
Analysis of Recursive State Machines

RAJEEV ALUR
University of Pennsylvania
MICHAEL BENEDIKT
Bell Laboratories
KOUSHA ETESSAMI
University of Edinburgh
PATRICE GODEFROID
Bell Laboratories
THOMAS REPS
University of Wisconsin
and
MIHALIS YANNAKAKIS
Columbia University

Recursive state machines (RSMs) enhance the power of ordinary state machines by allowing ver-
tices to correspond either to ordinary states or to potentially recursive invocations of other state
machines. RSMs can model the control flow in sequential imperative programs containing recursive
procedure calls. They can be viewed as a visual notation extending Statecharts-like hierarchical
state machines, where concurrency is disallowed but recursion is allowed. They are also related to
various models of pushdown systems studied in the verification and program analysis communities.

After introducing RSMs and comparing their expressiveness with other models, we focus on
whether verification can be efficiently performed for RSMs. Our first goal is to examine the

This research was partially supported by NSF Grants CCR-9619219, CCR97-34115, CCR99-70925,
CCR-0341658, CCR-9986308, ONR contract N00014-01-1-0796, the A. von Humboldt Foundation,
SRC award 99-TJ-688, and a Sloan Faculty Fellowship.
Authors’ addresses: R. Alur, Department of Computer and Information Science, University
of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104; email: alur@cis.upenn.edu; M.
Benedikt, Bell Laboratories, Lucent Technologies, 2701 Lucent Lane, Lisle, IL 60532; email:
benedikt@bell-labs.com; K. Etessami, Laboratory for Foundations of Computer Science, University
of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland, UK; email:
kousha@inf.ed.ac.uk; P. Godefroid, Bell Laboratories, Lucent Technologies, 2701 Lucent Lane,
Lisle, IL 60532; email: god@bell-labs.com; T. Reps, Computer Science Department, University of
Wisconsin-Madison, 1210 West Dayton Street, Madison, WI 53706-1685; email: reps@cs.wisc.edu;
M. Yannakakis, Department of Computer Science, Columbia University, 455 Computer Sci-
ence Building, 1214 Amsterdam Avenue, Mail Code 0401, New York, NY 10027; email:
mihali@cs.columbia.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0164-0925/05/0700-0786 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005, Pages 786–818.

Analysis of Recursive State Machines • 787

verification of linear time properties of RSMs. We begin this study by dealing with two key compo-
nents for algorithmic analysis and model checking, namely, reachability (Is a target state reachable
from initial states?) and cycle detection (Is there a reachable cycle containing an accepting state?).
We show that both these problems can be solved in time O(nθ2) and space O(nθ), where n is the
size of the recursive machine and θ is the maximum, over all component state machines, of the
minimum of the number of entries and the number of exits of each component. From this, we easily
derive algorithms for linear time temporal logic model checking with the same complexity in the
model. We then turn to properties in the branching time logic CTL∗, and again demonstrate a
bound linear in the size of the state machine, but only for the case of RSMs with a single exit node.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-
niques—State diagrams; D.2.4 [Software Engineering]: Software/Program Verification—Formal
methods; F.1.1 [Computation by Abstract Devices]: Models of Computation—Automata; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Verification, Algorithms

Additional Key Words and Phrases: Software verification, recursive state machines, pushdown
automata, context-free languages, model checking, temporal logic, program analysis

1. INTRODUCTION

In traditional model checking, the model is a finite state machine whose vertices
correspond to system states and whose edges correspond to system transitions.
In this article we consider the analysis of recursive state machines (RSMs), in
which vertices can either be ordinary states or can correspond to invocations of
other state machines in a potentially recursive manner. RSMs can model con-
trol flow in typical sequential imperative programming languages with recur-
sive procedure calls. Alternatively, RSMs can be viewed as a variant of visual
notations for hierarchical state machines, such as Statecharts [Harel 1987]
and UML [Booch et al. 1997], where concurrency is disallowed but recursion is
allowed.

More precisely, a recursive state machine consists of a set of component
machines. Each component has a set of nodes (atomic states) and boxes (each of
which is mapped to a component), a well-defined interface consisting of entry
and exit nodes, and edges connecting nodes/boxes. An edge entering a box mod-
els the invocation of the component associated with the box, and an edge leaving
a box corresponds to a return from that component. Due to recursion, the under-
lying global state-space is infinite and behaves like a pushdown system. While
RSMs are closely related to pushdown systems, which are studied in verifica-
tion and program analysis in many disguises [Reps et al. 1995; Bouajjani et al.
1997], RSMs appear to be the appropriate definition for visual modeling and
allow tighter analysis. The relationship between RSMs and these other models
is studied in detail in Section 3.

The goal of this article is to study verification problems for RSMs. The two
most fundamental questions for model checking of safety and liveness proper-
ties, respectively are (1) reachability: Given sets of initial and target nodes,
is some target node reachable from an initial one? and (2) cycle detection:
Given sets of initial and target nodes, is there a cycle containing a target node
reachable from an initial node? This analysis also forms the basis for model
checking more complex properties in linear-time temporal logic. For cycle

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

788 • R. Alur et al.

detection, there are two natural variants depending on whether or not one
requires the recursion depth to be bounded in infinite computations. We show
that all these problems can be solved in time O(nθ2), where n is the size of
the RSM, and θ is a parameter depending only on the number of entries and
exits in each component. The number of entry points corresponds to the pa-
rameters passed to a component, while the number of exit points corresponds
to the values returned. More precisely, for each component Ai, let di be the
minimum of the number of entries and the number of exits of that component.
Then θ = maxi(di). Thus, if every component has either a “small” number of
entry points, or a “small” number of exit points, then θ will be “small.” The space
complexity of the algorithms is O(nθ).

The first, and key, computational step in the analysis of RSMs involves
determining reachability relationships among entry and exit points of each
component. We show how the information required for this computation can
be encoded as recursive Datalog-like rules of a special form. To enable efficient
analysis, our rules will capture forward reachability from entry points for com-
ponents with a small number of entries, and backward reachability from exit
points for the other components. The solution to the rules can then be reduced
to alternating reachability for AND-OR (game) graphs. In the second step of
our algorithm, we reduce the problems of reachability and cycle detection with
bounded/unbounded recursion depth to traditional graph-theoretic analysis on
appropriately constructed graphs based on the information computed in the
first step.

Our algorithms for cycle detection lead immediately to algorithms for
model checking linear-time requirements expressed as LTL formulas or Büchi
automata, via a product construction for Büchi automata with RSMs.

The above analysis, found in Section 4, completes the picture for verifica-
tion of linear-time properties of RSMs. In Section 5 we extend this analysis to
branching time, focusing on the standard branching-time logic CTL∗. Known
bounds on the model checking of pushdown processes imply that we cannot get
algorithms that are linear in the size of the machine for branching-time (see
Section 3). However, we show that the data complexity is linear for single-exit
RSMs. These results generalize bounds in Alur and Yannakakis [2001] for the
restricted case of RSMs whose call graph is acyclic, while improving the bounds
that can be derived from the literature on pushdown and context-free processes.
In particular, our results show that CTL∗ model checking for context-free pro-
cesses can be done in linear time, in the size of the model.

Organization. In Section 2 we give the formal definition of RSMs. In Section 3
we compare their expressiveness to existing models. Section 4 investigates
state-space analysis and the verification of linear time properties, while
Section 5 deals with branching time. Section 6 summarizes and discusses open
issues.

Related work. Our definition of recursive state machines naturally general-
izes the definition of hierarchical state machines of Alur and Yannakakis [2001].
For hierarchical state machines, the underlying state-space is guaranteed to be
finite, but can be exponential in the size of the original machine. Algorithms for

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 789

analysis of hierarchical state machines [Alur and Yannakakis 2001] are adap-
tations of traditional search algorithms to avoid searching the same component
repeatedly, and have the same time complexity as the algorithms of this article.
However, the “bottom-up” algorithms used in [Alur and Yannakakis 2001] for
hierarchical machines cannot be applied to RSMs.

RSMs are closely related to pushdown systems. Model checking of pushdown
systems has been studied extensively for both linear and branching time re-
quirements [Bouajjani et al. 1997; Burkart and Steffen 1999; Esparza et al.
2000; Finkel et al. 1997]. These algorithms are based on an automata-theoretic
approach. Each configuration is viewed as a string over stack symbols, and the
reachable configurations are shown to be a regular set that can be computed by
a fixpoint computation. Esparza et al [2000] do a careful analysis of the time
and space requirements for various problems, including reachability and cy-
cle detection. The resulting worst-case complexity is cubic, and thus, matches
our worst case when θ = O(n). Their approach also leads, under more refined
analysis, to the bound O(nk2) Esparza et al. [2000], where n is the size of the
pushdown system and k is its number of control states. We will see that the
number of control states of a pushdown system is related to the number of exit
nodes in RSMs, but that by working with RSMs directly we can achieve better
bounds in terms of θ .

Ball and Rajamani [2000] consider the model of Boolean programs, which
can be viewed as RSMs extended with Boolean variables. They have imple-
mented a BDD-based symbolic model checker that solves the reachability prob-
lem for Boolean programs. The main technique is to compute the summary of
the input-output relations of a procedure. This in turn is based on algorithms for
interprocedural dataflow analysis [Reps et al. 1995], which are generally cubic.
As described in Section 6, when translating Boolean programs to RSMs, one
must pay the standard exponential price to account for different combinations
of values of the variables, but the price of analysis need not be cubic in the ex-
panded state-space by making a careful distinction between local, read-global,
and write-global variables.

Also worth mentioning is some early work in the 1970s within the natural
language processing community [Woods 1970] where Woods and his associates
considered “recursive transition networks” for modeling the grammatical struc-
ture of natural languages. These models are closely related to single-exit RSMs,
although they were presented in a somewhat different way.

In the context of this rich history of research, the current article has five main
contributions. First, while equivalent to pushdown systems and Boolean pro-
grams in theory, recursive state machines are a more direct, visual, state-based
model of recursive control flow. Second, we give algorithms with time and space
bounds of O(nθ2) and O(nθ), respectively, and thus our solution for analysis
is more efficient than the generally cubic algorithms for related models, even
when these were geared specifically to solve flow problems in control graphs
of sequential programs. Third, our algorithmic technique for both reachability
analysis and cycle detection, which combines a mutually dependent forward
and backward reachability analyses using a natural Datalog formulation and
AND-OR graph accessibility, along with the analysis of an augmented ordinary

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

790 • R. Alur et al.

graph, is new and potentially useful for solving related problems in program
analysis to mitigate similar cubic bottlenecks. We also anticipate that it is more
suitable for on-the-fly model checking and early error detection than the prior
automata-theoretic solutions for analysis of pushdown systems. Fourth, we give
results in the branching time setting that have no counterpart in the prior
literature—indeed, using the translations in Section 3, a new bound on model
checking of CTL∗ formulas for context-free processes can be derived. Finally,
using our RSM model, one is able, at no extra cost in complexity, to distinguish
between infinite accepting executions that require a “bounded call stack” or
“unbounded call stack.” This distinction had not been considered in all previ-
ous papers.

Preliminary versions of this material appeared independently in Alur et al.
[2001] and Benedikt et al. [2001]. Since the publication of these conference
papers a number of subsequent papers have built upon and extended our work,
including Alur et al. [2003a,b], Etessami [2004], Alur et al. [2004].

2. RECURSIVE STATE MACHINES

Syntax. A recursive state machine (RSM) A over a finite alphabet � is given
by a tuple 〈A1, . . . , Ak〉, where each component state machine Ai = (Ni ∪
Bi, Yi, Eni, Exi, δi) consists of the following pieces:

� A set Ni of nodes and a (disjoint) set Bi of boxes.
� A labeling Yi : Bi �→ {1, . . . , k} that assigns to every box an index of one of

the component machines, A1, . . . , Ak .
� A set of entry nodes Eni ⊆ Ni, and a set of exit nodes Exi ⊆ Ni.
� A transition relation δi, where transitions are of the form (u, σ, v) where (1)

the source u is either a node of Ni, or a pair (b, x), where b is a box in Bi
and x is an exit node in Ex j for j = Yi(b); (2) the label σ is in �; and (3) the
destination v is either a node in Ni or a pair (b, e), where b is a box in Bi and
e is an entry node in En j for j = Yi(b).

We will often (outside of Section 3) assume further that for every u, v there
is at most one σ such that δi(u, σ, v). This assumption makes for some simplifi-
cations in the notation, but is not critical to the results in the article.

We will use the term ports to refer collectively to pairs consisting of a box b of
a machine Ai and corresponding entry and exit nodes of the machine Aj called
by b. We will use the term vertices of Ai to refer to its nodes and the ports of its
boxes that participate in some transition. That is, the transition relation δi is
a set of labelled directed edges on the set Vi of vertices of the machine Ai. We
let Ei be the set of underlying edges of δi, ignoring labels, and for (u, v) ∈ Ei we
let �(u, v) be the unique σ such that δi(u, σ, v). We will often refer to a vertex
(b, e) as a call vertex and (b, x) as a return vertex.

