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Assessing Estimators
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Assessing Estimators

Typically compare 1° and/or 2" order statistics

i.e. Mean and Variance

‘Trusted Estimator Mean( ‘) > Mean( ‘)

°Analytica1 Solution Var( ‘) > Var( * )

Reference



Assessing Estimators- Image Synthesis

Cost

time

number of samples
Mean

difference images

inspecting convergence plots
Variance

inspecting image noise



Assessing Estimators- Image Synthesis

Drawbacks (current techniques)

subjective
weakly quantitative
comparing variance plots- large number of estimates

difficult, often impossible, to automate



Typical Classes of MC Estimators
in Image Synthesis
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Reduced Variance,
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Verifying Absence of Bias

1. Estimator vs Analytical Solution

nagg...l

Reduced Variance,

‘ Trusted Estimator . )
Unbiased Estimators

°Analytical Solution '

Reference 2 % % A l

Reduced Variance,
Biased Estimators



Verifying Absence of Bias

2. Estimator vs Trusted Estimator

nagg...l

Reduced Variance,

‘ Trusted Estimator . )
Unbiased Estimators

°Analytical Solution

Reference 2 % % A l

Reduced Variance,
Biased Estimators




Verify Variance Acceptability

3. Verify variance acceptibility- Estimator vs Constant

magg...l

Reduced Variance,

‘ Trusted Estimator . )
Unbiased Estimators

°Analytical Solution

Reference
2 L,

Reduced Variance,
Biased Estimators



Verify Variance Reduction

or Compare Variances
4. Estimator vs Estimator

nagg...l

Reduced Variance,

‘ Trusted Estimator . )
Unbiased Estimators

°Analytical Solution

Reference 2 2 % A l

Reduced Variance,
Biased Estimators



Sample: Collection of observations

Sample \

Observation

Estimate i.e. a Random Variable



Review: Hypothesis Testing

Formulate
Null and Alternative
Hypothesis y

\ BEES -8

Determine Accept
Test Statistic - Maximum Probability
F(s) of False Rejection

Collect Sample

Evaluate Test Statistic
using Sample y
F(y)

\

Accept or Reject
Null Hypothesis
based on F(y)



Review: One-Sample vs Two-Sample Tests

One-Sample Test

F(y)
Two-Sample Test

F(yl,y2)




Review: Rejecting the Null-Hypothesis

Find boundaries of rejection region
Compute F(y) using the sample 'y'

Reject if F(y) falls inside rejection region

One-Tail Test Two-Talil Test

Ca Cay2 C1-a/2

Cq = G'(a) where G(s) is the CDF of F(s)



Tests Performed and their Test Statistics

One-Sample Testsw Two-Sample Tests

Compare Means of
Two Estimators

Test for Bias against
Constant

Test for Mean

Student's
t-distribution

Student's
t-distribution

Test that Variance is
Bounded

Compare Variances of
Two Estimators

Test for Variance
Chi-Square

R F-Distribution
distribution




Setting up Hypothesis Tests

Careful

Sensitive to distribution

most tests for normally distributed data

Testing Estimators in Image Synthesis

Compare secondary instead of primary estimators
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the hemisphere
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the projected
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Results: Comparing Means and Variances

Uniform
Hemisphere

Pro[jj—llilii(r)ll;lilslph
Ar[eJ;1 1(fl(irlI.lilght H"

solid Angle [l ﬂ“

I\/Iean red bars Varlance blue bars

a = 0.1



Results: Comparing Means and Variances
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Mean - red bars Variance blue bars

a = 0.01



BRDF Sampling

Using
BRDF-sampling
Algorithm

Using
Rejection

Ashikmin-Shirley




Results — BRDF Sampling

2-Sample Goodness-of-fit (Kolmogorov-Smirnov)

Using Usin
BRDF-sampling Re'ect;gon
Algorithm )

Obviously Different

"“"T“"’"”"

Not so Obvious
But Our Test Failed

Ashikmin-Shirley |




Irradiance due to a Triangular Illuminaire

Light Source
Shading Normal « v Normal

Irradiance “ Light Source ~ Radiance >»Z=X-Y



Irradiance due to a Triangular Illuminaire

/ L(X?Z‘HA .3Z dy
Area(D) 2] ||Z||

Create Erroneous Estimators

Omitting the cosine term for shading



Irradiance due to a Triangular Illuminaire

Create Erroneous Estimators

Omitting the cosine term for shading

Non-uniform sampling of illuminaire



Irradiance due to a Triangular Illuminaire

/ L(x,2)— Z‘dy
Area(N) | ||Z|| .

Create Erroneous Estimators

Omitting the cosine term for shading
Non-uniform sampling of illuminaire

Omitting change of variables



Results — Error Detection

Reference Without Cosine

- Non-uniform

Incorrect |
Sampling of Change of
~ Light Source Variables




Results — Error Detection

Incorrect
Change of
Variables

Non-uniform
Sampling of
Light Source



Conclusion

Tested Estimator for Bias/acceptable Variance
Compared Means/Variances of Estimators

Verified BRDF Sampling

Showed Usefulness in Detecting Errors
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