adomp(Q(A)) € A and, furthermore, all numbers produced by the counting
formulae in the encoding are below max.

The latter requires verification in the case of summation and product opera-
tions. We know that any number produced in the process of evaluation of ¢} on
Alisat most N = n”" ' for appropriately chosen C;. Thus, the encodings of fixed
length tuples of such elements are bounded by a value of some polynomial in N,

that is, by n™" for some C. For the Gédel encoding, we need upper bound on
the values P = 2% . .. ~pfr where p, is the rth prime, and both k, and r are
at most N. Thus, P is at most p%2. Since there exists a constant d such that
pr < dklogk [20], we obtain

Cs

2n
Cf 2n

) — ann

Cf+ncf

P < (NN < d(n”

which shows that there exists a constant such that P < n?"" . This completes
the proof that there exists a function ¢ such that ¥(@, ¢) defines Q(A) on inputs
satisfying (x4[As]). Since test, is a conjunct of ¥(Q, ¢), on inputs not satisfying
(%g[As]), ¥(Q, g) produces the empty set.

This completes the proof that @, is definable by an O + COUNT formula
U(Q, g) if the active domain of A has at least two elements.

Finally, we consider the case when the active domain of A is empty or has
one element. In the first case the output is empty as well (we do not have access
to the individual constants in D), and in the second case it is either (a) empty,
or (b) has a single tuple (a,...,a) where a is the unique element of the active
domain. Thus, in the case (a) the formula ¢(Z) encoding @, for arbitrary A is
defined by

[Fedy.adomg(z) A adoma(y) A—(z =y)] A ¥(Q,9)(Z)
and in the case (b), ¥(z1,..., zm) is given by

(Jz.adom 4 ()
A [ (Flzadomy(z) A AL, (2 = z))
V (Jedy.adomg(z) A adoma(y) A —(z = y) AT(Q, ¢)(D)) ]

This completes the proof of Proposition 8. a

This article was processed using the #TEX macro package with LLNCS style



v is an encoding of some set, in_sef(m,v) means that m is in the set given by its

encoding v, good(m) means that m is the encoding of a valid triple (N;, 1, ¢;1),

and nothing_missed(v) meaning that when v is decoded all the way to the set of

the form above, there is a triple (N, j, -) for each N; and each 1 < j < m;.
With this, we define encodes_good_set(v) as

is_enc(v) N nothing_missed(v) N VYm.in_set(m,v) — good(m).

The Gédel encoding of aset {kyi,..., k,} with ky < ... < k,is 251352 .pkr
where p, 1s the rth prime. Thus, a number V is an encoding if, whenever divisible
by a prime p, is divisible by any other prime p’ < p, and for m’, m which are the
largest numbers such that V' is divisible by (p’)ml and p™, it holds that m’ < m.
This is clearly definable in FO 4+ COUNT, using the formula factor produced
earlier.

To check if m 1s in the set encoded by v we therefore look for a prime p such
that v is divisible by p™ but not by p™*!. Assuming formulae prime testing for
prime and div(z,y) as a an abbreviation for 3z.z % y = z, we write in_set(m, v)
as

Ip3z.prime(p) A div(v, 2) A exp(p,m, 2) A (V2’2" = 2% p — =div(v, 2)).

To define good(m), we must check the existence of (n,j, k) such that m
encodes (n, j, k) with respect to the same base as in the case of summation, and
such

1. that n is a value of f on X (that is, IZ.R(Z) A ¢;(#, n)), and

2. that the number of & € X such that ¢(Z, n) holds is at least j (this can
done in FO + COUNT by counting tuples in exactly the same way we did
it in the case of summation), and

3. that £ < n.

Finally, to express nothing_missed(v), we have to check that for every n which
is a value of f on some ¥ € X and which has multiplicity m in Xy, it is the case
that all triples (n, j, ) for 1 < j < m are present; that is, for each n and each m
as above, and each 1 < j < m, there exists a number that codes (n, j, k) for some
k. Using the fact the we can count tuples, we conclude that nothing_missed(v)
can be expressed in FO + COUNT. This completes the encoding of [][f].

This completes the description of the encoding of AGGRas: primitives. To
encode a query (2, we assume that at the first step, when the function operates
on the input structure A, we use the symbols of ¢ instead of S;s. Then, for each
composition, we generate a fresh set of relation symbols. Thus, the encoding of
@ is an FO + COUNT formula in the language o U {S}.

Given a relational query ¢ in AGGRgat, the function g, and the encoding g
of @, we encode Q, as U(Q, g) = g A test,.

Now a straightforward proof by induction on the structure of ¢ shows that
U(Q, ), when given an input Ag satisfying (x,[.As]) for an appropriately chosen
constant ¢, and having at least two elements in A, defines Q(.A). This is because



Encoding [][f]

The final case is that of [][f]. Before explaining a rather complex encoding
scheme, we present it informally.

Assume that we have a set X = {Z1,...,Zx}, and let n;, = f(Z;). Let
M =T]If1(X). Then M is the number of k-element bags B = {n}, ..., n} such
that 1 < n} < n; for all i.

To find the number of such bags, we have to find their set representation first.
Represent the bag {ny,...,n;} as a set of pairs Xog = {(N1,my),...,(Ns,m,)}
where N;s are among n;s and m;s are their multiplicities. Assume that N; <
oo < Ny

Then the number of bags B = {n},...,n%k} with 1 <n} <n;is

5

Moo= [N

i=1

We next consider sets of the form

Such a set can be visualized as

(N1, 1, e11), (N1,2,¢12), ..., (N1, m1, ¢im,)
(Nsa 1acsl)a (NsaQaCSZ)a ceey (NSamSacsms)

where 1 < ¢;; < N;. It can be easily seen that the number of such sets is M.
Thus, we have to count to the number of sets above.

