
On Impossibility of Decremental Recomputation ofRecursive Queries in Relational Calculus and SQLGuozhu DongDepartment of Computer ScienceUniversity of MelbourneParkville, Vic. 3052, AustraliaEmail: dong@cs.mu.oz.au Leonid LibkinBell Laboratories600 Mountain AvenueMurray Hill, NJ 07974, USAEmail: libkin@bell-labs.com Limsoon WongInstitute of Systems ScienceHeng Mui Keng TerraceSingapore 0511Email: limsoon@iss.nus.sgAbstractWe study the problem of maintaining recursively-de�ned views, such as the transitive closure of a relation,in traditional relational languages that do not have recursion mechanisms. In particular, we show thatthe transitive closure cannot be maintained in relational calculus under deletion of edges. We use newproof techniques to show this result. These proof techniques generalize to other languages, for example,to the language for nested relations that also contains a number of aggregate functions. Such a languageis considered in this paper as a theoretical reconstruction of SQL. Our proof techniques also generalize toother recursive queries. Consequently, we show that a number of recursive queries cannot be maintainedin an SQL-like language. We show that this continues to be true in the presence of certain auxiliaryrelations. We also relate the complexity of updating transitive closure to that of updating the same-generation query and show that the latter is strictly harder than the former. Then we extend this resultto that of updating queries based on context-free sets.1 Problem Statement and SummaryIt is well known that relational calculus (equivalently, �rst-order logic) cannot express recursive queries suchas transitive closure [1]. However, in a real database system, it is reasonable to store both the relation andits transitive closure and update the latter whenever edges are added to or removed from the former. Doingthis is known under the name of view maintenance. In this paper we consider the problem of whether theabove update problem for maintaining transitive closure and other recursive queries can be accomplishedusing relational calculus or using its practical SQL-like extensions. We also compare the complexity ofmaintaining transitive closure against the complexity of maintaining \same generation" and context-freechain queries.In this paper, we use the letter R to denote a binary relation, and R+ to denote its transitive closure. It canbe proved [6, 2] that given R, R+, and a new edge (x; y) to be added to R, the transitive closure R++(x;y) ofR [f(x; y)g can be expressed in �rst-order logic and thus in relational calculus. In particular, for all u andv, R++(x;y)(u; v) i� R+(u; v), or R+(u; x) and y = v, or u = x and R+(y; v), or R+(u; x) and R+(y; v). Thustransitive closure can be incrementally maintained in a relational database.The problem of updating the transitive closure after an edge has been removed is more di�cult. The bestpositive solution so far is that of Dong and Su [5]. They proved that if R is acyclic, then the transitiveclosure R+�(x;y) of R with the edge (x; y) removed can be de�ned in �rst-order logic in terms of R, R+, and(x; y). Thus transitive closure can be decrementally maintained in a relational database provided the relationinvolved is acyclic. But this is not satisfactory because acyclicity cannot be tested in relational calculus [10].Database Programming Languages, 1995 1

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLAnother solution is that of Immerman and Patnaik [14]. They proved that transitive closure of undirectedgraphs can always be maintained, provided some auxiliary ternary relations can be used. Dong and Su [7]strengthened this result further by showing that transitive closure of undirected graphs can be maintainedusing only auxiliary binary relations. They also showed that it cannot be done using only auxiliary unaryrelations.In Section 2, we prove that transitive closure cannot be decrementally maintained in a relational databasein general. That is, R+�(x;y) cannot be expressed in relational calculus in terms of R, R+, and (x; y) whenR is a directed graph that is not necessarily acyclic. We also consider the problem of maintaining transitiveclosure in a context where some auxiliary relations are available. Dong and Su [7] also obtained results thatare similar to ours. However, the proof techniques involved are very di�erent. Most importantly, their prooftechnique is only applicable to the particular case of maintaining transitive closure in relational calculus.Ours is much simpler and can be generalized to more expressive languages and other recursive queries. Inparticular, instead of transitive closure, any query complete for DLOGSPACE can be used.In Section 3 we show that our technique extends naturally to prove that transitive closure cannot be decre-mentally maintained using query languages having the power of SQL. That is, we show that the availabilityof arithmetic operations and GROUP-BY does not help at all. We also extend this result in the presence ofsimple auxiliary relations. In addition, we