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Light Transport Operators (LTOs) represent a fundamental concept in com-

puter graphics, modeling single bounces of light within a virtual environ-

ment as linears operators on infinite dimensional spaces. While the LTOs

play a crucial role in rendering, prior studies have primarily focused on

spectral analyses of the light field rather than the operators themselves.

This paper presents a rigorous investigation into the spectral properties of

the LTOs. Due to their non-compact nature, traditional spectral analysis

techniques face challenges in this setting. However, many practical render-

ing methods effectively employ compact approximations, suggesting that

non-compactness is not an absolute barrier. We show the relevance of such

approximations and establish various path integral formulations of their

spectrum. These findings enhance the theoretical understanding of light

transport and offer new perspectives for improving rendering efficiency and

accuracy.
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1 Introduction
Light Transport Operators (LTOs) are a mathematical construct in

computer graphics, that formalizes light propagationwithin a virtual

environment as linear operators acting on a given light distribution.

These operators encapsulate one bounce of the input light distribu-

tion capturing its intricate interactions with geometric structure and

material reflectance properties in the environment. During render-

ing, the light energy at each pixel of a virtual camera is estimated

by evaluating the sum of an infinite series of increasing powers

(multiple bounces) of the operators applied to the distribution of

emitted light.

Despite the foundational role of transport operators in render-

ing, most prior studies have concentrated on spectral analyses of

the light field [Durand et al. 2005; Mahajan et al. 2007] rather than

the operator that governs its evolution. Consequently, the spectral

properties of the LTOs remain underexplored. In this work, we use

the term spectral strictly to refer to harmonic analysis of the LTOs
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and not to wavelength-dependent phenomena. Furthermore, our

analysis is restricted to monochromatic light (in the absence of fluo-

rescence, light transport operators are defined independently across

wavelengths). In this paper, we define a scene to mean a combina-

tion of geometry and their material properties—light sources are

excluded since they are considered part of the input space on which

the LTOs operate.

The LTOs inherently act in infinite-dimensional function spaces,

posing substantial challenges for both theoretical investigation and

computational implementation. Traditional approaches often in-

volve discretization to make the problem tractable. Recent findings

by Soler et al. [2022] reveal that LTOs are generally non-compact,

leading to non-uniform convergence with respect to the number of

elements of the discretization. Non-compactness complicates the ap-

plication of classical spectral analysis results fromfinite-dimensional

settings. Nevertheless, practical techniques such as Galerkin approx-

imations [Baranoski et al. 1997] and precomputed radiance trans-

port [Sloan et al. 2002] circumvent these issues by approximating

the LTO with compact operators, suggesting that non-compactness

is not an absolute limitation. This observation motivates deeper

inquiry into the relationships between finite-dimensional approxi-

mations and the infinite-dimensional operators.

Our theoretical framework aims to bridge these gaps, connecting

the eigenspectrum of the LTOs to measures of specific light path sets

within a scene. By establishing these connections, we contribute

to both the theoretical understanding of light transport and the

development of practical methodologies for spectral analysis. We

envision that our findings may have future direct implications for

improving the efficiency and accuracy of rendering algorithms. In

this paper, we present a detailed analysis of the spectral properties of

the infinite-dimensional LTOs, with the following key contributions:

• A novel and rigorous mathematical characterization of the

eigenspectrum of the LTOs;

• an investigation into how compact approximations of light

transport operators can be used to approximate their spectral

properties; and

• identification of connections between the eigenvalues of LTO’s

and path space integration, setting foundations for fresh per-

spectives on using eigenanalysis in rendering.

This paper presents an analysis of the light transport operator

rather than of the light distribution. The operator is defined specifi-

cally by structure within a scene and so the specific choice of emit-

ters within the scene is largely irrelevant. Occasionally, we exemplify

our discussion with specific scenes that we chose to illustrate (only

showing geometry), rather than render, to avoid misleading readers.

We separate the treatment of related work (Section 2) and the

mathematical background needed (Section 3) to explain our work.

Before performing a spectral analysis of operators that are non-

compact in general, we explain how they permit compact approx-

imations which lend themselves to analysis (Section 4). The core
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results surrounding spectral analysis of LTO’s are presented as

theorems (Section 5). We further explore how these spectra relate

to different aspects of light transport (Section 6). Next, we briefly

describe practical methods for computing the eigenvalues of the

LTOs, providing insights into the computational challenges and

opportunities in spectral analysis (Section 7). We conclude with a

discussion of the implications of our findings and outline future

research directions (Section 8).

2 Previous work
This paper pertains to the spectral analysis of linear operators over

infinite dimensional spaces. Although the operators that we an-

alyze have a long history in computer graphics, there has been

little theoretical analysis of spectral properties. Yet, several practical

approaches have exploited their low-dimensional approximations.

Light transport operators and their spectrum. We analyze operators

that are minorly adapted from standard formulations [Arvo 1996;

Veach 1997]. These formulations have provided insight to various

applications such as inverting transport equations to compensate

for global illumination [Ng et al. 2012], unification of forward and

inverse rendering [Bai et al. 2010], analysis of compactness [Soler

et al. 2022], etc. Their spectrum however has received little attention.

Baranoski [1997] examined the spectrum of the radiosity matrix

in the discrete Lambertian case. Ashdown [2001] reformulated the

radiosity transport matrix as an electrical network and studied its

eigenvectors via analysis of the conductance matrix of the resulting

network. Machida [2014] showed that, in an infinite and isotropic

medium, the singular eigenfunctions of the radiative transport equa-

tions can be independently solved along each dimension.

Spectral analysis of linear operators. Although this is a vast area of

study within mathematics, light transport operators exhibit chal-

lenging characteristics–such as having asymmetric unbounded and

discontinuous kernels– restricting the applicability of standard re-

sults from the theory of linear operators. Despite this, we draw

from a range of theoretical tools and concepts including trace-class

operators [Brislawn 1988], non self-adjoint operators [Gohberg and

Kreı̆n 1978], perturbation theory for linear operators [Kato 1995]

and Fredholm equations [Zemyan 2012]. The connections between

the eigenvalues of an operator and its discretized counterpart can be

found in the work of Boffi [2010], Sun [2016], and Chatelin [2011].

We provide specific citations to the relevant sections of these works

in our derivations.

Dimensionality of light transport matrices. Discrete light transport
operators have been observed empirically to be conducive to di-

mensionality reduction. Precomputed Radiance Transfer methods

[Nowrouzezahrai et al. 2007; Sloan et al. 2002, 2005; Wang et al.

2007] and modular radiance transfer [Loos et al. 2011] utilized this

property to compress transport matrices. Wang [2009] exploited this

property to reconstruct the matrix from a limited set of images. The

solution space of light distributions obtained via low-dimensional

approximations of the transport matrix is limited by the low rank

of the matrix. Some methods attempt to adjust spatial sampling

to optimize for this [Belcour et al. 2022; Huang and Ramamoor-

thi 2010] or use low rank approximations to parts of the transport

matrix [Garg et al. 2006]. Dimensionality reduction has also been

applied to simplify computation in the ‘many-light’ setting with

several point lights [Hašan et al. 2007; Ou and Pellacini 2011]. Ma-

hajan et al. [2007] presented a theory of locally low dimensionnal

light transport as the number of principal components required to

represent the output of the transport matrix under varying condi-

tions. This is analogous to the problem of estimating the number of

eigenvalues of the light transport matrix necessary for local approx-

imations. Lessig [2010] relates the problem of finding the effective

dimension of local bandlimited and radially symmetric light trans-

port to the spatio-spectral concentration problem. While all the

above works operate on discretizations of the operator as matrices,

the non-compactness of these operators [Soler et al. 2022] precludes

finite dimensional uniform approximations whose spectra are not

representative of the original operator’s spectrum. In this paper,

we analyze the spectrum of the light transport operator without

discretization.

3 Background

3.1 Definitions: Linear operators and their properties
We study linear operators over Hilbert spaces. We denote spaces,

operators and space elements using upper case caligraphic, upper

case bold, and roman letters respectively.

Norm and convergence of linear operators. Let H be a Hilbert

space. The norm of a linear operator A : H → H is defined as

∥A∥ = sup∥f ∥=1 ∥A𝑓 ∥. The remaining definitions in this section

apply to operators for which the supremum exists, or bounded linear
operators.

A sequence of linear operators {A𝑛} is said to be uniformly con-
verging to an operator A when

lim

𝑛→∞
∥A − A𝑛 ∥ = 0. (1)

A sequence of linear operators {A𝑛} is said to be strongly converging
to an operator A when

∀𝑓 ∈ H lim

𝑛→∞
∥A𝑓 − A𝑛 𝑓 ∥ = 0. (2)

Uniform convergence implies strong convergence [Chatelin 1981].

Symmetrizable operators. The adjoint of operator A : H → H
is the unique operator A∗

for which

∀(𝑓 , 𝑔) ∈ H2 ⟨A𝑓 , 𝑔⟩ = ⟨𝑓 ,A∗𝑔⟩.
If A∗ = A, then A is self-adjoint and enjoys special properties (See

Lax [Lax 2002], chap.28). If there exists a non negative self-adjoint

operator S such that SA is self-adjoint, then A is known as sym-
metrizable. In this situation, A is self-adjoint for the dot product

⟨𝑓 , 𝑔⟩𝑆 = ⟨𝑓 , S𝑔⟩. (3)

Symmetrizable operators in separable Hilbert spaces share many

properties with self-adjoint operators.

The definition of ⟨, ⟩𝑆 in Equation 3 requires S to be bounded.

Alternatively, if A can be symmetrized by a positive self-adjoint op-

erator S′ with a bounded inverse on H ′ ⊂ H (See Silbertein [1962]

part II, Th. 9.1) then A is a self-adjoint operator on H ′
with dot

product ⟨𝑓 , 𝑔⟩𝑆 ′ = ⟨
√
S′ 𝑓 ,

√
S′𝑔⟩, so it still shares the properties of

symmetrizable operators in this subspace.
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one-bounce equilibrium

specifies
* infinite dimensionality
* non-compact
* not self-adjoint

(a) light transport in a scene (b)     does not depend on light

geometry+materials

fully

(c) what is the spectrum of operator    ? 

Fig. 1. An illustrated overview of the central research question tackled in this paper. (a) The radiance distribution in a scene 𝐿 (magenta) at equilibrium
satisfies the rendering equation 𝐿 = 𝐸 + T𝐿, where T is a linear operator that transports radiance by one bounce and 𝐿𝑒 is the emitted radiance distribution
(yellow). (b) The operator T is fully specified by the geometry of the scene along with the reflectance distributions associated with all surfaces in the scene. It is
independent of the choice of emitted distribution 𝐿𝑒 . (c) If the scene (and hence 𝐿) were discretized then T could be represented as a matrix and its spectrum
(e.g.eigenvalues and eigenvectors) could be analyzed empirically. In this paper, we present mathematical results about the spectrum of the infinite-dimensional
operator T without discretization.

Compact operators. A compact operator maps any bounded se-

quence in the domain into a sequence containing a converging

subsequence. The family of compact operators itself forms a closed

set, meaning that the limit of a uniformly converging sequence of

compact operators is always a compact operator ([Gohberg and

Kreı̆n 1978] p67). Practically speaking, compact operators behave

like “infinite dimensional matrices”. Light transport operators are

generally not compact [Soler et al. 2022].

Trace-class and Hilbert-Schmidt operators. An orthogonal ba-

sis {𝑒𝑖 }𝑖≥0 ofH that generalizes to infinite-dimensional spaces is

known as a Schauder orthogonal basis: every element in H can be

expressed as a–possibly infinite–linear combination of 𝑒𝑖 . Such a

basis can be used to define the trace and the Hilbert-Schmidt norm

Tr(A) =
∞∑︁
𝑖=0

⟨A𝑒𝑖 , 𝑒𝑖 ⟩ and ∥A∥HS =

∞∑︁
𝑖=0

∥A𝑒𝑖 ∥2 (4)

respectively. In finite-dimensional spaces, these correspond to the

trace of the correspondingmatrix and its Frobenius norm. Trace-class
operators are those for which Tr(A) converges (See Gohberg [1978]
§8)

1
and Hilbert-Schmidt operators are operators for which the

Hilbert-Schmidt norm converges. All trace-class operators areHilbert-

Schmidt and all Hilbert-Schmidt operators are compact (See Si-

mon [Barry 2000], sec.5). The product of two Hilbert-Schmidt oper-

ators is trace-class (following Gohberg [1978] Cor. 4.1 and §4.3).

