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Abstract

We study the problem of maintaining recursively-defined views, such as the transitive closure of a relation,
in traditional relational languages that do not have recursion mechanisms. In particular, we show that
the transitive closure cannot be maintained in relational calculus under deletion of edges. We use new
proof techniques to show this result. These proof techniques generalize to other languages, for example,
to the language for nested relations that also contains a number of aggregate functions. Such a language
is considered in this paper as a theoretical reconstruction of SQL. Our proof techniques also generalize to
other recursive queries. Consequently, we show that a number of recursive queries cannot be maintained
in an SQL-like language. We show that this continues to be true in the presence of certain auxiliary
relations. We also relate the complexity of updating transitive closure to that of updating the same-
generation query and show that the latter is strictly harder than the former. Then we extend this result
to that of updating queries based on context-free sets.

1 Problem Statement and Summary

It is well known that relational calculus (equivalently, first-order logic) cannot express recursive queries such
as transitive closure [1]. However, in a real database system, it is reasonable to store both the relation and
its transitive closure and update the latter whenever edges are added to or removed from the former. Doing
this is known under the name of view maintenance. In this paper we consider the problem of whether the
above update problem for maintaining transitive closure and other recursive queries can be accomplished
using relational calculus or using its practical SQL-like extensions. We also compare the complexity of
maintaining transitive closure against the complexity of maintaining “same generation” and context-free
chain queries.

In this paper, we use the letter R to denote a binary relation, and Rt to denote its transitive closure. It can

be proved [6, 2] that given R, R*, and a new edge (z,y) to be added to R, the transitive closure Ri(m v) of
RU{(z,y)} can be expressed in first-order logic and thus in relational calculus. In particular, for all © and
v, Ri(m y)(u,,v) iff R*(u,v), or R*(u,z) and y = v, or u = ¢ and R*(y,v), or R™(u,z) and R*(y,v). Thus

transitive closure can be incrementally maintained in a relational database.

The problem of updating the transitive closure after an edge has been removed is more difficult. The best
positive solution so far is that of Dong and Su [5]. They proved that if R is acyclic, then the transitive

closure Rf(m v) of R with the edge (z,y) removed can be defined in first-order logic in terms of R, RT, and

(z,y). Thus transitive closure can be decrementally maintained in a relational database provided the relation
involved is acyclic. But this is not satisfactory because acyclicity cannot be tested in relational calculus [10].

Database Programming Languages, 1995 1



On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQL

Another solution is that of Immerman and Patnaik [14]. They proved that transitive closure of undirected
graphs can always be maintained, provided some auxiliary ternary relations can be used. Dong and Su [7]
strengthened this result further by showing that transitive closure of undirected graphs can be maintained
using only auxiliary binary relations. They also showed that it cannot be done using only auxiliary unary
relations.

In Section 2, we prove that transitive closure cannot be decrementally maintained in a relational database
in general. That is, Rf(m v) cannot be expressed in relational calculus in terms of R, R*, and (z,y) when

R is a directed graph that is not necessarily acyclic. We also consider the problem of maintaining transitive
closure in a context where some auxiliary relations are available. Dong and Su [7] also obtained results that
are similar to ours. However, the proof techniques involved are very different. Most importantly, their proof
technique is only applicable to the particular case of maintaining transitive closure in relational calculus.
Ours is much simpler and can be generalized to more expressive languages and other recursive queries. In
particular, instead of transitive closure, any query complete for DLOGSPACE can be used.

In Section 3 we show that our technique extends naturally to prove that transitive closure cannot be decre-
mentally maintained using query languages having the power of SQL. That is, we show that the availability
of arithmetic operations and GROUP-BY does not help at all. We also extend this result in the presence of
simple auxiliary relations. In addition, we exhibit a query that illustrates the additional power of using an
SQL-like language incrementally. This query, which is inexpressible in SQL, is expressible incrementally in
SQL with certain auxiliary relations but is not expressible incrementally in first-order logic with the same
auxiliary relations.

In Section 4, we look at the complexity of maintaining transitive closure against the complexity of maintaining
other queries. We prove that it is strictly more difficult to maintain the “same generation” query than to
maintain transitive closure. We are also able to generalize this result and show that maintaining context-free
chain queries (in a certain sense to be defined) is at least as hard as maintaining transitive closure.

