in SCC(G) as ∞.
Also, at each step we add to a set U the SCCs that have finite optimal values. At the
end of this process we have a maximal proper such set U , i.e., every variable outside of
U has value ∞. We label the variables not in U with ∞, obtaining the vector r∗. ut
Minimizing reward 1-RMDPs.
Given a minimizing reward 1-RMDP (i.e., no Typemax nodes) we want to compute r∗.
Call the following LP “min-LP: ”
Maximize

∑
u∈Q xu

Subject to:

xu = 0 for all u ∈ Type0

xu ≤
∑

v∈next(u) pu,v(xv + cu,v) for all u ∈ Typerand

xu ≤ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall; ex′ is the exit of Y (b).
xu ≤ (xv + cu,v) for all u ∈ Typemin and all v ∈ next(u)
xu ≥ 0 for all vertices u ∈ Q

Recall that a set of variables is proper if it is downward closed in the dependency graph
of variables, which is defined in the same way as for maximizing 1-RMDPs.

Lemma 2. For any proper set U , if an optimal solution x to the min-LP|U is bounded,
then it is a fixed point to the min-linear operator P |U . Thus, if min-LP|U has a bounded
optimal feasible solution then r∗|U is bounded (i.e., is a real vector).

From min-LP we can remove variables xu ∈ Type0, by substituting their occurrences
with 0. Assume, for now, that we can also find and remove all variables xu such that
r∗u = ∞.. By removing these 0 and ∞ variables from P we obtain a new system P ′, and
a new LP, min-LP′.

Lemma 3. If ∞ and 0 nodes have been removed, i.e., if r∗ ∈ (0,∞)n, then r∗ is the
unique optimal feasible solution of min-LP′.

Proof. By Corollary 1, player 2 has an optimal SM strategy, call it τ , which yields the
finite optimal reward vector r∗. Once strategy τ is fixed, we can define a new equation
system P ′

τ (x) = Aτx + bτ , where Aτ is a nonnegative matrix and bτ is a vector of
average rewards per single step from each node, obtained under strategy τ . We then
have r∗ = limk→∞(P ′

τ)k(0), i.e., r∗ is the LFP of x = P ′(x).

Proposition 2. (I) r∗ = (
∑∞

k=0 Ak
τ)bτ . (II) If r∗ is finite, then limk→∞ Ak

τ = 0, and
thus (I −Aτ)−1 =

∑∞
i=0(Aτ)i exists (i.e., is a finite real matrix).

10

See the appendix for the proof. Now pick an optimal SM strategy τ for the min player
that yields the finite r∗. We know that r∗ = (I − Aτ)−1bτ . Note that r∗ is a feasible
solution of the min-LP′. We show that for any feasible solution r to min-LP′, r ≤ r∗.
From the LP we can see that r ≤ Aτr+bτ (because this is just a subset of the constraints)
and in other words (I−Aτ)r ≤ bτ . We know that (I−Aτ)−1 exists and it is non-negative
(and finite), so we can multiply both sides by (I −Aτ)−1 to get r ≤ (I −Aτ)−1bτ = r∗.
Thus r∗ is the optimal feasible solution of min-LP′. ut

For a node u ∈ Q, consider the LP: Maximize xu, subject to: the same constraints
as min-LP, except, again, remove all variables xv ∈ Type0. Call this LP u-min-LP′. In
the Appendix we prove the following:

Theorem 5. In a minimizing reward 1-RMDP, for all vertices u, the value r∗u is finite
iff u-min-LP′ is feasible and bounded. Thus, combining this with Lemma 3, we can
compute the exact value (even if it is ∞) of minimizing reward 1-RMDPs in P-time.

Consequence for (1-)RSSGs.

Theorem 6. Deciding whether the value r∗u of a 1-RSSG positive reward game is ≥ a
for a given a ∈ [0,∞], is in NP ∩ coNP.

This follows immediately from the P-time upper bounds for 1-RMDPs, and SM-determinacy:
we guess one player’s SM strategy, and compute the value for the remaining 1-RMDP.

Theorem 7. Condon’s quantitative termination problem for finite SSGs reduces in P-
time to the problem of deciding whether r∗u = ∞.

The proof in the appendix. By contrast, for finite-state SSGs with strictly positive
rewards, we can decide in P-time whether the value is ∞, because this is the case iff
the value of the corresponding termination game is not 1.5 Deciding whether an SSG
termination game has value 1 is in P-time (see, e.g., [13]).
Finally, we show undecidability of multi-exit RMDPs and RSSGs with positive rewards.

Theorem 8. For multi-exit positive reward RMDPs it is undecidable to distinguish
whether the optimal expected reward for a node is finite or ∞.

References

1. V. Blondel and V. Canterini. Undecidable problems for probabilistic automata of fixed
dimension. Theory of Computing Systems, 36:231–245, 2003.

2. T. Brázdil, V. Brozek, V. Forejt, and A. Kucera. Reachability in recursive markov decision
processes. In Proc. 17th Int. CONCUR, pages 358–374, 2006.

3. T. Brázdil, J. Esparza, and A. Kucera. Analysis and prediction of the long-run behavior
of probabilistic sequential programs with recursion. In FOCS, pages 521–530, 2005.

4. A. Condon. The complexity of stochastic games. Inf. & Comp., 96(2):203–224, 1992.
5. A. Condon and M. Melekopoglou. On the complexity of the policy iteration algorithm for

stochastic games. ORSA Journal on Computing, 6(2), 1994.

5 This is basically because null-recurrence is not possible in finite state spaces.

11

6. E. Denardo and U. Rothblum. Totally expanding multiplicative systems. Linear Algebra
Appl., 406:142–158, 2005.

7. R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Proba-
bilistic models of Proteins and Nucleic Acids. Cambridge U. Press, 1999.

8. J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic pushdown automata.
In LICS, pages 12–21, 2004.

9. J. Esparza, A. Kučera, and R. Mayr. Quantitative analysis of probabilistic pushdown
automata: expectations and variances. In Proc. of 20th IEEE LICS’05, 2005.

10. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic state
machines. In Proc. 11th TACAS, vol. 3440 of LNCS, 2005.

11. K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars, and
monotone systems of non-linear equations. In Proc. of 22nd STACS’05. Springer, 2005. (See
full version: http://homepages.inf.ed.ac.uk/kousha/stacs05 journal version.ps).

12. K. Etessami and M. Yannakakis. Recursive markov decision processes and recursive
stochastic games. In Proc. of 32nd Int. Coll. on Automata, Languages, and Programming
(ICALP’05), 2005.

13. K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of recursive markov
decision processes and simple stochastic games. In Proc. of 23rd STACS’06. Springer, 2006.

14. K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed
points. In Proc. of 48th IEEE FOCS, 2007.

15. R. Fagin, A. Karlin, J. Kleinberg, P. Raghavan, S. Rajagopalan, R. Rubinfeld, M. Sudan,
and A. Tomkins. Random walks with “back buttons” (extended abstract). In ACM Symp.
on Theory of Computing, pages 484–493, 2000.

16. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
17. P. Haccou, P. Jagers, and V. A. Vatutin. Branching Processes: Variation, Growth, and

Extinction of Populations. Cambridge U. Press, 2005.
18. T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.
19. A. J. Hoffman and R. M. Karp. On nonterminating stochastic games. Management Sci.,

12:359–370, 1966.
20. D. S. Johnson, C. Papadimitriou, and M. Yannakakis. How easy is local search? J. Comput.

