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Light Transport Operators (LTOs) represent a fundamental concept in com-
puter graphics, modeling single bounces of light within a virtual environ-
ment as linears operators on infinite dimensional spaces. While the LTOs
play a crucial role in rendering, prior studies have primarily focused on
spectral analyses of the light field rather than the operators themselves.
This paper presents a rigorous investigation into the spectral properties of
the LTOs. Due to their non-compact nature, traditional spectral analysis
techniques face challenges in this setting. However, many practical render-
ing methods effectively employ compact approximations, suggesting that
non-compactness is not an absolute barrier. We show the relevance of such
approximations and establish various path integral formulations of their
spectrum. These findings enhance the theoretical understanding of light
transport and offer new perspectives for improving rendering efficiency and
accuracy.
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1 Introduction

Light Transport Operators (LTOs) are a mathematical construct in
computer graphics, that formalizes light propagation within a virtual
environment as linear operators acting on a given light distribution.
These operators encapsulate one bounce of the input light distribu-
tion capturing its intricate interactions with geometric structure and
material reflectance properties in the environment. During render-
ing, the light energy at each pixel of a virtual camera is estimated
by evaluating the sum of an infinite series of increasing powers
(multiple bounces) of the operators applied to the distribution of
emitted light.

Despite the foundational role of transport operators in render-
ing, most prior studies have concentrated on spectral analyses of
the light field [Durand et al. 2005; Mahajan et al. 2007] rather than
the operator that governs its evolution. Consequently, the spectral
properties of the LTOs remain underexplored. In this work, we use
the term spectral strictly to refer to harmonic analysis of the LTOs
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and not to wavelength-dependent phenomena. Furthermore, our
analysis is restricted to monochromatic light (in the absence of fluo-
rescence, light transport operators are defined independently across
wavelengths). In this paper, we define a scene to mean a combina-
tion of geometry and their material properties—light sources are
excluded since they are considered part of the input space on which
the LTOs operate.

The LTOs inherently act in infinite-dimensional function spaces,
posing substantial challenges for both theoretical investigation and
computational implementation. Traditional approaches often in-
volve discretization to make the problem tractable. Recent findings
by Soler et al. [2022] reveal that LTOs are generally non-compact,
leading to non-uniform convergence with respect to the number of
elements of the discretization. Non-compactness complicates the ap-
plication of classical spectral analysis results from finite-dimensional
settings. Nevertheless, practical techniques such as Galerkin approx-
imations [Baranoski et al. 1997] and precomputed radiance trans-
port [Sloan et al. 2002] circumvent these issues by approximating
the LTO with compact operators, suggesting that non-compactness
is not an absolute limitation. This observation motivates deeper
inquiry into the relationships between finite-dimensional approxi-
mations and the infinite-dimensional operators.

Our theoretical framework aims to bridge these gaps, connecting
the eigenspectrum of the LTOs to measures of specific light path sets
within a scene. By establishing these connections, we contribute
to both the theoretical understanding of light transport and the
development of practical methodologies for spectral analysis. We
envision that our findings may have future direct implications for
improving the efficiency and accuracy of rendering algorithms. In
this paper, we present a detailed analysis of the spectral properties of
the infinite-dimensional LTOs, with the following key contributions:

e A novel and rigorous mathematical characterization of the
eigenspectrum of the LTOs;

e an investigation into how compact approximations of light
transport operators can be used to approximate their spectral
properties; and

o identification of connections between the eigenvalues of LTO’s
and path space integration, setting foundations for fresh per-
spectives on using eigenanalysis in rendering.

This paper presents an analysis of the light transport operator
rather than of the light distribution. The operator is defined specifi-
cally by structure within a scene and so the specific choice of emit-
ters within the scene is largely irrelevant. Occasionally, we exemplify
our discussion with specific scenes that we chose to illustrate (only
showing geometry), rather than render, to avoid misleading readers.

We separate the treatment of related work (Section 2) and the
mathematical background needed (Section 3) to explain our work.
Before performing a spectral analysis of operators that are non-
compact in general, we explain how they permit compact approx-
imations which lend themselves to analysis (Section 4). The core
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results surrounding spectral analysis of LTO’s are presented as
theorems (Section 5). We further explore how these spectra relate
to different aspects of light transport (Section 6). Next, we briefly
describe practical methods for computing the eigenvalues of the
LTOs, providing insights into the computational challenges and
opportunities in spectral analysis (Section 7). We conclude with a
discussion of the implications of our findings and outline future
research directions (Section 8).

2 Previous work

This paper pertains to the spectral analysis of linear operators over
infinite dimensional spaces. Although the operators that we an-
alyze have a long history in computer graphics, there has been
little theoretical analysis of spectral properties. Yet, several practical
approaches have exploited their low-dimensional approximations.

Light transport operators and their spectrum. We analyze operators
that are minorly adapted from standard formulations [Arvo 1996;
Veach 1997]. These formulations have provided insight to various
applications such as inverting transport equations to compensate
for global illumination [Ng et al. 2012], unification of forward and
inverse rendering [Bai et al. 2010], analysis of compactness [Soler
et al. 2022], etc. Their spectrum however has received little attention.

Baranoski [1997] examined the spectrum of the radiosity matrix
in the discrete Lambertian case. Ashdown [2001] reformulated the
radiosity transport matrix as an electrical network and studied its
eigenvectors via analysis of the conductance matrix of the resulting
network. Machida [2014] showed that, in an infinite and isotropic
medium, the singular eigenfunctions of the radiative transport equa-
tions can be independently solved along each dimension.

Spectral analysis of linear operators. Although this is a vast area of
study within mathematics, light transport operators exhibit chal-
lenging characteristics—such as having asymmetric unbounded and
discontinuous kernels- restricting the applicability of standard re-
sults from the theory of linear operators. Despite this, we draw
from a range of theoretical tools and concepts including trace-class
operators [Brislawn 1988], non self-adjoint operators [Gohberg and
Krein 1978], perturbation theory for linear operators [Kato 1995]
and Fredholm equations [Zemyan 2012]. The connections between
the eigenvalues of an operator and its discretized counterpart can be
found in the work of Boffi [2010], Sun [2016], and Chatelin [2011].
We provide specific citations to the relevant sections of these works
in our derivations.

Dimensionality of light transport matrices. Discrete light transport
operators have been observed empirically to be conducive to di-
mensionality reduction. Precomputed Radiance Transfer methods
[Nowrouzezahrai et al. 2007; Sloan et al. 2002, 2005; Wang et al.
2007] and modular radiance transfer [Loos et al. 2011] utilized this
property to compress transport matrices. Wang [2009] exploited this
property to reconstruct the matrix from a limited set of images. The
solution space of light distributions obtained via low-dimensional
approximations of the transport matrix is limited by the low rank
of the matrix. Some methods attempt to adjust spatial sampling
to optimize for this [Belcour et al. 2022; Huang and Ramamoor-
thi 2010] or use low rank approximations to parts of the transport
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matrix [Garg et al. 2006]. Dimensionality reduction has also been
applied to simplify computation in the ‘many-light’ setting with
several point lights [Ha$an et al. 2007; Ou and Pellacini 2011]. Ma-
hajan et al. [2007] presented a theory of locally low dimensionnal
light transport as the number of principal components required to
represent the output of the transport matrix under varying condi-
tions. This is analogous to the problem of estimating the number of
eigenvalues of the light transport matrix necessary for local approx-
imations. Lessig [2010] relates the problem of finding the effective
dimension of local bandlimited and radially symmetric light trans-
port to the spatio-spectral concentration problem. While all the
above works operate on discretizations of the operator as matrices,
the non-compactness of these operators [Soler et al. 2022] precludes
finite dimensional uniform approximations whose spectra are not
representative of the original operator’s spectrum. In this paper,
we analyze the spectrum of the light transport operator without
discretization.

3 Background
3.1 Definitions: Linear operators and their properties

We study linear operators over Hilbert spaces. We denote spaces,
operators and space elements using upper case caligraphic, upper
case bold, and roman letters respectively.

Norm and convergence of linear operators. Let H be a Hilbert
space. The norm of a linear operator A : H — H is defined as
[|A] = SUP|£||=1 [|Af]|. The remaining definitions in this section
apply to operators for which the supremum exists, or bounded linear
operators.

A sequence of linear operators {A,} is said to be uniformly con-
verging to an operator A when

lim [|A — A = o. Q)
n—oo

A sequence of linear operators {A,} is said to be strongly converging
to an operator A when

VfeH  lim [IAf - Anfll =0. @)
Uniform convergence implies strong convergence [Chatelin 1981].

Symmetrizable operators. The adjoint of operator A : H — H
is the unique operator A* for which

V(f.9) € H® (Af.g)=(f.A"g).
If A* = A, then A is self-adjoint and enjoys special properties (See
Lax [Lax 2002], chap.28). If there exists a non negative self-adjoint
operator S such that SA is self-adjoint, then A is known as sym-
metrizable. In this situation, A is self-adjoint for the dot product

(f>9)s = {f.59). ®)
Symmetrizable operators in separable Hilbert spaces share many
properties with self-adjoint operators.

The definition of (, )s in Equation 3 requires S to be bounded.
Alternatively, if A can be symmetrized by a positive self-adjoint op-
erator S’ with a bounded inverse on H’ C H (See Silbertein [1962]
part II, Th. 9.1) then A is a self-adjoint operator on H’ with dot
product (f, g)s: = (VS'f, VSg), so it still shares the properties of
symmetrizable operators in this subspace.
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(a) light transport in a scene (b) T does not depend on light (c) what is the spectrum of operator T?