exhibit a query that illustrates the additional power of using anSQL-like language incrementally. This query, which is inexpressible in SQL, is expressible incrementally inSQL with certain auxiliary relations but is not expressible incrementally in �rst-order logic with the sameauxiliary relations.In Section 4, we look at the complexity of maintaining transitive closure against the complexity of maintainingother queries. We prove that it is strictly more di�cult to maintain the \same generation" query than tomaintain transitive closure. We are also able to generalize this result and show that maintaining context-freechain queries (in a certain sense to be de�ned) is at least as hard as maintaining transitive closure.In Section 5 we extend our basic technique to show that the same-generation query cannot be maintained(incrementally or decrementally) in SQL-like languages.2 Recomputation of Recursive Queries in Relational CalculusThe purpose of this section is to show that the transitive closure of a relation cannot be decrementallymaintained in relational calculus or �rst-order logic. That is,Theorem 2.1 There is no relational calculus expression that de�nes the transitive closure R+�(x;y) of R �f(x; y)g in terms of a binary relation R, its transitive closure R+, and an edge (x; y).We introduce a new proof technique that is di�erent from [7]. In particular, our technique does not relyon games and can be readily extended to other queries and languages. For example, we will show that theanalog of Theorem 2.1 holds for a language having the expressive power of SQL.2.1 The ProofDe�nition 2.2 A single cycle is a graph f(v1; v2); (v2; v3); : : : ; (vn�1; vn); (vn; v1)g, where all vi are dis-tinct. A chain is the f(v1; v2); (v2; v3); : : : ; (vn�1; vn)g part of a single cycle. 2Our �rst proof is based on a result in �rst-order logic, called the bounded degree property [13], that formalizesthe intuition behind the fact that recursive queries are not �rst-order de�nable. It says that it is not possibleDatabase Programming Languages, 1995 2

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLto de�ne in �rst-order logic a function that transforms a graph having small in- and out-degrees into a graphhaving a large number of in- and out-degrees.Let G = hV;Ei be a graph (binary relation). Throughout the paper, when we speak of graph queries, weassume that the nodes come from a countably in�nite domain, and that equality is the only predicate availableon the nodes. (Note the absence of order.) De�ne in-deg(v) = card(fv0 j (v0; v) 2 Eg) and out-deg(v) =card(fv0 j (v; v0) 2 Eg). The degree set deg(G) of G is de�ned as fin-deg(v) j v 2 V g[fout-deg(v) j v 2 V g.De�nition 2.3 Suppose for any function f from graphs to graphs that is de�nable in a language L it is thecase that for any number k there is a number c, depending on f and k, such that card(deg(f(G))) � c forany graph G satisfying deg(G) � f0; 1; : : : ; kg. Then L is said to have the bounded degree property. 2Theorem 2.4 (see [13]) First-order logic has the bounded degree property. 2One may prove that certain general recursive queries, such as transitive closure, cannot be expressed in�rst-order logic. However, one may �nd that a very di�erent approach is needed to prove the same resultfor certain special cases of these queries, such as transitive closure of a chain. (This is in fact a class ofqueries that have the following property: when the input is a chain, they return its transitive closure).Using Theorem 2.4 many �rst-order inexpressibility results and their special cases can be proved in a simpleuniform manner. For example,Corollary 2.5 First-order logic cannot express the transitive closure of a chain.Proof. The degree set of a chain is f0; 1g. But the degree set of the transitive closure of a chain is f0; 1; : : : ; ng,where n is the length of the chain. Then the corollary follows by Theorem 2.4. 2Making use of Corollary 2.5, we can now present ourProof of Theorem 2.1. Let R be a single cycle and (x; y) be the edge to be removed. Assume that R+�(x;y) isde�nable in �rst-order logic. That is, there is a formula �[R;R+; x; y; u; v] such that for all u and v:(1) R+�(x;y)(u; v) i� �[R;R+; x; y; u; v]In this formula � every quanti�er is of form 8z 2 V or 9z 2 V where V is the set of nodes of R (and R+). As thetransitive closure of a single cycle is a complete graph, every R+(x0; y0) in �[R;R+; x; y; u; v] can be replaced by trueso that (1) continues to hold. This replacement results in a formula �0[R;x; y; u; v] in which R+ does not appear. Sowe have(2) R+�(x;y)(u; v) i� �0[R;x;y; u; v]Now, we prove that (2) implies that transitive closure of a chain is �rst-order de�nable. Let P be a binary relationsymbol to be interpreted as a chain. Let end(y0) be a �rst-order formula in terms of P saying that y0 has out-degreezero in P and let start(y0) be a �rst-order formula in terms of P saying that y0 has in-degree zero in P . De�ne�00[P;x; y; u; v] as �0[R;x; y; u; v] in which R(z; z0) is replaced by P (z; z0) _ (end(z) ^ start(z0)). Let �[P;u; v] be9x9y:end(x) ^ start(y) ^�00[P;x; y; u; v]. According to (2), if P is interpreted as a chain, then �[P;u; v] holds i�there is an edge from u to v in the transitive closure of a graph obtained from P by �rst inserting an edge from endto start and then deleting it. That is, i� there is an edge in the transitive closure of P . Hence, (2) implies that thetransitive closure of a chain can be expressed in �rst-order logic, contradicting Corollary 2.5. Thus R+�(x;y)(u; v) isnot �rst-order de�nable. 