Some Properties of Query
Languages for Bags

Leonid Libkin* Limsoon Wong!

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104-6389, USA

email: {|/libkin, limsoon|}@saul.cis.upenn.edu

Abstract

In this paper we study the expressive power of query languages for nested
bags. We define the ambient bag language by generalizing the constructs
of the relational language of Breazu-Tannen, Buneman and Wong, which
is known to have precisely the power of the nested relational algebra.
Relative strength of additional polynomial constructs is studied, and the
ambient language endowed with the strongest combination of those con-
structs is chosen as a candidate for the basic bag language, which is
called BOL (Bag Query Language). We prove that achieveing the power
of BOL in the relational language amounts to adding simple arithmetic
to the latter. We show that BOL has shortcomings of the relational al-
gebra: it can not express recursive queries. In particular, parity test is
not definable in BOL. We consider augmenting BOL with powerbag and
structural recursion to overcome this deficiency. In contrast to the rela-
tional case, where powerset and structural recursion are equivalent, the
latter is stronger than the former for bags. We discuss problems with us-
ing structural recursion and suggest a new bounded loop construct which
works uniformly for bags, sets and lists. It has the power of structural
recursion and does not require any preconditions to be verified. We find
relational languages equivalent to BOL with powerbag and structural re-
cursion/bounded loop. Finally, we discuss orderings on bags for rigorous
treatment of partial information.

1 Summary

Sets and bags are closely related structures. While sets have been studied
intensively by the theoretical database community, bags have not received the
same amount of attention. However, real implementations frequently use bags
as the underlying data model. For example, the “select distinct” construct and
the “select average of column” construct of SQL can be better explained if bags
instead of sets are used. In an earlier paper [5], Breazu-Tannen, Buneman, and
Wong defined a language based on monads [20, 29] and structural recursion
[3] for querying sets. In section 2 of this report, the same syntax is given a
bag-theoretic semantics. We use this language as our ambient bag language

*Supported in part by NSF Grant IRI-90-04137 and AT&T Doctoral Fellowship.
tSupported in part by NSF Grant IRI-90-04137 and ARO Grant DAALO3-89-C-0031-
PRIME.

and study its properties. Due to space limitations, we give only sketches of
some of the proofs. Full proofs can be found in [18].

The ambient bag language is inadequate in expressive power as it stands;
for example, it can not express duplicate elimination. In section 3, additional
primitives are proposed and their relative strength with respect to the ambient
language is fully investigated. The primitive unique which eliminates duplicates
from a bag is shown to be independent of the other primitives. A similar result
was obtained by Van den Bussche and Paredaens in the setting of pure object
oriented databases [8]. The primitive monus which subtracts one bag from
another is proved to be the strongest amongst the remaining primitives. This
result was independently obtained by Albert [2]. However, his investigation
on relative strength is not as complete as this report. As a consequence, we
regard the ambient language augmented with monus and unique as our basic
bag language. This language will be called BOL (Bag Query Language).

The relationship between bag and set queries is studied in Section 4. It is
shown that the class of set functions computed by the ambient bag language
endowed with equality on base types, an emptiness test, and unique, is precisely
the class of functions computed by the nested relational language of [5]. Fur-
thermore, if equality at all types is available, then the former strictly includes
the latter. Grumbach and Milo also examined the relationship between sets
and bags [9]. However they considered set functions on relations whose height
of set nesting is at most 2. No such limit is imposed in this report.

The relationship between sets and bags can be examined from a different
perspective. In the remainder of section 4, we investigate augmenting the set
language of [5] to endow it with precisely the expressive power of our basic bag
language BOL. This is achieved by adding natural numbers, multiplication,
subtraction, and a summation construct to the nested relational language. This
also illustrates the natural relationship between bags and numbers.

In section 5, we use the connection to nested relational language established
in section 4 to prove several fundamental properties of BOL. In particular, the
inexpressibility of properties (such as parity test) on natural numbers that are
simultaneously infinite and co-infinite.

Breazu-Tannen, Buneman, and Wong proved that the power of structural
recursion on sets can be obtained by adding a powerset operator to their lan-
guage [5]. However, this result is contingent upon the restriction that every
type has a finite domain. In section 6, the powerbag primitive of Grumbach
and Milo [9] is contrasted with structural recursion on bags. In particular,
the latter is shown to be strictly more expressive than the former. Although
a powerbag primitive increases expressive power considerably, it is difficult to
express algorithms that are efficient. While structural recursion does not have
this deficiency, it requires the satisfaction of certain preconditions that cannot
be automatically verified [4]. In section 6, a bounded loop construct which does
not require the verification of any precondition is introduced. It is shown to be
equivalent in expressive power to structural recursion over sets, bags, as well as
lists. This confirms the intuition that structural recursion is just a special case
of bounded loop. Furthermore, in contrast to the powerbag primitive which

gives us all elementary functions [9], structural recursion gives us all primitive
recursive functions. Also in section 6 we show that nonpolynomial operations
on bags are more powerful than their set analogs, and find the primitive that
precisely fills the gap.

Finally, in section 7, we show how to extend the approach of Buneman, Jung
and Ohori [6] and Libkin [16] that uses certain partial orders to give semantics
of databases with partial information to bags. We extend the idea of Libkin
and Wong [18] of defining an ordering whose meaning is “being more partial”.
Such an ordering is fully characterized for bags, and we demonstrate an efficient
algorithm to test it.

