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Yuri asked me, the authoA] to meet his student Quisar®}, who often appears
in public just before a new issue of tiBalletin comes out, and for whom Yuri
arranges meetings with computer science logicians.

As Q looked rather tired and fliering from a lack of sleep, | asked him what
had caused it. He explained that in a recent meeting with Jan Van den Bussche,
which was reported in thi€olumn[38], he was given a chapter on embedded
finite models from my book [29] as bedtime reading, but didn’t find it very easy
to start reading a 14-chapter book from chapter 13. So an email to Yuri followed,
and a meeting with me was arranged. The following is my transcription of that
meeting.

A. At the very least you're now familiar with the main definition of embedded
finite models. Let’s review it first.

Q. As I recall it, you start with annfinite model or structure, something like the
real closed fiel®k = (R, +, -, 0, 1, <), and then put éinite model on it, say, a finite
graph whose nodes are real numbers.

A. That's right. Formally speaking, you have two vocabularies, Qdpr an
infinite structure, and- for a finite structure, and you look a®(o)-structures,
whereo-relations are finite.
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Q. So, for example, if | want to work with graphs whose nodes are real numbers,
thenQ could be ¢, -, 0, 1, <) ando should have one binary relatid(-, -) for the
edges of my graphs.

A. Exactly. And you'll be working with logical formulae over bofhando. So
in first-order logic (which we abbreviate as FO), you can write a sentence

Jadbvxvy E(x,y) > a-x+b=y

saying that the graph lies on a line.
Q. Do you use special names to distinguish $hstructure and the-structure?

A. Yes, we usually refer to th@-structure as théackgroundstructure, and to
finite o-structures agmbedded finite modeldn our example, graphs are “em-
bedded” into the real fieltk.

Q. Ok, | now remember the definition. But can you explain why anyone would
study these objects?

A. Certainly. The initial motivation came from the field of database query lan-
guages.

Q. Yes, | heard from many people that databases provide much of the motiva-
tion for the development of finite model theory, but how do you come up with
embedded finite models?

A. Simple. Do you remember what the main theoretical database query language
is?

Q. Of course, it's relational calculus, which is just another name for FO.

A. Correct. For example, if you have a graph, you can ask for pairs of nodes
(x,y) connected by a path of length 2 using the formibdgE(x, 2) A E(z V)), or

for nodesx from which there is an edge to every other nodg:E(x,y). And FO
provides the basis of the most common real-life query language SQL.

Q. But we only store finite sets in databases, don’'t we?

A. Wait a minute. Much of database theory (say, as described in [1, 31]) con-
centrates on languages that operate with uninterpreted objects — in other words, it
doesn’t matter what those graph nodes are. But in real databases we operate with
interpretedobjects: say, numbers or strings. In fact, for every relation we putin a
database, we must writecxeate table statementin SQL that specifies a type

for each attribute: real, integer, Boolean, string, and so on.

Q. I'think | see it: elements that we store in a database may come from an infinite
set.

A. Not only that,but there are also some domain-specific operations, such as
arithmetic operations for numerical domains, that we can use in queries.
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Q. Can you give me an example?

A. Let’s take a ternary relatioR(, -, -), whose tuples are interpreted as two city
names and the distance between them. Then the query

dz,d;, dx (R(X,z d1) AR(zY,dy) A d; + dp < 100)

finds pairs of citiesx andy so you can travel between them while visiting another
city and the total traveled distance is less than 100.

Q. I'remember now, Jan Van den Bussche [38] was talking about applications in
Geographical Information Systems.

A. Yes, but this is not the only application. One can think of finite strings and
various operations and relations on them, such as adding letters at either end of a
string, or checking if one string is a prefix of another.

Q. | see. So, the background structure of vocabul@rprovides information
about the domain and operations on it, and the fimitgtructure is a “database”
you put on theQ-structure.

A. Yes. Note also that whil& may contain function, ), relation &) and
constant (01) symbols, we assume thathas only relation symbols in it.