Syst. Sci., 37(1):79–100, 1988.
21. B. Juba. On the hardness of simple stochastic games. Master’s thesis, CMU, 2006.
22. M. Kimmel and D. E. Axelrod. Branching processes in biology. Springer, 2002.
23. A. Maitra and W. Sudderth. Finitely additive stochastic games with Borel measurable

payoffs. Internat. J. Game Theory, 27(2):257–267, 1998.
24. C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT

Press, 1999.
25. D. A. Martin. Determinacy of Blackwell games. J. Symb. Logic, 63(4):1565–1581, 1998.
26. A. Neyman and S. Sorin, editors. Stochastic Games and Applications. NATO ASI Series,

Kluwer, 2003.
27. S. Pliska. Optimization of multitype branching processes. Management Sci., 23(2):117–124,

1976/77.
28. M. L. Puterman. Markov Decision Processes. Wiley, 1994.
29. U. Rothblum and P. Whittle. Growth optimality for branching Markov decision chains.

Math. Oper. Res., 7(4):582–601, 1982.
30. Y. Sakakibara, M. Brown, R Hughey, I.S. Mian, K. Sjolander, R. Underwood, and D. Haus-

sler. Stochastic context-free grammars for tRNA modeling. Nucleic Acids Research,
22(23):5112–5120, 1994.

31. A. F. Veinott. Discrete dynamic programming with sensitive discount optimality criteria.
Ann. Math. Statist., 40:1635–1660, 1969.

32. D. Wojtczak and K. Etessami. Premo: an analyzer for probabilistic recursive models. In
Proc. of TACAS, 2007. Tool web page: http://groups.inf.ed.ac.uk/premo/.

12

A Appendix

A.1 Example 1-RSSG

Fig. 1. A 1-RSSG example consisting of two components, A and B. Black vertices belong
to player 1, white to player 2, grey vertices to “nature” (random). Each box (labelled, e.g.,
b1:A) has a name (b1) and is mapped to a component (A). Each edge has a label whose first
component is ⊥ or a probability, and the second component is the reward.

A.2 Definition of SCFG games with positive rewards and left-most
derivation, and equivalence to 1-RSSGs with positive rewards

A stochastic context-free grammar (SCFG) game, is given by G = (V,R, Xstart), where
V = V0∪V1∪V2 is a set of non-terminals, which is partitioned into three disjoint sets: V0

are the probabilistic non-terminals (controlled by nature), V1 and V2, the non-terminals
controlled by players 1 and 2, respectively. Xstart ∈ V is the start non-terminal. R is
a set of rules, where each rule r ∈ R has the form r = (X, pr, cr, Zr), where X ∈ V ,
and if X ∈ V0 then pr ∈ [0, 1] is a (rational) probability, otherwise, if X ∈ Vi, i > 0,
then pr = ⊥, cr ∈ Q>0 is a rational reward, and Zr ∈ V ∗ is a (possibly empty) string
of non-terminals. For each non-terminal, X, let RX ⊆ R denote the set of rules that
have X on the left hand side. For each X ∈ V0 we have

∑
r=(X,pr,cr,Zr)∈RX

pr = 1. The
game proceeds as follows: the (countable) set of states of the game is a subset of V ∗,
i.e., strings of non-terminals. We begin the game in the state Xstart. In each round, if
the state is S = X1 . . . Xk, then we proceed by a left-most derivation law as follows6:
choose a rule r = (X1, pr, cr, Zr) ∈ RX1 . If X1 ∈ V0 the rule r is chosen probabilistically
among the rules in RX1 , according to the probability pr. If X1 ∈ Vi, i ∈ {1, 2}, then the
rule r is chosen by player i. After the choice is made, the play moves to the new state
ZrX2 . . . Xk. The reward gained in that round by player 1 is cr. The game continues until
6 As discussed in the introduction, we can also consider simultaneous derivation, which has

different properties when 0 rewards are allowed. We focus our definitions on left-most deriva-
tion.

13

(and unless) we reach the empty-string state S = ε. The total reward gained by player
1 is the sum total of the rewards over every round. A strategy for player d ∈ {1, 2} is a
mapping that, given the history of play ending in state XW ∈ V ∗, where X ∈ Vd, maps
it to a rule r ∈ RX . 7 Fixing strategies for the two players, we obtain a (denumerable)
reward Markov chain whose states are (a subset of) V ∗, the total reward is a random
variable defined over the trajectories (runs) of this Markov chain. Player 1’s goal is to
maximize the expected total reward, and player 2’s goal is to minimize it.

Let us now explain why 1-RSSGs with positive rewards are basically equivalent to
SCFG games with positive rewards and with left-most derivation law, as discussed in the
introduction. This follows by considering the equation systems x = P (x) for 1-RSSGs
(see Theorem 1), and the following Chomsky Normal Form (CNF) for SCFG games:
there are only three kinds of rules in the grammar, either of the form (1) X 7→ ε, or (2)
X 7→ Y , or (3) X 7→ Y Z. Furthermore, all rules of the form X 7→ Y Z are the unique
rules associated with the non-terminal X, i.e., X is a probabilistic non-terminal, and

the unique rule has the form X
(1,c)7→ Y Z for some positive reward c. It is not difficult to

transform any reward SCFG game to one in the above CNF form, and with the same
reward value starting from the start non-terminal, by adding some new non-terminals,

as follows: a rule X
(p,c)7→ X1X2 . . . Xk can be replaced by the following rules X

(p,c/k)7→ Zk

; {Zi
(1,c/k)7→ Zi−1Xi | i = 2, . . . , k}, where we define Z1 ≡ X1, and for i ∈ {2, . . . , k}, Zi

is a new non-terminal. Now, the system of equations which yield the reward value for
such a CNF form SCFG game can easily be seen to have exactly the same form as the
equation systems x = P (x) for 1-RSSGs. It follows that the value vector r∗ gives the
expected total reward values both in the corresponding 1-RSSG game, starting at each
vertex, and in the corresponding CNF form SCFG game, starting at each non-terminal.

A.3 Some examples formulated as SCFG games

In this section we describe some examples of 1-RSSG games using the simple (and
expressively equivalent) formulation as a game over stochastic context-free grammars
(SCFGs). Specifically, consider the SCFG with rewards given by the following grammar

rules: {X (1/3,3)7→ XX ; X
(2/3,2)7→ ε}. Here X is the only non-terminal (and there are no

terminal symbols). The pair (p, c) of quantities labelling a rule denotes the probability,
p, of that rule firing, and the reward, c, accumulated for each use of that rule during a
derivation. Consider now a random derivation of this grammar, starting from the non-
terminal X, where the derivation proceeds in a left-most manner. In other words, in
each round of the derivation we must expand the left-most non-terminal remaining in
the derived sequence of non-terminals, by picking a rule according to the probability
distribution on the rules whose left hand side is that non-terminal (in this case, the
only non-terminal, X). The derivation terminates when it reaches the empty string ε.
What is the expected total reward accumulated during the entire derivation? It is not
hard to see that if we let x denote the total expected reward, then x must satisfy the
following equation: x = (1/3 ∗ (3 + (x + x))) + (2/3 ∗ 2) = (2/3)x + (7/3). Therefore,
7 We could more generally define strategies that can yield probability distributions on the next

rule, but this won’t be necessary, since we shall see that indeed deterministic “stackless and
memoryless” strategies are already optimal.

14

the total expected reward is the unique solution to this equation, namely x = 7. Note
that, in general, such a derivation may not terminate with probability 1, and that
the expected reward need not be finite (consider the same grammar with modified

probabilities: {X (2/3,3)7→ XX ; X
(1/3,2)7→ ε}).