Related work. The semantic aspects of programming with collections us-
ing structural recursion were studied by Breazu-Tannen and Subrahmanyam
in [4]. In particular, they showed that certain preconditions have to be satis-
fied for structural recursion to be well defined. Breazu-Tannen, Buneman and
Naqvi brought out the connection between structural recursion and database
query languages [3]. Breazu-Tannen, Buneman and Wong avoided the need of
checking preconditions by placing a simple syntactic restriction on structural
recursion [5]. The language so restricted has several equivalent formulations,
one of them being N'RC [5, 30]. This language is equivalent to the algebra of
Abiteboul and Beeri [1] without the powerset operator.

Then Wong [30] proved that the language has the conservative extension
property at all input/output heights. That is, the expressive power of the lan-
guage is independent of the height of set nesting in the intermediate data. Then
Libkin and Wong [19] showed that in the presence of very simple arithmetic
operators conservativity can be extended uniformly to all input/output heights
for languages augmented with bounded fixpoint operator, transitive closure,
powerset and many other operators.

In [17] Libkin and Wong extended the use of the language N'RC for querying
or-sets. Grumbach and Milo [9] applied the algebra of Abiteboul and Beeri to
bags. In particular, they investigated the relationship between set and bag
languages restricted to certain input/output heights and the expressive power
of bag languages with respect to the level of bag nesting. The basic bag language
proposed in this report (BOL) is precisely the language of Grumbach and Milo
without the powerbag operator. Vickers [28] studied refinements of bags which
are a more general concept than the ordering we introduce in this paper. In
particular, our ordering can be expressed as a refinement, but there exist certain
refinements of bags which lead to counterintuitive results when applied in the
study of partial information.

The expressive power of Datalog under set and bag semantics was compared
in [21]. In particular, an example of query was given that can not be expressed
under the former but can be expressed under the latter. In [27] Saraiya shows
that Datalog can be simulated with structural recursion on sets, preserving
the PTIME complexity, by using as an intermediate step the loop operator de-
scribed in section 6.2, and proving in the process that loop can be simulated by
structural recursion (half of theorem 6.3 below). Several complexity-theoretic
results for program properties and transformations are then be obtained by

recourse to known results for Datalog.

2 The ambient nested bag language

The nested relational language proposed by Breazu-Tannen, Buneman, Wong
[5] is denoted by NRL here. We now define an ambient bag query language NBL.
It is obtained by replacing the set constructs in NRL by the corresponding bag
constructs. The language has two presentations — algebraic, called NBA, and
calculus style, called NBC — which are equivalent in terms of expressive power.

Types. The types in NBL are either complex object types or are function
types s — t where s and ¢ are complex object types. These types are the
same as those of NRL except that bags {s[} instead of sets {s} are used. The
grammar for complex object types is given below.

su=b| unit|sxs|{s}

A complex object type denotes a set of objects. unit is a special base type
having exactly one element which we denote by (). s x t is the set of pairs
whose first component is from s and whose second component is from ¢. {s[}
are finite bags containing elements of type s. A bag is different from a set in
that it is sensitive to the number of times an element occurs in it while a set is
not. Finally, b are base types to be specified.

Expressions. The expressions of NBA and NBC are given in figure 1.

The type superscripts are usually omitted as they can be inferred [13, 23].
The semantics of these constructs is similar to the semantics of NRL except
duplicates are not eliminated. Semantics of NBA constructs is as follows. K¢ is
the constant function that produces the constant c. id is the identity function.
g o h is the composition of functions g and h; that is, (g o h)(d) = g(h(d)). The
bang ! produces () on all inputs. m; and 7 are the two projections on pairs.
(g, h) is pair formation; that is, (g, h)(d) = (g(d),h(d)). K{|[} produces the
empty bag. W is the additive bag union. b_y forms singleton bags: bn(z) =
{z[}. b_u flattens a bag of bags: b_u{Bi,...,Bp[} = Bi1W... W B,. b_map(f)
applies f to every item in the input bag. Function b_ps is used for interaction
between bags and pairs: b_ps(z,y) pairs z with every item in the bag y. For
example, b_p2(1,{1,2[}) returns {|(1,1), (1,2)[}.

Semantics of the ABC constructs which differ from NBA constructs is as fol-
lows. {[} is the empty bag. {e[} is the singleton bag containinge. [+ {le; | z € eaf}
is the bag obtained by first applying the function Az.e; to each item in the bag
e2 and then taking the bag union of the results. For example, | {|{z,z +
1} | = € {1,2,3]}]} evaluates to {|1,2,2,3,3,4]}.

Proposition 2.1 The languages NBA and NBC have the same expressive power.
O

Therefore, we normally work with the component that is most convenient.

EXPRESSIONS OF NBA
Category with Products

h:r—s g:s—t

Kc: unit — b id® s — s goh:r—t 15 — unit

g:r—>s h:r—t
s xt = s s xt >t (g,h) :r > sxt

Bag Monad

bap® s = {isf} b {{slt} — {slt

f:s—t
bmap(f) : {|slt — {It}} KAl + unit — {Is[}
W sl x {[s[} = {Is}} bopy" s x it = {s x 1}

EXPRESSIONS OF NBC

Lambda Calculus and Products

e:t e1:s—t ey:s
c:b z5: s Axde:s—t ep eyt
e:sxt e;:s eyt
() : unit T e:s mae:t (e1,€2) s x t
Bag Monad

e:s er:{s} ea:{sf}
{1« sl {lel} - {lsl} eryes: {sf}

e {th es: {sl}
W{er [2° € eaf} : {tf}

Figure 1: Syntax of NBL

3 Relative strength of bag operators

Breazu-Tannen, Buneman, and Wong [5] added equality test egs for all types
s to NRL. They showed that the presence of equality tests elevates NRL from
a language that merely has structural manipulation capability to a full fledged
nested relational language. The question of what primitives to add to NBL to
make it a useful nested bag language should now be considered.

