
Eurographics Symposium on Rendering 2021
A. Bousseau and M. McGuire
(Guest Editors)

Volume 40 (2021), Number 4

Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

Kartic Subr, University of Edinburgh

Abstract
Integrals of multidimensional functions are often estimated by averaging function values at multiple locations. The use of an
approximate surrogate or proxy for the true function is useful if repeated evaluations are necessary. A proxy is even more useful
if its own integral is known analytically and can be calculated practically. We design a family of fixed networks, which we call
Q-NETs, that can calculate integrals of functions represented by sigmoidal universal approximators. Q-NETs operate on the
parameters of the trained proxy and can calculate exact integrals over any subset of dimensions of the input domain. Q-NETs
also facilitate convenient recalculation of integrals without resampling the integrand or retraining the proxy, under certain
transformations to the input space. We highlight the benefits of this scheme for diverse rendering applications including inverse
rendering, sampled procedural noise and visualization. Q-NETs are appealing in the following contexts: the dimensionality is
low (< 10D); integrals of a sampled function need to be recalculated over different sub-domains; the estimation of integrals
needs to be decoupled from the sampling strategy such as when sparse, adaptive sampling is used; marginal functions need to
be known in functional form; or when powerful Single Instruction Multiple Data/Thread (SIMD/SIMT) pipelines are available.

1. Introduction

The estimation of integrals is a computational bottleneck across
several applications including rendering. In image synthesis, the ra-
diant energy through each pixel is expressed as a multidimensional
integral over the pixel surface, camera’s aperture, exposure time, re-
flected directions, etc. The integrand—or function whose integral
is sought— is a lightfield that spans space, angle and time. Vari-
ous operations in the image formation process can be expressed as
slices, projections or convolutions of the lightfield. The integrand is
rarely available in closed form and is typically quite costly to evalu-
ate. For example, it might require multi-bounce raytracing through
a large and complex environment.

We explore the benefits of constructing an approximate inte-
grand, or proxy, that is easier to evaluate. Although high-fidelity
reconstruction of multidimensional functions is known to be chal-
lenging [HJW∗08, KDBB17], numerical integration requires fewer
samples than reconstruction [Dur11, SK13, RAMN12] to achieve
the same mean-squared error (MSE). A faithful proxy is therefore
also expected to be effective for numerical integration provided that
a procedure is known to calculate its integral. Further, for render-
ing applications, it would be beneficial if the proxy accommodates
transformations (such as those mentioned above) and if multiple
projections can be calculated efficiently.

In this paper, we investigate a practical method to estimate in-
tegrals and marginals of a class of neural network proxies. Shal-
low feed-forward networks (SFFN) consist of one hidden layer
with a sigmoid activation function and a purely linear output layer.
This textbook case is an example of a universal approximator net-
work [Cyb89, Hor91, LPW∗17]. It can approximate [SCC15] and
integrate [LIA20] any continuous function f : Rd → R accurately.

During training, samples of f are used to learn parameters w of the
network so that it represents the functional approximation fw ≈ f
which can be evaluated rapidly anywhere in the domain. The sim-
plicity and universality of sigmoidal approximators make them an
attractive first choice as neural proxies for numerical integration.
We present Q-NETs as a general and practical tool for numerical
integration across a variety of rendering applications.

Given a trained proxy fw, we design a family of shallow neu-
ral networks (Q-NETs) to evaluate the exact functional marginals
of fw in closed form by integrating over any subset of the input
space Rd . These marginals can be estimated using w without fur-
ther sampling of f . The proxy fw is also useful (Sec. 4) as a control
variate [Owe13, Sec. 8.9]. Q-NETs simplify integral calculations
and can accommodate operations such as projection (see Fig. 1)
without the need for resampling f or retraining fw. Our approach
is practical since standard implementations of SFFN may be lever-
aged for fast computation on graphics processing units.

Contributions:.

• we design fixed-weight SFFNs to calculate integrals and
marginals of functions represented by sigmoidal SFFN (Sec. 3.1);

• we derive transformations to the inputs and network weights to
act as counterparts to operations on the input space (Sec. 3.2);

• we assess the empirical fidelity of integration via Q-NETs for
functions with discontinuities (Sec. 4) ;

• we demonstrate its versatility across problems such as inverse ren-
dering, sampling of procedural noise visualization (Sec. 5).

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

weight space

projection

selection

neural proxy

(a) training proxy (b) evaluating proxy (c) calculating integrals (d) calculating functional marginals

integrand

Li

Li
Li

eq. 3

Q-NET (fixed)

inp. space

eq. 3

INP. SPACE WT. SPACE

affine trans. matrix mult.
summing concatentation

slicing column select
projection selection

sub-domain modify S

(e) other operators

Figure 1: Overview. (a) Sampled function f . (b) Regression via training a 1-layer sigmoidal universal approximator yields a proxy function
fw. (c) Our fixed network (no learnable parameters) which we call a Q-NET operates on network parameters w. (d) Any marginal (projection)
of fw can be obtained in functional form via an input selection transformation to Q-NETs. (e) A list of other transformations to fw which can
be accommodated via modification of network parameters.

2. Background

2.1. Related work

Numerical integration (general). Quadrature schemes [BP11,
KKN18] approximate definite integrals by dividing the integration
domain into cells (usually uniformly along each dimension), ap-
proximating the function using polynomials within each cell and
summing up the analytically computed integrals within each cell.
As the dimensionality of the domain increases, the number of cells
and hence number of samples required increases exponentially.
This is referred to as the ‘curse of dimensionality’. Monte Carlo
(MC), Quasi-MC (QMC) and Markov Chain MC (MCMC) operate
differently, by expressing integrals as expectations which can be
estimated via simulation [MU49]. The simulation is (pseduo) ran-
dom for MC and MCMC. These methods converge slowly – MC
converges at O(1/

√
N). Several variants [Owe13] address the slow

convergence by striking a compromise between bias (accuracy)
and variance (precision). QMC methods [Nie78, Nie92] replace
stochasticity with carefully designed, deterministic samples which
improves convergence dramatically when integrands are smooth
and integration is over moderate dimensionalities.

Computer Graphics adaptations. Quadrature schemes have been
used for antialiasing [GT96], to render participating media [PH89,
JLSJ11, FWKH17], for discretized time-integration of Lapla-
cians physics-based animation [KYT∗06] and subspace deforma-
tion [AKJ08]. MC (or QMC) path tracing [Kaj86] and its MCMC
variants [Vea98] form the industry standard [FHH∗19, CJ16] for
estimating multidimensional integrals in offline rendering appli-
cations. MC and MCMC methods have been honed for rendering
via analyses in Fourier [DHS∗05, BSS∗13], wavelet [ODR09] and
gradient-domains [LKL∗13, KMA∗15]. Recently, a neural control
variate [MRKN20] that was tailored to light transport estimation
produced an impressive reduction in variance. The discretization of
time for physics based animation necessitates a different class of in-
tegrators [BS19, WLF∗20] which reformulate differential systems
variationally and solve time integration as an optimization problem.

Machine Learning applications. Bayesian methods routinely
use probabilistic model-based surrogates for expensive inte-
grands [GR03] or to guide active sampling (adaptive Bayesian
quadrature [OGG∗12, KH19], Bayesian Optimization [SSW∗16],
etc.). This approach can be used to estimate the marginal like-

lihood [BOGO15, GOG∗14], approximate the posterior [KSP15,
WL18] and to simultaneously infer both [Ace18]. They operate by
imposing a Gaussian Process (GP) prior on the integrand and us-
ing analytical formulae for the expectation and uncertainty of the
statistical surrogate. Hybrid probabilistic neural networks use GPs
to model neural weights [KB20] for calibrated reasoning about un-
certainty. Integral representations [PDW20] use an analysis of con-
tinuous distributions, for a particular target function, from which
instances of shallow neural networks can be sampled. Deep neu-
ral networks can mimic MC solutions to certain partial differential
equations [GJS19], sidestepping the curse of dimensionality.