Fig. 1. An illustrated overview of the central research question tackled in this paper. (a) The radiance distribution in a scene L (magenta) at equilibrium
satisfies the rendering equation L = E + TL, where T is a linear operator that transports radiance by one bounce and L, is the emitted radiance distribution
(yellow). (b) The operator T is fully specified by the geometry of the scene along with the reflectance distributions associated with all surfaces in the scene. It is
independent of the choice of emitted distribution L. (c) If the scene (and hence L) were discretized then T could be represented as a matrix and its spectrum

(e.g-eigenvalues and eigenvectors) could be analyzed empirically. In this paper, we present mathematical results about the spectrum of the infinite-dimensional

operator T without discretization.

Compact operators. A compact operator maps any bounded se-
quence in the domain into a sequence containing a converging
subsequence. The family of compact operators itself forms a closed
set, meaning that the limit of a uniformly converging sequence of
compact operators is always a compact operator ([Gohberg and
Krein 1978] p67). Practically speaking, compact operators behave
like “infinite dimensional matrices”. Light transport operators are
generally not compact [Soler et al. 2022].

Trace-class and Hilbert-Schmidt operators. An orthogonal ba-
sis {e; }i>o of H that generalizes to infinite-dimensional spaces is
known as a Schauder orthogonal basis: every element in H can be
expressed as a—possibly infinite-linear combination of e;. Such a
basis can be used to define the trace and the Hilbert-Schmidt norm

(o8] (o]
Tr(A) = ) (Aeyei) and  |JAllas = ) lAel* (@)
i=0 i=0
respectively. In finite-dimensional spaces, these correspond to the
trace of the corresponding matrix and its Frobenius norm. Trace-class
operators are those for which Tr(A) converges (See Gohberg [1978]
§8)! and Hilbert-Schmidt operators are operators for which the
Hilbert-Schmidt norm converges. All trace-class operators are Hilbert-
Schmidt and all Hilbert-Schmidt operators are compact (See Si-
mon [Barry 2000], sec.5). The product of two Hilbert-Schmidt oper-
ators is trace-class (following Gohberg [1978] Cor. 4.1 and §4.3).

Integral operator. If H is a space of integrable functions over a
domain S, an operator A : H — H is an integral operator if

VFeH (Af)(x) = /S k() F(y)dy,

where ¥ : S XS — C, is known as the integration kernel. A
necessary and sufficient condition for an integral operator to be
Hilbert-Schmidt is that fS fs k(x,y)%dxdy < oo (Gohberg [2012]
Chp.IX), which is automatically verified when « is bounded over its
domain. The trace of trace-class integral operators can be computed
(Barry [2000] Th. 3.9)

Tr(A)=[SK(x,x)dx. (5)

! Another definition of the trace involving the polar decomposition of A is sometimes
found.

Convergence of this integral does not, by itself, imply that A is
trace-class®.

3.2 Spectra of operators

In finite-dimensional spaces, linear operators are matrices. The
spectrum of a n X n matrix M is the set of exactly n eigenvalues
Ai (accounting for multiplicity) such that M — Al is singular, and
corresponds to the roots of the characteristic polynomial of M. In
infinite-dimensional spaces these definitions are slightly more com-
plex:

Spectrum, resolvent set and resolvent operator. The spectrum
of an operator A which we denote o(A) is the set of complex scalars
A for which A — Al is not bijective and therefore cannot be inverted.
The resolvent set p(A) = C\o(A) is the complement of the spectrum,
for which the resolvent operator R(A; 1) = (Al — A) ™! exists. When
A € p(A), the resolvent operator is a bounded bijection over H (See
Jeribi [2021] Sec 1.2.2).

Point spectrum, continuous spectrum and residual spectrum.
The non-bijectivity of A—Alfor A € o(A) reflects different situations:
it might be non injective, or injective but not surjective in which
case the range of the operator may be dense or not in H. This
defines the following partition of the spectrum:

op: the point-spectrum is the set of A € C such that A — AL'is not
injective;

or: the residual spectrum is the set of 1 € C such that A — AL is
injective, but does not have a dense range;

o¢: the continuous spectrum is the set of 1 € C such that A — Al is
injective with a dense range, but not bounded below.

The eigenvalues of A are the complex numbers A such that there
exists A € H for which AA = AA, which corresponds to the el-
ements of 0,(A). As such, we're interested in this paper in the
point-spectrum of light transport operators.

Intuition about operator spectra. Although the point-spectrum
of an operator is a generalization of the eigenvalues of a matrix

These are generally proved when k is continuous and can be extended to domains
where « is continuous almost everywhere
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to infinite-dimensional spaces, the general properties of the point-
spectrum of operators cannot be extrapolated from those of matri-
ces [Mortad 2022]. Some classical examples of operators and their
point-spectrum include the Fourier transform, which point spec-
trum is the finite set {1, i, —1, —i}, and the unidirectional right-shift
operator S, (resp. left-shift operator S;) over square-summable se-
quences in C, for which o, (S;) = 0 whereas 0, (S;) is the open unit
disc [D’Aniello and Maiuriello 2022]. In general, o), may be either
empty, finite, countably infinite, or even uncountable. Even “good
looking” integral operators over L2[0, 1] may have any compact
subset of [0, 1] as a point-spectrum [Kalisch 1972]. Like matrices
however, the span of eigenfunctions (including those corresponding
to a zero eigenvalue) is not guarantied to be the entire space. Except
when standard theorems apply, proofs for every particular operator
need a careful derivation.

One advantage of studying compact operators is that their spec-
trum boils down to a countable point-spectrum, with zero as the
only possible accumulation point (Simon [2000] Th. 1.1). As such,
they behave like “infinite-dimensional matrices”. This also explains
why they are the closure of the set of finite dimensional operators,
in operator norm. In this paper, we analyse the spectral properties
of light transport operators.

Infinite-dimensional analogue of SVD. For bounded operators
over infinite dimensional Hilbert spaces, the notion of singular value
decomposition (SVD) is replaced by a continuous analogue [Crane
and Gockenbach 2020], due to the fact that such operators may not
have a countable set of singular values. For compact operators how-
ever, the singular values are countable (See Gohberg et al [Gohberg
and Krein 1978] Chap.2, Sec.2) and the SVD remains a discrete sum
known as the Schmidt expansion. For a compact operator A it takes
the form of

Af =) siclor P (©)
k=0

where {ug } x>0 and {vg }r>o are complete orthogonal sequences in
the operator value space standing for the left and right singular
vectors respectively, and the s; are the singular values (also named
s-numbers) of A.

When an operator is self-adjoint in a specific Hilbert space (self-
adjointness depends on the dot product), its s-numbers are equal to
its eigenvalues up to the sign, which in turn do not depend on the
dot-product.

3.3 Definitions: Light transport operators

Assumptions and spaces considered. We limit our formulation
to monochromatic light transport with surface reflection only. The
space of radiance functions is H = L?(S x Q), where S is the set of
surfaces (with bounded area) in a scene and Q is the upper hemi-
sphere of directions. H is a separable Hilbert space with the inner
product [Soler et al. 2022]

Ly = -/S. /Qll(x,a)) E(x, ) cos 0 dw dx. 7)

The cosine in Equation 7 imbues valuable properties to some of
the operators defined below. The notation in this inner product is
depicted in Figure 3.
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Reflectance operator K. The reflectance equation [Kajiya 1986]
expresses radiance leaving a point x in direction w as:

L(x,0) = / p(x,0,0")Li(x,0") cos ¢’ do’, 8)
Q

where L(x, w) is the exitant radiance at x in direction w, L; is in-
cident radiance and p is the bidirectional reflectance distribution
function (BRDF) at x. Figure 3 summarize the geometric notations.
For consistency we consider “mirror” reflections to be using a very
sharp true function as opposed to a distribution.

complex plane

surfaces in the scene

hemisphere of outgoing directions (local frame)
4D domain S x Q

space of radiance distributions Ly (L)
space of spatial distributions Ly (S)
space of directional distributions Ly (Q)
dot product weighted by cosine (Eq. 7)
norm induced by (, )¢y

global reflectance operator

:0 — O local reflectance operator at x

G:H — H re-parameterization operator

T:H — H light transport operator (T = KG)

T, : B > B radiant exitance transport operator

QW RhO»A

3

SR=
2
l
2

p(x0,0") BRDF at x in directions (w, ) € Q2

p(x) albedo at x (Eq. 11)

u(x,y) binary visibility function between points x and y
Kp(X,y) integration kernel of Ty,

K(X, w,y, ") integration kernel of T
Ps/a functions mapping (x, ) to the point and
direction seen from x in direction w (Fig.3)

Fig. 2. Notation used in this paper.

Equation 8 defines an integral operator K : H — H which
maps an incident radiance field into an exitant field: L = KL;. Since
the integral is only over Q, the reflectance operator K is a partial
integral operator. We may express K as an operator tensor product
of Ky : L2(Q) — L?(Q) at x and the identity I : L%(S) — L2(S)
where for all x € S, Kx(Li(x,.)) = (KL;)(x,.). As will be seen later
on, Ky is a well behaved integral operator over O = L2(Q).

n
yf ‘Anx w
P 9
y 0’
w//
M w/ X

Fig. 3. Notation for Equations 7,8,9 and 12. We deviate from convention in
the literature [Veach 1997] by always considering outgoing directions in
the local coordinate system. Consequently w” # —«’ in general.



Reparameterisation operator G. When radiance is constant along
directions in free space (absence of volumetric scattering), the inci-
dent radiance field L;(x, ") is equal to the exitant radiance at some
location y = pg(x,®”) along the direction expressed within that
point’s own local frame as 0’ = pg (%, ®”). This reparameterisation
of the radiance field is captured via an operator G : H — H where

Li(x,0') = (GL)(x, ") = L(ps(x. @), pa(x, ).

Transport operator T. The light transport operator T combines
the reparameterisation and reflectance operators as follows:

(TL)(x, w) = ‘/Q p(x,0,0")(GL)(x,0") cos 0’ do’. 9)

Thus T : H — H transports a radiance field through one-bounce.
Since we consider outgoing directions as the upper hemisphere in
the local coordinate system at each point, our definitions of K and G
differ slightly from those in the literature [Arvo 1996; Veach 1997].
However the operator form of the rendering equation remains as

L=E+TL=E+KGL, (10)

where E € H is the emitted radiance field and L € H is the unknown
radiance.