Suppose we can write a formula that says that a given set Y is of the form
above. Next step is to transform Y into a set Y/ = {ey,... e;} where each ¢;
is an encoding (as in the summation case) of a triple (N;,{, ¢;1). As before, the
encoding is relative to N, where N is given by Lemma 10, and is definable in
FO + COUNT. Given such a set, we define its Godel encoding, to represent it
as a number. Finally, M is the number of numbers (represented as elements of
S) that are Godel encodings of such sets.

We now describe the formula that defines M. By now, the reader must be
convinced that any arithmetic on numbers can be transferred to the elements
of S, so we shall now use those elements of S instead of second-sort variables.
This will make the notation somewhat more bearable. The reader should be able
to see easily how to do everything rigorously by using counting quantifiers and
formulae is(x, 7).

We define
1/)H[f](x) = Jiis(x, i) A Fliv.encodes_good_set(v),

where encodes_good_set(v) means that v is a Godel encoding of a set of the form
shown above. To define this, we assume four other formulae: is_enc(v) means that



Encoding > [f]

Now we consider the case of the summation operator. Assume for the moment
that we can write a formula 3iZ.¢(Z) meaning there are at least ¢ vectors satis-
fying ¢. Then we can also define 31i#.(#), which gives us the encoding of 20

as follows:

1/’Z[f](z) = 3i.(3%(Z, y,v).SH(F) A (Z,9) A S(v,y)) A Fiv.S(v, 2).

This formula is saying that z is the ith element in S, where ¢ is the number of
tuples (Z,y, v) such that Z is in the input relation S!, y is the jth element of S
where j = f(#) and v is under y in S. Tt is easy to see that the number of such
tuples is exactly Y [f](S1).

Thus, it remains to show how to count tuples, provided that the number
of such tuples does not exceed max. Note that for the summation, we need to
count tuples of arity up to m-+2, where m is the maximum arity of a record that
can occur in the process of evaluating ). We show below how to count pairs;
counting tuples is similar (only the encoding scheme changes).

To define x(¢) = Ji(x, y).o(x, y), we first define

a(z,xg) = Fk.[Nky.p(x,y) Aadomg(zg) A Tkv.S(v, 20)].

Thus, a(x,zg) holds iff ¢ represents the number of y such that ¢(x,y) holds.
Next, define

Bxo,y0) = Fj.[Fljz.a(z, wo) Aadoms(yo) A Iljv.S(v, yo)].

Now we see that x(¢) holds iff
1< Z(k *j | B(xo,yo) holds, xq represents k, yo represents j) = G(7).

Thus, if we have a formula encq(xq, 22, 23,24, N, z) that encodes 4-tuples
(21,22, 23,24) of numbers under N (that is, z is the encoding), where N is
nCs (

n the maximal number that can occur in the process of evaluating @), we

define
(1) = Fiz.3woTyoTe' Iy cenca(zo, yo, &', ¥, N, 2)AB(x0, yo)AS(2', 20)AS(Y, vo)-

(Note that N is definable.) That is, we count the number of elements that code
4-tuples (zo,yo, #’,y') such that F(xy, yo) holds, ' is under z¢ in S and ¢’ is
under yp in S. It is easy to see that the number of such zs is precisely G(7).

It is easy to extend this technique to counting m-tuples by counting m — 1-
tuples (by «) first; in particular, one can see that in such a counting one never
needs enc,, for m > 4.



That is, if the root does not exists, we return 0. For repr we use

1/)repr(l‘, v, ', y')
= (3i, ¢, 4,5 Lis(e, ) Nis(2’ ) Nis(y, ) ANis(y, JOA T =ixj ANl = j*i)
AYzo(div(z', z) = div(y, 2)).
Note that we have to compute the product of two numbers; thus, the size of S
must be at least the square of maximum possible number that can be encountered
in evaluating (). We shall see later when we determine the function g that this
is the case, and thus we can use the formula above.
The order on N is given by

te(x,y,2z) = adomg(z) Aadoms(y) A S(x,y) A—=Fv.S(v, z)
The equality test is similarly defined:
Y=(x,y,z) = (x =y)Aadomg(z) A -Ty.S(y, z).

The operations on sets are very simple: for example, union is encoded as ¥y (Z) =
SH(Z) v S%(2) (recall that S* and S? are symbols in the signature 7 );

1/’empty(z) = —37.S1(&) A adomg(2) A =Ty.S(y, z).

For the singleton, we have ¢, (2, y) = (¢ = y). The encoding of cartprod depends
on the arities of types involved and their number. In general, we define

Veartproa,(F) = 31 ... AZ,.SHE) A AS"(Fn) AX(Fy, ..., B, F)
where x(#1,...,%,, #) is a formula in the language of equality stating that # is
concatenation of 1, ..., Z,.

The encoding of K{} is simply false.
To encode exts[f], we use ¢y encoding f and obtain

Verto((F:2) = 7.5 Ay (F,7, )
in the case when the first argument of f is a record type, and
1/’eztz[f](g) = 31‘751(37) ANYp(¥, 7)
in the case when the first argument is a set; then the formula ¢ encoding f

uses the symbol S? for that set.
Below we treat the two most complex cases: > [f] and [][f].



With each sequence 7 = ({t1},...,{tm}), where t;s are record types, we
associate a signature 7Tz that consists of m relational symbols S, 8™, with
S* having arity w;. (At each step of the process of encoding, we shall assume a
fresh collection of relation symbols.) By o(7) we denote the disjoint union of o,
{5}, and Tgg.