Now suppose, more generally, that we have a context-free grammar, with no terminal
symbols, in which there are three different kinds of non-terminals: random non-terminals,
as well as player-1 non-terminals and player-2 non-terminals, controlled by players
1 and 2, respectively. For each random non-terminal, X, we are given a probability
distribution on the rules (X 7→α) where X appears on the left hand side. Each grammar
rule has a reward associated with it. Starting from the start non-terminal, a play of
the game proceeds to build a derivation of the grammar. In each round, derivation
proceeds in left-most manner, i.e., the player (or “nature”, who probabilistically expands
its non-terminals) expands the left-most non-terminal which remain in the derivation.
The play continues, either forever, or until the empty string is derived. Player 1’s goal
is to maximize the total (possibly infinite) expected reward gained during the entire
derivation, while player 2’s goal is to minimize the total expected reward.

As explained in the introduction, serious complications arise if we allow 0 rewards on
transitions. Indeed, consider the purely deterministic context-free grammar given by the

rules: {X (⊥,0)7→ XY ; X
(⊥,0)7→ ε ; Y

(⊥,7)7→ ε }, where X and Y are non-terminals belonging
to the maximizing player, player 1 (so instead of probabilities, we have the label ⊥).
Suppose the start non-terminal is X. If the deterministic game proceeds by left-most
derivation, it is easy to see that there is no optimal strategy for maximizing player 1’s
total payoff. Indeed, there aren’t even any ε-optimal strategies, because the supremum

is ∞. In fact, if player 1 uses the rule X
(⊥,0)7→ XY , n times, to expand the left-most

X in the derivation, and then uses X
(⊥,0)7→ ε, and finally uses Y

(⊥,7)7→ ε, n times to
expand all n remaining Y non-terminals, the total reward is 7∗n. But no single strategy
will gain ∞ reward. Note in particular that any “stackless and memoryless” strategy,
which always picks one fixed rule for each non-terminal, regardless of the history of play
and the remaining non-terminals (the “stack”), is the worst strategy possible: its total
reward is 0. By contrast, if we require simultaneous expansion of all remaining non-
terminals in each round, then there is a single “stackless and memoryless” strategy that

gains infinite reward, namely: in each round expand every copy of X using X
(⊥,0)7→ XY ,

and (simultaneously) expand every copy of Y using its unique rule. Clearly, after n ≥ 1
rounds we accumulate 7 ∗ (n − 1) reward by doing this. Thus the total reward will be
∞.

Similarly, consider the simple grammar {X (⊥,0)7→ XY ; Y
(⊥,1)7→ Y }, where, again,

both non-terminals X, Y are controlled by the maximizing player, and X is the start
non-terminal. Under the left-most derivation law, clearly the maximum reward is 0,
whereas under the right-most or simultaneous derivation law, the total reward is ∞. So,
the supremum total (expected) reward is not robust and can wildly differ, depending on
the derivation law, when 0 rewards are allowed on rules.

Consider the following quantitative decision problem. Given a maximizing 1-RMDP,
and p ∈ [0, 1], is there is a strategy for player 1 (maximizer) such that with probability
at least p, a desired target non-terminal, Starget, eventually appears as the left-most

15

remaining nonterminal in the derivation. This quantitative “reachability” problem not
even known to be decidable. Moreover, it also easily encodes the quantitative termination
problem studied in [12] (where the goal is to terminate, i.e., derive a finite string). The
value for such termination probabilities can be irrational, even in the setting without
players (1-RMCs), and their quantitative termination problem is at least as hard as long
standing open problems in numerical computation, like the square-root sum problem,
whose complexity is not even known to be in NP nor in the polynomial-time hierarchy. (A
problem equivalent to the qualitative case of reachability for 1-RMDPs, i.e. where p = 1,
was shown to be decidable in in P-time in [2], building on the qualitative termination
results in [13].) The quantitative reachability problem for 1-RMDPs can trivially be
encoded in the setting of 1-player SCFG games with non-negative rewards and leftmost
derivation, as follows. We assign reward 0 to all rules, except we remove all grammar
rules Starget

p7→ α whose left hand side is Starget and replace them with the two rules

Starget
(1,1)7→ Sdead and Sdead

(1,0)7→ Sdead. In other words, 0 reward is gained until the first
time Starget is encountered as the left-most non-terminal in the derivation, after which
reward 1 is gained, and then reward 0 is gained forever. It is easy to see that, under
any strategy σ, the expected total reward in this 1-RMDP with non-negative rewards
is precisely the probability that, under strategy σ, we eventually reach Starget as the
leftmost non-terminal in the derivation. Determining whether this optimal probability
is, say, greater than 1/2, is not even known to be decidable.

Results analogous to those we give for the 1-RSSG model with strictly postive reward
can be shown to hold (with modified proofs) for games over stochastic context-free
grammars, even with 0 rewards allowed on rules, but with the simultaneous expansion
derivation law (i.e., all remaining non-terminals are expanded, by their respective player,
in each iteration). But our results are for the 1-RSSG model, with strictly positive
rewards, where the presence of 0 rewards would change the game dramatically as the
above examples illustrate.

A.4 Proof of Theorem 1

Theorem 1

1. The map P : Rn → Rn
is monotone on R∞

≥0 and 0 ≤ xk ≤ xk+1 for k ≥ 0.
2. r∗ = P (r∗).
3. For all k ≥ 0, xk ≤ r∗.
4. For all r′ ∈ R∞

≥0, if r′ = P (r′), then r∗ ≤ r′.
5. For all vertices u,

r∗u
.= sup

σ∈Ψ1

inf
τ∈Ψ2

r∗,σ,τ
u = inf

τ∈Ψ2
sup
σ∈Ψ1

r∗,σ,τ
u .

(In other words, these games are determined.)
6. r∗ = limk→∞ xk.

Proof.

1. All equations in the system P (x) are min-max linear with non-negative coefficients
and constants, and hence are monotone.

16

2. The proof that r∗ = P (r∗) is similar to the one for 1-RSSG termination games from
[12], but it uses in a crucial way the fact that rewards on all transitions are strictly
positive.
(a) For u = ex ∈ Type0, r∗u = 0, so it fulfills the corresponding equation xu = 0.
(b) For u ∈ Typerand, from the definition r∗u = supσ infτ r∗,σ,τ

u it follows that r∗u =∑
v∈next(u) pu,v(r∗v + cu,v). Note that this holds even when some of the expected

rewards are infinite, because if pu,v > 0 and the game starting at v has infinite
reward value, then this is also the case starting at u.

(c) For u ∈ Typecall, u = (b, en) is a call port. We claim that

r∗u = r∗en + r∗(b,ex′) + cu (1)

where ex′ is the unique exit of Y (b). For this we make crucial use of the assump-
tion that rewards on all transitions are strictly positive8. Consider the game
starting at u = (b, en), as a combination of two games: the two players play
inside b, starting at en, with player 1’s goal to maximize the total (expected)
reward. The two players also (in a “separate” game) play starting at (b, en). The
payoff to player 1 is as follows: If the game inside b terminates, then the payoff
is the total of the payoffs gained in both games, and if the game inside b does
not terminate, then the payoff is just the payoff gained inside b.
It should be clear that this “modified” version of the game in fact describes
the same game. In particular, in the original game both players can, upon first
encountering (b, ex′) (in the empty context) safely ignore the history and try to
maximize/minimize the payoff in the game starting at (b, ex′), without changing
the reward value.
Fix strategies for both players. What is the expected total reward starting at u?
It is cu plus the expected reward gained inside box b, plus the expected reward
after exiting box b times the probability of exiting box b. The key point is that,
since all transitions have positive reward, the only circumstance under which
the expected reward value within box b is finite, i.e., r∗en < ∞, is when for
every strategy of the maximizer there is a strategy for minimizer that assures
finite expected reward inside b. This also necessarily assures that box b is exited
with probability 1 (because otherwise, since all transitions have positive reward
bounded below by some minimum value c > 0, infinite expected reward would
be gained inside b). Consequently, equality (1) holds when r∗en < ∞. But if
r∗en = ∞, then the equality holds regardless of the value of r∗(b,ex′), so it holds
in all circumstances.