Figure 1 illustrates the definition. The sample RSM has three components.
The component A1 has 4 nodes, of which u1 and u2 are entry nodes and u4 is
the exit node, and two boxes, of which b1 is mapped to component A2 and b2 is
mapped to A3. The entry and exit nodes are the control interface of a component
by which it can communicate with the other components. Intuitively, think of

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 791

Fig. 1. A sample recursive state machine.

component state machines as procedures, and an edge entering a box at a given
entry as invoking the procedure associated with the box with given argument
values. Entry-nodes are analogous to arguments while exit-nodes model values
returned.

Semantics. To define the executions of RSMs, we first define the global
states and transitions associated with an RSM. A (global) state of an RSM
A = 〈A1, . . . Ak〉 is a tuple 〈b1, . . . , br , u〉 where b1, . . . , br are boxes and u is
a node. Equivalently, a state can be viewed as a string, and the set Q of
global states of A is B∗N , where B = ∪i Bi and N = ∪i Ni. Consider a state
〈b1, . . . , br , u〉 such that bi ∈ Bji for 1 ≤ i ≤ r and u ∈ N j . Such a state is
well-formed if Y ji (bi) = ji+1 for 1 ≤ i < r and Y jr (br) = j . A well-formed state
of this form corresponds to the case when the control is inside the component
Aj , which was entered via box br of component Ajr (the box br−1 gives the con-
text in which Ajr was entered, and so on). Henceforth, we assume states to be
well-formed.

We define a (global) transition relation δ. Let s = 〈b1, . . . , br , u〉 be a state
with u ∈ N j and br ∈ Bm. Then, (s, σ, s′) ∈ δ if and only if one of the following
holds:

1. (u, σ, u′) ∈ δ j for a node u′ of Aj , and s′ = 〈b1, . . . , br , u′〉.
2. (u, σ, (b′, e)) ∈ δ j for a box b′ of Aj , and s′ = 〈b1, . . . , br , b′, e〉.
3. u is an exit-node of Aj , ((br , u), σ, u′) ∈ δm for a node u′ of Am, and s′ =

〈b1, . . . , br−1, u′〉.
4. u is an exit-node of Aj , ((br , u), σ, (b′, e)) ∈ δm for a box b′ of Am, and s′ =

〈b1, . . . , br−1, b′, e〉.
Case 1 is when the control stays within the component Aj , case 2 is when a new
component is entered via a box of Aj , case 3 is when the control exits Aj and
returns back to Am, and case 4 is when the control exits Aj and enters a new
component via a box of Am. The Labeled Transition System (LTS) TA = (Q , �, δ)
is called the “unfolding” of A.

When comparing expressiveness of labeled transition systems , we make use
of the standard notion of bisimulation. A bisimulation between LTS T1 and T2
with the same alphabet � is a binary relation B relating states of T1 and states
of T2, with the property that B(x, y) implies that: 1) if (x, σ, x ′) ∈ T1, then there
is y ′ ∈ T2 with (y , σ, y ′) and B(x ′, y ′) and 2) if (y , σ, y ′) ∈ T2, then there is
x ′ ∈ T1 with (x, σ, x ′) and B(x ′, y ′). T1 and T2 are said to be bisimilar if there is
a bisimulation between them.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

792 • R. Alur et al.

For two labeled transition systems T1 and T2 over alphabets consisting of �

plus a distinguished letter τ , we say they are weakly bisimilar if there is a B
such that B(x, y) implies that 1) and 2) above hold for every σ ∈ �, and also
that 3) if (x, τ, x ′) ∈ T1, then B(x ′, y) and 4) if (y , τ, y ′) ∈ T2, then B(x, y ′).

We wish to consider recursive automata as generators of ω-languages as well
as labeled transition systems. For the linear-time setting, we augment RSMs
with a designated set of initial nodes, and with Büchi acceptance conditions.
A recursive Büchi automaton (RBA) over a finite alphabet � consists of an
RSM A over �, a set Init ⊆ ∪k

i=1Eni of initial nodes and a set F ⊆ ∪k
i=1Ni of

repeating (accepting) nodes. (If F is not given, by default we assume F = ∪k
i=1Ni

to associate a language L(A) with RSM A and its Init set). Given an RBA,
(A, Init, F), we obtain an (infinite) global Büchi automaton BA = (TA, Init�, F �),
where the initial states Init� are states 〈e〉 where e ∈ Init, and where a state
〈b1, . . . br , v〉 is in F � if v is in F . For an infinite word w = w0w1 . . . over �, a
run π of BA over w is a sequence s0

σ0−→ s1
σ1−→ s2 · · · of states si and symbols �

such that (1) s0 ∈ Init�, (2) (si, σi, si+1) ∈ δ for all i, and (3) the word w equals
σ0σ1σ2 · · · A run π is accepting if for infinitely many i, si ∈ F �.

We call a run π bounded if there is an integer m such that for all i, the length
of the tuple si is bounded by m. It is unbounded otherwise. In other words, in
a bounded (infinite) run the stack-length (number of boxes in context) always
stays bounded. A word w ∈ �ω is (boundedly/unboundedly) accepted by the
RBA A if there is an accepting (bounded/unbounded) run of BA on w. Note, w
is boundedly accepted if and only if for some s ∈ F � there is a run π on w for
which si = s infinitely often. This is not so for unbounded accepting runs.

We let L(A), Lb(A) and Lu(A) denote the set of words accepted, boundedly ac-
cepted, and unboundedly accepted by A, respectively. Clearly, Lb(A) ∪ Lu(A) =
L(A), but Lb(A) and Lu(A) need not be disjoint. Given RBA A, we will be inter-
ested in the following algorithmic problems:

1. Reachability: Given A, for nodes u and v of A, let u ⇒ v denote that some
global state 〈b1, . . . br , v〉, whose node is v, is reachable from the global state
〈u〉 in the global transition system TA. Extending the notation, let Init ⇒ v
denote that for some u ∈ Init, u ⇒ v. Our goal in simple reachability analysis
is to compute the set {v | Init ⇒ v} of reachable vertices.

2. Language emptiness: We want to determine if L(A), Lb(A) and Lu(A) are
empty or not. We obtain thereby algorithms for model checking RSMs.

3. LTL model-checking: Given a formula φ in linear time temporal logic, we
want to check if ∀ω ∈ L(A) ω |= φ, and similarly for Lb and Lu.

In the branching-time setting, we will consider the problem of checking a
formula in the logic CTL∗ over an RSM A with a given initial global state s.
CTL∗uses the temporal operators U (until), X (nexttime) and the existential
path quantifier E, in addition to the operators ¬ (not) and ∨ (or). We will give
a slight variant of CTL∗appropriate for labeled transition systems. Two types
of CTL∗ formulas, path formulas and state formulas, are defined by mutual in-
duction. In our case, a state formula is satisfied by a particular state in the LTS,
while a path formula is satisfied by a sequence of labeled edges p = a1 . . . an. . . .

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 793

An edge label a ∈ � is a basic path formula, and it is satisfied by p as above if
and only if a1 = a. Every state formula φ is a path formula, and it is satisfied by
p if and only if it is satisfied by the source of the edge a1. If p, q are both state
formulas (respectively, both path formulas) then p ∨ q and ¬p are also state
formulas (respectively, path formulas). If p and q are path formulas, then pUq
and Xp are also path formulas while Ep is a state formula. We use the stan-
dard abbreviation Fp for trueUp and Gp for ¬F¬p. We will use the fact that
CTL∗ state formula can be viewed as a Boolean combination of existential for-
mulas, where an existential formula is either an atomic proposition or a CTL∗

state formula of the form E ρ(p(γ1) ← γ1, . . . , p(γn) ← γn), where ρ is an LTL
formula over propositions p(γ1), . . . , p(γn) and the γi are CTL∗ state formulas.
More information on CTL∗ can be found in Emerson [1990]. In particular, it is
well-known that if B is a bisimulation of T1 and T2 and B(x, y) holds for some
states x, y of T1, T2 (respectively) then every CTL∗ formula satisfied by T1 at
x is also satisfied by T2 at y .

Notation. We use the following notation. Let vi be the number of vertices and
ei the number of transitions (edges) of each component Ai, and let v = �ivi,
e = �iei be the total number of vertices and edges. The size |A| of an RSM A
is the space needed to write down its components. Assuming, without loss of
generality, that each node and each box of each component is involved in at least
one transition, v ≤ 2e, and the size of A is proportional to its number of edges e.
The other parameter that enters in the complexity is θ , a bound on the number of
entries or exits of the components. Let eni = |Eni| and exi = |Exi|, be the number
of entries and exits in the i’th component, Ai. Then θ = maxi∈{1,...,k} min(eni, exi).
That is, every component has either no more than θ entries or no more than θ

exits. There may be some components of each kind; we call components of the
first kind entry-bound and the others exit-bound.

3. RELATION TO PUSHDOWN AND CONTEXT-FREE SYSTEMS

In this section we explore the relationship between recursive automata and a
variant of pushdown automata. We then see what these results, together with
the results of Alur and Yannakakis [2001] on RSMs without recursion, tell us
about the complexity of model checking.

3.1 Expressiveness of RSMs Versus other Models

For purposes of comparison with RSMs, we consider a pushdown system (PDS)
given by P = (Q P , �,) over an alphabet � consisting of a set of control states
Q P , a stack alphabet �, and a transition relation ⊆ (Q P × �) × � × (Q P ×
{swap(�), swap − and − push(� × �), pop}). That is, based on the control state
and the symbol on top of the stack, the machine can update the control state
and either swap the top-of-the-stack with a new symbol, simultaneously swap
the top-of-the-stack with a new symbol and then push a second new symbol, or
pop the stack. A PDS is a context-free system if it has only one control state.

Note that the standard “push” operation can be simulated using swap-and-
push. Also note that a push of several stack elements on the stack in one step
can be simulated (for both PDS and context-free systems) by expanding the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

794 • R. Alur et al.

stack alphabet (e.g., given a machine pushing in one step the sequence a1a2 of
two symbols with a1, a2 ∈ �, we use a machine whose stack is � ∪�2 and where
pushing a1a2 on the stack is done by pushing the single stack element (a1, a2)
on the stack). A stack with letter γ at the top and remaining content ω ∈ �∗

(running from bottom to top) will be written ωγ . The semantics of a PDS is
given in terms of an LTS over � in the obvious way: a state is a pair (w, q) with
q ∈ Q P and w ∈ �∗, and, for example, PDS transition ((q, γ), σ, (q′, swap(γ ′)))
leads to a transition ((wγ , q), σ, (wγ ′, q′)) in the LTS.

We now compare the expressiveness of PDS with RSM. In what follows,
we say that a PDS is bisimilar to an RSM when the corresponding LTSs are
bisimilar.

THEOREM 1. Every PDS is bisimilar to a RSM, and vice versa. Moreover,
every context-free system is bisimilar to a single-exit RSM, and vice versa.

PROOF. Given a PDS P , we build a recursive automaton A(P) that is bisim-
ilar to it. Our construction is done in two steps: first, we build an RSM As(P)
with τ transitions that is weakly bisimilar to P , and then we eliminate the τ

transitions in As(P) to obtain A(P) while preserving weak bisimulation.
As(P) has only one component, A1. A1 has an entry en(q,γ) for every pair

(q, γ) with q in Q P and γ in �. It has one exit exq for every q ∈ Q P . It also has
one box bγ associated with each stack symbol γ ∈ � that plays a role in some
transition of P . All boxes are, obviously, mapped to A1. The transitions of A1
are as follows:

1. For every transition ((q, γ), σ, (q′, pop)) in , there is a transition
(en(q,γ), σ, exq′) in δ1.

2. For every transition ((q, γ), σ, (q′, swap(γ ′))) in , there is a transition
(en(q,γ), σ, en(q′,γ ′)) in δ1.

3. For every transition ((q, γ), σ, (q′, swap − and − push(γ1, γ2))) in , there is
(en(q,γ), σ, (bγ1 , en(q′,γ2))) in δ1.

4. For every box exit (bγ , exq) of each box bγ , there is a τ -transition
((bγ , exq), τ, en(q,γ)) in δ1.

The intuition behind this construction should be clear: each entry node en(q,γ)
of A1 corresponds to the configuration of P with control state q and top-of-
stack γ . The remainder of the content of the pushdown stack of P (with the
top element excluded) is coded in the call stack of As(P), with box bγ on the
call stack acting like γ on the pushdown stack. The size |As(P)| is O(|P |), and
the number of exits of A1 is |Q P |. The translation preserves boundedness, and
indeed stack/call depth, so that runs of P that require bounded (unbounded)
stack depth correspond to runs of As(P) that are bounded (unbounded).