Integration using Neural Networks. Integration formulae have
been derived for shallow networks with different activation func-
tions in 1D [ZZYNH06, YDW13] and hyperrectangular do-
mains [LIA20, Sub20]. The formulae are unwieldy and expensive
to evaluate. Alternatively, the derivatives of a neural network have
been trained to match the integrand [TNVdVG19,LMW20] so that
the trained neural network evaluates the integral. This enables the
use of deeper networks but marginalization is only possible in the
(reverse) sequence of variables used during training. A third ap-
proach uses integral-preserving neural layers (flows) to map a gen-
eral distribution (such as a Gaussian) onto a proxy for integrands
in light transport simulation [MRKN20]. The proxy was used as a
control variate along with an importance sampling scheme for the
residual. Our method provides a proxy, allows flexible marginal-
ization, enables transformations and can be evaluated efficiently
(<10D) but it is limited to one hidden layer (Table 1). Generally,
definite integrals are obtained by accumulating (appropriate signs)
integrals. e.g. if Γ is a 2D cdf, the definite integral over [0,1]× [0,1]
is given by Γ(1,1)− Γ(1,0)− Γ(0,1) + Γ(0,0). This procedure
is common to methods over hyperrectangular domains (including
ours) and usually dominates the overall computational cost in high
dimensions.

method proxy marginals transf. speed depth
[LIA20]

[LMW20]
[MRKN20]

Ours

Table 1: Comparison of recent and relevant work.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

3D input, 7 neurons, linear output

Li

integral

Li

2D marginal func.

eq. 4

eq. 7

Li

Li

input
output

hidden

-1
1

hidden

input output

-1
1

linear

linear

trained neural proxy
Q-NET

Q-NET
marginalize

second dim.

fixed

Figure 2: Given parameters w ≡ (W1,w2,b1,b2) of a sigmoidal approximator for a function in 3D, the integral of the function (top half)
and its projection (bottom half) are calculated similarly but with different instances of Q-NETs (blue trapezoids). In the latter case, the 2D
marginal is a function of the first and third input variables. Q-NETs are fixed networks (shown on the right) that depend only on the number
of dimensions being integrated.

2.2. Notation and formula

We denote row and column vectors with boldface characters (e.g. x,
b1, w2) and matrices using capital letters (e.g. W1). We use super-
scripts to select elements of a vector or matrix. e.g. bi

1 and W i,.
1

represent the ith element b1 and ith row of W1 respectively. With-
out loss of generality (see Sec. 6) we assume a normalized hyper-
rectangular domain x ∈ D ≡ [−1,1]d . We approximate the func-
tion f :D→ R with fw :Dd → R obtained by a training a shallow
feedforward neural network with one hidden layer (k neurons) and
a linear output layer using N samples f (xn) n = 1, · · · ,N. w col-
lectively encodes all learnable parameters of the network: a k× d
matrix W1, a k-dimensional row vector w2, a k-dimensional column
vector b1 and a real number b2 so that

fw(x) = w2 σ(W1x+b1)+b2, where σ
i(zi)≡ 1

1+ e−zi . (1)

That is, σ operates independently on each of the k elements. We de-
sign a network with fixed weights to calculate µd,k(w), the integral
of fw over D exactly. Thus µd,k(w) estimates the integral of f :

µd,k(w)≡
∫
D

fw(x) dx ≈ I where I ≡
∫
D

f (x) dx. (2)

We set k ∝ N
1

1+d causing µ to be a consistent estimator for I. In
practice, since k is fixed (finite), this estimator is not consistent but
our experiments validate its utility nevertheless.

The integral of a sum of shifted and scaled sigmoids is a
weighted sum of the integrals of sigmoids. The logistic sig-
moid and its integrals are instances of a special function called
the polylogarithm [Eul68, Lew81] which can be evaluated effi-
ciently [Cra06]. The formula for the integral was derived in con-
current work [LIA20, Sub20] as:

µd,k(w) = w2 v + 2d b2, (3)

where vi = 2d +
1

w̃i
1

2d

∑
m=1

αm Lid
(
−exp(Sm,. W i,.>

1 −bi
1)
)
.

Here v is a column vector representing integrals of each of the neu-
rons in the hidden layer and Lid(x) is the polylogarithm function

of order d. The summation is due to the definite integral requiring
appropriate addition or subtraction of the integral at each of the ver-
tices of the hypercube. The 2d vertices (rows) are represented by S,
whose elements are ±1. The contribution at each vertex is positive
(αm = 1) when there are an even number of −1s in the row Sm,:

and negative (αm =−1) otherwise. The division by w̃i
1 ≡∏ j W

i, j
1 ,

the product of the elements of the ith row of W1, arises due to the
integration of transformed sigmoids.

3. Q-NETs

Once a proxy fw is trained, we design Q-NETs for practical cal-
culation of marginals of fw. Another advantage is that some trans-
formations to the input domain may be accommodated elegantly
without the need for re-sampling f or retraining fw.

3.1. Central observation

The calculation of the elements of v in Eq. 3 can be simplified by
using a shallow feedforward network qd if they are reformulated as

vi = 2d +
qd(yi)

w̃i
1

(4)

where qd(yi)≡ w3 σd
([

S −112d

]
yi
)
. (5)

Here yi ≡ [W i,.
1 bi

1]
>, σd(.) ≡ Lid(−exp(.)) and 112d is a column

of 2d ones. The advantage of this representation is that Eq. 5 is
similar in structure to Eq. 1 and can therefore be computed using a
feedforward network with fixed weights (no learnable parameters),
input yi, output qd(yi), one hidden layer containing 2d neurons and
the activation function σd . The biases of this network are zero and
its input and output weights are

[
S −112d

]
and w3 respectively. w3

is a row vector whose mth element is αm. We call this family of net-
works, parameterized by d, Q-NETs since it enables quadrature of
the approximator network. In practice, all k vectors may be stacked
(as columns) into a matrix [W1 b1]

ᵀ for efficient (vectorized) eval-
uation. In this case w3 will be replaced by a matrix each of whose k

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

rows is a vector w3. See the top row of Fig. 2 for an example of the
role of a Q-NET in calculating integrals. Q-NETs form an elegant
representation with interpretable properties.

3.2. Operations on Q-NETs

We highlight key properties (also see the accompanying video) of
Q-NETs which we exploit in the applications shown in Sec. 5.

Affine transformation. If the input space is transformed as Mx+c
where M is a transformation matrix and c is a translation,

f̃w(x) = w2 σ(W1 (M x+ c)+ b1)+b2

= w2 σ(W̃1 x + b̃1)+b2, (6)

where W̃1 ≡W1M and b̃1 ≡ b1 +W1c. The integral of the trans-
formed function f̃w(x) may be calculated just as for f , but with the
modified weights [W̃ i,.

1 b̃i
1]
> in Eq. 6 as inputs to the Q-NET and

then divided by the absolute value of the determinant of the Jaco-
bian of the affine transformation. Integrals over non-axis-aligned
hyperrectangles may be computed using this property.

Projection. To marginalize r < d input dimensions of x, the vari-
ables x1,··· ,r need to be integrated (we assume without loss of gen-
erality that the first r dimensions are marginalized), yielding a func-
tion in the remaining variables µr

d,k(w,xr+1,··· ,d). Using Q-NETs,
the procedure is to use ṽi, instead of vi as for the full integral, where

ṽi ≡ 2r + qr(ỹi) /
r

∏
j=1

W i, j
1 . (7)

Compared to Eq. 5 d has been replaced with r on the rhs and the
input to the Q-NET is ỹi ≡ [W i,1,··· ,r

1 (bi
1+W i,r+1,··· ,d

1 xr+1,··· ,d)]>

instead of yi. Thus projection along a subspace of x amounts to
a selection operation in yi where the weighted non-marginalized
variables are moved from being individual inputs to Q-NET to an
aggregate input along with the last (bias) dimension of yi.

Slicing. If the proxy is sliced through r < d dimensions using the
constants x1,··· ,r = c1,··· ,r, the resulting (d− r) dim. function is

f̃w(xr+1,··· ,d) = w2 σ

(
W̃1 xr+1,··· ,d + b̃1

)
+b2, (8)

where W̃1 ≡W .,(r+1,··· ,d)
1 and b̃1 ≡ b1 +W .,(1,··· ,r)

1 c1,··· ,r. Slicing
along subdimensions of x amounts to removing the corresponding
columns of W1 and adding the product of those columns with the
slicing constants to the bias b1. Again, since the sliced function can
be obtained via manipulation of the original weights, the integral
of the sliced function may be calculated just as before via a Q-
NET but with the following two changes: 1) the dimensionality of
integration is d− r instead of d; and 2) the input to the Q-NET is
[W̃ i,.