Q. Thisis a rather natural setting. Didn’t database people study it to death during
the early days of database theory?

A. Not really — they were not that interested in interpreted operations in query
languages (although they are present in all real-life languages). Even more im-
portantly from the relational databases point of view, when one writes queries in
logical form, one normally assumes that a database is a finite structure with a finite
universe. This sfices for many — but not all — database applications (a notable
exception is constraint databases, to be discussed shortly). The formal setting of
relational databases, however, assumemfamite domain of possible values, al-

beit without any operations on it. So technically speaking, relational databases are
often defined as finite structures embedded into an infinite structure of the empty
vocabulary. So in this case, a logical formalism would be that of an infinite struc-
ture with a finite structure embedded into it, rather than just a “stand-alone” finite
structure.

Q. And no one was curious whether these two settings drerdnt?

A. Some people did. For example, Paris Kanellakis in his survey of relational
databases in the Handbook of TCS [25] mentions this distinction. But by that
time, it was known that infinite domains without operations don’t add anything to
the “everything-is-finite” relational model [2, 24].

Q. How can you state this formally?
A. We'll get to it soon — this is done vieollapse theoremsBut let’s first talk
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about a new direction in database research brought to the fore the issues related
to infinite domains and interpreted operationsonstraint databasesThey were
introduced in 1990 [26], and a book about them appeared ten years later [28].

Q. Yes, | heard about constraint databases from [38]: they are used to represent
infinite sets in databases, right?

A. Right. In fact the model of constraint databases is very similar to embedded
finite models: all that changes is the interpretatiomratlations. Now they are
not just finite sets, but setkefinable(in FO) in the background structure.

Q. And what can we represent in this setting?

A. Let's look at the real field again. An FO formula owr= (R, +,-,0,1, <)
with, say, two free variableg(x, y) defines a subset of the the plak&of points
that satisfy the formula. Do you remember what these sets are called?

Q. I think it has something to do with algebra. And somehow the name Tarski
also comes to mind.

A. Right, they aresemi-algebraicsets [13, 39]. And by Tarski’'s quantifier-
elimination for the real field, each FO formu&Xx) over R is equivalent to a
quantifier-freeformula, that is, just to a Boolean combination of polynomial in-
equalitiesp(X) > O.

Q. And | presume you can represent a lot of useful information about, say, geog-
raphy, using such polynomial constraints.

A. True. So now if your query language is FO over the real field and database
predicates — interpreted as semi-algebraic sets — you can ask many queries about
your geographical objects, which now dimitely represented in your database by
means of a set of polynomial constraints. An example would be the “database lies
on a line” query, which was our first example.

Q. What types of interesting queries can you write in this language?

A. You can test, for example, if a set is topologically open or closed, if it is
bounded; for a trajectory (x, y, t) you can compute the speed at each ttm@u

can compute the boundary of a set, compare coordinates of specific points, and so
on — many queries one needs to ask in GISs.

This language, by the way, is often called F®ovy (for first-order with polyno-

mial constraints). In many applications even simpler linear constraints are used
[20]; the corresponding query language of firsr-order with linear constraints, and
database relations definable with linear constraints, is called EQ.

Q. But now | recall that certain things you aast ask in FO+ Liv and FO+ Pory
— and that's why Jan suggested | read the embedded finite models chapter in [29].

A. And do you remember an example of a query that#H»Ly cannot express?
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Q. Ithink it was topological connectivity, wasn't it? But then what does it have
to do with finite models?

A. Itturns out that many questions about expressiveness af P@y over semi-
algebraic sets can be reduced to questions about its expressiveness over finite sets.
For example, topological connectivity and graph connectivity are very closely
related.

Q. I believe I see why: we can embed any graph iktavithout self-intersections.
So a graph is connecteff its embedding is topologically connected!

A. Exactly. There is one little detail: to reduce non-expressibility of topological
connectivity to non-expressibility of graph connectivity you must show that the
embedding itself is definable in FOPoLy, but this is easily done.

Q. This is a nice example, but it's quite ad hoc. Is there a general result that
describes what problems can be reduced to the finite case?

A. Not really — although it would be nice to have such a result — but there are
plenty of examples. For instance, Grumbach and Su [21] showed how inexpress-
ibility of many topological properties in F® PoLy can be reduced to questions
about embedded finite models. And many other results about constraint databases
are obtained by reduction to the finite case [28]. So one can say that embedded
finite models play the same role for constraint databases as usual finite models
play in relational database theory.