Now we consider two cases.

Case 1:tis b or N. Then f is encoded as a formula ¢; (Z, ¢, z) in the language
o(7T), where & has [ elements and § has & elements. The condition on ¢ is the
following.

Assume that B is an object of type {¢1} x ... x {¢;n} that is Ag-compatible.
Let B’ be the o(7) structure that consists of Ag and B4, (interpreting symbols
in Tgig). Let & and i be Ag-compatible. Then, for every Ag-compatible z, it is
the case that

z=f(Z,y,B) ifandonlyif B ¢ (%, 4, 24s)

Case 2: t is {u} where u is a record type with arity w. Then f is encoded
as a formula ¢; (%, ¥, 7) in the language ¢(7), where ¥ and ¥ are as before, and
7 is a w-vector of variables of the first sort. The condition is that, for every
Ag-compatible #, ¢ and B as above, the set

is Ag-compatible, and

{5E(AUS)U) |B/':1/)f(fa37¢45agj} = ZAS'

If ¢ is a product of types, we encode f as the tuple of encodings of all pro-
jections.

We now show how to encode AGGRga: expressions so that the conditions 1
and 2 above are satisfied. First, note that composition is rather straightforward
and essentially corresponds to substitution. Next, consider natural arithmetic.

The function K0 is encoded as

YKo(-, ) = adomg(z) A ~3y.S(y, z);
that is, x is the smallest element of S. Similarly,

Yr1(-, ¢) = adomg(z) A Jly.S(y, z)
The encoding of operations on N is straightforward:

Viple,y,z) = adomg(z) A adomg(y) A adomg(z)
YT 333k (is(x, 1) Ats(y, §) Ais(z, k) A (i + j = k),

and similarly for other %, ~and ezp (since we know how to define exp). For root,
we use

Yroot(X, Yy, 2) = exp(z,y,2) V (mexp(z,y, ) A =TFv.5(v, 2))



exp,(z,y,z) = VpVa.factor(p,a,z) —
(3634, 7, k.is(b,?) Ais(y, j) Alis(a, k) Ai = jxk A factor(p, b, 2))

expy(x,y,2) = VpYa.factor(p,a, z) — b.factor(p, b, x)

With this formula exzp, we can define the condition that card(C') > g(card(A4))
as

Xy = JzTy.[(adomg(z) A (Fi.is(x, 1) A Fliv.adom4(v))) A (Fv.S(y, v)) A X' (=, y)],

where y/(z,y) expresses the condition that card(C) > g(card(A)) as the con-
junction of first-order formula stating that C has at least ¢ elements, and for the
cth element, denoted by z., the following holds:

vy Fve.(adomg(v1) A adomg(va)) A (exp(x, 2o, v1) A exp(r, v, v2) A exp(a, v2, y))

That is, y represents the value of ¢ on x (which is the cardinality of A4), and
there 1s an element S-bigger than y, that ensures strict inequality.
Finally, we use

test, = LIN(S) A (Vx.adomy(x) — —adomg(x)) A x,

to test for (x,[As]).

Thus, for the rest of the proof, we assume that the input structure satisfies
(%4[As]). If we produce ab FO + COUNT formula ¢ that defines @, on such
structures, the formula that defines @ on all structures is simply ¥ A test,.

We now explain the encoding of objects and AGGRg,: functions. The encoding
is relative to the input structure Ag. We assume that the first sort is the carrier
of the finite structure (Ag in our case); thus, elements of type b are encoded by
themselves. Each element of type NN, that is, a natural number n, is encoded by
¢n € C such that card({x | S(x,¢,)}) = n. Note that we do not use the second
sort in the encoding; natural numbers are still encoded as elements of the first
sort, and the counting power of FO 4+ COUNT is only used in simulation of
functions.

Suppose we have a function f of type s — ¢. Then s is a product of record
types and types of the form {s'} where s’ is a record type. Without loss of
generality (and keeping the notation simple) we list types not under the set
brackets first; that is, s is

b! x NF < {81} x ..o x {t )

where ¢4, ..., 1, are record types, ¢; being the product of w; base types. We also
assume that ¢ is either b, or N, or {u}, where u is a record type, since functions
into product of types will be modeled by tuples of formulae.

Let # be an arbitrary object. We say that x is Ag-compatibleif adomp(2) C A
and ¢ < card(C) for any i € adompy(x). If this is the case, by z4. we denote
an object obtained from « by replacing each natural number n that occurs in z
with ¢,; its type is then obtained from the type of « by replacing each N with
b.



where ¢ is a constant to be determined later. We claim that there exists a constant
¢ such that @), is definable in 7O 4+ COUNT.

The idea of the encoding is that a number n is represented by the element
¢n € C such that the cardinality of {x | S(#,¢,)} is n. Then the counting power
of FO + COUNT is applied to the relation S. The size of C', given by ¢, turns
out to be sufficient to model all arithmetic that is needed in order to evaluate
Q.

Given a o U {S}-structure Ag (where S is the extra binary relation) and
a number k, it is possible to write an FO 4+ COUNT formula that checks if
(#4[As]) holds where g is of the form above. Indeed, we first notice that there
are first-order formulae adom4(z) and adomg(z) that test if z is in the carrier
of A (that is, x € A), or x is a node in the binary relation S (that is, z € C).
For example, adomg(z) = Jy.S(y, ) V S(x,y). Also, there exists a first-order
formula LIN(S) stating that S is a linear order.