(d) For u ∈ Typemax, we know that r∗u ≥ r∗v +cu,v for any v ∈ next(u), for otherwise
the max player would be better off taking the transition to the node v in the
first step, and thereafter obtaining r∗v +cu,v. On the other hand we also have that
r∗u ≤ r∗v +cu,v for some v ∈ next(u), as otherwise no matter what first transition
player max picks from u, the min player has a strategy such that max will not
be able to obtain expected reward r∗u.

8 We note that this assumption would be unnecessary if we were working with SCFG games
(in CNF form) with simultaneous expansion. The entire proof would go through for such
games even with 0 rewards on rules.

17

(e) For u ∈ Typemin we know that r∗u ≤ r∗v + cu,v for all v ∈ next(u), as otherwise it
would be better for the min player to take the transition leading to the node v
and giving to max player expected reward value r∗v + cu,v that is lower than r∗u .
However we also have to have that r∗ ≥ r∗v + cu,v for some v ∈ next(u), because
otherwise player max could always obtain expected reward higher than r∗u no
matter what min player does.

3. Note that P is monotonic, and r∗ is a fixed point of P . Since x0 = 0 ≤ r∗, it follows
by induction on k that xk ≤ r∗, for all k ≥ 0.

4. Consider any fixed point r′ of the equation system P (x). We will prove that r∗ ≤ r′.
Let us denote by τ∗ a strategy for the minimizer that picks for each vertex the
successor with the minimum value in r′, i.e., for each state s = 〈β, u〉, where u belongs
to player 2(minimizer) nodes, we choose τ∗(s) = arg minv∈next(u) r′v (breaking ties
lexicographically).

Lemma 4. For all strategies σ ∈ Ψ1 of player 1, and for all k ≥ 0, rk,σ,τ∗ ≤ r′.

Proof. Base case r0,σ,τ∗
= 0 ≤ r′ is trivial.

(a) u = ex, then rk,σ,τ∗

u = 0 = r′u for all k ≥ 0.
(b) u ∈ Typerand is a random node and after we define a strategy σ′(θ) = σ(〈ε, u〉θ)

we get:

rk+1,σ,τ∗

u =
∑

v∈next(u)

pu,v(rk,σ′,τ∗

v + cu,v) ≤
∑

v∈next(u)

pu,v(r′v + cu,v) = r′u

based on the inductive assumption and the fact that r′ is a fixed point of P (x).
(c) If u = (b, en) is an entry en of the box b then we claim

rk+1,σ,τ∗

u ≤ max
ρ

rk,ρ,τ∗

en + max
ρ

rk,ρ,τ∗

(b,ex′) + cu (2)

where (b, ex′) is the only return port of box b. To see this, note that in any
specific trajectory, the total reward gained in k + 1 steps starting at call port
(b, en) is cu plus the remaining reward, which is split into two parts: that gained
in i steps inside box b, and the rest gained in j steps after returning from box
b, and such that i + j = k. Thus clearly the total expected reward in k + 1 steps
starting at u is no more than cu plus the expected reward in k steps starting
inside box b (i.e., starting at the entry en of Y (b)) plus the expected gain in k
steps starting at (b, ex′). We now have

max
ρ

rk,ρ,τ∗

en + max
ρ

rk,ρ,τ∗

(b,ex′) + cu ≤ r′en + r′(b,ex′) + cu = r′u (3)

by inductive assumption, and by the fact that r′ is a fixed point of P (x). So,
combining equations (2) and (3), we have rk+1,σ,τ∗

u ≤ r′u.
(d) For u ∈ Typemax we claim

rk+1,σ,τ∗

u ≤ max
v∈next(u)

rk,σ′,τ∗

v + cu,v

18

because the player has to move to some neighbor v of 〈ε, u〉 in one step, and
thus it can not gain more that rk,σ′,τ∗

, where σ′ is defined from σ in the same
way as for Typerand. Thus

rk+1,σ,τ∗

u ≤ max
v∈next(u)

rk,σ′,τ∗

v + cu,v ≤ max
v∈next(u)

r′v + cu,v = r′u

.
(e) For u ∈ Typemin we know that τ∗(u) = arg minv∈next(u)(r′u + cu,v) = v∗, so:

rk+1,σ,τ∗

u = rk,σ′,τ∗

v∗ + cu,v∗ ≤ r′v∗ + cu,v∗ = min
v∈next(u)

(r′v + cu,v) = r′u
ut

Now by the lemma we have r∗,σ,τ∗

u = limk→∞ rk,σ,τ∗

u ≤ r′u for every vertex u and for
any max player strategy σ, so supσ r∗,σ,τ∗

u ≤ r′u. Thus for all vertices u:

r∗u = sup
σ

inf
τ

r∗,σ,τ
u ≤ inf

τ
sup

σ
r∗,σ,τ

u ≤ sup
σ

r∗,σ,τ∗

u ≤ r′u (4)

5. In equation (4) above, choose r′ = r∗. Then we have, for all vertices u,

sup
σ

inf
τ

r∗,σ,τ
u = inf

τ
sup

σ
r∗,σ,τ

u .

6. We know that z = limk→∞ xk exists in (0,∞], because it is a monotonically non-
decreasing sequence (note some entries may be infinite). In fact we have z = limk→∞ P k+1(0) =
P (limk→∞ P k(0)), and thus z is a fixed point of the equation P (x) = x. So from
(4) we have r∗ ≤ limk→∞ xk. Since xk ≤ r∗ for all k ≥ 0, limk→∞ xk ≤ r∗ and thus
limk→∞ xk = r∗.

ut
Corollary 1. In every positive reward 1-RSSG, the minimizer has an optimal deter-
ministic Stackless and Memoryless (SM) strategy.

Proof. It is enough to consider the strategy τ∗, from Part 4 of Theorem 1, when we let
r′ = r∗. For then, by equation (1), we have r∗u = supσ r∗,σ,τ∗

= infτ supσ r∗,σ,τ∗
. ut

A.5 Proof of Lemma 1

Lemma 1 For any x ∈ Rn
≥0, A ∈ (R∞

≥0)
n×n and b ∈ (R∞

>0)
n, if x ≤ Ax + b then

x ≤ (
∞∑

k=0

Ak)b

This holds even if for some indices i we have bi = 0, as long as the entries in such
rows i of the matrix A are all zero.

Proof. Let D =
∑∞

k=0 Ak and y = Db. We have to prove that x ≤ y. Some of the entries
of D can be infinite. Let R = {r1, r2, . . . , rm} be the set of indices of the rows of D that
contain at least one ∞ entry. For every r ∈ R, yr =

∑n
i=1 Dr,ibi. Since for all i, bi > 0,

and for at least one i Dr,i is ∞, we have yr = ∞ and so xr ≤ yr is trivially fulfilled for

19

every r ∈ R. Now let us construct a new matrix A′ by zeroing all the entries of the rows
of A that are in R. Similarly let x′ be a vector x with zeroed entries xr where r ∈ R.
Let D′ =

∑∞
k=0 A′k.

We will prove that x′ ≤ A′x′ + b. For entries r ∈ R, it is trivial as (A′x′)r + br =
0 + br ≥ 0 = x′r. If r 6∈ R then x′r = xr and

(A′x′)r =
n∑

i=1

A′
r,ix

′
i =

∑
{i|A′

r,i>0}
A′

r,ix
′
i

Proposition 3. If Ai,j > 0, and for some k we have that Dj,k = ∞ then Di,k = ∞.