1 b̃i
1]
> with the weight matrix and bias vector from Eq. 8.

Integrals over sub-domains. change of domain may be achieved
via scaling and translation. Alternatively, it may be realised by
changing S. We describe the latter, since it hints at the future pos-
sibility of inferring the domain (learning S) given an integral. The
domain [−1,1]d manifests in the Q-NET formulation in two ways:
the constant 2d is the product of the differences between upper and
lower limits in each dimension; and matrix S contains ±1 to rep-
resent the vertices of the hyperrectangle. To modify the integration

limits to a,b∈ [−1,1]d , first 2d needs to be replaced by ∏(b j−a j)
in Eq. 3 and Eq. 5 (j iterates through d dimensions). Then, the rows
of S must be updated with combinations of elements of a and b to
list vertices of the hypercube defined by the new limits.

3.3. Complexity and error

The computational complexity of evaluating the formula directly is
O(k d 2d). Using a Q-NET facilitates parallel and vectorized com-
putation across neurons, across dimensions or the 2d rows of the
sign matrix as necessary. Given a trained proxy, computation time
is independent of N, the number of samples. However, the mem-
ory complexity is O(kd) for direct evaluation (no need to store S)
compared to O(kd + d2) with Q-NETs via binary encoding of S
which occupies O(d) space. Since d is the integrated dimensions,
marginalizing along a small number of dimensions remains feasible
even when the domain of the integrand is high-dimensional.

Theorem 1 The upper bound for the squared error between inte-
grals I and µ of a c-times differentiable function f : Rd→R and its
shallow sigmoidal approximant fw (with k neurons) is given by

(I−µ)2 <
h̃

k2c/d
− V[f − fw]. (9)

Here V[.] denotes the variance operator and h̃ is the first moment of
the Fourier spectrum of f . Please refer to the Appendix for a proof.

The variance term on the rhs of Eq. 9 tightens the bound com-
pared to reconstruction error. The change of metric from one that
measures reconstruction fidelity of the proxy to its integration fi-
delity results in a lower upper bound. This is qualitatively consis-
tent with previous analyses of numerical integration of bandlimited
signals [Dur11,SK13,RAMN12] which also conclude that integra-
tion is relatively more sample-efficient. Since Theorem 1 assumes
smoothness, we first perform quantitative validation of Q-NETs on
integrands (see Fig. 3) with discontinuities.

a) GM b) DGM c) HR

Figure 3: Test integrands for empirical validation: (a) Gaussian
mixtures (GM), (b) GM with d discontinuities (GMD) and (c) bi-
nary hyperrectangles (HR). Two different parametric settings are
shown (rows) for each family.

4. Results I: Experimental validation

We use three classes of integrands for empirical tests: Smooth inte-
grands represented by Gaussian mixtures (GM), integrands with d

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

discontinuities (GMD) and arbitrarily discontinuous integrands us-
ing sums of binary hyperrectangles (HR). We averaged results for
different random parameters of these functions in the domain [0,1]d

for dimensions d ≤ 12. Fig. 3 visualizes each class (columns) in 2D
for two different choices of parameters (rows). We ran experiments
in MATLAB on a Desktop with an Intel 8-Core i7-6700 processor,
32 GB of RAM and an NVIDIA TITAN RTX GPU. Training times
depend on f , d and k, but integration using Q-NETs was typically
at rates of about 1000, 550 and 300 neurons/second per thread for
1D, 2D, and 3D integrals respectively.

Marginalization. The projection operator uses Q-NETs defined
over a subset of dimensions. Fig. 4 shows an assessment of inte-
grating a 3D Gaussian mixture with 35 components using k = 35
neurons and N = 2048 samples. The figure omits subscripts on µ for
brevity. The point-sampled functions µ1 and µ2 are plotted for dif-
ferent permutations of the components of x. The marginals obtained
using Q-NETs match references for the projections. We demon-
strate its application to Bayesian inverse rendering in Sec. 5.1.

reference

input: 3D example

(eq. 3)

**
*

*

*
*

train

1

2

3

ours: closed form

reference

: 2D marginals :1D marginals

Figure 4: Marginals of a 3D Gaussian mixture (left) along one di-
mension (middle) and two dimensions (right). The resulting 2D and
1D marginals, evaluated on grids, are compared with references.

Sub-integrals. We trained fw using k = 180 neurons and N sam-
ples of the zone plate function f (x) = (1+ cos(220 xᵀx))/2 in
[0,1]× [0,1] and estimated integrals over subdomains of different
sizes. Fig. 5 visualizes f (left), the subdomain sizes (white boxes)
and plots of relative root mean squared error (RRMSE) on the right
as N is increased up to 30K. The plot shows the mean RRMSE
along with the standard deviations (shaded region) over 100 ran-
domly shifted square subdomains with sides 1/3, 1/8 and 1/20.
Average error is larger for smaller subdomains, as expected, since
the number of expected samples representing the function within
the subdomain drops quadratically with respect to the side. That is,
for this function, integrals over arbitrary sub-domains as small as
1/20×1/20 can be obtained with 10% error if fw was trained using
a 170× 170 grid over the unit square. Error curves for integration
over the entire domain (‘1’ in the legend) using Q-NET (solid) and
QMC (dotted) are also shown.

Increasing dimensionality. The plots in Fig. 7 confirm that our es-
timate (red) is consistent, improves upon general Monte Carlo inte-
gration and is competitive with Quasi-Monte Carlo methods in 2D.
However in 5D the proxy seems less effective when discontinuities
are present (e.g. HR). We investigated this further by measuring rel-
ative errors and variances for dimensions up to d = 12 using HR in-
tegrands. Fig. 6 plots these for different N (colors) and two choices
for k, the number of neurons (solid and dashed lines) using a log

0

0.5

1

0 0.5 1

1/20

1/8

1/3

0 1

100 1K 10K

N (full domain)

10 -3

10 0

R
R

M
SE

1/3 1/8 1/20

1 (ours)
1 (QMC)

Figure 5: We tested our method for recalculating integrals across
sub-domains (without retraining) by training fw on the zone plate
(left) function (1+ cos(220x2 +220y2))/2 using N samples in the
unit square. The plot shows RRMSE (green curves) of 100 random,
square subdomains of sizes 1/3, 1/8 and 1/20 as N is increased.
The errors for integrating over the whole domain is shown (black).

scale for error and a linear scale for dimensions. Although these
plots confirm the increase in error from d = 2 to d = 5, they also
provide reassurance that the increase flattens down towards d = 12.

2 4 6 8 10 12

dim

10 -2

10 0
lo

g
R

R
M

SE

2 4 6 8 10 12

dim

10 -5

10 0

lo
g

va
r.

N=16
N=128
N=512
N=1024
N=2048

Figure 6: Increasing dimensionality on HR integrands. Plots of
relative error (left) and relative variance (right) averaged over 40
iterations each of 50 random HR integrands over dimensions d =
2,3,4,5,6,8,12. Error increases with dimension but the effect is
not sustained. Figure 7 shows convergence plots for 2D and 5D.

Direct use for integration. We trained fw using N samples from
each randomly generated instance of integrand f . Then we evalu-
ated a Q-NET using the trained parameters and calculated relative
error against analytical references. Fig. 7 plots the mean conver-
gence of RRMSE for each class (columns) of integrands for d = 2
(top row) and d = 5 (bottom row). Trend lines (dashed) on the
log-log plots depict O(N−0.5) and O(N−1.5) rates of convergence
while error bars indicate standard deviation across 250 integrands.
The plots indicate that Q-NETs yield useful approximations even
when used directly in low dimensions or with smooth functions.
They also show that Q-NETs are suited to integration with large N
(hence k). For discontinuous integrands they are useful if the proxy
is used as a control variate.