It is easy to prove that the unfolding of As(P) is weakly bisimilar to the un-
folding of P . This is done by taking as bisimulation relation B the mapping that
relates every global state 〈γ1 . . . γn, q〉 of P to the global states 〈bγ1 . . . bγn , exq〉
and 〈bγ1 . . . bγn−1 , en(q,γn)〉 of As(P).

The τ transitions in As(P) can be eliminated as follows: remove all the τ

transitions, and for each transition (en(q,γ), σ, x) out of en(q,γ), add a transition
((bγ , exq), σ, x). Let A(P) be the resulting RSM. It is easy to check that the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 795

unfolding of A(P) is weakly bisimilar to the unfolding of As(P). This in turn
implies that the unfolding of A(P) is bisimilar to P , since neither of them have τ -
transitions. Note that the size of A(P) is linear in the size of P . Finally, note that,
given a PDS with a single state, our translation generates a single-exit RSM.

In the other direction, given an RSM A, we now describe how to build a PDS
P (A) that is bisimilar to A. We proceed in two stages again: first, we build a PDS
Ps(A) with τ transitions that is weakly bisimilar to A, and then we eliminate
the τ transitions in Ps(A) to obtain P (A) while preserving weak bisimulation.

We begin with the construction of Ps(A). The stack symbols � of Ps(A)
correspond to all possible “locations” (j , v) in the recursive automaton: j gives
the index of the component, and v is either a node of Aj or a box b of Aj . The
control states Q of Ps(A) are {1 . . . ex}, where ex is the maximum number of
exit nodes of any component. For every transition (v, σ, v′) between vertices v
and v′ of a component Aj where v is not of the form (b, x) and v′ is not of the
form (b′, e), there is a transition ((1, (j , v)), σ, (1, swap(j , v′))) in Ps(A). For every
transition (v, σ, (b, e)) within a component Aj where v is not of the form (b′, x)
and where b is a box of Aj mapped to component Aj ′ and e is an entry node
of Aj ′ , there is a transition ((1, (j , v)), σ, (1, swap−and−push((j , b), (j ′, e)))) in
Ps(A). For every exit node xi of component Aj (where xi is the ith exit of Aj),
there is a transition ((1, (j , xi)), τ, (i, pop)). For every box b of Aj mapped to
component Aj ′ , for every exit xi of Aj ′ and every transition ((b, xi), σ, v′) with
v′ not of the form (b′, e), there is a transition ((i, (j , b)), σ, (1, swap(j , v′))) in
Ps(A). Finally, for every box b of Aj mapped to component Aj ′ , for every exit xi
of Aj ′ and every transition ((b, xi), σ, (b′, e)) with e an entry node of Ak , there is
a transition ((i, (j , b)), σ, (1, swap−and−push((j , b′), (k, e)))) in Ps(A).

The size of Ps(A) is linear in the size of recursive automaton A. Note that
in the case where A is single-exit, Ps(A) is context-free. This translation also
preserves call/stack depth, and thus boundedness.

We now define P (A) by eliminating the τ transitions in Ps(A) as follows:
remove all the τ transitions; for every transition (n, σ, xi) to an exit node
xi of a component Aj (where xi is the ith exit of Aj), add a transition
((1, (j , n)), σ, (i, pop)) (note that stack elements of the form (j , xi) are never
used in the definition of P (A)); for every transition (xi, σ, n) from an exit node
xi of a component Aj (where xi is the ith exit of Aj) to a node n ∈ N j , add a
transition ((i, −), σ, (1, push(j , n))) (where − indicates any stack element); for
every transition (xi, σ, x j) from an exit node xi of a component Aj (where xi is
the ith exit of Aj) to an exit node x j , add a transition ((i, −), σ, (j , −)) (meaning
the stack is left unchanged); for every transition (xi, σ, (b, e)) from an exit node
xi of a component Aj (where xi is the ith exit of Aj) to a call node (b, e) calling
machine Ak , add a transition ((i, −), σ, (1, double-push((j , b), (k, e)))) (where −
indicates any stack element and double-push is syntactic sugaring for pushing
a pair of values on the stack as explained earlier).

It is easy to check that the unfolding of P (A) is bisimilar to the unfolding of
A, by taking as bisimulation relation B the following mapping: for every global
state g = 〈b1 . . . bn, v〉 of A where v is not an exit node, g is mapped to the global
state 〈γ1 . . . γn+1, 1〉 of P (A) with for all i ≤ n, γi = (ji, bi) (where bi is a box of
component Aji), and γn+1 = (jn+1, v) with jn+1 being the index of the machine

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

796 • R. Alur et al.

called by box bn; for every global state g = 〈b1 . . . bn, xi〉 of A where xi is the ith
exit node of of a component Aj called by box bn, g is mapped to the global state
〈γ1 . . . γn, i〉 of P (A) with for all i ≤ n, γi = (ji, bi) (where bi is a box of component
Aji). Finally, note that, given a single-exit RSM A, our translation generates
a PDS P (A) with a single state. This concludes the proof of Theorem 1.

Since it is known [Caucal and Monfort 1990] that there exist pushdown sys-
tems that are not bisimilar to any context-free systems, we obtain the following
result from the previous theorem.

COROLLARY 2. There exist multiple-exit RSMs R for which the unfolding TR
is not bisimilar to the unfolding of any single-exit RSM.

We now find that the relationships are also tight if we consider the complexity
of model checking, rather than expressiveness.

THEOREM 3.

� The LTL model checking problem for RSMs and for pushdown systems are
inter-reducible in linear time and logarithmic space, and similarly for CTL
and CTL∗.

� The LTL model checking problem for single-exit RSMs and for context-free
systems are inter-reducible in linear time and logarithmic space, and similarly
for CTL and CTL∗.

PROOF. The reduction from PDS model checking to RSM model checking
follows from the linear translation from a PDS P to an RSM A(P) given in
the proof of Theorem 1 since P and A(P) are bisimilar and since bisimulation
preserves all the logics we consider here.

Conversely, we note that the translation from A to P (A) given in the proof of
Theorem 1 is not linear, so the proof is not as direct. However, the translation
from A to Ps(A) is linear, so we proceed by reducing a RSM model-checking
problem (A, φ) to a PDS model-checking problem (Ps(A), φ′) where Ps(A) is a
PDS over alphabet �+ = � ∪ {τ } and φ′ is a formula of the same logic as φ but
over �+.

Formula φ′ is defined by translating formula φ as follows. We start by defining
how to translate LTL (i.e., path) formulas:

� T (a) = a ∨ (τ ∧ X a) for a ∈ �,
� T (Xρ) = (¬τ ∧ X T (ρ)) ∨ (τ ∧ X X T (ρ)),
� T (Fρ) = F T (ρ),
� T (¬ρ) = ¬T (ρ),
� T (τUρ) = T (τ)UT(ρ).

To see that T (φ) is the desired formula, note that in the unfolding of Ps(A),
every τ -move always leads to a vertex from which no τ move is possible. Hence
any infinite run through Ps(A) has no two consecutive τ transitions in it. Given
a word ω with no consecutive occurrences of τ , let C(ω) be the word formed by

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 797

removing each τ . The correctness of T (φ) now follows from the following claim:

ω |= T (φ) ⇔ C(ω) |= φ.

The proof of the claim is by induction on the length of the formula. For a
string ω we let ω(i) be the ith letter and ωi be the suffix of ω starting after the
ith letter. In the base case, the result follows since the initial letter of C(ω) is
either the same ω(1) if ω(1) �= τ , or is ω(2) otherwise.

For the case of the next operator, note that C(ω) |= Xρ holds if and only if
(ω(1) �= τ and C(ω1) |= ρ) or (ω(1) = τ and C(ω1) |= Xρ). In the latter case,
since ω(2) �= τ we know that C(ω1) |= Xρ if and only if C(ω2) |= ρ. Hence
C(ω) |= Xρ is equivalent to ω(1) �= τ and C(ω1) |= ρ or ω(1) = τ and C(ω2) |= ρ,
and by induction this is the same as ω(1) �= τ and ω1 |= T (ρ) or ω(1) = τ and
ω2 |= T (ρ).

For the eventually operator, we have C(ω) |= Fρ if and only if ∃n C(ω)n |= ρ

if and only if ∃i C(ωi) |= ρ if and only if ∃i ωi |= T (ρ) if and only if ω |= FT(ρ).
The second equivalence holds since every suffix of C(ω) is a suffix of C(ωi) for
some i.

For the until case, suppose C(ω) |= τUρ. We show ω |= T (τ)UT(ρ). We know
that either C(ω) |= Gτ ∧ ¬ρ or for some n C(ω)n |= ρ and ∀i < nC(ω)i |= τ ∧ ¬ρ.
If C(ω) |= Gτ ∧ ¬ρ then by the definition of G, ∀n C(ω)n |= τ ∧ ¬ρ. Therefore
∀m C(ωm) |= τ ∧ ¬ρ, since C(ωm) = C(ω)n for some n. Hence by induction we
have ∀m ωm |= T (τ ∧ ¬ρ) = T (τ) ∧ ¬T (ρ). So ω |= GT (τ) ∧ ¬T (ρ), therefore
ω |= (T (τ) ∧ ¬T (ρ))UT(ρ) as required. Now assume that we have n such that
C(ω)n |= ρ and ∀i < n C(ω)i |= τ ∧ ¬ρ. Arguing as before we see that there
is m such that C(ωm) |= ρ and ∀i < m C(ωi) |= τ ∧ ¬ρ. Then by induction we
have ωm |= T (ρ) and ∀i < m ωi |= T (τ) ∧ ¬T (ρ), and from this we see that
ω |= T (τ)UT(ρ).

Now suppose ω |= T (τ)UT(ρ). Suppose that there is m with ωm |= T (ρ) and
∀i < m ωi |= T (τ)∧¬T (ρ). By induction, C(ωm) |= ρ and ∀i < m C(ωi) |= τ ∧¬ρ.
Choosing n such that C(ω)n = C(ωm) we see C(ω)n |= ρ and ∀i < n C(ω)i |= τ∧¬ρ,
but then C(ω) |= τUρ. The case where ω |= GT (ρ) is similar. This completes
the proof of the claim.

To translate a CTL∗ formula, we add the rule T (Eρ) = E T (ρ). Since
A and Ps(A) are weakly bisimilar and the above claim, the reduction from
the RSM model-checking problem (A, φ) to the PDS model-checking problem
(Ps(A), T (φ)) suffices to prove the other half of Theorem 3.

Finally, we have shown above that a PDS with a single state can be translated
to a single-exit RSM, and vice versa. Therefore, model checking for context-free
systems and single-exit RSM are inter-reducible.

3.2 Consequences for Model Checking Problems

We now review what the expressive results above tell us about model checking.
Since the hierarchical state machines of Alur and Yannakakis [2001] are

special cases of RSMs, it is worth reviewing some of the results presented in Alur
and Yannakakis [2001] for this restricted case. The following table summarizes
the results of Alur and Yannakakis [2001] concerning the complexity in the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

798 • R. Alur et al.

Table I. Known Results for RSMs Without Recursion

Class of RSM Reachability Cycle Detection LTL CTL
Restricted Single-exit Linear Linear Linear Linear
Restricted Multiple-exit Linear Linear Linear PSPACE

size of the RSM for RSMs without recursion. It deals with each of the major
verification problems we consider here, except CTL∗ model checking, which was
not discussed in Alur and Yannakakis [2001]. For the model checking problems,
the complexity below means the size of the formula is fixed. Note that Alur
and Yannakakis [2001] also showed that CTL model checking is also PSPACE-
complete in the size of the formula for any fixed restricted RSM.

Thanks to the correspondence theorems established in the previous section,
we can obtain algorithms and complexity bounds for the verification of RSMs
from previously existing algorithms and bounds for the verification of context-
free and pushdown systems.

Consider the case of single-exit RSMs. By Theorem 3, model checking for
single-exit RSMs can be reduced to model checking for context-free systems.
Since LTL model checking for context-free systems can be solved in time linear
in the size of the pushdown automaton [Finkel et al. 1997], LTL model check-
ing for single-exit RSMs can be solved in time linear in the size of the RSM.
This also implies a linear-time algorithm for the reachability and cycle detec-
tion problems. A linear-time algorithm for CTL model checking for single-exit
RSMs can be derived from the CTL model checking algorithm for context-free
systems given in Burkart and Steffen [1992]. Finally, since the µ-calculus model
checking algorithm of Burkart and Steffen [1999] for context-free systems runs
in quadratic time for formulae in the second level of the µ-calculus alterna-
tion hierarchy, which is known to contain CTL∗ [Emerson and Lei 1986], CTL∗

model checking for single-exit RSMs can be solved in time quadratic in the size
of the RSM.