Integral operator. IfH is a space of integrable functions over a

domain 𝑆 , an operator A : H → H is an integral operator if

∀𝑓 ∈ H (A𝑓 ) (x) =
∫
𝑆

𝜅 (x, y) 𝑓 (y)𝑑y,

where 𝜅 : 𝑆 × 𝑆 → C, is known as the integration kernel. A

necessary and sufficient condition for an integral operator to be

Hilbert-Schmidt is that

∫
𝑆

∫
𝑆
𝜅 (x, y)2𝑑x𝑑y < ∞ (Gohberg [2012]

Chp.IX), which is automatically verified when 𝜅 is bounded over its

domain. The trace of trace-class integral operators can be computed

(Barry [2000] Th. 3.9)

Tr(A) =
∫
S
𝜅 (x, x)𝑑x. (5)

1
Another definition of the trace involving the polar decomposition of A is sometimes

found.

Convergence of this integral does not, by itself, imply that A is

trace-class
2
.

3.2 Spectra of operators
In finite-dimensional spaces, linear operators are matrices. The

spectrum of a 𝑛 × 𝑛 matrix M is the set of exactly 𝑛 eigenvalues

𝜆𝑖 (accounting for multiplicity) such that M − 𝜆I is singular, and
corresponds to the roots of the characteristic polynomial ofM. In

infinite-dimensional spaces these definitions are slightly more com-

plex:

Spectrum, resolvent set and resolvent operator. The spectrum
of an operator Awhich we denote 𝜎 (A) is the set of complex scalars

𝜆 for which A − 𝜆I is not bijective and therefore cannot be inverted.

The resolvent set 𝜌 (A) = C\𝜎 (A) is the complement of the spectrum,

for which the resolvent operator 𝑅(A; 𝜆) = (𝜆I−A)−1 exists. When

𝜆 ∈ 𝜌 (A), the resolvent operator is a bounded bijection overH (See

Jeribi [2021] Sec 1.2.2).

Point spectrum, continuous spectrum and residual spectrum.
The non-bijectivity ofA−𝜆I for 𝜆 ∈ 𝜎 (A) reflects different situations:
it might be non injective, or injective but not surjective in which

case the range of the operator may be dense or not in H . This

defines the following partition of the spectrum:

𝜎𝑝 : the point-spectrum is the set of 𝜆 ∈ C such that A − 𝜆I is not
injective;

𝜎𝑟 : the residual spectrum is the set of 𝜆 ∈ C such that A − 𝜆I is
injective, but does not have a dense range;

𝜎𝑐 : the continuous spectrum is the set of 𝜆 ∈ C such that A − 𝜆I is
injective with a dense range, but not bounded below.

The eigenvalues of A are the complex numbers 𝜆 such that there

exists Λ ∈ H for which AΛ = 𝜆Λ, which corresponds to the el-

ements of 𝜎𝑝 (A). As such, we’re interested in this paper in the

point-spectrum of light transport operators.

Intuition about operator spectra. Although the point-spectrum

of an operator is a generalization of the eigenvalues of a matrix

2
These are generally proved when 𝜅 is continuous and can be extended to domains

where 𝜅 is continuous almost everywhere
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to infinite-dimensional spaces, the general properties of the point-

spectrum of operators cannot be extrapolated from those of matri-

ces [Mortad 2022]. Some classical examples of operators and their

point-spectrum include the Fourier transform, which point spec-

trum is the finite set {1, 𝑖,−1,−𝑖}, and the unidirectional right-shift

operator S𝑟 (resp. left-shift operator S𝑙 ) over square-summable se-

quences in C, for which 𝜎𝑝 (S𝑟 ) = ∅ whereas 𝜎𝑝 (S𝑙 ) is the open unit

disc [D’Aniello and Maiuriello 2022]. In general, 𝜎𝑝 may be either

empty, finite, countably infinite, or even uncountable. Even “good

looking” integral operators over 𝐿2 [0, 1] may have any compact

subset of [0, 1] as a point-spectrum [Kalisch 1972]. Like matrices

however, the span of eigenfunctions (including those corresponding

to a zero eigenvalue) is not guarantied to be the entire space. Except

when standard theorems apply, proofs for every particular operator

need a careful derivation.

One advantage of studying compact operators is that their spec-

trum boils down to a countable point-spectrum, with zero as the

only possible accumulation point (Simon [2000] Th. 1.1). As such,

they behave like “infinite-dimensional matrices”. This also explains

why they are the closure of the set of finite dimensional operators,

in operator norm. In this paper, we analyse the spectral properties

of light transport operators.

Infinite-dimensional analogue of SVD. For bounded operators

over infinite dimensional Hilbert spaces, the notion of singular value

decomposition (SVD) is replaced by a continuous analogue [Crane

and Gockenbach 2020], due to the fact that such operators may not

have a countable set of singular values. For compact operators how-

ever, the singular values are countable (See Gohberg et al [Gohberg
and Kreı̆n 1978] Chap.2, Sec.2) and the SVD remains a discrete sum

known as the Schmidt expansion. For a compact operator A it takes

the form of

A𝑓 =

∞∑︁
𝑘=0

𝑠𝑘 ⟨𝑣𝑘 , 𝑓 ⟩𝑢𝑘 , (6)

where {𝑢𝑘 }𝑘≥0 and {𝑣𝑘 }𝑘≥0 are complete orthogonal sequences in

the operator value space standing for the left and right singular

vectors respectively, and the 𝑠𝑘 are the singular values (also named

s-numbers) of A.
When an operator is self-adjoint in a specific Hilbert space (self-

adjointness depends on the dot product), its s-numbers are equal to

its eigenvalues up to the sign, which in turn do not depend on the

dot-product.

3.3 Definitions: Light transport operators
Assumptions and spaces considered. We limit our formulation

to monochromatic light transport with surface reflection only. The

space of radiance functions is H = 𝐿2 (𝑆 × Ω), where 𝑆 is the set of

surfaces (with bounded area) in a scene and Ω is the upper hemi-

sphere of directions.H is a separable Hilbert space with the inner

product [Soler et al. 2022]

⟨𝑙1, 𝑙2⟩H =

∫
𝑆

∫
Ω
𝑙1 (x, 𝜔) 𝑙2 (x, 𝜔) cos𝜃 d𝜔 dx. (7)

The cosine in Equation 7 imbues valuable properties to some of

the operators defined below. The notation in this inner product is

depicted in Figure 3.

Reflectance operator K. The reflectance equation [Kajiya 1986]

expresses radiance leaving a point x in direction 𝜔 as:

𝐿(x, 𝜔) =
∫
Ω
𝜌 (x, 𝜔, 𝜔′)𝐿𝑖 (x, 𝜔′) cos𝜃 ′ d𝜔 ′, (8)

where 𝐿(x, 𝜔) is the exitant radiance at x in direction 𝜔 , 𝐿𝑖 is in-

cident radiance and 𝜌 is the bidirectional reflectance distribution

function (BRDF) at x. Figure 3 summarize the geometric notations.

For consistency we consider “mirror” reflections to be using a very

sharp true function as opposed to a distribution.

C complex plane

𝑆 surfaces in the scene

Ω hemisphere of outgoing directions (local frame)

L 4D domain 𝑆 × Ω
H space of radiance distributions 𝐿2 (L)
B space of spatial distributions 𝐿2 (𝑆)
O space of directional distributions 𝐿2 (Ω)
⟨., .⟩H dot product weighted by cosine (Eq. 7)

∥ ∥H norm induced by ⟨ , ⟩H
K : H → H global reflectance operator

Kx : O → O local reflectance operator at x
G : H → H re-parameterization operator

T : H → H light transport operator (T = KG)
T𝑏 : B → B radiant exitance transport operator

𝜌 (x, 𝜔, 𝜔′) BRDF at x in directions (𝜔,𝜔 ′) ∈ Ω2

𝜌 (x) albedo at x (Eq. 11)

𝑣 (x, y) binary visibility function between points x and y
𝜅𝑏 (x, y) integration kernel of T𝑏
𝜅 (x, 𝜔, y, 𝜔′) integration kernel of T
𝑝𝑆/Ω functions mapping (x, 𝜔) to the point and

direction seen from x in direction 𝜔 (Fig.3)

Fig. 2. Notation used in this paper.

Equation 8 defines an integral operator K : H → H which

maps an incident radiance field into an exitant field: 𝐿 = K𝐿𝑖 . Since
the integral is only over Ω, the reflectance operator K is a partial
integral operator. We may express K as an operator tensor product

of Kx : 𝐿2 (Ω) → 𝐿2 (Ω) at x and the identity I : 𝐿2 (𝑆) → 𝐿2 (𝑆)
where for all x ∈ 𝑆 , Kx (𝐿𝑖 (x, .)) = (K𝐿𝑖 ) (x, .) . As will be seen later

on, Kx is a well behaved integral operator over O = 𝐿2 (Ω).

Fig. 3. Notation for Equations 7,8,9 and 12. We deviate from convention in
the literature [Veach 1997] by always considering outgoing directions in
the local coordinate system. Consequently 𝜔 ′′ ≠ −𝜔 ′ in general.
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Reparameterisation operatorG. When radiance is constant along

directions in free space (absence of volumetric scattering), the inci-

dent radiance field 𝐿𝑖 (x, 𝜔′) is equal to the exitant radiance at some

location y = 𝑝𝑆 (x, 𝜔′) along the direction expressed within that

point’s own local frame as 𝜔 ′′ = 𝑝Ω (x, 𝜔′). This reparameterisation

of the radiance field is captured via an operator G : H → H where

𝐿𝑖 (x, 𝜔′) = (G𝐿) (x, 𝜔′) = 𝐿(𝑝𝑆 (x, 𝜔′), 𝑝Ω (x, 𝜔′)) .

Transport operator T. The light transport operator T combines

the reparameterisation and reflectance operators as follows:

(T𝐿) (x, 𝜔) =
∫
Ω
𝜌 (x, 𝜔, 𝜔′) (G𝐿) (x, 𝜔′) cos𝜃 ′ d𝜔 ′ . (9)

Thus T : H → H transports a radiance field through one-bounce.

Since we consider outgoing directions as the upper hemisphere in
the local coordinate system at each point, our definitions of K and G
differ slightly from those in the literature [Arvo 1996; Veach 1997].

However the operator form of the rendering equation remains as

𝐿 = 𝐸 + T𝐿 = 𝐸 + KG𝐿, (10)

where 𝐸 ∈ H is the emitted radiance field and𝐿 ∈ H is the unknown

radiance.

Lambertian transport operator T𝑏 . When all materials in a scene

are Lambertian, the BRDF 𝜌 is reduced to a directionless albedo 𝜌 (x):

𝜌 (x) =
∫
Ω
𝜌 (x, 𝜔, 𝜔′) cos𝜃 d𝜔 = 𝜋𝜌 (x, ., .) . (11)

Also, reflected radiance is independent of directions and radiant

exitance 𝐵(x) =
∫
Ω 𝐿(x, 𝜔) cos𝜃 d𝜔, is considered instead. Rewrit-

ing Equation 9 in this space defines the radiant exitance transport

operator T𝑏 : 𝐿2 (𝑆) → 𝐿2 (𝑆) [Sillion and Puech 1994] as

(T𝑏𝐵) (x) =
∫
𝑆

𝑣 (x, y) 𝜌 (x)
𝜋

cos𝜃 ′ cos𝜃 ′′

∥x − y∥2
𝐵(y) dy, (12)

where the integral is over surfaces rather than angle and 𝑣 (x, y) is
sometimes referred to as the “visibility function”, which restricts

the integral to points y that are visible from x.

Kernel expressions of T and T𝑏 . We define a geometric term

𝑔(x, y) = 𝑣 (x, y) cos𝜃
′
cos𝜃 ′′

∥x − y∥2
.

From Equation 12 we write the kernel expression of T𝑏 as:

T𝑏𝐵 =

∫
𝑆

𝜅𝑏 (x, y)𝐵(y)𝑑y with 𝜅𝑏 (x, y) =
𝜌 (x)
𝜋

𝑔(x, y) .