22.2 GeneralizationsOur proof is based on three assumptions. First, a query Q, whose unmaintainability we must prove, hasthe following property: whenever Q is applied to a chain, it produces the transitive closure of that chain.Database Programming Languages, 1995 3

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLSecond, the language must contain a sublanguage as expressive as �rst-order logic. Third, the transitiveclosure of a chain is not de�nable in the language. Summing up, we see from the proof of Theorem 2.1 thatthe following is true.Theorem 2.6 Let L be a language that contains a sublanguage as expressive as relational calculus, but thatcannot express the transitive closure of a chain. Let Q be any graph query that computes the transitive closureof a chain. Then it is impossible to write a query in L that, when applied to a binary relation R, an edge(x; y) in R, and Q(R), will produce Q(R� f(x; y)g). In other words, Q cannot be decrementally maintainedin L. 2One immediate application of this result is the impossibility of decremental recomputation of queries thatare simpler than transitive closure. Transitive closure together with �rst-order logic captures the complexityclass NLOGSPACE. Deterministic transitive closure, which closes paths whose nodes have outdegree one,captures the class DLOGSPACE, when added to the �rst-order logic [11]. Since deterministic and the usualtransitive closures are equivalent on chains, we obtainCorollary 2.7 It is impossible to recompute deterministic transitive closure decrementally using relationalcalculus. 22.3 Using Auxiliary RelationsOur negative result merely says that the transitive closure R+ of a relation R cannot be maintained usingrelational calculus when an edge (x; y) is removed from that relation. It says nothing about whether it ispossible to maintain R+ when some additional auxiliary relations are present.The availability of auxiliary relations { which must themselves be maintainable using relational calculusunder edge insertion and deletion { can make a di�erence. For example, Dong and Su [5] show that for aspecial kind of cyclic graphs R, where there is at most one path connecting any two vertices, R+ can bemaintained when an auxiliary relation storing a maximal acyclic subgraph of R is provided. However, thegeneral situation remains open.Open Problem 2.8 Is there a k-ary property AR of a binary relation R such that both R+�(x;y) andAR�f(x;y)g can be expressed using �rst-order formulae in terms of R, R+, AR, and (x; y)?Note that a property is required to be name-independent or generic: if AR(x1; : : : ; xn) holds, thenA�(R)(�(x1); : : : ; �(xn)) is required to hold for any automorphism � of R's nodes.For k = 1 (unary predicates), this problem is easily resolved.Theorem 2.9 There is no unary property AR of a binary relation R such that both R+�(x;y) and AR�f(x;y)gcan be expressed using �rst-order formulae in terms of R, R+, AR, and (x; y).Proof. Assume that R is a single cycle. Because of genericity, either AR holds for each node of R, or AR failsfor each node of R, for any single cycle R. Now, suppose the unary property AR exists and 	[R;R+;AR; x; y; u; v]is a �rst-order formula such that R+�(x;y)(u; v) i� 	[R;R+;AR; x; y; u; v]. Since R is a cycle, we can replace eachoccurrence of R+(v;w) by true obtaining �[R;AR; x; y; u; v] such that(3) R+�(x;y)(u; v) holds i� �[R;AR; x; y; u; v] holdsSince AR is generic, either fm j 9 single cycle R of length m such that AR holds for every node in Rg or fm j 9 singlecycle R of length m such that AR does not hold for any node in Rg is in�nite. Assume without loss of generality thatDatabase Programming Languages, 1995 4

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLthe former is the case. Then, for any m, there is a single cycle R of length �m such that AR holds for every node inR. Let �0 be obtained from � be replacing AR(v) by true. Then, according to (3), for in�nitely many non-isomorphicsingle cycles, R+�(x;y)(u; v) holds i� �0[R;x; y; u; v] where �0 now is a �rst-order formula.Using this fact and the same argument as in the second proof of Theorem 2.1, we obtain a �rst-order formula that,for in�nitely many non-isomorphic chains, computes their transitive closure. But this contradicts the bounded degreeproperty, thus proving the theorem. 