Let us turn to the case of multiple-exit RSMs. By Theorem 3, we know that
model checking for multiple-exit RSMs can be reduced to model checking for
pushdown systems. Since LTL model checking for pushdown automata can be
solved in time cubic in the size of the pushdown automaton [Finkel et al. 1997;
Esparza et al. 2000], LTL model checking for multiple-exit RSMs can be solved
in time cubic in the size of the RSM. Moreover, a cubic-time algorithm for the
reachability and cycle detection problems can easily be derived from this LTL
model checking algorithm. Since we know that the model checking problem
for pushdown systems and the alternation-free µ-calculus is EXPTIME-hard
[Walukiewicz 2001] and that an exponential-time algorithm for solving this
problem is presented in Bouajjani et al. [1997], and since CTL is contained in
the alternation-free µ-calculus, we can deduce that the CTL model checking
problem for multiple-exit RSMs is EXPTIME-complete in the size of the RSM.
Similarly, the exponential-time model-checking algorithm given in Burkart and
Steffen [1999] for pushdown systems and the full µ-calculus, which contains
CTL∗, and the EXPTIME-hardness result of [Walukiewicz 2001] imply that
the CTL∗ model checking problem for multiple-exit RSMs is also EXPTIME-
complete in the size of the RSM.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 799

Table II. Algorithms and Complexity Bounds for RSMs

Class of RSM Reachability Cycle Detection LTL CTL CTL∗

Single-exit Linear Linear Linear Linear Quadratic
Multiple-exit Cubic Cubic Cubic EXPTIME EXPTIME

Table III. Improved Algorithms for RSMs

Class of RSM Reachability Cycle Detection LTL CTL CTL∗

Single-exit Linear Linear Linear Linear Linear
Single-entry Multiple-exit Linear Linear Linear EXPTIME EXPTIME
Multiple-entry Multiple-Exit Cubic Cubic Cubic EXPTIME EXPTIME

The following table summarizes the results we have obtained in the previous
discussion. Complexity bounds are given in the size of the RSM.

In the remainder of this article, we present two improvements to the results of
Table II. First, in the next section, we present an LTL model checking algorithm
for RSMs and define precisely the complexity of this algorithm. We then show
that LTL model checking for single-entry multiple-exit RSMs can be solved with
this algorithm in time linear in the size of the RSM, instead of cubic time (see
Table II). This implies that the reachability and cycle detection problems can
also be solved in linear-time for single-entry RSMs. Second, in Section 5, we
present a new CTL∗ algorithm for single-exit RSMs that runs in time linear in
the size of the RSM, instead of quadratic time (see Table II).

After taking into account these two new results, the complexity of the five
verification problems for RSMs is summarized in Table III. (Improvements
introduced in the two next sections are highlighted in italic.)

4. LINEAR-TIME PROPERTIES

Given a recursive automaton, A, our ultimate goal in this section is to show
how one can verify any properties in linear time temporal logic. We begin by
showing that two key analysis problems, reachability and language emptiness,
can be solved in time O(|A|θ2); more precisely, in time O(eθ + vθ2) and space
O(e+vθ). For notational convenience, we will assume without loss of generality
that all entry nodes of the machines have no incoming edges and all exit nodes
have no outgoing edges.

We will then show how these results immediately imply bounds on model-
checking of properties given as Büchi automata or LTL formulas.

4.1 Reachability

Given A, we wish to compute the set {v | Init ⇒ v}. For clarity, we present our
algorithm in two stages. First, we define a set of Datalog rules and construct an
associated AND-OR graph G A, which can be used to compute information about
reachability within each component automaton. Next, we use this information
to obtain an ordinary graph HA, such that we can compute the set {v | Init ⇒ v}
by simple reachability analysis on HA.
Step 1: The Rules and the AND-OR graph construction. As a first step
we will compute, for each component Ai, a predicate (relation) Ri(x, y). If Ai is
entry-bound, then the variable x ranges over all entry nodes of Ai and y ranges

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

800 • R. Alur et al.

over all vertices of Ai. If Ai is exit-bound, then x ranges over all vertices of Ai
and y ranges over all exit nodes of Ai. The meaning of the predicate is defined
as follows: Ri(x, y) holds if and only if there is a path in TA from 〈x〉 to 〈 y〉.

The predicates Ri(x, y) are determined by a series of simple recursive rela-
tionships that we will write in the style of Datalog rules [Ullman 1988]. Recall
some terminology. An atom is a term P (τ) where P is a predicate (relation) sym-
bol and τ is a tuple of appropriate arity consisting of variables and constants
from appropriate domains. A ground atom has only constants. A Datalog rule
has the form head ← body, where head is an atom and body is a conjunction
of atoms. The meaning of a rule is that if for some instantiation σ , mapping
variables of a rule to constants, all the (instantiated) conjuncts in the body of
the rule σ (body) are true, then the instantiated head σ (head) must also be true.
For readability, we deviate slightly from this notation and write the rules as
“head ← body, under constraint C,” where body includes only recursive pred-
icates, and nonrecursive constraints are in C. We now list the rules for the
predicates Ri. We distinguish two cases, depending on whether the component
Ai has more entries or exits. Suppose first that Ai is entry-bound. Then, we
have the following three rules. (Technically, there is one instance of rule 3 for
each box b of Ai.)
1. Ri(x, x) , x ∈ Eni
2. Ri(x, w) ← Ri(x, u) , x ∈ Eni, (u, w) ∈ Ei
3. Ri(x, (b, w)) ← Ri(x, (b, u)) ∧ R j (u, w) , x ∈ Eni, b ∈ Bi, Yi(b)

= j , u ∈ En j , w ∈ Ex j .

Rule 1 says every entry node x can reach itself. Rule 2 says if an entry x can
reach vertex u, which has an edge to vertex w, then x can reach w. Rule 3 says
if entry x of Ai can reach an entry port (b, u) of a box b, mapped say to the j ’th
component Aj , and the entry u of Aj can reach its exit w, then x can reach the
exit port (b, w) of box b; we further restrict the domain to only apply this rule
for ports of b that are vertices (i.e., (b, u), (b, w) are incident to some edges of
Ai). Rules for exit-bound component machines Ai are similar.
1. Ri(x, x) , x ∈ Exi
2. Ri(u, x) ← Ri(w, x) , x ∈ Exi, (u, w) ∈ Ei
3. Ri((b, u), x) ← Ri((b, w), x) ∧ R j (u, w) , x ∈ Exi, b ∈ Bi, Yi(b)

= j , u ∈ En j , w ∈ Ex j .

The Datalog program can be evaluated incrementally by initializing the rela-
tions with all ground atoms corresponding to instantiations of heads of rules
with empty body (i.e., the atoms Ri(x, x) for all entries/exits x of Ai), and then
using the rules repeatedly to derive new ground atoms that are heads of in-
stantiations of rules whose bodies contain only atoms that have been already
derived. As we’ll see below, if implemented properly, the time complexity is
bounded by the number of possible instantiated rules and the space is bounded
by the number of possible ground atoms. The number of possible ground atoms
of the form Ri(x, y) is at most viθ , and thus the total number of ground atoms
is at most vθ . The number of instantiated rules of type 1 is bounded by the
number of nodes, and the number of rules of type 2 is at most eθ . The number
of instantiated rules of type 3 is at most vθ2.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 801

The evaluation of the Datalog program can be seen equivalently as
the evaluation (reachability analysis) of a corresponding AND-OR graph
G A = (V , E, Start). Recall that an AND-OR graph is a directed graph (V , E)
whose vertices V = V∨ ∪ V∧ consist of a disjoint union of and vertices, V∧, and
or vertices, V∨, and a subset of vertices Start is given as the initial set. Reacha-
bility is defined inductively: a vertex p is reachable if: (a) p ∈ Start, or (b) p is
a ∨-vertex and ∃p′ such that (p′, p) ∈ E and such that p′ is reachable, or (c) p
is a ∧-vertex and for ∀p′ such that (p′, p) ∈ E, p′ is reachable. It is well-known
that reachability in AND-OR graphs can be computed in linear time (see, e.g.,
Anderson [1994]).

We can define from the rules an AND-OR graph G A with one ∨-vertex for
each ground atom Ri(x, y) and one ∧-vertex for each instantiated body of a rule
with two conjuncts (rule of type 3). The set Start of initial vertices is the set
of ground atoms resulting from the instantiations of rules 1 that have empty
bodies. Each instantiated rule of type 2 and 3 introduces the following edges:
For a rule of type 2 (one conjunct in the body) we have an edge from the (∨-
vertex corresponding to the ground) atom in the body of the rule to the atom in
the head. For an instantiated rule of type 3, we have edges from the ∨-vertices
corresponding to the ground atoms in the body to the ∧-vertex corresponding
to the body, and from the ∧-vertex to the ∨-vertex corresponding to the head. It
can be shown that the reachable ∨-vertices in the AND-OR graph correspond
precisely to the ground atoms that are derived by the Datalog program.

The AND-OR graph has O(vθ) ∨-vertices, O(vθ2) ∧-vertices and O(eθ + vθ2)
edges and can be constructed in a straightforward way and evaluated in this
amount of time. However, it is not necessary to construct the graph explicitly.
Note that the ∧-vertices have only one outgoing edge, so there is no reason to
store them: once a ∧-vertex is reached, it can be used to reach the successor ∨-
vertex and there is no need to remember it any more. Indeed, evaluation meth-
ods for Datalog programs maintain only the relations of the program recording
the tuples (ground atoms) that are derived. We describe now how to evaluate
the program within the stated time and space bounds.

Process the edges of the components Ai to compute the set of vertices and
record the following information: If Ai is entry-bound (respectively, exit-bound)
create the successor list (respectively predecessor list) for each vertex. For each
box, create a list of its entries and exits that are vertices (have some incident
edges). For each component Ai and each of its ports u create a list of all boxes b
in all the machines of the RSM A that are mapped to Ai in which the port u of
b has an incident edge (is a vertex). The reason for the last two data structures
is that it is possible that many of the ports of the boxes have no incident edges,
and we do not want to waste time looking at them, since our claimed complexity
bounds charge only for ports that have incident edges. It is straightforward to
compute the above information from a linear scan of the edges of the RSM A.

Each predicate (relation) Ri can be stored using either a dense or a sparse
representation. For example, a dense representation is a bit-array indexed by
the domain (possible tuples) of the relation: Eni ×Vi or Vi ×Exi. Initially all the
bits are 0, and they are turned to 1 as new tuples (ground atoms) are derived.
We maintain a list S of tuples that have been derived but not processed. The

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

802 • R. Alur et al.

processing order (e.g., FIFO or LIFO or any other) is not important. Initially, we
insert into S (and set their corresponding bits) all the ground atoms from rule
1: atoms of the form Ri(x, x) for all entries x of entry-bound machines Ai and
exits of exit-bound machines Ai. In the iterative step, as long as S is not empty,
we remove an atom Ri(x, y) from S and process it. Suppose that Ai is entry-
bound (the exit-bound case is similar). Then we do the following. For every edge
(y , z) ∈ Ei out of y , we check if Ri(x, z) has been already derived (its bit is 1)
and if not, then we set its bit to 1 and insert Ri(x, z) into S. If y = (b, u) is an
entry node of a box b, where say b is mapped to Aj , then for every exit vertex
(b, w) of b we check if R j (u, w) holds; if it does and if Ri(x, (b, w)) has not been
derived, we set its bit and insert Ri(x, (b, w)) into S. If y is an exit of Ri, then
for every box b that is mapped to Ai and in which the corresponding port (b, y)
is a vertex we do the following. Let Ak be the machine that contains the box b.
If (b, x) is not a vertex of Ak nothing needs to be done. Otherwise, if Ak is entry-
bound (respectively, exit-bound), we check for every entry (respectively, exit) z
of Ak whether the corresponding rule 3 can be fired, that is, whether Rk(z, (b, x))
holds but Rk(z, (b, y)) does not (respectively, Rk((b, y), z) holds but Rk((b, x), z)
does not). If so, we set the bit of Rk(z, (b, y)) (respectively, Rk((b, x), z)) and
insert the atom into S. Correctness follows from the following lemma.

LEMMA 4. Let (x, y) be a tuple such that x and y are vertices of Ai, and if Ai
is entry-bound then x ∈ Eni, and if Ai is exit-bound then y ∈ Exi. Then (x, y)
is added to the predicate Ri if and only if 〈x〉 can reach 〈 y〉 in the transition
system TA.

PROOF. An observation we use is that 〈x〉 can reach 〈 y〉 if and only if for
any global state 〈b̄, x〉, there is a path from 〈b̄, x〉 to 〈b̄, y〉 such that every state
along this path has a prefix b̄. This follows easily from the structure of RSMs.

