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Figure 1: We use fast, approximate fluid simulation in conjunction with real measurements to
adaptively choose robotic actions that minimize spillage while pouring liquids into novel containers.

Abstract: Humans manipulate fluids intuitively using approximations of the un-
derlying physical laws. In this paper, we explore a general methodology that robots
may use to develop and improve strategies for overcoming manipulation tasks
associated with appropriately defined loss functions. We focus on the specific
task of pouring a liquid from a container (pourer) to another container (receiver)
while minimizing the mass of liquid that spills outside the receiver. We present a
solution, based on guidance from approximate simulation, that is fast, flexible and
adaptable to novel containers as long as their shapes can be sensed. Our key idea is
to decouple the optimization of the parameter space of the simulator from the opti-
mization over action space for determining robot control actions. We perform the
former in a training (calibration) stage and the latter during run-time (deployment).
For the purpose of this paper we use pouring in both stages, even though separate
actions could be chosen. We compare four different strategies for calibration and
three different strategies for deployment. Our results demonstrate that fast fluid
simulations, even if only approximate, are effective in guiding automatic strategies
for pouring liquids.

Keywords: Fluid simulation, Pouring

1 Introduction
The manipulation of liquids using autonomous robots opens doors to a plethora of exciting applications
across diverse fields such as medicine, construction, the service industry, manufacturing pipelines,
etc. In this paper, we address a specific manipulation task – teaching a robot to autonomously transfer
all of the liquid in one container to another with minimum spillage. Our solution adapts to different
containers without having to be re-trained.
Capturing the physics of fluids is both a complex modelling problem and one that usually results
in sophisticated mathematical models. The resulting models capture a non-stationary process and
solutions to the governing equations are often unstable. Despite being a deterministic process,
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the instability of solutions introduces unpredictability and hampers repeatability. It is therefore
impractical to rely on precise simulations for making predictions about the flow of liquids. The use of
high-fidelity fluid simulations would require a large computational budget as well as precise sensors.
The inherent non-stationarity of the fluid simulation process, together with its uncountable state space,
pose problems for generalized data-driven approaches. Low-fidelity simulations are feasible, due
to their speed, but have other problems such as model mismatch since parameters to the simulator
may not match physical quantities such as viscosity or density. We marshal evidence in this paper to
demonstrate the utility of approximate fluid simulation in guiding pouring tasks.
Recently, there has been much interest in robotic manipulation of liquids [1, 2]. The general approach
has been to couple simulation with motion control, using some form of sensing (thermal cameras [3],
stereo cameras [4], etc.) to provide feedback. To make the problem tractable, other simplifications
such as a representational quadratic curve for liquid pouring trajectories [5] have been made. Some
methods take a data-driven approach, under the assumption that the robots have been trained with the
specific containers used [1], or that the pouring containers have narrow spouts.
In this paper, we propose a two-stage adaptable pouring algorithm with the goal of minimizing
spillage. Our approach adapts to novel containers at run time without requiring re-training. We
assume that the geometry (shape) of the containers is known, determined by external sensors. In a
first “calibration” stage, we map parameters of a fast simulator (NVIDIA FleX) to those of a specific
liquid (water) using a pre-defined set of actions such as angular velocity of the pouring container and
its maximum rotation angle. Then, during a “deployment” stage, we explore a potentially different
action space to strategically transfer the liquid from one container to another while minimizing
spillage. We demonstrate that fast simulation can be used to develop effective strategies for this
pouring task.

