An Abort-Aware Model of
Transactional Programming
(Position Paper)

Kousha Etessami*! Patrice Godefroid?

! University of Edinburgh, kousha@inf .ed.ac.uk
2 Microsoft Research, pg@microsoft.com

There has been a lot of recent research on transaction-based concurrent pro-
gramming, aimed at offering an easier concurrent programming paradigm that
enables programmers to better exploit the parallelism of modern multi-processor
machines, such as multi-core microprocessors. Roughly speaking, transactions
are marked code segments that are to be executed “atomically”. The goal of such
research is to use transactions as the main enabling construct for shared-memory
concurrent programming, replacing more conventional but low-level constructs
such as locks, which have proven to be hard to use and highly error prone. High-
level transactional code could in principle then be compiled down to machine
code for the shared memory-machine, as long as the machine provides certain
needed low-level atomic operations (such as atomic compare-and-swap). Already,
a number of languages and libraries for transactions have been implemented (see,
e.g., [2] which surveys many implementations).

Much of this work however lacks precise formal semantics specifying ex-
actly what correctness guarantees are provided by the transactional framework.
Indeed, there often appears to be a tension between providing strong formal
correctness guarantees and providing an implementation flexible and efficient
enough to be deemed useful. Even if transactional constructs were themselves
given clear semantics, there would remain the important task of verifying specific
desired properties of specific transactional programs.

The aim of our work is to provide a state-machine based formal model of
transactional concurrent programs, and thus to facilitate an abstract framework
for reasoning about them.

So, what is a “transaction”? Syntactically, transactions are marked code seg-
ments, e.g., demarcated by “atomic {...}”, or, more generally, they are certain
procedures which are marked as transactional. But what is their semantics?
An informal and naive view of their semantics is given by the so-called “single-
lock semantics” (see, e.g., [2]), which says that during concurrent execution each
executed transaction should appear “as if” it is executing serially without any
interleaving of the operations of that transaction with other concurrent trans-
actions executed by other processes. In other words, it should appear “as if”
executing each transaction requires every process to acquire a single global trans-
action lock and to release that lock only when the transaction has completed.
The problem with this informal semantics has to do with precisely what is meant

* The work of this author was done partly while visiting Microsoft Research.

by “as if”. A semantics which literally assumes that every concurrent execution
proceeds via a single lock, literally rules out any interleaving of transactions
on different processes. This is too restrictive and disallows a lot of useful con-
currency. It also violates the intended non-blocking nature of the transactional
paradigm, and it completely ignores another key feature. Namely, transactions
can typically be aborted, either explicitly by the programmer, or automatically
by the run-time system due to memory conflicts. Aborted transactions can even
have side effects (see the examples below), yet single-lock semantics ignores them.

We argue that these deficiencies make the “single-lock” semantic model un-
acceptable as a basic programmer’s model of the semantics of transactional pro-
grams, even when one assumes strong isolation or strong atomicity, where one
can essentially view all computation as taking place “atomically” at some level
of granularity.! We argue in particular that for a programmer to use the explicit
abort operations offered by the programming environment, he/she must know
what those operations mean. A semantics which says nothing about what aborts
mean can thus not be considered adequate.

Of course, single-lock semantics is not literally what is intended by Trans-
actional Memory (TM) designers. Rather, a weaker semantics is intended, but
phrasing a simple formal semantics which captures precisely what is desired and
leaves sufficient flexibility for an efficient implementation is a non-trivial task.
Standard correctness notions such as serializability, which are used in database
concurrency control, are not directly applicable to this setting without some
modification, in part because, in full-fledged transactional programming, it is no
longer the case that every operation on shared memory is done via a necessarily
terminating transaction: transactions may never halt, or may be aborted.

We propose Transactional State Machines (TSMs) as an abstract finite-data
model of transactional shared-memory concurrent programs. The TSM model is
non-blocking and allows interleaved executions where multiple processes can si-
multaneously be executing inside transactions. It also allows nested transactions,
transactions which may never terminate and, importantly, transactions which
may be aborted explicitly, or aborted automatically due to memory conflicts.
We define the concept of Abort-Aware Stutter- (AAS-) serializability, which we
feel captures in a clean and simple way a desired correctness criterion, and we
show that TSMs satisfy this condition. We also study model checking of TSMs.
We show that, although model checking for general TSMs is easily seen to be
undecidable, it is decidable for an interesting fragment. Namely, when recursion
is exclusively used inside transactions in all (but one) of the processes, we show
that model checking such TSMs against all stutter-invariant w-regular properties
of shared memory is decidable.

