
adomb(Q(A)) � A and, furthermore, all numbers produced by the countingformulae in the encoding are below max.The latter requires veri�cation in the case of summation and product opera-tions. We know that any number produced in the process of evaluation of Q onA is at most N = nnCf for appropriately chosen Cf . Thus, the encodings of �xedlength tuples of such elements are bounded by a value of some polynomial in N ,that is, by nnC0 for some C 0. For the G�odel encoding, we need upper bound onthe values P = 2k1 � : : : � pkrr where pr is the rth prime, and both kr and r areat most N . Thus, P is at most pN2N . Since there exists a constant d such thatpk � dk logk [20], we obtainP � (dN2)N2 < d(nnCf )2n2nCf = dn2ncf+nCfwhich shows that there exists a constant such that P < nnnc . This completesthe proof that there exists a function g such that 	 (Q; g) de�nes Q(A) on inputssatisfying (?g [AS]). Since test� is a conjunct of 	 (Q; g), on inputs not satisfying(?g[AS ]), 	 (Q; g) produces the empty set.This completes the proof that Qg is de�nable by an FO +COUNT formula	 (Q; g) if the active domain of A has at least two elements.Finally, we consider the case when the active domain of A is empty or hasone element. In the �rst case the output is empty as well (we do not have accessto the individual constants in D), and in the second case it is either (a) empty,or (b) has a single tuple (a; : : : ; a) where a is the unique element of the activedomain. Thus, in the case (a) the formula  (~z) encoding Qg for arbitrary A isde�ned by [9x9y:adomA(x) ^ adomA(y) ^ :(x = y)] ^ 	 (Q; g)(~z)and in the case (b),  (z1; : : : ; zm) is given by(9x:adomA(x))^ [ (9!x:adomA(x) ^Vmi=1(zi = x))_ (9x9y:adomA(x) ^ adomA(y) ^ :(x = y) ^ 	 (Q; g)(~z)) ]:This completes the proof of Proposition 8. 2
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v is an encoding of some set, in set(m,v) means that m is in the set given by itsencoding v, good (m) means that m is the encoding of a valid triple (Ni; l; cil),and nothing missed(v) meaning that when v is decoded all the way to the set ofthe form above, there is a triple (Ni; j; �) for each Ni and each 1 � j � mi.With this, we de�ne encodes good set(v) asis enc(v) ^ nothing missed(v) ^ 8m:in set(m; v)! good (m):The G�odel encoding of a set fk1; : : : ; krg with k1 < : : : < kr is 2k1 �3k2 �: : :�pkrrwhere pr is the rth prime. Thus, a number V is an encoding if, whenever divisibleby a prime p, is divisible by any other prime p0 < p, and for m0;m which are thelargest numbers such that V is divisible by (p0)m0 and pm, it holds that m0 < m.This is clearly de�nable in FO + COUNT, using the formula factor producedearlier.To check if m is in the set encoded by v we therefore look for a prime p suchthat v is divisible by pm but not by pm+1. Assuming formulae prime testing forprime and div (x; y) as a an abbreviation for 9z:z � y = x, we write in set(m; v)as 9p9z:prime(p) ^ div(v; z) ^ exp(p;m; z) ^ (8z0:z0 = z � p! :div(v; z0)):To de�ne good (m), we must check the existence of (n; j; k) such that mencodes (n; j; k) with respect to the same base as in the case of summation, andsuch1. that n is a value of f on X (that is, 9~x:R(~x) ^  f (~x; n)), and2. that the number of ~x 2 X such that  f (~x; n) holds is at least j (this candone in FO + COUNT by counting tuples in exactly the same way we didit in the case of summation), and3. that k � n.Finally, to express nothing missed(v), we have to check that for every n whichis a value of f on some ~x 2 X and which has multiplicitym in X0, it is the casethat all triples (n; j; �) for 1 � j � m are present; that is, for each n and each mas above, and each 1 � j � m, there exists a number that codes (n; j; k) for somek. Using the fact the we can count tuples, we conclude that nothing missed(v)can be expressed in FO + COUNT. This completes the encoding of Q[f ].This completes the description of the encoding of Aggr
at primitives. Toencode a query Q, we assume that at the �rst step, when the function operateson the input structure A, we use the symbols of � instead of Sis. Then, for eachcomposition, we generate a fresh set of relation symbols. Thus, the encoding ofQ is an FO +COUNT formula in the language � [ fSg.Given a relational query Q in Aggr
at, the function g, and the encoding  Qof Q, we encode Qg as 	 (Q; g) =  Q ^ test�.Now a straightforward proof by induction on the structure of Q shows that	 (Q; g), when given an input AS satisfying (?g[AS ]) for an appropriately chosenconstant c, and having at least two elements in A, de�nes Q(A). This is because