For the forward direction, if (x, y) is added to Ri, all that needs to be observed
is that all the “rules” encoded in G A are sound, and if they can be used to derive
Ri(x, y), then 〈 y〉 must be reachable from 〈x〉 in TA.

For the other direction, suppose there is a path π from 〈x〉 to 〈 y〉. We prove
by induction on the length of π that tuple (x, y) is added to Ri by the rules.
If |π | =1, then x = y , and since Ri(x, x) ← true, is a rule, (x, x) is added to
Ri. Suppose |π | = n + 1, with the last transition being σn → 〈 y〉. Either σn
has the form 〈x ′〉, or the form 〈b, x〉. in which case we know there is a rule
Ri(x) ← Ri(x ′). Thus, there is a corresponding edge (px ′ , px) in G A, and since
by the induction hypothesis x ′ is reachable, so is x. Otherwise, σn has the form
〈b, x〉, and by the fact that 〈b, x〉 → 〈x〉, it must be the case that x = exc for
some exit exc of the component Aj , where Yi(b) = j . In this case, consider
the longest suffix π ′ of the path π , such that each state in π ′, except the last
state 〈exc〉, has a prefix b. Clearly, such a suffix π ′ must begin with a state
〈b, enk〉. Then by the alternative characterization of Ri, and by the induction
hypothesis, it must be the case that there is a path from 〈enk〉 to 〈exc〉, and hence
(assuming, w.l.o.g., that Aj is single-exit) that R j (enk) holds. Thus, by the rule
Ri(b, exc) ← Ri(b, enk) ∧ R j (enk), (and the corresponding edge in G A), p(b,exc) is
reachable in G A.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 803

THEOREM 5. Given RSM A, all predicates Ri can be computed in time
O(|A|θ2) and space O(|A|θ). (More precisely, time O(eθ + vθ2) and space
O(e + vθ).)

Step 2: The augmented graph HA. Having computed the predicates Ri, for
each component, we know the reachability among its entry and exit nodes. We
need to determine the set of nodes reachable from the initial set Init in a global
manner. For this, we build an ordinary graph HA as follows. The set of vertices
of HA is V = ∪Vi, the set of vertices of all the components. The set of edges
of HA consists of all the edges of the components, and the following additional
edges. For every box b of Ai, say b is mapped to Aj , include edges from the entry
vertices (b, u) of b to the exit vertices (b, w) such that R j (u, w) holds. Last, add
an edge from each entry vertex (b, u) of a box to the corresponding entry node
u of the component Aj to which b is mapped. The main claim about HA is:

LEMMA 6. u ⇒ v in RSM A if and only if v is reachable from u in HA.

Thus, to compute {v | Init ⇒ v}, all we need to do is a linear-time depth first
search in HA. Clearly, HA has v vertices and e + vθ edges. Thus we have:

THEOREM 7. Given an RSM A, the set {v | Init ⇒ v} of reachable nodes can
be computed in time O(|A|θ2) and space O(|A|θ).

In invariant verification we are given RSM A, and a set T of target nodes,
and want to determine if Init ⇒ v for some v ∈ T . This problem can be solved
as above in the given complexity. Note that, unlike reachability in FSMs, this
problem is PTIME-complete even for single-entry, non-recursive, RSMs [Alur
and Yannakakis 2001].

For conceptual clarity, we have presented the reachability algorithm as a
two-stage process. However, the two stages can be combined and carried out
simultaneously, and this is what one would do in practice. In fact, we can do
this on-the-fly, and have the reachability process drive the computation and
trigger the rules; that is, we derive tuples involving vertices only when they
are reached by the search procedure. This is especially important if the RSM
A is not given explicitly but has to be generated from an implicit description
dynamically on-the-fly. We defer further elaboration to the full article.

4.2 Checking Language Emptiness

Given an RBA A = (〈A1, . . . , Ak〉, Init, F), we wish to determine whether L(A),
Lb(A), and Lu(A) are empty. Since Lb(A)∪Lu(A) = L(A), it suffices to determine
emptiness for Lb(A) and Lu(A). We need to check whether there are any bounded
or unbounded accepting runs in BA = (TA, Init�, F �). Our algorithm proceeds
in the same two stage fashion as our algorithm for reachability. Instead of
computing predicates Ri(x, y), we compute a different predicate Zi(x, y) with
the same domain Eni ×Vi or Vi ×Exi, depending on whether Ai is entry- or exit-
bound. Zi is defined as follows: Zi(x, y) holds if and only if there is a path in
BA from 〈x〉 to 〈 y〉 that passes through an accept state in F �. We can compute
Zis by rules analogous to those for Ris. In fact, having previously computed
the Ris, we can use that information to greatly simplify the rules governing

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

804 • R. Alur et al.

Zis, so that the corresponding rules are linear and can be evaluated by doing
reachability in an ordinary graph (instead of an AND-OR graph). The rules for
an entry-bound machine Ai are as follows.

1. Zi(x, y) , if Ri(x, y), and x or y ∈ F �, x ∈ Eni, y ∈ Vi
2. Zi(x, w) ← Zi(x, u) , for x ∈ Eni, (u, w) ∈ Ei
3a. Zi(x, (b, w)) ← Zi(x, (b, u)) , if R j (u, w), x ∈ Eni, b ∈ Bi, Yi(b)

= j , u ∈ En j , w ∈ Ex j
3b. Zi(x, (b, w)) ← Z j (u, w)) , if Ri(x, (b, u)), x ∈ Eni, b ∈ Bi, Yi(b)

= j , u ∈ En j , w ∈ Ex j

The rules for exit-bound components Ai are similar. Let G ′
A be an ordinary

graph whose vertices are the possible ground atoms Zi(x, y) and with edges
(t1, t2) for each instantiated rule t2 ← t1. The set Start of initial vertices is the
ground atoms from rule 1. Then the reachable vertices are precisely the set
of true ground atoms Zi(x, y). G ′

A has O(vθ) vertices and O(eθ + vθ2) edges.
Again we do not need to construct it explicitly, but can store only its vertices
and generate its edges as needed from the rules.

LEMMA 8. All predicates Zi can be computed in time O(|A|θ2) and space
O(|A|θ).

Having computed Zis, we can analyze the graph HA for cycle detection. Let Fa
be the set of edges of HA of the form ((b, x), (b, y)), connecting an entry vertex
to an exit vertex of a box b, mapped say to Aj , and for which Z j (x, y) holds. Let
Fu be the set of edges of the form ((b, x), x) where (b, x) is a vertex and x is an
entry of the component to which box b is mapped (i.e., the edges that correspond
to recursive invocations).

LEMMA 9. The language Lu(A) is nonempty if and only if there is a cycle in
HA reachable from some vertex in Init, such that the cycle contains both: (1) an
edge in Fa or a vertex in F , and (2) an edge in Fu.

We need a modified version H ′
A of HA in order to determine emptiness of

Lb(A) efficiently. The graph H ′
A is the same as HA except the invocation edges

in Fu are removed. Also, the set of initial vertices need to be modified: let En′

denote the vertices en of HA, where en is an entry node of some component in
A, and en is reachable from some vertex in Init in HA.

LEMMA 10. Lb(A) is nonempty if and only if there is a cycle in H ′
A reachable

from some vertex in En′, such that the cycle contains an edge in Fa or a vertex
in F .

Both HA and H ′
A have v vertices and O(e + vθ) edges. We can check the

conditions in the two lemmas in linear time in the graph size, using standard
cycle detection algorithms.

THEOREM 11. Given RBA A, we can check emptiness of L(A), Lb(A) and
Lu(A) in time O(|A|θ2) and space O(|A|θ).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 805

4.3 Model Checking of LTL Properties and Büchi Automata

Following the automata-theoretic approach to model-checking [Vardi and
Wolper 1986], a model-checking procedure for a formula φ of linear-time
temporal logic can be obtained by (1) building a finite-state Büchi automaton
A¬φ that accepts exactly all the infinite words satisfying the formula ¬φ, (2)
computing the product of A¬φ with the system to be verified, and (3) checking
if this product is nonempty. Hence to be able to check LTL properties, it suf-
fices to be able to check properties given as a Büchi automaton, and any bound
on the model checking of the latter in terms of the size of the RSM will apply
to the former.

Thus we focus on the automata-based model checking problem whose input
consists of an RSM A over � and an ordinary Büchi automaton B over �. The
model checking problem is to determine, whether the intersection L(A) ∩ L(B)
is empty, or whether Lb(A) ∩ L(B) (Lu(A) ∩ L(B)) is empty if we wish to re-
strict to bounded (unbounded) runs. Having given algorithms for determin-
ing emptiness of L(A), Lb(A), and Lu(A) for RBAs, what model checking re-
quires is a product construction, which given a Büchi automaton B and RSM
A, constructs an RBA that accepts the intersection of the languages of the
two.

The product RBA A′ = A ⊗ B of A and B is defined as follows. A′ has the
same number of components as A. For every component Ai of A, the entry-nodes
En′

i of A′
i are Eni × Q B, and the exit-nodes Ex ′

i of A′
i are Exi × Q B. The nodes

N ′
i of A′

i are Ni × Q B while the boxes B′
i are the same as Bi with the same

label (that is, a box mapped to Aj is mapped to A′
j). Transitions δ′

i within each
A′

i are defined as follows. Consider a transition (v, σ, v′) in δi. Suppose v ∈ Ni.
Then for every transition (q, σ, q′) of B′, A′

i has a transition ((v, q), σ, (v′, q′)) if
v′ is a node, and a transition ((v, q), σ, (b, (e, q′))) if v′ = (b, e). The case when
v = (b, x) is handled similarly. Repeating nodes of A′ are nodes of the form (v, q)
with q ∈ FB. The construction guarantees that L(A ⊗ B) = L(A) ∩ L(B) (and
Lb(A ⊗ B) = Lb(A) ∩ L(B) and Lu(A ⊗ B) = Lu(A) ∩ L(B)). Analyzing the cost
of the product, we get the following theorem:

THEOREM 12. Let A be an RSM of size n with θ as the maximum of minimum
of entry-nodes and exit-nodes per component, and let B be a Büchi automaton
of size m with a states. Then, checking emptiness of L(A)∩ L(B) and of Lb,u(A)∩
L(B), can be solved in time O(n · m · a2 · θ2) and space O(n · m · a · θ). For an LTL
formula φ, checking whether all paths through A satisfy φ can be solved in time
and space given the above, where now m = 2|φ|.

5. BRANCHING TIME MODEL CHECKING FOR SINGLE-EXIT RSMS

In this section, we extend the results on linear-time model-checking to the
branching time logic CTL∗, by presenting an algorithm for single-exit RSMs
that runs in time linear in the size of the RSM. The algorithm is presented
in the next subsection, while the remainder of the section is devoted to its
correctness proof.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

806 • R. Alur et al.

function DECOMP(φ: LTL formula) returns Set of pairs (β ∈LTL+, δ ∈LTL)
[1] if (φ = P) then return({(P, true)})
[2] if (φ = φ1 ∨ φ2) then return(DECOMP(φ1) ∪ DECOMP(φ2))
[3] if (φ = ¬φ1) then return(

⋃
A⊆DECOMP(φ1)(

∧
(β,δ)∈A ¬β,

∧
(β,δ)∈DECOMP(φ1)−A ¬δ))

[4] if (φ = X φ1) then return(
⋃

(β,δ)∈DECOMP(φ1)(Xβ, δ) ∪ {(exit, φ1)})
[5] if (φ = φ1Uφ2) then return(

⋃
∅�=A⊆DECOMP(φ1)(G

∨
(β,δ)∈A β,

∧
(β,δ)∈A δ ∧ φ1Uφ2)

∪ ⋃
∅�=A⊆DECOMP(φ1)

⋃
(β ′,δ′)∈DECOMP(φ2)(

∨
(β,δ)∈A βUβ ′, δ′ ∧ ∧

(β,δ)∈A δ))}
Fig. 2. The function DECOMP.

5.1 The Branching-Time Algorithm

A key technical challenge is that the truth value of a temporal-logic formula in
any state 〈�b, u〉 of the enfolding TA of an RSM may not only depend on the node
u but also on the stack contents �b. Fortunately, it is sufficient to consider only
finitely many equivalence classes of possible stack contents, each equivalence
class being represented by a context, as already observed in Burkart and Steffen
[1992, 1999]; Alur and Yannakakis [2001]. A context is a set of (here CTL∗)
formulas whose truth value at the exit node of a machine Ai determine the
truth value of a formula φ at the root. The notion of context makes it possible
to reason compositionally about RSMs.