2 Related work and contribution
The manipulation of fluids by autonomous robots requires an understanding of the physics of fluids
and techniques in machine learning to develop innovative manipulation strategies.
Fluid simulation Physical models for fluids may be derived in many ways [6], depending on the
accuracy, speed or stability required. One approach considers fluids as particles on a lattice that move
along a discrete set of directions. This Lattice-Boltzmann method lends itself to easy parallelization
and is well suited for fluid simulation at small scales but is inefficient to simulate coarse flows.
Another considers the fluid as a continuum of particles and derives balance equations accounting
for Newton’s second law, stress and pressure locally within the fluid volume. These Navier-Stokes
equations can can then be solved to estimate the velocity field by sampling at various points (Eulerian)
or by gathering velocities of particles (Lagrangian) advected carefully. Contributions of particles may
be interpolated (smoothed particle hydrodynamics [7]) based on the theory of integral interpolants
using kernels that approximate a Delta function. Approximation using particles can also be used
along with an Eulerian scheme (semi-Lagrangian) to produce a more stable result [8]. It is not
straightforward to extend any of the above methods to handle two-way coupling between solids and
liquids in a mixed simulation with rigid bodies as well as fluid particles.
Position-Based Dynamics (PBD): A notable exception to the aforementioned issue, is a fast but
approximate method that handles two-way coupling by introducing dynamics based on the interactions
of particles purely based on their positions [9]. PBD is used in video games for simulating liquids.
We use this unified particle physics framework to model the behaviour of rigid bodies and fluids [10]
in real-time. However, since this model is approximate and does not map directly to the physics of
fluids, we need to accommodate for the model mismatch using a calibration stage.
Physical scene understanding There has been a lot of interest recently on explaining human
judgements via intuitive physical simulations [11, 12, 13] that probabilistically account for uncertainty.
This has also been explored for fluids [12] using a particle-based simulation model. Their experiments
confirmed that, despite being inaccurate, human judgment was correlated to their approximate model
for probabilistic prediction. There have also been some models for qualitiative prediction [14] that
agree with human judgement on which of two given liquids with different perceptual viscosities
would pour out of a container first. The question of whether we use simulation models or emulation
through our daily interaction with liquids remains open. Intuitive physics has also been used to infer
latent properties of objects colliding with other objects [13] or being dropped in a liquid [15].
Model-free methods Another class of methods learn the physical model directly from data. This can
either be using data collected offline [16], or by active interaction of a robot with its environment [17,
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18]. For rigid bodies, hybrid approaches have been explored that replace components of the simulation
with neural networks [19, 20]. However, model-free methods are challenging for application in
scenarios with fluids. Neural networks have been used to detect liquids from visual input in real-
time [2], but the generalization to different scenes and containers remains a problem. End-to-end
learning was also used to learn a predictive model of flow [21] but was only tested in 2D with very
simple boundary conditions. Other methods exploit knowledge about physics while designing the
learning solution. e.g. using physically based constraints [22], using regression forests to estimate the
acceleration of fluid particles [23], or replacing the pressure projection step with a neural network [24].
However, either these methods are slow or were not shown to be generalizable to other liquids.
Inference schemes The fidelity of the simulator depends on the choice of a number of free parameters.
The statistics and machine learning literature provide principled methods (e.g. [25, 26]) for learning
the parameter values of simulators from data. The general idea is to define a discrepancy measure
between the simulated and observed data, and to identify the parameter values that yield small
discrepancies. The search is typically computationally intensive because gradient information is
not available. Bayesian optimisation [27] has recently been shown to effectively accelerate the
search [28].
Robots and fluids Pouring can be learned via demonstration, e.g. by identifying a suitable
parametrization [29] or from haptic data [30]. Even though their experiments did not involve
real liquids, both works showed that humans tend to keep a fairly constant rate of tilt while pouring.
We take advantage of this fact to simply our action space. Other approaches incorporate fluid-like
behaviour via simulation for qualitative reasoning [? ] or to learn pouring policies [31, 32, 5, 1].
Yamaguchi et al. [31] focused on understanding human pouring using discrete particulate media
(beads, peas, rice, etc.) or used a set of rigid spheres controlled by a bouncing parameter (manually
tuned) to model the liquid [32]. Pan et al. [5] used a hybrid particle-mesh fluid simulator at the
expense of speed (it took near an hour to compute a single pass of the pouring scene being modelled).
This approach was later extended [1] to reduce the computational burden by training a parabolic
heuristic approximation. However, their model needs to be pre-trained offline for all combinations
of container shapes and liquid materials. Recent work also demonstrates the use of closed-loop
fluid simulation along with a real robot [3] towards a pouring task. The approach used a thermal
camera to track heated water being poured and then performed an image-space comparison (2D
projection space) to predictions from an SPH [7] simulation engine. The method is fast, but cannot
be generalized since it requires liquids to be heated, thus changing their flow properties.
Summary Our approach is goal-based and does not require a state-space model for fluid simulation.
Instead we directly parameterize the objective (minimizing spillage) over the space of actions that
a robot can perform. We evaluate our approach using a real robot and a digital weighing scale to
measure spillage. We use a PBD simulator to guide the actions performed by the robot. We do not
require retraining on specific containers. We assume that the geometry of the containers and their
relative position are known (or can be sensed).
Contributions The key contributions of this paper are that we:

1. demonstrate that approximate simulation models (PBD) are useful for guiding pouring tasks;
2. overcome the model mismatch of PBD without performing cumbersome inference on physical

quantities such as viscosity, density, etc.;
3. propose a goal-based discrepancy function between simulation and real measurements (normalized

discrepancy between spilled liquid in our case);
4. develop a method that can optimize over a space of control actions that may not be in the training

set, e.g. we train using angular action parameters and evaluate using spatio-angular control;

3 Using fast and approximate simulation for adaptable pouring
3.1 Definitions, notation and assumptions
We define actions as variables that specify control of the robot. e.g. angular velocity, spatial position,
or maximum rotation angle. We define simulation parameters as input variables that need to be
supplied to the simulator. e.g. for NVIDIA FleX, they could be number of particles, viscosity,
cohesion, or buoyancy. We use a ∈ A to denote actions, a(i) to denote the ith dimension of the action
and a∗ to represent an optimal action. A represents the set of all actions. Similarly θ ∈ Θ, θ(i) and
θ∗ for parameters. We use subscripts to qualify whether actions (and parameters) are real or whether
they are within simulation, e.g. θ(i)

r is the ith dimension of the real world parameter θr, Θs is the set
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Figure 2: (a) We first identify optimal simulation parameters (calibration) for simulated spillage to
match real spillage in training. We use the calibrated parameters to optimize over action spaces to
minimize spillage. (b) We propose three strategies D1-D3 for optimizing over the action space.

of all simulation parameters, and so on. If the fluid simulation model was perfect then Θr = Θs. For
models, such as the one used in this paper, this is not the case since the parameters of the simulation
span a lower dimensional space and may not correspond to physical quantities. We assume that real
parameters θr, such as the shape of the containers, can be known. Figure 2 presents an overview of
our method along with the notation used.

3.2 Problem formulation
We define a cost function Cr : Ar ×Θr → < that measures the liquid spilled outside the receiver.
The cost is defined as the mass of spilled fluid (in grams) after pouring. The overall goal of this paper
is to determine an action a∗ that minimizes the cost Cr(a, θr). While we can assume that we do
know θr, we do not know the functional form of Cr(a, θr), which makes direct minimization of the
cost impossible.
We use a two-step approach to solve this problem: In a training step, we calibrate a simulator so that
we can use it to predict the spillage which we would expect for a certain action (similar to [3, 22]).
Then, during the deployment stage, we will use the simulator to find the optimal action efficiently.
Since real parameters are assumed to be known, and fixed during calibration, we will drop their usage
to simplify notation.

3.3 Calibration
The simulated spillage Cs : As ×Θs → < is the number of particles that fall outside the receiver
after pouring. Since they do not measure the same quantity as the real spillage Cr (controllable
parameters on the approximate simulator are constrained and do not correspond to real physical
properties), we normalize the costs by the total mass (km) and the total number of particles (ks) of
the liquid to be poured out of the pouring container in reality and simulation, respectively, and work
with the normalized quantities cr = Cr/kr and cs = Cs/ks.
During the calibration phase, a set of n actions ai are performed by the (real) robot and the resulting
(normalized) spillage ri is recorded for each action. Due to the robot’s imprecision, we assume that
the measured spillage equals cr(ai) subject to additive noise, ri = cr(ai) + ηs. Let the spillage
produced by the simulator for the same actions ai and some simulation parameters θs be si.
In order to calibrate the simulator, we introduce a discrepancy ∆(a, θs) = | cr(a) − cs(a, θs) |
that measures the absolute difference between the normalized cost functions for a common action
a ∈ Ar ∩As. Since we are only concerned with actions that can be simulated as well as executed by
a robot, henceforth we will use A in place of Ar ∩As. The discrepancy needs to be computed over
the space of actions, which can either be computed using only the observed actions or by considering
all actions. We present two optimization problems that are based on the discrepancy ∆(a, θs)