Encoding Q[f ]The �nal case is that of Q[f ]. Before explaining a rather complex encodingscheme, we present it informally.Assume that we have a set X = f~x1; : : : ; ~xKg, and let ni = f(~xi). LetM = Q[f ](X). ThenM is the number of k-element bags B = fn01; : : : ; n0Kg suchthat 1 � n0i � ni for all i.To �nd the number of such bags, we have to �nd their set representation �rst.Represent the bag fn1; : : : ; nkg as a set of pairs X0 = f(N1;m1); : : : ; (Ns;ms)gwhere Nis are among njs and mis are their multiplicities. Assume that N1 <: : : < Ns.Then the number of bags B = fn01; : : : ; n0Kg with 1 � n0i � ni isM = sYi=1Nmii :We next consider sets of the forms[i=1 mi[j=1 f(Ni; j; k) j 1 � k � Nig:Such a set can be visualized as8<: (N1; 1; c11); (N1; 2; c12); : : : ; (N1;m1; c1m1): : : : : : : : : : : :(Ns; 1; cs1); (Ns; 2; cs2); : : : ; (Ns;ms; csms)9=;where 1 � cij � Ni. It can be easily seen that the number of such sets is M .Thus, we have to count to the number of sets above.Suppose we can write a formula that says that a given set Y is of the formabove. Next step is to transform Y into a set Y 0 = fe1; : : : ; etg where each eiis an encoding (as in the summation case) of a triple (Ni; l; cil). As before, theencoding is relative to N , where N is given by Lemma 10, and is de�nable inFO + COUNT. Given such a set, we de�ne its G�odel encoding, to represent itas a number. Finally, M is the number of numbers (represented as elements ofS) that are G�odel encodings of such sets.We now describe the formula that de�nes M . By now, the reader must beconvinced that any arithmetic on numbers can be transferred to the elementsof S, so we shall now use those elements of S instead of second-sort variables.This will make the notation somewhat more bearable. The reader should be ableto see easily how to do everything rigorously by using counting quanti�ers andformulae is(x; i).We de�ne  Q[f ](x) = 9i:is(x; i) ^ 9!iv:encodes good set(v);where encodes good set(v) means that v is a G�odel encoding of a set of the formshown above. To de�ne this, we assume four other formulae: is enc(v) means that



Encoding P[f ]Now we consider the case of the summation operator. Assume for the momentthat we can write a formula 9i~x:'(~x) meaning there are at least i vectors satis-fying '. Then we can also de�ne 9!i~x:'(~x), which gives us the encoding of 'P[f ]as follows: P[f ](z) = 9i:(9!i(~x; y; v):S1(~x) ^  f (~x; y) ^ S(v; y)) ^ 9!iv:S(v; z):This formula is saying that z is the ith element in S, where i is the number oftuples (~x; y; v) such that ~x is in the input relation S1, y is the jth element of Swhere j = f(~x) and v is under y in S. It is easy to see that the number of suchtuples is exactly P[f ](S1).Thus, it remains to show how to count tuples, provided that the numberof such tuples does not exceed max. Note that for the summation, we need tocount tuples of arity up to m+2, where m is the maximum arity of a record thatcan occur in the process of evaluating Q. We show below how to count pairs;counting tuples is similar (only the encoding scheme changes).To de�ne �(i) = 9i(x; y):'(x; y), we �rst de�ne�(x; x0) = 9k:[9!ky:'(x; y) ^ adomS(x0) ^ 9!kv:S(v; x0)]:Thus, �(x; x0) holds i� x0 represents the number of y such that '(x; y) holds.Next, de�ne�(x0; y0) = 9j:[9!jz:�(z; x0) ^ adomS(y0) ^ 9!jv:S(v; y0)]:Now we see that �(i) holds i�i �X(k � j j �(x0; y0) holds; x0 represents k; y0 represents j) = G(i):Thus, if we have a formula enc4(x1; x2; x3; x4; N; z) that encodes 4-tuples(x1; x2; x3; x4) of numbers under N (that is, z is the encoding), where N isnnCf (the maximal number that can occur in the process of evaluating Q), wede�ne�(i) = 9iz:9x09y09x09y0:enc4(x0; y0; x0; y0; N; z)^�(x0; y0)^S(x0; x0)^S(y0; y0):(Note that N is de�nable.) That is, we count the number of elements that code4-tuples (x0; y0; x0; y0) such that �(x0; y0) holds, x0 is under x0 in S and y0 isunder y0 in S. It is easy to see that the number of such zs is precisely G(i).It is easy to extend this technique to counting m-tuples by counting m � 1-tuples (by �) �rst; in particular, one can see that in such a counting one neverneeds encm for m > 4.



That is, if the root does not exists, we return 0. For repr we use repr (x; y; x0; y0)= (9i; i0; j; j0; l:is(x; i) ^ is(x0; i0) ^ is(y; j) ^ is(y0; j0) ^ l = i � j0 ^ l = j � i0)^ 8z::(div(x0; z)$ div (y0; z)):Note that we have to compute the product of two numbers; thus, the size of Smust be at least the square of maximumpossible number that can be encounteredin evaluating Q. We shall see later when we determine the function g that thisis the case, and thus we can use the formula above.The order on N is given by <(x; y; z) = adomS(x) ^ adomS(y) ^ S(x; y) ^ :9v:S(v; z)The equality test is similarly de�ned: =(x; y; z) = (x = y) ^ adomS(z) ^ :9y:S(y; x):The operations on sets are very simple: for example, union is encoded as  [(~z) =S1(~z) _ S2(~z) (recall that S1 and S2 are symbols in the signature T ); empty (z) = :9~x:S1(~x) ^ adomS(z) ^ :9y:S(y; x):For the singleton, we have  �(x; y) = (x = y). The encoding of cartprod dependson the arities of types involved and their number. In general, we de�ne cartprodn(~x) = 9~x1 : : :9~xn:S1(~x1) ^ : : :^ Sn(~xn) ^ �(~x1; : : : ; ~xn; ~x)where �(~x1; : : : ; ~xn; ~x) is a formula in the language of equality stating that ~x isconcatenation of ~x1; : : : ; ~xn.The encoding of Kfg is simply false.To encode ext2[f ], we use  f encoding f and obtain ext2 [f ](~x; ~z) = 9~y:S1(~y) ^  f (~x; ~y; ~z)in the case when the �rst argument of f is a record type, and ext2 [f ](~z) = 9~y:S1(~y) ^  f (~y; ~z)in the case when the �rst argument is a set; then the formula  f encoding fuses the symbol S2 for that set.Below we treat the two most complex cases: P[f ] and Q[f ].