Our algorithm exploits this idea and reduces the evaluation of a path formula
φ on a sequence w; w′ of states, where w is finite while w′ is infinite, to the
evaluation of some formulas β and δ on the sequences w and w′, respectively.
We introduce a special atomic proposition exit, which holds only at the final
state of a finite sequence w, and denote by LTL+ the set of LTL formulas that
can be expressed using this extended set of atomic propositions. The function
DECOMP given in Figure 2 specifies how the evaluation of an LTL formula
φ can be decomposed as described above. (A conjunction over an empty set of
formulas is defined to have the value true.) For instance, w; w′ |= X p can be
decomposed either into w |= X p and w′ |= true (for the case where |w| > 1), or
into w |= exit and w′ |= p (for the case where |w| = 1).

Given a set F of CTL∗ state formulas, let exists(F) denote the set of ex-
istential formulas that are elements or subformulas of elements of F . A
set F of existential CTL∗ formulas is closed if, for every γ = Eρ(p(γ1) ←
γ1, . . . , p(γn) ← γn) ∈ exists(F), for every δ such that (β, δ) ∈ DECOMP(ρ),
Eδ(p(γ1) ← γ1, . . . , p(γn) ← γn) is also in F . The closure cl(φ) of a CTL∗ formula
φ is the smallest closed set containing exists({φ}). One can show, using proper-
ties of DECOMP, that cl(φ) is always finite for any CTL∗ formula φ. Let pd(φ)
be the maximal nesting of path quantifiers (E) in a CTL∗ formula φ. Given a
set F of CTL∗ formulas, let pd(F) = maxγ∈F (pd(γ)). For φ with pd(φ) ≥ j , let
cl≤ j (φ) be the elements of cl(φ) with at most j nested path quantifiers. Clearly,
cl≤ j (φ) is a closed set and pd(cl≤ j (φ)) = j .

For any closed set F , an F-context is any assignment of truth values to all
elements of F . We say that a labeled transition system K with a fixed initial
state s0 satisfies an F-context C, written K |= C, if, for all γ ∈ F , (K , s0) |= γ

if and only if C(γ) = true. An F -context is consistent if it is satisfied by some
structure. All the F -contexts generated by our model-checking algorithm will
be consistent by construction. We often identify an F -context with the elements

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 807

Fig. 3. Construction of the context-dependent RSM.

set to true by it. For an RSM A, a node v ∈ A , an F -context C, and a formula
γ ∈ F , we say (A, v) satisfies γ in context C, written (A, v) |=C γ , if, for all K ,
K |= C ⇒ ((TA; K), v) |= γ , where TA; K is the labeled transition system ob-
tained from TA by identifying the top-level exit node of TA with the initial state
of K .

Given a closed set F of existential formulas, an RSM A whose nodes are la-
beled with formulas in {γ ∈ F |pd(γ)< pd(F)}, and an F -context C, the function
CONT presented in Figure 3 constructs a new RSM A∗ from multiple copies of
A, each of which is indexed by an F -context c. The edges of A∗ in copy (A j ,c)
are supplementarily labeled by state formulas γ ∈ F representing the truth
value of γ in the corresponding node of A in the context c. It will be shown
below that an edge of the form ((u, c), (v, c)) in A∗ is labeled with γ ∈ F if and
only if (M , u) |=c γ (hence, in particular, for labels other than the atomic action
symbols, the label of an edge will depend only on the source of the edge).

In algorithm CONT, we will abuse notation somewhat by having the function
Yi in input and output map a box to a component, rather than its index.

CONT uses a variant of the LTL model-checking algorithm from Section 4,
called LTLALG. Given a formula of the form Eρ(p(γ1,) . . . , p(γn)) where ρ is
an LTL+ formula over atomic propositions including p(γ1,) . . . , p(γn), and an
RSM A whose edges are also labeled with propositions in p(γ1,) . . . , p(γn),
LTLALG(Eρ , A) returns the set of nodes v of A such that (v, ε) |= Eρ. This

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

808 • R. Alur et al.

Fig. 4. CTL∗ model-checking algorithm.

is done exactly as described in Section 4, except for the following three mod-
ifications. First, LTLALG evaluates formulas of the form Eρ instead of Aρ.
Second, we still need to define how formulas of LTL+ are evaluated on A: we
say that a formula Eρ where ρ is in LTL+ is satisfied in a node v of a machine
Ai if there is a path w from (v, ε) that satisfies ρ, such that either w is infinite
or w terminates at (x, ε), where x is the exit node of Ai. Third, we also extend
the evaluation of formulas to include “return vertices” (pairs (b, x)). We say that
the return vertex (b, x) satisfies a formula Eρ if and only if the exit node x of
box b satisfies Eρ when b is the only element of the stack; in other words, we
define 〈ε, (b, x)〉 |= Eρ if and only if 〈b, x〉 |= Eρ. It is easy to extend the LTL
model-checking algorithm of Section 4 to meet these additional requirements.

By repeatedly invoking CONT with cl≤ j (φ) for increasing values of j , 1 ≤ j ≤
pd(φ)—larger and larger subsets of cl(φ)—one can thus evaluate CTL∗ formulas
in a bottom-up manner. This is what is done in function CHECK presented in
Figure 4. Since any CTL∗ formula φ is a Boolean combination of existential for-
mulas φi, finding the vertices of a component Aj of an RSM A satisfying φ can be
reduced to finding the vertices of Aj satisfying each φi. This is done by comput-
ing CHECK(φi, A, C∅) where C∅ is the set of formulas γ in cl(φi) that evaluate
to true at a single node with a self-loop. Since C∅ is consistent, all subcontexts
derived from it during the execution of the algorithm are also consistent. The
correctness of the algorithm is established by the following theorem, proved
later on in this section.

THEOREM 13. Given a single-exit RSM A, a node v of some machine Aj , and
an existential CTL∗ formula φi , (v, ε) satisfies φi if and only if v is included in
the set of nodes returned by CHECK(φi, A, C∅).

An analysis of the overall complexity of CHECK reveals that the number
of contexts over F = cl(φ) and the number of pairs of formulas returned by
DECOMP on these formulas depends only on φ. This implies that the size of each
Aj in Figure 4 is linear in A for any fixed φ. Moreover, the number of formulas
on which the LTL algorithm is invoked in CONT is bounded independently of
the size of A. Hence, the run-time complexity of the function CONT and the size
of the returned RSM A∗ are linear in the input RSM A for any fixed formula φ

and closed set F . Therefore, the CTL∗ model-checking problem for a single-exit
RSM A can be solved in time linear in the size of A.

5.2 Correctness Proofs

5.2.1 Proof of Correctness of Algorithm DECOMP. The following theorem
summarizes the property we need of algorithm DECOMP:

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 809

THEOREM 14. For any φ ∈ LTL for any ω-string ρ, for any finite nonempty
path π and infinite path γ , π.γ |= φ if and only if there are (β, δ) ∈ DECOMP(φ),
such that π |= β and γ |= δ.

PROOF. By induction on the structure of φ. For atomic P it is clear that π.γ |=
P if and only if π |= P for π nonempty. The disjunction case is routine. For the
negation case,we have π.γ |= ¬φ if and only if there is no (β, δ) ∈ DECOMP(φ)
such that π |= β and γ |= δ. This is a Boolean combination of statements
about π and γ , and putting this into disjunctive normal form, one arrives at
the expression in line [3] of DECOMP. For the X case, we have π.γ |= X φ1 if
and only if one of the following holds: either π = a.π ′ with |dom(a)| = 1 and
π ′.γ |= φ1, or |π | = 1 and γ |= φ1. From this and induction, we get equality with
line [4] of DECOMP .

For the until case, suppose we have π.γ |= φ1Uφ2. We first show that this
implies that π and γ satisfy one of the “disjuncts” (the two sets being unioned)
of line [5] of DECOMP . For every n < |π |, let πn be the suffix of π starting at n.

Case 1: Suppose that there is n such that ∀i < n πi.γ |= φ1 and πn.γ |= φ2.
By induction, for each i there is (βi, δi) ∈ DECOMP (φ1) such that πi |= βi and
γ |= δi. Likewise, there is (β ′, δ′) ∈ DECOMP(φ2) such that πn |= β ′ and γ |= δ′.
Let A = {(βi, δi) : i < n}, we see that the second disjunct in line [5] is satisfied.

Case 2: If not case 1, then it must be that ∀i πi.γ |= φ1 and γ |= φ1Uφ2. By
induction, choose (βi, δi) ∈ DECOMP (φ1) such that πi |= βi and γ |= δi . Setting
A = {(βi, δi) : i < n} we have a witness for the first disjunct in line [5].

Conversely, we prove that if π.γ satisfies either of the disjuncts in line
[5] then it satisfies φ1Uφ2. If it satisfies the first disjunct, let nonempty
A ⊂ DECOMP (φ1) witness this. Clearly, we have γ |= φ1Uφ2. Let πn be as
above. We claim that ∀n πn.γ |= φ1, which would suffice to prove the con-
clusion, since this says π.γ satisfies φ1 at all times up to |π | and afterwards
π.γ satisfies φ1Uφ2. But this claim follows by induction, because for some
(β, δ) ∈ DECOMP (φ1) πn |= β and γ |= δ. Now suppose π.γ satisfies the second
disjunct, and let ∅ �= A ⊂ DECOMP (φ1) and (β ′, δ′) ∈ DECOMP (φ2) witness
this. Choose (β1, δ1) ∈ A such that π |= β1Uβ ′. Let πn be as above, and consider
any n such that πn satisfies β1. Since γ |= δ1 (by induction, since it satisfies ev-
ery (β, δ) ∈ A), we have πn.γ |= φ1. For any πn satisfying β ′, we have πn.γ |= φ2,
since γ |= δ′. So using π |= β1Uβ ′ we conclude π.γ |= φ2. This completes the
proof of Theorem 14.

5.2.2 Correctness Statement for CHECK and Preliminaries. Recall that in
the machine Ak edges are labeled with collections of state formula (in addition
to their action labels). For these new labels, the value of the label depends only
on the source of the edge, hence we will talk equivalently about the label of a
vertex in Ak . The main correctness result for branching time is the following:

THEOREM 15. ∀(n, C) ∈ Ak , ∀φ ∈ F : (n, C) is labeled with φ if and only if
(A, v) |=C φ.

This theorem says that we can read off the result of any context-dependent
model-checking problem by just looking at labels in Ak . Before we start the
proof, we will need to build up some facts about the construction in algorithms

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

810 • R. Alur et al.

CONT and CHECK used in the proof. We will first get a nice representation of
vertices and component machines in the context-dependent RSM Ak produced
by CHECK . We will then get information on the labeling of edges in Ak .

First notice (line [27] of CONT) that the RSM A∗ = CO N T (A) has component
machines of the form (Ai, C) where C is a k-context and Ai is a component of
the initial machine A, with each (Ai, C) being a copy of Ai, with vertices of the
form (n, C) for n ∈ Ai. When we iterate this process to get Ak , this will result in
components of the form ((. . . (((Ai, C1), C2), C3) . . . , Ck)) and vertices of the form
nk = ((((. . . (((n, C1), C2), C3) . . . , Ck)) for n ∈ A. Given j < k we let πk j be the
projection map taking nk of the above form to ((((. . . (((n, C1), C2), C3) . . . , Cj).
The following observation will show that we do not actually have to deal with
such a messy representation:

CLAIM 1. For any component of the above form occurring in Ak, the Ci must
be consistent, in the sense that Cj |dom(Ci) = Ci. Furthermore, the map πk j
preserves labels, in the sense that if a node nk is labeled with φ in Ak and
pd (φ) < k , then πk j (nk) is labeled with φ as well.

This claim implies that the components of lower index than k are deter-
mined by the component Ck , hence we can without loss of generality treat
a component machine in Ak as being of the form (Ai, Ck) with Ck a k-
context and Ai a component of the original machine. Recalling that nodes
vk of Ak have the form ((. . . (((n, C1), C2), C3) . . . , Ck)), for n ∈ Ai where vk ∈
((. . . (((Ai, C1), C2), C3) . . . , Ck)) it also follows from the claim that we can sim-
plify the representation of nodes in Ak : they can be taken to be of the form
(n, Ck) where n ∈ A.

Claim 1 is in turn implied by applying inductively the following two facts
about the CONT algorithm:

� For F and A as in CONT, for any node (m, C) ∈ M ∗ and φ with pd (φ) < pd (F),
if m is labeled with φ in A then (m, C) is labeled with φ in A∗ (assignments
are consistent).

� Suppose we have a call vertex (c, C) on box (b, C) in component machine
(Ai, C) ∈ M ∗, calling machine (Aj , D) ∈ M ∗. Then c calls Aj from Ai in A,
and D is exactly the label of ((b, x), C) in A∗.