Use as a control variate. We devised a family of estimators CV-Q-
NET that use fw as a control variate [Owe13, Sec. 8.9] to integrate
f . Given ν ∈ [0,1], CV-Q-NET uses ceil[(1−ν)N] samples to train
fw and the remaining samples to integrate f∆(x) = f (x)− fw(x)
via standard MC (or QMC). The final estimator is then the sum of
the closed-form integral of fw and the MC (or QMC) estimator.
When ν = 0, CV-Q-NET is equivalent to µ (Q-NET) and as ν tends
to one it approaches pure MC (or QMC). Although unbiased, this
still yields some error for a fixed k (see Fig. 8) but it results in

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

2D

16 128 512 2048

N

10 -3
10 -2
10 -1
10 0

16 128 512 2048

N

10 -3

10 -2

10 -1

10 0
 MC . QMC . Q-NET

16 128 512 2048

N

10 -3

10 -2

10 -1

10 0
5D

16 128 512 2048

N

10 -3

10 -2

10 -1

10 0

16 128 512 2048

N

10 -3

10 -2

10 -1

10 0

16 128 512 2048

N

10 -3

10 -2

10 -1

10 0

(a) GM (b) DGM (c) HR

Figure 7: Convergence plots (RRMSE vs N) up to 4K samples in 2D (top) and 5D (bottom) for three integrands families (columns). Q-NETs
yield useful estimates but are not competitive with QMC when applied directly (without use as a control variate) to discontinuous functions.
The convergence rate is curiously better than MC for N > 512 in all cases except HR. Dashed guide lines O(N−1) and O(N−1.5) are shown
to facilitate comparisons of convergence rates. Figure 8 further investigates discontinuous integrands in 4D and 8D.

0 0.3 0.6 0.9
8

0

0.5

1

R
R

M
SE

#10 -1

CV-Q-NET

0 0.3 0.6 0.9
8

0

5

10

15

R
el

. V
ar

.

#10 -4

MC !

QMC !

Q-NET

0 0.3 0.6 0.9
8

0

0.5

1

R
R

M
SE

#10 -1

CV-Q-NET

0 0.3 0.6 0.9
8

0

5

10

15

R
el

. V
ar

.

#10 -4

MC !
QMC !

Q-NET

(a) 4D HR (discontinuous integrands) (b) 8D HR (discontinuous integrands)

Figure 8: The proxy is useful as a control variate (CV) by using a fraction (ν) of the samples to integrate the difference f − fw. The plots
compare relative errors and variances of CV-QNET (red), Q-NET (ν = 0) and MC and QMC (ν = 1) estimators. CV-Q-NET is effective at
reducing variance (lower than MC and QMC) for a wide range of values of ν in 4D as well as in 8D.

variance reduction for a wide range of ν even in high-dimensional
discontinuous functions.

5. Results II: Sample applications

We demonstrate the utility of the proposed proxy and its integration
via Q-NETs within a few computer graphics contexts. Our aim is
to highlight the versatility of the proxy and its potential to inspire
future work, rather than to claim improvement over state of the art
in a specific application.

5.1. Bayesian inverse rendering

Consider the problem of estimating probability distributions over
scene parameters θ(material, object transformations, etc.) given
noisy, rendered observations of a small patch (6 × 6) of pix-
els. Excellent options are available [LHK∗20, BLD20, NDVZJ19,
ZWZ∗19] for inferring point estimates of θ given some observed
(target) radiance distribution `. Typically these methods use a dif-
ferentiable rendering pipeline enabling the optimization of θ via
iterative back-propagation of gradients with respect to θ. These

methods cope with impressively high-dimensional θ and do not re-
quire any prior knowledge or precomputation. They do however
rely on a (heavily) modified differentiable rendering pipeline. It is
possible that ` is not differentiable with repect to subsets of param-
eters. e.g. rotation transformations in Mitsuba 2 (θ1 in Fig. 9a).

Inferring distributions over render parameters is challenging for
existing differentiable renderers— even for the simple case of a
single (and differentiable) parameter. Bayesian approaches, on the
other hand, naturally model distributions in observed data and are
popular for solving inverse problems [Stu10,CNN20]. We use pre-
computation from a standard forward renderer to infer the posterior
distribution over render parameters θ given observed radiance `o.
During precomputation, we render images using random vectors of
parameters θi and record the radiance `i. We then train a neural
proxy fw(θ, `) using (θi, `i) and using k = 100 neurons. We nor-
malize this proxy (using a Q-NET) so that it approximates the joint
probability distribution p(θ, `). At test time, given observed radi-
ance values `o we iteratively perform Bayesian inference to obtain
the posterior p(θ|`o) = p(`o|θ)p(θ)/p(`) starting with an initial
uniform prior p(θ). At each iteration, we train fw ≈ p(`o|θ)p(θ)

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

observed pixels

microsurface

roughness

angle

0 10 20 30

iterations

0

0.05

0.1

3
2
 (

ro
ug

hn
es

s)

32
44
56
70

0.05 0.1 0.15

3
2
 (roughness)

0

100

200

fr
eq

.

150 200

3
1
 (rotation angle)

0

0.02

0.04

0.06

p
(
3

1
)

0.05 0.1 0.15

3
2
 (roughness)

0

5

10

p
(
3

2
)

(a) scene and parameters (b) Point estimates for θ2 using Mitsuba 2 (c) Bayesian inference using Q-NET

Figure 9: (a) Given observed radiance (patch on the green wall) modern differentiable renderers like Mitsuba 2 [NDVZJ19] are effective
at inferring point estimates for differentiable scene parameters such as θ2. (b) We ran several iterations, using different patch-sizes for
observations and plotted these estimates and their frequency polygons (histograms). (c) Our method can be used to infer distributions over
parameters which may (θ2) or may not (θ1) be differentiable. We achieve this by using precomputed radiance samples from a standard
forward renderer to train fw to be the 3D joint distribution fw(θ, `). Then we perform Bayesian inference starting with a uniform prior
(light grey). Given unseen observations (on the green wall), the iteratively refined posterior distributions over θ1 and θ2 are shown with
progressively darker greys and reference values are shown with dashed red lines. (Also explained in the video)

and update the prior to be the posterior from the previous iteration.
The numerator and denominator of the Bayesian update are the
marginals of fw and are calculated using Q-NETs. Fig. 9.a shows
an example scene where two parameters of the bull’s model were
varied: the angle of rotation (θ1) around the vertical axis and its ma-
terial roughness parameter (θ2). The updated posterior marginals
over θ1 and θ2 are evaluated on (1D) grids and plotted in Fig. 9.c.

We used a state of the art inverse renderer [NDVZJ19] to ob-
tain estimates for θ2 given observations `o on the green wall. The
plots in Fig. 9.b (left) show point estimates vs iterations for differ-
ent sizes of observed patches. Their histograms hint at the under-
lying distributions. Fig. 9.c plots iterative distributions (progres-
sively darker grey) using our Bayesian inference over each param-
eter. Dashed red lines show the reference values used to generate
the observed patches `o. We trained fw using 100 simulations of
a 6× 6 crop on the green wall with 100 different θi. The training
time with 50 and 150 neurons is 6 (8) and 10 (54) seconds with
(without) GPU computation.

After 20 iterations, the modes of the inferred (black) distribu-
tions are close to the reference. Also, the results suggest a low
confidence in the inferred θ2, which is non-trivial to obtain ro-
bustly from point estimates. Although our inference scheme does
not require a differentiable renderer, it relies on precomputation for
learning. An animated summary is presented in the accompanying
video.

5.2. Modeling with neural noise

Various classes of procedural noise are useful in modeling virtual
worlds. Perlin noise [PH89], a type of lattice-gradient noise, is the
de-facto choice due to its visual appeal, easy and efficient imple-
mentation and extensibility. Its computational cost is O(d2d) per
evaluation for noise in d dimensions. Simplex noise [Per02] im-
proves on this, with a cost of O(d2) per evaluation. Gabor noise is
a popular alternative that can be trained from examples [GLLD12]
and filtered [LD11]. Neural noise can be computed in O(dk) per
evaluation if k neurons are used. Our MATLAB implementation’s

speed is about 13 KHz, 30 KHz and 500 KHz for 25K, 10K and
100 neurons respectively (averaged over 1 million 2D evaluations).