We next claim that there is an FO+ COUNT definable predicate ezp(z,y, z)
that holds iff z,y,z € C and z¥ = z; that is, exp represents the graph of
exponentiation, where n is encoded by ¢, € C such that the cardinality of
{x | S(x,¢cn)} is n. We use the notation #¥ = z, but strictly speaking we mean
that for numbers ¢, j, k represented by z,y, z we have # = k; in what follows we
shall often write arithmetic formulae on the elements of C', to keep the notation
simpler. We use the shorthand is(x, ) for éy.S(y, ©); that is, is(x, i) means that
x represents the number 3.

To show that exzp is definable, first notice that there is a formula pow(z, y)
stating that z is a power of y, provided ¢ is prime:

pow(z,y) = Fidj.[is(x, i) Ais(y, j) A (VEVLkxl =i — (k =1V (T k" * j = k)))]
Now exp,,,.(z,y, ) defined as
exp,,(z,y,2) = pow(z,y) AFiTjfis(y, ) A(j = i+ 1) Aljv.(pow(z,v) A S(v, 2))]

states that #¥ = z for y prime. That 1s, e:pppr(x, y,z) if z is a power fo z, and
the number of powers of # that do not exceed z is y + 1.
Now we define two new formulae:

div(a,b) = 3,4, kJu.is(a, i) Ais(b, j) Nis(u, k) ANi=j+k

prime(p) = YuVvi.(S(u,p) Ais(u, 7)) — (i = 1V ~div(p, u))
That is, div(a, b) says that a is divisible by b, and prime(p) says that p is prime.
Next, we define factor(p, a,x) meaning that p is prime, p® divides x, but po*!
does not divide x:
factor(p, a, z) = prime(p) A Jv. [S(v,z) A exp,.(p,a,v) A div(z, v)A
YwVi, j, k.(is(w, i) Nis(v, j) ANis(p, k) A i = j* k — div(z, w))]

With this, we finally define exp(z,y, z) as exp,(x,y,z) A expy(z,y, z) where



and sizep(f,x), sizey(f,z), and size(f,z) as their cardinalities. That is,
adomp,(f, ) is the set of all elements of D that occur in the process of eval-
uating of f on #, and adomp(f, ) is the set of all natural numbers that occur
in this process.

Since all operations in AGGRgat except exp, root, and [][f] can be evalu-
ated in polynomial time (cf. [4, 12, 17]), and those that cannot be evaluated in
polynomial time produce a single number, we obtain:

Lemma9. For any AGGRaa; expression f, there exists a constant ky such that
for any object x with size(x) = n > 1, on which f is defined,

size(f,x) < n*7.
From this lemma, by a simple structural induction on AGGRgat: expressions,
we prove the following.

Lemmal0. For any AGGRaa; expression f, there exists a constant C; such
that for any object x with size(x) = n > 1, on which f is defined, and for every
m € adomy(f, z), it is the case that

m < n"’

In particular, if f is a relational query, we obtain m < n” " for any m €
adomy(f, ), where n = sizep (). This gives us an upper bound on any natural
number that can be encountered in the process of evaluating f on .

For the rest of the proof, we assume that any input to a relational query has
size at least 2. At the end of the proof we shall explain how to deal with empty
and one-element active domains.

Given a number N > 1, we call a function ency,(ay,...,am) an encoding
relative to N if it uniquely encodes m-tuples of natural numbers less than N;
that is, @ # I;implies encm (@) # encp(b), whenever all components of @ and
b are below N. Such a function can be chosen so that it is a polynomial in
ai, ..., am, N and its values are less than N' for some . For example, encs can
be defined as enca(a,b) = aN +b; thus, its values do not exceed N?+ N and are
thus less than N3. To encode m-tuples, we just apply encs to the first component
and an encoding of the remaining m — 1-tuple.

According to [8], the predicates +(¢,j, k) and *(7,j, k) meaning ¢ + j = k
and ¢ * j = k are definable in FO 4+ COUNT, as long as i, j, k are elements
of the second sort under max. Thus, we shall use polynomial (in)equalities in
FO + COUNT formulae. For example, the parity test can be rewritten as

FkTik + k =i A iz.p(x).

The encoding

Let @ be a relational query in AGGRgy;. We define g as
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Appendix: Proof of Proposition 8

Preliminaries

We start with a few definitions. Given an object #, adomp () and adomp(z) stand
for the active domains of type b and N of z, respectively. That is, adomp ()
is the set of all elements of D (the domain of type b) that occur in z; and
adomp(x) is the set of all natural numbers that occur in z. We use adom(z) for
adomy, (2) Uadomp(x). We also assume that D and N are disjoint. The cardinali-
ties of adomp(z), adomy(x), and adom(z) are denoted by sizep(z), sizey(z), and
size() respectively.

Given an AGGRgq; function f and an object #, we define the set Int_res(f, z)

of intermediate results of evaluation of f on = as

Int_res(g, h(x)) U Int_res(h,z) if f=goh;
Intres(fi, 2)U ... Ulntres(f, 2) if f=(f1,..., fn);
{e}U{f(2)} UU, e, Intres(g, y) if f = 3"[g] or f = T][g];

{(X,Y)H)PU{A(X, Y)Y Uer Int_res(g, (X,y)) if f = exts]g] and » = (X, Y);

{z, f(z)} otherwise.

Intuitively, Int_res(f, ) contains all intermediate results obtained in the process
of evaluating f on z.