With each sequence T = (ft1g; : : : ; ftmg), where tis are record types, weassociate a signature Tsig that consists of m relational symbols S1; : : : ; Sm, withSi having arity wi. (At each step of the process of encoding, we shall assume afresh collection of relation symbols.) By �(T ) we denote the disjoint union of �,fSg, and Tsig.Now we consider two cases.Case 1: t is b or N. Then f is encoded as a formula f (~x; ~y; z) in the language�(T ), where ~x has l elements and ~y has k elements. The condition on  f is thefollowing.Assume that B is an object of type ft1g� : : :� ftmg that is AS -compatible.Let B0 be the �(T ) structure that consists of AS and BAS (interpreting symbolsin Tsig). Let ~x and ~y be AS-compatible. Then, for every AS-compatible z, it isthe case thatz = f(~x; ~y;B) if and only if B0 j=  f (~x; ~yAS ; zAS)Case 2: t is fug where u is a record type with arity w. Then f is encodedas a formula  f (~x; ~y; ~z) in the language �(T ), where ~x and ~y are as before, and~z is a w-vector of variables of the �rst sort. The condition is that, for everyAS -compatible ~x, ~y and B as above, the setZ = f(~x; ~y;B)is AS-compatible, andf~z 2 (A [ S)w j B0 j=  f (~x; ~yAS ; ~z)g = ZAS :If t is a product of types, we encode f as the tuple of encodings of all pro-jections.We now show how to encode Aggr
at expressions so that the conditions 1and 2 above are satis�ed. First, note that composition is rather straightforwardand essentially corresponds to substitution. Next, consider natural arithmetic.The function K0 is encoded as K0( ; x) = adomS(x) ^ :9y:S(y; x);that is, x is the smallest element of S. Similarly, K1( ; x) = adomS(x) ^ 9!y:S(y; x)The encoding of operations on N is straightforward: +(x; y; z) = adomS(x) ^ adomS(y) ^ adomS(z)^ 9i9j9k:(is(x; i) ^ is(y; j) ^ is(z; k)) ^ (i+ j = k);and similarly for other �; : and exp (since we know how to de�ne exp). For root ,we use  root (x; y; z) = exp(z; y; x) _ (:exp(z; y; x) ^ :9v:S(v; z))



exp1(x; y; z) = 8p8a:factor(p; a; x)!(9b9i; j; k:is(b; i) ^ is(y; j) ^ is(a; k) ^ i = j � k ^ factor(p; b; z))exp2(x; y; z) = 8p8a:factor(p; a; z)! 9b:factor(p; b; x)With this formula exp, we can de�ne the condition that card(C) > g(card(A))as�g = 9x9y:[(adomS(x) ^ (9i:is(x; i) ^ 9!iv:adomA(v))) ^ (9v:S(y; v)) ^ �0(x; y)];where �0(x; y) expresses the condition that card(C) > g(card(A)) as the con-junction of �rst-order formula stating that C has at least c elements, and for thecth element, denoted by xc, the following holds:9v19v2:(adomS(v1) ^ adomS(v2))^ (exp(x; xc; v1) ^ exp(x; v1; v2) ^ exp(x; v2; y))That is, y represents the value of g on x (which is the cardinality of A), andthere is an element S-bigger than y, that ensures strict inequality.Finally, we usetest� = LIN (S) ^ (8x:adomA(x)! :adomS(x)) ^ �gto test for (?g[AS ]).Thus, for the rest of the proof, we assume that the input structure satis�es(?g[AS ]). If we produce ab FO + COUNT formula  that de�nes Qg on suchstructures, the formula that de�nes Q on all structures is simply  ^ test�.We now explain the encoding of objects andAggr
at functions. The encodingis relative to the input structure AS . We assume that the �rst sort is the carrierof the �nite structure (AS in our case); thus, elements of type b are encoded bythemselves. Each element of type N, that is, a natural number n, is encoded bycn 2 C such that card(fx j S(x; cn)g) = n. Note that we do not use the secondsort in the encoding; natural numbers are still encoded as elements of the �rstsort, and the counting power of FO + COUNT is only used in simulation offunctions.Suppose we have a function f of type s ! t. Then s is a product of recordtypes and types of the form fs0g where s0 is a record type. Without loss ofgenerality (and keeping the notation simple) we list types not under the setbrackets �rst; that is, s isbl �Nk � ft1g � : : :� ftmgwhere t1; : : : ; tm are record types, ti being the product of wi base types. We alsoassume that t is either b, or N, or fug, where u is a record type, since functionsinto product of types will be modeled by tuples of formulae.Let x be an arbitrary object. We say that x isAS -compatible if adomb(x) � Aand i < card(C) for any i 2 adomN(x). If this is the case, by xAS we denotean object obtained from x by replacing each natural number n that occurs in xwith cn; its type is then obtained from the type of x by replacing each N withb.