Proof. We have that D = I + AD and so Di,k = δik +
∑n

l=1 Ai,lDl,k ≥ Ai,jDj,k = ∞.
(where δik is equal to 1 if i = k and 0 otherwise) ut
Suppose that r 6∈ R. If for some i, x′i 6= xi, then i ∈ R and we must have Di,j = ∞
for some j. If A′

r,i > 0 then Ar,i = A′
r,i, and from Proposition 3 we get that Dr,j = ∞,

which contradicts the fact that r 6∈ R. Thus for r 6∈ R, and for i such that A′
r,i > 0, we

must have x′i = xi and A′
r,i = Ar,i. Thus (A′x′)r + br = (Ax)r + br ≥ xr = x′r for all

r 6∈ R. Hence we can conclude that x′r ≤ (A′x′)r + br for all r.
We will now prove that limk→∞ A′k = 0. For contradiction, note that if we had

limk→∞(A′k)i,j 6= 0 for some i, j then it must be the case that D′
i,j = ∞ because

(A′k)i,j ≥ 0 for all k, and if there is some ε > 0 such that for infinitely many k,
(A′)k

i,j > ε, then D′
i,j = ∞. Since A′ ≤ A, we get that A′k ≤ Ak for any k ≥ 0 and thus∑∞

k=0 A′k ≤
∑∞

k=0 Ak. Thus if D′
i,j = ∞ then Di,j = ∞. Hence all entries in the i-th

row of A must have been zeroed to obtained A′. However if the i-th row in A′ has all
zeroes, then so does the i-th row in A′k for any k. That contradicts the assumption that
limk→∞(A′k)i,j 6= 0.

By substituting x′ by A′x′ + b in x′ ≤ A′x′ + b, we get that x′ ≤ A′x′ + b ≤
A′(A′x′ + b) + b = A′2x′ + A′b + b ≤ A′2(A′x′ + b) + A′b + b = A′3x′ + (A′2 + A′ + I)b
and by iterating we see that x′ ≤ A′l+1

x′ + (
∑l

k=0(A
′)k)b for any l ≥ 0. As x′ is a

vector of finite values and limk→∞ A′k = 0 we have x′ ≤ (
∑∞

k=0(A
′)k)b and so also

x′ ≤ (
∑∞

k=0(A)k)b = y. The last fact proves that for r 6∈ R xr = x′r ≤ yr, and we can
finally conclude that x ≤ y = (

∑∞
k=0 Ak)b.

Now we show that we can also handle the case when for some indices i, bi = 0.
We proceed by induction on the number, d, of indices i such that bi = 0 and the

i-th row of A is all zero. For the base case d = 0, the claim was already proved. For the
inductive case, suppose d > 0, and let i be the smallest such index. Since we assume
Ax + b ≥ x, it must be that xi = 0. Let M ′ denote the matrix obtained by removing
the i-th row and the i-th column in some matrix M . Similarly for a vector v by v′

denote the vector v with removed i-th entry. Since xi = 0, M ′x′ = (Mx)′ for any
matrix M . Also, since the i-th row of A is all zeroes we have that (A′)k = (Ak)′ for
any k ≥ 0 and we can also conclude that

∑∞
k=0(A

′)k = (
∑∞

k=0 Ak)′. Now assuming
Ax + b ≥ x we can see that (Ax + b)′ ≥ x′ and so A′x′ + b′ ≥ x′. But it is easy to
confirm that A′ and b′ have the same property as before: if b′j = 0 then the j-th row of
A′ is all zero. Moreover, there are now d−1 such indices. Thus, by inductive hypothesis,
x′ ≤ (

∑∞
k=0(A

′)k)b′ = (
∑∞

k=0 Ak)′b′ = ((
∑∞

k=0 Ak)b)′, and since the inequality is trivial
for the i-th position of x, we get that x ≤ ((

∑∞
k=0 Ak)b). ut

20

A.6 Proof of Theorem 2

Proof. Let σ be any SM strategy for player 1. Consider r∗,σu = infτ∈Ψ2 r∗,σ,τ
u . (Note

that some entries in the vector r∗,σ may be ∞.) First, note that if r∗,σ = P (r∗,σ) then
r∗,σ = r∗. This is because, by Theorem 1, r∗ ≤ r∗,σ, and on the other hand, σ is just one
strategy for player 1, and for every vertex u, r∗u = supσ′∈Ψ1

r∗,σ
′

u ≥ r∗,σu . Now we claim
that, for all vertices u such that u 6∈ Typemax, r∗,σu satisfies its equation in x = P (x). In
other words, r∗,σu = Pu(r∗,σ). To see this, note that for vertices u of Types {0, call, rand},
no choice of either player is involved and the equation holds by definition of r∗,σ (In
particular, the expected reward value at a call u is cu plus the sum of the expected reward
values of the game starting at the entry inside the box, and the game starting at the
return port.) For nodes u ∈ Typemin, we have the equation xu = minv∈next(u) xv + cu,v.
But note that the best minimizer can do against strategy σ, starting at 〈ε, u〉, is to
move to a neighboring vertex v such that v = arg minv∈next(u)(r∗,σv + cu,v). Thus, the
only equations that may fail are those for u ∈ Typemax, xu = maxv∈next(u)(xv + cu,v).
Suppose σ(u) = v, for some neighbor v. Clearly then, r∗,σu = r∗,σv + cu,v. Thus, r∗,σu ≤
maxv′∈next(u)(r

∗,σ
v′ + cu,v′). Thus equality fails iff there is another vertex w 6= v, with

(u,⊥, w) ∈ δ, such that r∗,σv + cu,v < r∗,σw + cu,w.
Suppose now that the nodes (u1, u2, . . . un) are all those nodes where the SM strategy

σ is not locally optimal, i.e., for i = 1, 2, . . . , n, σ(ui) = vi, and thus r∗,σui
= r∗,σvi

+ cui,vi
,

but there is some wi such that r∗,σvi
+ cui,vi

< r∗,σwi
+ cui,wi

. Let u = (u1, u2, . . . , un) and
similarly define v and w. Consider now a revised SM strategy σ′, which is identical to σ,
except that σ′(ui) = wi for all i. Next, consider a parametrized 1-exit RSSG, A(t) where
t = (t1, t2, . . . , tn), which is identical to A, except that all edges out of vertices ui are
removed, and replaced by a single probability 1 edge labeled by reward ti, to the exit of
the same component node ui is in. Fixing the value of the vector t ∈ [0,∞]n determines
an 1-RSSG, A(t). Note that if we restrict SM strategies σ or σ′ to vertices other than
those in u, then they both define the same SM strategy for the 1-RSSG A(t). Define
r∗,σ,τ,t
z to be the expected total reward starting from 〈ε, z〉 in the Markov chain Mz,σ,τ

A(t) .
Now, for each vertex z, define the function fz(t) = infτ∈Ψ2 r∗,σ,τ,t

z . In other words, fz(t)
is the infimum of the expected rewards, over all strategies of player 2, starting at 〈ε, z〉 in
A(t). This reward is parametrized by t. Now, let tσ be a vector such that tσ

ui
= r∗,σui

, and
observe that fz(tσ) = r∗,σz for every z. This is so because any strategy for minimizing
the total reward starting from z would, upon hitting a state 〈β, ui〉 in some arbitrary
context β, be best off minimizing the total expected reward starting from 〈β, u〉 until
that context is exited, (and unless the minimizer has a strategy that assures the context
is exited with probability 1, the expected reward will be ∞).