Lambertian transport operator Tj,. When all materials in a scene
are Lambertian, the BRDF p is reduced to a directionless albedo p(x):

p(x) :/Qp(x,a),a)') cosOdw = np(x,.,.). (11)

Also, reflected radiance is independent of directions and radiant
exitance B(x) = /Q L(x, ) cos 6 dw, is considered instead. Rewrit-
ing Equation 9 in this space defines the radiant exitance transport
operator Tj, : L2(S) — L?(S) [Sillion and Puech 1994] as

p(x) cos 6’ cos6”

(TyB)(x) = /S oY) SeBydy, (12

T |x-
where the integral is over surfaces rather than angle and v(x,y) is
sometimes referred to as the “visibility function”, which restricts
the integral to points y that are visible from x.
Kernel expressions of T and Tj,. We define a geometric term
cos 0’ cos 0"

lIx - ylI?

From Equation 12 we write the kernel expression of T}, as:

9(x.y) =o(xy)

TbB:/SKb(x,y)B(y)dy with xp(xy) = @Q(X,Y)-

To express T as a proper kernel-integral operator, the integral needs
to be defined over the entire domain S X Q. This requires a Dirac
distribution to make the integral over S “select” pairs of elements
of L that can actually exchange light:

(TL)(x, w) = / Ly, 0" k(% 0,y, 0”)dydw"”, (13)
SXQ

where the operator “kernel” is the distribution

k(% 0,y,0") = g(xy) p(x, 0, pa(y,0”)) 5x(ps(y, ©”)).
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3.4 Review: Properties of light transport operators

General properties. In the absence of refractive materials, oper-
ators K and G are both self-adjoint due to the cosine in the dot
product of Eq. 7 [Veach 1997] (See Appendix A for a proof using
our own notations). From conservation of energy, we know that
[IK|l2 < 1 (See Arvo [1996] Sec. 6.3.3) and ||G||2 < 1, where the
equality occurs when the scene is “closed”. There, Arvo also proves

Vp>1 |Tlp < 1and |Tyll, < 1. (14)

Non-compact operators. Neither K nor T are compact as they are
both partial integral operators [Kalitvin and Zabrejko 1991; Soler
et al. 2022]. The product of a bounded operator and a compact
operator is always compact (see Kato [1995] p158), but T = KG is
known to be non-compact. Therefore G cannot be compact.

Conditionally-compact operators. The operator Ky is a Hilbert-
Schmidt (hence compact) operator, due to its bounded kernel (the
sliced BRDF in Eq. 8). Thus, the non-compactness of K is due to the
“larger” space that it acts on (# instead of O).

T}, is compact only in scenes where kj, is everywhere bounded,
which imposes conditions of not having abutting edges (or corners)
or contact points between surfaces. At an abutting edge, it is indeed
possible to construct a bounded sequence of light distributions
with increasing spatial frequency content whose image under T,
does not contain any converging subsequence, proving that T}, is
non compact. Fortunately, T}, coincides with a compact operator
everywhere away from such edges [Soler et al. 2022].

4 Compact approximations of operators

In this section we explain that although neither T nor T}, is compact
in general, they admit-not necessarily finite-dimensional-strongly
converging compact approximations in the sense of Eq. 2. We also
draw connections between these compact approximations and pop-
ular ‘fixes’ adoped in the practical computation of light transport
in order to avoid arbitrary large values of the kernel. For exam-
ple, to avoid speckles (white spots) in path-traced images and im-
ages rendered with virtual point lights [Keller 1997], multiple au-
thors proposed to cap the geometric factor [Kollig and Keller 2006],
or use a pre-integrated point-to-virtual-surface element geome-
try factor [Hasan et al. 2009]. Another example is vertex merg-
ing [Georgiev et al. 2012] as used in Galerkin approximations within
non-Lambertian scenes, where couples of surfaces and directional
elements are paired despite their position or directions not matching
exactly.

Strong convergence in this context implies that the radiance func-
tion resulting from the action of a non-compact transport operator
can be obtained as the limit of the value resulting from an approx-
imating sequence of compact operators. Since compact operators
form a closed set in the operator norm, these approximations will
not be uniformly converging (operator-norm convergence in the
sense of Eq. 1). In practice a sequence of operators T, that is strongly
converging but not uniformly converging to the light transport op-
erator, allows to find for any € > 0 a sequence of light distributions
{Ln} for which || T,L,—TL,|| > € forany n > 0. We will see that this
difference materializes as compact approximations filtering out high
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frequencies where the original operator would actually preserve
them.

Compact approximations of T;, and T. As recalled in Section 3.4,
the radiant exitance operator T}, is not compact since its kernel
is not bounded at abutting edges. One way to overcome this is by
parameterizing the kernel via a small threshold € > 0 so that

p(x)

Kp,e (xy) = 7 e (%), (15)
where f:(x,y) is the capped point-to-point geometry factor’
(1 cos0 cos8”’
fe(x,y) =ov(x,y) min (—, —2) (16)
e |x-yl

Because kp, ¢ is bounded, its use as the integration kernel (instead
of xp,) leads to a Hilbert-Schmidt operator Tj, ¢, which is therefore
compact.

In the non-Lambertian case, there are two causes for the operator
T not being compact: abutting edges and the partial integration
which causes the 1x function to appear in Equation 13. One possible
way to overcome the latter while ensuring strong convergence is to
replace 1y in k by a Gaussian with parameterized sharpness such as

Ke(%,0,y,0") = ge( - pa(y, ")) p(x, 0, pa(y ")) fe(x.y),
where g is a normalized Gaussian of variance € centered at 1. In
Appendix B we prove the strong convergence of T¢ (resp. Tj ) to
T (resp. Tp) in the L; norm for bounded light distributions. While
we cannot prove strong convergence for the L, norm, strong con-
vergence in L; for bounded light distributions is sufficient in all
arguments that require strong continuity in this paper. Note in par-
ticular that eigenfunctions of light transport operators are bounded
because of energy conservation.

0.01
0.009
0.008
0.007
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0.005
0.004
0.003
0.002

0.001

0

Fig. 4. Effect of Equation 15 on the first bounce of
indirect illumination in the Cornell box. The flatten-
ing of curves along geometrically continous regions
is a practical consequence of the energy reduction in
high frequencies by compact approximations.

Finite rank Galerkin approximations of T and T [Sillion et al.
1991], are alternative examples of compact approximations of these
operators with strong convergence when their basis functions form
a complete Schauder basis for H [Chatelin 2011]. This explains
why finite element methods can yield a converging approximation
to solve equation 10 for a specific emission function E and also
explains why (due to non-uniform convergence) adaptive meshing
is required for controlled error across different choices of E.

3This arbitrary choice of a capping method leads a simpler convergence proof.
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Fig. 5. A toy scene with a compact (no abutting edges in the scene) radiant
exitance operator that attenuates high frequencies. It is impossible to design
an emission function E such that the transported radiance L = Tj L contains
adiscontinuity. The estimate of the solution E “compensates” for the filtering
by introducing arbitrarily high spatial frequencies with large intensities. Due
to the strong convergence of the Galerkin approximation, this experiment
provides a valid insight into the behavior of the non-discretized operator.

Compact approximations favor low frequencies. Although
there is no general definition of spatial or angular “frequency”
of a function, we adopt common use of this terminology as the
non-zero coefficients of functions projected onto a basis with local
support in the Fourier domain. For example, spatial or directional
wavelets [Peers et al. 2009], Fourier bases [Durand et al. 2005] or
spherical harmonics [Soler et al. 2015]. If A : X — X is a compact
operator over a separable Hilbert space, and {¢p, }, is any orthonor-
mal Schauder basis of L?(X), we prove in appendix D that

Jim JAgnll = 0. 17)
In the specific situation of a basis with local frequency support,
Eq. 17 directly proves that A attenuates higher frequencies?. This
result applies to compact approximations Tj, ¢ and Te. This effect is
illustrated on Figure 4.

Equation 17 does not imply that compact operators are low-pass
filters. Rather, that the action of the operator results in stronger
attenuation of higher frequencies. Thus, Lambertian light transport
tends be “low frequency” away from edges. For example, consider as-
signing an emission distribution E to a planar emitter some distance
from a parallel planar receiver. If we wish the receiver to contain a
step edge in the spatial distribution of reflected radiance L (e.g. as
seen in a hard shadow), solving for E such that L = TE is not pos-
sible. An attempt to approximate E would contain arbitrarily high
spatial frequencies at large energy to compensate for Equation 17.
This is illustrated in Figure 5. This theory underpins the reason that
numerical approximations of light transport inherently attenuate
high spatial and angular frequencies.

Since compact approximations have eigenvalues that converge to
0, when the corresponding eigenfunctions form a complete system,
they necessarily increase in spatial (or angular) frequency with the
index of the corresponding eigenvalue. We prove this in Appendix C.

“Note that a sequence of functions with decreasing frequency would not be com-
plete, so the same argument cannot be used to show that compact operators filter low
frequencies.



Convergence of eigenelements. While the spectrum of a pa-
rameter dependent approximation is generally "continuous” w.r.t.
to norm-convergence (see Conway [1991] p431), less can be ex-
pected when only strong convergence is satisfied. Generally speak-
ing, strong convergence of a holomorphic family of parameter-
dependent compact operators (such as Te and T, ) may display
very unexpected behaviors. For example, the approximation could
have an infinite number of eigenvalues even though the operator
(when € = 0) might have no eigenvalues at all, or an uncountable
point-spectrum, etc (See Kato [1995], VIL4, p371).