where c is a constant to be determined later. We claim that there exists a constantc such that Qg is de�nable in FO +COUNT .The idea of the encoding is that a number n is represented by the elementcn 2 C such that the cardinality of fx j S(x; cn)g is n. Then the counting powerof FO + COUNT is applied to the relation S. The size of C, given by g, turnsout to be su�cient to model all arithmetic that is needed in order to evaluateQ. Given a � [ fSg-structure AS (where S is the extra binary relation) anda number k, it is possible to write an FO + COUNT formula that checks if(�g [AS]) holds where g is of the form above. Indeed, we �rst notice that thereare �rst-order formulae adomA(x) and adomS(x) that test if x is in the carrierof A (that is, x 2 A), or x is a node in the binary relation S (that is, x 2 C).For example, adomS(x) = 9y:S(y; x) _ S(x; y). Also, there exists a �rst-orderformula LIN (S) stating that S is a linear order.We next claim that there is an FO+COUNT de�nable predicate exp(x; y; z)that holds i� x; y; z 2 C and xy = z; that is, exp represents the graph ofexponentiation, where n is encoded by cn 2 C such that the cardinality offx j S(x; cn)g is n. We use the notation xy = z, but strictly speaking we meanthat for numbers i; j; k represented by x; y; z we have ij = k; in what follows weshall often write arithmetic formulae on the elements of C, to keep the notationsimpler. We use the shorthand is(x; i) for 9!iy:S(y; x); that is, is(x; i) means thatx represents the number i.To show that exp is de�nable, �rst notice that there is a formula pow(x; y)stating that x is a power of y, provided cy is prime:pow(x; y) = 9i9j:[is(x; i) ^ is(y; j) ^ (8k8l:k � l = i! (k = 1_ (9k0:k0 � j = k)))]Now exppr(x; y; z) de�ned asexppr(x; y; z) = pow(z; y)^9i9j:[is(y; i)^ (j = i+1)^9!jv:(pow(x; v)^S(v; z))]states that xy = z for y prime. That is, exppr(x; y; z) if z is a power fo x, andthe number of powers of x that do not exceed z is y + 1.Now we de�ne two new formulae:div (a; b) = 9i; j; k9u:is(a; i) ^ is(b; j) ^ is(u; k)^ i = j � kprime(p) = 8u8i:(S(u; p) ^ is(u; i))! (i = 1 _ :div(p; u))That is, div(a; b) says that a is divisible by b, and prime(p) says that p is prime.Next, we de�ne factor(p; a; x) meaning that p is prime, pa divides x, but pa+1does not divide x:factor(p; a; x) = prime(p) ^ 9v: [S(v; x) ^ exppr(p; a; v) ^ div (x; v)^8w8i; j; k:(is(w; i) ^ is(v; j) ^ is(p; k) ^ i = j � k! :div (x;w))]With this, we �nally de�ne exp(x; y; z) as exp1(x; y; z) ^ exp2(x; y; z) where



and sizeb(f; x), sizeN(f; x), and size(f; x) as their cardinalities. That is,adomb(f; x) is the set of all elements of D that occur in the process of eval-uating of f on x, and adomN(f; x) is the set of all natural numbers that occurin this process.Since all operations in Aggr
at except exp , root, and Q[f ] can be evalu-ated in polynomial time (cf. [4, 12, 17]), and those that cannot be evaluated inpolynomial time produce a single number, we obtain:Lemma9. For any Aggr
at expression f , there exists a constant kf such thatfor any object x with size(x) = n > 1, on which f is de�ned,size(f; x) < nkf :From this lemma, by a simple structural induction on Aggr
at expressions,we prove the following.Lemma10. For any Aggr
at expression f , there exists a constant Cf suchthat for any object x with size(x) = n > 1, on which f is de�ned, and for everym 2 adomN(f; x), it is the case thatm < nnCf :In particular, if f is a relational query, we obtain m < nnCf for any m 2adomN(f; x), where n = sizeb(x). This gives us an upper bound on any naturalnumber that can be encountered in the process of evaluating f on x.For the rest of the proof, we assume that any input to a relational query hassize at least 2. At the end of the proof we shall explain how to deal with emptyand one-element active domains.Given a number N > 1, we call a function encm(a1; : : : ; am) an encodingrelative to N if it uniquely encodes m-tuples of natural numbers less than N ;that is, ~a 6= ~b implies encm(~a) 6= encm(~b), whenever all components of ~a and~b are below N . Such a function can be chosen so that it is a polynomial ina1; : : : ; am; N and its values are less than N l for some l. For example, enc2 canbe de�ned as enc2(a; b) = aN + b; thus, its values do not exceed N2+N and arethus less than N3. To encode m-tuples, we just apply enc2 to the �rst componentand an encoding of the remaining m� 1-tuple.According to [8], the predicates +(i; j; k) and �(i; j; k) meaning i + j = kand i � j = k are de�nable in FO + COUNT, as long as i; j; k are elementsof the second sort under max. Thus, we shall use polynomial (in)equalities inFO + COUNT formulae. For example, the parity test can be rewritten as9k9i:k + k = i ^ 9!ix:'(x):The encodingLet Q be a relational query in Aggr
at. We de�ne g asg(n) = nnnc
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Let Qg be local. Let r be its locality rank. Let the input structure to Q beA. Let ~a �Ar ~b, where ~a and ~b are m-vectors of elements of A. Let n = card(A)and let C be a subset of D such that C \A = ; and card(C) > g(n). Let S bean arbitrary linear ordering on C. We de�ne AS as A extended with the binaryrelation S. Since SASd (~a) does not contain any element of C, and neither doesSASd (~b) for any d, we obtain ~a �ASr ~b. Thus by the locality of Qg, ~a 2 Qg(AS) i�~b 2 Qg(AS). Since all the conditions in (?g[AS ]) hold, we have Qg(AS) = Q(A).Hence, ~a 2 Q(A) i� ~b 2 Q(A), which proves that Q is local, and its locality rankis at most r. 27 ConclusionWe have proved the most powerful result so far that gives us expressivenessbounds for relational queries with aggregation. In particular, recursive queriessuch as transitive closure are not de�nable with the help of grouping, summation,and product over columns, and standard rational arithmetic.After our PODS'94 paper in which inexpressibility of transitive closure ina weaker language was proved, there was a renewed activity in the area thatresulted in 3 papers, improving both results and techniques: [6], presented atICDT'97, [16], presented at LICS'97 paper, and this paper. So one may ask ifthis is the end of the story.We believe that, to the contrary, this work is very far from being completed.Until very recently, it was widely believed that counting formalisms developedin �nite-model theory are a wrong way to approach the problem of aggregation.We hope to have convinced the reader that this is not necessarily the case, andlogics with counting are useful. The connection though is not lying on the verysurface, as the encoding is not completely trivial. A possible reason why it took anumber of years to apply logics with counting to the study of query languages isthat, until recently, very few tools for FO+COUNT were available. The gamesof Immerman and Lander [15] were essentially the only such tool, and theseare not convenient to use. The best known separation result proved via gameswas the one from the conference version of Etessami's paper [8]. It required acomplicated combinatorial argument, even though the structures are extremelysimple. Tools like those suggested in [16, 21] simplify the proofs considerably,as was demonstrated in [8, 16]. This makes �rst-order logic with counting muchmore attractive as a tool for studying aggregation.But there is still a long way to go. For example, it seems likely that the class ofallowed arithmetic functions and predicates should not a�ect the expressibilityof, say, transitive closure. However, �rst-order logic with counting, which weused for encoding, limits the arithmetic operations. We �nish the paper withtwo main challenges that we believe must be addressed to develop a good �nite-model theory counterpart for languages with aggregation.Challenge 1 Find an extension of �rst-order logic with a counting mechanismthat is a natural analog of relational languages with aggregation. Further-