In Section b we extend our basic technique to show that the same-generation query cannot be maintained
(incrementally or decrementally) in SQL-like languages.

2 Recomputation of Recursive Queries in Relational Calculus

The purpose of this section is to show that the transitive closure of a relation cannot be decrementally
maintained in relational calculus or first-order logic. That is,

Theorem 2.1 There s no relational calculus expression that defines the transitive closure Rf(m v) of R —

{(z,y)} in terms of a binary relation R, its transitive closure RT, and an edge (z,y).

We introduce a new proof technique that is different from [7]. In particular, our technique does not rely
on games and can be readily extended to other queries and languages. For example, we will show that the
analog of Theorem 2.1 holds for a language having the expressive power of SQL.

2.1 The Proof

Definition 2.2 A single cycle is a graph {(v1,v2), (v2,v3),. .., (Un—1,Vn), (Un, 1)}, where all v; are dis-
tinct. A chain is the {(v1, v2), (v2,v3),..., (vn—1,vn)} part of a single cycle. a

Our first proof is based on a result in first-order logic, called the bounded degree property [13], that formalizes
the intuition behind the fact that recursive queries are not first-order definable. It says that it is not possible
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to define in first-order logic a function that transforms a graph having small in- and out-degrees into a graph
having a large number of in- and out-degrees.

Let G = (V, E) be a graph (binary relation). Throughout the paper, when we speak of graph queries, we
assume that the nodes come from a countably infinite domain, and that equality is the only predicate available
on the nodes. (Note the absence of order.) Define in-deg(v) = card({v' | (v',v) € E}) and out-deg(v) =
card({v' | (v,v') € E}). The degree set deg(G) of G is defined as {in-deg(v) | v € V} U {out-deg(v) | v € V'}.

Definition 2.3 Suppose for any function f from graphs to graphs that is definable in a language £ it is the
case that for any number & there is a number ¢, depending on f and k, such that card(deg(f(G))) < c for
any graph G satisfying deg(G) C {0, 1,...,k}. Then £ is said to have the bounded degree property. O

Theorem 2.4 (see [13]) First-order logic has the bounded degree property. a

One may prove that certain general recursive queries, such as transitive closure, cannot be expressed in
first-order logic. However, one may find that a very different approach is needed to prove the same result
for certain special cases of these queries, such as transitive closure of a chain. (This is in fact a class of
queries that have the following property: when the input is a chain, they return its transitive closure).
Using Theorem 2.4 many first-order inexpressibility results and their special cases can be proved in a simple
uniform manner. For example,

Corollary 2.5 First-order logic cannot express the transitive closure of a chain.

Proof. The degree set of a chain is {0,1}. But the degree set of the transitive closure of a chain is {0,1,...,n},
where n is the length of the chain. Then the corollary follows by Theorem 2.4. a

Making use of Corollary 2.5, we can now present our

Proof of Theorem 2.1. Let R be a single cycle and (z,y) be the edge to be removed. Assume that R"_'( ) is

z.y

definable in first-order logic. That is, there is a formula ©[R, R, z,y, u, v] such that for all u and v:
(1) R-I_'(z'y) (u,v) iff O[R, R*,z,y,u,v]

In this formula © every quantifier is of form Vz € V or 3z € V where V is the set of nodes of R (and R+). As the
transitive closure of a single cycle is a complete graph, every R (z',¥') in O[R, R',z,y,u,v] can be replaced by true
so that (1) continues to hold. This replacement results in a formula ®'[R, z,y, u,v] in which RT does not appear. So
we have

(2) R-I_'(z'y) (u,v) iff O'[R, z,y,u,v]

Now, we prove that (2) implies that transitive closure of a chain is first-order definable. Let P be a binary relation
symbol to be interpreted as a chain. Let end(y') be a first-order formula in terms of P saying that y' has out-degree
zero in P and let start(y') be a first-order formula in terms of P saying that y' has in-degree zero in P. Define
©"[P,z,y,u,v] as ©'[R,z,y,u,v] in which R(z,2') is replaced by P(z,z') V (end(z) A start(z')). Let A[P,u,v] be
Jz3y.end(z) A start(y) A ©"[P,z,y,u,v]. According to (2), if P is interpreted as a chain, then A[P,u,v] holds iff
there is an edge from u to v in the transitive closure of a graph obtained from P by first inserting an edge from end
to start and then deleting it. That is, iff there is an edge in the transitive closure of P. Hence, (2) implies that the
transitive closure of a chain can be expressed in first-order logic, contradicting Corollary 2.5. Thus R"_'(z'y) (u,v) is
not first-order definable.