A useful result however is that when a parameter dependent ap-
proximation A of an operator A strongly converges to A, then the
isolated eigenvalues of A are the limit of eigenvalues of A¢ [Chatelin
1981, 2011], neglecting multiplicity. This theory simplifies even fur-
ther when the operator and its approximations are both self-adjoint
and densely defined, in which case the convergence properties cover
both eigenvalues and eigenprojections (See Chatelin [1981] defi-
nition 2.1 and Section 2.3). Consequently, both eigenvalues and
eigenprojections of Ty, . converge toward those of T, (We show in
Sec. 5.1 that Ty, is self-adjoint in a particular Hilbert space).

Contrary to Tj, having no formal proof that the point-spectrum
of T is countable, the previous conditions do not apply. We are
currently limited to observing the convergence of eigenvalues in a
number of typical geometric configurations, which tends to suggest
that the point-spectrum of T is countable (See Figure 6). Numerical
experiments indeed show that Galerkin approximations of T are
stable (In the sense of Chatelin [Chatelin 1981]). A formal proof
of such stable convergence (left for future work) would allow to
apply Proposition 2.2 of F.Chatelin’s paper [Chatelin 1981] in order
to show that eigenvalues of these approximations actually converge
to isolated elements of the point-spectrum of T.

The strong convergence of approximations Te and T, . also mean
that partial eigenfunction expansions of these operators strongly
converge, which validates the use of eigenfunctions and eigenvalues
of these compact approximations to represent the behavior of the
operators over finite dimensional sets of light distributions.

Usage for eigenfunction expansions. Expanding elements of
H with the eigenfunctions of an operator requires the family of
eigenfunctions of that operator to be dense in H (accounting for
eigenvalue 0). This is the case for T, (See Section 5), but this is yet to
be proven for T. Regardless, the compactness of T¢ is not sufficient
to ensure completness of its eigenfunctions®. The eigenfunctions
Aj of Ty, (resp. Ty () are

[e9)
VLeB L= Z(Ai,L)SAi. (18)
i=0
For T¢, we can at least say that a similar equation holds for elements
selected inside the span of its eigenfunctions.

In summary we have justified in this section that the eigendecom-
position of the compact approximations of light transport can be
used to estimate the countable part of the operators’ point spectrum,
and that the largest eigenvalues correspond to the energy exchanges
of lowest frequency.

5A notable counterexample in finite dimensions is that of defective matrices.
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5 Point-Spectrum of transport operators

In this section, we analyze the point-spectra of operators T, K, G
and Tp,. For each operator, we define the elements that are contained
within its point-spectrum as a theorem accompanied by a proof.
Figure 9 provides a table summarizing our results.

5.1 Spectrum of the radiant exitance transport operator

Although Ty, is the infinite-dimensional analog of the radiosity
matrix, its non-compactness in the general case precludes direct
extensions of the properties of the latter. However, a common ‘trick’
to make the radiosity matrix symmetric positive definite [Baranoski
et al. 1997] is useful towards proving that T}, is symmetrizable.

Assuming that the albedo p is never null, let S : 8 — 8B be the
trivial self-adjoint linear operator defined as

(SB)(x) = —— B(x). (19)
p(x)

This operator is also positive since
1
VBeB (SB,B)= (/:)B,B) = /(p(x)_1/2|B|)zdx.
S

It is therefore possible to define a new dot-product

V,geL¥(S) (f.g)s = {f.S9),

and we have

(Tpf. 9)s = (Tpf.Sg) = {f.STpg) = (f. Tpg)s-

The operator ST}, is trivially self-adjoint over 8B, and ST}, = T}S. In
other words, Ty, is symmetrizable on 8, which also means that it is
self-adjoint on the Hilbert space Bg = (L?(S), {, )s). We obtain the
following result:

THEOREM 5.1.1:  The point-spectrum of T}, has the following proper-
ties:

(1) o(Tp) = 0p(Tp);

(2) op(Tp) € (-1,1);

(3) 0p(Typ) is countable.

(4) eigenfunctions of Ty, for different eigenvalues are orthogonal

w.r.t to the dot product (,)s;
(5) eigenfunctions of Ty, span B.
(6) the first eigenfunction of Ty, is positive everywhere

Proor: Property (2) is the consequence of the point-spectrum of
self-adjoint operators being real (See Lax [Lax 2002], chap.28) com-
bined with Equation 14. Other properties are direct consequences
of the spectral theorem: A self-adjoint operator A on Hilbert space
has no residual spectrum, proving (1), and its eigenfunctions for dif-
ferent eigenvalues are orthogonal (4) (See for instance Reed [1972],
Th. VL8). Because 8 is separable these eigenfunctions can there-
fore only be countable (3)- in a separable space every orthogonal
sequence is countable. From the multiplication form of the spec-
tral theorem ([Reed and Simon 1972], Th. VIL.3), we deduce that
the eigenfunctions of T}, form a Schauder basis of B (5). The last
property is a consequence of T, being a "positive operator” (in the
sense of Lax [Lax 2002], p253). O

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: November 2025.
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Fig. 6. Convergence and stability of the largest eigenvalues of a Galerkin approximation of the non-Lambertian transport operator T in a toy scene made
of two squares with the MERL gold-paint material with an increasing number of elements. Left: as opposed to the Lambertian case, the eigenvalues of T

are not necessarily real, because of the inherent non-symmetry of T. Zooming on the red squared region of the complex plane (center) where we show four
eigenvalues computed with an increasing number of surface elements, suggests that they display consistent convergence. Since pairs of surface elements
are used to define directional finite elements, the effective matrix size is the square of the indicated numbers (e.g. max size here is 3002 X 300). Note that
eigenvalues come in this scene by pairs of opposite signs because of the symetry of the scene.

Self-adjointness alone does not imply that eigenfunctions of T},
span B. The operator’s point-spectrum needs to be countable which
happens in this case when the space is separable, or more generally
when the operator is compact. It is possible that 0 belongs to o, (Tp),
for instance when the geometry includes some finite surface that is
not visible from any other surface. If 0 is in the point spectrum, a
complete system of eigenfunctions of T}, includes its corresponding
eigenfunctions. Finally, a complete system of eigenfunctions with
no null eigenvalue does not make the operator invertible, since the
span of eigenfunctions is only dense in B and not equal to 8.

Distribution of the eigenvalues. When Ty, is compact, in addition
to being countable, o, (Tp) can only have 0 as an accumulation point.
When it is not compact, eigenvalues are still countable (since the
operator is self-adjoint and the space is separable), and will there-
fore necessarily accumulate at extra non zero values within (-1, 1).
These eigenvalues correspond to eigenfunctions for which most the
energy is concentrated next to an abutting edge. This explains why
compact approximations of T}, are practical for image synthesis:
while they remove non negligible eigenvalues, the corresponding
energy exchanges are mostly local.

When Ty, is compact, it is also Hilbert-Schmidt as are its compact
approximations Ty, .. Since it is self-adjoint in Bg, we can apply Eq. 4
to an orthogonal basis of eigenfunctions in Bs to get 3}; A2 < co.
This brings the following upper bound on the asymptotic behavior
of its eigenvalues: A, = 0(1/4/n). Figure 7 demonstrates this using
a simple scene with no abutting edges. Determining the actual
asymptotic behavior of the spectrum is non-trivial and depends on
the specific operator (see for instance Jeribi [2021] Sec 11.4).

Finally, while finite multiplicity of eigenvalues is not a limitation
in this paper, it is fairly straightforward to construct scenes where
the eigenvalues of T, have multiplicity greater than 1: given a closed
scene S1 (no light leaks), we build a new scene by duplicating the
geometry of S; multiple times, to obtain as many closed and separate
environments. Every eigenpair (A, A) of T, in S; will give birth to
as many eigenpairs in the new scene where each closed subpart
will have A while other subparts are 0. Having an infinite number
of scaled copies which total surface area stays finite would allow
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Fig. 7. Toy example of a scene where T}, is compact showing the upper
bound on the asymptotic decrease of eigenvalues.

to construct a scene were eigenvalues have infinite multiplicities,
making the operator non-compact even if the original scene had no
abbuting edges. This however is outside of physical constraints.

Singular value decomposition of T},. Since T}, is self-adjoint in
Bg, and given that its eigenvalues {A; } ¢ are real and countable,
and its eigenfunctions {Ag }x>o form a complete orthogonal basis
of B (See Section 5.1), Tj, has the following “Schmidt expansion”
in B 36:

(o]
TyL = Z Akl (L, Age) s sign(Ag) Ay .
k=0 _
g

The sign of A has been transfered to the left singular functions uy
in order to keep the singular values non negative. This expansion
is however not uniformly converging since the eigenvalues of T},
may have non zero accumulation points when the operator is not
compact. In 8 however, there is no such trivial expression for a

®Note that the term schmidt expansion is not perfectly appropriate here since the
convergence is not uniform.



Schmidt expansion of T}, and numerical computations bring sigular
values that are different from its eigenvalues, mostly because the
eigenfunctions of T}, are not orthogonal in this space.

5.2 Spectrum of the reflectance operators

The local and global scattering operators Ky and K have different
spectra. While they share eigenvalues, the eigenvalues of the latter
have infinite dimensionality.

THEOREM 5.2.1:  The spectrum of Kx is equal to its point-spectrum,
and has the following characteristics:

(1) op(Kyx) € (-1,1)
(2) the eigenfunctions of Kx span O

Proor: This operator is Hilbert-Schmidt (therefore compact) and
self-adjoint. Its eigenvalues are consequently real and equal to its
singular values, and its eigenfunctions—including eigenvalue 0, if
present—span the half-space of directions O. Furthermore the eigen-
values of Ky lie in the open interval (-1, 1) since energy conser-
vation imposes ||Kx|| < 1. Since Ky is compact, the only possible
accumulation point for its eigenvalues is zero, which may or not be
part of the point-spectrum even if the rank of Ky is infinite. O

Figure 8 shows the largest eigenvalues of Ky for some elements of
the MERL database. Since the integral kernel of Ky is the BRDF, we
sometimes refer to its eigenvalues as the “eigenvalues of the BRDF”.