To express T as a proper kernel-integral operator, the integral needs

to be defined over the entire domain 𝑆 × Ω. This requires a Dirac
distribution to make the integral over 𝑆 “select” pairs of elements

of L that can actually exchange light:

(T𝐿) (x, 𝜔) =
∫
𝑆×Ω

𝐿(y, 𝜔′′)𝜅 (x, 𝜔, y, 𝜔′′)dyd𝜔 ′′, (13)

where the operator “kernel” is the distribution

𝜅 (x, 𝜔, y, 𝜔′) = 𝑔(x, y) 𝜌 (x, 𝜔, 𝑝Ω (y, 𝜔′′)) 𝛿x (𝑝𝑆 (y, 𝜔′′)) .

3.4 Review: Properties of light transport operators
General properties. In the absence of refractive materials, oper-

ators K and G are both self-adjoint due to the cosine in the dot

product of Eq. 7 [Veach 1997] (See Appendix A for a proof using

our own notations). From conservation of energy, we know that

∥K∥2 < 1 (See Arvo [1996] Sec. 6.3.3) and ∥G∥2 ≤ 1, where the

equality occurs when the scene is “closed”. There, Arvo also proves

∀𝑝 ≥ 1 ∥T∥𝑝 < 1 and ∥T𝑏 ∥𝑝 < 1. (14)

Non-compact operators. Neither K nor T are compact as they are

both partial integral operators [Kalitvin and Zabrejko 1991; Soler

et al. 2022]. The product of a bounded operator and a compact

operator is always compact (see Kato [1995] p158), but T = KG is

known to be non-compact. Therefore G cannot be compact.

Conditionally-compact operators. The operator Kx is a Hilbert-

Schmidt (hence compact) operator, due to its bounded kernel (the

sliced BRDF in Eq. 8). Thus, the non-compactness of K is due to the

“larger” space that it acts on (H instead of O).

T𝑏 is compact only in scenes where 𝜅𝑏 is everywhere bounded,

which imposes conditions of not having abutting edges (or corners)

or contact points between surfaces. At an abutting edge, it is indeed

possible to construct a bounded sequence of light distributions

with increasing spatial frequency content whose image under T𝑏
does not contain any converging subsequence, proving that T𝑏 is

non compact. Fortunately, T𝑏 coincides with a compact operator

everywhere away from such edges [Soler et al. 2022].

4 Compact approximations of operators
In this section we explain that although neither T nor T𝑏 is compact

in general, they admit–not necessarily finite-dimensional–strongly

converging compact approximations in the sense of Eq. 2. We also

draw connections between these compact approximations and pop-

ular ‘fixes’ adoped in the practical computation of light transport

in order to avoid arbitrary large values of the kernel. For exam-

ple, to avoid speckles (white spots) in path-traced images and im-

ages rendered with virtual point lights [Keller 1997], multiple au-

thors proposed to cap the geometric factor [Kollig and Keller 2006],

or use a pre-integrated point-to-virtual-surface element geome-

try factor [Hašan et al. 2009]. Another example is vertex merg-

ing [Georgiev et al. 2012] as used in Galerkin approximations within

non-Lambertian scenes, where couples of surfaces and directional

elements are paired despite their position or directions not matching

exactly.

Strong convergence in this context implies that the radiance func-

tion resulting from the action of a non-compact transport operator

can be obtained as the limit of the value resulting from an approx-

imating sequence of compact operators. Since compact operators

form a closed set in the operator norm, these approximations will

not be uniformly converging (operator-norm convergence in the

sense of Eq. 1). In practice a sequence of operators T𝑛 that is strongly

converging but not uniformly converging to the light transport op-

erator, allows to find for any 𝜖 > 0 a sequence of light distributions

{𝐿𝑛} for which ∥T𝑛𝐿𝑛−T𝐿𝑛 ∥ > 𝜖 for any𝑛 ≥ 0.Wewill see that this

difference materializes as compact approximations filtering out high
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frequencies where the original operator would actually preserve

them.

Compact approximations of T𝑏 and T. As recalled in Section 3.4,

the radiant exitance operator T𝑏 is not compact since its kernel

is not bounded at abutting edges. One way to overcome this is by

parameterizing the kernel via a small threshold 𝜖 > 0 so that

𝜅𝑏,𝜖 (x, y) =
𝜌 (x)
𝜋

𝑓𝜖 (x, y), (15)

where 𝑓𝜖 (x, y) is the capped point-to-point geometry factor
3

𝑓𝜖 (x, y) = 𝑣 (x, y) min

(
1

𝜖
,
cos𝜃 ′ cos𝜃 ′′

∥x − y∥2

)
. (16)

Because 𝜅𝑏,𝜖 is bounded, its use as the integration kernel (instead

of 𝜅𝑏 ) leads to a Hilbert-Schmidt operator T𝑏,𝜖 , which is therefore

compact.

In the non-Lambertian case, there are two causes for the operator

T not being compact: abutting edges and the partial integration

which causes the 1x function to appear in Equation 13. One possible

way to overcome the latter while ensuring strong convergence is to

replace 1x in 𝜅 by a Gaussian with parameterized sharpness such as

𝜅𝜖 (x, 𝜔, y, 𝜔′′) = 𝑔𝜖 (𝜔 · 𝑝Ω (y, 𝜔′′)) 𝜌 (x, 𝜔, 𝑝Ω (y, 𝜔′′)) 𝑓𝜖 (x, y),
where 𝑔𝜖 is a normalized Gaussian of variance 𝜖 centered at 1. In

Appendix B we prove the strong convergence of T𝜖 (resp. T𝑏,𝜖 ) to
T (resp. T𝑏 ) in the 𝐿1 norm for bounded light distributions. While

we cannot prove strong convergence for the 𝐿2 norm, strong con-

vergence in 𝐿1 for bounded light distributions is sufficient in all

arguments that require strong continuity in this paper. Note in par-

ticular that eigenfunctions of light transport operators are bounded

because of energy conservation.
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Fig. 4. Effect of Equation 15 on the first bounce of
indirect illumination in the Cornell box. The flatten-
ing of curves along geometrically continous regions
is a practical consequence of the energy reduction in
high frequencies by compact approximations.

Finite rank Galerkin approximations of T𝑏 and T [Sillion et al.

1991], are alternative examples of compact approximations of these

operators with strong convergence when their basis functions form

a complete Schauder basis for H [Chatelin 2011]. This explains

why finite element methods can yield a converging approximation

to solve equation 10 for a specific emission function 𝐸 and also

explains why (due to non-uniform convergence) adaptive meshing

is required for controlled error across different choices of 𝐸.

3
This arbitrary choice of a capping method leads a simpler convergence proof.

emitter

Fig. 5. A toy scene with a compact (no abutting edges in the scene) radiant
exitance operator that attenuates high frequencies. It is impossible to design
an emission function 𝐸 such that the transported radiance 𝐿 = T𝑏𝐿 contains
a discontinuity. The estimate of the solution𝐸 “compensates” for the filtering
by introducing arbitrarily high spatial frequencies with large intensities. Due
to the strong convergence of the Galerkin approximation, this experiment
provides a valid insight into the behavior of the non-discretized operator.

Compact approximations favor low frequencies. Although
there is no general definition of spatial or angular “frequency”

of a function, we adopt common use of this terminology as the

non-zero coefficients of functions projected onto a basis with local

support in the Fourier domain. For example, spatial or directional

wavelets [Peers et al. 2009], Fourier bases [Durand et al. 2005] or

spherical harmonics [Soler et al. 2015]. If A : X → X is a compact

operator over a separable Hilbert space, and {𝜑𝑛}𝑛 is any orthonor-

mal Schauder basis of 𝐿2 (X), we prove in appendix D that

lim

𝑛→∞
∥A𝜑𝑛 ∥ = 0. (17)

In the specific situation of a basis with local frequency support,

Eq. 17 directly proves that A attenuates higher frequencies
4
. This

result applies to compact approximations T𝑏,𝜖 and T𝜖 . This effect is
illustrated on Figure 4.

Equation 17 does not imply that compact operators are low-pass

filters. Rather, that the action of the operator results in stronger

attenuation of higher frequencies. Thus, Lambertian light transport

tends be “low frequency” away from edges. For example, consider as-

signing an emission distribution 𝐸 to a planar emitter some distance

from a parallel planar receiver. If we wish the receiver to contain a

step edge in the spatial distribution of reflected radiance 𝐿 (e.g. as

seen in a hard shadow), solving for 𝐸 such that 𝐿 = T𝑏𝐸 is not pos-

sible. An attempt to approximate 𝐸 would contain arbitrarily high

spatial frequencies at large energy to compensate for Equation 17.

This is illustrated in Figure 5. This theory underpins the reason that

numerical approximations of light transport inherently attenuate

high spatial and angular frequencies.

Since compact approximations have eigenvalues that converge to

0, when the corresponding eigenfunctions form a complete system,

they necessarily increase in spatial (or angular) frequency with the

index of the corresponding eigenvalue. We prove this in Appendix C.

4
Note that a sequence of functions with decreasing frequency would not be com-

plete, so the same argument cannot be used to show that compact operators filter low

frequencies.
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Convergence of eigenelements. While the spectrum of a pa-

rameter dependent approximation is generally "continuous" w.r.t.

to norm-convergence (see Conway [1991] p431), less can be ex-

pected when only strong convergence is satisfied. Generally speak-

ing, strong convergence of a holomorphic family of parameter-

dependent compact operators (such as T𝜖 and T𝑏,𝜖 ) may display

very unexpected behaviors. For example, the approximation could

have an infinite number of eigenvalues even though the operator

(when 𝜖 = 0) might have no eigenvalues at all, or an uncountable

point-spectrum, etc (See Kato [1995], VII.4, p371).

A useful result however is that when a parameter dependent ap-

proximation A𝜖 of an operator A strongly converges to A, then the

isolated eigenvalues ofA are the limit of eigenvalues ofA𝜖 [Chatelin

1981, 2011], neglecting multiplicity. This theory simplifies even fur-

ther when the operator and its approximations are both self-adjoint

and densely defined, in which case the convergence properties cover

both eigenvalues and eigenprojections (See Chatelin [1981] defi-

nition 2.1 and Section 2.3). Consequently, both eigenvalues and

eigenprojections of T𝑏,𝜖 converge toward those of T𝑏 (We show in

Sec. 5.1 that T𝑏 is self-adjoint in a particular Hilbert space).

Contrary to T𝑏 , having no formal proof that the point-spectrum

of T is countable, the previous conditions do not apply. We are

currently limited to observing the convergence of eigenvalues in a

number of typical geometric configurations, which tends to suggest

that the point-spectrum of T is countable (See Figure 6). Numerical

experiments indeed show that Galerkin approximations of T are

stable (In the sense of Chatelin [Chatelin 1981]). A formal proof

of such stable convergence (left for future work) would allow to

apply Proposition 2.2 of F.Chatelin’s paper [Chatelin 1981] in order

to show that eigenvalues of these approximations actually converge

to isolated elements of the point-spectrum of T.
The strong convergence of approximations T𝜖 and T𝑏,𝜖 also mean

that partial eigenfunction expansions of these operators strongly

converge, which validates the use of eigenfunctions and eigenvalues

of these compact approximations to represent the behavior of the

operators over finite dimensional sets of light distributions.

Usage for eigenfunction expansions. Expanding elements of

H with the eigenfunctions of an operator requires the family of

eigenfunctions of that operator to be dense in H (accounting for

eigenvalue 0). This is the case for T𝑏 (See Section 5), but this is yet to

be proven for T. Regardless, the compactness of T𝜖 is not sufficient

to ensure completness of its eigenfunctions
5
. The eigenfunctions

Λ𝑖 of T𝑏 (resp. T𝑏,𝜖 ) are

∀𝐿 ∈ B 𝐿 =

∞∑︁
𝑖=0

⟨Λ𝑖 , 𝐿⟩𝑆Λ𝑖 . (18)

For T𝜖 , we can at least say that a similar equation holds for elements

selected inside the span of its eigenfunctions.

In summary we have justified in this section that the eigendecom-

position of the compact approximations of light transport can be

used to estimate the countable part of the operators’ point spectrum,

and that the largest eigenvalues correspond to the energy exchanges

of lowest frequency.

5
A notable counterexample in finite dimensions is that of defective matrices.

5 Point-Spectrum of transport operators
In this section, we analyze the point-spectra of operators T, K, G
and T𝑏 . For each operator, we define the elements that are contained

within its point-spectrum as a theorem accompanied by a proof.

Figure 9 provides a table summarizing our results.

