Incremental Recomputation of Recursive Queries
with Nested Sets and Aggregate Functions*

Leonid Libkin' Limsoon Wong?>

! Bell Laboratories/Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ
07974, USA, Email: 1ibkin@research.bell-labs.com
2 BioInformatics Center & Institute of Systems Science, Singapore 119597, Email:
limsoon@iss.nus.sg

Abstract. We examine the power of incremental evaluation systems
that use an SQL-like language for maintaining recursively-defined views.
We show that recursive queries such as transitive closure, and “alter-
nating paths” can be incrementally maintained in a nested relational
language, when some auxiliary relations are allowed. In the presence of
aggregate functions, even more queries can be maintained, for exam-
ple, the “same generation” query. In contrast, it is still an open problem
whether such queries are maintainable in relational calculus. We then re-
strict the language so that no nested relations are involved (but we keep
the aggregate functions). Such a language captures the capability of most
practical relational database systems. We prove that this restriction does
not reduce the incremental computational power; that is, any query that
can be maintained in a nested language with aggregates, is still main-
tainable using only flat relations. We also show that one does not need
auxiliary relations of arity more than 2. In particular, this implies that
the recursive queries maintainable in the nested language with aggre-
gates, can be also maintained in a practical relational database systems
using auxiliary tables of arity at most 2. This is again in sharp contrast
to maintenance in relational calculus, which admits a strict arity-based
hierarchy.

1 Introduction

It is common knowledge that the expressiveness of relational calculus is limited.
For example, recursive queries such as the transitive closure cannot be defined
[3]. However, in a real database system, one can try to overcome this problem
by storing both the relation and its transitive closure and updating the latter
whenever edges are added to or removed from the former. In other words, the
recursive queries are evaluated and maintained incrementally. One can think of
the result of such a recursive query as a view of the database and the incremental
evaluation of the query as view maintenance.

* Part of this work was done when Wong was visiting Bell Labs and when Libkin was
visiting Institute of Systems Science.

The above leads us to the concept of an incremental evaluation system, or IES.
An IES(L) is a system consisting of a finite set of “update” functions expressible
in the language £, where each of these functions takes as input the old database,
the old answer, the old auxiliary database, and the update. We require the
update to be permissible according to certain criteria specified for the IES(L).
In this report, the criteria for permissible update is restricted to insertion and
deletion of a single tuple. For each permissible update that is coming in, the
system uses its update functions to compute the new answer to the query and
the new auxiliary database. A restriction is also imposed so that the constants
that appear in auxiliary database must also appear in the database or in the
answer or in some fixed set. In this report, this fixed set is Q, the set of rational
numbers.

We use the first-order incremental evaluation system, [ES(FO)(called FOIES
in [10]), to illustrate the concept. IES(FQO) uses first-order logic to express update
functions [9, 12]. The permissible updates are tuples to be inserted or deleted
from the input relations. For each relation symbol R, we use R° to refer to the
instance of R before an update, and R" the instance of R after the update (here
’0’ stands for old and 'n’ for new). Consider the view EVEN that is defined to
be {1} if the relation R has even cardinality and {} if R has odd cardinality.
While EVEN is well known to be inexpressible in first-order logic [1], it can be
expressed in [ES(FO). The update function when a tuple o is deleted from R is
given by

EVEN™(1) iff (R(o) A\ =EVEN°(1))V (=R(o) A EVEN®°(1)).
The update function when a tuple o is inserted into R is given by
EVEN"(1) iff (R(o) AN EVEN°(1))V (—R(o) N—EVEN°(1)).

The IES(FO) that we used to maintain EVEN as above is also called a
space-free |IES(FO), because it does not make use of any auxiliary relations.
The transitive closure of acyclic graphs is another view that can be maintained
by a space-free IES(FO) [9]. However, the transitive closure of general graphs
cannot be maintained using space-free |IES(FO)[10, 7]. Thus, it is sometimes
necessary to use auxiliary relations. We write IES(FO); to mean the subclass of
IES(FO) where auxiliary relations of arities up to k can be used. Observe that,
with maximal arity k, the auxiliary relations can hold at most O(n*) tuples,
where n is the number of constants in the input database.

There are some interesting queries that can be maintained by IES(FO) with
some auxiliary relations. For the transitive closure of undirected graphs, it can
be maintained in IES(FO)3 [20] and even in IES(FO), [10]. But it is open if there
is a IES(FO) for transitive closure of general directed graphs. Also, Dong and Su
[10] showed that the |ES(F Q) hierarchy is strict for k& < 2. More recently, using
a result of Cai [6], Dong and Su showed in the journal version of their paper
[10] that the IES(FO); hierarchy is strict for every k. However, their example
query that proved the strict inclusion of IES(FO)y in IES(FO)g+1 had input

arity much greater than k. It is open whether the IES(FO); hierarchy remains
strict if we restrict to queries having fixed input arity.

The two open questions above render |ES(FQO) a little unsatisfactory.
IES(FO) uses first-order logic as its ambient language. First-order logic or re-
lational algebra does not properly reflect the power of practical relational sys-
tems. One wonders if transitive closure can be maintained in a real relational
database. Such databases use SQL as their query language. May be transitive
closure can be maintained using SQL after all? One also wonders if strictness of
the IES(FQO);, hierarchy is natural. Maybe such a hierarchy will collapse if the
ambient language is SQL?