Note that, by Corollary 1, in the 1-RSSG reward game on A(t), for any values in
vector t, and any start vertex z, minimizer has an optimal SM strategy τz,t, such that
τz,t = arg minτ∈Ψ2 r∗,σ,τ,t

z . Let g(z,τ)(t) = r∗,σ,τ,t
z . Note that fz(t) = minτ gz,τ (t), where

the minimum is over SM strategies. Now, note that the function gz,τ (t) is the expected
reward in a positive reward 1-RMC starting from a particular vertex, and it is given by
gz,τ (t) = (limk→∞ Rk(0))z for a linear system x = R(x) with non-negative coefficients
in R, where R(x) = Aσ,τx+bσ,τ (t), for some nonnegative matrix Aσ,τ , and vector bσ,τ (t)
which describes the average 1-step rewards from each vertex. All of these 1-step rewards
are positive, except that at positions ui the entry is the variable ti, i.e., bui(t) = ti.
(Note that for all i the ui’th row vector of Aσ,τ is all zero.) Simple iteration then shows

21

that gz,τ (t) = limk→∞ Rk(0)z = ((
∑∞

k=0 Ak
σ,τ)b(t))z. (Note that if limk→∞ Ak

σ,τ = 0,
then (

∑∞
k=0 Ak

σ,τ) = (I − Aσ,τ)−1.) Now gz,τ (t) has the following properties: it is a
continuous, nondecreasing, and linear function of t ∈ [0,∞]n, and for t ∈ [0,∞]n,
gz,τ (t) ∈ [0,∞]. Specifically, we can think of it as a function gz,τ (t) = αz,τt + βz,τ ,
where αz,τ = (αz,τ

1 , αz,τ
2 , . . . , αz,τ

n) and αz,τ
i , βz,τ ∈ [0,∞].

Let gτ (t) = (gw1,τ (t′), gw2,τ (t′), . . . , gwn,τ (t′)) where t′ = t + cu,w and cu,w =
(cu1,w1 , cu2,w2 , . . . , cun,wn). Note t ∈ (−cu1,w1 ,∞] × (−cu2,w2 ,∞] × . . . × (−cun,wn ,∞].
We can represent gτ (t) as Dτt + dτ , where Dτ = [αw1,τ ;αw2,τ ; . . . ;αwn,τ] and dτ

j =∑n
i=0 α

wj ,τ
i cu,wi + βwj ,τ . Note that if dτ

j = 0 then αwj ,τ = 0 and βwj ,τ = 0.
Consider function f(t) = minτ gτ (t). This is well defined, since whatever the values in

t, the min player always has, by Corollary 1, an optimal SM strategy τ∗ in A(t) such that
for any strategy σ of the max player, and any strategy τ of the min player, and all z we
have r∗,σ,τ∗,t

z ≤ r∗,σ,τ,t
z . Note that f(t) = (fw1(t+cu,w), fw2(t+cu,w), . . . , fwn(t+cu,w)).

Lemma 5. If f(t) > t for some finite vector t, then for any fixed point t∗ of f , t ≤ t∗.

Proof. Suppose that t∗ is some fixed point of f . Since f(t∗) = minτ gτ (t∗), for some
τ∗ we have gτ∗

(t∗) = t∗. From the fact that f(t) > t, we get that for all τ we have
gτ (t) > t. In particular we have gτ∗

(t) > t, which means that Dτ∗
t+dτ∗

> t. Now, for
all i, either dτ∗

i = 0 and the i-th row in Dτ∗
is all zeroes, or dτ∗

i > 0, thus from Lemma 1
we can conclude that t ≤

∑∞
k=0(D

τ∗
)kdτ∗

. However, letting h(t) = gτ∗
(t) = Dτ∗

t+dτ∗

be the linear operator on [0,∞]n, note that the least fixed point solution (in [0,∞]n) of
h(t) is t0 = limk→∞ hk+1(0) = limk→∞ Dτ∗

hk(0) + dτ∗
=

∑∞
k=0(D

τ∗
)
k
dτ∗

. Thus, any
other fixed point of h has to be greater than t0 and in particular t∗ ≥ t0 ≥ t. ut
Now, we know that f(tσ−cu,w)i = fwi

(tσ) = r∗,σwi
> r∗,σvi

+cui,vi
−cui,wi

= r∗,σui
−cui,wi

=
(tσ − cu,w)i which proves that f(tσ − cu,w) > tσ − cu,w. Therefore, by Lemma 5, any
fixed point of f has to be greater or equal to tσ − cu,w. Also, if we switch strategy
σ to σ′, then tσ′ − cu,w is a fixed point of f because f(tσ′ − cu,w)i = fwi(t

σ′
) =

r∗,σ
′

wi
= r∗,σ

′

ui
− cui,wi = (tσ′ − cu,w)i. Thus tσ ≤ tσ′

. Since f is non-decreasing, then
r∗,σ

′

z = fz(tσ′
) ≥ fz(tσ) = r∗,σz for any z, and for u1, u2, . . . , un the inequality is strict:

r∗,σ
′

ui
− cui,wi = r∗,σ

′

wi
≥ r∗,σwi

> r∗,σvi
+ cui,vi − cui,wi = r∗,σui

− cui,wi .
Thus, switching to the new SM strategy σ′, we get r∗,σ

′
which dominates r∗,σ, and is

strictly greater in some coordinates, including all the ui’s. There are finitely many SM
strategies, thus repeating this we eventually reach some SM strategy σ∗ that can’t be
improved. Thus r∗,σ

∗
= P (r∗,σ

∗
), and by our earlier claim r∗,σ

∗
= r∗. Thus, maximizer

has an optimal SM strategy, arrived at via simultaneous strategy improvement. ut

A.7 Proof of Proposition 1

Proposition 1 Let U be any proper set. (I) The vector r∗|U is the LFP of P |U . (II) If
r∗u = ∞ for some vertex u in an SCC S of G, then r∗v = ∞ for all v ∈ S. (III) If there
is an optimal bounded solution r′ to the max-LP|U then it has to be a fixed point of the
max-linear operator P |U . (IV) If max-LP|U has a bounded optimal feasible solution r′

then r′ = r∗|U .

22

Proof. Part (I) follows immediately from definitions. Part (II) follows by induction on
the length of the shortest path from any vertex v ∈ S to u. In particular, if xv =
max{xw, . . .}, and r∗w = ∞, then r∗v = ∞, and likewise for other vertex types. For part
(III), observe that for each vertex u ∈ Typemax, if r′ is an optimal bounded solution of
the max-LP, then at least one of the constraints xu ≥ xv + cu,v holds tightly, i.e., xu =
xv+cu,v. For otherwise, we could decrease the value of xu, letting xu = maxv∈next(u)(xv+
cu,v), and still satisfy all constraints. The fact that the other types of inequalities are
satisfied tightly follows similarly. For part (IV), if max-LP|U has a feasible bounded
solution, then the optimal (minimum) solution r′ is bounded. From part (III), we know
r′ is a fixed point of P |U , but then from the objective function of max-LP|U , we know
that r′ is the LFP of P |U , so we must have r′ = r∗|U . ut

A.8 Proof of Proposition 2

Proposition 2 (I) r∗ = (
∑∞

k=0 Ak
τ)bτ . (II) If r∗ is finite, then limk→∞ Ak

τ = 0, and
thus (I −Aτ)−1 =

∑∞
i=0(Aτ)i exists (i.e., is a finite real matrix).

Proof. (I): r∗ = limk→∞(P ′
τ)k+1(0) = limk→∞ Aτ (P ′

τ)k(0)+bτ = limk→∞(
∑k

i=0(Aτ)k)bτ .
(This holds regardless of whether r∗ is finite. We shall use this fact in a subsequent proof.)
(II): since r∗ = P ′

τ (r∗), we have, for any k ≥ 0, r∗ = Ak
τr
∗+(I +Aτ +A2

τ + . . .+Ak−1
τ)bτ .