THEOREM 5.2.2:  The point-spectrum of K has the following charac-

teristics:

case 1: if there is no measurable area where the BRDFs all share the
same eigenvalue then op(K) = 0;

case 2: else if the scene can be partitioned into a finite number of
measurable areas with respective BRDFs pj, then o, (K) =
Uiso 0p(pi). Its eigenvalues have infinite dimensionality and
its eigenfunctions span H. This case is typical of common light
transport scenes;

case 3: else, the point spectrum of K will be limited to the material
eigenvalues that are shared across measurable subsets of S, each
having infinite dimensionality. In this case the eigenfunctions
of K do not span H.

Proor: Because K is a tensor product between Ky and an iden-
tity operator over L2(S), the existence of an eigenpair (k, $) of K
also implies that Kx@(x,.) = k@(x,.) wherever ¢(x,.) # 0, which
means that (k, #(x,.)) is also an eigenpair of the BRDF at x. And,
in order to be a non-zero function in H = L2(S x Q), the prop-
erty ¢(x,.) # 0 should remain valid over a measurable subset
A C S. On the contrary, when the BRDFs across A C S all share the
same eigenvalue k with eigenfunction py, any function of the form
(%x,0) - px(w)f(x) over A and 0 elsewhere is an eigenfunction
of K, and from Th. 5.2.1, L2(A X Q) is spanned by these eigenfunc-
tions. O

5.3 Spectrum of the reparametrization operator

Let £1 C L denote the set of points (x, w) € L for which px(x, ) is
defined, H; = L*(£1) and Py : H — H; the orthogonal projection
on Hi. We also call Gy : H; — H; the restriction of G to H;. Note
that because py is reversible wherever it is defined, using H; for
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Fig. 8. Top: Point-spectrum of some reflectance operators from the MERL
database. Bottom: eigenfunctions 0, 6 and 20 of the gold-paint material,
computed by projecting the BRDF onto a basis of spherical harmonics up
to degree 30 (green means negative). As theory predicts (See Lax [2002],
chap.28), only the first eigenfunction is entirely positive.

the output space of G; makes sense. With these settings, we have
G=GP;and G} =1 (20)

Similarly to G operator Gj is self-adjoint, and ||G1 || = 1 which makes
it an isometry on ;. Its eigenvalues are therefore +1. Furthermore,
to any eigenpair (A, V7) of Gy corresponds an eigenpair (4, V) of G
with V(x, w) = 0 for any (x,w) ¢ L;.

Finally, any function V € H such that PV = 0 satisfies GV = 0.
Therefore 0 is also in the point-spectrum of G. No other eigenvalue
can exist, as it would automatically be an eigenvalue of Gj. In
closed scenes, P; =1, £1 = £, and G1 = G, and the part of the
point-spectrum corresponding to the nul eigenvalue vanishes.

THEOREM 5.3.1:  Spectrum of the reparametrization operator
(1) 0p(G) = {~1,1} in closed scenes;
(2) 0p(G) = {~1,0,1} otherwise;
(3) the eigenfunctions of G form a complete family of H.

Proor: In order to prove (3), let {¢n}tn>o0 (resp. {¥n}n>0) be an
orthogonal Schauder basis of H; (resp. H \ H)’. Assuming that
both functions can be extended by 0 in £, we define the sequence:

1
Gsp = 5((Pn +Gon)

1
Gsn+1 = 5((Pn - Gon).
Gsny2 = 1//n~

"These spaces are separable, and any such combination of spatial and directional
wavelets would work.
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Since G2 = I we obtain

GGsn =Gsn  GGsp+1 = —G3pt1 GGspiz = 0.

After noting that ¢, = Gs3, + G3p41 we see that {Gp}n>0 spans
H, which makes it a complete—yet not orthogonal inside each
eigenspace—family of eigenfunctions of G. An fully orthogonal
family of eigenfunction can further be obtained by Gram-Schmidt
orthogonalization in each eigenspace. O

5.4 Spectrum of the radiance transport operator

Unlike the point-spectrum of T}, (Section 5.1), much less can be de-
termined about the point-spectrum of T because of the combination
of the following properties:

(1) T is not compact;

(2) T is not normal;

(3) T cannot be symmetrized.

The non-compactness of T has been discussed in Section 3.4. To
demonstrate non-normality, since K and G are self-adjoint, we have

TT* = KGGK = K?,
T*T = GKKG = GK’G.

That is, reflecting twice is not equivalent to transporting, reflecting
twice and transporting back. Note that neither is T quasi-normal
nor hyponormal, which would yield beneficial properties [Conway
1991]. (3) is a side effect of the Dirac in Equation 13, which precludes
multiplication of T by a trivial operator (such as S in Eq. 19) to make
it self-adjoint.
THEOREM 5.4.1:  The spectrum of T has the following properties:
(1) 0p(T) is not empty; the largest eigenvalue is positive with a
positive eigenfunction;
(2) 0p(T) lies in the disk of radius ||K||;
(3) the eigenfunctions of T for non-zero eigenvalues do not neces-
sarily span H.

Proor: Since T is a bounded operator it has a non-empty spectrum
(See Kato [1995] Ch3,§86.2), but this does not guarantee the same
property for its point-spectrum. But since its kernel is positive (as-
suming non-zero reflectance), the Krein-Rutman theorem [Phat and
Dieu 1994] applied to the cone of light distributions of constant sign
ensures that when the scene is closed we have o, (T) # 0 and its
maximal eigenvalue is a positive real value of unit multiplicity, asso-
ciated to an all-positive eigenfunction. When the scene is not closed,
restricting T to H; preserves the conditions to apply this theorem,
hence proving (1). Note that the same applies to T which coincides
with T when materials are Lambertian. (2) is straightforward: let
(V, A) be an eigenpair of T (which means ||V|| = 1), then ||[TV|| = |A]|
and ||TV|| < |IK||||G||. Using Equation 14 we get |A| < ||K]|.

Since T = KG, any eigenfunction V of T is in the range of K, so is
the span of the eigenfunctions, which proves (3). The extreme case
is in Lambertian scenes, where eigenfunctions for non-zero eigen-
values are directionaly constant, and therefore cannot represent any
non-directionaly constant function in . O

The following might be useful in practical contexts where one set
of eigenfunctions might be computed easily, either for transporting
light or importance:
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THEOREM 5.4.2:  The spectrum of T and T* are connected via the
operators G and K:
(1) The eigenfunctions of T and T* are mutually orthogonal for
different eigenvalues;
(2) G turns the former into the later, while K turns the later into
the former;
(3) 0p(T) = ap(T").
Proor: Orthogonality is a classical result. In order to prove (2) and
(3), let (A, L) be an eigenpair of T*. We have GKL = AL. Left multi-
plying by G leads to KL = AGL. Reporting the former equation in
the later, we get K(GKL) = AG(GKL), which simplifies to T(KL) =
A(KL). Conversely, if (4, V) is an eigenpair of T, we have KGL = AL.
Left-multiplying by G directly leads to T*(GL) = A(GL). ]

Note that the above properties do not imply that eigenvalues are real,
and indeed, numerical experiments tend to show that even in the
simplest cases they are not (See Figure 6). Finally, we lack a formal
proof that 6, (T) is countable. It seems to be a reasonnable conjec-
ture given the stable convergence of eigenvalues of its Galerkin
approximations [Chatelin 2011] (See Figure 6). We leave such a
proof for future work.

5.5 Singular value decomposition of radiance transport
operator

Interestingly, T admits a simple explicit singular value decomposi-
tion in scenes with a finite number of non-spatially-varying mate-
rials m; & which we briefly recall here for completness [Soler et al.
2022]. This result will be used to derive the spectral properties of T.
We call p;; the jth eigenvalue of material m; and its corresponding
eigenfunction r;; € O. We define {¢]’<} k>0 to be an orthogonal basis
of the subset of S where the material is m; (wavelets are such an
example). Finally we name g : j > (n1,n2) an arbitrary bijection
between N and N2, and use J = g(n1, nz). Thus, we have

TL= ) > Ipil(Loby). @

i=1 j>0
where for all (n1,n2) € N2,
¥j(x,0) = ¢h, (), () (22)
¥5(x ©) = sign(pi)) Gy} (x, o). (23)

The above equation takes the form of Equation 6 after reordering
the elements in the sum.

6 Light transport formulations of the spectrum

We now derive connections between the eigenvalues of compact
approximations of the light transport operators and light paths
and their integrals. In some cases, the connection is direct such as
the structure of the operators’ output space being governed by its
eigenelements (Section 6.1). In Section 6.2 we discover a relationship
between eigenvalues of the operator and linear combinations of
multiple bounces of light. In Section 6.3 we explain how the measure
of single light paths of fixed length, as a pure geometric quantity
(with no specific light distribution involved), is also closely related

8This is the most general situation, assuming that surfaces with spatially-varying-
materials can further be separated in sub-regions with constant materials
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operator | space normality class point-spectrum completeness
Ty B symmetrizable bounded countable yes
Tpe B | symmetrizable | Hilbert-Schmidt countable — 0 yes
Kx o self-adjoint | Hilbert-Schmidt countable — 0 yes
K H self-adjoint bounded countable (co-dim) yes
G H self-adjoint unitary {0,1,-1} yes
T H none bounded countable (conjectured) | conjectured
Te H none Hilbert-Schmidt countable — 0 conjectured

Fig. 9. Summary of spectral properties of the different operators involved in light transport (See definitions in Section 3.1). Completness accounts for

eigenfunctions corresponding to eigenvalue 0.

to the eigenvalues. Finally in 6.4 we show that eigenfunctions can
be expressed as an integral over solutions of a parameter-dependent
generalized light transport problem.