Q. | think we had quite a detour since | asked you about a general result saying
that embedded finite models behave just like the usual finite models.

A. You're absolutely right, let’s get back to it. As | said, these results come in the
form of collapse theoremsBut before we state them, we need some notations.
Let's use FO, o) to denote first-order logic over the backgroufestructure

Mt and relational vocabulary — remember that now-relations are finite. For
example, FOr Pory is just another name for F@( o). Now what would you call

the “standard” finite model-theoretic FO using this notation?

Q. Perhaps FOLty, o) wheredi, is a structure with an empty vocabulary?

A. Almost, but not quite. The issue, again, is the underlying domain. Let’s say
Ny = (U, 0). If you write Ixe(X), what does it mean?

Q. I guess it means that there is a withadsr ¢(Xx).
A. Correct, but where does this witness come from?
Q. It must come from the universe X, that is, fromU.

A. And now we have a little problem. When we work wifinite models,3x
means that we can find a witness in the universe of the finite model, that is, some-
where in theor-structure.
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Q. Can you explain why this is a problem?

A. Sure. Let's sayr is the vocabularg(, -) of graphs, and we want to say that a
graph is reflexive. How would you express this in FO?

Q. I think | see what you want to say. | would like to writex E(x, X), but that
would mean thaE(a, a) is true for alla € U, and hence this sentence is false in
all finite graphs embedded ;.

A. Precisely. So we introduce a new type of quantification that only refers to the
o-structure.

One calls the set of all elements of a finitestructureA its active domainand
denotes it byadom(A). And now we introduce active-domain quantificatitxe
adome(x) and¥x e adome(x) with the meaning that there exists an element (or
for all elementsh of adon{A), the formulap(a) is true.

Q. Does it make a logic more expressive?

A. No, it doesn't, because the active domain itelf is easily expressible in FO: say,
for graphs by a formulay (E(x, y) VE(y, X)). But then we can define an interesting
fragment of the logic FOR, o), namely its restriction in which all quantification

is active-domain, that is]x € adomy or Yx € adomg. We shall denote it by
FOue(M, 7).

Q. | see — so now FQ(My, o) is the real finite-model theoretic FO over
structures, for which the background structure doesn’t matter, and we somehow
want to reduce FOL, o) to FO,(Miy, o).

A. Almost - but for reasons that will become clear soon, we can’t completely
eliminate everything from the vocabulary of the background structure, and we
need to keep a linear ordering in it. So with edéh= (U, Q) we associat®t. =

(U, <), where< is an arbitrary linear ordering (it had it to start with, we’ll
keep that ordering), and we shall attempt to reduce questions aboilt, EQ{o
FOuc(M., o).

Q. But what do we know about FEQ(Mi., 0)?

A. Plenty, thanks to people working in finite model theory. This is just FO over
o-structures with a linear ordering on them. Many inexpressibility results in this
setting are obtained by routine applications of Ehrenfeucht-Fraissé games, and
some heavy tools are available too: for example, the Grohe-Schwentick theorem
[19] says that any property expressible inJ., o) that does not depend on a
particular linear ordering: is local, i.e., determined by the isomorphism type of

a small neighborhood of free variables of a formula, and Shelah’s theorem [37],
which says that even though E@t_, o) does not have a 0-1 law, it has a very
weak form of it, called the slow oscillation property.
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Q. Ok, I am convinced we can use many facts aboui ., o) “by citation”.
But how do we go from FOL, o) to it?

A. We do it in two steps: first we try to show that FB(c) = FOL(M, o) — and

this is called anatural-active collapsegbecause unrestricted quantification aver

is sometimes referred to as “natural” quantification. As the second step, we try to
reduce FQ(M, o) to FO, (M., o).

Q. What do we do first?
A. Let’s start with the second step, it's much easier.

Q. I don't see how it can be true that EG, o) = FO,(Mi., o). Say ifMiis the

real field and we write something likéac adondycadom Ex,y) A (X+y # 1).

How can we do this if only a linear ordering is available?