2For the situation where the arity of auxiliary relations is 2 or greater, we can only resolve certain specialcases. For example, let ER(x; y; u; v) be a 4-ary property saying that every path in R from u to v must gothrough the edge (x; y), where x = u and y = v do not hold simultaneously. It is possible to maintain thetransitive closure of some cyclic relations using this ER. That is, R+�(x;y) can be de�ned in terms of R;R+,ER, and (x; y). However, we have to address the decremental maintenance of ER itself. Again, relationalcalculus does not provide us with su�cient expressive power to do so.Theorem 2.10 There exists a class of relations R such that neither R+ nor ER can be maintained decre-mentally.Proof. Consider the following relation R. Let R0 be a single cycle. R is obtained from it by adding two new nodes,x and y, the edge (x; y), and edges (z; x), (x;z), (z;y), (y; z) for all z on the cycle R0. Note that ER is empty becausethere are at least two alternative paths between any two nodes in R that are not connected by an edge.The inability to maintain R+ decrementally, given R, R+ and ER follows immediately. Since R+ is a completegraph and ER is empty, they can be safely replaced by constants. If the transitive closure of R were decrementallymaintainable, we could have written a �rst-order formula for calculating the transitive closure of a chain obtainedfrom R by deleting (x; y) and then any edge (z; z0) on the cycle. To see that this impossible, consider an arbitrarychain C with endpoints x and y, and de�ne the new graph R by making C � fx; yg into a cycle and adding edges(z;x), (x; z), (z;y), (y; z) for all z 2 C � fx; yg. Maintainability of R+ now implies that the transitive closure ofC � fx; yg is �rst-order de�nable, but this contradicts the bounded degree property.To show that ER cannot be maintained decrementally, note that if it were, we would be able to de�ne, in relationalcalculus, ER0 , for R0 a single cycle. Indeed, if such ER0 were de�nable, we would be able to de�ne the transitiveclosure of a chain by adding the edge from the end to the start to make a single cycle and then, for any two nodes xand y, checking if this added edge is on the path from x to y. 23 Recomputation of Recursive Queries in SQLIn the preceding sections, �rst-order logic was used as the ambient language. However, real database querylanguages are richer and more powerful than relational algebra. In particular, the de-facto practical querylanguage SQL has a GROUP-BY operator, arithmetic operators, and aggregate functions. These extraprimitives give these languages extra power; for example, they can test whether a set of numbers has evenor odd cardinality [12]. In this section, we consider decremental recomputation of transitive closure in thesemore practical languages. First, we de�ne a \theoretical SQL", which is a formally presented language thathas the main features that distinguish SQL from relational calculus. Then we prove analogs of our negativeresults for this language.3.1 A Theoretical Reconstruction of SQLAs we mentioned, there are two main features that make SQL more expressive that �rst-order logic. First,SQL allows nesting by using the GROUP-BY operator. Second, SQL has arithmetic operations and a numberof aggregate functions.Database Programming Languages, 1995 5

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLIt was proposed in [12] to use the language NRLaggr as a theoretical language to study the expressive powerof SQL. It is obtained from the nested relational algebra (which is a standard language for manipulatingcomplex objects, see [3, 4, 15]) by adding simple rational arithmetic operators +, �, �, and �; a summationconstruct P(f)(fx1; : : : ; xng) = f(x1) + : : :+ f(xn); and the usual linear order on rational numbers �rat.It was shown [12] that NRLaggr can express aggregate functions and grouping operations found in SQL.Moreover, the same paper showed that expressibility in NRLaggr is independent of the depth of nesting ofsets in intermediate data.This implies, under the normal semantics used in database query languages, that a query in NRLaggr over
at relations can always be translated into a query in �rst-order logic augmented with the same operators.In other words, NRLaggr and (most variations of) SQL coincide in expressible power, as far as
at relationsare concerned. Thus we can investigate decremental recomputation of recursive queries in the context ofNRLaggr instead.3.2 Expressive Power of SQLThe main result of this section is that decremental recomputation of transitive closure remains inexpressiblein NRLaggr. Our proof uses a �nite-co�niteness result in nested relational algebra [13], which says that itis impossible to de�ne a query in NRLaggr that distinguishes members of a family of graphs called k-multi-cycles.De�nition 3.1 A binary relation is called a k-multi-cycle if it is nonempty and is of the form shownbelow, where h � k and oji are all distinct. That is, it is a graph containing m � 1 unconnected cyclesof equal length h � k. Recall that the vertices come from a countably in�nite domain on which only theequality test is available. 2���	 @@@I6���� ���	 ??o11o12o13 o1h�1o1h om1@@@I6���� om2 omh�1omhom3.