5.1 Spectrum of the radiant exitance transport operator
Although T𝑏 is the infinite-dimensional analog of the radiosity

matrix, its non-compactness in the general case precludes direct

extensions of the properties of the latter. However, a common ‘trick’

to make the radiosity matrix symmetric positive definite [Baranoski

et al. 1997] is useful towards proving that T𝑏 is symmetrizable.

Assuming that the albedo 𝜌 is never null, let S : B → B be the

trivial self-adjoint linear operator defined as

(S𝐵) (x) = 1

𝜌 (x) 𝐵(x). (19)

This operator is also positive since

∀𝐵 ∈ B ⟨S𝐵, 𝐵⟩ = ⟨ 1
𝜌
𝐵, 𝐵⟩ =

∫
𝑆

(𝜌 (x)−1/2 |𝐵 |)2𝑑x.

It is therefore possible to define a new dot-product

∀𝑓 , 𝑔 ∈ 𝐿2 (𝑆) ⟨𝑓 , 𝑔⟩S = ⟨𝑓 , 𝑆𝑔⟩,

and we have

⟨T𝑏 𝑓 , 𝑔⟩𝑆 = ⟨T𝑏 𝑓 , S𝑔⟩ = ⟨𝑓 , ST𝑏𝑔⟩ = ⟨𝑓 ,T𝑏𝑔⟩S .

The operator ST𝑏 is trivially self-adjoint over B, and ST𝑏 = T𝑏S. In
other words, T𝑏 is symmetrizable on B, which also means that it is

self-adjoint on the Hilbert space B𝑆 = (𝐿2 (S), ⟨, ⟩𝑆 ). We obtain the

following result:

Theorem 5.1.1: The point-spectrum of T𝑏 has the following proper-
ties:

(1) 𝜎 (T𝑏 ) = 𝜎𝑝 (T𝑏 );
(2) 𝜎𝑝 (T𝑏 ) ⊂ (−1, 1);
(3) 𝜎𝑝 (T𝑏 ) is countable.
(4) eigenfunctions of T𝑏 for different eigenvalues are orthogonal

w.r.t to the dot product ⟨, ⟩S ;
(5) eigenfunctions of T𝑏 span B.
(6) the first eigenfunction of T𝑏 is positive everywhere

Proof: Property (2) is the consequence of the point-spectrum of

self-adjoint operators being real (See Lax [Lax 2002], chap.28) com-

bined with Equation 14. Other properties are direct consequences

of the spectral theorem: A self-adjoint operator A on Hilbert space

has no residual spectrum, proving (1), and its eigenfunctions for dif-

ferent eigenvalues are orthogonal (4) (See for instance Reed [1972],

Th. VI.8). Because B is separable these eigenfunctions can there-

fore only be countable (3)– in a separable space every orthogonal

sequence is countable. From the multiplication form of the spec-

tral theorem ([Reed and Simon 1972], Th. VII.3), we deduce that

the eigenfunctions of T𝑏 form a Schauder basis of B (5). The last

property is a consequence of T𝑏 being a "positive operator" (in the

sense of Lax [Lax 2002], p253). □
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Fig. 6. Convergence and stability of the largest eigenvalues of a Galerkin approximation of the non-Lambertian transport operator T in a toy scene made
of two squares with the MERL gold-paint material with an increasing number of elements. Left: as opposed to the Lambertian case, the eigenvalues of T
are not necessarily real, because of the inherent non-symmetry of T. Zooming on the red squared region of the complex plane (center) where we show four
eigenvalues computed with an increasing number of surface elements, suggests that they display consistent convergence. Since pairs of surface elements
are used to define directional finite elements, the effective matrix size is the square of the indicated numbers (e.g. max size here is 3002 × 300

2). Note that
eigenvalues come in this scene by pairs of opposite signs because of the symetry of the scene.

Self-adjointness alone does not imply that eigenfunctions of T𝑏
span B. The operator’s point-spectrum needs to be countable which

happens in this case when the space is separable, or more generally

when the operator is compact. It is possible that 0 belongs to 𝜎𝑝 (T𝑏 ),
for instance when the geometry includes some finite surface that is

not visible from any other surface. If 0 is in the point spectrum, a

complete system of eigenfunctions of T𝑏 includes its corresponding

eigenfunctions. Finally, a complete system of eigenfunctions with

no null eigenvalue does not make the operator invertible, since the

span of eigenfunctions is only dense in B and not equal to B.

Distribution of the eigenvalues. When T𝑏 is compact, in addition

to being countable, 𝜎𝑝 (T𝑏 ) can only have 0 as an accumulation point.

When it is not compact, eigenvalues are still countable (since the

operator is self-adjoint and the space is separable), and will there-

fore necessarily accumulate at extra non zero values within (−1, 1).
These eigenvalues correspond to eigenfunctions for which most the

energy is concentrated next to an abutting edge. This explains why

compact approximations of T𝑏 are practical for image synthesis:

while they remove non negligible eigenvalues, the corresponding

energy exchanges are mostly local.

When T𝑏 is compact, it is also Hilbert-Schmidt as are its compact

approximations T𝑏,𝜖 . Since it is self-adjoint inB𝑆 , we can apply Eq. 4

to an orthogonal basis of eigenfunctions in B𝑆 to get

∑
𝑖 𝜆

2

𝑖
< ∞.

This brings the following upper bound on the asymptotic behavior

of its eigenvalues: 𝜆𝑛 = 𝑜 (1/
√
𝑛). Figure 7 demonstrates this using

a simple scene with no abutting edges. Determining the actual

asymptotic behavior of the spectrum is non-trivial and depends on

the specific operator (see for instance Jeribi [2021] Sec 11.4).

Finally, while finite multiplicity of eigenvalues is not a limitation

in this paper, it is fairly straightforward to construct scenes where

the eigenvalues of T𝑏 have multiplicity greater than 1: given a closed

scene 𝑆1 (no light leaks), we build a new scene by duplicating the

geometry of 𝑆1 multiple times, to obtain as many closed and separate

environments. Every eigenpair (𝜆,Λ) of T𝑏 in 𝑆1 will give birth to

as many eigenpairs in the new scene where each closed subpart

will have Λ while other subparts are 0. Having an infinite number

of scaled copies which total surface area stays finite would allow

n

Fig. 7. Toy example of a scene where T𝑏 is compact showing the upper
bound on the asymptotic decrease of eigenvalues.

to construct a scene were eigenvalues have infinite multiplicities,

making the operator non-compact even if the original scene had no

abbuting edges. This however is outside of physical constraints.

Singular value decomposition of T𝑏 . Since T𝑏 is self-adjoint in

BS , and given that its eigenvalues {𝜆𝑘 }𝑘≥0 are real and countable,

and its eigenfunctions {Λ𝑘 }𝑘≥0 form a complete orthogonal basis

of B𝑆 (See Section 5.1), T𝑏 has the following “Schmidt expansion”

in BS
6
:

T𝑏𝐿 =

∞∑︁
𝑘=0

|𝜆𝑘 |⟨𝐿,Λ𝑘 ⟩S sign(𝜆𝑘 )Λ𝑘︸        ︷︷        ︸
𝑢𝑘

.

The sign of 𝜆𝑘 has been transfered to the left singular functions 𝑢𝑘
in order to keep the singular values non negative. This expansion

is however not uniformly converging since the eigenvalues of T𝑏
may have non zero accumulation points when the operator is not

compact. In B however, there is no such trivial expression for a

6
Note that the term schmidt expansion is not perfectly appropriate here since the

convergence is not uniform.
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Schmidt expansion of T𝑏 , and numerical computations bring sigular

values that are different from its eigenvalues, mostly because the

eigenfunctions of T𝑏 are not orthogonal in this space.

5.2 Spectrum of the reflectance operators
The local and global scattering operators K𝑥 and K have different

spectra. While they share eigenvalues, the eigenvalues of the latter

have infinite dimensionality.

Theorem 5.2.1: The spectrum of Kx is equal to its point-spectrum,
and has the following characteristics:

(1) 𝜎𝑝 (Kx) ⊂ (−1, 1)
(2) the eigenfunctions of Kx span O

Proof: This operator is Hilbert-Schmidt (therefore compact) and

self-adjoint. Its eigenvalues are consequently real and equal to its

singular values, and its eigenfunctions—including eigenvalue 0, if

present—span the half-space of directions O. Furthermore the eigen-

values of Kx lie in the open interval (−1, 1) since energy conser-

vation imposes ∥Kx∥ < 1. Since Kx is compact, the only possible

accumulation point for its eigenvalues is zero, which may or not be

part of the point-spectrum even if the rank of Kx is infinite. □

Figure 8 shows the largest eigenvalues of Kx for some elements of

the MERL database. Since the integral kernel of Kx is the BRDF, we

sometimes refer to its eigenvalues as the “eigenvalues of the BRDF”.

Theorem 5.2.2: The point-spectrum of K has the following charac-
teristics:
case 1: if there is no measurable area where the BRDFs all share the

same eigenvalue then 𝜎𝑝 (K) = ∅;
case 2: else if the scene can be partitioned into a finite number of

measurable areas with respective BRDFs 𝜌𝑖 , then 𝜎𝑝 (K) =⋃
𝑖≥0 𝜎𝑝 (𝜌𝑖 ). Its eigenvalues have infinite dimensionality and

its eigenfunctions span H . This case is typical of common light
transport scenes;

case 3: else, the point spectrum of K will be limited to the material
eigenvalues that are shared across measurable subsets of 𝑆 , each
having infinite dimensionality. In this case the eigenfunctions
of K do not span H .

Proof: Because K is a tensor product between Kx and an iden-

tity operator over 𝐿2 (𝑆), the existence of an eigenpair (𝑘, 𝜙) of K
also implies that Kx𝜙 (x, .) = 𝑘𝜙 (x, .) wherever 𝜙 (x, .) ≠ 0, which

means that (𝑘, 𝜙 (x, .)) is also an eigenpair of the BRDF at x. And,
in order to be a non-zero function in H = 𝐿2 (𝑆 × Ω), the prop-

erty 𝜙 (x, .) ≠ 0 should remain valid over a measurable subset

𝐴 ⊂ 𝑆 . On the contrary, when the BRDFs across 𝐴 ⊂ 𝑆 all share the

same eigenvalue 𝑘 with eigenfunction 𝜌x, any function of the form

(x, 𝜔) ↦→ 𝜌x (𝜔) 𝑓 (x) over 𝐴 and 0 elsewhere is an eigenfunction

of K, and from Th. 5.2.1, 𝐿2 (𝐴 × Ω) is spanned by these eigenfunc-

tions. □

5.3 Spectrum of the reparametrization operator
LetL1 ⊂ L denote the set of points (x, 𝜔) ∈ L for which 𝑝x (x, 𝜔) is
defined, H1 = 𝐿2 (L1) and P1 : H → H1 the orthogonal projection

on H1. We also call G1 : H1 → H1 the restriction of G to H1. Note

that because 𝑝x is reversible wherever it is defined, using H1 for
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Fig. 8. Top: Point-spectrum of some reflectance operators from the MERL
database. Bottom: eigenfunctions 0, 6 and 20 of the gold-paint material,
computed by projecting the BRDF onto a basis of spherical harmonics up
to degree 30 (green means negative). As theory predicts (See Lax [2002],
chap.28), only the first eigenfunction is entirely positive.

the output space of G1 makes sense. With these settings, we have

G = G1P1 and G2

1
= I. (20)

Similarly toG operatorG1 is self-adjoint, and ∥G1∥ = 1whichmakes

it an isometry onH1. Its eigenvalues are therefore ±1. Furthermore,

to any eigenpair (𝜆,𝑉1) of G1 corresponds an eigenpair (𝜆,𝑉 ) of G
with 𝑉 (x, 𝜔) = 0 for any (x, 𝜔) ∉ L1.

Finally, any function 𝑉 ∈ H such that 𝑃1𝑉 = 0 satisfies G𝑉 = 0.

Therefore 0 is also in the point-spectrum of G. No other eigenvalue

can exist, as it would automatically be an eigenvalue of G1. In

closed scenes, 𝑃1 = I, L1 = L, and G1 = G, and the part of the

point-spectrum corresponding to the nul eigenvalue vanishes.

Theorem 5.3.1: Spectrum of the reparametrization operator
(1) 𝜎𝑝 (G) = {−1, 1} in closed scenes;
(2) 𝜎𝑝 (G) = {−1, 0, 1} otherwise;
(3) the eigenfunctions of G form a complete family ofH .