2.2 Generalizations
Our proof is based on three assumptions. First, a query , whose unmaintainability we must prove, has

the following property: whenever @) is applied to a chain, it produces the transitive closure of that chain.
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Second, the language must contain a sublanguage as expressive as first-order logic. Third, the transitive
closure of a chain is not definable in the language. Summing up, we see from the proof of Theorem 2.1 that
the following is true.

Theorem 2.6 Let L be a language that contains a sublanguage as expressive as relational calculus, but that
cannot express the transitive closure of a chain. Let @) be any graph query that computes the transitive closure
of a chain. Then it is impossible to write a query in L that, when applied to a binary relation R, an edge
(z,y) in R, and Q(R), will produce Q(R — {(z,y)}). In other words, Q cannot be decrementally maintained
mn L. a

One immediate application of this result is the impossibility of decremental recomputation of queries that
are simpler than transitive closure. Transitive closure together with first-order logic captures the complexity
class NLOGSPACE. Deterministic transitive closure, which closes paths whose nodes have outdegree one,
captures the class DLOGSPACE, when added to the first-order logic [11]. Since deterministic and the usual
transitive closures are equivalent on chains, we obtain

Corollary 2.7 It is impossible to recompute deterministic transitive closure decrementally using relational
calculus. ad

2.3 Using Auxiliary Relations

Our negative result merely says that the transitive closure RT of a relation R cannot be maintained using
relational calculus when an edge (z,y) is removed from that relation. It says nothing about whether it is
possible to maintain RT when some additional auxiliary relations are present.

The availability of auxiliary relations — which must themselves be maintainable using relational calculus
under edge insertion and deletion — can make a difference. For example, Dong and Su [5] show that for a
special kind of cyclic graphs R, where there is at most one path connecting any two vertices, RT can be
maintained when an auxiliary relation storing a maximal acyclic subgraph of R is provided. However, the
general situation remains open.

Open Problem 2.8 Is there a k-ary property Ar of a binary relation R such that both Rf( ) and

z7y

AR_{(z,y)} can be expressed using first-order formulae in terms of R, R*, Ag, and (z,y)?

Note that a property is required to be name-independent or generic: if Ag(zi,...,zn) holds, then
Ax(r)(m(z1),...,7(zn)) is required to hold for any automorphism 7 of R’s nodes.

For k = 1 (unary predicates), this problem is easily resolved.

Theorem 2.9 There is no unary property Ar of a binary relation R such that both Rf(m v) and AR_{(z,9)}

can be ezpressed using first-order formulae in terms of R, RY, AR, and (z,y).

Proof. Assume that R is a single cycle. Because of genericity, either Ar holds for each node of R, or Ag fails
for each node of R, for any single cycle R. Now, suppose the unary property Ag exists and Y[R, R', AR, z,y, u,v]
is a first-order formula such that R"_'(z o) (u,v) iff Y[R, RY, ARr,z,y,u,v]. Since R is a cycle, we can replace each

occurrence of BT (v,w) by true obtaining ®[R, Ag,z,y, u,v] such that
(3) R"_'(z'y)(u,v) holds iff ®[R, Ag,z,y,u,v] holds

Since ARg is generic, either {m | 3 single cycle R of length m such that Ag holds for every node in R} or {m | 3 single
cycle R of length m such that Ar does not hold for any node in R} is infinite. Assume without loss of generality that
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the former is the case. Then, for any m, there is a single cycle R of length > m such that Agr holds for every node in
R. Let &' be obtained from & be replacing Ar(v) by true. Then, according to (3), for infinitely many non-isomorphic
single cycles, R"_'(z y)(u,'u) holds iff ®'[R, z,y, u,v] where &' now is a first-order formula.