� � �Theorem 3.2 (see [13]) Let f be a Boolean query on graphs de�nable in NRLaggr. Then there is a k suchthat either f(R) is true for every k-multi-cycle R, or f(R) is false for every k-multi-cycle R. 2In essence, this theorem says that we cannot use NRLaggr to distinguish one k-multi-cycle from another,provided the cycles are su�ciently long. Note that this result remains valid even when we restrict ourselvesto subclasses of k-multi-cycles having some �xed number of cycles. For example, it continues to hold whenwe replaced k-multi-cycles by single cycles of length at least k. Many inexpressibility results can be obtainedfrom this theorem in a trivial manner. In particular,Corollary 3.3 NRLaggr is unable to express the transitive closure of a chain.Proof. Suppose the transitive closure of a chain can be expressed in this language. Then testing whether a graphis a chain can also be expressed in this language; see [13]. Then testing whether a k-multi-cycle contains exactly onecycle can be expressed, too. However, this contradicts Theorem 3.2. Therefore, the transitive closure of a chain isinexpressible in NRLaggr. 2Database Programming Languages, 1995 6

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLThe main result of this section follows immediately from Theorem 2.6 and Corollary 3.3.Theorem 3.4 It is impossible to recompute (deterministic) transitive closure decrementally in NRLaggr. 2One has to be careful when formulating an analog of Open Problem 2.8 for NRLaggr. If we simply askwhether it is possible to maintain transitive closure decrementally using additional space, the answer to thisquestion is positive. Indeed, as auxiliary object we store a (nested) relation that contains transitive closurefor each subrelation of R, together with a list of edges deleted from R to obtain this subrelation. Thentransitive closure can easily be recomputed. However, this naive approach requires exponential space. Westill do not know whether the following is true.Open Problem 3.5 Is it possible to recompute transitive closure decrementally in SQL using polynomialauxiliary space?One instance of this problem can be resolved using the methods as in the proof of Theorem 2.9.Theorem 3.6 There is no unary property AR of a binary relation R such that both R+�(x;y) and AR�f(x;y)gcan be expressed using NRLaggr in terms of R, R+, AR, and (x; y). 23.3 SQL vs Relational CalculusIn this subsection we compare the incremental evaluation power of NRLaggr with that of �rst-order logicand with that of NRLaggr without incremental evaluation. In particular, we provide an example query thatis expressible in the �rst language but not in the other two languages.The example is as follows. Let S and R be two arbitrary graphs. Let x and y be two arbitrary nodes in Sand R respectively. Does x reach more nodes than y? We denote this query by moreproli�cS;R(x; y).Proposition 3.7 Let S and R be two graphs. Let (u; v) be an edge to be inserted in S. Then1. moreproli�cS;R(s; t) is inexpressible in NRLaggr.2. S++(u;v) and moreproli�cS[f(u;v)g;R can be expressed in NRLaggr in terms of S, R, S+, R+, andmoreproli�cS;R.3. moreproli�cS[f(u;v)g;R cannot be expressed in �rst-order logic in terms of S, R, S+, R+, andmoreproli�cS;R.Proof.1. If R is a chain, then R+(x; y) i� moreproli�cR;R(x; y).2. We note that S++(u;v) is expressible in NRLaggr using (u; v) and S+. Then we use the following steps to testif (x;y) should be included in moreproli�cS[f(u;v)g;R. First, select from S++(u; v) the set of nodes reachablefrom x. Second, select from R+ the set of nodes reachable from y. Third, test if the cardinality of the �rst setexceeds that of the second step. This third and last step is expressible in NRLaggr.3. Let S and R be two complete graphs with S being smaller or equal in size to R. Then S+ and R+ arecomplete graphs and moreproli�cS;R is empty. Let u be a node in S and v be new. Then moreproli�cS[f(u;v)g;Ris nonempty i� S is equal in size to R. If the latter can be expressed in �rst-order logic in terms of (u; v), S,and R then so can the test of whether two sets are equal in cardinality, which is known to be inexpressible [9]in �rst-order logic. 2Database Programming Languages, 1995 7

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLTherefore, using NRLaggr in an incremental/decremental way does provide some desirable extra expressivepower.4 Context-Free Chain QueriesA frequently considered class of queries is the class of chain queries. Consider databases as labeled graphs. Achain query QL;G retrieves pairs of nodes between which there exists a walk (edge sequence, not necessarilya path) in G having some particular kind of label patterns speci�ed by a context-free set L. For example, forthe transitive closure query the patterns are speci�ed by the regular set fAn j n > 0g, where A is a uniquelabel.We also consider the same-generation query over a graph G having two label symbolsA and B. Such a graphcan be conveniently represented by two relations, one for edges labeled A and the other for edges labeledB, which need not be disjoint. We use A and B to name these two relations. Then we write