So we study the incremental evaluation system whose ambient language is
NRC?8" our reconstruction of SQL based on a nested relational calculus. We
use the notation IES(NRC*%8") to denote the incremental evaluation system
where both the input database and answer are flat relations, but the auxiliary
database can be nested relations. We use the notation IES(SQL) when the auxil-
iary database is restricted to flat relations. The rationale for the I[ES(SQL) is that
it more closely approximates what could be done in a relational database, which
can store only flat tables. With features such as nesting of intermediate data (as
in GROUPBY) and aggregates, the ambient language has essentially the power
of SQL, hence the notation. As NRC?##" is more expressive than first-order logic,
both IES(NRC*8") and IES(SQL) are more powerful than IES(FO). So we will
concentrate on queries that are not known to be expressible in IES(FO).

Our results are organized as follows. In Section 2, we describe N'RC*88",
our reconstruction of SQL. In Section 3, we give a formal definition of IES(L).
In Section 4, we show that transitive closure of arbitrary graphs, “alternating
paths” of arbitrary (and-or) graphs, and “same generation” of acyclic graphs
can be maintained in IES(NRC*®") using some auxiliary space. In addition, we
also show that any query that can be implemented using a single application of
structural recursion [5] can be maintained in IES(NVRC?*8") using some auxiliary
space. In fact, some of these do not even require the power of counting.

In Section 5, we consider |ES(NRC*8") where the auxiliary relations are
restricted to be flat; that is, we consider IES(SQL). We show that a linear order
on data can be generated in the context of IES(SQL). We then use this order
to encode IES(NRC*®") into IES(SQL), demonstrating that storing flat tables
is sufficient. This result says in essence that queries that can be maintained by
IES(N'RC88") are precisely those that can be maintained by a practical relational
system.

In Section 6, we consider the effect that restriction on the arity of auxiliary
relations can have on IES(SQL). We prove that a hierarchy does not form under
the arity restriction on auxiliary relations. In fact, it does not form even when
an arity restriction is imposed on input data as well. This result points out that
a hierarchy based on arity restriction (such as the IES(FO); hierarchy) is not
robust.

In Section 7, we discuss the physical costs of maintaining queries in
IES(SQL). The total overall cost may be unacceptably high, but each incre-

mental step is always guaranteed to be tractable.
Complete proofs are given in the full report[18§].

2 Nested Relational Calculus with Aggregates

Let us start by describing our ambient query language. We want this language
to be more powerful than the relational calculus in two ways: it will deal with
nested relations, and will use aggregate functions. There are many choices for
such a language. We use the language similar to those considered in [5, 15, 17, 8].
These languages have been extensively studied and they are easier to work with
than most other nested formalisms. However, we would like to emphasize the the
choice of a particular language is not central to our problems. In particular, our
results extend to any language with the same power as the language N'RC*88"
presented below.

The language N'RC*8" is obtained by extending the nested relational calcu-
lus N'RC(=) of [5, 23] by arithmetics and aggregate functions. The motivation
for considering NRC*8" is that it is a much more realistic query language than
relational algebra. Indeed, as explained later, one can consider N’RC?*88" to be a
theoretical reconstruction of SQL, the de facto relational query language of the
commercial world.

We present the language incrementally. We start from ARC(=), which is
equivalent to the usual nested relational algebra [2, 5]. The data types that can
be manipulated are:

su=0b|sy X X8, | {s}

The symbol b ranges over base types like Booleans B, rational numbers Q, etc.
The type s; X -+ X s, contains n-ary tuples whose components have types s1,
, Sn respectively. The objects of type {s} are sets of finite cardinality whose
elements are objects of type s.
As can be seen from the data types, NRC(=) is a language for arbitrarily
nested relations. The syntax and typing rules of N'RC are given below.

€181 X+ X 8Sp €1:8 '+ €pn:Sn
8 c:b T e:s; (1,...,€n) 181 X -+ X 8y
e:s er:{s} ea:{s} er: {t} es:{s}
{}*: {s} {e}: {s} er Ues : {s} Ufer | 28 € ea}: {t}
€e1:5 ey:s e1:B ex:s e3:s
e1 =ey: B true : B false : B if e; then ey else e3 : s

l.s

We often omit the type superscripts as they can be inferred. An expression e
having free variables 7 is interpreted as a function f(Z) = e, which given input
O, of the same arity as Z, produces e[0/Z] as its output. Here [0/Z] is the
substitution replacing the ith component of # by the ith component of 0. An
expression e with no free variable can be regarded as a constant function f = e.

Let us briefly recall the semantics; see also [5]. Variables x* are available for
each type s. Every constant ¢ of base type b is available. The operations for

tuples are standard. Namely, (ey,...,e,) forms an n-tuple whose i component
is e; and m; e returns the i component of the n-tuple e.

{} forms the empty set. {e} forms the singleton set containing e. e; U ey
unions the two sets e; and es. | J{e1 | € ex} maps the function f(z) = ey over
all elements in e; and then returns their union; thus if es is the set {o1,...,0,},
the result of this operation would be f(o1)U- - -Uf(0,). For example, | J{{(z,z)} |
z € {1,2}} evaluates to {(1,1),(2,2)}.

The operations for Booleans are also quite typical, with true and false denot-
ing the two Boolean values. e; = e, returns true if e; and e, have the same value
and returns false otherwise. Finally, if e; then ey else e3 evaluates to e if e; is
true and evaluates to es if e; is false. We provided equality test on every type
s. However, this is equivalent to having equality test restricted to base types
together with emptiness test for set of base types [22].

NRC possesses the so-called conservative extension property [23]: if a func-
tion f : s; — s is expressible in N'RC, then it can be expressed using an
expression of height no more than that of s; and ss. The height of a type is
defined as its depth of nesting of set brackets. The height of an expression is
defined as the maximum height of all types that appear in its typing deriva-
tion. More specifically, if f : s; — s5 takes flat relations to flat relations and
is expressible in N'RC, then it is also expressible in the standard flat relational
algebra [19, 5].