Unlike languages for sets for which we have a well established yardstick,
very little is known about bags. Due to this lack of an adequate guideline, a
large number of primitives are considered. Let us first fix some meta notations.
A bag is just an unordered collection of items. count(d,B) is defined to be
the number of times the object d occurs as an element in the bag B. The bag
operations to be considered are listed below.

e monus : {|s[} x{sl} = {s[}. monus(B;, Bs) evaluates to a B such that for
every d : s, count(d, B) = count(d, B1) — count(d, B2) if count(d, By) >
count(d, Bs); and count(d, B) = 0 otherwise.

o maz : {s} x {s[} = {s[}. maz(B1,B) evaluates to a B such that for
every d : s, count(d, B) = max(count(d, B1), count(d, Bs)).

o min : {s]} x {s} = {s[}. min(B1,B>) evaluates to a B such that for
every d : s, count(d, B) = min(count(d, By), count(d, Bs)).

e cq: s xs — {unit]}. eq(di,da) = {O} if di = do; it evaluates to {[}
otherwise. That is, we are simulating booleans as a bag of type {unitl}.
True is represented by the singleton bag {|()[} and False is represented by
the empty bag {[}.

e member : s X {s[} = {unit]}. member(d, B) = {|(} if count(d, B) > 0; it
evaluates to {[} otherwise.

e subbag : {s]} x {s[} = {unit]}. subbag(By,Bs2) = {()|} if for every d : s,
count(d, By) < count(d, Bs); it evaluates to {/[} otherwise.

e unique : {s} = {s[}. unique(B) eliminates duplicates from B. That is,
for every d : s, count(d, B) > 0 if and only if count(d, unique(B)) = 1.

Each of these operators has polynomial time complexity with respect to size
of input. Hence every function definable in NBL(monus, maz, min, eq, member,
subbag, unique), where we have explicitly listed the additional primitives in
brackets, has polynomial time and space complexity with respect to the size of
input.

The expressive power of these primitives relative to NBL is compared here.
In contrast to NRL, where all nonmonotonic primitives are interdefinable [5],
these bag primitives differ considerably in expressive power. As a consequence
of the theorem below, NBL(monus, unique) can be considered as the most pow-
erful candidate for a standard bag query language. We denote NBL(monus,
unique) by BOL.

Theorem 3.1 monus can express all primitives other than unique. wunique
is independent of the rest of the primitives. min is equivalent to subbag and
can express both max and eq. member and eq are interdefinable and both are
independent of mazx. a

The results of theorem 3.1 can be visualized in the following diagram.

monus
min ——— subbag unique
mazx eq ——— member

The independence of unigque was also proved by Van den Bussche and
Paredaens [8] and the fact that monus is the strongest amongst the remaining
primitives was also showed by Albert [2]. However, their comparison was in-
complete. For example, the incomparability of maz and eq was not reported.
In contrast, the results presented in this section can be put together in theo-
rem 3.1 which completely and strictly summarizes the relative strength of these
primitives.

4 Relationship between bags and sets

In this section, we study the relationship between bags and sets from two
perspectives. First, we find a bag language whose set theoretic expressive power
is that of NRL(eq). Then we consider endowing NRL(eq) with new primitives
that would give it precisely the expressive power of the basic bag language BOL.

4.1 Set-theoretic expressive power of bag languages

Several fragments of our nested bag language are compared with the nested
relational language AN'RL(eq). This can be regarded as an attempt to under-
stand the “set theoretic” expressive power of these bag languages. In order
to compare bags and sets, two technical devices are required for conversions
between bags and sets. We use the following constructs for this purpose:

fis—t f:is—t

bs-map(f) : {/s[} = {t} sb-map(f) : {s} — {|t}

The semantics is as follows. bs_map(f)(R) applies f to every item in the bag R
and then puts the results into a set. For example, bs_map(A\z.1+x){|1,2,3,1, 4]}
returns the set {2,3,4,5}. sb_map(f)(R) applies f to every item in the set R
and then puts the results into a bag. For example, sb_map(Az.4){1,2, 3} returns
the bag {4,4,4][}.

Let s be a complex object type not involving bags. Then to_bag(s) is a
complex object type obtained by converting all set brackets in s to bag brackets.
Every object o of type s is converted to an object to_bag,(0) of type to_bag(s).
Conversely, let s be a complex object type not involving sets. Then from_bag(s)
is a complex object type obtained by converting all bag brackets in s to set
brackets. Every object o of type s is converted to an object from_bag, (o) of
type from_bag(s). The conversion operations are given inductively below.

to_bag it = Ar.T
to-bag,.., := Azx.(to_bag,(m x),to_bag,(m2 x))
to_bag gy = sb-map(to-bag,)

from_bag it = Az
from_bag ., := Ax.(from_bag (71 z), from_bag,(m2 x))
from_bag{|s|} := bs_map(from_bag,)

Define ST (T') to be the class of functions f : s — t where s and ¢ are complex
object types not involving bags and I is a list of primitives such that there is f’ :
to_bag(s) — to_bag(t) definable in NBL(T) and the diagram below commutes.