SGA;B(x; y) i�there is a z such that there is a walk from x to z in A and a walk from z to y in B that are equal in length.The same-generation is a chain query; it is speci�ed by the context-free set fAnBn j n > 0g.It is known that every chain query whose label patterns are speci�ed by a regular set allows query recom-putation after insertion using �rst-order logic [6, 8]. It is open whether this is true for any chain querywhose label patterns are speci�ed by an arbitrary context-free set. The same-generation query, as a specialcase of a context-free set, is known to be unmaintainable using �rst-order logic under insertion of edges ifauxiliary relations are not allowed [8] and this remains true when unary auxiliary relations are allowed [7].A generalization of these two results to SQL-like languages is given in Section 5. It is an open problemif incremental maintenance of the same-generation query is possible when polynomial auxiliary space areallowed.The purpose of this section is to compare the complexity of decremental recomputation of transitive closurewith that of context-free chain queries, in particular, the same-generation query.De�nition 4.1 Given two graph queries, Q1 and Q2, we say that1. Q1 is strictly harder than Q2 if, whenever Q1 can be decrementally maintained in a language Lhaving relational calculus as a sublanguage, then so can Q2, and there is an in�nite class of graphs onwhich Q2 can be decrementally maintained in relational calculus, but Q1 cannot.2. Q1 is linearly easier than Q2 if there exists a linear function f such that Q1 can be decrementallymaintained with auxiliary relations of arity up to f(k) whenever Q2 can be decrementally maintainedwith auxiliary relations of arity up to k. 2Proposition 4.2 The same-generation query is strictly harder than the transitive closure query.Proof. The same-generation query over acyclic databases cannot be decrementally maintained using �rst-order logicwith at most unary auxiliary relations [7]. The transitive closure query over acyclic databases can be decrementallymaintained using �rst-order logic with no auxiliary relations [5]. To conclude the proof, observe that R+(x; y) i�SGR;f(v;v) j v is a node in Rg(x; y). That is, we use R as the A relation and f(v; v) j v is a node of Rg as the B relationof SGA;B. If we can maintain SGA;B, then we can clearly maintain R+. 2Theorem 4.3 The transitive closure query is linearly easier than every chain query QL;G, where L is in�-nite.Proof Sketch. Suppose L is an in�nite context-free set. Then by the pumping lemma, there exist strings �, �,
,�, � such that �� is not empty and the set f��n
�n� j n � 1g is contained in L. We maintain the transitive closureof R by maintaining the answer to QL;G using the reduction described below and depicted in Figure 1.Database Programming Languages, 1995 8

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLf-x y ����� �����f f f f ff f f f f? -- - ---f - � -�(b) Corresponding graph(a) An edge � �
(�̂,x) (�̂,x) (
̂,x) (�̂,x) (�̂,x)�� �
(�̂,y) (�̂,y) (
̂,y) (�̂,y) (�̂,y)� �Figure 1: Transforming graph for R+ to graph for QL;GFirst assume that �, �,
, �, and � are letters. Then we use �ve constants, named �̂, �̂,
̂, �̂, and �̂, to tag thenodes in R. Corresponding to each edge (x; y) in R, we have the edges given in Part (b) of the �gure. Let G be theresulting graph of this reduction.Clearly, this reduction can be maintained in �rst-order logic. Furthermore, R+(x;y) i� (1) x 6= y andQL;G((�̂; x); (�̂; y)), (2) x = y and R(x; y), or (3) x = y and there is z 6= x such that QL;G((�̂; x); (�̂; z)) andQL;G((�̂; z); (�̂; y)).From the above, the following upper bounds are clear. If the �rst-order logic formulae that maintain QL;G do notuse auxiliary relations, then the formulae for maintaining transitive closure constructed by this reduction need onlya 4-ary auxiliary relation. If the �rst-order logic formulae that maintain QL;G use at most k-ary auxiliary relations,then the formulae for maintaining transitive closure constructed by this reduction need at most 2k-ary auxiliaryrelations, plus a 4-ary auxiliary relation. Hence f can be taken to be a linear function dominating max(2k; 4).For the situation where the length of ��
�� is m and some of �, �,
, �, � is not a letter, we employ m di�erentconstants to tag the nodes of R using a similar construction, with minor adjustments if some of �, �,
, �, � is empty.2Finally, we observe that all the transformations employed earlier are �rst-order and thusCorollary 4.4 Analog of Theorem 4.3 holds when we use the