It is a common misconception that the relational algebra is the same as SQL.
The truth is that all versions of SQL come with three features that have no
equivalence in relational algebra: SQL extends the relational calculus by having
arithmetic operations, a group-by operation, and various aggregate functions
such as AVG, COUNT, SUM, MIN, and MAX.

It is known [5] that the group-by operator can already be simulated in
NRC(=). The others need to be added. The arithmetic operators are the stan-
dard ones: 4+, —, -, and + of type Q x Q — Q. We also add the order on the
rationals: S@: Q x Q — B. As to aggregate functions, we add just the following
construct

e1:Q eo:{s}
2fler[2® €eoft: Q

The semantics is this: map the function f(z) = e over all elements of e; and then
add up the results. Thus, if e is the set {o1,...,0,}, it returns f(o1)+- -+ f(on).
For example, > {1 | 2 € X[} returns the cardinality of X. Note that this is
different from adding up the values in {f(01),..., f(on)}; in the example above,
doing so yields 1 as no duplicates are kept. To emphasize that duplicate values
of f are being added up, we use bag (multiset) brackets {| [} in this construct.
We denote this theoretical reconstruction of SQL by ANRC?&". That is,
NRC® has all the constructs of A’RC(=), the arithmetic operations +,—, -
and +, the summation construct > and the linear order on the rationals. It
was shown in [15, 17] that all SQL aggregate functions mentioned above can
be implemented in N'RC*#". Tt is also known [15, 17] that A'RC*8" has the
conservative extension property and thus its expressive power depends only on

the height of input and output and is independent of the height of intermediate
data. So to conform to SQL, it suffices to restrict our input and output to height
at most one, that is, to the usual flat relational databases.

Before we begin studying N'RC?#" in the setting of an incremental evaluation
system, let us briefly introduce a nice shorthand, based on the comprehension
notation [21, 4], for writing N"RC*8" queries. Recall from [4, 5, 23] that the
comprehension {e | Ay,..., Ay}, where each A; either has the form z; € e; or is
an expression e; of type B, has a direct correspondent in N'RC that is given by
recursively applying the following equations:

—{elzi€e,..t=U{{e| ...} |z € e}
—{elei...} =if e; then {e| ...} else {}

The comprehension notation is more user-friendly than the syntax of N'RC3&8".
For example, it allows us to write {(z,y) | © € e1, y € ex} for the cartesian
product of e; and ey instead of the clumsier J{U{{(z,y)} | y € ea} | x € e1}.
In addition to comprehension, we also find it convenient to use a little bit of
pattern matching, which can be removed in a straightforward manner. For exam-
ple, we write {(z,z) | (z,y) € e1, (y',2) € ea, y = y'} for relational composition
instead of the more official {(m; X,m2 V) | X € €1, Y € €9, 1 X =7 YV}
or the much clumsier |J{U{if m2 X = m Y then {(m X,m Y)} else {} | Y €
e2} | X € e1}. Here X and Y denote edges ((x,y) and (y, z) respectively), whose
components, x, y and z, are obtained by applying projections 7; and .

3 Formal Definition of IES(L)

The definition of IES(L) is very similar to the definitions of Dong-Su’s FOIES
[10] and Immerman-Patnaik’s Dyn-C [20]. The idea is that, in order to incre-
mentally maintain a query @, we do the following. At the first step, we initialize
auxiliary data and compute () assuming that the input is empty. Then we pro-
vide functions that, upon each insertion or deletion, correctly update both the
answer to) and the auxiliary data. If the initializing and the updating functions
are definable in £, we say that @ is expressible in IES(L). If all auxiliary data are
flat relations of arity not exceeding k, we say that @) is expressible in IES(L).

While this informal definition is sufficient for understanding the results of
the paper, we give a formal definition of IES(L) for the sake of completeness.
Suppose we are given a type S = {s1} x ... X {s;, }, where sq,...,s,, are record
types. We consider elementary updates of the form ins;(z) and del;(z), where
z is of type s;. Given an object X of type S, applying such an update results
in inserting x into or deleting z from the ith set in X, that is, the set of type
{si}. Given a sequence U of updates, U(X) denotes the result of applying the
sequence U to an object X of type S.

Given a query @ of type S — T, and a type Taux (of auxiliary data), consider

a collection of Fg functions:
finit : S =T fiera S = Thux
féelzsixSxTxTauxaT 3% 8 x S X T X Taux — Taux
s 1S XS XT xTouxy = T X :5; x S X T X Taux = Taux
Given an elementary update u, we associate two functions with it. The function
fut SXT xTaux — T is defined as \(X, Y, Z).fi(a, X, Y, Z) if uis del;(a), and as
AMX,Y, Z).fl (a, XY, Z) if uis ins;(a). We similarly define f3"* : SXT X Taux —
Taux-
Given a sequence of updates U = {uy,...,u}, define inductively the collec-
tion of objects: Xo = 0 : S, RESy = finit(Xo), AUXy = f24%(Xy) (where @ of

init
type S is a product of m empty sets), and

Xiy1 = uip1(Xy)
RESH_l = fui+1 (Xla RESZ, AUXZ)
AUX i1 = f (X, RES;, AUX))

Wit1

Finally, we define Fo(U) as RES;.

We now say that there exists an incremental evaluation system for Q in L if
there is a type Thux and a collection Fg of functions, typed as above, such that,
for any sequence U of updates, Fg(U) = Q(U(B)). We also say then that Q is
expressible in IES(L). If Taux is a product of flat relational types, none of arity
more than k, we say that @ is in IES(L).

Since every expression in NRC or NRC*8" has a well-typed function asso-
ciated with it, the definition above applies to these languages.