!
to_bag(s) i» to_bag(t) to_bag(t)
to_bag, to_bag, from_bagto_bag(t)
s -1 -1

I id
Let eqy be equality test restricted to base types. Let empty : {junit]} —

{lunit]} be a primitive such that it returns the bag {|()[} when applied to the
empty bag and returns the empty bag otherwise. Then

Theorem 4.1 1. ST (unique, eqy, empty) = NRL(eq).
2. NRL(eq) G SET (unique, eq)
3. NRL(eq) and ST (monus) are incomparable. O

The class &ET (T') is precisely the class of “set theoretic” functions express-
ible in NBL(T'). Consequently, the above results say that NBL(unique, eqy, empty)
is conservative over NRL(eq) in the sense that it has precisely the same set the-
oretic expressive power. On the other hand, NBL(unique, eq) is a true extension
over the set language. However, the presence of unique is in a technical sense
essential for a bag language to be an extension of a set language.

4.2 A set language equivalent to BOL

It was shown earlier that BQL = NBL(monus, unique) is the most powerful
amongst the bag languages considered so far. From the foregoing discussion,

this bag language is a true extension of NRL(eq). In this subsection, the
relationship between sets and bags is studied from a different perspective. In
particular, the precise amount of extra power BOL possesses over NRL(eq) is
determined.

Let us endow N'RL(eq) with natural numbers N together with multiplica-
tion, subtraction, and summation as defined below.

e - : N x N — N. The semantics of - is multiplication of natural numbers.

e =2 N x N — N (sometimes called modified subtraction). The semantics is
as follows:

_fn=—m ifn-m>0
S ifn-m<0

e > g:{s} » Nwhere g: s » N. The semantics is as follows:
229 o100} =glo1) +... 4+ g(on).

In the sequel, the notaion £ ~ £’ means that two languages £ and £’ have
the same expressive power. If £ and £’ have different type systems, this requires
translations from one type system to another. In the following result, this is
achieved by treating bags as sets of pairs element—number of occurrences.

Theorem 4.2 BOL ~ NRL(N, 4, -,=,11). O

In summary, we have the following exact characterization of the relative
strength between the basic bag language and the relational language of Breazu-
Tannen, Buneman, and Wong: NRL(N, >, = 1) ~ BOL and NRL(eq) =
SET (unique, eqy, empty). Klug [15] and Ozsoyoglu, Ozsoyoglu, and Matos
[24] had to introduce aggregate functions by repeating them for every column
position of a relation. That is, aggregate, is for column one, aggregate, is for
column two, etc. Klausner and Goodman used a notion of hiding to explain the
nature of aggregate functions in relational query languages [14]. In addition to
projections, they introduced hiding operators that “hide” columns of a relation.
Aggregate functions are then applied to the column that is left exposed. Hiding
is different from projection. Let R := {(1,2),(1,3)}. Then projecting out col-
umn two on R gives {1} while hiding column two on R gives {(1,[2]), (1,[3])},
where [-] signifies hidden values. The use of hiding to retain duplicates (since
sets have no duplicate by definition) is a little clumsy. It is better to use bags.
The > primitive can be used to implement aggregate functions and should be
seen as a generalization of their approaches.

5 Relationship between bags and numbers

As seen earlier, natural numbers are present in our nested bag language as
objects of type {|unit[}, which we now write as N. In this section, the relation-
ship between bags and numbers is investigated in more detail. The equivalence
between BQL and NRL(N, >, -, =, 1) allows us to establish the following funda-
mental result.

Theorem 5.1 Let U be a property of natural numbers. That is, U C N. Then
membership in U can be expressed in BOL iff either U or N —U is finite.
Proof sketch: Assume there is an infinite and co-infinite property U of
natural numbers that is expressible in BOL. Then by theorem 4.2 a function
f:N = Nsuch that f(n) =1 forn € Y and f(n) =0 for n € U is expressible
in NRL(N, 4,-,+,u). In [19] we proved that expressions of NRL(N, £, -, =, 1)
are independent of the height of the intermediate data. Careful analysis of
functions of type N — N that do not involve set constructs shows that they
coincide with polynomials almost everywhere and hence can not have infinitely
many roots, without being zero almost everywhere. O

It is well known that the traditional relational languages cannot express
parity test [7]. By the result of [30], it cannot be expressed in NRL(eq). It
follows from the theorem we just proved that it remains inexpressible even in
the greatly enhanced NRL(N, 4, -, +,—=,11) and hence not expressible in BOL.

From this many other inexpressibility results follow.

Corollary 5.2 None of the following functions is expressible in BOL:
e parity test;
o division by a constant,
e hounded summation;
e bounded product;
e gen : N — {|N} given by gen(n) = {0,1,...,n[}. O

Therefore, the arithmetic of our basic bag query language is very limited.
In fact, its arithmetic power can be characterized. A unary function f: N — N
is said to be almost polynomial if there exists a polynomial function g : N - N
(that is, a function built from its argument and constants by using addition,
subtraction and multiplication) and a number n such that f(z) = g(z) for any
x > n (that is, f is g in all but finitely many points). The class of almost
polynomial functions is denoted by P¥.

Proposition 5.3 P~ is the class of unary arithmetic functions expressible in

BAL. O

6 Power operators, bounded loop and
structural recursion

Abiteboul and Beeri [1] suggested powerset as a new primitive for NRL(eq)
to increase its expressive power. For instance, both parity test and transi-
tive closure become expressible in NRL(eq, powerset). On the other hand,
Breazu-Tannen, Buneman, and Naqvi [3] introduced structural recursion as an
alternative means for increasing the horsepower of query languages.