Proof: In order to prove (3), let {𝜑𝑛}𝑛≥0 (resp. {𝜓𝑛}𝑛≥0) be an
orthogonal Schauder basis of H1 (resp. H \ H1)

7
. Assuming that

both functions can be extended by 0 in L, we define the sequence:

𝐺3𝑛 =
1

2

(𝜑𝑛 + G𝜑𝑛)

𝐺3𝑛+1 =
1

2

(𝜑𝑛 − G𝜑𝑛).

𝐺3𝑛+2 = 𝜓𝑛 .

7
These spaces are separable, and any such combination of spatial and directional

wavelets would work.
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Since G2 = I we obtain

G𝐺3𝑛 = 𝐺3𝑛 G𝐺3𝑛+1 = −𝐺3𝑛+1 G𝐺3𝑛+2 = 0.

After noting that 𝜑𝑛 = 𝐺3𝑛 + 𝐺3𝑛+1 we see that {𝐺𝑛}𝑛≥0 spans

H , which makes it a complete—yet not orthogonal inside each

eigenspace—family of eigenfunctions of G. An fully orthogonal

family of eigenfunction can further be obtained by Gram-Schmidt

orthogonalization in each eigenspace. □

5.4 Spectrum of the radiance transport operator
Unlike the point-spectrum of T𝑏 (Section 5.1), much less can be de-

termined about the point-spectrum of T because of the combination

of the following properties:

(1) T is not compact;

(2) T is not normal;

(3) T cannot be symmetrized.

The non-compactness of T has been discussed in Section 3.4. To

demonstrate non-normality, since K and G are self-adjoint, we have

TT∗ = KGGK = K2,

T∗T = GKKG = GK2G.

That is, reflecting twice is not equivalent to transporting, reflecting

twice and transporting back. Note that neither is T quasi-normal

nor hyponormal, which would yield beneficial properties [Conway

1991]. (3) is a side effect of the Dirac in Equation 13, which precludes
multiplication of T by a trivial operator (such as S in Eq. 19) to make

it self-adjoint.

Theorem 5.4.1: The spectrum of T has the following properties:
(1) 𝜎𝑝 (T) is not empty; the largest eigenvalue is positive with a

positive eigenfunction;
(2) 𝜎𝑝 (T) lies in the disk of radius ∥K∥;
(3) the eigenfunctions of T for non-zero eigenvalues do not neces-

sarily span H .

Proof: Since T is a bounded operator it has a non-empty spectrum

(See Kato [1995] Ch3,§6.2), but this does not guarantee the same

property for its point-spectrum. But since its kernel is positive (as-

suming non-zero reflectance), the Krein-Rutman theorem [Phát and

Dieu 1994] applied to the cone of light distributions of constant sign

ensures that when the scene is closed we have 𝜎𝑝 (T) ≠ ∅ and its

maximal eigenvalue is a positive real value of unit multiplicity, asso-

ciated to an all-positive eigenfunction. When the scene is not closed,

restricting T to H1 preserves the conditions to apply this theorem,

hence proving (1). Note that the same applies to T𝑏 which coincides

with T when materials are Lambertian. (2) is straightforward: let

(𝑉 , 𝜆) be an eigenpair of T (which means ∥𝑉 ∥ = 1), then ∥T𝑉 ∥ = |𝜆 |
and ∥T𝑉 ∥ ≤ ∥K∥∥G∥. Using Equation 14 we get |𝜆 | ≤ ∥K∥.

Since T = KG, any eigenfunction𝑉 of T is in the range of K, so is
the span of the eigenfunctions, which proves (3). The extreme case

is in Lambertian scenes, where eigenfunctions for non-zero eigen-

values are directionaly constant, and therefore cannot represent any

non-directionaly constant function inH . □

The following might be useful in practical contexts where one set

of eigenfunctions might be computed easily, either for transporting

light or importance:

Theorem 5.4.2: The spectrum of T and T∗ are connected via the
operators G and K:

(1) The eigenfunctions of T and T∗ are mutually orthogonal for
different eigenvalues;

(2) G turns the former into the later, while K turns the later into
the former;

(3) 𝜎𝑝 (T) = 𝜎𝑝 (T∗).
Proof: Orthogonality is a classical result. In order to prove (2) and

(3), let (𝜆, 𝐿) be an eigenpair of T∗. We have GK𝐿 = 𝜆𝐿. Left multi-

plying by G leads to K𝐿 = 𝜆G𝐿. Reporting the former equation in

the later, we get K(GK𝐿) = 𝜆G(GK𝐿), which simplifies to T(K𝐿) =
𝜆(K𝐿). Conversely, if (𝜆,𝑉 ) is an eigenpair of T, we have KG𝐿 = 𝜆𝐿.

Left-multiplying by G directly leads to T∗ (G𝐿) = 𝜆(G𝐿). □

Note that the above properties do not imply that eigenvalues are real,

and indeed, numerical experiments tend to show that even in the

simplest cases they are not (See Figure 6). Finally, we lack a formal

proof that 𝜎𝑝 (T) is countable. It seems to be a reasonnable conjec-

ture given the stable convergence of eigenvalues of its Galerkin

approximations [Chatelin 2011] (See Figure 6). We leave such a

proof for future work.

5.5 Singular value decomposition of radiance transport
operator

Interestingly, T admits a simple explicit singular value decomposi-

tion in scenes with a finite number of non-spatially-varying mate-

rials𝑚𝑖
8
which we briefly recall here for completness [Soler et al.

2022]. This result will be used to derive the spectral properties of T.
We call 𝜌𝑖 𝑗 the j

𝑡ℎ
eigenvalue of material𝑚𝑖 and its corresponding

eigenfunction 𝑟𝑖 𝑗 ∈ O. We define {𝜙𝑖
𝑘
}𝑘≥0 to be an orthogonal basis

of the subset of 𝑆 where the material is𝑚𝑖 (wavelets are such an

example). Finally we name 𝑔 : 𝑗 ↦→ (𝑛1, 𝑛2) an arbitrary bijection

between N and N2, and use 𝑗 = 𝑔(𝑛1, 𝑛2). Thus, we have

T𝐿 =

𝑛∑︁
𝑖=1

∑︁
𝑗>0

|𝜌𝑖 𝑗 |⟨𝐿, 𝜑𝑖𝑗 ⟩𝜓
𝑖
𝑗 , (21)

where for all (𝑛1, 𝑛2) ∈ N2,
𝜓 𝑖
𝑗 (x, 𝜔) = 𝜙𝑖𝑛1

(x)𝑟 𝑖𝑛2

(𝜔) (22)

𝜑𝑖𝑗 (x, 𝜔) = sign(𝜌𝑖 𝑗 )G𝜓 𝑖
𝑗 (x, 𝜔) . (23)

The above equation takes the form of Equation 6 after reordering

the elements in the sum.

6 Light transport formulations of the spectrum
We now derive connections between the eigenvalues of compact

approximations of the light transport operators and light paths

and their integrals. In some cases, the connection is direct such as

the structure of the operators’ output space being governed by its

eigenelements (Section 6.1). In Section 6.2 we discover a relationship

between eigenvalues of the operator and linear combinations of

multiple bounces of light. In Section 6.3 we explain how the measure

of single light paths of fixed length, as a pure geometric quantity

(with no specific light distribution involved), is also closely related

8
This is the most general situation, assuming that surfaces with spatially-varying-

materials can further be separated in sub-regions with constant materials
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operator space normality class point-spectrum completeness
T𝑏 B symmetrizable bounded countable yes

T𝑏,𝜖 B symmetrizable Hilbert-Schmidt countable→ 0 yes

Kx O self-adjoint Hilbert-Schmidt countable → 0 yes

K H self-adjoint bounded countable (∞-dim) yes

G H self-adjoint unitary {0, 1,−1} yes

T H none bounded countable (conjectured) conjectured

T𝜖 H none Hilbert-Schmidt countable → 0 conjectured

Fig. 9. Summary of spectral properties of the different operators involved in light transport (See definitions in Section 3.1). Completness accounts for
eigenfunctions corresponding to eigenvalue 0.

to the eigenvalues. Finally in 6.4 we show that eigenfunctions can

be expressed as an integral over solutions of a parameter-dependent

generalized light transport problem.

All results derived in this section remain valid of any compact

approximation of T and T𝑏 , including such as those described in Sec-

tion 4. We use the generic notation
˜T to designate them. Note that

while some of the following results would be straightforward for ma-

trices, careful proofs are still required for these infinite dimensional

operators.

6.1 Structure of the operator’s output space
Projecting

˜T onto a finite 𝑁 -dimensional subspace of its output

space, results in a matrix whose eigenvalues estimate the largest

elements of 𝜎𝑝 ( ˜T). This formulation is inspired from the Monte-

Carlo approximations of large matrices proposed by Halko [2011].

Let H𝑁 be the 𝑁−dimensional subspace of H spanned by the 𝑁

first elements of a complete sequence of functions of finite support in

the frequency domain (wavelets, spherical harmonics, etc). Consider

𝑝 light distributions 𝐿1, ...., 𝐿𝑝 in this space sampled from a Gaussian

distribution. For some 𝑛, let q1, ..., q𝑛 be an orthogonal basis of the

n-dimensional spanQ of { ˜T𝐿1, ˜T𝐿2, ..., ˜T𝐿𝑝 } (most of the time𝑛 = 𝑝).

We also define

Q : R𝑛 → Q
(𝑎1, ..., 𝑎𝑛) ↦→ 𝑎1q1 + ... + 𝑎𝑛q𝑛 .

Using this notation, the adjoint Q∗
: Q → R𝑛 of Q computes the 𝑎𝑖

coordinates for any 𝐿 ∈ Q. Both Q and Q∗
can be plunged intoH

so that QQ∗
is the orthogonal projection on Q, whereas Q∗Q is the

identity over R𝑛 . Given this, the following theorem holds.

Theorem 6.1.1: For any 𝜖 > 0 there exists (𝑛, 𝑁 ) ∈ N2 such that
the 𝑛 × 𝑛 matrixM = Q∗ ˜TQ satisfies

(M𝑣 = 𝜆𝑣) ⇒ ∥ ˜TQ𝑣 − 𝜆Q𝑣 ∥ ≤ 𝜖,

with probability 1 − 10
−𝑛 . That is, the eigenvalues ofM statistically

approximate some eigenvalues of ˜T using sufficiently many input light
distributions 𝐿𝑖 .

Proof: Let 𝜖 > 0 and T𝑁 = P𝑁 ˜T where P𝑁 is the orthogonal

projection on H𝑁 . Since
˜T is compact, there exists 𝑁 such that

∥T𝑁 − ˜T∥ ≤ 𝜖/3. We therefore have

∥ ˜T − QQ∗ ˜T∥ ≤ 𝜖

3

+ ∥T𝑁 − QQ∗T𝑁 ∥ + ∥QQ∗ (T𝑁 − ˜T)∥ .

The 3rd term above verifies ∥QQ∗ (T𝑁 − ˜T)∥ ≤ ∥QQ∗∥∥T𝑁 − ˜T∥ ≤
𝜖/3 since, as an orthognal projection ∥QQ∗∥ = 1. The second term

is majorated using the framework of Halko [2011] (Sections 4.3 and

4.4) which we rephrase here in our context:

Proposition 6.1.1 (Halko, 2011). Let A be a 𝑁 × 𝑃 matrix, and
𝜔0, 𝜔1, ... a sequence of random Gaussian vectors, and Q the ma-
trix built as above. As soon as 𝑛 consecutive vectors verify ∥(I −
QQ∗)A𝜔𝑘 ∥ ≤ 𝜖/(10

√︃
2

𝜋 ), then with probability 1 − 10
−𝑛 we have

∥(I − QQ∗)𝐴∥ ≤ 𝜖 .

We apply this result to the operator T𝑁 P𝑁 , that is a finite rank

operator over the finite dimensional space H𝑛 which therefore can

be assimilated to a matrix, to determine the existance of 𝑛 such that

∥T𝑁 −QQ∗T𝑁 ∥ ≤ 𝜖/3. In summary, there exists 𝑁 and 𝑛 such that

∥ ˜T − QQ∗ ˜T∥ ≤ 𝜖. (24)

Let (𝜆, 𝑣) be an eigenpair ofM. We have

∥ ˜TQ𝑣 − 𝜆Q𝑣 ∥ ≤ ∥ ˜TQ𝑣 − QQ∗ ˜TQ𝑣 ∥ + ∥QQ∗ ˜TQ𝑣︸    ︷︷    ︸
QM𝑣

−𝜆Q𝑣 ∥.