Using this fact and the same argument as in the second proof of Theorem 2.1, we obtain a first-order formula that,
for infinitely many non-isomorphic chains, computes their transitive closure. But this contradicts the bounded degree
property, thus proving the theorem. a

For the situation where the arity of auxiliary relations is 2 or greater, we can only resolve certain special
cases. For example, let Eg(z,y, u,v) be a 4-ary property saying that every path in R from u to v must go
through the edge (z,y), where z = v and y = v do not hold simultaneously. It is possible to maintain the
transitive closure of some cyclic relations using this Eg. That is, Rf(m’y) can be defined in terms of R, RT,

ER, and (z,y). However, we have to address the decremental maintenance of Eg itself. Again, relational
calculus does not provide us with sufficient expressive power to do so.

Theorem 2.10 There exists a class of relations R such that neither Rt nor Er can be maintained decre-
mentally.

Proof. Consider the following relation R. Let Ry be a single cycle. R is obtained from it by adding two new nodes,
z and y, the edge (z,y), and edges (z,z), (z,2), (2,¥), (y, ) for all z on the cycle RBy. Note that Er is empty because
there are at least two alternative paths between any two nodes in R that are not connected by an edge.

The inability to maintain RT decrementally, given R, R and Eg follows immediately. Since RT is a complete
graph and Er is empty, they can be safely replaced by constants. If the transitive closure of K were decrementally
maintainable, we could have written a first-order formula for calculating the transitive closure of a chain obtained
from R by deleting (z,y) and then any edge (z,z') on the cycle. To see that this impossible, consider an arbitrary
chain C with endpoints z and y, and define the new graph R by making C — {z,y} into a cycle and adding edges
(z,z), (z,2), (z,4), (y,2) for all z € C — {z,y}. Maintainability of Rt now implies that the transitive closure of
C — {z,y} is first-order definable, but this contradicts the bounded degree property.

To show that Fr cannot be maintained decrementally, note that if it were, we would be able to define, in relational
calculus, Eg:, for R’ a single cycle. Indeed, if such Er: were definable, we would be able to define the transitive
closure of a chain by adding the edge from the end to the start to make a single cycle and then, for any two nodes =
and y, checking if this added edge is on the path from z to y. a

3 Recomputation of Recursive Queries in SQL

In the preceding sections, first-order logic was used as the ambient language. However, real database query
languages are richer and more powerful than relational algebra. In particular, the de-facto practical query
language SQL has a GROUP-BY operator, arithmetic operators, and aggregate functions. These extra
primitives give these languages extra power; for example, they can test whether a set of numbers has even
or odd cardinality [12]. In this section, we consider decremental recomputation of transitive closure in these
more practical languages. First, we define a “theoretical SQL”, which is a formally presented language that
has the main features that distinguish SQL from relational calculus. Then we prove analogs of our negative
results for this language.

3.1 A Theoretical Reconstruction of SQL

As we mentioned, there are two main features that make SQL more expressive that first-order logic. First,
SQL allows nesting by using the GROUP-BY operator. Second, SQL has arithmetic operations and a number
of aggregate functions.
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It was proposed in [12] to use the language NRL38ET as a theoretical language to study the expressive power
of SQL. It is obtained from the nested relational algebra (which is a standard language for manipulating
complex objects, see [3, 4, 15]) by adding simple rational arithmetic operators 4+, —, -, and +; a summation
construct Y (f)({z1,...,2n}) = f(z1) + ...+ f(zn); and the usual linear order on rational numbers <rat,
It was shown [12] that A’RL88 can express aggregate functions and grouping operations found in SQL.
Moreover, the same paper showed that expressibility in A’RL388" is independent of the depth of nesting of
sets in intermediate data.

This implies, under the normal semantics used in database query languages, that a query in A'RL388™ over
flat relations can always be translated into a query in first-order logic augmented with the same operators.
In other words, A/RL88" and (most variations of) SQL coincide in expressible power, as far as flat relations
are concerned. Thus we can investigate decremental recomputation of recursive queries in the context of

NRL288T instead.

3.2 Expressive Power of SQL

The main result of this section is that decremental recomputation of transitive closure remains inexpressible
in M'RL?88T. Qur proof uses a finite-cofiniteness result in nested relational algebra [13], which says that it
is impossible to define a query in A'RL?88 that distinguishes members of a family of graphs called k-multi-
cycles.