It was shown in [5] that endowing NRL(eq) with a structural recursion
primitive, which we denote by s_sri, or with the powerset operator yields lan-
guages that are equi-expressive. However, this is contingent upon the contrived

restriction that the domain of each type is finite. Since every type has finite
domain, this result has an important consequence. Suppose the domain of type
{s} has cardinality n. Then every use of powerset on an input of type {s} can
be safely replaced by a function that computes all subsets of a set having at
most n elements. Such a function is easily definable in A'/RL(eq). Therefore,
NRL(eq) ~ NRL(eq, s_sri) ~ NRL(eq, powerset), if all types have finite do-
mains. Hence the extra power of s_sri and powerset has effect only when there
are types whose domains are infinite. Types such as natural numbers proved
to be important in the earlier part of this report. Therefore, the relationship
of structural recursion and power operators should be re-examined.
The syntax for the structural recursion construct on sets is

t:sxt—=t e:t
ssri(i,e) : {s} =t

The semantics is s_sri(i,e){o1,...,0n,} = i(01,i(02,i(...,i(0n,€)...))), pro-
vided ¢ satisfies certain preconditions [4]. In particular, it is commutative:
i(a,i(b, X)) = i(b,i(a, X)) and idempotent: i(a,i(a, X)) = i(a,X). s_sri is
undefined otherwise. Breazu-Tannen, Buneman, and Naqvi [3] proved that
efficient algorithms for computing functions such as transitive closure can be
expressed using structural recursion. While structural recursion gives rise to
efficient algorithms, its well-definedness precondition cannot be automatically
checked by a compiler [4]. Therefore this approach is not completely satisfac-
tory.

The powerset operator is always well defined. Unfortunately, algorithms
expressed using powerset are often unintuitive and inefficient. For example, to
find transitive closure of a binary relation R : {s x s}, one finds the domain
of R by taking union of first and second projections of R, takes powerset of
cartesian product of the domain with itself and then selects all elements from
this powerset which are transitive and contain R. Intersection of those elements
is the transitive closure of R.

To the best of our knowledge, the problem of expressing a polynomial time
transitive closure algorithm in NRL(eq, powerset) is still open. We do not ad-
vocate the elimination of every expensive operations from query languages.
However, we believe that expressive power should not be achieved using ex-
pensive primitives. That is, if a function can be expressed using a polynomial
time algorithm in some languages, then one should not be forced to define it
using an exponential time algorithm. For this reason, powerset is not a good
candidate for increasing expressive power.

This section has three main objectives. First, we endow BOL with the bag
analogs of the powerset and structural recursion operators and we show that the
former is strictly less expressive than the latter. Second, we suggest an efficient
bounded loop primitive which captures the power of structural recursion but
does not require any preconditions. Finally, we show that bag nonpolynomial
operators are strictly more expressive than their set analogs, and we show that
the analog of the gen primitive on sets fills the gap.

6.1 Powerset, powerbag and structural recursion

Grumbach and Milo [9], following Abiteboul and Beeri [1], introduced the
powerbag operator into their nested bag language. The semantics of powerbag is
the function that produces a bag of all subbags of the input bag. For example,

powerbag{|1, 1, 2]} = {{[}, {1}, {1}, 20, 1. 10, {1, 20 {1, 2[, {1, 1, 2[}}. They

also defined the powerset operator on bags as unique o powerbag. For exam-

ple, powerset{|1, 1,2} is {{} {1}, {20 {1, 1}, {12, {1, 1.2}}. We do not
consider powerset on bags further because of the following result.

Proposition 6.1 BOL(powerbag) ~ BOL(powerset).

Proof sketch. Suppose a bag B is given; then another bag B’ can be con-
structed such that for any a € B, B’ contains a pair (a, {|a, ..., al}) where the
cardinality of the second component is count(a, B). Let B" = unique(B'); then
B" can be computed by BOL. Now observe that changing the second compo-
nent of every pair to its powerset and then b_map(b_p2) followed by flattening
will give us a bag where each element a € B will be given a unique label.
Now applying powerset to this bag followed by elimination of labels produces
powerbag(B). O

Structural recursion on bags is defined using the construct

e:t t:sxt—t
bosri(i,e) : {s[} =t

It is required that i satisfy the commutativity precondition: i(a,i(b, X)) =
i(b,i(a, X)), which can not be automatically verified [4]. Its semantics is similar
to the semantics of s_sri. We want to show that it is strictly stronger than
powerbag.

Theorem 6.2 BAL(powerbag) G BAL(b-sri).

Proof sketch. First, powerbag can be expressed using b_sri, cf. [3]. Then
it can be shown that any function in BOL(powerbag) produces outputs whose
sizes are bounded by an elementary function on the size of the input, but in
BOL(b_sri) it is possible to define a function that on the input of size n produces
the output of the hyperexponential size (where the height of the stack of powers
depends on n) and hence can not be bounded by an elementary function. O

As an illustration of theorem 6.2, we characterize precisely the classes of
arithmetic functions that both languages express. It also gives an alternative
proof of theorem 6.2.

Theorem 6.3 a) The class of functions f : N x ... x N = N definable in
BOL(b_sri) coincides with the class of primitive recursive functions.

b) The class of functions f : N x ... x N = N definable in BOL(powerbag)
coincides with the class of Kalmar-elementary functions. O

Similar results for other languages for bags or sets with built-in natural numbers
were proved in [9, 12].

6.2 Bounded loop and structural recursion

As mentioned earlier, powerbag is not a good primitive for increasing the power
of the language. It is not polynomial time and compels a programmer to use
clumsy solutions for problems that can be easily solved in polynomial time. In
addition, powerbag is weaker than structural recursion. On the other hand,
b_sri is efficient [3] but its well definedness precondition can not be verified by
a compiler [4]. In this section, we present a bounded loop construct

fis—s
loop"(f) - {thh x5 = s

Its semantics is as follows: loop(f)({lo1,...,0nl},0) = f(... f(0)...) where f is
applied n times to o.