4 Power of IES(NRC) and IES(N'RC?88)

It is known [7] that recursive queries such as transitive closure cannot be ex-
pressed in space-free IES(N'RC) and space-free IES(NRC*E"). In this section,
we focus on the power of [ES(NVRC) and IES(N'RC?*8E") in the presence of aux-
iliary data. We prove four expressibility results. We first show that transitive
closure and the “alternating path” query are expressible in IES(NRC) (and
hence in IES(NRC?8")). Furthermore, any query expressed using one applica-
tion of structural recursion (with parameter functions defined in A"RC) can be
expressed in IES(NRC). If the parameter functions are defined in N RC*8" then
such a query is expressible in [ES(NVRC?*®"). Finally, we show that the “same-
generation” query is expressible in IES(NRC?®®"), although it is not expressible
in space-free |IES(NRC?*88T).

Proposition 1. Transitive closure of arbitrary graphs is expressible in

IES(N'RC). O

The idea of the proof is to use an auxiliary nested relation R : {bxbx {bxb}}
such that (z,y,P) € R iff P represents a path from z to y. (This basic idea is
used in most of our results in this section.) The transitive closure of a graph can

be straightforwardly generated from this auxiliary nested relation. It is also quite
straightforward to maintain this auxiliary relation when edges are added to or
deleted from the graph. Its ability to store every paths appears to be vital for
transitive closure to be maintained when edges are deleted. In IES(N'RC) we are
able to use a set of edges to represent a path and a nested set of sets to represent
all the paths. Such a representation is not possible in IES(FO) which allows
only flat auxiliary relations. Later, we shall see how IES(SQL) gets around this
problem by using the summation operation to create new identifiers—essentially
each path P; is assigned an identifier ¢ and each edge (x,y) in P; can be recorded
in the auxiliary flat relation of all paths as (i, z,y).

We also consider a generalization of the transitive closure query, namely
the “alternating paths” query, cf. [14]. This query is complete with respect
to first-order reductions for PTIME. Since transitive closure is complete for
NLOGSPACE, it is likely that the “alternating paths” is harder than the tran-
sitive closure.

Suppose we are given a graph G and a subset U of the nodes in G (U is for
“universal”). Nodes not in the set U are “existential.” Intuitively, an alternating
path between two nodes must go through every descendant of a universal node,
and through just one descendant of an existential node; thus, one can think of the
transitive closure query as a special case of this one when U = (). More formally,
we define apath(z,y) to be the smallest relation such that: (1) apath(x,x) holds
for each node z, and (2) if z € U and there is an edge leaving z, and for all
edges (z,z) it is the case that apath(z,y), then apath(z,y), and (3) if z ¢ U,
and for some edge (z,z), apath(z,y) holds, then apath(x,y). The “alternating
paths” query is simply this: given a graph, compute the apath relation.

Proposition 2. “Alternating paths” of arbitrary graphs can be expressed in

IES(N'RC). O

Corollary 3. Transitive closure and “alternating path” are expressible in
IES(N'RC88Y). |

The “same generation” query is another recursive query that often serves as
one of canonical examples of queries definable in datalog but not in relational
calculus. Two nodes = and y of a graph G are in the same generation if and
only if there is a node z in G such that there is a walk (an edge sequence,
possibly repeated) that goes from z to z and a walk of the same length that
goes from z to y. It is known from [7] that this query cannot be maintained in
IES(N'RC?®") without using auxiliary space. It turns out that it can be main-
tained in IES(NRC?8") with some auxiliary space, if the graph is acyclic. Note
that we do need the counting power of N"RC*88". However, the case of arbitrary
graphs remains open.

Proposition4. “Same generation” of acyclic graphs can be expressed in
IES(N'RCe8Y). |

In general, IES(NRC) can express queries specified by a single application
of the structural recursion operator of [5]. Let us first define this operator. Let

f : sxt — t be a function expressible in N'RC. Let i : t be an object expressible in
N'RC (that is, the constant function returning this object is definable). Further-
more, we assume that f(z, f(z,9)) = f(z,y) and f(z, f(y,2)) = F(y, f(z.2))
hold. Then the structural recursion operator sri(f,:) : {s} — ¢ is given by the
equations: sri(f,i)({}) =i, sri(f,))({z} U Y) = f(x,sri(f,i)(Y)). This oper-
ator is very powerful. It can generate powersets. It can also produce all three
example queries considered above: transitive closure, “alternating paths,” and
“same generation.” Thus these previous results are really corollaries of the next
theorem. However, it is possible to find more intuitive incremental evaluation
systems for the queries from Propositions 1, 2 and 4. Those are given in the full
report [18].

Theorem 5. Any query expressible as sri(f,i) : {s} — {t}, where {s} and {t}

are flat relation types, and f and i are definable in N'RC, can be maintained in

IES(N'RC).

Proof sketch: We set up the IES(NRC*8") corresponding to sri(f,4) as follows.
Let the input relation be I : {s}. Let the answer relation be A : {t}. That is, we
want to maintain A = sri(f,4)(I). We use an auxiliary relation R : {{t} x {s}}.
We arrange it so that (X,0) € Riff O C I and X = sri(f,i)(0O). We initialize
R to {i,{}}. We show how to maintain A and R when elements are added to or
removed from 1.

Let the update be the insertion of an object z into I. Then the update to
Ris R" = R° U {(f(z,X),0U{z}) | (X,0) € R°}. Then the update to A is
simple: A" ={u | (X,0) € R", O=1", ue X}.