We now define

adomp(f, z) = U adomp,(y).

y€lnt_res(f,z)

adomy(f,z) = U adompy(y),

y€lnt_res(f,z)
adom(f, x) = adomp(f, x) U adomy(f, z),



more, such an extension must possess nice model-theoretic properties as to
be applicable to the study of expressiveness of languages with aggregation.
Note that FO 4+ COUNT is not a good candidate. We have seen that the
encoding in FO 4+ COUNT is quite an unpleasant one, but we had to use
FO + COUNT because of its nice known properties.

CHALLENGE 2 Find techniques that extend the results to ordered databases.

By this, we mean having an order relation on the elements of the base type,
not only on rational (or natural) numbers.

The results on expressive power of relational calculus extend to the ordered
setting. To be able to state results about reallanguages with aggregates, we
must deal with the ordered case. However, none of the tools developed for
logics such as FO + COUNT gives us any hints as to how to approach the
ordered case.
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Let @4 be local. Let r be its locality rank. Let the input structure to ) be
A. Let @ %;4 I;, where @ and b are m-vectors of elements of A. Let n = card(A)
and let C' be a subset of D such that C N A =0 and card(C) > g(n). Let S be
an arbitrary linear ordering on C'. We define Ag as A extended with the binary
relation S. Since SZ;‘S (@) does not contain any element of C', and neither does
SZ;‘S (E) for any d, we obtain @ ~z*s b. Thus by the locality of @, @ € Q4(As) iff
be Q4(As). Since all the conditions in (x,4[As]) hold, we have Q,(As) = Q(A).
Hence, d@ € Q(A) iff be Q(A), which proves that @ is local, and its locality rank
s at most r. ad

7 Conclusion

We have proved the most powerful result so far that gives us expressiveness
bounds for relational queries with aggregation. In particular, recursive queries
such as transitive closure are not definable with the help of grouping, summation,
and product over columns, and standard rational arithmetic.

After our PODS’94 paper in which inexpressibility of transitive closure in
a weaker language was proved, there was a renewed activity in the area that
resulted in 3 papers, improving both results and techniques: [6], presented at
ICDT’97, [16], presented at LICS’97 paper, and this paper. So one may ask if
this 1s the end of the story.

We believe that, to the contrary, this work is very far from being completed.
Until very recently, it was widely believed that counting formalisms developed
in finite-model theory are a wrong way to approach the problem of aggregation.
We hope to have convinced the reader that this is not necessarily the case, and
logics with counting are useful. The connection though is not lying on the very
surface, as the encoding is not completely trivial. A possible reason why it took a
number of years to apply logics with counting to the study of query languages is
that, until recently, very few tools for FO 4+ COUNT were available. The games
of Immerman and Lander [15] were essentially the only such tool, and these
are not convenient to use. The best known separation result proved via games
was the one from the conference version of Etessami’s paper [8]. It required a
complicated combinatorial argument, even though the structures are extremely
simple. Tools like those suggested in [16, 21] simplify the proofs considerably,
as was demonstrated in [8, 16]. This makes first-order logic with counting much
more attractive as a tool for studying aggregation.

But there is still a long way to go. For example, it seems likely that the class of
allowed arithmetic functions and predicates should not affect the expressibility
of, say, transitive closure. However, first-order logic with counting, which we
used for encoding, limits the arithmetic operations. We finish the paper with
two main challenges that we believe must be addressed to develop a good finite-
model theory counterpart for languages with aggregation.

CHALLENGE 1 Find an extension of first-order logic with a counting mechanism
that is a natural analog of relational languages with aggregation. Further-



for the second is N. Over the first sort, we have the usual first-order logic.
The following are available for the second sort: constants 1 and max, where the
meaning of max is the size of the finite model; the usual ordering <; and the
BIT predicate. Second-sort quantifiers V2 and 3¢ are bounded, meaning for all
(exists) ¢ between 1 and max. The counting quantifier Jiz.o(2) means that ¢
has at least i satisfiers;, and again 1 < ¢ < max. This binds « but not z; for
example,
FBIT(L, i) A[Fiw.p(e) A (ViTje.plx) — § < 9)]

tests if the number of satisfiers of ¢ is nonzero and even. We use Jliz.p(x) for
Fiw.p(x) A (VjFje.p(x) — j < 1); that is, that there exists exactly i satisfiers.

Now suppose we have a relational type oy, corresponding to some relational
signature o, and a relational query of type op — {b™}. Next, consider the type

(O',S)b = 0p X {b X b}

Its objects are finite structure of the signature ¢ U {S}, where S is a binary
relational symbol not in o. If A is a o-structure and § is a binary relation, we
denote the corresponding o U {S} structure by As. We use S for both relational
symbol and its interpretation. Such structures are represented as AGGR-objects
of type (o, 5)b.

In what follows, we use the convention that C' stands for the set of elements
of S, that is, the union of the two projections of S. Given a function ¢ : N — N,
we define the following condition (%4[Ag]) on a structure Ag:

(xg[As])  (ANC=10) A (Sis alinear order) A (card(C) > g(card(A)))

We also define a new query @, of type (, )y — {b"} as
Qu(As) = {QM) if (+,[As]) holds;

0 otherwise.

We start with three propositions.

Proposition6. All formulae in FO + COUNT with no free variable of the
second sort are local. ad

Proposition7. Let QQ be any relational query in AGGRast. Then for every g, it
15 the case that Q) s local iff Q@ ts local. a

Proposition8. Let Q@ be any relational query in AGGRa.t. Then there is a
Junction g such that v, s definable in FO + COUNT. a

Now the main theorem can be obtained as follows. We consider a relational
query € of AGGRgar and use Proposition 8 to find g such that g, is definable
in O + COUNT. By Proposition 6, vq, is local; hence ¢, is local. From
Proposition 7 we conclude that @) is local as desired.