The second part of the right hand side, in the limit, is equal to r∗, thus Ak
τr
∗ in the

limit is an all-zero vector. It follows that the limit of Ak
τ is an all-zero matrix since all

the entries/rewards in r∗ are positive (we have already removed 0 entries). ut

A.9 Proof of Theorem 5

We first need some preliminary claims. Let W be the set of vertices u such that u-min-
LP′ is bounded and let S be the minimum proper set such that W ⊆ S. From min-LP
remove all the constraints for variables outside of the set S and remove the variables of
Type0 in the same way as before. Call this set of constraints LPS .

Proposition 4. For any two vectors x = [x1, x2, . . . , xn],y = [y1, y2, . . . , yn] and vector
z = max(x,y) = [max(x1, y1),max(x2, y2), . . . ,max(xn, yn)], and subset A ⊆ {1, 2, . . . , n},
and constants pij ≥ 0, ci,j ≥ 0 we have that:

1. if vectors x,y fulfil a linear constraint x̃i ≤
∑

j∈A pij(x̃j + ci,j) then so does z
2. if vectors x,y fulfil a constraint x̃i ≤ minj∈A(x̃j + ci,j) then so does z

Proof. 1. Function max is monotonic, hence if xi ≤ xj and yi ≤ yj , then max(xi, yi) ≤
max(xj , yj). Thus max(xi, yi) ≤ max

(∑
j∈A pij(xj +ci,j),

∑
j∈A pij(yj +ci,j)

)
based

on the fact that they fulfil the underlying constraint. However we know that for all j
we have that xj ≤ max(xj , yj) = zj and yj ≤ max(xj , yj) = zj , hence

∑
j∈A pij(xj +

ci,j) ≤
∑

j∈A pij(zj + ci,j) and
∑

j∈A pij(yj + ci,j) ≤
∑

j∈A pij(zj + ci,j), which
means that zi = max(xi, yi) ≤ max

(∑
j∈A pij(xj + ci,j),

∑
j∈A pij(yj + ci,j)

)
≤∑

j∈A pij(zj + ci,j)

23

2. Again we know that max(xi, yi) ≤ max
(
minj∈A(xj +ci,j),minj∈A(yj +ci,j)

)
and for

all j we have xj +ci,j ≤ zj +ci,j and yj +ci,j ≤ zj +ci,j . We also know that the min
function is monotonic, hence minj∈A(xj + ci,j) ≤ minj∈A(zj + ci,j) ≥ minj∈A(yj +
ci,j). This means that zi = max(xi, yi) ≤ max

(
minj∈A(xj + ci,j),minj∈A(yj +

ci,j)
)
≤ minj∈A(zj + ci,j).

ut

Corollary 2. For any two feasible solutions x,y to LPS we have that z = max(x,y) =
[maxi(xi,yi)] (vector with entries being the maximum of the respective entries in x and
y) is a feasible solution to LPS as well.

Theorem 5 In a minimizing reward 1-RMDP, for all vertices u, the value r∗u is finite
iff u-min-LP′ is feasible and bounded. (And thus, combining this with Lemma 3, we can
compute the value of minimizing reward 1-RMDPs in P-time.

Proof. (⇒) First let us show that for any u if r∗u is finite, then u-min-LP′ has to be
feasible and bounded. Feasibility is easy as an all zero vector 0 fulfills all the constraints
in u-min-LP′.

Now pick the optimal SM strategy τ for the min player that yields the optimal
reward vector r∗ and take any feasible vector x. From the u-min-LP′ we can see that
x ≤ Aτx + bτ (because this is just a subset of the constraints). Since we removed all
zero reward nodes ie. exits of components, then all entries of bτ are positive and from
Lemma 1 we can get that x ≤ (

∑∞
k=0 Ak

τ)bτ . However by Proposition 2 (I) (which holds
regardless of whether r∗ is finite) this means that x ≤ r∗ for any feasible x.

For contradiction, assume u-min-LP′ was feasible but unbounded. Then there would
exist a sequence of feasible vectors x0,x1,x2, . . . such that limk→∞ xk

u = ∞. But we know
that xk ≤ r∗ for all k, thus r∗u would have to be infinite, contradicting our assumption.

(⇐) Now let us show that if u-min-LP′ is feasible and bounded then r∗u has to be
finite. Consider an LP with LPS constraints and with objective: maximize

∑
u∈W xu.

Call it W -min-LP and for any optimal solution x∗ denote by x∗ the vector filled with
values from x∗ for u ∈ W and ∞ for all u ∈ S \W . Notice that x∗ is unique, because
if two different optimal vectors x and x′ differ at a value of some variable xu ∈ W then
max(x,x′) would also be feasible thanks to Corollary 2, and this contradicts optimality.

Lemma 6. The vector x∗ is a fixed point of P |S.

Proof. Since for every variable u ∈ W , u-min-LP′ is bounded, and we removed from u-
min-LP′ only the constraints that these variables do not depend on (even in a transitive
way), the maximum value of xu can not possibly increase after we remove these con-
straints, because that would mean xu could have obtained a higher value in u-min-LP′.
Hence the LP W -min-LP is feasible and bounded.

Now we show that for an optimal solution x∗ no constraint with a variable xu ∈ W
on the left hand side can hold tightly (i.e., with equality) when there is some vari-
able from S \ W on the right hand side. Let us take some optimal solution x∗ to
W -min-LP. Let S \ W = {v1, v2, . . . , vn} be the set of unbounded variables, i.e., vi-
min-LP is unbounded. We know that for each of them there is a sequence of feasible
solutions xvi

1 ,xvi
2 ,xvi

3 , . . . to vi-min-LP(the bold subscripts denote the position in this
sequence, not inside the vector), such that the value of entry xvi in this sequence of

24

vectors is nondecreasing and becomes arbitrarily large. If we project this sequence to
the variables in S then xvi

1 |S ,xvi
2 |S ,xvi

3 |S , . . . is a sequence of feasible solutions to W -
min-LP, such that vi becomes arbitrarily large. Now construct a sequence of vectors
x′i = max(x∗,xv1

i |S ,xv2
i |S , . . . ,xvn

i |S). By Corollary 2 we know that all vectors in this
sequence are feasible solutions to W -min-LP. We also know that all of them are optimal
solutions, because we always take the maximum of the entries, including in the optimal
solution x∗. So we obtain as high a value of objective function

∑
u∈W xu as before,

and we can not improve this value as it would contradict the assumption that x∗ was
optimal. Now notice three things:

1. Since every variable xu ∈ W is bounded, at some point in this sequence, we will
reach a point such that the r.h.s. of any constraint which involves some variable
xu ∈ S \W will be larger than the highest possible value of all variables in W . This
means that at that point there can not be a constraint that holds with equality such
that xu ∈ W is the l.h.s. and where there is a variable from S \W on the r.h.s.

2. For all k, for every xu ∈ W there has to be some constraint with xu on the l.h.s.
such that x′k satisfies this constraint tightly, with equality, because otherwise we can
increase the value of xu without altering the value of any other variables, to obtain
a larger value for the objective, which contradicts the optimality of x′k.

3. All variables xv ∈ S \W become arbitrarily large in this sequence, thus it can not
be the case that there are only variables from W on the r.h.s. in any constraint with
xv on the l.h.s. (that would force this variable to be bounded).