Let the update be the deletion of an object x from I. Then the update to
Ris R" = {(X,0) | (X,0) € R°, z ¢ O}. Then the update to A is again:
A" ={u | (X,0) e R", O=1", ue X}. O

The same argument applies to N'RC&&":

Corollary 6. Any query expressible as sri(f,i) : {s} — {t}, where {s} and {t}

are flat relation types, and f and i are deﬁnable in NRC*®E" | can be maintained
in IES(N'RC88Y). O

An IES(N'RC™#) or IES(N'RC) having input relations I, answer relation A,
and auxiliary relations R is said to be deterministic if there is a function f such
that f(I) = (R, A). (Note that f needs not be expressible within NRC288")
That is, the values of the auxiliary relations in a deterministic IES(NRC88")
do not depend on the history of updates. Deterministic incremental evaluation
systems are interesting in their own right [11]. While we do not examine them
further in this paper, it is worth pointing out the following result, follows from
the proofs of other results in this section.

Corollary 7. Transitive closure of arbitrary graphs, “alternating paths” of arbi-
trary graphs, “same generation” of acyclic graphs, as well as any query erpress-
ible as sri(f,i) : {s} — {t}, where {s} and {t} are flat relation types, can be

expressed in deterministic IES(N'RC88"). 0

5 Power of IES(SQL)

We now focus on the power of IES(SQL), the restriction of IES(NRC*88") to
use only flat auxiliary relations. We first show that IES(SQL) can generate a
linear order on all its data. This result is then used to encode IES(NRC88")
into IES(SQL), showing that the two systems are equivalent. Thus the power
of IES(N'RC?#") is undiminished even when it is restricted to flat auxiliary
relations. Of course this also means that IES(NRC*%8) can be fully implemented
using any real relational database.

5.1 Ordering in |[ES(SQL)

Recall that N'RC?88" is only equipped with a linear order on Q. Linear orders on
any other infinite base types are not expressible in N’RC*#8[15]. In this section,
we show that in the context of IES(SQL), a linear order on any base type b
can be expressed, when restricted to its “active domain.” By active domain, we
mean those constants that currently appear in the input database.

Proposition 8. For any base type b, IES(SQL) is always able to maintain an
auziliary relation that defines a linear ordering on all the objects of type b in the
active domain of a database. |

Thus, for each type b, a linear order <’: b x b — B can always be simulated
in IES(SQL). It is known [15, 16] that if a linear order is available on each
base types, then there is enough power in N'RC*8" to compute a linear order
<: s x s — B on every type s. Thus from now on, we assume < is available
whenever we are talking about IES(SQL) when auxiliary relations of arity at
least 2 are allowed.

Thus within an IES(SQCL), we can implement a ranking function rank : {s} —
{sxQ} on any set O built up from the active domain of the IES(SQL): rank(0) =
{(z,>{if y < x then 1 else 0 | y € Of}) | © € O}. Then we can define rankof :
{s} xs — Q to be a function that given any set O built up from the active domain
of the IES(SQL) and an o in O, produces the rank of o in O: rankof (O,0) =
S {lif x = o then r else 0 | (z,7) € rank(O)[}. This result is used in the next
section to encode nested relations into flat relations.

5.2 |ES(SQL) Equals IES(N'RC88")

Let us begin by comparing the power of IES(SQL) and IES(NRC*8"). Tt is clear
that IES(SQL) C IES(N'RC*#8"). We prove that the converse holds and hence
the two incremental evaluation systems are equivalent.

Theorem 9. |[ES(NRC*8") = IES(SQL).

The idea of the proof is that, using rank, objects of any type can be encoded
with natural numbers. Using this, we manage to encode any auxiliary database

in IES(N'RC?8®") into a product of flat relations, so that it can be used by
IES(SQL). Using rankof, we can decode the result, and simulate IES(NRC?88")
in IES(SQL). All the details can be found at the end of this section.

Corollary 10. IES(N'RC) C IES(SQL). 0

We can conclude that IES(SQL) can maintain transitive closure of arbitrary
graphs and can maintain queries expressed using a single application of sri. In
the rest of this report, we concentrate on IES(SQL), because it precisely models
real relational databases. However, for convenience and clarity, we give proofs
using IES(NRC*88").

It is worth pointing out that previous results on the conservative extension
of N'RC[19, 23] and N'RC?¢8"[22, 15] do not imply the collapse of IES(NRC?88")
to IES(SQL). The conservative extension property[23] implies that if the input
and output of a (update) function are flat, then the function can be implemented
using only flat intermediate data. In an IES(NRC*#8") having a non-flat auxiliary
relation of nesting depth k, its update functions necessarily have non-flat input of
nesting depth k. Thus the conservative extension result on N'RC only guarantees
that these update functions will not use intermediate data of nesting depth
exceeding k. In other words, in order to guarantee that update functions uses
only flat data, it is necessary to guarantee that their input auxiliary relations are
also flat. This must be accomplished using means other than the conservative
extension property of A'RC. This is the significance of the equivalence result
above.

Proof Sketch of Theorem 9

The first thing we need to do is to encode the auxiliary database in an
IES(NRC?88") into flat relations so that they can be stored in an IES(SQL).
Let us first define s, the type of height 1 to which the type s is encoded.

- b ={b}
— (s1 % xsp) ={t1 X+ X t,}, where s} = {t;}.

— {s} ={Q x Q x t}, where s' = {t}.

We assume that for each base type b, there is a default value. For example, we
can take the default value for B to be true, that for Q to be 0, and so on. Then in
what follows, we write 0 to stand for a tuple of default values of the appropriate
types. For example, the 0 for the type Q x Q x B would be (0,0, true).