at fragment of NRLaggr instead of �rst-orderlogic. 25 Impossibility of Recomputation of Same-Generation in SQLIt was previously known that the same-generation query cannot be maintained, without auxiliary space,using �rst-order logic when edges are inserted or deleted [7]. These previous results were proved using gamesand thus cannot be extended to SQL-like languages.In this section, we give a further demonstration of the advantage of our technique. We extend the aboveresults to any language that contains �rst-order logic as a sublanguage but is �nite-co�nite on single-cyclequeries. Then the inability of SQL to maintain the same-generation query without auxiliary space falls outas an immediate corollary.De�nition 5.1 A language L is called cycle-simple if it contains relational calculus as a sublanguage butcannot express properties of single cycles that are both in�nite and coin�nite. That is, for any Booleanquery f in L, there exists a number n such that either f is true for any single cycle of length � n, or f isfalse for any single cycle of length � n. 2Database Programming Languages, 1995 9

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLLet us �rst obtain a property on a special kind of graphs called two-chain graph that is true of any cycle-simple language.De�nition 5.2 A two-chain graph is a graph consisting of two unconnected chains. 2Let P be the following property of two-chain graphs: If lengths of two chains are n and m, then eithern = m, or n = m � 2, or n = m+ 2.Proposition 5.3 Let L be a cycle-simple language. Then L cannot test the property P of two-chain graphs.Proof. Note that a single cycle G of length more than 6 is of even length i� the following is true. There arenon-consecutive edges in G such that removal of them from G results in a two-chain graph satisfying P . Thus, if Pwere L-de�nable, being of even length can be tested on single cycles of length more than 6 as follows:9x9y9u9v:E(x; y)&E(u; v)&:E(y; u)&:E(v; x)&:(x= u)&:(y = v)&P (E0)where E0(z;w) is E(z;w) ^ :((z = x&w = y) _ (z = u&w = v)). But this contradicts the cycle-simplicity of L. 2Using this result, we can prove that such a language L cannot increment the same-generation query.Theorem 5.4 Let L be a cycle-simple language. Then it cannot maintain the same-generation query underedge insertion without using auxiliary relations.Proof. Let Rc denote the graph obtained by reversing the edges in R. That is, Rc(u; v) i� R(v; u). Consider thetwo-chain graph R depicted below. Then SGR;Rc is a diagonal graph. That is SGR;Rc (u; v) i� u = v and u is a nodeof R. - -. -. -- -. -. -y0 y1 ymx0 x1 xnSuppose L can maintain the same-generation query when edges are inserted. Then we have a formula�[SGR;Rc ;R; x; y; u; v] in L such that SGR[f(x;y)g;Rc[f(y;x)g(u; v) i� �[SGR;Rc ;R; x; y; u; v].Since SGR;Rc is a diagonal, every occurrence of SGR;Rc (x0; y0) in �[SGR;Rc ;R; x; y; u; v] can be replaced by the formula(x0 = y0) ^ (9z0:R(x0; z0) _ R(z0; x0)). So we obtain a formula �0[R; x;y; u; v] in which SGR;Rc does not appear suchthat SGR[f(x;y)g;Rc[f(y;x)g(u; v) i� �0[R;x; y; u; v].Now consider the following formula 	(u; v):[:9w:E(u;w)] & [9w:E(v;w)] & [8w:(E(v;w)! (:(w = u)&(:9w0:E(w;w0))))]This formula says that u is an endpoint (has outdegree zero), and v is a predecessor of an endpoint di�erent from u.Let start(x) be :9w:E(w;x). Consider the sentence� � 9x09y09u9v:start(x0) & start(y0) & :(x0 = y0)& 	(u; v) & (�0[R;x0; y0; u; v] _�0[R; y0; x0; u; v])This sentence is satis�ed by the two-chain graph R shown above i� one of the following holds.(a) In a graph obtained from R by adding (x0; y0), either xn�1 and ym are of the same generation (then n =m+2)or ym�1 and xn are of the same generation (then n =m); orDatabase Programming Languages, 1995 10

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQL(b) In a graph obtained from R by adding (y0; x0), either xn�1 and ym are of the same generation (then n = m)or ym�1 and xn are of the same generation (then m = n+ 2).In other words, � holds i� R has the property P . Since L contains a sublanguage equivalent to the relational calculusand all transformations above are �rst-order, we conclude that under the assumption that SG is incrementallymaintainable, L can test the property P . But this contradicts proposition 5.3. This proves the theorem. 2Not only is L unable to maintain the same-generation query under edge insertion, it is also unable to maintainthe same-generation query under edge deletion.Theorem 5.5 Let L be a language that contains relational calculus as a sublanguage but cannot expressthe transitive closure of a chain. Then it cannot maintain the same-generation query under edge deletionwithout using auxiliary relations.Proof sketch. Suppose R is a single cycle having an odd number of edges. Then it is easy to see that SGR;Ris a complete graph. Consider deleting an edge (x; y) from R. Notice that the transitive closure of the chainR � f(x; y)g is expressible as R+�(x;y)(u; v) i� SGR�f(x;y)g;R�f(x;y)g(u; v), or SGR�f(x;y)g;R�f(x;y)g(u; z) and R(z; v)and (z;v) 6= (x; y), or R(u; v) and (x; y) 6= (u; v).If L can maintain the same-generation query when edges are deleted, then we have a formula �[R;SGR;R; x; y; u; v]in L such that for all u and v:(4) SGR�f(x;y)g;R�f(x;y)g(u; v) i� �[R;SGR;R; x; y; u; v]Since SGR;R is a complete graph, we can replace every occurrence of SGR;R(x0; y0) by true so that (4) contin-ues to hold. This replacement results in a formula �0[R;x;y; u; v] in which SGR;R does not appear. So we haveSGR�f(x;y)g;R�f(x;y)g(u; v) i� �0[R;x; y; u; v]. This implies that the transitive closure of the chain R� f(x;y)g is de-�nable in L. It is not hard to show that then transitive closure of any chain is de�nable in L, which is a contradiction.2Combining Theorem 5.4, Theorem 3.2, Theorem 5.5, and Corollary 3.3, we conclude that SQL-like languagescannot maintain the same-generation query under insertion and deletion of edges.Corollary 5.6 NRLaggr cannot maintain the same-generation query under insertion and deletion of edgeswithout using auxiliary relations. 