Note that the first item shows that the labeling is consistent, and the second
shows that every context used in A∗ corresponds to some labeling in A∗, hence
the claim follows from these two items. The first item follows by tracing back
what happens to a simple formula γ = E P (γ1) with pd (γ1) < pd (F) in lines
[2]–[8] (in CONT, as always when we give line numbers in this subsection): we
have N (γ) is just {n ∈ M : n is labeled with P (γ1)}, and Nodes1(Ai, γ) is just the
above set intersected with Ni. From this it follows that at line [17], Sat(Ai, c, γ)
will again be just the nodes labeled with P (γ1). Now at line [30], we see that a
node (m, c) is labeled with γ of the form above if and only if m is labeled with
P (γ1).

The second item above follows from comparing line [30] (referring back to
[19]) and line [28] for the case where v is an exit node. Line [30] says that

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 811

((b, x), C) is labeled with {γ : (b, x) ∈ Sat(Ai, C, γ)}, and line [28] combined
with [19] says that (b, C) calls (Ak , C′) with C′ = {γ : (b, x) ∈ Sat(Ai, C, γ)}.

This completes the proof of Claim 1.
So given the now simplified form of the elements of Ak as (m, C), we let η be

the projection map taking a node (m, C) in Ak to the node m ∈ A. The mapping
η maps nodes in Ak back to nodes in A, while conversely if we are given a
path π starting at some node n in A and an initial context C, we can get a
path through Ak that starts at (n, C). Formally, for every k-context C there is
a unique mapping taking a finite path π in TA to a path πk,C in Ak such that:
π (0) ∈ Ai ↔ πk,C(0) ∈ (Ai, C) and η(πk,C(n)) = π (n).

Recall that nodes in Ak are labeled with formulas φ. We give two conditions
(C1) and (C2) below that characterize how the labeling of formulae E ρ(p(λ1) ←
λ1, . . . p(λq) ← λq) relates to the labeling by λi in Ak .

LEMMA 16. Let φ = E ρ(p(λ1) ← λ1, . . . p(λq) ← λq) where ρ is in LTL with
q propositional variables and pd (λi) ≤ k −1, and let (n, C) be a node in machine
(M , C) ∈ M k. Then (n, C) is labeled by φ in Ak if and only if one of the following
holds:

� There is an infinite path π from (n, C) through Ak whose labels satisfy ρ (C1)
� There is a finite path π0 from (n, C) leading to the exit node of (M , C) with

empty stack, and formulae (β, δ) ∈ DECOMP(ρ) such that π0 satisfies β and
E δ(p(λ1) ← λ1, . . . p(λq) ← λq) ∈ C (C2)

PROOF. To see that nodes satisfying condition (C1) are labeled with φ, ob-
serve that the construction lines [2],[6],[17] includes in Sat(Ai, c, γ) all nodes
that satisfy LT LALG (ρ). So by correctness of the LTL algorithm, and the
way Sat determines the labeling in [30], we see that nodes with paths sat-
isfying the first item above are included in the label. Similarly, lines [3]-
[4],[7]-[8] and [17] guarantee that Sat(Ai, C, γ) includes all nodes that satisfy
LTLALG (E (β ∧ Fexit)) for (β, δ) ∈ DECOMP(ρ) with E δ in C. The fact that
the nodes satisfying condition (C2) are labeled with φ now follows from the cor-
rectness of the LTL algorithm. It is also easy to check that every node labeled
with φ satisfies (C1) or (C2).

We give one final fact about the Ak which follows from the argument in
Claim 1, which we will use implicitly in the sequel:

PROPOSITION 17. A call vertex (Ai, c) from machine (Ai, C) in Ak goes to
(Aj , D) if and only if c goes from Ai to Aj in A and the return vertex (r, C)
of (Ai, C) is labeled with (exactly) the formulas in D in (Ai, C) (P3)

5.2.3 Proof of Theorem 15. We will now prove the following result π (k), by
induction on k:

CLAIM 2. ∀C ∈ Context(k) ∀n ∀φ with pd (φ) ≤ k ∀ path π with π (0) ∈ Ai,
and ∀K with K |= C, suppose that D and j are such that πk,C(n) ∈ (Aj , D), and
let s be the stack at πk,C(n). Then:

For all m ∈ Aj (TA; K , 〈s, m〉) |= φ if and only if (m, D) is labeled with φ in
Ak.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

812 • R. Alur et al.

Fig. 5. The situation of Claim 2.

Figure 5 shows a simplified version of the situation we are in here: we have
a path π going through the infinite LTS TA; K , where K satisfies the context
C. This path may go through a call vertex c (or several) and π (n) may ar-
rive in another machine Aj with c on the stack. The original path in TA; K is
shown above the line in the picture, while the corresponding path through Ak

is shown below the line. The lifted path πk,C must go through calls every time
π does, going through (c, C) to get to machine (Aj , D) and arriving at time n at
(v, D) for some other context D. At this point we compare the formulae satisfied
by the node 〈c, v〉 (in the general setting 〈c1 . . . cn, v〉) in the unfolding TA; K with
the labels on (v, D) in Ak . The Claim asserts that these two sets of formulae are
the same.

To see how this claim proves Theorem 15, fix φ and C, and for any node m
consider a path with π (0) = m. Then we have have for all K with K |= C,
(TA; K , 〈∅, m〉) |= φ if and only if (m, C) is labeled with φ in Ak . Hence (m, C) is
labeled with φ in Ak if and only if A, m |=C φ.

To start the inductive proof, assume that the above holds for k. We prove the
same result for k + 1. This we prove by a nested induction, on the stack depth
l of π (n) (the height of the stack at π (n)) . Suppose we have this up to l and
let n be minimal such that π (n) has nesting depth l + 1 but the result doesn’t
hold. Fix C, K φ and π that witness this. Let s be the stack at π (n). So we have
π (n) ∈ Aj with (TA; K , 〈s, π (n)〉) |= φ but πk,C(n) is not labeled with φ in Ak .
π (n) must be the start node s0 of machine Aj called from a call vertex c in a
machine Ai (since otherwise π (n − 1) would be the minimal counterexample,
since the statement refers to all nodes in the same machine). Hence s = s′.c,
and π (n − 1) must be the predecessor of a call c to Aj , with return vertex r. So
πk,C(n) is in some machine (Aj , D) ∈ M k while πk,C(n − 1) is in (Ai, E). Since
π (n − 1) has stack depth k, we know by the inner induction that for all ρ with
pd (ρ) ≤ k ∀r ∈ Ai (r, E) is labeled with ρ if and only if (TA; K , 〈s′, r〉) |= φ.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 813

Fig. 6. The induction step of Claim 2.

Applying this to the return vertex r and noting that (r, E) is the return vertex
for (c, D) in Ak , the node linked to by πk,C(n − 1), we see by the construction of
Ak (see comments at beginning of previous subsection) that (r, E) is the return
vertex for πk,C(n). This in turn implies by (P3) that D = {ρ : (r, E) is labeled
with ρ}. Putting these facts together we have D = {ρ : (TA; K , 〈s′, r〉) |= φ}. The
situation is now illustrated by Figure 6.

Checking back what it means for π (n) to be a counterexample, we know that
there is a node m ∈ Aj , such that (TA; K , 〈s, m〉) |= φ but (m, D) is not labeled
with φ. Note that (TA; K , 〈s, m〉) |= φ if and only if (TA; K ′, 〈∅, m〉) |= φ, where
K ′ is the machine TA; K initialized at 〈s′, r〉. By the last paragraph we know
that the formulae of pd (k + 1) satisfied by K ′ are exactly D.

Write φ as E ρ(p(λ1) ← λ1, . . . p(λq) ← λq) where ρ is in LTL and pd (λi) ≤ k.
By assumption, we know (TA; K , 〈s, m〉) |= φ, so there is a path π that witnesses
this. We now divide up into cases depending on whether π leaves TA or not.

Case 1: The stack on π never shrinks below s (i.e. π never emerges back
through r).

For all v ∈ N (TA; K ′, 〈∅, π (v)〉) |= λi if and only if in Ak π D,k(v)) is labeled
with λi, by the outer induction, the fact that all the nodes lie in TA, the fact
that K ′ |= D, and the equivalence of (TA; K , 〈s, m〉) and (TA; K ′, 〈∅, m〉). Hence
if we consider π D,k , it is a path starting at (m, D) whose labels satisfy ρ in
Ak . But then, using the condition (C1) in Lemma 16 above, m is labeled with
E ρ(p(λ1) ← λ1, . . . p(λq) ← λq) in Ak , which is what we wanted.

Case 2: π exits (Aj , D) through r.
Let π0 be the part of π before the exit, and γ0 be the (infinite) suffix of π0 in

π , considered as a path. By the definition of DECOMPand Theorem 14, there
is (β, δ) ∈ DECOMP(ρ) such that π0 witnesses (TA; K , 〈s, m〉) |= E β(p(λ1) ←
λ1, . . .) and γ0 witnesses (TA; K , 〈s′, r〉) |= E δ(p(λ1) ← λ1, . . .).
We now know from the above that D contains E δ(p(λ1) ← λ1, . . .).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

814 • R. Alur et al.

As above, we can argue that for all v < |π0| (TA; K ′, 〈∅, π (v)〉) |= λi if and
only if in Ak π

D,k
0 (v)) is labeled with λi. Hence if we consider π

D,k
0 , it is a

path starting at (m, D) whose labels satisfy β(p(λ1) ← λ1 . . .) in Ak . But then,
by the property (C1) of the construction listed above, (m, D) is labeled with
E β(p(λ1) ← λ1, . . . p(λq) ← λq) in Ak . Using the fact that (β, δ) ∈ DECOMP(ρ)
and condition (C2) from Lemma 16, we have that (m, D) is labeled with
E ρ(p(λ1) ← λ1, . . . p(λq) ← λq), which is what we needed.

This completes the proof of Theorem 15.

6. DISCUSSION

Efficiency and Context-Free Reachability: Given a recursive state ma-
chine of size n with θ maximum entry/exit-nodes per component, our reacha-
bility algorithm takes time O(n · θ2) and space O(nθ). It is unlikely that our
complexity can be substantially improved. Consider the standard parsing prob-
lem of testing CFL-membership: for a fixed context-free grammar G, and given
a string w of length n, we wish to determine if G can generate w. The classic
C-K-Y algorithm for this problem requires O(n3) time. Using fast matrix mul-
tiplication, Valiant [1975] was able to slightly improve the asymptotic bound,
but his algorithm is highly impractical. A related problem is CFL-reachability
[Yannakakis 1990; Reps 1998], where for a fixed grammar G, we are given a di-
rected, edge-labeled, graph H, having size n, with designated source and target
nodes s and t, and we wish to determine whether s can reach t in H via a path
labeled by a string in L(G). CFL-membership is the special case of this problem
where H is just a simple chain graph whose edges are labeled by the symbols
of w. Unlike CFL-membership, CFL-reachability is P -complete, and the best
known algorithms require �(n3) time [Yannakakis 1990]. Using the close corre-
spondence between recursive machines and context-free grammars, a grammar
G can be translated to a recursive state machine AG . To test CFL-reachability,
we can take the product of AG with H, and check for reachability. The product
has size O(n), with O(n) entry-nodes per component, and O(n) exit-nodes per
component. Thus, since our reachability algorithm runs in time O(n3) in this
case, better bounds on reachability for recursive state machines would lead to
better-than-cubic bounds for parsing a string and for CFL-reachability, as well
as for a variety of other automaton problems and program-analysis problems
[Heintze and McAllester 1987; Melski and Reps 2000; Reps 1998].

Section 4 presented a method based on AND-OR graphs to check properties of
recursive state machines when properties are expressed in linear-time temporal
logic. An alternative method, based directly on CFL-reachability, was given by
Benedikt, Godefroid, and Reps [Benedikt et al. 2001] their LTL model-checking
algorithm makes use of a method for detecting cyclic paths that meet a CFL
condition.

Extended Recursive State Machines: In the presence of variables, our algo-
rithms can be adopted in a natural way by augmenting nodes with the values of
the variables. Suppose that we have an extended recursive state machine A with
Boolean variables (similar observations apply to more general finite domains),
and the edges have guards and assignments that read/write these variables.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 815

Suppose each component refers to at most k variables (local or global), and that
it has at most either d input variables or d output variables (i.e., global vari-
ables that it reads or writes, or parameters passed to and from it). Then, we can
construct a recursive state machine of size at most 2k · |A| with the same num-
ber of components. The derived state machine has θ = 2d . Thus, reachability
problems for such an extended recursive state machine can be solved in time
O(2k+2d · |A|). Note that such extended recursive state machines are basically
the same as the Boolean programs of Ball and Rajamani [2000].