Then the encoding function p, : s — s’ is defined by induction on s. A set
is coded by tagging each element by 1 and by a unique identifier if the set is
nonempty and is coded by 0 if it is empty. More precisely,

— py(0) = {o}

= Dsixoxsn (01, .500)) ={(®1,....2n) | T1 € ps,(01), ..., Tn € ps,(0n)}

- p3(0) = {(0,0,0)}, if O is empty. Otherwise, p;n(0) =
{(1, rankof (0, 0), z) |

Y

It is clear that ps is expressible in N’RC*#®" as long as the base types can be
linearly ordered. Since we will be building an IES(SQL), we conclude that p; is
expressible.

Now we provide the decoding function g5 : s’ — s, which strips tags and
identifiers introduced by ps.

= @(0) =0, if O = {o}.
— sy x-xs, (0) = (01,...,0n), if 0; = g5, ({zi | (z1,...,2,) € O}).
- q(s3(0) ={a;({y | (L,j,y) € 0, i=j}) | (1,i,2) € O}

We note that g, is not expressible in N RC*88" for every base type b. Nevertheless,
it is expressible when b is B and Q because ¢ (O) = (O = {true}) and qQ(O) =
> {z | x € O[}. However, for any type s of the form {t}, ¢ is always expressible
in N'RC*88". The formal proof can be found in [22]. We give an example to
illustrate how this can be done. Let s = {{b x b} x b x b}. Let O : s and
O' : §', with O' = ps(0). We temporarily replace g, by the identity function
and this induces a new definition of g;. To avoid confusion, we call this new
version 75. Then rs(0O') will have type {{{b} x {b}} x {b} x {b}}. Moreover,
those subobjects in r;(0') having type {b} are always singleton sets. Then it is
clear that ¢;(0") = {({(u, v) | (U, V) e X, ueU veV}, y, 2)| (X,Y,Z) €
rs(0"), yeY, ze Z}.

Thus when s is a set type, both p; and g; can be expressed in N RC?88".
In addition, using the fact that ps(O) is never empty and by induction on the
structure of s, we can show that ¢, is inverse of p;

Proposition11. Suppose s is a set type. Then qs o ps = id. O

We are now ready to embed any IES(NRC?*88") into an IES(SQL). To simplify
notations, we drop the type subscripts from ps and gs.

Let a family of functions forming an IES(N'RC?*8") be given. Let its flat
input relations be I. Let its flat answer relation be A. Let its auxiliary data be
R which we assume all of these are sets of height at least 1. Let f be its update
functions.

We define the corresponding IES(SQL) as follows. The input relation is f
as before. The answer relation is A as before. The auxiliary relations are R",
where R} is the encoded version of the corresponding R;; that is, R} = p(R;).
The update functions are f’ defined according to cases below. We need some
notations. Let p(]%) be the tuple obtained by applying the appropriate p to each
component of K. Let q(ﬁ’) be the tuple obtained by applying the appropriate ¢
to each component of R'. Let u denote the update made to the input relations
I. There are two cases. If f,(u IA, R) updates the answer relation A, we need
an f] so that A” = fl(u, I,A,p(R) = fi(u, I, A R) If fl(u I,AR) updates the
auxiliary data R;, we need an f so that g(f;(u, I,A,p(R)) = fi(u,I, A, R) =
RY. L

For the case when f;(u,I, A, R) updates the answer relation A, we set
f{(u,f,A,R") = fAu,f,A,q(R”)). Now we argue that this is correct. By defi-

nition, we have f (u, I, A, p(R)) = fi(u, I, A, q(p(R))). Since q o p = id, we have
filu, I, A, R) = fl(u,I, A, p(R)) as desired.
For the case when f;(u, ,A,ﬁ) updates the auxiliary data R;, we set

—

fi(u, ILARY) = p(fi(u,I,A,q(R")). Now we argue that this is correct. By
definition, f/(u,I I,Ap(R) = p(fl(u I,A,q(p(R))). Since gop = id, we
have p(fl(f, ﬁ)) = fl (u I A, p(R)) Applying ¢ to both sides, we have

q(p (f,(u,I,A,R)) = q(f!(u, I A, p(R))) Since gop = id, we have fl(qu,é) =
q(fi(u, I, A,p(é))) as desired. Finally, the functions f] can be implemented so
that no nested intermediate data is used — this follows from the conservativity
of N'RC*8" [15]. This completes the proof. O

6 Arity in IES(SQL)

We write IES(SQL), to mean the subclass of IES(SQL) that uses auxiliary
relations up to arity k. As mentioned earlier, IES(FO), C IES(FO), ., for all
k > 1, forming a noncollapsing hierarchy for IES(FO) based on arity of auxiliary
relatlons We consider the analogous question on IES(SQL), and show that the
hierarchy collapses for £ > 1. The proof uses a coding method that could also
be used to prove that it is possible to maintain the equi-cardinality view of two
k-ary relations in [ES(FO), [13]. After that, we prove that the two levels below
IES(SQL), are strict; thus the IES(SQL), hierarchy has only three levels.

Proposition 12. I[ES(SQL), = IES(SQL), for all k > 1.

Proof sketch: We show how a k-ary auxiliary relation R : {s; X --- X s} can
be coded using binary auxiliary relations By : {Q x s1}, ..., Br : {Q X si}.
Recall that in IES(SQL), every base type can be assigned a linear order and
that these linear orders can be used to define a lexicographic linear order on
81 X ++» X s. Thus each tuple in R can be assigned a rank r based on the
linear order. Then B can be defined so that (r,0,) € By, ..., and (r,0;) € By
iff ((o1,...,01),r) € rank(R). This encoding is straightforward to express in
NRC 8", m]

Proposition 13. I[ES(SQL), is strictly less powerful than IES(SQL),.