Our definition of TSMs is based on two natural assumptions which are close
in spirit to assumptions used in transactional memory systems. First, we im-
plicitly assume the availability of a atomic (hardware or software implemented)

! More elaborate semantic models have been proposed recently in settings with weak
isolation and weak memory models, but these typically build on top of semantics
which in the basic setting with strong isolation are variants of single-lock semantics.

multi-word compare-and-swap operation, CAS(z,z',%,y’), which compares the
contents of the vector of memory locations to the contents of the vector of
memory locations z/, and if they are the same, it assigns the contents of the
vector of memory locations ¢’ to the vector of memory locations 4. How such an
atomic CAS operation is implemented is irrelevant to the semantics. (It can, for
instance, be implemented in software using lower-level constructs such as locks
blocking other processes.) Second, we assume a form of strong isolation (strong
atomicity). Specifically, there must be minimal atomic operation units on all
processes, such that these atomic units are indivisible in a concurrent execution,
meaning that a concurrent execution must consist precisely of some interleaved
execution of these atomic operations from each process. Thus “atomicity” of
operations must hold at some level of granularity, however small. Without such
an assumption, it is impossible to reason about asynchronous concurrent com-
putation via an interleaving semantics, which is what we wish to do.

Based on these assumptions, we can now give an informal description of the
TSM model. TSMs are concurrent boolean programs with procedures, except
that some procedure calls may be transactional (and such calls may also be
nested arbitrarily). Transactional calls are treated differently at run time. After
a transactional call is made, the first time any part of shared memory is used
in that transaction, it is copied into a fized local copy on the stack frame for
that transaction. A separate, mutable, copy (valuation) of shared variables is
also kept on the transactional stack frame. All read/write accesses (after the
first use) of shared memory inside the transaction are made to the mutable copy
on the stack, rather than to the universal copy. Each transaction keeps track (on
its stack frame) of those shared memory variables that have been used or written
during the execution of the transaction. Finally, if and when the transaction
terminates, we use an atomic compare-and-swap operation to check that the
current values in (the used part of) the universal copy of shared memory are
exactly the same as their fixed copy on the stack frame, and if so, we copy the
new values of written parts of shared memory from the mutable copy on the
stack frame to their universal copy. Otherwise, i.e., if the universal copy of used
shared memory is inconsistent with the fixed copy for that transaction, we have
detected a memory conflict and we abort that transaction.

The key point is this: if the compare-and-swap operation at the end of a
transaction succeeds and the transaction is not aborted, then we can in fact
“schedule” the entire activity of that transaction inside the “infinitesimal time
slot” during which the atomic compare-and-swap operation was scheduled. In
other words, there exists a serial schedule for non-aborted transactions, which
does not interleave the operations of distinct non-aborted transactions with each
other. This allows us to establish the AAS-serializability property for TSMs.
The above description is over-simplified because, e.g., TSMs also allow nested
transactions and there are other technicalities, but it does describe some key
aspects of the model. Please see our full paper [1] for details.

Examples. Figure 1 contains two example transactional programs which illus-
trate basic points. The example on the left illustrates how “single-lock” (SL)

Initially, x ==y ==

Process 1 Process 2
r :=1;
atomic { atomic {
Initially, x == X = 1; y = X;
Process 1‘ Process 2 if (y ==0) | }
atomic { | atomic { {abort;}
x 1= 1; while (true) do { nothing} «r := 0;
}
Can (x==0) always hold true? No. atomic {
if (r == 1)
{x:=2;}
}

(y == 2) is possible. Not (y==1)!
Fig. 1. Examples

semantics can not capture the non-blocking nature of transactional program-
ming. Process 2 in this example is a non-terminating transaction which does
nothing. Thus, under SL semantics, this process could obtain the lock and hold
it forever, preventing Process 1 from executing. Thus, under SL semantics vari-
able x may never attain value 1, even when the two processes are fairly scheduled,
because the first process remains blocked forever. However, this directly violates
the intended non-blocking nature of the transactional paradigm. A large amount
of work in software transactional memory (STM) has been about assuring that
such blocking can not occur. If the semantics fails to capture this, then reason-
ing about blocking aspects of the higher-level transactional program becomes
difficult. The TSM model is non-blocking and will allow execution of Process
1. Therefore, as long as the two processes are fairly scheduled (a standard as-
sumption for a concurrent system) x == 1 will eventually hold, unlike under SL
semantics. The example on the right illustrates that even aborted transactions
have visible “side effects”, and that therefore the meaning of aborts (both ex-
plicit and automatic) has to be specified in the programmer’s view of semantics.
In this example r is a local variable of process 1. Regardless of how these trans-
actions are executed, the first transaction on Process 1 will abort. Nevertheless,
it will have a “side effect”, because the value of the local variable r will remain
1, whereas if the first transaction had committed it would be set to 0. Conse-
quently, the second transaction of Process 1 sets x := 2;. Thus, when process 2
reads x, it can read 2. In SL semantics, aborts have no meaning: once the lock
is obtained the transaction executes until completion, or executes forever. It is
not even clear what meaning SL semantics would ascribe to such a program. For
instance, if an “abort” is considered a “retry”, Process 1 would block forever at-
tempting to execute its first transactions, again a violation of the non-blocking
nature of transactions.

References
1. K. Etessami and P. Godefroid. An abort-aware model of transactional programming.

Technical report, Microsoft Research, 2008.
2. J. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 2007.