The first term on the right hand side is less than 𝜖 because of Eq. 24

and since M𝑣 = 𝜆𝑣 , the second term is equal to 0, which yields

∥ ˜TQ𝑣 − 𝜆Q𝑣 ∥ < 𝜖 . □

This theorem should be understood as follows: H𝑁 being the

space where the 𝐿𝑖 are sampled, choosing 𝑛 large enough will re-

duce the approximation error ∥ ˜TQ𝑣 − 𝜆Q𝑣 ∥ down to the threshold

imposed by 𝑁 . However, using a very large 𝑁 will require 𝑛 to

be large as well in order to reduce ∥T𝑁 − QQ∗T𝑁 ∥. Halko [2011]

conjectures that 𝑛 should be slightly larger than 𝑁 in order to sat-

ify Eq. 24. In other words, controlling the error requires sampling

a small number of low frequency light distributions, or a larger

number of higher-frequency light distributions.

As defined in the theorem, the matrix M = Q∗ ˜TQ resembles a

product of matrices, but it is not. Operator Q may be viewed as an

"infinite matrix" with 𝑛 columns each of which is one of the light

distributions q𝑖 . However, we may estimate M by sampling these

light distributions at a finite (yet sufficiently large) number of points

and directions.

6.2 Linear combinations of powers of ˜T
Here we derive that the minimization of a linear combination of

powers of T results in a polynomial whose roots estimate the largest
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elements of the point-spectrum of T. While such a connection seems

obvious for a matrix (choosing 1 + 𝑃 (𝑥) to be proportional to the

characteristic polynomial of that matrix) the following theorem

shows that it holds for our compact approximations.

Theorem 6.2.1: For any light distribution 𝐿 ∈ H with a finite
support on the sequence of eigenfunctions of ˜T there exists a finite set
of coefficients 𝛼1, ..., 𝛼𝑛 such that

𝐿 +
𝑛∑︁

𝑘=1

𝛼𝑘
˜T𝑘𝐿 = 0. (25)

Furthermore, the roots of polynomial 1+∑𝑘 𝛼𝑘𝑥
𝑘 are the corresponding

eigenvalues of ˜T.

Proof: If {Λ𝑖 } is the sequence of eigenfunctions of ˜T (which we

do not assume to be complete nor orthogonal), and 𝐿 has a finite

support on this basis, then there exist 𝑛 + 1 coefficients 𝛽𝑖 ≠ 0

(without loss of generality we assume no gap in the related Λ𝑖 ) such

that

𝐿 =

𝑛∑︁
𝑝=0

𝛽𝑝Λ𝑝 . (26)

Let 𝛼0, ..., 𝛼𝑛 ∈ C. Applying ˜T𝑘 to equation 26, and exchanging sums

(both are finite) we immediately get

𝑛∑︁
𝑘=0

𝛼𝑘
˜T𝑘𝐿 =

𝑛∑︁
𝑝=0

𝛽𝑛𝑃 (𝜆𝑝 )Λ𝑝 . (27)

where 𝑃 is the polynomial

∑𝑛
𝑘=0

𝛼𝑘𝑋
𝑘
, hence defining operator 𝑃 ( ˜T)

(See Conway [1990] Sec.4.10)
9
.

Because of equation 27 the necessary and sufficient condition for

𝑃 ( ˜T)𝐿 = 0 is that 𝑃 (𝜆𝑝 ) = 0 for each 𝑝 . Such a polynomial being

defined up to a factor, we choose 𝛼0 = 1. Polynomial

∏𝑛
𝑖=0 (1−

1

𝜆𝑖
𝑋 )

is in this case the unique solution, whose expansion provides the 𝛼𝑖
coefficients for Equation 25. □

In practice, this theorem proves useful to estimate eigenvalues

because of the increasing oscillatory nature of eigenfunctions of
˜T,

which means that any finite-frequency light distribution will have a

limited support on the sequence of eigenfunctions, or at least very

small values of 𝛽𝑛 beyond some 𝑁 . Consequently even when the

coefficients do not exactly vanish, optimizing

(𝛼1, ..., 𝛼𝑛) = argmin∥𝐿 +
𝑛∑︁

𝑘=0

𝛼𝑘
˜T𝑘𝐿∥2 (28)

produces a polynomial whose roots will approach the largest eigen-

values. We illustrate this in Figure 10.

Theorem 6.2.1 is related to theorem 6.1.1 in the following way:

let’s choose {𝐿𝑘 } (in theorem 6.1.1) to belong to the span M of

the first eigenfunctions of
˜T, and call 𝐶 the characteristic poly-

nomial of matrix M. Because M is stable by
˜T we have 𝐶 (M) =

Q∗𝐶 ( ˜T)Q. Since𝐶 (M) = 0 (Cailey-Hamilton theorem), we also have

Q∗𝐶 ( ˜T)Q = 0. Consequently, for any 𝐿 ∈ M in theorem 6.2.1 the

9
Note that self-adjointess is not required here

corresponding polynomial 𝑃 is 𝐶 (or a factor of 𝐶 depending on the

support of 𝐿 over the {Λ𝑖 }).

6.3 The measure of circular light paths
In this subsection we reveal an unexpected connection between the

measure of circular light paths in a scene and the eigenvalues of
˜T.

Theorem 6.3.1: The eigenvalues of ˜T are the reciprocals of the poles

of the entire function 𝑑 (𝜆) =
∞∑︁
𝑛=0

(−1)𝑛𝑎𝑛𝜆𝑛 , where

𝑎𝑛 = − 1

𝑛

𝑛∑︁
𝑘=2

(−1)𝑘𝑝𝑘𝑎𝑛−𝑘 , (29)

and 𝑝𝑛 is the measure of circular light paths of length 𝑛 in the scene,
with 𝑝0 = 𝑎0 = 1 and 𝑝1 = 𝑎1 = 0.

Proof: In Section 4 we saw that the compact approximations T𝜖
and T𝑏,𝜖 of light transport operators also happen to be Hilbert-

Schmidt. Assuming
˜T is one of these, we can express the Hilbert-

Carleman determinant (See Gohberg et al. [2012] p176) of ˜T as

Det(I + 𝜆 ˜T) =
∞∑︁
𝑛=0

𝑎𝑛𝜆
𝑛

with (30)

𝑎𝑛 =
1

𝑛!

����������
0 𝑛 − 1 0 . . . 0 0

Tr( ˜T2) 0 𝑛 − 2 0 . . . 0

Tr( ˜T3) Tr( ˜T2) 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

Tr( ˜T𝑛) Tr( ˜T𝑛−1) Tr( ˜T𝑛−2) . . . Tr( ˜T2) 0

����������
with 𝑎0 = 1 and 𝑎1 = 0. Since

˜T is Hilbert-Schmidt, all operators
˜T𝑘

are also trace-class for 𝑘 ≥ 2, hereby justifying the use of the trace

in Equation 30. Just like the more classical Fredholm determinant
(Gohberg et al. [2012] Chp.VI), the Hilbert-Carleman determinant

is an entire function over C which zeros are the 𝜆 = − 1

𝜆𝑖
, where 𝜆𝑖

are the eigenvalues of
˜T.

For 𝑘 ≥ 2, denoting by 𝜅𝑘 the kernel of the trace-class operator

˜T𝑘 , thanks to Equation 5 we have [Brislawn 1988]

Tr( ˜T𝑘 ) =
∫
𝑆

𝜅𝑘 (x, x)𝑑x

=

∫
𝑆

∫
𝑆𝑘−1

𝜅 (x, x1)𝜅𝑘−1 (x1, x)𝑑x1𝑑x

. . .

=

∫
𝑆𝑘

𝜅 (x1, x2)𝜅 (x2, x3) ...𝜅 (x𝑘 , x1)𝑑x1 ...𝑑x𝑘 (31)

In the non lambertian case the x𝑖 in these equations should be

understood as couples of points and directions. Because of the ar-

bitrarily sharp Gaussian 𝑔𝜖 in the kernel expression of
˜T, only the

ones that actually constitute a correct light path are non zero. In

other words for both Lambertian and non-Lambertian scenes the

above equations prove that Tr( ˜T𝑘 ) corresponds to the integral of all
circular light paths of length 𝑘 in the scene. Henceforth, we use the
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scene

(a) input light distrib. (b) one-bounce (c) two-bounces (d) eigenvalues as the roots of a polynomial

eigenvalues

Fig. 10. Illustration of Th.6.2.1, where we show that the largest eigenvalues of ˜T can be approximated as roots of a polynomial which coefficients 𝛼𝑘 zero the
first bounces of light ˜T𝑘𝐿.

notation 𝑝𝑘 = Tr( ˜T𝑘 ). Rewriting the determinant in Equation 30 us-

ing Laplace expansion along the first column leads to the recursive

expression of Equation 29 (See Appendix E for further details). □

The simplest method to compute 𝑝𝑘 is Monte-Carlo integration,

via a random starting point and direction followed by importance

sampling of the path up to length𝑘 . The last vertex is then connected

to the first
10
. Doing so, the probability density of sampling the

circular path 𝜋𝑘 = (x1, ..., x𝑘 ) is

𝑃 (𝜋𝑘 ) =
1

𝑆
𝜅 (x1, x2) . . . 𝜅 (x𝑘−1, x𝑘 ),

and we have

𝑝𝑘 = lim

𝑁→∞
1

𝑁

𝑁∑︁
𝑖=1

1

𝑃 (𝜋𝑘 )
𝜅 (x1, x2)𝜅 (x2, x3) ...𝜅 (x𝑘 , x1)

= lim

𝑁→∞
𝑆

𝑁

𝑁∑︁
𝑖=1

𝜅 (x𝑘 , x1).

Even though the calculation of 𝑝𝑛 is stable, estimating eigenval-

ues via a finite number of these path integrals converges slowly. The

roots of polynomials are generally highly sensitive to noise in their

coefficients, especially when these roots are evenly spaced [Wilkin-

son 1959]. This is why in a practical calculation scenario truncating

Det(I + 𝜆 ˜T) to its first terms causes instability when determining

its roots. Figure 11 shows practical values of 𝑝𝑛 and 𝜆𝑛 in a simple

scene where the values vanish rapidly with increasing 𝑛.

6.4 Parameter-dependent light transport solutions
The previous subsections derived connections between path inte-

grals and eigenvalues. We now explain how it is also possible to ex-

press eigenfunctions as a sum of solutions to a parameter-dependent

light transport problem in the complex domain.

10
Note that implementation efficiency is not an issue at this point, and we acknowledge

that better sampling strategies that reuse the same path for multiple 𝑝𝑖 are available
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Fig. 11. The measure of n-bounce circular light paths 𝑝𝑛 shown for n up to
16 on an example scene (inset). The scene is composed asymmetrically of 3
Lambertian squares (albedo 0.5) so that 𝜅 is bounded, making T𝑏 compact.

Theorem 6.4.1: Any eigenfunctionΛ𝑖 of ˜T corresponding to an eigen-
value 𝜆𝑖 with unit geometric multiplicity can be expressed as a path
integral

Λ𝑖 = − 1

2𝑖𝜋

∮
Γ
𝐿(𝛼)d𝛼, (32)

where 𝐿(𝛼) is the solution to the “generalized light transport problem”

𝛼𝐿 = 𝐸 + ˜T𝐿, (33)

and Γ ⊂ C is any simple closed curve enclosing the sole eigenvalue 𝜆𝑖 ,
and 𝐸 any light distribution such that ⟨Λ𝑖 , 𝐸⟩ ≠ 0.

Proof: The explanation to this intringuing theorem relies on the

fact that because 𝐿(𝛼) = (𝛼 − ˜T)−1𝐸 = 𝑅( ˜T;𝛼)𝐸, Eq. 32 corresponds
to the Riesz integral of the resolvent, that is known to be a projection

onto the union of eigenspaces of the operator which corresponding

eigenvalues are enclosed by Γ (See for instance Gohberg [1978] ch.I).