Concurrency: We have considered only sequential recursive state machines.
Recursive state machines define context-free languages. Consequently, it is easy
to establish that typical reachability analysis problems for a system of commu-
nicating recursive state machines are undecidable. Our algorithms can however
be used in the case when only one of the processes is a recursive state machine
and the rest are ordinary state machines. To analyze a system with two re-
cursive processes M1 and M2, one can possibly use abstraction and assume-
guarantee reasoning: the user constructs finite-state abstractions P1 and P2 of
M1 and M2, respectively, and we algorithmically verify that (1) the system with
P1 and P2 satisfies the correctness requirement, (2) the system with M1 and
P2 is a refinement of P1, and (3) the system with P1 and M2 is a refinement of
P2.

Other Related Work: Systems of hierarchically structured equations were
used by Cousot and Cousot [1978] and Sharir and Pnueli [1981] to specify and
solve interprocedural dataflow-analysis problems. Although these algorithms
are not based on graph reachability, Sharir and Pnueli used an explicit, hier-
archically structured, single-entry/single-exit graph to represent the program,
and introduced a context-free language constraint to specify that the contribu-
tions of certain kinds of infeasible execution paths were to be filtered out.

CFL-reachability in multi-entry/multi-exit graphs has been used to give
algorithms for context-sensitive interprocedural slicing [Horwitz et al. 1990,
1994] as well as for certain kinds of context-sensitive interprocedural dataflow-
analysis problems [Reps et al. 1995]. Similar techniques—but ones that go be-
yond pure CFL-reachability—have been used to give cubic-time algorithms for
a larger class of context-sensitive interprocedural dataflow-analysis problems
[Sagiv et al. 1996]. The latter work deals with multi-entry/multi-exit graphs
labeled with (function-valued) weights on the edges.

Methods for counting various quantities in hierarchically structured graphs
are used in Melski and Reps [2000] and Chatterjee et al. [2003]. In this work, it
is possible to perform arithmetic operations because the graphs are restricted so
that the number of paths that meet a certain CFL condition is finite. Techniques
given in Chatterjee et al. [2003] provide an alternative approach to the problem
of testing a bounded-acceptance condition, and have been applied to stack-size
analysis in embedded-systems code.

PDSs have also been extended with weights: weighted PDSs have weighted
transition rules, where the weights are either drawn from a closed semiring
[Bouajjani et al. 2003] or a meet semi-lattice [Schwoon et al. 2003; Reps et al.
2003].

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

816 • R. Alur et al.

Systems: Several systems exist that implement ideas related to the ones dis-
cussed in this article:

� The Wisconsin Program-Slicing Tool [Horwitz et al. 1997] supported context-
sensitive interprocedural program slicing of ANSI C programs. In this case,
the hierarchically structured graphs of interest were “system dependence
graphs” [Horwitz et al. 1990, 1994], which capture a program’s control and
data dependences.

This system became the basis for a commercial product, CodeSurfer®

[Gamma Tech, Inc. 2000], a tool for code understanding and code inspection
that supports browsing (“surfing”) of an ANSI C program’s system depen-
dence graph, as well as a variety of operations for making queries about the
dependence graph, such as slicing and chopping [Reps and Rosay 1995]. Re-
cently, an experimental version of CodeSurfer has been created that builds
system dependence graphs for x86 executables [Balakrishnan and Reps
2004].

� Slam [Ball and Rajamani 2000] performs reachability in a Boolean program
(which models a C program of interest) to identify violations of temporal
safety properties. Slam’s intended domain of application is the verification
of properties of device drivers. In addition to reachability, Slam uses de-
cision procedures to determine whether potential error paths are actually
infeasible—and hence represent false alarms—in the program being mod-
eled. Information gathered during this process is used to iteratively refine
the Boolean program that models the program’s semantics.

� Moped [Schwoon 2002] is a model checker for pushdown systems. It supports
pre* and post* queries, LTL model checking, and reachability analysis in
Boolean programs.

� MOPS is a tool based on the theory of pushdown systems that performs
context-sensitive exploration of interprocedural control-flow graphs to iden-
tify security vulnerabilities in C programs [Chen and Wagnet 2002].

� The Weighted PDS Library [Schwoon et al. 2003] provides a C library that al-
lows client applications to instantiate weighted PDSs and stack-configuration
automata, to invoke pre* and post* queries, and to read out answers from the
weighted automata returned as results. WPDS++ [2004] is a similar library
implemented in C++.

ACKNOWLEDGMENTS

We thank Tom Ball, Glenn Bruns, Javier Esparza, and Sriram Rajamani for
useful discussions.

REFERENCES

ALUR, R., ETESSAMI, K., AND MADHUSUDAN, P. 2004. A temporal logic of nested calls and returns. In
Proceedings of the 10th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’04), volume 2988 of LNCS, pages 467–481. Springer.

ALUR, R., ETESSAMI, K., AND YANNAKAKIS, M. 2001. Analysis of recursive state machines. In CAV
2001, pages 207–220.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

Analysis of Recursive State Machines • 817

ALUR, R., TORRE, S. L., AND MADHUSUDAN, P. 2003a. Modular strategies for recursive game graphs.
In Proceedings of TACAS, volume 2619 of LNCS, pages 363–378.

ALUR, R., TORRE, S. L., AND MADHUSUDAN, P. 2003b. Modular strategies for infinite games on re-
cursive graphs. In Proceedings of CAV’03, volume 2725 of LNCS, pages 67–79.

ALUR, R. AND YANNAKAKIS, M. 2001. Model checking of hierarchical state machines. ACM Trans.
Prog. Lang. Syst. 23, 3, pages 273–303.

ANDERSEN, H. 1994. Model checking and boolean graphs. Theoret. Comput. Sci.126, 1, 3–
30.

BALL, T. AND RAJAMANI, S. 2000. Bebop: A symbolic model checker for boolean programs. In SPIN
’2000, volume 1885 of LNCS, pages 113–130.

BENEDIKT, M., GODEFROID, P., AND REPS, T. 2001. Model checking of unrestricted hierarchical state
machines. In ICALP’2001, pages 652–666.

BOOCH, G., JACOBSON, J., AND RUMBAUGH, J. 1997. The Unified Modeling Language User Guide.
Addison Wesley.

BOUAJJANI, A., ESPARZA, J., AND MALER, O. 1997. Reachability analysis of pushdown automata:
Applications to model checking. In CONCUR’97, pages 135–150.

BOUAJJANI, A., ESPARZA, J., AND TOUILI, T. 2003. A generic approach to the static analysis of con-
current programs with procedures. In POPL ’03, pages 62–73.

BALAKRISHNAN, G. AND REPS, T. 2004. Analyzing memory accesses in x86 executables. In Proceed-
ings of the International Conference on Compiler Construction (CC’04), volume 2985 of LNCS,
pages 5–23. Springer.

BURKART, O. AND STEFFEN, B. 1992. Model checking and context-free processes. In CONCUR ’92,
pages 122–137.

BURKART, O. AND STEFFEN, B. 1999. Model checking the full modal mu-calculus for infinite sequen-
tial processes. Theoret. Comput. Sci. 221, 251–270.

CHATTERJEE, K., MA, D., MAJUMDAR, R., ZHAO, T., HENZINGER, T. A., AND PALSBERG, J. 2003. Stack size
analysis for interrupt-driven programs. In Proceedings of the 10th Static Analysis Symposium,
pages 109–126.

CHEN, H. AND WAGNER, D. 2002. MOPS: An infrastructure for examining security properties of
software. In Proceedings of the Conference on Computer and Communication Section.

COUSOT, P. AND COUSOT, R. 1977. Static determination of dynamic properties of recursive proce-
dures. In IFIP Conference on Formal Description of Programming Concepts, St-Andrews, N.B.,
CA, E.J. Neuhold (Ed.), pages 237–277, St-Andrews, N.B., Canada.

CAUCAL, B. AND MONFORT, R. 1990. On the transition graphs of automata and grammars. In Graph
Theoretic Concepts in Computer Science, Springer LNCS 484, pages 311–337.

EMERSON, A. 1990. Modal and temporal logic. In Handbook of Theoretical Computer Science,
Volume B, pages 995–1072, MIT Press.

EMERSON, A. AND LEI, C. 1986. Efficient model-checking in fragments of the propositional mu-
calculus. In LICS 98, pages 267–278.

ESPARZA, J., HANSEL, D., ROSSMANITH, P., AND SCHWOON, S. 2000. Efficient algorithms for model
checking pushdown systems. In Computer Aided Verification, 12th International Conference,
volume 1855 of LNCS, pages 232–247. Springer.

ETESSAMI, K. 2004. Analysis of recursive game graphs using data flow equations. In 5th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation, volume 2937 of
LNCS, pages 282–296. Springer.

FINKEL, A., WILLEMS, B., AND WOLPER, P. 1997. A direct symbolic approach to model checking
pushdown systems. In Infinity’97 Workshop, volume 9 of Electronic Notes in Theoretical Computer
Science.

GRAMMATECH, INC. 2000. CodeSurfer System. “http://www.grammatech.com/products/
codesurfer/”.

HAREL, D. 1987. Statecharts: A visual formalism for complex systems. Sci. Comput. Prog. 8,
231–274.

HEINTZE, N. AND MCALLESTER, D. A. 1997. On the cubic bottleneck in subtyping and flow analysis.
In Proceedings of Logic in Computer Science, pages 342–351.

HORWITZ, S., REPS, T., AND BINKLEY, D. 1990. Interprocedural slicing using dependence graphs. In
Trans. Prog. Lang. Syst. 12, 1, 26–60.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

818 • R. Alur et al.

HORWITZ, S., REPS, T., BRICKER, T., AND ROSAY, G. 1997. Wisconsin Program-Slicing Tool.
“http://www.cs.wisc.edu/wpis/slicing tool/”.

HORWITZ, S., REPS, T., SAGIV, M., AND ROSAY, G. 1994. Speeding up slicing. In Proceedings of the
2nd ACM Symposium on Foundation of Software Engineering, pages 11–20.

MELSKI, D. AND REPS, T. 1999. Interprocedural path profiling. In Proceedings of the 8th Internati-
nal Conference on Compiler Construction, pages 47–62.

MELSKI, D. AND REPS, T. 2000. Interconvertibility of a class of set constraints and context-free-
language reachability. Theoret. Comput. Sci., 248(1–2), 29–98.

REPS, T. 1998. Program analysis via graph reachability. Info. Soft. Tech. 40(11–12), 701–726.
REPS, T., HORWITZ, S., AND SAGIV, S. 1995. Precise interprocedural dataflow analysis via graph

reachability. In POPL, pages 49–61.
REPS, T. AND ROSAY, G. 1995. Precise interprocedural chopping. In Proceedings of the 3rd ACM

Symposium on Foundation of Software Engineering, pages 41–52.
REPS, T., SCHWOON, S., AND JHA, S. 2003. Weighted pushdown systems and their application to

interprocedural dataflow analysis. In Proceedings of the 10th Static Analysis Symposium, pages
189–213.

SAGIV, M., REPS, T., AND HORWITZ, S. 1996. Precise interprocedural dataflow analysis with appli-
cations to constant propagation. Theoret. Comput. Sci. 167(1–2), 131–170.

SCHWOON, S. 2002. Moped System. “http://www.fmi.uni-stuttgart.de/szs/tools/moped/”.
SCHWOON, S., REPS, T., AND JHA, S. 2003. Weighted PDS Library. “http://www.fmi.
uni-stuttgart.de/szs/tools/wpds/”.

SCHWOON, S., JHA, S., REPS, T., AND STUBBLEBINE, S. 2003. On generalized authorization problems.
In Proceedings of the 16th Computer Section Foundations Workshop, pages 202–218.

BALL, T. AND RAJAMANI, S. 2000. SLAM Toolkit. “http://research.microsoft.com/slam/”.
SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural data flow analysis. In Pro-

gram Flow Analysis: Theory and Applications, S.S. Muchnick and N.D. Jones (eds.), Prentice-Hall,
Englewood Cliffs, NJ, pages 189–234.

ULLMAN, J. D. 1988. Principles of Database and Knowledge-base systems. Computer Science Press.
VALIANT, L. G. 1975. General context-free recognition in less than cubic time. J. Comput. Syst.

Sci. 10, 308–315.
VARDI, M. AND WOLPER, P. 1986. Automata-theoretic techniques for modal logics of programs. J.

Comput. Syst. Softw. 32, 2, 183–221.
WALUKIEWICZ, I. 2001. Pushdown processes: Games and model-checking. Information and Com-

putation 164, 2, 234–263.
YANNAKAKIS, M. 1990. Graph-theoretic methods in database theory. In Proceedings of the 9th

ACM Symposium on Principles of Database Systems, pages 230–242.
WOODS, W. A. 1970. Transition network grammars for natural language analysis. Commun. ACM

13, 10, 591–606.
WPDS++: 2004. A C++ Library for Weighted Pushdown Systems, University of Wisconsin.

Received September 2003; accepted February 2004

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 4, July 2005.