Sigmoidal approximator networks with random w (no training)
are useful generators of noise. They can be evaluated easily on
GPUs, trained to resemble examples, sliced and transformed using
intuitive parameter settings. Their integral enables exact filtering,
normalization and marginalization. Q-NETs allow the noise to be
sampled without any evaluations of the noise function. The bottom

Figure 10: Top row: Examples of noise with target anisotropies
(insets). Bottom row: input 2D noise and samples generated (180,
1500 and 4500 samples).

row in Fig. 10 visualizes a target noise pattern and 180, 1500 and
4500 Halton samples respectively, along with their Voronoi cells.
The samples (best viewed by magnifying on a screen) were gen-
erated via proportional allocation over gridded tiles with the num-
ber of samples in each tile proportional to the integral of the noise
within that tile (calculated using a Q-NET). The cells may also be
generated via a k-d tree type construction where partitioning values
at each step are the medians of the respective functional marginals
obtained via a Q-NET.

Anisotropy is controlled via the distribution of the W1. Just as the
location xc of the middle of the step (where σ(xc) = 0.5) is given
by xc = −b1/w1 in 1D, the orientation of the ith 2D sigmoid is

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

given by W i,2
1 /W i,1

1 . Randomness in W1 can be guided to produce
noise functions with different distributions of sigmoid-orientations
as shown in the top row of Fig. 10 (k = 25K). The insets visualize
the distribution of orientations.

Neural noise patterns scale well to multiple dimensions. The sub-
mitted video shows a scene containing a time-varying participating
medium with heterogeneous density (3D + 1D). We modeled the
3D density in each frame as a slice (in time) of a 4D noise func-
tion with k = 10K neurons. We rendered images using standard
MC path tracing implemented in PBRT [PJH16]. Q-NETs enable
analytical integration of optical depth along rays (Sec. 5.3).

5.3. Estimating optical depth

We represent a scalar density field using the neural proxy and inte-
grate the density along rays by first performing appropriate trans-
formations (translation to the ray origin and rotation to align one of
the dimensions with the ray direction) and slicing. The natural log-
arithm of the ratio of incident to transmitted radiant power through
a material, or optical depth τ, often needs to be estimated for ren-
dering and volume visualization applications. The optical depth be-
tween two points is usually calculated via integration of α(s), the
attenuation coefficient at a distance of s from the first point, over
the line segment between the points. The integrals are usually esti-
mated via sampling or ray-marching for heterogeneous media.

3

2
1

0 10 20 30

Camera pixel (ray)

0

5

10

15

R
el

. e
rr

or
 (

%
)

cam. 1
cam. 2
cam. 3

Figure 11: We fit a proxy to density data from a smoke simulation
in Blender and calculate optical depth along rays using a Q-NET.
A frame from the simulation is shown rendered using Blender Cy-
cles (left). For the central slice, we use a value proportional to the
density as the attenuation coefficient and integrate it along 32 rays
each for three virtual camera poses (middle). The plot (right) shows
percentage relative error for the rays.

We performed a smoke simulation using Blender, exported the
101×100×223 spatially-varying density to a VDB file and trained
fw within the support volume (simulation domain). Given a ray
specified by its origin and direction, we derive the transformation
that aligns the X axis of fw with the ray. Then, we slice fw with
y = 0,z = 0 and integrate along the remaining dimension to ob-
tain the optical depth along the ray within the volume. Fig. 11.a
visualizes a frame of the simulation rendered using Blender cycles.
Fig. 11.b visualizes a vertical slice of the simulation along with
three virtual 2D cameras. For each of the 32 pixels per camera, we
estimated optical depth (until the ray leaves the volume) and plotted

the relative errors (as percentages) in Fig. 11.c. The plots are repre-
sentative of our experiments: 90% of the estimates were below 5%
relative error and about 98% of the estimates are below 10%.

5.4. Visualizing flux through rectangular volumes

The flux Js of a vector field ~F(x) through a cuboidal volume (voxel)
of side s is usually calculated as a surface integral of ~F over the
surface of the voxel. According to the divergence theorem,

Js =
∫
Vs

O.~F(x) dx (10)

where Vs is the volume of the voxel and O.~F(x) ≡ ∑∂~F/∂xi is
the divergence of ~F . Thus, if fw is trained to represent divergence
then an approximation to the above integral can be calculated in
closed-form for cuboidal neighborhoods. Fig. 12 shows this cal-
culation applied to a medical dataset of deformation observed in
a human lung via 4D CT scans [VSC∗07]. The dataset provides
a 3D deformation field during breathing, which we use as ~F . The
divergence of ~F then corresponds to the trace of the local strain ten-
sor which is called dilatation (or dilation). The streamtube plots in
Fig. 12b. and c. visualize local dilatation between two 3D frames
(inspiration and expiration) along streamlines in ~F . In Fig. 12d. we
color streamtubes by the local flux within 5× 5× 5-voxel neigh-
borhoods. In this context, flux corresponds to average expansion
(blue) or compression (red) of local neighborhoods during expira-
tion. This method could also be useful to represent, interpolate and
visualize flux in Lagrangian fluid simulations.

(a) data (b) dil. (ref.) (c) dil. (ours) (d) dil. + flux (ours)

Figure 12: (a) Images showing the deformation field in a human
lung during respiration [VSC∗07]. (b) Streamtubes for deforma-
tion between two frames of the dataset. The thickness of tubes cor-
responds to local dilatation. (c) Approximation dilatation obtained
using a neural proxy. (d) Visualizing local flux (color) calculated
by integrating the proxy.

6. Discussion and future work

Domain and range transformation. In practice, we normalize
the domain to [−1,1]d and the range to [−1,1] via input and
output (maxminmap) operators. The formula is corrected accord-
ingly. i.e. In 1D, if x ∈ [xa,xb], fw(x) ∈ [za,zb] and the normalized
function is f̂w(x̂), then

fw(x) =
zb− za

2

(
f̂w
(xb− xa

2
(x̂+1)+ xa

)
+1
)
+ za.

Estimates in the normalized space µ̂d,k can be transformed to esti-
mate µd,k in the required domain via variable substitution as µd,k =

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

Ω . [(zb− za)(µ̂d,k/2d + 1)/2+ za], where Ω = ∏
d
j=1(x

j
b− x j

a) is
the volume of the domain. We used this in all our empirical tests.

Loss functions and training. We did not notice significant differ-
ences in the convergence rate for different loss functions such as
mse, mae and cross-entropy. We found that optimizing us-
ing the Levenberg-Marquardt method and Bayesian Regularization
perform better than conjugate gradient based methods particularly
for discontinuous f . We used the latter in our experiments because
they are suited to training on GPUs.

Sampling. Q-NETs yield a consistent estimator regardless of the
sampling distribution provided it is non-zero everywhere that f is
non-zero. Low-fidelity reconstruction due to poor sampling could
indeed increase variance. Variance is defined across estimates µ(w)
from samples {xn} due to stochasticity in the initialization or opti-
mization. The error bars in our plots were generated using a fixed
set of samples across repetitions for Q-NETs while different sets
were used for MC and QMC. Although this is to our disadvantage,
it highlights a benefit of the proxy which is to reduce unnecessary
evaluations of potentially costly integrands. Low-discrepancy sam-
pling appears to perform better than random sampling for training.
The QMC methods that we tested (Halton with and without scram-
bling and Sobol) showed variable benefits across different test in-
tegrands but exhibited grossly similar convergence trends.

Gaussian Processes. Despite their success as surrogates, GPs cope
poorly with discontinuities and scale slowly in N. We compared er-
rors of Q-NETs with Bayesian Quadrature (BQ) using the EmuKit
library [PPM∗19] on a step function in 1D (100 repetitions). BQ
performed 0.25× better (lower error) at 16 samples but 3×worse at
512. Q-NETs are faster than BQ by factors of 2× (16 samples) and
400× (512 samples) per rep. Discontinuities in higher dimensional
functions pose a greater challenge to GPs than to neural proxies.