26 RemarksOur proof of impossibility of decremental maintenance of transitive closure assumes the existence of aformula that decrements transitive closure. It then analyzes this formula under the assumption that therelation supplied is a single cycle. By making this assumption, it is allowed to simplify the formula. Theresultant is a formula that expresses a query that is shown to be inexpressible in �rst-order logic.An additional interest in this proof is its use of a recently-developed general result called the bounded degreeproperty [13]. More signi�cantly, it generalizes naturally to powerful and practical SQL-like languages bysubstituting the bounded degree property of �rst-order logic with the �nite-co�niteness of queries on k-multi-cycles in these augmented languages [13].The ease of extension from proofs for �rst-order logic to SQL-like languages is a major distinguishing featureof the techniques in this paper from that of Dong and Su [7]. One advantage of the techniques here isthat they extend to SQL-like languages having arithmetics and aggregate functions readily, whereas thegames technique [7] does not. In Section 5 we demonstrated this advantage again and proved that thesame-generation query cannot be maintained using an SQL-like language when edges are added or deleted.Database Programming Languages, 1995 11

On Impossibility of Decremental Recomputation of Recursive Queries in Relational Calculus and SQLFinally, the general case of maintaining transitive closure under edge deletion where no limit is placed onauxiliary relations (or polynomial space limit is placed in the case of nested relations) remains an interestingunsolved problem.Acknowledgements. Wong was supported in part by the Real World Computing Novel Function Labo-ratory at the Institute of Systems Science. Wong would also like to thank the University of Melbourne andfellow coauthor Dong for their hospitality during this work. Dong would like to acknowledge the support ofthe Australian Research Council.References[1] A. Aho and J. Ullman. Universality of data retrieval languages. In Proceedings 6th Symposium on Principles ofProgramming Languages, Texas, January 1979, pages 110{120, 1979.[2] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Proceedings of 3rdInternational Workshop on Database Programming Languages, Naphlion, Greece, pages 9{19. Morgan Kaufmann,August 1991.[3] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In Proceedings of 4thInternational Conference on Database Theory, Berlin, Germany, pages 140{154, October 1992.[4] L. S. Colby. A recursive algebra for nested relations. Information Systems, 15(5):567{582, 1990.[5] G. Dong and J. Su. Incremental and decremental evaluation of transitive closure by �rst-order queries. Informationand Computation; to appear. Preliminary version appeared in 1993 in the Proceedings of 16th Australian ComputerScience Conference.[6] G. Dong and R. Topor. Incremental evaluation of datalog queries. In LNCS 646: Proceedings of 4th InternationalConference on Database Theory, Berlin, Germany, October 1992, pages 282{296.[7] G. Dong and J. Su. Space-bounded FOIES. In Proceedings of 14th ACM Symposium on Principles of DatabaseSystems, San Jose, California, May 1995, pages 139{150.[8] G. Dong, J. Su, and R. Topor. Nonrecursive incremental evaluation of Datalog queries. Annals of Mathematicsand Arti�cial Intelligence; to appear.[9] H. Enderton. A Mathematical Introduction to Logic. Academic Press, San Diego, 1972.[10] H. Gaifman. On local and non-local properties. In Proceedings of the Herbrand Symposium, Logic Colloquium'81, pages 105{135. North Holland, 1982.[11] N. Immerman. Languages that capture complexity classes. SIAM Journal of Computing, 16:760{778, 1987.[12] L. Libkin and L. Wong. Aggregate functions, conservative extension, and linear orders. In Proceedings of 4thInternational Workshop on Database Programming Languages, New York, pages 282-294, August 1993.[13] L. Libkin and L. Wong. New techniques for studying set languages, bag languages, and aggregate functions. InProceedings of 13th ACM Symposium on Principles of Database Systems, Minneapolis, Minnesota, pages 155{166,May 1994.[14] S. Patnaik and N. Immerman. Dyn-FO: A parallel dynamic complexity class. In Proceedings of 13th ACMSymposium on Principles of Database Systems, Minneapolis, Minnesota, pages 210{221, May 1994.[15] H.-J. Schek and M. H. Scholl. The relational model with relation-valued attributes. Information Systems,11(2):137{147, 1986.
Database Programming Languages, 1995 12