Definition 3.1 A binary relation is called a k-multi-cycle if it is nonempty and is of the form shown
below, where h > k and o] are all distinct. That is, it is a graph containing m > 1 unconnected cycles
of equal length h > k. Recall that the vertices come from a countably infinite domain on which only the

equality test is available. a
1 o
03 h—1 03 Oh-1
1
1 0 Op
2
1 m
0 0

Theorem 3.2 (see [13]) Let f be a Boolean query on graphs definable in N'RL?88". Then there is a k such
that either f(R) is true for every k-multi-cycle R, or f(R) is false for every k-multi-cycle R. ad

In essence, this theorem says that we cannot use A'RL38EF to distinguish one k-multi-cycle from another,
provided the cycles are sufficiently long. Note that this result remains valid even when we restrict ourselves
to subclasses of k-multi-cycles having some fixed number of cycles. For example, it continues to hold when
we replaced k-multi-cycles by single cycles of length at least k. Many inexpressibility results can be obtained
from this theorem in a trivial manner. In particular,

Corollary 3.3 NRL388" is unable to express the transitive closure of a chain.

Proof. Suppose the transitive closure of a chain can be expressed in this language. Then testing whether a graph
is a chain can also be expressed in this language; see [13]. Then testing whether a k-multi-cycle contains exactly one
cycle can be expressed, too. However, this contradicts Theorem 3.2. Therefore, the transitive closure of a chain is
inexpressible in ARL887, a
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The main result of this section follows immediately from Theorem 2.6 and Corollary 3.3.
Theorem 3.4 It is impossible to recompute (deterministic) transitive closure decrementally in N'RL?88". O

One has to be careful when formulating an analog of Open Problem 2.8 for A/RL388%, If we simply ask
whether it is possible to maintain transitive closure decrementally using additional space, the answer to this
question is positive. Indeed, as auxiliary object we store a (nested) relation that contains transitive closure
for each subrelation of R, together with a list of edges deleted from R to obtain this subrelation. Then
transitive closure can easily be recomputed. However, this naive approach requires exponential space. We
still do not know whether the following is true.

Open Problem 3.5 Is it possible to recompute transitive closure decrementally in SQL using polynomaial
auziliary space?

One instance of this problem can be resolved using the methods as in the proof of Theorem 2.9.

Theorem 3.6 There is no unary property Ar of a binary relation R such that both Rf(m v) and AR_{(z,9)}

can be ezpressed using NRL88" in terms of R, RY, Ag, and (z,y). a

3.3 SQL vs Relational Calculus

In this subsection we compare the incremental evaluation power of A’/RL288% with that of first-order logic
and with that of M'RL388" without incremental evaluation. In particular, we provide an example query that
is expressible in the first language but not in the other two languages.

The example is as follows. Let S and R be two arbitrary graphs. Let z and y be two arbitrary nodes in §

and R respectively. Does z reach more nodes than y? We denote this query by moreprolificS7R(m, Y).

Proposition 3.7 Let S and R be two graphs. Let (u,v) be an edge to be inserted in S. Then

1. moreprolificg r(s,t) is inezpressible in NRL38ET,

2. S:Il——(u,'v) and moreprolificsu{(u,v)}ﬁ can be expressed in N'RL388" in terms of S, R, ST, RT, and
moreprolificg .

3. moreprolificsu{(u,v)}ﬁ cannot be expressed in first-order logic in terms of S, R, ST, RT, and
moreprolificg p.

Proof.

1. If R is a chain, then RY(z,y) iff moreprolificy z(z,y).

+
2. We note that S-I—(u.,u)

if (z,y) should be included in moreprolificsu{(u'u)}'R. First, select from ST 4-(u,v) the set of nodes reachable

is expressible in A'RL88 using (u,v) and St. Then we use the following steps to test

from z. Second, select from R' the set of nodes reachable from y. Third, test if the cardinality of the first set
exceeds that of the second step. This third and last step is expressible in A’/RL>88",

3. Let S and R be two complete graphs with S being smaller or equal in size to R. Then ST and R* are
complete graphs and moreprolificg g, is empty. Let u be a node in § and v be new. Then moreprolifics, (..},
is nonempty iff S is equal in size to R. If the latter can be expressed in first-order logic in terms of (u,v), S,
and R then so can the test of whether two sets are equal in cardinality, which is known to be inexpressible [9]
in first-order logic. a
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Therefore, using MRL38ET in an incremental /decremental way does provide some desirable extra expressive
power.