The bounded loop construct is more satisfactory as a primitive than powerbag
and b_sri for several reasons. First, in contrast to powerbag, efficient algorithms
for transitive closure, division, etc. can be described using it. For example,
given R : {s x s[}, let fr: {s x s} = {ls x s[} be the function whose semantics
is fr(R") = RoR'. Let dom(R) be the domain of R. Then loop(fr)(dom(R), R)
is the transitive closure of R. Second, it is very similar to the for-next-loop con-
struct of familiar programming languages such as Pascal and Fortran. Third,
in contrast to b_sri, it has no preconditions to be satisfied. Lastly, it has the
same power as b_sri.

Theorem 6.4 (see also [27]) BOL(loop) ~ BAL(b_sri).

Proof sketch. For one inclusion, observe that loop(f)(n,e) = b_sri(f o
7o, €)(n). For the reverse inclusion, given an input bag B, first generate all
possible permutations of B (that is, all possible rank assignments to elements
of B). It can be done in BOL(loop). Then, using loop, simulate b_sri for each
rank assignment, assuming the ranks tell us the order in which elements are
processed. Having done so, apply unique to the result. Hence, any function of
type s = {1} x ... x {/tx[} that is definable in BQL(b_sri) is also definable in
BAL(loop). If one of the types is not under the scope of the bag brackets, then
in that position a singleton will be produced. a

Therefore replacing structural recursion by bounded loop eliminates the
need for verifying any precondition. If the ¢ in b_sri(i, e) is not commutative,
the translation used in the proof simply produces a bag containing all possible
outcomes of applying b_sri(i,e), depending on how elements of the input are
enumerated. If i is commutative, then such a bag has one element which is
the result of applying b_sri(i,e). Hence b_sri is really an optimized bounded
loop obtained by exploiting the knowledge that ¢ is commutative. Furthermore,
loop coincides with structural recursion over sets, bags, and (with appropriately
chosen primitives) lists. The implementation of b_sri(i,e) using the bounded
loop construct given in the proof of theorem 6.4 has exponential complexity but
the source of inefficiency is in computing all permutations in order to return all
possible outcomes. If we are allowed to pick a particular order of application

of 7 in b_sri(i,e), then more efficient implementations are possible (see the full
paper [18]).

Theorem 6.4 also sheds some light on theorem 6.3 a). It is known that
functions computable by a language that has an assignment statement and for
n do S are precisely the primitive recursive functions [22]. It was also proved by
Robinson and Gladstone that the primitive recursive functions are built from
the initial functions by composition and iteration: f(n,#) = g(") (&), see [22].
Now we proved that the power of the structural recursion is precisely the power
of the bounded loop, which is in essence the for — do iteration or the iteration
schema of Robinson and Gladstone. This is the intuitive reason why the class
of functions definable by the structural recursion on bags coincides with the
class of the primitive recursive functions.

6.3 Power operators and structural recursion on sets
and bags

We have introduced power operators and structural recursion for sets and bags.
In section 4.2 we also demonstrated how a set language can be extended to
capture the power of our basic bag language: BOL ~ NRL(N, £, -,+,n). Under
the translations of theorem 4.2, n : N is carried to a bag of n units: {(),..., ()]}
Consider the following primitive in the set language (cf. corollary 5.2):

gen : N — {N}, Ox(x)={¥F. W, .. x}

Under translations of theorem 4.2, it corresponds to the bag language primitive
that takes a bag of n units and returns bag of bags containing i units for each
i =0,1,...,n. In other words, it is powerset'™® = unique o powerbag""it.
Observe that it remains a polynomial operation.

Having made this observation, we can formulate the first result of the sec-

tion.

Theorem 6.5 a) NRL(N, 4, -, =, 11, powerset) ; BOL (powerbag);
b) NRL(N, A, -, =, 1, s_sT%) ; BOL(b_sri).

Proof sketch. Inclusion easily follows from theorem 4.2. To demonstrate
strictness, observe that powerset*"® is definable in both BOL(powerbag) and
BOL(b_sri). Hence, in view of theorem 6.2, it is enough to show that gen
is not expressible in NRL(N, £, -, =, 1, s_s7i). Define the size of an object as
follows: size of an object of a base type is 1 and size of a pair or a set is
sum of the sizes of the components. Then, it is possible to show that for any
function f definable in NRL(N, 4, -, =, 1, s_sr1) there exists a primitive recursive
function ¢y such that, if f(i) = o and sizes of ¢ and o are s; and s,, then
So < ws(si). Now assume that gen is definable. Let n = @gen(1). Then
n+1 = size(gen(n + 1)) < @gen(size(n + 1)) = n. This contradiction shows
that gen is not definable. O

Now we have a problem of filling the gap between set and bag languages with
power operators or structural recursion. It turns out that the gen primitive is

sufficiently powerful to do the job. The following result is proved by extending
translations of theorem 4.2.

Theorem 6.6 a) NRL(N, £, -, =, u, powerset, Ox) ~ BOL(powerbag);
b) NRL(N, A, -, =, s_s7i, 0%) ~ BOL(b_sri). O

As another illustration of the power of the gen primitive, we show that it al-
lows us to simplify the loop construct without considerably losing expressiveness
of the language. We simplify the loop construct by defining iter(f) : {unit} —

{lunit]} where f : {unit]} — {Junit} as iter(f)(n) = f(f(...(f({[}))...)) where
f is applied n times.