To complete the argument, we need to furnish proofs of the three propositions
above. The proof of Proposition 6 can be found in [16]. The proof of Proposition
8 1s 1n the appendix. The proof of Proposition 7 is as follows:
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Fig. 2. Expressions of AGGRgys

system is ¢t :=b | N |t x ... x t | {t}. We show that every relational AGGR-
query is definable in AGGR". For that, we model every rational number r by a
triple (s, n, m) of natural numbers such that |r|=",s=0ifr <0 and s = 1 if
r > 0, and n, m have no common divisors. Then it is easy to see that all rational
arithmetic can be simulated with natural arithmetic, since we have repr in the
language. Note that we need [] over natural numbers in order to simulate both
>~ and ] over the rationals. It further follows that AGGRY has the conservative
extension property (cf. [18, 19, 22]). Since every relational query has flat input
and output, it can be expressed in the flat fragment of AcarY, which is precisely
AGGRgat. O

6 Proof sketch of the main theorem

In view of Proposition 4, we now have to show
Proposition5. Fvery relational query in AGGRaa: is local.

We start by defining FO + COUNT, the first-order logic with counting of
[8]. The logic has two sorts: the domain for the first sort is D, and the domain



This was proved before for a language weaker than AcaGr [6, 17]. In fact,
the language of [6, 17] is AGGR without the product operator and with less
arithmetic.

References [17, 6, 16] also discuss a closely related property, called the
bounded degree property, or BDP. When specialized to graphs, it says that
for any query ¢ from graphs to graphs, there exists a function f; : N — N such
that, whenever all degrees of nodes in a graph &G do not exceed k, the number of
distinct in- and out-degrees in ¢(G') does not exceed f,(k). This property is par-
ticularly easy to use to obtain expressiveness bounds, see [6, 16, 17]. According
to [6], locality implies the BDP. Hence,

Corollary 3. Every relational query in AGGR has the bounded degree property.
O

5 Flattening the language

Proving inexpressibility results for a language with nesting is hard because nest-
ing essentially corresponds to second-order constructs. Fortunately, we can find
a flat language AGGRga,t, that does not use nested sets, such that every relational
query definable in AGGR is also definable in AGGRgat. Furthermore, AGGRgaas
uses natural numbers instead of rationals, which makes it easier to encode 1its
queries in an extension of first-order logic with counting.

The expressions of AGGRpay; are given in Figure 2. There are a number of
differences between AGGR and AGGRgaat. First, AGGRgat’s types are b, N, record
types of the form sy x ... x sp where each s; is either b or N, and set types {t}
where t i1s a record type. That is, no nested sets are allowed.

In the expressions in Figure 2, s, ¢, and ¢;’s range over record types, and
S and T range over both record and set types. The operator cartprod is the
usual cartesian product of sets; it is definable in AGGR using ezt and p. Given a
function f: S x s — {t} and a pair (X,Y), where X is of type S and Y is a set
of type {s}, ext2[f](X,Y) evaluates to Uer F(X,y). exts[fI(X,Y) in AGGRaat
can be implemented in AGGR as ext[f](cartprod(n(X),Y)), which involves a
nested set. The extra parameter of exty[f] allows us to avoid the construction
of a nested set. Note that we do not need to introduce the similar > ,[f] or
[L:L/f], because > ,[f] = > [m2] o exta[no(ms, )], and similarly for [[,[f]. On the
natural numbers, root(n,m) evaluates to k if k™ = m; otherwise root evaluates
to zero. repr(n, m) gives the canonical representation of the rational number ;
that is, repr(n,m) = (n',m’) iff = = % and n’, m’ have no common divisors.
This function is undefined if m = 0, and is 1dentity if n = 0. Note that n —~m is
the subtraction on natural numbers: n ~ m = max(0, n — m).

We now have:

Proposition4. Fvery relational query definable in AGGR is also definable in
AGGRga;.

Proof sketch. We first define a language Acar" as AGGRg,; without re-
striction to flat types (that is, all the operations are the same, and the type



from a to b in G(A); we assume d(a,a) = 0. Given a € A, its r-sphere SA(a) is
{be A|d(a,b) <r}. For a tuple t, define SA(#) as UGE;S;“(a).

Given a tuple § = (t1,...,tn), its r-neighborhood N;“(f) is defined as a o,
structure

(SAM), Ry N SADP, . Ry N SAEY t1,... 1),

That is, the carrier of N;“(f) is SA (f), the interpretation of the o-relations is
obtained by restricting them from A4 to the carrier, and the n extra constants
are the elements of 7. If the structure A is understood, we shall write S, (f) and
N, (2).

Given a structure A and two m-ary vectors @ and b of elements of A, we write
an~Abif NA(@) and N;“(E) are isomorphic. That is, @ and b are indistinguishable
in A if we can only “see” up to radius r.

Local queries Assume that we have a formula in some logic, which comes with
the associated notion of |= between structures and formulae. Following [6, 16],
we say that a formula (1, ..., 2n), in the logical language whose symbols are
in o, is local if there exists r > 0 such that for every A € STRUCT][s] and for
every two m-ary vectors d, b of elements of A~ Eimplies A = (d) if and
onlyif A = 1/)(5) The minimum r for which this is true is called the locality rank
of .

It can be readily verified that transitive closure and deterministic transitive
closure are not local [6, 16]. There are bounds on the expressive power of local
queries that can be easily verified [6, 16]. Thus, it is rather simple to check if a
query 1is local or not. It is particularly easy to verify that locality fails for most
familiar recursive queries.