A. We cannot. But note that most queries owestructures that are of interest to

us are queries such as graph connectivity, or cardinality comparisons, and they do
not depend on which particular elementsfbfthat the active domain of a finite
structure consists of. These queries are cajlereric

Q. Can you define them formally?

A. Of course. Let’s do it for Boolean (yg®) queries. Such a query is just a
classC of finite o--structuresA with adon{A) c U. Now supposeA € C, and let
h: U — U be a 1-1 partial map defined adon{A). The definition of a generic
queryQ says that theh(A) must be inC too.

Q. Whereh(A) is simply A in which everya € adon{A) is replaced by(a)?
A. Of course. Can you give me examples of generic and non-generic queries?

Q. Ithink | can — graph connectivity, evenness of cardinality are generic, but my
earlier example — the existence of an edge) with x +y # 1 —is not.

A. Exactly. So our first “reduction” is often called attive-generic collapse
it says that every generic query expressible in,gD, o) is also expressible
in FOu (M., o). That is, FQu(M, o) = FO,(M., o) with respect to generic
gueries.

Q. This sounds like a strong result. And what conditiongbmlo you need for
it?

A. Here comes the good news — none whatsoever! This is true for all irtflhite
Q. That's wonderful! Is this hard to prove?

A. Not really. In fact two very similar proofs appeared almost at the same time
[8, 33]. They used very similar ideas based on Ramsey’s theorem.

Q. Ramsey’s theorem? Isn’t this about monochromatic cliques and other strange
graph-theoretic constructions?
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A. These are finite Ramsey theorems. Here we need the original result by Ram-
sey: if orderedh-tuples over an infinite séfl are partitioned intd@ > 2 classes,

then there is an infinite subsely € U such that all ordered-tuples overU,
belong to the same class of the partition.

So next we use this repeatedly to reduce every subformula involving symbols from
Q to a formula that only involves a linear ordering, and over some infinite subset
is equivalent to the original one. For example, ¥or y # 1 we can simply find

an infinite setU, C R such that over it for all pairsx(y) with x < y we have
Xx+Yy # 1. Then ovelJ, we simply replaceX +y # 1) with x < y — and notice

that we introduced an ordering!

Q. | think | see the idea now — you eliminate all symbols fréinexcept an
ordering and still have a formula equivalent to the original one on some infinite
set, but by genericity you can assume that your finite structure comes from that
set.

A. Exactly. So as you can see, it's a bit tedious but not hard at all. In fact the
easiest proof of the active-generic collapse is simply by induction on the structure
of a formula, and it is given in full detail in [10] and in Chap. 13 of my book [29].

Q. So far so good, we have the active-generic collapse for all structures. Is it the
same for the natural-active collapse?

A. Far from it. Can you think of a simple counterexample?

Q. Ithink I can; what if we have an empty-structure? Then active-domain
guantifiers make no sense and any,H®t, o) formula is equivalent to a formula
that has no quantifiers at all — but this cannot always be true.

A. Yes. In particular this means that every FO formula d¥eis equivalent to a
formula that has no quantifiers at all. Do you remember the name of this property?
Q. Of course, it’s called quantifier-elimination. | even remember a few examples:
(Q, <), (R, +,-,0,1, <), or Presburger arithmetid, +, <, 0, 1) if you add all mod-

ulo comparisons = m( mod k). So if 0t has the natural-active collapse, it must
have quantifier-elimination too.

A. Yes, but actually this is not the biggest problem. After all, quantifier-
elimination is easy to achieve.

Q. How?

A. You take a structur®: and simply add a new-ary predicate symbd®P, for
every formulag(xy, ..., %) whose interpretation iga € UX | M £ ¢(@)}. The
new structuréliye is no diterent in terms of FO-definability, and it has quantifier-
elimination.

Q. I'see. And since the active-generic collapse applieBiig it means that all
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we need to conclude that some generic queries — such as graph connectivity — are
not definable in FO{t, ) is to show that FOQ)ige, o) = FOucVige, 0).

A. You're absolutely right. In fact, there is even a special name for the statement
that FOige, o) = FOL(Miqe, 0): it's called arestricted-quantifier collapse

Q. And itisn't true for all structures either?

A. No, and in fact some very familiar structures provide good counterexamples.
Here is a hint: replack by N.

Q. I guess the best known structureliis the standard arithmetic of addition and
multiplication: %t = (N, +, -). Are you saying that the restricted quantifier collapse
fails for it, and we can have queries that are in RQ() but not in FQc(Nge 0)?