Corollary 6.7 BQOL(iter, powerset'™) expresses all unary primitive recursive
functions. O

7 Orderings on bags

In the previous sections we have concentrated on comparing expressive power
of set and bag languages. In this section we study another important problem
where sets and bags differ considerably, that is, semantics of partial information.

We follow the idea of Buneman, Jung and Ohori [6] and Libkin [16], where
databases were considered as subsets of certain partially ordered sets in order to
provide rigorous mathematical treatment of partial information. The intuitive
meaning of the ordering is “being more partial”. In [6, 16] only sets were
considered. A rather intuitive approach to defining the orderings was adopted in
[6, 16], and later in Libkin and Wong [17] that approach was justified. However,
it is not immediately clear how to generalize any of the orderings of [6, 16, 17] to
bags, and hence additional study is needed. In this section we use techniques of
[17] to define an ordering for bags. Even though the ordering appears somewhat
awkward, we demonstrate an effective algorithm to test whether two bags are
comparable.

As in [11, 6, 16], we assume that partiality can be expressed by means of
a partial order on database objects. That is, a < b expresses the fact that
a is more partial than b or b is more informative than a. It was mentioned
in [6] that many models of partial information can be captured by this very
general scheme. This approach is also suitable for databases without partial
information. In such a case, values of base types are totally unordered.

It is usually assumed that orders on the base types are given. For example,
if base type is N} whose values are natural numbers or null (—), the usual
ordering is — < n for any n € N and any two distinct natural numbers are
not comparable, see Gunter [10]. The ordering is then extended to pairs in the
usual way. That is, (z,y) < (2',y") iff x <; 2’ and y <5 y'. However, if one
wants to extend the ordering to subsets of an ordered set, many possibilities
arise. In [17] we tried to define an ordering by saying that a set X is less
informative than a set Y if there is a sequence of simple updates, each leading
to a more informative set. Dealing with sets, we defined the primitive updates

as follows: X — (X — {a}) U X' where a < b for any b € X'. Notice that if
a ¢ X, this is equivalent to augmenting X by X'.

To extend this idea to bags, recall that having a bag rather than a set
means that each element of a bag represents an object and if there are many
occurrences of some element, then at the moment certain objects are indis-
tinguishable. This justifies the following definition. We say that a bag B, is
more informative than a bag B; if By can be obtained from B; by a sequence
of updates of the following form: (1) an element a is removed from B; and
is replaced by an element b such that b is more informative than a, or (2) an
element b is added to the bag B;. Formally, let (D, <) be a partially ordered
set. Let PL. (D) be the set of all finite bags whose elements are in D. Then,
for By, By € P} (D), By ~ B iff By = (Bymonus{al}) @ {|b[} where a < b or
B; = By W {bf}. The transitive-reflexive closure of ~» is denoted by <. That is,
we say that By is less informative than Bs if By < Bs.

As proved in [17], the ordering on sets obtained as the transitive-reflexive

Y

closure of — coincides with the lower powerdomain ordering [10] defined as
X<VYiffVee X. JyeY.z<y

A similar construction can be used to characterize <. Let N' denote the
totally unordered poset whose elements are natural numbers (the superscript is
used to distinguish it from N which in this paper denotes natural numbers with
the usual ordering). For a finite bag B and an injective map ¢ : B — N', which
is sometimes called labeling, by ¢(B) we denote the set {(b, (b)) | b € B}. In
other words, ¢ assigns a unique label to each element of a bag. If B € P} (D),
the ordering on pairs (b,n) where b € B and n € N' is the usual pair ordering;
that is, (b,n) < (b',n') iff b < b and n =n'.

Proposition 7.1 The binary relation < on bags is a partial order. Given two
bags By, By, By < B, iff there exist labelings ¢ and 1) on By and By respectively
such that ¢(By) <® 1(By). m

The lower powerdomain ordering <’ of sets can be effectively verified. In-
deed, if two sets are given, there is an O(n?) time complexity algorithm to
check if they are comparable. The description of < given above seems to be
somewhat awkward algorithmically. However, it is not much harder to test for.

Proposition 7.2 There exists an O(n®/?) time complexity algorithm that, given
two bags By and By in ’Pgn(D), returns true if By < By and false otherwise.

Proof sketch. The problem is reduced to finding a maximal matching in a
certain bipartite graph whose size in linear in the sum of the sizes of the two
given bags. Hence, it can be solved by the Hopcroft-Karp algorithm in O(n5/?).
O

There is a big difference between orders on sets and bags. While X <” Y
does not say anything about cardinality of X and Y, B; < B, implies that the
cardinality of B, is less than or equal to the cardinality of Bs. This reflects
our point of view that having a bag rather than a set stored in a database

means that each element of a bag represents an object and having two or more
occurrences of the same elements means that at the moment some objects are
indistinguishable. Therefore, the cardinality can not be reduced in the process
of obtaining more information.

8 Conclusion and further work

Many results on bags are presented in this report. A large combination of
primitives have been investigated and the relative strength is determined. The
relationship between bags and sets has been studied from two different per-
spectives. First, various bag languages are compared with a standard nested
relational language to understand their set-theoretic expressive power. Second,
the extra expressive power of bags is characterized accurately. The relationship
between bags and natural numbers is studied. In particular, we show that prop-
erties that are simultaneously infinite and co-infinite are inexpressible. Finally,
the relationship between structural recursion and the powerbag operator has
been re-examined. The former is shown to be stronger than the latter. Then we
introduce the bounded loop construct that captures the power of structural re-
cursion but has the advantage of not requiring verification of any precondition.
Moreover, we prove that structural recursion gives us all primitive recursive
functions.