Using these facts, we can see that for a large enough k, from the vector x′k we can
construct a vector x∗ which a fixed point of P |S . We do so by setting all variables in
S \ W to ∞, and leaving the variables in W unchanged from x′k. The claim that x∗

is a fixed point of P |S follows because for every variable xu ∈ W of type Typerand or
Typecall, x′k satisfies the correlated constraint with xu on the l.h.s. with equality, and
this can only be the case if the r.h.s. of that constraint contains only variables in W ,
and thus x∗ also satisfies this constraint with equality. Likewise, for variables xu in W
of type Typemin, for x′k all constraints such that xu is the l.h.s. and there is at least one
variable from S \W on the r.h.s., must hold with strict inequality. Hence, since equality
must hold in x′k for one of the constraints involving xu on the l.h.s., there must exist
one such constraint such that the r.h.s. only involves variables in W . Thus, equality also
holds for these constraints for x∗ for these variables. Thus x∗ satisfies the corresponding
min equation in P |S . Also for variables in xv ∈ S \ W all the equations in P |S will
clearly be fulfilled after setting their values to ∞, because both sides of the equations
correlated to xv have at least one variable from S \W , and that makes both sides have
value ∞. ut

Now finally we can finish the proof of the theorem using the previous lemma. Since
we know that r∗|S is the LFP of the operator P |S , it has to be the case that r∗|S ≤ x∗,
which means that for all u ∈ W we have that r∗u|S ≤ x∗u = x∗u, which is finite. ut

A.10 Proof of Theorem 7

Proof. Consider the standard 1-RMC from [11], depicted in Figure 2. From the entry,
en, this 1-RMC goes with probability p1 to a sequence of two boxes labeled by the same

25

Fig. 2. Standard 1-RMC gadget used in proof of Theorem 7

component and with probability p2 goes to the exit. We assume p1 + p2 = 1. As shown
in ([11], Theorem 3), in this 1-RMC the probability of termination starting at 〈ε, en〉 is
= 1 if and only if p2 ≥ 1/2.

Now, given a finite SSG, G, and a vertex u of G, do the following: first “clean up” G by
removing all nodes where the min player (player 2) has a strategy to achieve probability
0. We can do this in polynomial time. (If u is among these nodes, we would already be
done, but assume it is not.) The revised SSG will have two designated terminal nodes,
the old terminal node, labeled ”1”, and another terminal node labeled ”0”. From every
node v in the revised SSG which does not carry full probability on its outedges, we
direct all the “residual” probability to “0”, i.e., we add an edge from v to “0” with
probability pv,”0” = 1 −

∑
w pv,w, where the sum is over all remaining nodes w in

the SSG. In the resulting finite SSG, we know that if the max player plays with an
optimal memoryless strategy (which it has), and the min player plays arbitrarily with
a memoryless strategy, there is no bottom SCC in the resulting finite Markov chain
other than the two designated terminating nodes “0” and “1”. In other words, all the
probability exits the system, as long as the maximizing player plays optimally. Note
also that, importantly, the “expected time” that it takes for the probability to exit the
system when max player plays optimally is finite (because there are no “null recurrent”
nodes in a finite Markov chain).

Another way to put this fact is as follows: consider the resulting SSG to be a finite
reward SSG with reward 1 on each transition, and switch the role of the max and
min player, and now the goal of the max player is to maximize the total reward before
termination (at either exit), and that of the min player is to minimize it. Translating the
above to this setting, the “cleaned up” SSG has the property that the min player has a
memoryless strategy using which, no matter what the maximizer does, the total reward
will be finite: we will terminate, at “0” or at “1”, in finite expected time (because there
are no “null recurrent” nodes in finite Markov chains, and both players have optimal
memoryless strategies).

Now, take the remaining finite SSG, call it G′. Just put a copy of G′ at the entry of
the component A1 of the 1-RMC, identifying the entry en with the initial node, u, of
G′. Take every edge that is directed into the terminal node ”1” of G, and instead direct
it to the exit ex of the component A1. Next, take every edge that is directed into the
terminal ”0” node and direct it to the first call, (b1, en) of the left box b1. Both boxes
map to the unique component A1. Call this 1-RSSG A.

26

We now claim that the value q∗u ≤ 1/2 in the finite SSG G′ for terminating at the
terminal “1” iff the value r∗u = ∞ for expected reward value in the resulting reward
1-RSSG, A (recall: with the role min and max reversed, and with all transitions having
reward 1).

The reason is as follows: we know that in A the minimizer has at least one SM
strategy that obtains finite reward inside any copy of G′, and it must play one such
strategy each time it goes through G′ if it wants to avoid payoff ∞.

Now, there are only a finite number of SM strategies for minimizer inside G′ which
yield a finite expected reward (after an optimal response by the maximizer). Let D ∈
[0,∞) be the maximum finite expected reward among those SM strategies. Also, no
matter what the two players do, we know we will earn reward at least 1, each time we
go through G′. So, each time going through G′ we accumulate a reward D′ ∈ [1, D]. So,
from the point of view of trying to make sure the total expected reward is finite, it is
really of no relevance what the specific value of D′ is when we go through G′. Rather,
what is important is whether we “visit” a copy of G′, i.e., a copy of the entry u, infinitely
often.

Now, to make sure that that the expected number of times u is visited is finite,
the minimizer must in fact maximize the probability of terminating at “1”, and thus
minimize the probability of termination at “0”. In addition, the minimizer must also
make sure that the expected reward inside G′ is finite, but this we know it can do
while maximizing the probability of terminating at “1”. Thus, the total reward r∗u = ∞
precisely when the value of the SSG termination game G′ is ≤ 1/2.

ut

A.11 Proof of Theorem 8

Fig. 3. Multi-exit reward RMDP: undecidability

Proof. We will use the construction of an component named A in the proof of Theorem
6 in [12]. This single-entry n-exit component relates RMDPs with n exits with Proba-
bilistic Finite Automata (PFA) with n states. More precisely the supremum probability

27

of termination at the n-th exit starting at the entry of A is equal to the supremum
probability with which the correlated PFA accepts some word. It was proved in [1] that
deciding whether a given PFA with 46 states accepts any word with probability greater
than 1

2 is undecidable. This means it is undecidable to resolve whether the supremum
probability of termination at the n-th exit (n = 46) in the correlated RMDP A is greater
than 1

2 .
To prove that it is also undecidable to resolve whether the reward at a given node is

finite or not, we will combine the RMDP A with a gadget 1-RMDP C, as can be seen
at Fig. 3. Let us denote by p the supremum probability of termination at the n-th exit
of the component A labeling box B. We will argue that p > 1/2 iff the infimum total
reward for the reward 1-RMDP C is finite.

We will need the following observation about the component A. Namely, for any
strategy that yields probability > 0 of exiting from the n-th exit of component A, it
must be the case that the total probability of exiting from one of the exits of component
A is 1. It is easy to verify this fact based on the structure of component A given in [12].

Now, first suppose p > 1/2. It follows from the previously mentioned fact that in the
reward game the minimizer has a strategy with which to exit from A with probability
1, and simultaneously to exit from the n-th exit with probability > 1/2. Therefore, note
that component C, under an optimal strategy played inside box B, acts like our favorite
gadget in which the probability of exiting directly is p > 1/2. For this gadget, with
p > 1/2 we know that the resulting expected time until termination is finite.

Moreover, the component A has the property that if p > 1/2, then the corresponding
PFA accepts a word w with probability > 1/2, and we can use word w as a strategy σw

in A such that starting at the entry of A, the strategy σw will exit A with probability
1, exit from the n-the exit with probability p > 1/2, and exit from A in finite expected
time 2|w|. Thus the expected time taken until termination inside A, i.e., inside the box
B is finite, and hence the total expected time until termination starting at the entry of
C is finite.

Next suppose that the infimum total reward is finite, but that p ≤ 1/2. Then in C
we either stay inside a copy of B(A) with non-zero probability, in which case the total
reward is infinite, or else we exit from the n-th exit with probability p ≤ 1/2 and we
exit from the other exits with probability ≥ 1/2. It follows easily from the properties
of the gadget in C that the expected termination time is infinite in such a case. Thus
if we can decide whether the optimal reward at the entry of C is finite or not, we can
also decide whether the termination probability at the n-th exit of B is greater than 1

2 ,
which we know is undecidable. ut

28