All results derived in this section remain valid of any compact
approximation of T and T}, including such as those described in Sec-
tion 4. We use the generic notation T to designate them. Note that
while some of the following results would be straightforward for ma-
trices, careful proofs are still required for these infinite dimensional
operators.

6.1 Structure of the operator’s output space

Projecting T onto a finite N-dimensional subspace of its output
space, results in a matrix whose eigenvalues estimate the largest
elements of O'p(T). This formulation is inspired from the Monte-
Carlo approximations of large matrices proposed by Halko [2011].

Let Hy be the N—dimensional subspace of H spanned by the N
first elements of a complete sequence of functions of finite support in
the frequency domain (wavelets, spherical harmonics, etc). Consider
p light distributions Ly, ...., Ly in this space sampled from a Gaussian
distribution. For some n, let qy, ..., q, be an orthogonal basis of the
n-dimensional span Q of {TLy, TLy, ..., TLP} (most of the time n = p).
We also define

Q:R">Q
(a1, ...an) » a1qq + ... + anqp-

Using this notation, the adjoint Q* : Q — R” of Q computes the g;
coordinates for any L € Q. Both Q and Q can be plunged into H
so that QQ* is the orthogonal projection on Q, whereas Q*Q is the
identity over R". Given this, the following theorem holds.

THEOREM 6.1.1:  For any € > 0 there exists (n, N) € N? such that
the n X n matrix M = Q*TQ satisfies
(Mo = A0) = ||TQuv — 1Q0|| < €,

with probability 1 — 10~". That is, the eigenvalues of M statistically
approximate some eigenvalues of T using sufficiently many input light
distributions L;.

Proor: Lete > 0 and Ty = PyT where Py is the orthogonal
projection on Hy. Since T is compact, there exists N such that
[Ty — T|| < €/3. We therefore have

IT - QQ™TIl < 5 + Ty - QQ"Tw + 1QQ" (T - DI

The 3rd term above verifies || QQ*(Tx — T)|| < [|QQ*||ITn - Tl <
€/3 since, as an orthognal projection ||QQ*|| = 1. The second term
is majorated using the framework of Halko [2011] (Sections 4.3 and
4.4) which we rephrase here in our context:

PRrROPOSITION 6.1.1 (HALKO, 2011). Let A be a N X P matrix, and
o, W1, ... a sequence of random Gaussian vectors, and Q the ma-
trix built as above. As soon as n consecutive vectors verify ||(I —

Q0" Awi| < e/(lO\/;), then with probability 1 — 10™" we have
I(T-QQMAl <e.

We apply this result to the operator Tn Py, that is a finite rank
operator over the finite dimensional space #,, which therefore can
be assimilated to a matrix, to determine the existance of n such that
[[Tny — QQ*TN|| < €/3. In summary, there exists N and n such that

IT-QQT|| <e. (24)
Let (4, v) be an eigenpair of M. We have
TQo — AQo|| < [ TQu — QQ*TQul| + || QQ*TQu -AQu].

———

OMo
The first term on the right hand side is less than € because of Eq. 24
and since Mu = Ao, the second term is equal to 0, which yields

ITQuv — Q]| < e. o

This theorem should be understood as follows: Hy being the
space where the L; are sampled, choosing n large enough will re-
duce the approximation error ||"I"Qv — AQu|| down to the threshold
imposed by N. However, using a very large N will require n to
be large as well in order to reduce ||Tn — QQ*Ty||. Halko [2011]
conjectures that n should be slightly larger than N in order to sat-
ify Eq. 24. In other words, controlling the error requires sampling
a small number of low frequency light distributions, or a larger
number of higher-frequency light distributions.

As defined in the theorem, the matrix M = Q*TQ resembles a
product of matrices, but it is not. Operator Q may be viewed as an
"infinite matrix" with n columns each of which is one of the light
distributions q;. However, we may estimate M by sampling these
light distributions at a finite (yet sufficiently large) number of points
and directions.

6.2 Linear combinations of powers of T

Here we derive that the minimization of a linear combination of
powers of T results in a polynomial whose roots estimate the largest
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elements of the point-spectrum of T. While such a connection seems
obvious for a matrix (choosing 1 + P(x) to be proportional to the
characteristic polynomial of that matrix) the following theorem
shows that it holds for our compact approximations.

THEOREM 6.2.1:  For any light distribution L € H with a finite
support on the sequence of eigenfunctions of T there exists a finite set
of coefficients a1, ..., an such that

n
L+ Z o TFL = 0. (25)
k=1

Furthermore, the roots of polynomial 1+ ;. akxk

eigenvalues of T.

are the corresponding

Proor: If {A;} is the sequence of eigenfunctions of T (which we
do not assume to be complete nor orthogonal), and L has a finite
support on this basis, then there exist n + 1 coefficients f; # 0
(without loss of generality we assume no gap in the related A;) such
that

n
»=0
Let ay, ..., an € C. Applying TF to equation 26, and exchanging sums
(both are finite) we immediately get

Z o TFL = Z BaP(Ap)Ap. (27)
k=0 p=0

where P is the polynomial Y7’ _ ax X k hence defining operator P(T)
(See Conway [1990] Sec.4.10)°.

Because of equation 27 the necessary and sufficient condition for
P(T)L = 0 is that P(4p) = 0 for each p. Such a polynomial being
defined up to a factor, we choose ap = 1. Polynomial [T} (1~ /%X)
is in this case the unique solution, whose expansion provides the «;
coefficients for Equation 25. ]

In practice, this theorem proves useful to estimate eigenvalues
because of the increasing oscillatory nature of eigenfunctions of T,
which means that any finite-frequency light distribution will have a
limited support on the sequence of eigenfunctions, or at least very
small values of 8, beyond some N. Consequently even when the
coefficients do not exactly vanish, optimizing

n
(1, ..., o) = argmin||L + Z a TFL|? (28)
k=0
produces a polynomial whose roots will approach the largest eigen-
values. We illustrate this in Figure 10.

Theorem 6.2.1 is related to theorem 6.1.1 in the following way:
let’s choose {Li} (in theorem 6.1.1) to belong to the span M of
the first eigenfunctions of T, and call C the characteristic poly-
nomial of matrix M. Because M is stable by T we have C(M) =
Q*C (T)Q. Since C(M) = 0 (Cailey-Hamilton theorem), we also have
Q*C(T)Q = 0. Consequently, for any L € M in theorem 6.2.1 the

Note that self-adjointess is not required here
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corresponding polynomial P is C (or a factor of C depending on the
support of L over the {A;}).

6.3 The measure of circular light paths

In this subsection we reveal an unexpected connection between the
measure of circular light paths in a scene and the eigenvalues of T.

THEOREM 6.3.1:  The eigenvalues of T are the reciprocals of the poles

of the entire function d(1) = Z(—l)"an/ln, where

n=0
1 n
k
an=—- ng(‘U Pkn—k (29)

and py, is the measure of circular light paths of length n in the scene,
with po = ap = 1 and p1 = a1 = 0.

PrRoOOF: In Section 4 we saw that the compact approximations Te
and Tp . of light transport operators also happen to be Hilbert-
Schmidt. Assuming T is one of these, we can express the Hilbert-
Carleman determinant (See Gohberg et al. [2012] p176) of Tas

Det(I+ AT) = Z anA"  with (30)
n=0
0 n—1 0 .. 0 0
Tr(T?) 0 n-2 0 ... 0
an = — Tr(T3) Tr(T?) 0 .0 0

Tr(T") Tr(T" 1) Te(T"2) ... Te(T?) o0
with ap = 1 and a; = 0. Since T is Hilbert-Schmidt, all operators T*
are also trace-class for k > 2, hereby justifying the use of the trace
in Equation 30. Just like the more classical Fredholm determinant

(Gohberg et al. [2012] Chp.VI), the Hilbert-Carleman determinant
is an entire function over C which zeros are the A = —%, where A;

are the eigenvalues of T.
For k > 2, denoting by k. the kernel of the trace-class operator
T*, thanks to Equation 5 we have [Brislawn 1988]

Tr(i"k) :‘/Skk(x,x)dx
=// K(x, X1)K_1 (X1, X)dx1dx
S JSk-1

= -/Sk K (X1, X2)Kk (X2, X3)...K (X, X1)dX1...dx.  (31)

In the non lambertian case the x; in these equations should be
understood as couples of points and directions. Because of the ar-
bitrarily sharp Gaussian g, in the kernel expression of T, only the
ones that actually constitute a correct light path are non zero. In
other words for both Lambertian and non-Lambertian scenes the
above equations prove that Tr(T¥) corresponds to the integral of all
circular light paths of length k in the scene. Henceforth, we use the
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Fig. 10. lllustration of Th.6.2.1, where we show that the largest eigenvalues of T can be approximated as roots of a polynomial which coefficients ay zero the

first bounces of light T¥L.

notation py = Tr(T¥). Rewriting the determinant in Equation 30 us-
ing Laplace expansion along the first column leads to the recursive
expression of Equation 29 (See Appendix E for further details). O

The simplest method to compute py. is Monte-Carlo integration,
via a random starting point and direction followed by importance
sampling of the path up to length k. The last vertex is then connected
to the first!?. Doing so, the probability density of sampling the
circular path 7 = (x1, ..., Xy ) is

1
P(”k) = §K(X15X2) s K(Xk_l,Xk),

and we have

N
1 1
pr = lim = ; P(”k)K(XLXz)K(Xz,Xa)n-K(Xk,Xl)
N

.S
= lim N Z K(Xp, X1).-

N—-oco =

Even though the calculation of py, is stable, estimating eigenval-
ues via a finite number of these path integrals converges slowly. The
roots of polynomials are generally highly sensitive to noise in their
coefficients, especially when these roots are evenly spaced [Wilkin-
son 1959]. This is why in a practical calculation scenario truncating
Det(I + AT) to its first terms causes instability when determining
its roots. Figure 11 shows practical values of p,, and 1, in a simple
scene where the values vanish rapidly with increasing n.