There are several conjectures we have not yet proved. Does adding gen
give us precisely lower elementary functions [26]T" Are functions such as testing
whether a graph is a tree or testing connectivity or transitive closure expressible
in the set language equivalent to BOLI'" What is the expressive power of this
set language augmented by transitive closurel’ We know, for example, that test
for balanced binary trees can be expressed in this language, but can it express
bounded fixpointl’ When augmented with gen, how powerful is itT’

Breazu-Tannen, Buneman and Wong [5], Libkin and Wong [17], and this
paper studied the use of monads and structural recursion for querying sets,
or-sets and bags respectively. We hope to extend this methodology to other
collection types such as lists, arrays, etc.

Acknowledgements. Peter Buneman gave us the initial inspiration and
provided many helpful suggestions. We also thank Val Breazu-Tannen, Jean
Gallier, Dan Suciu, Bennet Vance, Steve Vickers and Scott Weinstein for valu-
able comments and suggestions.

References

[1] S. Abiteboul and C. Beeri. On the power of languages for the manipulation
of complex objects. In Proc. Int. Workshop on Theory and Applications
of Nested Relations and Complex Objects, Darmstadt, 1988.

[2] J. Albert. Algebraic properties of bag data types. In VLDB 91, pages
211-219.

3]

[4]

[14]

[15]

[16]

[17]

V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a
query language. In DBPL 91, pages 9-19.

V. Breazu-Tannen and R. Subrahmanyam. Logical and computational
aspects of programming with sets/bags/lists. In LNCS 510: ICALP 91,
pages 60-75.

V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query
languages. In ICDT 92, pages 140-154.

P. Buneman, A. Ohori, and A. Jung. Using powerdomains to generalize
relational databases. Theoretical Computer Science, 91:23-55, 1991.

A. Chandra and D. Harel. Structure and complexity of relational queries.
JCSS, 25:99-128, 1982.

J. Van den Bussche and J. Paredaens. The expressive power of structured
values in pure OODB. Technical Report 90-23, University of Antwerp,
1990. Extended abstract in PODS 91.

S. Grumbach and T. Milo. Towards tractable algebras for bags. In PODS
93, pages 49-60.

C. A. Gunter. Semantics of Programming Languages: Structures and Tech-
niques. The MIT Press, 1992.

T. Imielinski and W. Lipski. Incomplete information in relational
databases. Journal of the ACM, 31:761-791, 1984.

N. Immerman, S. Patnaik and D. Stemple, The expressiveness of a family
of finite set languages, in Proceedings of the 10th Symposium on Principles
of Database Systems, 1991, pages 37-52.

L. A. Jategaonkar and J. C. Mitchell. ML with extended pattern matching
and subtypes. In Proceedings of ACM Conference on LISP and Functional
Programming, pages 198-211, Snowbird, Utah, July 1988.

A. Klausner and N. Goodman. Multirelations: semantics and languages.
In VLDB 85, pages 251-258.

A. Klug. Equivalence of relational algebra and relational calculus query
languages having aggregate functions. J. ACM, 29(3):699-717, 1982.

L. Libkin. A relational algebra for complex objects based on partial infor-
mation. In J. Demetrovics and B. Thalheim editors, LNCS 4/95: Proceed-
ings of Symposium on Mathematical Fundamentals of Database Systems,
Rostock, May 1991, pages 36—41. Springer-Verlag, 1991.

L. Libkin and L. Wong. Semantic representations and query languages for
or-sets. In PODS 93, Washington, D. C., May 1993, pages 37-48. Full
paper available as UPenn Technical Report MS-CIS-92-88.

[18]

[19]

[20]

[21]

[22]
[23]

L. Libkin and L. Wong. Query languages for bags, Technical Report MS-
CIS-93-36, University of Pennsylvania, 1993.

L. Libkin and L. Wong. Aggregate functions, conservative extension, and
linear orders. This volume.

E. Moggi. Notions of computation and monads. Information and Compu-
tation, 93:55-92, 1991.

I. S. Mumick and O. Shmueli, How expressive if stratified aggregation,
submitted.

P. Odifreddi. Classical Recursion Theory. North Holland, 1989.

A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming
in Machiavelli: a polymorphic language with static type inference. In
SIGMOD 89, pages 46-57.

G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos. Extending relational alge-
bra and relational calculus with set-valued attributes and aggregate func-
tions. ACM TODS, 12(4):566-592, 1987.

J. Paredaens and D. Van Gucht. Converting nested relational algebra
expressions into flat algebra expressions. ACM Transaction on Database
Systems, 17(1):65-93, 1992.

H. E. Rose. Subrecursion: Functions and Hierarchies. Clarendon Press,
Oxford, 1984.

Y. Saraiya, Fixpoints and optimizations in a language based on structural
recursion on sets, Manuscript, December 1992.

S. Vickers. Geometric theories and databases. In P. Johnstone and A. Pitts,
editors, Applications of Categories in Computer Science, volume 177 of
London Mathematical Society Lecture Notes, pages 288-314. Cambridge
University Press, 1992.

P. Wadler. Comprehending monads. In Proceedings of ACM Conference
on Lisp and Functional Programming, Nice, June 1990.

L. Wong. Normal forms and conservative properties for query languages
over collection types. In PODS 93, pages 26-36, Washington, D. C., May
1993. Full paper available as UPenn Technical Report MS-CIS-92-59.