As noted above, we can represent a o-structure as an object of type {bf1} x
-+ x {bPt}, where ¢ has [ relations of arities py, ..., p;. We denote this type by
Op.

We assume without loss of generality that the output of a relational query is
one set of m-tuples. Then such a query is a mapping from o-structures over D
into finite subsets of D™ . It can be easily seen that for any such query ) definable
in AGGR, an element d € D occurs in a tuple in Q(A) for some structure A with
carrier A only if d € A. Thus, we define ¥g(z1, ..., zy) by letting

Al ¢g(d) if and only if @€ Q(A).
Then Q(A) ={d € A" | A E vo(d)}.

We say that () is local if so is the associated formula tpg. Our main result is
the following.

Theorem 1. Fvery relational query in AGGR is local.

Since the transitive closure query (or deterministic transitive closure) is not
local, we obtain the following.

Corollary 2. Transitive closure is not expressible in AGGR. a



return 0 and 1 respectively, and = is the equality test, where true is represented
by {0} and false by {}. With the same representation of true and false, < defines
the usual order on rational numbers. We use exp(x, y) for ¥ which is only defined
if y is a natural number; and root(x,y) for ¢y which again is undefined if x is
not a natural number. These may seem a bit strange, but it does not hurt to
add primitives if we want to prove nexpressibility results.

The semantics for identity :d, composition o, tupling, and projections =; is
standard. The result of K{} is always the empty set; the function emply tests if
a set is empty; n forms singleton sets; U is set union; and p; is the “pair-with”
operation. Given a function f : s — {t} and a set X of type {s}, ext[f](X)
evaluates to | J,. x f(2).

For the summation and product operators and f : s — @, > [fI(X) is
Y owex f(x) and [[IfI(X) is [],cx f(®). For example, > [K1] is the cardinal-
ity function, and [[[K1+ K1](X) returns 2°%79X) (Strictly speaking, K14 K1
should be written as +(K 1, K1) but we shall often simplify notation when it
does not lead to confusion.)

It is known that, without the type of natural numbers, this language is equiv-
alent to the standard nested relational algebra [4]. Furthermore, when input and
output are usual flat relations (sets of atomic tuples), it expresses precisely the
first-order queries. Summation, product, and arithmetic give it the power of ag-
gregate functions. For example, the aggregate TOTAL is given by > _[id] and AVG
is given by > [id] = > [K1].

Abbreviate b x ... x b, m times, as b”. A standard relational database is
represented as an object of type {b™1} x ... x {b"*}. In other words, a relational
database that consists of k relations, the ¢th one having arity n;, is represented
as an object of the above type. Types of this form are called relational. A query
in AGGR 1s relational if both its input and output types are.

For example, a query that takes a graph whose nodes are in D and returns
another graph is of type {b x b} — {b x b}; that is, it is a relational query.
If the transitive closure were definable in AGGR, it would have the type above.
Thus, we concentrate on expressiveness of relational queries in AGGR. Note that
for a relational query, types of its intermediate results need not be relational.

4 Local queries and the main theorem

Structures and neighborhoods A relational signature o is a set of relation symbols
{R1, ..., Ri}, with an associated arity function. In what follows, p;(> 0) denotes
the arity of R;. We write o, for ¢ extended with n new constant symbols.

A o-structure is A = (A, Ry, ..., R;), where A is a finite set, and R; C AP
interprets R;. The class of finite o-structures is denoted by STRUCT[s]. We
adopt the convention that the carrier of a structure A is always denoted by A.

Given a structure A, its Gaifman graph [7, 10, 11] G(A) is defined as (A, E)
where (a,b) is in E if there is a tuple i € R; for some i such that both a and
b are in . The distance d(a,b) is defined as the length of the shortest path
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relational algebra with arithmetic operators. Nesting accounts for grouping, as in
GROUPBY, and arithmetic gives us the computing power for aggregates themselves.
The difference between this paper and previous ones is that the arithmetic 1s a
lot richer!

We define the language below. Assume the existence of two base types: type Q
of rational numbers, and an unspecified base type b whose domain is a countably
infinite set D. Types of the language are given by the grammar

t == b | Q| tx...xt | {t}.

The semantics of type 1 X ... x t, are n-tuples such that the ith component is
of type t;. Objects of type {¢} are finite sets of objects of type ¢. Expressions of
AGGR are defined in Figure 1.

The semantics follows that of [4, 12, 17]. We use 4, —, *, = to denote the
standard operations on rational numbers. The constant functions K0 and K1



We returned to the problem a few years later and proved, via a similar
normal form argument, that plain SQL indeed has the BDP [6]. However, the
normal form result is more complicated than that of [17] and the proof is also
dependent on a particular syntax. In the same paper [6], we introduced a notion
more general than the BDP. We defined local queries as those whose result on
a given tuple can be computed by looking at a neighborhood of this tuple of a
predetermined size. This notion is inspired by the classical locality theorem for
first-order logic proved by Gaifman [11]. We showed in [6] that locality implies
the BDP. However, continuing the pattern of setting our goals too high, we
failed to prove locality of plain SQL queries, although we succeeded in proving
the BDP for plain SQL queries.

The main problem in proving those results was the lack of techniques and
results in finite-model theory for proving “local properties,” with the exception
of Gaifman’s theorem and a result by Fagin, Stockmeyer, and Vardi [10] that
only applied to first-order logic. This changed when Nurmonen [21] showed that
an analog of the result of [10] holds for first-order logic with counting quan-
tifiers, FO 4+ COUNT (as defined in [3, 8, 15]). Using Nurmonen’s result, the
first author proved that O + COUNT is local [16] and has the BDP. As an
application of these results, it was shown that a large class of queries defined
in a sublanguage of plain SQL is local and has the BDP. This sublanguage was
obtained by restricting the rational arithmetic of plain SQL to arithmetic of
natural numbers: for example, aggregates TOTAL and COUNT were definable, but
aggregates AVG, STDEV, and the likes were not.