A. That'sright. Let’s think of an example. What can you say aboufcffQe, o)?

Q. We have active-generic collapse for it, so | can’t express queries such as 'is
the cardinality of a structure even?’. So now | need to express it il ..

A. And if you remember some computability theory, you can tell me how.

Q. Of course — ik | can code every finite structure by a natural number, and
then | can express every computable property of natural numbers in FO. So of
course | can say that the cardinality of a finite set is even. Now | see that we need
to impose some conditions on the background structure.

A. Yes, and there’s been quite a lot of work on identifying conditions that guaran-
tee collapse: natural-active or restricted-quantifier. In fact, this work started with
the simplest structuriy = (U, 0) with an empty vocabulary, and it was shown, by
Hull and Su [24] to admit the natural-active collapse: BQ(c) = FO,(Miy, o).

Q. How does one prove this?

A. We do it by induction on the formula, and the only case that requires work is
that of an unrestricted existential quantifiefx) = 3y (X, y). This is equivalent
to

dyeadomy(x,y) v \/xei"”(z x) Vv dy ¢ adomy(X,y).

So we need to take care of the last case. But then notice that since the vocabulary
is empty, if there is one witnegs¢g adomfor i, then everyy ¢ adomis a witness

for . We thus modifyy (which is, by the hypothesis, already an £y, o)) by
carefully eliminating the variablg for example, for each relatidd in o, we can

safely replaceés(...,Y,...) by false sincey does not belong to the active domain,

and likewise we replace each comparigoa z, wherezis a quantified variable,

by falsetoo, since all quantification ig is over the active domain. We thus get a
formula that does not mentignand is equivalent taly ¢ adomy (X, y).

Q. | see. But this proof breaks the moment there is anything at all in the vocabu-
lary.
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A. Absolutely. And yet the result is true for the real field. Let's look at one
example that we've seen already: all paiksyj in a binary relatiors lie on aline.
That is,dadbvVxvy (S(x,y) — a-x+b =y). There is an easy way to eliminate the
unrestricted quantifier3adb. Can you try to say what it means for a set of points
to lie on aline?

Q. Doesn't this happertiievery three points are collinear?

A. Exactly. So we can state this property &, X, X3,Y1,Y2, Y3 €
adom(A2, S(x.y;) — a(Xy)), wherea states thatx,y:), i < 3, are collinear.
And it is easy to writex as a quantifier-free formula.

Q. This is a cute example but it's very ad hoc. And you're saying that we can do
something similar with every F®( o) query?

A. Yes. Let me tell you the history of this result. It was conjectured in 1990
[26] that some queries such as evenness and graph connectivity are not express-
ible in FOR, o), that is, FO+ PoLy. The suggested approach was to show the
natural-active collapse for the real fieRl This was first achieved in [9] by a
non-constructive proof, and a constructive proof appeared in [10]. But a year be-
fore the proof of Benedikt and myself [9], Paredaens, Van Gucht and Van den
Bussche [34] presented a nice constructive proof of the natural-active collapse for
R, +,-,0,1,<)—thatis, for the case of linear, rather than polynomial, constraints.

Q. Does multiplication make such aftérence?

A. In retrospect, it doesn't. In fact, if you look at the proof of the natural-active
collapse fofk in my book [29], it follows the ideas of Paredaens et al [34]. But the
path to that proof wasn'’t straightforward. In fact, the result of [34] was first gener-
alised quite a bit beyond the real field, as it was proved that exenjnimalstruc-

ture has restricted-quantifier collapse [9, 10]. O-minimality is a central concept of
contemporary model theory [35, 39]: it refers to ordered structlres(U, Q) in
which every definable subset bf is a finite union of intervals. Can you tell me
why R is an example of an o-minimal structure?

Q. Ithink | can: by Tarski's quantifier-elimination, every formux) is equiv-
alent to a Boolean combination of polynomial inequalifsq) > 0, so ifr and

r’ are two roots of polynomialp;'s such that no other root occurs between them,
then the signs of all th@’s on (r,r’) don’t change and hence the truth value of
¢(X) doesn’t change orr(r’). Are there other interesting examples of o-minimal
structures?