for the second is N. Over the �rst sort, we have the usual �rst-order logic.The following are available for the second sort: constants 1 and max, where themeaning of max is the size of the �nite model; the usual ordering <; and theBIT predicate. Second-sort quanti�ers 8i and 9i are bounded, meaning for all(exists) i between 1 and max. The counting quanti�er 9ix:'(x) means that 'has at least i satis�ers, and again 1 � i � max. This binds x but not i; forexample, 9i:BIT(1; i) ^ [9ix:'(x) ^ (8j9jx:'(x)! j � i)]tests if the number of satis�ers of ' is nonzero and even. We use 9!ix:'(x) for9ix:'(x) ^ (8j9jx:'(x)! j � i); that is, that there exists exactly i satis�ers.Now suppose we have a relational type �b, corresponding to some relationalsignature �, and a relational query of type �b ! fbmg. Next, consider the type(�; S)b = �b � fb� bg:Its objects are �nite structure of the signature � [ fSg, where S is a binaryrelational symbol not in �. If A is a �-structure and S is a binary relation, wedenote the corresponding �[fSg structure by AS . We use S for both relationalsymbol and its interpretation. Such structures are represented as Aggr-objectsof type (�; S)b.In what follows, we use the convention that C stands for the set of elementsof S, that is, the union of the two projections of S. Given a function g : N! N,we de�ne the following condition (?g[AS ]) on a structure AS :(?g[AS ]) (A \C = ;) ^ (S is a linear order) ^ (card(C) > g(card (A)))We also de�ne a new query Qg of type (�; S)b ! fbmg asQg(AS) = �Q(A) if (?g[AS ]) holds;; otherwise.We start with three propositions.Proposition6. All formulae in FO + COUNT with no free variable of thesecond sort are local. 2Proposition7. Let Q be any relational query in Aggr
at. Then for every g, itis the case that Q is local i� Qg is local. 2Proposition8. Let Q be any relational query in Aggr
at. Then there is afunction g such that  Qg is de�nable in FO +COUNT . 2Now the main theorem can be obtained as follows. We consider a relationalquery Q of Aggr
at and use Proposition 8 to �nd g such that  Qg is de�nablein FO + COUNT. By Proposition 6,  Qg is local; hence Qg is local. FromProposition 7 we conclude that Q is local as desired.To complete the argument, we need to furnish proofs of the three propositionsabove. The proof of Proposition 6 can be found in [16]. The proof of Proposition8 is in the appendix. The proof of Proposition 7 is as follows:



+; �; : ; exp; root : N� N! N K0;K1 : T ! N repr : N� N! N�N=b: b� b! fNg =N: N�N! fNg empty : ftg ! fNgid : T ! T f : u! t g : s! uf � g : s! tfi : t! ti; i = 1; : : : ; n(f1; : : : ; fn) : t! t1 � : : :� tn i � n�i;n : t1 � : : :� tn ! tiKfg : T ! fsg � : t! ftg [ : ftg � ftg ! ftg f : S � s! ftgext2[f ] : S � fsg ! ftgcartprod : ft1g � : : :� ftng ! ft1 � : : :� tngf : s! NP[f ] : fsg ! N f : s! NQ[f ] : fsg ! NFig. 2. Expressions of Aggr
atsystem is t ::= b j N j t � : : : � t j ftg. We show that every relational Aggr-query is de�nable in AggrN. For that, we model every rational number r by atriple (s; n;m) of natural numbers such that jr j= nm , s = 0 if r < 0 and s = 1 ifr � 0, and n, m have no common divisors. Then it is easy to see that all rationalarithmetic can be simulated with natural arithmetic, since we have repr in thelanguage. Note that we need Q over natural numbers in order to simulate bothP and Q over the rationals. It further follows that AggrNhas the conservativeextension property (cf. [18, 19, 22]). Since every relational query has 
at inputand output, it can be expressed in the 
at fragment ofAggrN, which is preciselyAggr
at. 26 Proof sketch of the main theoremIn view of Proposition 4, we now have to showProposition5. Every relational query in Aggr
at is local.We start by de�ning FO + COUNT, the �rst-order logic with counting of[8]. The logic has two sorts: the domain for the �rst sort is D, and the domain



This was proved before for a language weaker than Aggr [6, 17]. In fact,the language of [6, 17] is Aggr without the product operator and with lessarithmetic.References [17, 6, 16] also discuss a closely related property, called thebounded degree property, or BDP. When specialized to graphs, it says thatfor any query q from graphs to graphs, there exists a function fq : N! N suchthat, whenever all degrees of nodes in a graph G do not exceed k, the number ofdistinct in- and out-degrees in q(G) does not exceed fq(k). This property is par-ticularly easy to use to obtain expressiveness bounds, see [6, 16, 17]. Accordingto [6], locality implies the BDP. Hence,Corollary3. Every relational query in Aggr has the bounded degree property.25 Flattening the languageProving inexpressibility results for a language with nesting is hard because nest-ing essentially corresponds to second-order constructs. Fortunately, we can �nda 
at languageAggr
at, that does not use nested sets, such that every relationalquery de�nable in Aggr is also de�nable in Aggr
at. Furthermore, Aggr
atuses natural numbers instead of rationals, which makes it easier to encode itsqueries in an extension of �rst-order logic with counting.The expressions of Aggr
at are given in Figure 2. There are a number ofdi�erences between Aggr and Aggr
at. First, Aggr
at's types are b, N, recordtypes of the form s1 � : : :� sk where each si is either b or N, and set types ftgwhere t is a record type. That is, no nested sets are allowed.In the expressions in Figure 2, s, t, and ti's range over record types, andS and T range over both record and set types. The operator cartprod is theusual cartesian product of sets; it is de�nable in Aggr using ext and �. Given afunction f : S � s! ftg and a pair (X;Y ), where X is of type S and Y is a setof type fsg, ext2[f ](X;Y ) evaluates to Sy2Y f(X; y). ext2[f ](X;Y ) in Aggr
atcan be implemented in Aggr as ext [f ](cartprod(�(X); Y )), which involves anested set. The extra parameter of ext2[f ] allows us to avoid the constructionof a nested set. Note that we do not need to introduce the similar P2[f ] orQ2[f ], becauseP2[f ] =P[�2]�ext2[� � (�2; f)], and similarly for Q2[f ]. On thenatural numbers, root(n;m) evaluates to k if kn = m; otherwise root evaluatesto zero. repr(n;m) gives the canonical representation of the rational number nm ;that is, repr(n;m) = (n0;m0) i� nm = n0m0 and n0;m0 have no common divisors.This function is unde�ned if m = 0, and is identity if n = 0. Note that n : m isthe subtraction on natural numbers: n : m = max(0; n�m).We now have:Proposition4. Every relational query de�nable in Aggr is also de�nable inAggr
at.Proof sketch. We �rst de�ne a language AggrNas Aggr
at without re-striction to 
at types (that is, all the operations are the same, and the type



from a to b in G(A); we assume d(a; a) = 0. Given a 2 A, its r-sphere SAr (a) isfb 2 A j d(a; b) � rg. For a tuple ~t, de�ne SAr (~t) as Sa2~t SAr (a).Given a tuple ~t = (t1; : : : ; tn), its r-neighborhood NAr (~t) is de�ned as a �nstructure hSAr (~t); R1 \ SAr (~t)p1 ; : : : ; Rk \ SAr (~t)pk ; t1; : : : ; tni:That is, the carrier of NAr (~t) is SAr (~t), the interpretation of the �-relations isobtained by restricting them from A to the carrier, and the n extra constantsare the elements of ~t. If the structure A is understood, we shall write Sr(~t) andNr(~t).Given a structure A and twom-ary vectors ~a and~b of elements of A, we write~a �Ar ~b ifNAr (~a) and NAr (~b) are isomorphic. That is, ~a and~b are indistinguishablein A if we can only \see" up to radius r.Local queries Assume that we have a formula in some logic, which comes withthe associated notion of j= between structures and formulae. Following [6, 16],we say that a formula  (x1; : : : ; xm), in the logical language whose symbols arein �, is local if there exists r > 0 such that for every A 2 STRUCT[�] and forevery two m-ary vectors ~a, ~b of elements of A, ~a �Ar ~b implies A j=  (~a) if andonly if A j=  (~b). The minimum r for which this is true is called the locality rankof  .It can be readily veri�ed that transitive closure and deterministic transitiveclosure are not local [6, 16]. There are bounds on the expressive power of localqueries that can be easily veri�ed [6, 16]. Thus, it is rather simple to check if aquery is local or not. It is particularly easy to verify that locality fails for mostfamiliar recursive queries.As noted above, we can represent a �-structure as an object of type fbp1g�� � � � fbplg, where � has l relations of arities p1, ..., pl. We denote this type by�b.We assume without loss of generality that the output of a relational query isone set of m-tuples. Then such a query is a mapping from �-structures over Dinto �nite subsets ofDm. It can be easily seen that for any such query Q de�nablein Aggr, an element d 2 D occurs in a tuple in Q(A) for some structure A withcarrier A only if d 2 A. Thus, we de�ne  Q(x1; : : : ; xm) by lettingA j=  Q(~a) if and only if ~a 2 Q(A):Then Q(A) = f~a 2 Am j A j=  Q(~a)g.We say that Q is local if so is the associated formula  Q. Our main result isthe following.Theorem1. Every relational query in Aggr is local.Since the transitive closure query (or deterministic transitive closure) is notlocal, we obtain the following.Corollary 2. Transitive closure is not expressible in Aggr. 2