O1 : argmin
θs∈Θs

n∑
i=1

|ri − cs(ai, θs)| and O2 : argmin
θs∈Θs

∫
A

|cr(a)− cs(a, θs)| g(a) da

For O2, g(a) is a prior distribution over the space of actions. Furthermore, while we do not know
cr(a), we can use the observed samples {(ai, ri)}i=1..n to build an approximation c̃r ≈ cr.
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Figure 3: (a) Illustration of calibration, over a 2D parameter space and a 1D action space, to find
θ∗s . (b) Evaluation of the quality of θ∗s from four calibration schemes, using real executions on test
actions applied to a robot. The box represents lower to upper quartile values of the data with a line at
the median, a triangle at the mean and whiskers show the range of the data. Ideally, we expect zero
discrepancy. (c) For increasing number of simulations (to estimating θ∗s ), the error drops more rapidly
for C4 (compared to C3).

We propose (and evaluate below) a total of four different calibration strategies: namely grid search
for O1 (C1 and C2), Bayesian Optimization (B.O.) for O1 (C3), and B.O. for O2 (C4).
C1, C2. Grid search We generated samples θs,j ∈ Θs over the parameter space and computed the
cost (summation term in O1) for each of the samples. We used uniform sampling for C1 and stratified
(jittered) sampling for C2. θ∗s is the sample θs,j that results in the smallest cost. The computation of
the cost function requires n simulations to be performed at each of the θs,j .
C3. Bayesian optimisation using measured actions C1 and C2 evaluate all actions without taking
the observed performances into account. It is reasonable to assume that actions which are similar
to previously unsuccessful ones will not perform much better. Strategies that aim to choose actions
based on previous performance might be much more efficient. Thus, we used standard Bayesian
optimisation to minimize O1, thereby identifying samples θs,j ∈ Θs in successive iterations. At
each iteration, the evaluation of the cost function requires n simulations. Another advantage of this
strategy is that, unlike C1 and C2, it can cope with action spaces of moderate dimensionality. We
only evaluate with 2D spaces to make the data acquisition from real robot measurements practical.
C4. Bayesian optimisation using continuous action sampling Since we observed cr to be some-
what smooth for our choice of actions (see Section 4) we first performed Gaussian Process regression
using (ai, ri) so that c̃r ≈ cr may be evaluated for any action a. Since O2 represents the expectation
of discrepancy over all actions, at each iteration we use a primary estimate of this expectation to
represent the cost. i.e. the cost function in the jth iteration of the Bayesian optimizer is evaluated
as |c̃r(aj) − cs(aj , θs)| with a randomly generated action aj ∼ g(a), and we used the inherent
averaging properties of B.O. to effectively compute the expectation. The main advantage of this
approach is that it requires only one simulation per iteration.

3.4 Deployment: Adaptable pouring
Given the optimal simulation parameters θ∗s from the calibration phase, the goal during deployment
is to identify an action a∗ which leads to minimal spillage when executed by the robot in conjunction
with new real parameters in the scene θr (container shape, relative configuration, etc). We assume that
θr is available. This optimization could either be iterative, with feedback from spillage, or one-shot.
We propose and compare three techniques for the optimization during deployment.
D1. One-shot pouring (planning using simulation only) We define the loss function as the
number of poured particles that fall outside the receiving container in simulation. We perform
standard Bayesian optimization to find the optimal action, which is initialized randomly. At each
iteration the simulator is executed m1 times. The action identified in the last iteration is reported
as a∗. The robot then executes the action a∗ once to carry out the pouring task. This approach is
suitable for applications where the robot has only one chance to pour the liquid. It does not require
any sensors to measure the spillage after execution.
D2. Iterative pouring (planning using real execution only) In situations where the robot performs
repeated pouring tasks, for example in an assembly pipeline or drinks at a bar, there is scope for
iterative improvement using feedback after each pour. A simple way of achieving this is via the use
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Figure 4: A visualization of the normalized discrepancy (color map values) for different simulation
parameters to NVIDIA FleX: Number of particles (X axis) and cohesion (Y axis). (a)-(d) are C1-C4.
of a black box Bayesian optimizer with a zero-mean Gaussian Process as the prior surrogate function.
The loss function to be minimized is the weight of spilled liquid, which can be measured after every
pouring event. Starting with a random action, the optimizer improves the action after every iteration
thus reducing spillage on successive pours. We use this method as a baseline since it does not use
simulation to improve the performance of the robot at pouring.
D3. Planned iterative pouring (planning using simulation and real execution) Finally, we
propose a hybrid approach where simulation is used to guide actions executed by the robot, but
with iterative improvements after each glass being poured. We replace the zero-mean surrogate in
D2. with a surrogate that evaluates the averaged normalized spillage cs over a predefined number
of m2 simulations. After the pour is completed by the robot, as with D2, the spillage is weighed
and normalized. The normalized spillage is supplied to the Bayesian optimizer as the loss function
evaluated at that iteration. The initialization requires m2 simulations. Each subsequent iteration
consists of one pouring execution by the robot and a weighing step (of the spilled liquid).