A. There are, and perhaps the most celebrated of them is the “exponential field”
— the expansion dR with the functione*. The o-minimality of the exponential
field was proved by Wilkie [40].

So [9] proved the result for o-minimal structures, and its constructive version [10]
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a et Qis1 Ak

Figure 1: Illustration to the natural-active collapse for the linear case

did so for o-minimal structures again, assuming decidability of their theories. But
when the proof was reworked specifically for the cas®& oit looked remarkably
similar to the proof for the case of linear constraints.

Q. Will you show this proof to me?

A. | think for this meeting it's better to understand the main idea of the proof
for the linear case — after all, it's easier to deal with polynomials that can only
have one root, rather than an arbitrary number of roots. So we shall work
with (R, +, -, 0, 1, <) as our background structure (and it is well-known to have
guantifier-elimination). How do you think the proof will go?

Q. By induction?
A. Of course. So the only case that requires work is elimination of an unre-

stricted existential quantifier. Let's say we haye= 3yy(y), wherey(x) is an
FO.((R, +,—, 0,1, <), o) formula.

Q. Wait a minute, what happened to the free variables? Shouldn't you be looking
ato(X) = Ayy(X,y) to make your induction hypothesis general enough?

A. Of course, but free variables require some extra bookkeeping, and the main
ideas can be already seen in the simple case. So let’'s understand the proof for that
case, and you can fill in all the details later.

We assume thai(y) is of the form3x; € adon¥x, € adom... a(X,y), wherea
is a Boolean combination of atomic formul&¢) for S € o that don't usey (as
S(-,V,-) can be replaced byix' eadom -, X,-) A X' =y), and linear constraints;
we also assume that constraints involviraye rewritten ag {=, <} Y0, a-X +b.

Let fi(x), 1 < i < p, enumerate all the functions that occur as right hand sides of
linear constraints whose left-hand sidgyjsand letfy(Xy, ..., Xm) = X;. Now let
A be afiniteo-structure, and let

A={f@|i=1...,p, acadon(A)™.

Notice thatadom(A) € A. Assume thafA = {a,,...,a} witha; < ... < a.

Now look at the picture in Fig. 1: it € (&, a,1) satisfiesy, thenevery ¢ €
(a;, ai,1) satisfiesy because the truth values afc’ {=, <} f;(a) are the same for
all tuplesa from the active domain, and all atomic formul&g, c,-) andS(-,c, -)
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are false, since, ¢’ ¢ adon(A).

Q. | see — so if we have a witness fgfy) from an interval &, a;.1), the whole
interval satisfiegy. Thus, all we need now is to describe one potential witness
from each interval.

A. Yes, and this is easy to do, in a way that is definable with linear constraints:
for each interval4;, a,,1) we take & + a;,1)/2 as a witness, for-{(co, a;) we take
a; — 1 and for g, o0) we takea, + 1. Thus,yy(y) is now equivalent to:

P P ) .
aveadom( \/ \/ w2 p 2/ yp v

i=0 j=0
p

\/ @@ - 1)/ y) v (@ + 1) / y)))
i=0

wherey([c/y]) means that is substituted foy in . Thus, we replacedy with
several active-domain quantifiedue adormdve adon) and a big disjunction over
witnesses from the intervals generated by theAset

Q. The definition of o-minimality you mentioned also talks about intervals...

A. A very good point. This proof is a special instance of a more general proof
for o-minimal structures that uses the same ideas: if there is a witness, then a
whole interval is a witness; the number of such intervals is finite; and one can
choose specific withesses from them. O-minimal structiitdgmve a remarkable
“uniform bounds” property: for each formulgx, y) there is a numbef such that

the set{a | M E ¢(a, c)} is composed of at mostintervals, no matter how we
choosec. This is crucial in the proof as it gives us a finite disjunction of cases
to check. In the case of the real field this uniform bounds property follows easily
from the fundamental theorem of algebra, but in general this is a very nontrivial
property [35, 39].

Q. So o-minimality is the best skicient condition for collapse?

A. No, there are more conditions known now. They are quite model-theoretic in
nature [4, 6, 17], and if you want ot learn about them, there are surveys [30, 7] you
can check. And while there is no necessary arfiigent condition for collapse,

the property that best describes it is finiteness of the VC (Vapnik-Chervonenkis)
dimension.