Limitation. When integrating discontinuous functions, excessively
large k is counterproductive due to ringing artifacts caused due to
overfitting. Ringing also occurs at discontinuities. Figure 13 shows
that increasing N effectively reduces the variance of the proxy (±2
standard deviations over 1000 different proxies is shown as a red
shaded region) but does not completely eliminate this effect at dis-
continuities. The spread of the histograms of integral estimates re-
flect the variance of the estimators. Indeed, increasing the sampling
rate is impractical in higher dimensions. Fortunately, the oscillatory
nature of these artifacts poses fewer problems for integration bias
than it does for reconstruction error or for integration variance. This
well-known drawback is typically addressed by bounding width
and adding layers [FWG∗18]. Further work is required to extend
the idea in this paper to multiple layers.

7. Conclusion and future work

We present a practical mechanism to calculate exact integrals of
functions represented by shallow sigmoidal neural networks. Our
family of fixed networks operates on the parameters of trained
proxies to calculate marginals and integrals. In this paper we fo-
cused on quantitative assessment of the effectiveness of the proxy
for functions with discontinuities and demonstrated its effective-
ness for a variety of problems. In the future, we hope to extend the

function approximation integration

-1 -0.5 0 0.5 1

0

0.5

1 x
i

f
w

(x)

f(x)

0.99 1 1.01
0

50

100

-1 -0.5 0 0.5 1

0

0.5

1

0.99 1 1.01
0

50

100

150

-1 -0.5 0 0.5 1

0

0.5

1

0.99 1 1.01
0

200

400

Figure 13: Discontinuities pose a problem for the proxy (left) and
its integral estimates (right). As the number of samples is increased
from 40 (top) to 80 (middle) and 160 (bottom) samples with k = 20
neurons, the variance in the ‘ringing’ artifacts are reduced. The
histogram of estimates obtained using Q-NET for each proxy (rows)
is shown on the right. The reference is I = 1.0 for this example.

idea to multiple layers and hone this work to specific applications
such as volume rendering and light transport simulation. We also
foresee exciting possibilities such as rapid evaluation using imple-
mentation of the fixed-weight Q-NET family directly in hardware.

Acknowledgements

The author was funded by a Royal Society University Research
Fellowship. The 3D model of the bull used in Fig. 9 was submitted
to Free3D.com by printable_models.

Appendix

The approximation error of shallow feedforward networks [Bar93,
SCC15] is bounded by || f (x)− fw(x)||22 < ε where ε = h̃/k2c/d . h̃
is the first moment of the Fourier spectrum of f which is c times
differentiable. Writing f∆(x)≡ f (x)− fw(x),

|| f (x)− fw(x)||22 =
∫
D

f 2
∆(x) dx

=
∫
D

f 2
∆(x) dx −

∫
D

f∆(x) dx

2

+

∫
D

f∆(x) dx

2

= V[f∆(x)] +

∫
D

(f (x)− fw(x)) dx

2

= V[f∆(x)] + (I−µ)2

where V[.] is the variance operator. Substituting this into the bounds
for approximation error we have (I−µ)2 < ε−V [f (x)− fw(x)].

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

References
[Ace18] ACERBI L.: Variational bayesian monte carlo. In Advances in

Neural Information Processing Systems 31 (2018), Bengio S., Wallach
H. M., Larochelle H., Grauman K., Cesa-Bianchi N., Garnett R., (Eds.),
pp. 8223–8233. 2

[AKJ08] AN S. S., KIM T., JAMES D. L.: Optimizing cubature for ef-
ficient integration of subspace deformations. ACM Trans. Graph. 27,
5 (Dec. 2008). URL: https://doi.org/10.1145/1409060.
1409118, doi:10.1145/1409060.1409118. 2

[Bar93] BARRON A. R.: Universal approximation bounds for superposi-
tions of a sigmoidal function. IEEE Transactions on Information theory
39, 3 (1993), 930–945. 9

[BLD20] BANGARU S. P., LI T.-M., DURAND F.: Unbiased warped-
area sampling for differentiable rendering. ACM Trans. Graph. 39,
6 (Nov. 2020). URL: https://doi.org/10.1145/3414685.
3417833, doi:10.1145/3414685.3417833. 6

[BOGO15] BRIOL F.-X., OATES C., GIROLAMI M., OSBORNE M. A.:
Frank-wolfe bayesian quadrature: Probabilistic integration with theoret-
ical guarantees. In Advances in Neural Information Processing Systems
28, Cortes C., Lawrence N. D., Lee D. D., Sugiyama M., Garnett R.,
(Eds.). 2015, pp. 1162–1170. 2

[BP11] BRASS H., PETRAS K.: Quadrature Theory: The Theory of Nu-
merical Integration on a Compact Interval. Mathematical surveys and
monographs. American Mathematical Society, 2011. 2

[BS19] BARGTEIL A. W., SHINAR T.: An introduction to physics-based
animation. In ACM SIGGRAPH 2019 Courses (2019), SIGGRAPH
’19, Association for Computing Machinery. URL: https://doi.
org/10.1145/3305366.3328050, doi:10.1145/3305366.
3328050. 2

[BSS∗13] BELCOUR L., SOLER C., SUBR K., HOLZSCHUCH N., DU-
RAND F.: 5d covariance tracing for efficient defocus and motion
blur. ACM Trans. Graph. 32, 3 (July 2013). URL: https://doi.
org/10.1145/2487228.2487239, doi:10.1145/2487228.
2487239. 2

[CJ16] CHRISTENSEN P. H., JAROSZ W.: The path to path-traced
movies. Foundations and Trends in Computer Graphics and Vision 10, 2
(Oct. 2016), 103–175. doi:10/gfjwjc. 2

[CNN20] CHEN Z., NOBUHARA S., NISHINO K.: Invertible neural brdf
for object inverse rendering. In Computer Vision – ECCV 2020 (2020),
Vedaldi A., Bischof H., Brox T., Frahm J.-M., (Eds.). 6

[Cra06] CRANDALL R. E.: Note on fast polylogarithm compu-
tation, 2006. https://www.reed.edu/physics/faculty/
crandall/papers/Polylog.pdf. 3

[Cyb89] CYBENKO G.: Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems 2, 4 (1989), 303–
314. 1

[DHS∗05] DURAND F., HOLZSCHUCH N., SOLER C., CHAN E., SIL-
LION F. X.: A frequency analysis of light transport. In ACM SIGGRAPH
2005 Papers (New York, NY, USA, 2005), SIGGRAPH ’05, Associa-
tion for Computing Machinery, p. 1115–1126. URL: https://doi.
org/10.1145/1186822.1073320, doi:10.1145/1186822.
1073320. 2

[Dur11] DURAND F.: A frequency analysis of monte-carlo and other nu-
merical integration schemes. MIT-CSAIL-TR-2011-052 (2011). 1, 4

[Eul68] EULER L.: Institutionum calculi integralis volu-
men primum, vol. 1. 1768. English translation by Ian
Bruce: http://www.17centurymaths.com/contents/
integralcalculusvol1.htm. URL: https://archive.
org/details/leonhardieuleri02eulegoog. 3

[FHH∗19] FASCIONE L., HANIKA J., HECKENBERG D., KULLA C.,
DROSKE M., SCHWARZHAUPT J.: Path tracing in production: Part
1: Modern path tracing. In ACM SIGGRAPH 2019 Courses (2019),
SIGGRAPH ’19. URL: https://doi.org/10.1145/3305366.
3328079, doi:10.1145/3305366.3328079. 2

[FWG∗18] FAN F., WANG D., GUO H., ZHU Q., YAN P., WANG G.,
YU H.: Slim, sparse, and shortcut networks. arXiv:1811.09003. 9

[FWKH17] FONG J., WRENNINGE M., KULLA C., HABEL R.: Pro-
duction volume rendering. In ACM SIGGRAPH 2017 Courses (2017),
SIGGRAPH ’17. 2

[GJS19] GROHS P., JENTZEN A., SALIMOVA D.: Deep neural network
approximations for monte carlo algorithms. arXiv:1908.10828. 2

[GLLD12] GALERNE B., LAGAE A., LEFEBVRE S., DRETTAKIS G.:
Gabor noise by example. ACM Trans. Graph. 31, 4 (July 2012).
URL: https://doi.org/10.1145/2185520.2185569, doi:
10.1145/2185520.2185569. 7