4 Experiments, results and discussion
We used a 6-DoF Universal Robots UR10 platform with a Robotiq 2-finger electric gripper to pour
water. The pourer was manually placed in the gripper at mid-height. The positioning of the pourer is
not important as long as it is known and consistent with the setup in simulation. The receiver was
placed on a fixed tray and remained fixed while pouring. We used a Kern 2.5k weighing scale to
measure the amount of spillage after each pouring experiment. Each real execution takes about 90s
of which the robot only spends about 2-5s to pour. The majority of the time is spent on manually
setting up the robot with 200g of water on a pourer, measuring the spillage and cleaning it up. We
performed a total of about 500 real executions (total time about 15 person hours of measurements).

4.1 Experiments
Calibration We chose 2D action and parameter spaces. The action space consisted of angular
velocity a(0) = α/s and maximum rotation (final angle) a(1) = αmax. The parameter space
consisted of θ(0)

s = Np, the number of particles, and θ(1)
s = γ the cohesion parameter in the NVIDIA

FleX simulation package. We performed a total of n = 32 actions obtained by stratifying the action
space into a 4× 4 grid with two samples in each stratum. The observed data during calibration is 32
pairs of actions (performed by the robot) and normalized spillage (manually weighed and recorded)
Dc = {(ai, ri)}32

i=1. Of these, we used 28 data points to obtain optimal parameters. We then used
the remaining 4 data points to assess the quality of the optimal θ∗s obtained using different methods
C1-C4 (fig. 3b). For the dense grid (C1 in sec. 3.3), we used a 10× 10 grid, leading to a total number
of 10× 10× 28 = 2800 simulation calls (approx 25s each). For stratified sampling we used a 3× 3
grid with two samples per grid, leading to a total number of 3×3×2×28 = 504 simulation calls. For
C3, we ran the Bayesian optimizer for 59 iterations which led to a total number of 59× 28 = 1652
calls to the simulator. Finally, for C4, we ran the optimizer to 108 iterations resulting in 108 calls to
the simulator. We tracked the best normalized discrepancy over increasing numbers of simulation
calls for the on-line strategies C3 and C4, to understand their path to the optimum (fig. 3c). We also
visualized heatmaps of the normalized discrepancy over the parameter space (fig. 4). For methods C1
and C2 the maps are averaged over the discrepancy values for the 28 training actions. For methods
C3 and C4 the maps are the posterior means of the G.P. at the last iteration of the B.O.
Deployment We chose a different, spatio-angular, action space (calibration was purely angular) for
deployment. We substituted the maximum angle with a(1) = xmm which is the relative displacement
between the centers of the pouring and receiving containers along the x-axis. We also replaced the
receiver used in calibration with three different containers (Cups 1-3) of different shapes and opening
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Figure 6: Spillage plotted across real iterations (on the UR10) for the cups 1-3 and methods D1-3.

sizes (fig. 1). The acquisition function used in the Bayesian optimization was the Upper Confidence
Bound with constant exploration across iterations. We recorded 3 independent repetitions of spillages
resulting from the robot executing strategies D1, D2 and D3 (see sec. 3.4) on each receiver. We used
5, 10 and 15 iterations for the Bayesian optimization using the simulator for method D1 and 37 for
method D3. We performed 15 real iterative executions using the UR10 robotic arm for methods D2,
D3 and plotted the minimum spillage achieved upto iterations 3, 9 and 15 averaged over repetitions
for the first cup (fig. 5a). We also plotted the mean spillage per real iteration achieved for each cup
across the three deployment methods (fig. 5b). To understand how the strategies improved over real
iterations, we plotted the minimum spillage achieved over real iterations (averaged over repetitions)
for all cups and methods (fig. 6).