return 0 and 1 respectively, and = is the equality test, where true is representedby f0g and false by fg. With the same representation of true and false, < de�nesthe usual order on rational numbers. We use exp(x; y) for xy which is only de�nedif y is a natural number; and root(x; y) for xpy which again is unde�ned if x isnot a natural number. These may seem a bit strange, but it does not hurt toadd primitives if we want to prove inexpressibility results.The semantics for identity id , composition �, tupling, and projections �i isstandard. The result of Kfg is always the empty set; the function empty tests ifa set is empty; � forms singleton sets; [ is set union; and �i is the \pair-with"operation. Given a function f : s ! ftg and a set X of type fsg, ext [f ](X)evaluates to Sx2X f(x).For the summation and product operators and f : s ! Q, P[f ](X) isPx2X f(x) and Q[f ](X) is Qx2X f(x). For example, P[K1] is the cardinal-ity function, and Q[K1+K1](X) returns 2card(X). (Strictly speaking, K1+K1should be written as +(K1;K1) but we shall often simplify notation when itdoes not lead to confusion.)It is known that, without the type of natural numbers, this language is equiv-alent to the standard nested relational algebra [4]. Furthermore, when input andoutput are usual 
at relations (sets of atomic tuples), it expresses precisely the�rst-order queries. Summation, product, and arithmetic give it the power of ag-gregate functions. For example, the aggregate TOTAL is given by P[id ] and AVGis given byP[id ]�P[K1].Abbreviate b � : : :� b, m times, as bm. A standard relational database isrepresented as an object of type fbn1g� : : :�fbnkg. In other words, a relationaldatabase that consists of k relations, the ith one having arity ni, is representedas an object of the above type. Types of this form are called relational. A queryin Aggr is relational if both its input and output types are.For example, a query that takes a graph whose nodes are in D and returnsanother graph is of type fb � bg ! fb � bg; that is, it is a relational query.If the transitive closure were de�nable in Aggr, it would have the type above.Thus, we concentrate on expressiveness of relational queries in Aggr. Note thatfor a relational query, types of its intermediate results need not be relational.4 Local queries and the main theoremStructures and neighborhoods A relational signature � is a set of relation symbolsfR1, ..., Rlg, with an associated arity function. In what follows, pi(> 0) denotesthe arity of Ri. We write �n for � extended with n new constant symbols.A �-structure is A = hA;R1; : : : ; Rli, where A is a �nite set, and Ri � Apiinterprets Ri. The class of �nite �-structures is denoted by STRUCT[�]. Weadopt the convention that the carrier of a structure A is always denoted by A.Given a structure A, its Gaifman graph [7, 10, 11] G(A) is de�ned as hA;Eiwhere (a; b) is in E if there is a tuple ~t 2 Ri for some i such that both a andb are in ~t. The distance d(a; b) is de�ned as the length of the shortest path



+; �;�;�; exp; root : Q�Q! Q K0;K1 : t! Q=: t� t! fQg <: Q�Q! fQgid : t! t f : u! t g : s! uf � g : s! tfi : t! ti; i = 1; : : : ; n(f1; : : : ; fn) : t! t1 � : : :� tn i � n�i;n : t1 � : : :� tn ! tiKfg : t! fsg empty : ftg ! fQg � : t! ftg[ : ftg � ftg ! ftg f : s! ftgext [f ] : fsg ! ftgi � n�i;n : t1 � : : :� ftig � : : :� tn ! ft1 � : : :� tngf : s! QP[f ] : fsg ! Q f : s! QQ[f ] : fsg ! QFig. 1. Expressions of Aggrrelational algebra with arithmetic operators. Nesting accounts for grouping, as inGROUPBY, and arithmetic gives us the computing power for aggregates themselves.The di�erence between this paper and previous ones is that the arithmetic is alot richer!We de�ne the language below. Assume the existence of two base types: typeQof rational numbers, and an unspeci�ed base type b whose domain is a countablyin�nite set D. Types of the language are given by the grammart ::= b j Q j t� : : :� t j ftg:The semantics of type t1 � : : :� tn are n-tuples such that the ith component isof type ti. Objects of type ftg are �nite sets of objects of type t. Expressions ofAggr are de�ned in Figure 1.The semantics follows that of [4, 12, 17]. We use +, �, �, � to denote thestandard operations on rational numbers. The constant functions K0 and K1