[GOG∗14] GUNTER T., OSBORNE M. A., GARNETT R., HENNIG P.,
ROBERTS S. J.: Sampling for inference in probabilistic models with
fast bayesian quadrature. In Proceedings of the 27th International Con-
ference on Neural Information Processing Systems - Volume 2 (2014),
NIPS’14, p. 2789–2797. 2

[GR03] GHAHRAMANI Z., RASMUSSEN C. E.: Bayesian monte carlo.
In Advances in Neural Information Processing Systems 15, Becker S.,
Thrun S., Obermayer K., (Eds.). MIT Press, 2003, pp. 505–512. 2

[GT96] GUENTER B., TUMBLIN J.: Quadrature prefiltering for
high quality antialiasing. ACM Trans. Graph. 15, 4 (Oct.
1996), 332–353. URL: https://doi.org/10.1145/234535.
234540, doi:10.1145/234535.234540. 2

[HJW∗08] HACHISUKA T., JAROSZ W., WEISTROFFER R. P., DALE
K., HUMPHREYS G., ZWICKER M., JENSEN H. W.: Multidimensional
adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph.
27, 3 (Aug. 2008), 1–10. URL: https://doi.org/10.1145/
1360612.1360632, doi:10.1145/1360612.1360632. 1

[Hor91] HORNIK K.: Approximation capabilities of multilayer feedfor-
ward networks. Neural networks 4, 2 (1991), 251–257. 1

[JLSJ11] JOHNSON J. M., LACEWELL D., SELLE A., JAROSZ W.:
Gaussian quadrature for photon beams in tangled. In ACM SIGGRAPH
2011 Talks (2011). 2

[Kaj86] KAJIYA J. T.: The rendering equation. In Proceedings of the
13th Annual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1986), SIGGRAPH ’86, Association for
Computing Machinery, p. 143–150. URL: https://doi.org/10.
1145/15922.15902, doi:10.1145/15922.15902. 2

[KB20] KARALETSOS T., BUI T. D.: Hierarchical gaussian process pri-
ors for bayesian neural network weights, 2020. arXiv:2002.04033.
2

[KDBB17] KOSCHIER D., DEUL C., BRAND M., BENDER J.: An
hp-adaptive discretization algorithm for signed distance field genera-
tion. IEEE Transactions on Visualization and Computer Graphics 23,
10 (2017), 2208–2221. doi:10.1109/TVCG.2017.2730202. 1

[KH19] KANAGAWA M., HENNIG P.: Convergence guarantees for adap-
tive bayesian quadrature methods. In Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 6237–6248. 2

[KKN18] KESHAVARZZADEH V., KIRBY R. M., NARAYAN A. C.: Nu-
merical integration in multiple dimensions with designed quadrature.
CoRR abs/1804.06501 (2018). URL: http://arxiv.org/abs/
1804.06501, arXiv:1804.06501. 2

[KMA∗15] KETTUNEN M., MANZI M., AITTALA M., LEHTINEN J.,
DURAND F., ZWICKER M.: Gradient-domain path tracing. ACM Trans-
actions on Graphics (TOG) 34, 4 (2015). URL: https://doi.org/
10.1145/2766997, doi:10.1145/2766997. 2

[KSP15] KANDASAMY K., SCHNEIDER J., PÓCZOS B.: Bayesian ac-
tive learning for posterior estimation. In Proceedings of the 24th
International Conference on Artificial Intelligence (2015), IJCAI’15,
p. 3605–3611. 2

[KYT∗06] KHAREVYCH L., YANG W., TONG Y., KANSO E., MARS-
DEN J. E., SCHRÖDER P., DESBRUN M.: Geometric, variational in-
tegrators for computer animation. In Proceedings of the 2006 ACM

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1145/1409060.1409118
https://doi.org/10.1145/3414685.3417833
https://doi.org/10.1145/3414685.3417833
https://doi.org/10.1145/3414685.3417833
https://doi.org/10.1145/3305366.3328050
https://doi.org/10.1145/3305366.3328050
https://doi.org/10.1145/3305366.3328050
https://doi.org/10.1145/3305366.3328050
https://doi.org/10.1145/2487228.2487239
https://doi.org/10.1145/2487228.2487239
https://doi.org/10.1145/2487228.2487239
https://doi.org/10.1145/2487228.2487239
https://doi.org/10/gfjwjc
https://www.reed.edu/physics/faculty/crandall/papers/Polylog.pdf
https://www.reed.edu/physics/faculty/crandall/papers/Polylog.pdf
https://doi.org/10.1145/1186822.1073320
https://doi.org/10.1145/1186822.1073320
https://doi.org/10.1145/1186822.1073320
https://doi.org/10.1145/1186822.1073320
http://www.17centurymaths.com/contents/integralcalculusvol1.htm
http://www.17centurymaths.com/contents/integralcalculusvol1.htm
https://archive.org/details/leonhardieuleri02eulegoog
https://archive.org/details/leonhardieuleri02eulegoog
https://doi.org/10.1145/3305366.3328079
https://doi.org/10.1145/3305366.3328079
https://doi.org/10.1145/3305366.3328079
http://arxiv.org/abs/1811.09003
http://arxiv.org/abs/1908.10828
https://doi.org/10.1145/2185520.2185569
https://doi.org/10.1145/2185520.2185569
https://doi.org/10.1145/2185520.2185569
https://doi.org/10.1145/234535.234540
https://doi.org/10.1145/234535.234540
https://doi.org/10.1145/234535.234540
https://doi.org/10.1145/1360612.1360632
https://doi.org/10.1145/1360612.1360632
https://doi.org/10.1145/1360612.1360632
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
http://arxiv.org/abs/2002.04033
https://doi.org/10.1109/TVCG.2017.2730202
http://arxiv.org/abs/1804.06501
http://arxiv.org/abs/1804.06501
http://arxiv.org/abs/1804.06501
https://doi.org/10.1145/2766997
https://doi.org/10.1145/2766997
https://doi.org/10.1145/2766997

Kartic Subr / Q-NET: A Network for Low-dimensional Integrals of Neural Proxies

SIGGRAPH/Eurographics symposium on Computer animation (2006),
pp. 43–51. 2

[LD11] LAGAE A., DRETTAKIS G.: Filtering solid gabor noise. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2011) 30,
4 (July 2011), 51:1–51:6. doi:10.1145/1964921.1964946. 7

[Lew81] LEWIN L.: Polylogarithms and associated functions. North Hol-
land, 1981. 3

[LHK∗20] LAINE S., HELLSTEN J., KARRAS T., SEOL Y., LEHTINEN
J., AILA T.: Modular primitives for high-performance differentiable ren-
dering. ACM Trans. Graph. 39, 6 (Nov. 2020). URL: https://doi.
org/10.1145/3414685.3417861, doi:10.1145/3414685.
3417861. 6

[LIA20] LLOYD S., IRANI R., AHMADI M.: Using neural networks
for fast numerical integration and optimization. IEEE Access 8 (2020),
84519–84531. doi:10.1109/ACCESS.2020.2991966. 1, 2, 3

[LKL∗13] LEHTINEN J., KARRAS T., LAINE S., AITTALA M., DU-
RAND F., AILA T.: Gradient-domain metropolis light transport. ACM
Transactions on Graphics (TOG) 32, 4 (2013), 1–12. 2

[LMW20] LINDELL D. B., MARTEL J. N. P., WETZSTEIN G.: Autoint:
Automatic integration for fast neural volume rendering, 2020. arXiv:
2012.01714. 2

[LPW∗17] LU Z., PU H., WANG F., HU Z., WANG L.: The ex-
pressive power of neural networks: A view from the width. arXiv:
1709.02540. 1

[MRKN20] MÜLLER T., ROUSSELLE F., KELLER A., NOVÁK J.: Neu-
ral control variates. ACM Transactions on Graphics (TOG) 39, 6 (2020),
1–19. doi:10.1145/3414685.3417804. 2

[MU49] METROPOLIS N., ULAM S.: The monte carlo method. Journal
of the American Statistical Association 44, 247 (1949), 335–341. 2

[NDVZJ19] NIMIER-DAVID M., VICINI D., ZELTNER T., JAKOB W.:
Mitsuba 2: A retargetable forward and inverse renderer. Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019). doi:
10.1145/3355089.3356498. 6, 7