The integrated “light” distribution in Equation 32 will therefore be

equal to an (unormalized) eigenfunction of
˜T, or 0 depending on

whether ⟨𝐸,Λ𝑖 ⟩ ≠ 0 or not. □

Equation 33 can be viewed as a generalization of the traditional

light transport equation 10 by introducing a parameter 𝛼 . While
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the existence of a solution to this equation is guaranteed by the

Fredholm alternative theorem [Zemyan 2012] (since 𝛼 ∈ Γ ⊂ 𝜌 ( ˜T)),
its solution need not be positive nor even real. Thus, it would not

represent a physically meaningful distribution of light. Nevertheless,

this is helpful to effectively compute an eigenfunction of
˜T.

A practical, yet non computationally efficient way to compute Λ𝑖

is to apply a Galerkin approximation to
˜T and solve for (𝛼− ˜T)𝐿(𝛼) =

𝐸 using a biconjugate gradient. Computing this solution using the

traditional Monte-Carlo light transport paradigm is however not

feasible, since the series obtained by expanding (𝛼 − ˜T)−1 only

converges for |𝛼 | > ∥ ˜T∥. This precludes any curve Γ that would

only encircle a strict subset of the point-spectrum of
˜T.

7 Practical computation of the spectrum
In this section, we suggest a couple of practical methods to compute

the eigenvalues of the light transport operators T𝑏 and T.

7.1 Lambertian operator T𝑏 : Galerkin is best
Following the work of Chatelin [1981], since the point-spectrum of

T𝑏 is countable, a converging approximation of the eigenvalues of

T𝑏 can be obtained by computing the eigenvalues of an 𝑛−element

Galerkin approximation with matrix A𝑛 of that operator. The scene

is partitioned into 𝑛 surfaces of area 𝑆𝑖 and the light transport

operator is projected onto a finite element basis. For a basis of

piecewise constant functions, the matrix entry 𝑎
𝑖, 𝑗
𝑛 of the projected

transport operator is [Sillion and Puech 1994]

𝑎
𝑖, 𝑗
𝑛 =

1

𝑆𝑖

∫
𝑆𝑖

∫
𝑆 𝑗

𝜅𝑏 (x𝑖 , x𝑗 ) dx𝑖 dx𝑗 (34)

where 𝑆𝑖 the area of surface element 𝑖 and 𝜅𝑏 the kernel of T𝑏 (See

Section 3.3). The eigenvalues of the matrix can then be caculated

using a standard eigensolver.

7.2 Non-Lambertian operator T: Monte-Carlo approach
In non-Lambertian scenes, a Galerkin approach would require dis-

cretization of surfaces and directions so that Equation 34 integrates

over pairs of surface element-direction pairs ℓ𝑖 = 𝑆𝑘 × Ω𝑙

𝑎
𝑖 𝑗
𝑛 =

1

𝜇 (ℓ𝑖 )

∫
ℓ𝑖

∫
ℓ𝑗

𝜅 (x, 𝜔, y, 𝜔′′)dxd𝜔dyd𝜔 ′′
(35)

where 𝜇 is the measure associated with ℓ . Unfortunately, this ap-

proach is computationally impractical. Compared to the Lambertian

case where the eigensolver would be applied on a matrix that is

about 1000×1000, the non-Lambertian case for comparable accuracy

would be 10
6 × 10

6
or larger. The matrix in Eq.35 is very sparse,

and even more when reflectance functions are highly glossy. Com-

puting 𝑎𝑖 𝑗 is however expensive because the correlation between

the geometric factor in 𝜅 and the BRDF cannot be neglected while

maintaining physical consistency.

Since Equation 35 is an integral, 𝑎
𝑖, 𝑗
𝑛 is the expected value of an

appropriately scaled random variable:

𝑎
𝑖 𝑗
𝑛 = 𝜇 (ℓ𝑖 ) E(𝜅 (x, 𝜔, y, 𝜔′′)) .

Consequently we form the following random matrix:

A𝑛 =
2𝜋𝑆

𝑛

������𝜅 (x𝑖 , 𝜔𝑖 , y𝑗 , 𝜔′′
𝑗 )
������
𝑖 𝑗
,

where points and directions are randomly sampled. In practice, we

suggest to select 𝑛 random points x𝑖 , and outgoing directions for

each point are implicitly defined by the connection to all other

points at the cost of a bias. This also ties sparsity to the glossi-

ness of reflectance functions only, since in this formulation only

the directional integration is implicitly considered. For compact

approximations T𝜖 of T (see Section 4) the eigenvalues of A𝑛 form

an estimator of the eigenvalues of T𝜖 [Chatelin 1981]. The estimator

is biased since the eigenvalues of A𝑛 do not linearly depend on

its coefficients, but the bias converges to 0 when 𝑛 tends to infin-

ity. Note that because of the lack of a proof that 𝜎𝑝 (T) is actually
countable and T𝜖 strongly converges to T, we can only ensure that

this method computes converging approximations of the isolated

elements of 𝜎𝑝 (T) (See Section 4).

We use an eigensolver that only requires computing the product

of vectors by A𝑛 or its transpose [Lehoucq et al. 1997], which is

performed efficiently as a triple loop over the x𝑖 . Figure 12 shows
an example of using this technique on a non-Lambertian scene. The

method presented in this section shares similarity with random sub-

matrix sampling as proposed by Frieze [2004] to compute singular

values of large matrices.

8 Discussion

8.1 Discussion of results
Challenges specific to light transport operators. Despite the
large array of mathematical tools to analyse the spectra of linear

operators, light transport operators T and T𝑏 present unique chal-

lenges. Although their non-compactness can be mitigated by approx-

imations, these approximations inherit some of the bad properties

of the operators: non normality (or any sub-normality class), discon-

tinuous integration kernel, non-compact resolvent. These severely

limit the set of applicable methods. Although they are not positive

operators or symmetric, the fact that they are integral operators

with a strictly positive kernel allows some of the analyses presented.

Relationship between T and its adjoint. A curious result from

Theorem 5.4.1 is that the adjoint T∗ has the same point spectrum

(eigenvalues) as T. The adjoint operator has a practical significance
in light transport, as it represents the transport of importance or

tracking light backwards from the eye to the scene. Our result con-

firms that the two operators share similar spectral properties and

therefore similar computational challenges with respect to conver-

gence. Although T is not self-adjoint, T = KG where K and G are

self-adjoint operators. As a result, T and T∗ have mutually orthogo-

nal eigenfunctions and operators K and G can be used to transform

one into the other and vice versa. This could potentially have practi-

cal implications in precomputed light transport where one of them

is diagonalized.

Relationship between T and T𝑏 for diffuse scenes. In Lam-

bertian scenes, any eigenfunction Λ𝑏 of T𝑏 can be turned into an

eigenfunction of T as Λ(x, 𝜔) = Λ𝑏 (x). Conversely, any eigenfunc-

tion of Twith a non-zero eigenvalue will have a constant directional

component (by means of TΛ = 𝜆Λ) and is similarly tied to an eigen-

function of T𝑏 . Additionaly, 0 is an eigenvalue of T with infinite
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Fig. 12. Left: validation of the Monte-Carlo estimation of eigenvalues of Section 7.2 on the two-squares scene of Figure 6 (Lambertian version with albedo 0.8).
When increasing the number of points 𝑛, eigenvalue histograms show sharper peaks that exactly align with the reference eigenvalues. Middle: Monte-Carlo
estimation of eigenvalues in the CornellBox scene. Right: 3D histogram in the complex plane of Monte-carlo estimation of eiganvalues in the non-Lambertian
scene of Figure 6.

dimensionality, corresponding to all directional functions of mean

value zero.

Generally T is not compact as a partial integral operator, it is

therefore counterintuitive that it may have the point-spectrum of a

compact operator plus eigenvalue 0 (T𝑏 is compact when the scene

has no abutting edges). In Lambertian scenes however T can be

restricted to the space of directionaly constant functions for which a

single value represent the whole function, which in effect makes T a

non partial integral operator. Note that in this case, the eigenspaces

of T (including eigenvalue 0) are complete and its eigenvalues are

countable.

Specific case of 𝜌𝑖 𝑗 ≥ 0. An interesting observation is that be-

cause of Equation 21, when all the 𝜌𝑖 𝑗 are positive, T can be left-

symmetrized by the operator

R : T(H) → T(H)

RT𝐿 =

𝑛∑︁
𝑖=1

∑︁
𝑗>0

⟨𝐿, 𝜑𝑖𝑗 ⟩𝜓
𝑖
𝑗 , (36)

which in this case makes RT self-adjoint (the proof involves showing

that ⟨𝜑𝑖
𝑗
,𝜓𝑘

𝑙
⟩ = ⟨𝜑𝑘

𝑙
,𝜓 𝑖

𝑗
⟩ which only happens when 𝜑𝑖

𝑗
does not in-

clude the negative sign of some of the 𝜌𝑖 𝑗 ). Since R has eigenvalues

|𝜌𝑖 𝑗 |−1, it is bounded below by 1 (which means it has a bounded

inverse) and we can in this case apply Th. 9.1 of Silberstein [1962]

to deduce that T is symmetrizable over T(H). Consequently its

eigenvalues are real, and its eigenfunctions are orthogonal for the

dot product ⟨𝑓 , 𝑔⟩𝑅 = ⟨
√
R𝑓 ,

√
R𝑔⟩ [Silberstein 1962]. Furthermore

orthogonality implies countability because T(H) ⊂ H is separa-

ble. Since G is invertible on H , we know that K(H) = T(H) and
ker(T) = G−1 (ker(K)). Since K is self-adjoint, its eigenfunctions

(including those in ker(K) span H, and therefore eigenfunctions of

T span H , proving a strong result for the spectrum of T.
This happens at least in Lambertian scenes, where the only eigen-

values of K correspond to the albedo of all materials in the scene. In

classical scenes, it seems that BRDFs have both positive and negative

eigenvalues (See Figure 8). Although the effect of flipping the sign

of negative eigenvalues of BRDFs is unclear, this would preserve

the frequency content of material reflectances [Durand et al. 2005].

Perhaps this case would be useful in the context of analysis of light

fields via a symmetrizable operator.

Estimating eigenfunctions from𝛼𝑘 . The result fromTheorem 6.2.1

means that if 𝐿 belongs to the span of a finite set of eigenctions

of a compact approximation of T or T𝑏 the roots of polynomial 𝑃

given by the theorem gives the corresponding eigenvalues. Given

one such 𝜆𝑖 , one can also expand 𝑄 (𝑥) = 𝑃 (𝑥)/(𝑥 − 𝜆𝑖 ) and obtain

𝑄 (T)𝐿 = 𝛽𝑖Λ𝑖 . While a random 𝐿 will generally not be in the span

of a finite set of eigenfunctions of T, the above expression only

approximate an eigenfunction, assuming that eigenvalues decrease

fast enough for the contribution of {Λ𝑖 }𝑖>𝑛 to be small enough.

Total response of the generalized transport system. The mea-

sures of circular light paths 𝑝𝑘 defined in Section 6.3 can be used as

a measure of the total response of the generalized transport equa-

tion 𝛼𝐿 = 𝐸 + T𝐿 to border conditions (𝐸 in this expression). This

quantity is generally defined as

𝑑 =

∫
L
𝑟𝛼 (x, x) dx,

where 𝑟𝛼 is the integral kernel [Brislawn 1988] of the resolvent

operator R(T;𝛼). Recalling the calculation leading to Eq. 31, the

resolvent of
˜T is clearly not trace class due to the terms 𝛼I + ˜T.

Dropping the first two terms still allows to define a regularized total

response
˜𝑑 , which turns into

˜𝑑 = 𝛼−1𝑝2 + 𝛼−2𝑝3 + 𝛼−3𝑝4 + ... (37)

This gives a formal proof of the intuitive following fact: for compact

approximations of T, the larger the measure of circular light paths,

the more energy will be in the solution of the generalized equation.

8.2 Open questions
Eigenfunctions of T. The spectrum of T diagonalizes the opera-

tor and so estimation of the eigenvalues and eigenfunctions of T
would simplify the calculation of higher powers (multiple-bounce

transport), inversion (relighting, inverse rendering), etc. In this pa-

per, we have analyzed the spectra (eigenvalues and eigenfunctions)

mathematically and estimated eigenvalues numerically. However,

stable methods for the estimation of the eigenfunctions of T remain

elusive.