4 Context-Free Chain Queries

A frequently considered class of queries is the class of chain queries. Consider databases as labeled graphs. A
chain query @, ¢ retrieves pairs of nodes between which there exists a walk (edge sequence, not necessarily
a path) in G having some particular kind of label patterns specified by a context-free set L. For example, for
the transitive closure query the patterns are specified by the regular set {A™ | n > 0}, where A is a unique

label.

We also consider the same-generation query over a graph G having two label symbols A and B. Such a graph
can be conveniently represented by two relations, one for edges labeled A and the other for edges labeled
B, which need not be disjoint. We use A and B to name these two relations. Then we write SG4,g(%, y) iff
there is a z such that there is a walk from # to z in A and a walk from z to y in B that are equal in length.
The same-generation is a chain query; it is specified by the context-free set {A™B™ | n > 0}.

It is known that every chain query whose label patterns are specified by a regular set allows query recom-
putation after insertion using first-order logic [6, 8]. It is open whether this is true for any chain query
whose label patterns are specified by an arbitrary context-free set. The same-generation query, as a special
case of a context-free set, is known to be unmaintainable using first-order logic under insertion of edges if
auxiliary relations are not allowed [8] and this remains true when unary auxiliary relations are allowed [7].
A generalization of these two results to SQL-like languages is given in Section 5. It is an open problem
if incremental maintenance of the same-generation query is possible when polynomial auxiliary space are
allowed.

The purpose of this section is to compare the complexity of decremental recomputation of transitive closure
with that of context-free chain queries, in particular, the same-generation query.

Definition 4.1 Given two graph queries, Q1 and Q2, we say that

1. Q. is strictly harder than @ if, whenever Q1 can be decrementally maintained in a language L
having relational calculus as a sublanguage, then so can @2, and there is an infinite class of graphs on
which Qs can be decrementally maintained in relational calculus, but Q1 cannot.

2. @1 is linearly easier than Q3 if there exists a linear function f such that Q1 can be decrementally
maintained with auziliary relations of arity up to f(k) whenever @y can be decrementally maintained
with aquziliary relations of arity up to k. a

Proposition 4.2 The same-generation query is strictly harder than the transitive closure query.

Proof. The same-generation query over acyclic databases cannot be decrementally maintained using first-order logic
with at most unary auxiliary relations [7]. The transitive closure query over acyclic databases can be decrementally
maintained using first-order logic with no auxiliary relations [5]. To conclude the proof, observe that R* (z,y) iff
SGR'{(H'H) | v is a node in R}(:L', y). That is, we use R as the A relation and {(v,v) | v is a node of R} as the B relation

of SG4,p. If we can maintain $SG4,5, then we can clearly maintain Rt. O

Theorem 4.3 The transitive closure query is linearly easier than every chain query Qr c, where L is infi-
nite.

Proof Sketch. Suppose L is an infinite context-free set. Then by the pumping lemma, there exist strings o, 3, 7,
8, o such that (86 is not empty and the set {@8"v6"c | n > 1} is contained in L. We maintain the transitive closure
of R by maintaining the answer to Qr,¢ using the reduction described below and depicted in Figure 1.
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O O O O
X y B
O—3 , ) - )
(a7Y) [0 (ﬂ7Y)ﬁ (77Y)"Y 57y g (07Y)
G @)
(a) An edge (b) Corresponding graph

Figure 1: Transforming graph for R* to graph for Q. ¢

First assume that «, 83, v, §, and o are letters. Then we use five constants, named &, ﬁ, ¥, 3, and &, to tag the
nodes in R. Corresponding to each edge (z,y) in R, we have the edges given in Part (b) of the figure. Let G be the
resulting graph of this reduction.

Clearly, this reduction can be maintained in first-order logic. Furthermore, RY(z,y) iff (1) z # y and
Qr.a((&,2),(6,y)), (2) ¢ = y and R(z,y), or (3) # = y and there is z # z such that Qr,¢((&,2),(6,2)) and
Qr,c((&2),(5,y)).