We returned to the problem a few years later and proved, via a similarnormal form argument, that plain SQL indeed has the BDP [6]. However, thenormal form result is more complicated than that of [17] and the proof is alsodependent on a particular syntax. In the same paper [6], we introduced a notionmore general than the BDP. We de�ned local queries as those whose result ona given tuple can be computed by looking at a neighborhood of this tuple of apredetermined size. This notion is inspired by the classical locality theorem for�rst-order logic proved by Gaifman [11]. We showed in [6] that locality impliesthe BDP. However, continuing the pattern of setting our goals too high, wefailed to prove locality of plain SQL queries, although we succeeded in provingthe BDP for plain SQL queries.The main problem in proving those results was the lack of techniques andresults in �nite-model theory for proving \local properties," with the exceptionof Gaifman's theorem and a result by Fagin, Stockmeyer, and Vardi [10] thatonly applied to �rst-order logic. This changed when Nurmonen [21] showed thatan analog of the result of [10] holds for �rst-order logic with counting quan-ti�ers, FO + COUNT (as de�ned in [3, 8, 15]). Using Nurmonen's result, the�rst author proved that FO + COUNT is local [16] and has the BDP. As anapplication of these results, it was shown that a large class of queries de�nedin a sublanguage of plain SQL is local and has the BDP. This sublanguage wasobtained by restricting the rational arithmetic of plain SQL to arithmetic ofnatural numbers: for example, aggregates TOTAL and COUNT were de�nable, butaggregates AVG, STDEV, and the likes were not.The technique of [16] was the following: it was shown that for each queryQ from a given class, another query Q0 can be found such that it shares mostnice properties with Q (e.g., locality and the BDP) and can be expressed inFO+COUNT . This su�ces to conclude that many queries, such as the transitiveclosure, are not expressible.This technique eliminates the complicated syntactic argument entirely. Thedi�erences in syntax do a�ect the encoding, but it is really the semantics ofqueries that makes the encoding possible.In this paper, we show that the idea behind the proof in [16] can be extendedto capture a much larger class of queries with aggregation. That is, we allowrational arithmetic and products over columns. Consequently, aggregates suchas AVG, STDEV and many others are de�nable. This does complicate the proofquite a bit, but it is still much more intuitive than the syntactic one, becausethe overall structure of the proof remains quite straightforward, and all tediousdetails requiring a lot of work happen in the process of the encoding of queriesin �rst-order logic with counting.3 De�ning the languageThe goal of this section is to de�ne a theoretical language that has the power of arelational language extended with aggregates. Following our previous approachesto dealing with aggregation, we de�ne this language to be an extension of nested



and Ullman in [2]. A much simpler proof, in the presence of an order relation,was given by Gurevich [13]. Without the order relation, this result follows frommany results on the expressive power of �rst-order logic [7, 9, 10, 11, 17].Traditional query languages like SQL extend relational algebra by groupingand aggregation. It was widely believed that such plain SQL cannot expressrecursive queries like the transitive closure query. However, proving this \folkresult" turned out to be quite di�cult.Consens and Mendelzon [5] were the �rst to provide formal evidence forthe \folk theorem." In their ICDT'90 paper, they showed that DLOGSPACE6= NLOGSPACE would imply that the transitive closure is not de�nable in anaggregate extension of relational algebra. This follows from DLOGSPACE datacomplexity of their language, and NLOGSPACE-completeness of the transitiveclosure. Notably, their result cannot say anything about nontrivial recursivequeries complete for DLOGSPACE, such as deterministic transitive closure [14].This perhaps can be remedied by reducing the data complexity to, say, NC1,and making a di�erent assumption like NC1 6= DLOGSPACE. Nevertheless, theirresult does demonstrate that the assumed expressivity bounds on languages withaggregates are likely to be true.It remained open though whether expressivity bounds for languages withaggregates can be proved without assuming separation of complexity classes,until 1994. In that year, we proved that the transitive closure is not de�nablein a language with aggregates [17], not assuming any unproven hypotheses fromcomplexity theory. Since the two main distinguishing features of plain SQL aregrouping and aggregation, we de�ned our theoretical reconstruction of SQL asthe nested relational algebra [4] augmented with rational arithmetic and a gen-eral summation operator. This language can model the GROUPBY construct ofSQL and can de�ne familiar aggregate functions such as TOTAL, AVG, STDEV.The proof of [17] established the folk result above. However, it was far fromideal. It relied on proving a complicated normal form for queries that can onlybe achieved on a very special class of inputs. From that normal form, we derivedresults about the behavior of plain SQL on these inputs. That turned out to beenough to con�rm the main conjecture. The proof of the normal form result reliedon rewrite systems for nested relational languages developed earlier [18, 19, 22].In particular, it made the proof very \syntactic." A change in syntax wouldrequire a new proof, although it is intuitively clear that the choice of a syntaxfor the language should be irrelevant.Another problem with the proof of [17] is that, instead of establishing ageneral principle that implies expressiveness bounds, it only implied the desiredresult for a small number of queries. There was an attempt in [17] to �nd sucha general principle. We introduced the notion of the bounded degree property, orBDP. Loosely speaking, a query has the BDP if its outputs are \simple" as longas their inputs are. We showed that (nested) relational algebra queries have theBDP. We also showed that for most recursive queries it is very easy to show howthe BDP is violated, thus giving expressiveness bounds. We conjectured thatplain SQL has the BDP, but we did not prove it in [17].
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