Quatifying scene complexity using 𝑝𝑛 . The complexity of a

scene with respect to computing light transport solutions is difficult

to quantify. There are a variety of factors that make computation
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challenging, including number of light sources, reflectances in the

scene, visibility, geometric elements, etc. We conjecture that the

measure of circular light paths in a scene may be useful for quantita-

tive assessment of the interplay between these factors. As explained

in Section 6.3, 𝑝𝑛 is a single number per length of circular paths 𝑛

obtained as the trace of T𝑛 . Its distribution over 𝑛 encodes informa-

tion about the relative contributions of different path lengths to the

light transport solution. Thus, scenes where 𝑝𝑛 has a heavy or long

tail may be more challenging to solve accurately than scenes where

𝑝𝑛 has a sharp peak for lower values of 𝑛.

Is the point-spectrum of T countable? Despite our efforts, we

were unable to derive a formal proof for this challenging question.

Since H is a separable Hilbert space, completness of the eigenfunc-

tions of T would prove countability of its point-spectrum. However

T does not meet the conditions for Goh’berg theorems on complet-

ness of eigenfunctions ([Gohberg and Kreı̆n 1978] Chp.V), nor is it

dissipative, quasinormal or hyponormal [Gohberg and Kreı̆n 1978].

Exploiting the characteristics of the convergence of T𝜖 toward T
through asymptotic perturbation theory may be a interesting direc-

tion to consider (See Chatelin [2011], and Kato [1995] Chp.8).

New class of light transport algorithms? Solving the generalized

light transport equation, 𝜆𝐿 = 𝐸 + T𝐿 for |𝜆 | < ∥T∥, with path

tracing could be an important step toward practical calculation of

the eigenfunctions of T, using the Riesz integral in Equation 32. As

explained in Section 6.4, a generic formulation of its solution as an

integral over light paths remains elusive. Such a formulation may

reveal fresh perspective of the rendering equation and potentially

lead to a new class of light transport algorithms.

9 Conclusion and future work
In this paper we have analyzed the spectral characteristics of light

transport operators K,K𝑥 ,G,T𝑏 and T. We demonstrated that, al-

though neither T𝑏 nor T are compact, these two operators can still

be strongly approximated by compact operators. Further, we high-

light that these approximations actually correspond to the ones used

in practice while implementing path tracing. We have also revealed

various connections between the point spectrum of these operators

and path integrals in a scene, combining circular light paths, powers

of the operator and projection on the operators’ output space. We

identify important questions that remain unanswered and leave

them as future work in this area.

In conclusion, we believe that there is much to be discovered at the

confluence of stochastic approximations of large matrices [Dimov

et al. 2015; Frieze et al. 2004; Halko et al. 2011; Kobayashi et al. 2001]

and light transport estimation.
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A Self-adjointness of G and K
Although K and G are long known to be self-adjoint [Veach 1997],

we derive this using our notations. For two points x and y that are

visible to each other (via local directions 𝜔 ′
and 𝜔 ′′

as in Figure 2),

⟨G𝐿1, 𝐿2⟩ =
∫
𝑆

∫
Ω
(G𝐿1) (x, 𝜔′)𝐿2 (x, 𝜔′) cos𝜃 ′ dx d𝜔 ′ .

Now we change variables from (x, 𝜔′) into (y, 𝜔′′). We have 𝑑𝜔 ′ =
𝑑y cos𝜃 ′′/𝑟2 and𝑑𝜔′′ = 𝑑x cos𝜃 ′/𝑟2, fromwhichwe get𝑑y cos𝜃 ′′𝑑𝜔′′ =
𝑑x cos𝜃 ′𝑑𝜔 ′

. Using the fact that (G𝐿1) (x, 𝜔′) = 𝐿1 (y, 𝜔′′) and

𝐿2 (x, 𝜔′) = (G𝐿2) (y, 𝜔′′) = G𝐿2 (y, 𝜔′′), the above equation turns

into

⟨G𝐿1, 𝐿2⟩ =
∫
𝑆

∫
Ω
𝐿1 (y, 𝜔′′)G𝐿2 (y, 𝜔′′) cos𝜃 ′′ dy d𝜔 ′′

= ⟨𝐿1,G𝐿2⟩.

Similarly,

⟨K𝐿1, 𝐿2⟩ =
∫
𝑆

∫
Ω
(K𝐿1) (x, 𝜔)𝐿2 (x, 𝜔) cos𝜃 dx d𝜔

=

∫
𝑆

∫
Ω

(∫
Ω
𝜌 (x, 𝜔, 𝜔′)𝐿1 (x, 𝜔′) cos𝜃 ′ d𝜔 ′

)
𝐿2 (x, 𝜔) cos𝜃 dx d𝜔

Since 𝜌 (x, 𝜔, 𝜔′) = 𝜌 (x, 𝜔′, 𝜔) due to Helmoltz reciprocity and

K𝐿2 = K𝐿2, the two definite integrals over Ω can be exchanged to

yield

⟨K𝐿1, 𝐿2⟩ = ⟨𝐿1,K𝐿2⟩.

Both operators are self-adjoint thanks to the cosine in the dot prod-

uct. □

B Strong convergence of T𝜖 and T𝑏,𝜖 in 𝐿1 norm
Let 𝐿 be a bounded light distribution. For any 𝜖 > 0 we denote by

𝑆𝜖 (x) the set of points y for which 𝜅𝑏 (x, y) > 1

𝜖 , and𝑀𝜖 the set

𝑀𝜖 =

{
x ∈ 𝑆 ∃y ∈ 𝑆 𝜅 (x, y) ≥ 1

𝜖

}
.

Clearly for all x ∈ 𝑆 we have 𝑆𝜖 (x) ⊂ 𝑀𝜖 . Using successively 𝑆𝜖 ⊂ 𝑆 ,

Hölder’s inequality and the non-negativity of 𝜅𝑏 we get

|
(
(𝑇𝑏 −𝑇𝑏,𝜖 )𝐿

)
(x) | ≤

∫
𝑆𝜖 (x)

����(𝜅𝑏 (x, y) − 1

𝜖
)𝐿(y)

���� dy
≤ ∥𝐿∥∞

∫
𝑆𝜖 (x)

����𝜅𝑏 (x, y) − 1

𝜖

���� dy
≤ ∥𝐿∥∞

∫
𝑆𝜖 (x)

𝜅𝑏 (x, y) dy.

≤ ∥𝐿∥∞
∫
𝑀𝜖

𝜅𝑏 (x, y) dy. (38)

Therefore

∥(𝑇𝑏 −𝑇𝑏,𝜖 )𝐿∥1 ≤ ∥𝐿∥∞
∫
𝑆

∫
𝑀𝜖

𝜅𝑏 (x, y) dy dx

≤ ∥𝐿∥∞
∫
𝑀𝜖

∫
𝑆

𝜅𝑏 (x, y) dx︸            ︷︷            ︸
≤1

dy

≤ ∥𝐿∥∞𝜇 (𝑀𝜖 )

In classical physically meaningful scenes, where edges and corners

constitute a nonmeasurable set of points, themeasure 𝜇 (𝑀𝜖 ) verifies
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lim𝜖→0 𝜇 (𝑀𝜖 ) = 0, therefore

lim

𝜖→0

∥(𝑇𝑏 −𝑇𝑏,𝜖 )𝐿∥1 = 0.

The strong convergence of T𝜖 to T is immediate after noticing

that for any directional function 𝜔 ↦→ ℎ(𝜔) we have whenever ℎ is

continuous at 𝜔 ,

lim

𝜖→0

∫
Ω
ℎ(𝜔 ′)𝑔𝜖 (𝜔 · 𝜔 ′) d𝜔 ′ = ℎ(𝜔). (39)

Once again, the "proper" geometry of scenes ensuring that light dis-

tributions are only non continous at a set of points which measure is

0, and applying the preceding proof for the remaining term 𝑓𝜖 (x, y),
we deduce the strong convergence of T𝜖 to T almost everywhere. □

C Eigenfunctions increase in frequency
In this proof T denotes a compact approximation of one of the

transport operators. Let {𝜑𝑛}𝑛≥0 be an orthogonal basis of the

space with non decreasing frequency content (e.g. directional/spatial

wavelets). Let {Λ𝑘 }𝑘≥0 be the eigenfunctions of T assumed to form

a complete system.

Assume, first, that eigenfunctions are orthogonal. Then, for all 𝑛

𝜑𝑛 =

∞∑︁
𝑘=0

𝛼𝑛𝑘Λ𝑘 with 𝛼𝑛𝑘 = ⟨𝜑𝑛,Λ𝑘 ⟩.

The convergence of that sum implies that

∀𝑛 ∈ N lim

𝑘→∞
𝛼2
𝑛𝑘

= 0.

Selecting the first 𝑁 + 1 values of 𝑛 allows us to apply the limit to

the suppremum of the 𝛼𝑛𝑘 :

∀𝑁 ∈ N ∀𝑛 ∈ [0, 𝑁 ] lim

𝑘→∞
sup

𝑛≤𝑁
𝛼2
𝑛𝑘

= 0,

which exactly states that when 𝑘 increases, the coefficients of Λ𝑘

over {𝜑𝑛} uniformly converge to 0, over every interval [0, 𝑁 ]. Since∑
𝑛 𝛼

2

𝑛𝑘
= 1, that means most of the energy in Λ𝑘 lies beyond 𝑁 .

Now if eigenfunctions are not orthogonal, we can still apply

Gram-Schmidt orthogonalization to {Λ𝑘 } (which remains valid for

countably infinite sequences) to obtain an orthogonal sequence

{Λ′
𝑘
}𝑘≥0 such that

𝜑𝑛 =

∞∑︁
𝑘=0

𝛼 ′
𝑛𝑘

Λ′
𝑘

with 𝛼 ′
𝑛𝑘

= ⟨𝜑𝑛,Λ′
𝑘
⟩.

Therefore, Λ′
𝑘
increases in frequency with 𝑘 . But since Λ′

𝑘
is built

using Gram-Schmidt orthogonalization, we know that for all 𝑘 ,Λ𝑘 is

a linear combination ofΛ′
0
, ...,Λ′

𝑘
, and thus the increase in frequency

applies to Λ𝑘 . □

D Proof of Equation 17
For any 𝑁 ∈ N we call P𝑁 : H → H the projection on the finite

dimensional space spanned by {𝜑𝑛}𝑛<𝑁 , and we define the finite

rank operator A𝑛 to be

A𝑛 = AP𝑛 .

Since A is compact and the sequence {𝜑𝑛}𝑛>0 is complete, we know

that A𝑛 converges to A in the operator norm [Chatelin 1981]:

∀𝜖 > 0 ∃𝑝 ∈ N ∀𝑛 ≥ 𝑝 ∥A𝑛 − A∥ < 𝜖.

That means

∀𝜖 > 0 ∃𝑝 ∈ N ∀𝑛 ≥ 𝑝 ∀𝐿 ∈ A ∥(A𝑛 − A)𝐿∥ < 𝜖 ∥𝐿∥ .

We now restrict the above equation to 𝐿 = 𝜑𝑛+1 for every possible

𝑛 > 𝑝 . We have in this case (A −A𝑛)𝜑𝑛+1 = A𝜑𝑛+1 and ∥𝜑𝑛+1∥ = 1,

which gives after shifting 𝑛 + 1 to 𝑛:

∀𝜖 > 0 ∃𝑝 ∈ N ∀𝑛 > 𝑝 ∥A𝜑𝑛 ∥ < 𝜖. □

E Proof of Equation 29
LetA𝑛 be the matrix in Eq. 30 and let 𝑐𝑛 = det(A𝑛). In order to prove
Eq. 29 one needs to notice that when expanding this determinant

along the first column, the 𝑘th minor𝑚𝑘 is

𝑚𝑘 =

���� D𝑛,𝑘 0
B𝑛,𝑘 A𝑛−𝑘

���� ,
where D𝑛,𝑘 is a (𝑘 − 1) × (𝑘 − 1) lower-triangular matrix with

𝑛 − 1, 𝑛 − 2, ...., 𝑛 − 𝑘 + 1 on its diagonal, making the bottom-left

submatrix B𝑛,𝑘 irrelevant in this calculation. Following this, we get

𝑐𝑛 =

𝑛∑︁
𝑘=2

(−1)𝑘+1𝑝𝑘𝑚𝑘 =

𝑛∑︁
𝑘=2

(−1)𝑘+1 (𝑛 − 1)!
(𝑛 − 𝑘)!𝑝𝑘𝑐𝑛−𝑘

Substituting 𝑛!𝑎𝑛 = 𝑐𝑛 directly leads to Eq. 29.
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