From the above, the following upper bounds are clear. If the first-order logic formulae that maintain Qr,c¢ do not
use auxiliary relations, then the formulae for maintaining transitive closure constructed by this reduction need only
a 4-ary auxiliary relation. If the first-order logic formulae that maintain @z ,¢ use at most k-ary auxiliary relations,
then the formulae for maintaining transitive closure constructed by this reduction need at most 2k-ary auxiliary
relations, plus a 4-ary auxiliary relation. Hence f can be taken to be a linear function dominating max(2k, 4).

For the situation where the length of a8ydc is m and some of a, 8, v, §, o is not a letter, we employ m different
constants to tag the nodes of R using a similar construction, with minor adjustments if some of o, 3, 7, §, o is empty.
O

Finally, we observe that all the transformations employed earlier are first-order and thus

Corollary 4.4 Analog of Theorem 4.8 holds when we use the flat fragment of NRL388" instead of first-order
logic. a

5 Impossibility of Recomputation of Same-Generation in SQL

It was previously known that the same-generation query cannot be maintained, without auxiliary space,
using first-order logic when edges are inserted or deleted [7]. These previous results were proved using games
and thus cannot be extended to SQL-like languages.

In this section, we give a further demonstration of the advantage of our technique. We extend the above
results to any language that contains first-order logic as a sublanguage but is finite-cofinite on single-cycle
queries. Then the inability of SQL to maintain the same-generation query without auxiliary space falls out
as an immediate corollary.

Definition 5.1 A language L is called eycle-simple if it contains relational calculus as a sublanguage but
cannot express properties of single cycles that are both infinite and coinfinite. That is, for any Boolean
query f in L, there exists a number n such that either f is true for any single cycle of length > n, or f is
false for any single cycle of length > n. a
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Let us first obtain a property on a special kind of graphs called two-chain graph that is true of any cycle-
simple language.

Definition 5.2 A two-chain graph is a graph consisting of two unconnected chains. ad

Let P be the following property of two-chain graphs: If lengths of two chains are n and m, then either
n=m,orn=m-—2,orn=m-+2.
Proposition 5.3 Let L be a cycle-simple language. Then L cannot test the property P of two-chain graphs.

Proof. Note that a single cycle G of length more than 6 is of even length iff the following is true. There are
non-consecutive edges in G such that removal of them from G results in a two-chain graph satisfying P. Thus, if P
were L-definable, being of even length can be tested on single cycles of length more than 6 as follows:

J23IyFuTv.E(z, Y)& E(u, v)&-E(y, u)&—E(v,2)&—(z = u)&—(y = v)&P(E')

where E'(z,w) is E(z,w) A =((z = z&w = y) V (z = u&w = v)). But this contradicts the cycle-simplicity of L. O
Using this result, we can prove that such a language £ cannot increment the same-generation query.

Theorem 5.4 Let L be a cycle-simple language. Then it cannot maintain the same-generation query under
edge insertion without using auziliary relations.

Proof. Let R® denote the graph obtained by reversing the edges in R. That is, R°(u,v) iff B(v,u). Consider the
two-chain graph R depicted below. Then SGg,re is a diagonal graph. That is SGg,re (u,'u) iff u = v and u is a node
of R.

Yo Y1 Ym
g . ... — - >
Lo L1 Ln
Ao S — -
Suppose L can maintain the same-generation query when edges are inserted. @ Then we have a formula

©[SGR,r<, R, z,y,4,v] in L such that SGru{(e,y)}.REU{(y,2)} (¥, ) Iff O[SGR,r<, R, z,y,u,v].

Since SGr,r- is a diagonal, every occurrence of SGg,r<(z’,y’) in O[SGr,r¢, R, z,y, u,v] can be replaced by the formula
(z' =y")A(32".R(z',z') V R(z',z')). So we obtain a formula ©'[R, z,y, u,v] in which SGg,r- does not appear such
that SGRU{(z,y)},RCU{(y,z)}(u7 ’U) iff @I[R, z,Y,u, ).