Proof sketch: We show that IES(SQL), cannot maintain transitive closure of
arbitrary graphs. Suppose otherwise. Let the unary auxiliary relations used be
Ry, ..., R,. Let the input graph be I. Let the answer be A. Let u be the deletion
to be performed on I. We assume there is an update function f in N'RC?88" for
deleting an edge u from I so that A™ = f(A°, I°,u, R°). Suppose I°, the current
state of I, is a single cycle and we want to delete an edge v from it. Since I° is a
single cycle, we know that A° is a complete graph. Therefore A° can be generated
on-the-fly in N"RC?88" given I°. In particular, there is a function g in N'RC?88" so
that A" = g(I°,u, R°) = f({(z,y) | (z,u) € I°, (y,v) € I°}, I°,u, R°). Notice
that A° does not appear in the input to g. Now it can be shown that this function
g is not definable in N"RC?#8" — this follows from the bounded degree property of

NRC?8" [8] which says that on inputs of small degree, any N RC*8" query can
only produce outputs that realize a small (not depending on the input) number of
distinct degrees, provided those outputs do not contain numbers. Consequently,
f cannot be defined in N’'RC*8", and thus IES(SQL), cannot maintain transitive
closure of arbitrary graphs. Hence, IES(SQL), C IES(SQL),. O

Proposition 14. Space-free IES(SQL) is strictly less powerful than IES(SQL),.

Proof sketch: Let b be a infinite base type that is unordered. Consider the function
f:{bxb} - {Q} such that f(X) = {1} if the number of nodes in the graph
X having the maximum out-degree is odd, and f(X) = {} otherwise. We show
that f is not in space-free IES(SQL) but is in IES(SQL), .

To prove that f cannot be maintained by any space-free IES(SQL), we recall
from [16, 17] that NRC*#®" cannot test if the cardinality of a chain graph is
odd. Now suppose f can be maintained in a space-free |IES(SQL). Consider the
input I to be a chain graph {(ap,a1),..., (an—1,a,)} with all a;s distinct. Then
f(I) = {1} iff n is odd. Since f is maintainable in space-free IES(SQL), let g
be the update function of this IES(SQL) so that g(A°,1° u) = A™; that is g
maintains A when an edge u is deleted from I.

If I is a chain, the graph I' = I U {(ag,an)}, as well as the singleton z =
{(ag,an,)}, are definable in N'RC*8". Note that f(I') = {1}, because exactly
one node has out-degree 2. Thus, {g({1},I',u) | u € =} evaluates to {{1}} if n
is odd, and to {{}} otherwise, giving us an N'RC**®"-definable test for parity
of the cardinality of a chain, which is impossible. Thus, f is not expressible in
space-free |IES(SQL).

It remains to show that f can be maintained in IES(SQL),. Observe that
the out-degree of a node is definable in N'RC?%#"; we denote it by outdeg(z, I).
Observe also that the maximum out-degree of a graph I, mazout(l), is also
expressible in N'RC*8",

We can now construct the IES(SQL) as follows. Let I : {b x b} be the input
relation. Let A : {Q} be the output relation. Let R : {b} be the auxiliary relation
so that o € R iff the number of nodes having the same out-degree as o in I is
odd. We show how to maintain A and R under updates to I.

Let the update be the insertion of a new edge (z,y) into I. Let LESS =
{u | (u,v) € I° outdeg(u,I°) < outdeg(z,I°)}, which are those nodes currently
having out-degree less than that of z. The membership of these nodes in R
therefore does not change. Let MORE = {u | (u,v) € I°, outdeg(u,I®) >
outdeg(x,I™)}, which are those nodes currently having out-degree at least 2
more than that of . The membership of these nodes in R therefore does not
change. Let SAMEBEFORE = {u | (u,v) € I°, outdeg(u,I1°) = outdeg(z,I°)},
which are those nodes currently having the same out-degree as x. The mem-
bership of these nodes in R is toggled by the update. Let SAMEAFTER =
{u | (u,v) € I°, outdeg(u,I°) = outdeg(zx,I™)}, which are those nodes cur-
rently having out-degree one more than that of z. The membership of these
nodes in R is toggled by the update. We can now define the update to R
as R® = (R°N LESS) U (R°N MORE) U (if SAMEBEFORE #
{} N SAMEBEFORE C R° then {} else SAMEBEFORE — {z}) U

(if SAMEAFTER # {} A SAMEAFTER C R° then {} else (SAMEAFTER U
{z})). Then A™ = if {u | (u,v) € I", outdeg(u,I™) = mazout(I™)} #
{3 A A{u] (u,v) € I", outdeg(u,I™) = mazout(I™)} C R™ then {1} else {}.
The case when the update is the deletion of an existing edge (z,y) from T is
similar, and can be found in the full report [18]. O

Putting all three propositions above together, we conclude that

Theorem 15. Space-free IES(SQL) C IES(SQL), <C IES(SQL), =
IES(SQL) - O

This result contrasts sharply with the situation of IES(F0O),, which is a strict
hierarchy. The strictness of the IES(FO), hierarchy were obtained using a result
of Cai [6]; it uses queries with input relations of greater and greater arities to
separate higher and higher layers of the IES(FO), hierarchy. It is not known if
IES(FO),, remains strict if we further impose a restriction on arities of input
relations. Since the arity hierarchy collapses in the presence of simple extensions
such as aggregate functions as in IES(SQL),, we feel that a hierarchy based on
arities is not robust and not natural for incremental evaluation systems. However,
it is still an interesting problem to work out a general hierarchy for incremental
evaluation systems.

7 Conclusion

We focused on incremental evaluation systems that use the SQL-like language
NRC*E", In particular, we examined their power in the presence of auxiliary
(nested) relations. With respect to IES(NRC*8"), we proved that they can main-
tain transitive closure, “alternating paths,” and “same generation.” These results
are in contrast to earlier ones [9, etc.] on IES(FO), where expressibility of these
queries remains unsolved (and the negative results are conjectured). They are
also in contrast to earlier results [7] on space-free IES(NRC?*®8"), where these
queries were shown to be inexpressible.