The technique of [16] was the following: it was shown that for each query
Q) from a given class, another query @’ can be found such that it shares most
nice properties with @ (e.g., locality and the BDP) and can be expressed in
FO+COUNT. This suffices to conclude that many queries, such as the transitive
closure, are not expressible.

This technique eliminates the complicated syntactic argument entirely. The
differences in syntax do affect the encoding, but it is really the semantics of
queries that makes the encoding possible.

In this paper, we show that the idea behind the proof in [16] can be extended
to capture a much larger class of queries with aggregation. That is, we allow
rational arithmetic and products over columns. Consequently, aggregates such
as AVG, STDEV and many others are definable. This does complicate the proof
quite a bit, but it is still much more intuitive than the syntactic one, because
the overall structure of the proof remains quite straightforward, and all tedious
details requiring a lot of work happen in the process of the encoding of queries
in first-order logic with counting.

3 Defining the language

The goal of this section is to define a theoretical language that has the power of a
relational language extended with aggregates. Following our previous approaches
to dealing with aggregation, we define this language to be an extension of nested



and Ullman in [2]. A much simpler proof, in the presence of an order relation,
was given by Gurevich [13]. Without the order relation, this result follows from
many results on the expressive power of first-order logic [7, 9, 10, 11, 17].

Traditional query languages like SQL extend relational algebra by grouping
and aggregation. It was widely believed that such plain SQL cannot express
recursive queries like the transitive closure query. However, proving this “folk
result” turned out to be quite difficult.

Consens and Mendelzon [5] were the first to provide formal evidence for
the “folk theorem.” In their ICDT’90 paper, they showed that DLOGSPACE
# NLOGSPACE would imply that the transitive closure is not definable in an
aggregate extension of relational algebra. This follows from DLOGSPACE data
complexity of their language, and NLOGSPACE-completeness of the transitive
closure. Notably, their result cannot say anything about nontrivial recursive
queries complete for DLOGSPACE, such as deterministic transitive closure [14].
This perhaps can be remedied by reducing the data complexity to, say, NC*,
and making a different assumption like NC* # DLOGSPACE. Nevertheless, their
result does demonstrate that the assumed expressivity bounds on languages with
aggregates are likely to be true.

It remained open though whether expressivity bounds for languages with
aggregates can be proved without assuming separation of complexity classes,
until 1994. In that year, we proved that the transitive closure is not definable
in a language with aggregates [17], not assuming any unproven hypotheses from
complexity theory. Since the two main distinguishing features of plain SQL are
grouping and aggregation, we defined our theoretical reconstruction of SQL as
the nested relational algebra [4] augmented with rational arithmetic and a gen-
eral summation operator. This language can model the GROUPBY construct of
SQL and can define familiar aggregate functions such as TOTAL, AVG, STDEV.

The proof of [17] established the folk result above. However, it was far from
ideal. It relied on proving a complicated normal form for queries that can only
be achieved on a very special class of inputs. From that normal form, we derived
results about the behavior of plain SQL on these inputs. That turned out to be
enough to confirm the main conjecture. The proof of the normal form result relied
on rewrite systems for nested relational languages developed earlier [18, 19, 22].
In particular, it made the proof very “syntactic.” A change in syntax would
require a new proof, although it is intuitively clear that the choice of a syntax
for the language should be irrelevant.

Another problem with the proof of [17] is that, instead of establishing a
general principle that implies expressiveness bounds, it only implied the desired
result for a small number of queries. There was an attempt in [17] to find such
a general principle. We introduced the notion of the bounded degree property, or
BDP. Loosely speaking, a query has the BDP if its outputs are “simple” as long
as their inputs are. We showed that (nested) relational algebra queries have the
BDP. We also showed that for most recursive queries it is very easy to show how
the BDP is violated, thus giving expressiveness bounds. We conjectured that
plain SQL has the BDP, but we did not prove it in [17].
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1 Summary

It is a folk result that relational algebra or calculus extended with aggregate
functions cannot compute the transitive closure. However, proving folk results
1s sometimes a nontrivial task. In this paper, we tell the story of the work
on expressive power of relational languages with aggregate functions. We also
prove by far the most powerful result that describes the expressiveness of such
languages. There are four main features of our result that distinguish it from
previous ones:

1. It does not rely on any unproven assumptions, such as separation of com-
plexity classes.

2. It establishes a general property of queries definable with the help of aggre-
gate functions. This property can easily be applied to prove many expres-
siveness bounds.

3. The class of aggregate functions is much larger than any previously consid-
ered.

4. The proof is “non-syntactic.” That is, 1t does not depend on a specific syntax
chosen for the language with aggregates.

Furthermore, our result gives a very general condition that implies inex-
pressibility of recursive queries such as the transitive closure in an extension
of relational calculus with grouping and aggregation. This extension allows us
to use rational arithmetic and operations such as summation and product over
a column. So, aggregation that exceeds what is allowed by most commercial
systems is still not powerful enough to encode recursion mechanisms.

2 Expressive power of aggregation — brief history

It is a well-known result in database theory that the transitive closure query is
not expressible in relational algebra and calculus [1]. This was proved by Aho

* Part of this work was done while the first author was visiting Institute of Systems
Science.