4.2 Discussion
Calibration C4 works most efficiently for calibration (see fig. 3c) while C2 results in the least
uncertainty of the optimized simulation parameters (see fig. 3b) at the cost of a small bias. C3 strikes
a balance between the uncertainty of C2 and the bias of C3. We did not observe much variation in the
spillage across the optimal simulation parameters produced by these methods, so we used C4 in all
our tests since it requires the fewest number of simulation calls.
Deployment We observed that increasing the number of simulations is the most efficient way to
reduce spillage over successive iterations. However, since the costs associated with performing one
simulation and one real experiment are different we extrapolated our data to assess the space of
solutions (see fig. 7). The flat areas in the curve are when B.O. “explores” the action space resulting
in actions that are not improvements and the drops correspond to “exploitation” iterations. The plots
confirm the intuition that spillage diminishes more rapidly over total time when the simulation is fast
(fig. 7a). If simulations can be made more efficient (parallelized since they are independent), then D1
is a good choice for deployment (up to model mismatch). However, the plots also show that despite
converging rapidly, D3 is better than D1 for realistic situations (fig. 7e).
Adaptability We tested adaptability by modifying the action space (from what was used in training)
for deployment and by testing on 3 novel cups (that were not used in training). We observed that D2
resulted in the least spillage, on average, for simple cases (Cup 1 in fig. 5) and D3 resulted in the
least spillage for challenging cases (Cup 2 in fig. 5). For other cases (such as Cup 3) the differences
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Figure 7: Comparison of log-spillage (Y-axis) against hypothesized total optimization time (X-axis)
for D1 (red), D2 (green) and D3 (blue). We observed measurement error for different numbers of real
and simulated iterations. Then we extrapolated the total time based on different values for times per
simulation (increasing over rows) and times per real iterations (increasing left to right).

were not statistically significant. if all else is equal, D1 is preferable since it does not require multiple
real iterations (hence no cleanup or sensing of the spillage is required).
Choice of action space Our method extends to action spaces of moderate dimensionality. We chose
2D action spaces because of a) the large time taken to run multiple repetitions of experiments and
b) ease of visualization of the relevant costs and posterior means. Another advantage is that we do
not require the action spaces for calibration and deployment to be the same. The robot could learn
to accommodate for model mismatch in training and be deployed to do unforeseen tasks during
calibration. We illustrated this by replacing the “final angle” action dimension with “relative position”
during deployment. Without extra specifications, this caused the robot to explore a spatio-angular
action space in deployment even though it was calibrated with only an angular action (fig. 3a).
Choice of parameter space As with action spaces, although our method is general enough to choose
parameter spaces (for the simulator) of moderate dimensions, we only present 2D parameter spaces
in this paper. We tried different combinations of parameters to NVIDIA FleX such as viscosity,
cohesion, number of particles, etc. Finally, we choose cohesion and number of particles as they
were sufficient to capture the behaviour of water. As can be seen in the discrepancy maps over
the parameter space, the calibration algorithm has learned that the dependency along one of the
dimensions is not particularly important (fig. 4). Thus, we could choose all the parameters of FleX
and allow calibration to identify the important ones. As with the choice of our action space, we
limited the parameter space to 2D to limit the number of manual experiments necessary.
Relationship with Dyna-Q Our proposed architecture bears a resemblance to the Dyna architecture
for integrating learning, planning and reacting [33]. In that approach, the learning agent interleaves
updates to a value function (in a reinforcement learning framework) based on trials in the real physical
world, with updates that are driven by a loop of simulations with an internal model maintained by
the agent. Whereas the typical learning rules with which Dyna has been applied, e.g., Q-learning,
may not be sufficiently sample efficient for our application, we have shown that the principle is
nonetheless useful when combined with alternate Bayesian Optimization based policy learning.

5 Limitations, conclusion and future work
We proposed a two-stage process for teaching robots to pour liquids based on approximate simulation.
In a first stage, we optimized simulation parameters for the liquid under consideration. The shapes of
containers as well as the space of actions performed during deployment may be arbitrarily chosen
so long as they are known or they can be sensed. We assume that the actions are applied constantly
until all the liquid is poured and that the properties of the liquid do not change between calibration
and deployment. In future work, we plan to study the effect of inaccuracies in the real parameters of
objects and estimated fluid parameters on the pouring policy. Also, to test our method on liquids with
different properties.
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