6.4 Parameter-dependent light transport solutions

The previous subsections derived connections between path inte-
grals and eigenvalues. We now explain how it is also possible to ex-
press eigenfunctions as a sum of solutions to a parameter-dependent
light transport problem in the complex domain.

1Note that implementation efficiency is not an issue at this point, and we acknowledge
that better sampling strategies that reuse the same path for multiple p; are available

3475035

104k 1.60e-04

aF 100
108§

10-10 L

7.97e-12

1012 L I
0

Fig. 11. The measure of n-bounce circular light paths p,, shown for n up to
16 on an example scene (inset). The scene is composed asymmetrically of 3
Lambertian squares (albedo 0.5) so that k is bounded, making T} compact.

THEOREM 6.4.1:  Any eigenfunction A; ofi" corresponding to an eigen-
value A; with unit geometric multiplicity can be expressed as a path
integral
1
Ai = - L(Dl)d(l, (32)
2ir Jr

2]

where L(a) is the solution to the “generalized light transport problem’
al = E+TL, (33)

andT c C is any simple closed curve enclosing the sole eigenvalue A;,
and E any light distribution such that (A;, E) # 0.

Proor: The explanation to this intringuing theorem relies on the
fact that because L(«) = (¢ —T)"'E = R(T; @)E, Eq. 32 corresponds
to the Riesz integral of the resolvent, that is known to be a projection
onto the union of eigenspaces of the operator which corresponding
eigenvalues are enclosed by T (See for instance Gohberg [1978] ch.I).
The integrated “light” distribution in Equation 32 will therefore be
equal to an (unormalized) eigenfunction of T, or 0 depending on
whether (E, A;) # 0 or not. O

Equation 33 can be viewed as a generalization of the traditional
light transport equation 10 by introducing a parameter a. While
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the existence of a solution to this equation is guaranteed by the
Fredholm alternative theorem [Zemyan 2012] (since a € T C p(T)),
its solution need not be positive nor even real. Thus, it would not
represent a physically meaningful distribution of light. Nevertheless,
this is helpful to effectively compute an eigenfunction of T.

A practical, yet non computationally efficient way to compute A;
is to apply a Galerkin approximation to T and solve for («—T)L(a) =
E using a biconjugate gradient. Computing this solution using the
traditional Monte-Carlo light transport paradigm is however not
feasible, since the series obtained by expanding («a — T)! only
converges for |a| > ITIl. This precludes any curve I' that would
only encircle a strict subset of the point-spectrum of T.

7 Practical computation of the spectrum

In this section, we suggest a couple of practical methods to compute
the eigenvalues of the light transport operators T, and T.

7.1 Lambertian operator Tj: Galerkin is best

Following the work of Chatelin [1981], since the point-spectrum of
Ty, is countable, a converging approximation of the eigenvalues of
T}, can be obtained by computing the eigenvalues of an n—element
Galerkin approximation with matrix A, of that operator. The scene
is partitioned into n surfaces of area S; and the light transport
operator is projected onto a finite element basis. For a basis of
piecewise constant functions, the matrix entry a;;’ of the projected
transport operator is [Sillion and Puech 1994]

1
= ?//Kb(xi’xj)dxidxj (34)
1 Si Sj

where S; the area of surface element i and k;, the kernel of T}, (See
Section 3.3). The eigenvalues of the matrix can then be caculated
using a standard eigensolver.

7.2 Non-Lambertian operator T: Monte-Carlo approach

In non-Lambertian scenes, a Galerkin approach would require dis-
cretization of surfaces and directions so that Equation 34 integrates
over pairs of surface element-direction pairs ¢ = Sg X Q;

a;, //K(X ©,y, 0" )dxdwdydw” (35)
l'l([l)

where y is the measure associated with ¢. Unfortunately, this ap-
proach is computationally impractical. Compared to the Lambertian
case where the eigensolver would be applied on a matrix that is
about 1000 1000, the non-Lambertian case for comparable accuracy
would be 10 x 10° or larger. The matrix in Eq.35 is very sparse,
and even more when reflectance functions are highly glossy. Com-
puting a;; is however expensive because the correlation between
the geometric factor in x and the BRDF cannot be neglected while
maintaining physical consistency.

Since Equation 35 is an integral, a;;’ is the expected value of an
appropriately scaled random variable:

= p(6) E(x(x, 0,y,0")).
Consequently we form the following random matrix:

2rS
A, =2
n

4
K(wal,y_],wj )Hij’
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where points and directions are randomly sampled. In practice, we
suggest to select n random points x;, and outgoing directions for
each point are implicitly defined by the connection to all other
points at the cost of a bias. This also ties sparsity to the glossi-
ness of reflectance functions only, since in this formulation only
the directional integration is implicitly considered. For compact
approximations Te of T (see Section 4) the eigenvalues of A, form
an estimator of the eigenvalues of T, [Chatelin 1981]. The estimator
is biased since the eigenvalues of A, do not linearly depend on
its coefficients, but the bias converges to 0 when n tends to infin-
ity. Note that because of the lack of a proof that o, (T) is actually
countable and T, strongly converges to T, we can only ensure that
this method computes converging approximations of the isolated
elements of 0, (T) (See Section 4).

We use an eigensolver that only requires computing the product
of vectors by A, or its transpose [Lehoucq et al. 1997], which is
performed efficiently as a triple loop over the x;. Figure 12 shows
an example of using this technique on a non-Lambertian scene. The
method presented in this section shares similarity with random sub-
matrix sampling as proposed by Frieze [2004] to compute singular
values of large matrices.

8 Discussion
8.1 Discussion of results

Challenges specific to light transport operators. Despite the
large array of mathematical tools to analyse the spectra of linear
operators, light transport operators T and T}, present unique chal-
lenges. Although their non-compactness can be mitigated by approx-
imations, these approximations inherit some of the bad properties
of the operators: non normality (or any sub-normality class), discon-
tinuous integration kernel, non-compact resolvent. These severely
limit the set of applicable methods. Although they are not positive
operators or symmetric, the fact that they are integral operators
with a strictly positive kernel allows some of the analyses presented.

Relationship between T and its adjoint. A curious result from
Theorem 5.4.1 is that the adjoint T* has the same point spectrum
(eigenvalues) as T. The adjoint operator has a practical significance
in light transport, as it represents the transport of importance or
tracking light backwards from the eye to the scene. Our result con-
firms that the two operators share similar spectral properties and
therefore similar computational challenges with respect to conver-
gence. Although T is not self-adjoint, T = KG where K and G are
self-adjoint operators. As a result, T and T* have mutually orthogo-
nal eigenfunctions and operators K and G can be used to transform
one into the other and vice versa. This could potentially have practi-
cal implications in precomputed light transport where one of them
is diagonalized.

Relationship between T and T, for diffuse scenes. In Lam-
bertian scenes, any eigenfunction Ay, of Tj, can be turned into an
eigenfunction of T as A(x, ) = Ap(x). Conversely, any eigenfunc-
tion of T with a non-zero eigenvalue will have a constant directional
component (by means of TA = AA) and is similarly tied to an eigen-
function of Tj. Additionaly, 0 is an eigenvalue of T with infinite
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Fig. 12. Left: validation of the Monte-Carlo estimation of eigenvalues of Section 7.2 on the two-squares scene of Figure 6 (Lambertian version with albedo 0.8).
When increasing the number of points n, eigenvalue histograms show sharper peaks that exactly align with the reference eigenvalues. Middle: Monte-Carlo
estimation of eigenvalues in the CornellBox scene. Right: 3D histogram in the complex plane of Monte-carlo estimation of eiganvalues in the non-Lambertian

scene of Figure 6.

dimensionality, corresponding to all directional functions of mean
value zero.

Generally T is not compact as a partial integral operator, it is
therefore counterintuitive that it may have the point-spectrum of a
compact operator plus eigenvalue 0 (T, is compact when the scene
has no abutting edges). In Lambertian scenes however T can be
restricted to the space of directionaly constant functions for which a
single value represent the whole function, which in effect makes T a
non partial integral operator. Note that in this case, the eigenspaces
of T (including eigenvalue 0) are complete and its eigenvalues are
countable.

Specific case of p;; > 0. An interesting observation is that be-
cause of Equation 21, when all the p;; are positive, T can be left-
symmetrized by the operator

R:T(H) —» T(H)

RTL= ) > (Loby,

i=1 j>0

(36)

which in this case makes RT self-adjoint (the proof involves showing
that (qaj., l//lk> = ((pf, 1//J’> which only happens when (p;'. does not in-
clude the negative sign of some of the p;;). Since R has eigenvalues
|p,-j|_1, it is bounded below by 1 (which means it has a bounded
inverse) and we can in this case apply Th. 9.1 of Silberstein [1962]
to deduce that T is symmetrizable over T(H). Consequently its
eigenvalues are real, and its eigenfunctions are orthogonal for the
dot product {f, g)r = (VRf, VRg) [Silberstein 1962]. Furthermore
orthogonality implies countability because T(H) c H is separa-
ble. Since G is invertible on H, we know that K(H) = T(H) and
ker(T) = G~ !(ker(K)). Since K is self-adjoint, its eigenfunctions
(including those in ker(K) span H, and therefore eigenfunctions of
T span H, proving a strong result for the spectrum of T.

This happens at least in Lambertian scenes, where the only eigen-
values of K correspond to the albedo of all materials in the scene. In
classical scenes, it seems that BRDFs have both positive and negative
eigenvalues (See Figure 8). Although the effect of flipping the sign
of negative eigenvalues of BRDFs is unclear, this would preserve
the frequency content of material reflectances [Durand et al. 2005].
Perhaps this case would be useful in the context of analysis of light
fields via a symmetrizable operator.