[Nie78] NIEDERREITER H.: Quasi-monte carlo methods and pseudo-
random numbers. Bulletin of the American Mathematical Society (1978).
2

[Nie92] NIEDERREITER H.: Random Number Generation and Quasi-
Monte Carlo Methods. 1992. doi:10.1137/1.9781611970081.
fm. 2

[ODR09] OVERBECK R. S., DONNER C., RAMAMOORTHI R.: Adap-
tive wavelet rendering. ACM Trans. Graph. 28, 5 (Dec. 2009), 1–12.
URL: https://doi.org/10.1145/1618452.1618486, doi:
10.1145/1618452.1618486. 2

[OGG∗12] OSBORNE M., GARNETT R., GHAHRAMANI Z., DUVE-
NAUD D. K., ROBERTS S. J., RASMUSSEN C. E.: Active learning
of model evidence using bayesian quadrature. In Advances in Neural
Information Processing Systems 25. 2012, pp. 46–54. 2

[Owe13] OWEN A. B.: Monte Carlo theory, methods and examples.
2013. Accessed on January 11 2021. URL: https://statweb.
stanford.edu/~owen/mc/. 1, 2, 5

[PDW20] PETROSYAN A., DEREVENTSOV A., WEBSTER C. G.: Neu-
ral network integral representations with the relu activation function. In
Mathematical and Scientific Machine Learning (2020), PMLR, pp. 128–
143. 2

[Per02] PERLIN K.: Improving noise. ACM Trans. Graph. 21, 3 (July
2002), 681–682. URL: https://doi.org/10.1145/566654.
566636, doi:10.1145/566654.566636. 7

[PH89] PERLIN K. H., HOFFERT E. M.: Hypertexture. In Proceed-
ings of the 16th Annual Conference on Computer Graphics and Interac-
tive Techniques (1989), SIGGRAPH ’89, p. 253–262. URL: https:
//doi.org/10.1145/74333.74359, doi:10.1145/74333.
74359. 2, 7

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation (3rd ed.), 3rd ed. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, Oct. 2016. 8

[PPM∗19] PALEYES A., PULLIN M., MAHSERECI M., LAWRENCE N.,
GONZÁLEZ J.: Emulation of physical processes with Emukit. Second
Workshop on Machine Learning and the Physical Sciences, NeurIPS,
2019. 9

[RAMN12] RAMAMOORTHI R., ANDERSON J., MEYER M.,
NOWROUZEZAHRAI D.: A theory of monte carlo visibil-
ity sampling. ACM Trans. Graph. 31, 5 (2012). URL:
https://doi.org/10.1145/2231816.2231819, doi:
10.1145/2231816.2231819. 1, 4

[SCC15] SHAHAM U., CLONINGER A., COIFMAN R. R.: Provable
approximation properties for deep neural networks. arXiv:1509.
07385. 1, 9

[SK13] SUBR K., KAUTZ J.: Fourier analysis of stochastic sampling
strategies for assessing bias and variance in integration. ACM Trans.
Graph. 32, 4 (July 2013). URL: https://doi.org/10.1145/
2461912.2462013, doi:10.1145/2461912.2462013. 1, 4

[SSW∗16] SHAHRIARI B., SWERSKY K., WANG Z., ADAMS R. P.,
DE FREITAS N.: Taking the human out of the loop: A review of bayesian
optimization. Proceedings of the IEEE 104, 1 (2016), 148–175. 2

[Stu10] STUART A. M.: Inverse problems: A bayesian perspec-
tive. Acta Numerica 19 (2010), 451–559. doi:10.1017/
S0962492910000061. 6

[Sub20] SUBR K.: Q-net: A network for low-dimensional integrals of
neural proxies, 2020. arXiv:2006.14396v1. 2, 3

[TNVdVG19] TEICHERT G., NATARAJAN A., VAN DER VEN A.,
GARIKIPATI K.: Machine learning materials physics: Integrable deep
neural networks enable scale bridging by learning free energy functions.
Computer Methods in Applied Mechanics and Engineering 353 (Aug
2019), 201–216. URL: http://dx.doi.org/10.1016/j.cma.
2019.05.019, doi:10.1016/j.cma.2019.05.019. 2

[Vea98] VEACH E.: Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford, CA, USA, 1998. AAI9837162. 2

[VSC∗07] VANDEMEULEBROUCKE J., SARRUT D., CLARYSSE P.,
ET AL.: The popi-model, a point-validated pixel-based breathing tho-
rax model. Proc of ICCR, 2007 2 (2007), 195–199. 8

[WL18] WANG H., LI J.: Adaptive gaussian process approximation for
bayesian inference with expensive likelihood functions. Neural Compu-
tation 30, 11 (2018), 3072–3094. PMID: 30216145. arXiv:https:
//doi.org/10.1162/neco_a_01127. 2

[WLF∗20] WANG X., LI M., FANG Y., ZHANG X., GAO M., TANG
M., KAUFMAN D. M., JIANG C.: Hierarchical optimization time in-
tegration for cfl-rate mpm stepping. ACM Trans. Graph. 39, 3 (2020).
URL: https://doi.org/10.1145/3386760, doi:10.1145/
3386760. 2

[YDW13] YAN L., DI J., WANG K.: Spline basis neural network al-
gorithm for numerical integration. International Journal of Mathe-
matical and Computational Sciences 7, 3 (2013), 458 – 461. URL:
https://publications.waset.org/vol/75. 2

[ZWZ∗19] ZHANG C., WU L., ZHENG C., GKIOULEKAS I., RA-
MAMOORTHI R., ZHAO S.: A differential theory of radiative trans-
fer. ACM Trans. Graph. 38, 6 (Nov. 2019). URL: https://doi.
org/10.1145/3355089.3356522, doi:10.1145/3355089.
3356522. 6

[ZZYNH06] ZHE-ZHAO Z., YAO-NAN W., HUI W.: Numerical integra-
tion based on a neural network algorithm. Computing in Science and
Engineering 8 (08 2006), 42–48. doi:10.1109/MCSE.2006.73. 2

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/1964921.1964946
https://doi.org/10.1145/3414685.3417861
https://doi.org/10.1145/3414685.3417861
https://doi.org/10.1145/3414685.3417861
https://doi.org/10.1145/3414685.3417861
https://doi.org/10.1109/ACCESS.2020.2991966
http://arxiv.org/abs/2012.01714
http://arxiv.org/abs/2012.01714
http://arxiv.org/abs/1709.02540
http://arxiv.org/abs/1709.02540
https://doi.org/10.1145/3414685.3417804
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1137/1.9781611970081.fm
https://doi.org/10.1137/1.9781611970081.fm
https://doi.org/10.1145/1618452.1618486
https://doi.org/10.1145/1618452.1618486
https://doi.org/10.1145/1618452.1618486
https://statweb.stanford.edu/~owen/mc/
https://statweb.stanford.edu/~owen/mc/
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/566654.566636
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/74333.74359
https://doi.org/10.1145/2231816.2231819
https://doi.org/10.1145/2231816.2231819
https://doi.org/10.1145/2231816.2231819
http://arxiv.org/abs/1509.07385
http://arxiv.org/abs/1509.07385
https://doi.org/10.1145/2461912.2462013
https://doi.org/10.1145/2461912.2462013
https://doi.org/10.1145/2461912.2462013
https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1017/S0962492910000061
http://arxiv.org/abs/2006.14396v1
http://dx.doi.org/10.1016/j.cma.2019.05.019
http://dx.doi.org/10.1016/j.cma.2019.05.019
https://doi.org/10.1016/j.cma.2019.05.019
http://arxiv.org/abs/https://doi.org/10.1162/neco_a_01127
http://arxiv.org/abs/https://doi.org/10.1162/neco_a_01127
https://doi.org/10.1145/3386760
https://doi.org/10.1145/3386760
https://doi.org/10.1145/3386760
https://publications.waset.org/vol/75
https://doi.org/10.1145/3355089.3356522
https://doi.org/10.1145/3355089.3356522
https://doi.org/10.1145/3355089.3356522
https://doi.org/10.1145/3355089.3356522
https://doi.org/10.1109/MCSE.2006.73