Now consider the following formula ¥(u,v):
[~Fw.E(u,w)] & [Bw.E(v,w)] & Vw.(E(v,w) = (~(w = ©)&(-Tw’.E(w,w"))))]

This formula says that v is an endpoint (has outdegree zero), and v is a predecessor of an endpoint different from u.
Let start(z) be -Jw.E(w,z). Consider the sentence

d = JdzoJyoFudv.start(zo) & start(yo) & —(zo = yo)
& U(u,v) & (O'[R,z0,y0,u,v]V O[R,yo,z0,u,v])

This sentence is satisfied by the two-chain graph R shown above iff one of the following holds.

(2) In a graph obtained from R by adding (2o, o), either ,_; and ym are of the same generation (then n = m+2)
Or Ym—1 and z, are of the same generation (then n= m); or
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(b) In a graph obtained from R by adding (yo,z0), either £,_1 and ym are of the same generation (then n = m)
Or Ym—1 and z, are of the same generation (then m=n -+ 2).

In other words, ® holds iff R has the property P. Since £ contains a sublanguage equivalent to the relational calculus
and all transformations above are first-order, we conclude that under the assumption that SG is incrementally
maintainable, £ can test the property P. But this contradicts proposition 5.3. This proves the theorem. a

Not only is £ unable to maintain the same-generation query under edge insertion, it is also unable to maintain
the same-generation query under edge deletion.

Theorem 5.5 Let L be a language that contains relational calculus as a sublanguage but cannot express
the transitive closure of a chain. Then it cannot maintain the same-generation query under edge deletion
without using auziliory relations.

Proof sketch. Suppose R is a single cycle having an odd number of edges. Then it is easy to see that SGr,r
is a complete graph. Consider deleting an edge (z,y) from R. Notice that the transitive closure of the chain
R —{(z,y)} is expressible as BT, (u,v) iff SGr_(a,4)},h—{(2)} (%), OF SGR_{(2,4)},R—{(2)} (%, 2) and R(z,0)
and (z,v) # (z,y), or R(u,v) and (z,y) # (u,v).

If £ can maintain the same-generation query when edges are deleted, then we have a formula ©[R,SGg,r, z,¥, u, v]
in £ such that for all u and v:

(4) SGR—_{(z,4)},R—{(=w)} (1 v) iff O[R,SGr,Rr,z,y,u,v]

Since SGgr,r is a complete graph, we can replace every occurrence of SGgr,r(z’,y’') by true so that (4) contin-
ues to hold. This replacement results in a formula ©'[R,z,y,u,v] in which SGg,r does not appear. So we have
SGR_{(cy)}R—{(2y)} (4, v) iff O'[R,z,y,u,v]. This implies that the transitive closure of the chain R — {(z,y)} is de-
finable in L. It is not hard to show that then transitive closure of any chain is definable in £, which is a contradiction.
O

Combining Theorem 5.4, Theorem 3.2, Theorem 5.5, and Corollary 3.3, we conclude that SQL-like languages
cannot maintain the same-generation query under insertion and deletion of edges.

Corollary 5.6 NRL388" cannot maintain the same-generation query under insertion and deletion of edges
without using auziliory relations. a

6 Remarks

Our proof of impossibility of decremental maintenance of transitive closure assumes the existence of a
formula that decrements transitive closure. It then analyzes this formula under the assumption that the
relation supplied is a single cycle. By making this assumption, it is allowed to simplify the formula. The
resultant is a formula that expresses a query that is shown to be inexpressible in first-order logic.

An additional interest in this proof is its use of a recently-developed general result called the bounded degree
property [13]. More significantly, it generalizes naturally to powerful and practical SQL-like languages by
substituting the bounded degree property of first-order logic with the finite-cofiniteness of queries on k-multi-
cycles in these augmented languages [13].

The ease of extension from proofs for first-order logic to SQL-like languages is a major distinguishing feature
of the techniques in this paper from that of Dong and Su [7]. One advantage of the techniques here is
that they extend to SQL-like languages having arithmetics and aggregate functions readily, whereas the
games technique [7] does not. In Section 5 we demonstrated this advantage again and proved that the
same-generation query cannot be maintained using an SQL-like language when edges are added or deleted.
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Finally, the general case of maintaining transitive closure under edge deletion where no limit is placed on
auxiliary relations (or polynomial space limit is placed in the case of nested relations) remains an interesting
unsolved problem.
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