Estimating eigenfunctions from a. The result from Theorem 6.2.1
means that if L belongs to the span of a finite set of eigenctions
of a compact approximation of T or T}, the roots of polynomial P
given by the theorem gives the corresponding eigenvalues. Given
one such 4;, one can also expand Q(x) = P(x)/(x — A;) and obtain
Q(T)L = BiA;. While a random L will generally not be in the span
of a finite set of eigenfunctions of T, the above expression only
approximate an eigenfunction, assuming that eigenvalues decrease
fast enough for the contribution of {A;};>n to be small enough.

Total response of the generalized transport system. The mea-
sures of circular light paths p defined in Section 6.3 can be used as
a measure of the total response of the generalized transport equa-
tion aL = E + TL to border conditions (E in this expression). This
quantity is generally defined as

d = / ra(X, X) dx,
£

where rq is the integral kernel [Brislawn 1988] of the resolvent
operator R(T; ). Recalling the calculation leading to Eq. 31, the
resolvent of T is clearly not trace class due to the terms al + T.
Dropping the first two terms still allows to define a regularized total
response d, which turns into

J:a_lpg +0(_2p3+0£_3p4+... (37)

This gives a formal proof of the intuitive following fact: for compact
approximations of T, the larger the measure of circular light paths,
the more energy will be in the solution of the generalized equation.

8.2 Open questions

Eigenfunctions of T. The spectrum of T diagonalizes the opera-
tor and so estimation of the eigenvalues and eigenfunctions of T
would simplify the calculation of higher powers (multiple-bounce
transport), inversion (relighting, inverse rendering), etc. In this pa-
per, we have analyzed the spectra (eigenvalues and eigenfunctions)
mathematically and estimated eigenvalues numerically. However,
stable methods for the estimation of the eigenfunctions of T remain
elusive.

Quatifying scene complexity using p,. The complexity of a
scene with respect to computing light transport solutions is difficult
to quantify. There are a variety of factors that make computation
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challenging, including number of light sources, reflectances in the
scene, visibility, geometric elements, etc. We conjecture that the
measure of circular light paths in a scene may be useful for quantita-
tive assessment of the interplay between these factors. As explained
in Section 6.3, py, is a single number per length of circular paths n
obtained as the trace of T". Its distribution over n encodes informa-
tion about the relative contributions of different path lengths to the
light transport solution. Thus, scenes where p, has a heavy or long
tail may be more challenging to solve accurately than scenes where
pn has a sharp peak for lower values of n.

Is the point-spectrum of T countable? Despite our efforts, we
were unable to derive a formal proof for this challenging question.
Since H is a separable Hilbert space, completness of the eigenfunc-
tions of T would prove countability of its point-spectrum. However
T does not meet the conditions for Goh’berg theorems on complet-
ness of eigenfunctions ([Gohberg and Krein 1978] Chp.V), nor is it
dissipative, quasinormal or hyponormal [Gohberg and Krein 1978].
Exploiting the characteristics of the convergence of T, toward T
through asymptotic perturbation theory may be a interesting direc-
tion to consider (See Chatelin [2011], and Kato [1995] Chp.8).

New class of light transport algorithms? Solving the generalized
light transport equation, AL = E + TL for |A| < ||T||, with path
tracing could be an important step toward practical calculation of
the eigenfunctions of T, using the Riesz integral in Equation 32. As
explained in Section 6.4, a generic formulation of its solution as an
integral over light paths remains elusive. Such a formulation may
reveal fresh perspective of the rendering equation and potentially
lead to a new class of light transport algorithms.

9 Conclusion and future work

In this paper we have analyzed the spectral characteristics of light
transport operators K, Ky, G, T;, and T. We demonstrated that, al-
though neither Ty, nor T are compact, these two operators can still
be strongly approximated by compact operators. Further, we high-
light that these approximations actually correspond to the ones used
in practice while implementing path tracing. We have also revealed
various connections between the point spectrum of these operators
and path integrals in a scene, combining circular light paths, powers
of the operator and projection on the operators’ output space. We
identify important questions that remain unanswered and leave
them as future work in this area.

In conclusion, we believe that there is much to be discovered at the
confluence of stochastic approximations of large matrices [Dimov
et al. 2015; Frieze et al. 2004; Halko et al. 2011; Kobayashi et al. 2001]
and light transport estimation.
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A Self-adjointness of G and K

Although K and G are long known to be self-adjoint [Veach 1997],
we derive this using our notations. For two points x and y that are
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visible to each other (via local directions w’” and w’’ as in Figure 2),

(GLy,Ly) = / / (GL1)(x, 0" )L (x, ") cos 0 dx dw’.
S JQ

Now we change variables from (x, ) into (y, »”’). We have do’ =

dy cos 8" [r? anddw” = dx cos 8’ /r?, from which we get dy cos 6"/ dw’’ =

dx cos 0'dw’. Using the fact that (GL1)(x, ") = Li(y,»’’) and
Ly (x,0") = (GLy)(y, w”) = GLy(y, »”"), the above equation turns
into
(GLy, L) = / / Li(y, @ )GLy(y, ") cos 8" dy dw”’
S JQ
= (L1, GLz).

Similarly,

(KL, L) = L /Q(KLl)(x, w)La(x, @) cos 0 dx dw

://(/ P(X,w,w’)h(x,w’)cosG’dw')L_z(x,w)cosgdxdw
s Ja\Ja

Since p(x, 0, ®") = p(x,0’,w) due to Helmoltz reciprocity and
KL, = KLy, the two definite integrals over Q can be exchanged to
yield

(KL1, L) = (L1,KLz).

Both operators are self-adjoint thanks to the cosine in the dot prod-
uct. ]

B Strong convergence of T, and Tp ¢ in L1 norm

Let L be a bounded light distribution. For any € > 0 we denote by
Se(x) the set of points y for which kp, (x,y) > % and M, the set

1
Msz{xes JyesS K(x,y)z—}.
€

Clearly for all x € S we have S¢(x) € M. Using successively S¢ C S,
Holder’s inequality and the non-negativity of k;, we get

(@ =101 @l < [ <r<b<x,y>—§>L<y>‘ dy

suan/S()
e (x

< Ll /S e dy
e (x

1
Ky (x.Y) - ;‘ dy

< ILlls / x5 (%, ¥) dy. (38)
M
Therefore

1Ty = Ty )Ll < Ll / / xp(x, ) dy dx
s JJm.

< Ll / / x5(x,y) dx dy
M, Js
—_—————

<1

< I Llloopr(Me)

In classical physically meaningful scenes, where edges and corners
constitute a non measurable set of points, the measure p(Me) verifies



lime—0 p(Me) = 0, therefore
lim [|(T}, = Tp,¢)LIl1 = 0.
e—0

The strong convergence of T¢ to T is immediate after noticing
that for any directional function w — h(w) we have whenever h is
continuous at w,

ehl)r%)/g h(®")ge(w - ') do” = h(w). (39)

Once again, the "proper" geometry of scenes ensuring that light dis-
tributions are only non continous at a set of points which measure is
0, and applying the preceding proof for the remaining term f¢ (x,y),
we deduce the strong convergence of T, to T almost everywhere. O

C Eigenfunctions increase in frequency

In this proof T denotes a compact approximation of one of the
transport operators. Let {¢n}n>0 be an orthogonal basis of the
space with non decreasing frequency content (e.g. directional/spatial
wavelets). Let {Ag }r>o be the eigenfunctions of T assumed to form
a complete system.

Assume, first, that eigenfunctions are orthogonal. Then, for all n

(e8]
Pn = Z i with ane = (@, Ak)-
k=0

The convergence of that sum implies that

VneN lim a2k=0.
n

k—o0

Selecting the first N + 1 values of n allows us to apply the limit to
the suppremum of the

VNeN Vne[0o,N] lim sup aik =0,

k—oo <N

which exactly states that when k increases, the coefficients of Ag
over {¢p } uniformly converge to 0, over every interval [0, N]. Since
>on arzlk = 1, that means most of the energy in Ay lies beyond N.

Now if eigenfunctions are not orthogonal, we can still apply
Gram-Schmidt orthogonalization to {Ag} (which remains valid for
countably infinite sequences) to obtain an orthogonal sequence
{A} }k>0 such that

(e8]
¢on = Z oc;lkA;C with a;lk = {¢n, A;C)
k=0
Therefore, A;C increases in frequency with k. But since A;( is built
using Gram-Schmidt orthogonalization, we know that for all k, Ay is
alinear combination of Ay, ..., A;C, and thus the increase in frequency

applies to Ag. O

D Proof of Equation 17

For any N € N we call Py : H — H the projection on the finite
dimensional space spanned by {¢n }n<N, and we define the finite
rank operator A, to be

A, = AP,,.

Since A is compact and the sequence {¢, }»>0 is complete, we know
that A, converges to A in the operator norm [Chatelin 1981]:

Ve>0 dpeN Vn>p ||Ap—Al <e.
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That means
Ve>0 3peN Vn>p VLe A [[(An—A)L| < €|L].

We now restrict the above equation to L = ¢, for every possible
n > p. We have in this case (A — Ap)@n+1 = A@p+1 and ||@p41]] = 1,
which gives after shifting n + 1 to n:

Ve>0 dpeN Vn>p ||Apn| <e. O

E Proof of Equation 29

Let A, be the matrix in Eq. 30 and let ¢;, = det(A,). In order to prove

Eq. 29 one needs to notice that when expanding this determinant

kth

along the first column, the minor my, is

where Dy, is a (k — 1) X (k — 1) lower-triangular matrix with
n—1n-2,..,n—k+1on its diagonal, making the bottom-left
submatrix By, ;. irrelevant in this calculation. Following this, we get

2 2 n—1)!
tn = Y (=DM e = Y (DM
k=2 k=2 ’

Substituting n! a,, = ¢, directly leads to Eq. 29.
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