Q. | remember this notion from computational learning theory [3]! It charac-
terises concepts that aréieiently learnable. What does it have to do with em-
bedded finite models?

A. This notion is used not only in learning, but also in model theory, where itis a
very useful concept as was noticed by Shelah 35 years ago [36]. Now let’s review
the concept of VC dimension, shall we? You said that you know it.

145



BEATCS no 90 THE EATCS COLUMNS

Q. Yes, the VC dimension of a collectighof subsets of a se{ is the maximum
cardinality of ashatteredfinite setF c X — if it exists, and if arbitrarily large
sets can be shattered, then the VC dimension is infinite. Rnsl shattered if
{FNY|Y e C}isthe powerset oK. And what does it mean in the language of
an infinite structuré.

A. We say that)t has finite VC dimension if every definable family has finite VC
dimension. And definable families are given by FO formujée y) as follows:
@l MEe@b) | beub)

Q. Can you give me some examples?

A. Yes: for example, all o-minimal structures [39], but also some unordered
structures such as the field of complex numKiéist, -) [23].

Q. And in what sense is it close to characterising the collapse?

A. ltis known that restricted-quantifier collapse (FlRg, ) = FOudVige, 0))
implies finiteness of VC dimension [11], and finiteness of VC dimension im-
plies that FO¥tge o) and FQc(Mige o), while not necessarily the same, define
the same generic queries [4]. In particularly, this very strong result of [4] im-
plies that over every structure of finite VC dimension, the set of generic queries in
FOM, o) is the same as the set of queries definable ig.£0., o).

Q. You never said anything about the complexity of the collapse: how hard is it
to convert an FOi, o) formula into an FQ(9, o) formula?

A. Unfortunately not much is known about this, and complexity analyses may
differ significantly for dfferent structures, as such conversion algorithms need to
make calls to quantifier-elimination procedures. One case though that was studied
in detail is that of the real field and consisting of a single unary predicate. For
this case Basu [5] developed special algorithms that also give the best known
running time for quantifier-elimination fox.

Q. | think | have plenty of new information now ... | hadn't realised that there
was a whole field within model theory developed when Jan Van den Bussche [38]
made a passing remark about collapse theorems. It's quite nice to see this interplay
between finite and infinite models.

A. Yes, but | don’t want you to leave thinking that this is it for firfitdinite mod-
els interaction. There aggentyof other directions with very interesting results,
techniques, and applications.

Q. Can you give me some examples?

A. Certainly. There are metafinite models of Gradel and Gurevich [18] which
are finite models with some functions defined on their elements (or tuples of ele-
ments) whose range is in the universe of a fixed infinite structure. In logics over
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metafinite models, variables typically range over the finite part, so interplay is not
as complete as in the case of embedded finite models; however, metafinite models
make it easy to extend other logics typically studied in the finite model theory
context.

There are various finite representations of infinite structures, like in the case of
constraint databases. For example, in recursive structures, all predicate symbols
are interpreted as recursive relations that are finitely representable by Turing ma-
chines. There are interesting connections between finite model theory and the be-
haviour of logics over recursive structures; a nice survey of this area was written
by Harel [22]. As a special and more manageable case, we can consider structures
in which all basic predicates (and thus by closure properties, all definable sets) are
given by finite automata. These are automatic structures that have been studied
rather actively in recent years [27, 15, 11, 12]. They have decidable theories — in
fact, decision procedures use automata-theoretic techniques — and these structures
found applications in verification and query languages. In particular, [11] looks at
finite models embedded into automatic structures. In constraint satisfaction, log-
ical studies of problems with infinite templates recently appeared [14], and those
can be viewed as a special case of embedded finite models. In the field of verifica-
tion people also have been looking at infinite graphs describing configurations of
pushdown automata [32, 16]. These again are finitely represented infinite struc-
tures with decidable theories that have applications in software verification. So as
you can see, there are many other interesting meetings that Yuri can arrange for
you in the future, if you'd like to learn more about connections between the finite
and the infinite in CS logic.

Q. I shall certainly think about it. And for now, thanks for your time today.
A. You're welcome.
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