Then we considered the restriction of [ES(NRC?*E") to IES(SQL), which
are allowed to use only flat auxiliary relations. |[ES(SQL) is an interesting and
important subclass because it naturally reflects the capability of commercial
relational database systems which use SQL and store flat tables. We showed that
IES(N'RC?®8") and IES(SQL) have the same power. Thus all queries that can be
expressed in [ES(AVRC*88") can also be maintained using a standard relational
database system. We further proved that every |IES(SQL) can be replaced by
one that uses auxiliary relations of arity at most 2. That means arity restriction
on auxiliary relations does not lead to a hierarchy in IES(SQCL). This contrasts
with [10] showing that arity restriction on auxiliary relations leads to a strict
hierarchy in IES(FO).

In some of our proofs, it can be observed that the amount of auxiliary data
involved could be exponential with respect to the size of the history of updates.
(The size of the history of updates to an IES(N'RC?*8") is defined as the sum of

the size of all the tuples that were inserted to or deleted from the IES(NRC*8")
up to that point in time.) However, at each update, the size of auxiliary data is
changed only a polynomial amount from its current size. Nevertheless, we do not
know of a method for maintaining recursive views such as transitive closure of
arbitrary graphs in [ES(NVRC*8") that uses only a polynomial amount of space.
We leave the search for such a method or the disprove of its existence for future
work.

Acknowledgements. We thank Michael Benedikt, Ke Wang, and especially

Guozhu Dong for numerous discussions and valuable inputs, and anonymous
referees for their helpful comments on an earlier draft.

References

1

10.

11.

12.

13.

14.

S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

. S. Abiteboul and P. Kanellakis. Query languages for complex object databases.

SIGACT News, 21(3):9-18, 1990.

A. Aho and J. Ullman. Universality of data retrieval languages. In Proceedings 6th
Symposium on Principles of Programming Languages, Tezas, January 1979, pages
110-120, 1979.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syn-
tax. SIGMOD Record, 23(1):87-96, March 1994.

P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming with
complex objects and collection types. Theoretical Computer Science, 149(1):3-48,
September 1995.

J.-Y. Cai. Lower bound for constant-depth circuits in the presence of help bits.
Information Processing Letters, 36:79-83, 1990.

G. Dong, L. Libkin, and L. Wong. On impossibility of decremental recompu-
tation of recursive queries in relational calculus and SQL. In Proceedings of
5th International Workshop on Database Programming Languages, Gubbio, Italy,
September 1995, Springer Electronic Workshops in Computing, 1996. Available at
http://www.springer.co.uk/eWiC/Workshops/DBPL5.html.

G. Dong, L. Libkin, and L. Wong. Local properties of query languages. In Proceed-
ings of 6th International Conference on Database Theory, pages 140-154, Delphi,
Greece, January 1997.

G. Dong and J. Su. Incremental and decremental evaluation of transitive closure
by first-order queries. Information and Computation, 120(1):101-106, July 1995.
G. Dong and J. Su. Space-bounded FOIES. In Proceedings of 14th ACM Sym-
posium on Principles of Database Systems, San Jose, California, pages 139-150,
May 1995.

G. Dong and J. Su. Deterministic FOIES are strictly weaker. Annals of Mathe-
matics and Artificial Intelligence 19(1):127-146, 1997.

G. Dong, J. Su, and R. Topor. Nonrecursive incremental evaluation of Datalog
queries. Annals of Mathematics and Artificial Intelligence, 14:187-223, 1995.

G. Dong and L. Wong. Some relationships between FOIES and Y| arity hierar-
chies. Bulletin of EATCS, 61:72-79, 1997.

N. Immerman. Languages that capture complexity classes. STAM Journal of Com-
puting, 16:760-778, 1987.

15.

16.

17.

18.

19.

20.

21.

22.

23.

L. Libkin and L. Wong. Aggregate functions, conservative extension, and linear
orders. In C. Beeri, A. Ohori, and D. Shasha, editors, Proceedings of 4th Interna-
tional Workshop on Database Programming Languages, New York, August 1993,
pages 282-294. Springer-Verlag, January 1994.

L. Libkin and L. Wong. Conservativity of nested relational calculi with internal
generic functions. Information Processing Letters, 49(6):273-280, March 1994.

L. Libkin and L. Wong. New techniques for studying set languages, bag languages,
and aggregate functions. In Proceedings of 13th ACM Symposium on Principles of
Database Systems, pages 155-166, Minneapolis, Minnesota, May 1994. Full version
to appear in JCSS, 55 (1997).

L. Libkin and L. Wong. Incremental recomputation of recursive queries with nested
sets and aggregate functions. Technical Report 97-224-0, Institute of Systems
Science, Heng Mui Keng Terrace, Singapore 119597, April 1997.

J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions
into flat algebra expressions. ACM Transaction on Database Systems, 17(1):65-93,
March 1992.

S. Patnaik and N. Immerman. Dyn-FO: A parallel dynamic complexity class. In
Proceedings of 13th ACM Symposium on Principles of Database Systems, pages
210-221, Minneapolis, Minnesota, May 1994.

P. Wadler. Comprehending monads. Mathematical Structures in Computer Sci-
ence, 2:461-493, 1992.

L. Wong. Querying Nested Collections. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, Philadelphia, PA 19104, August
1994. Available as University of Pennsylvania IRCS Report 94-09.

L. Wong. Normal forms and conservative extension properties for query languages
over collection types. Journal of Computer and System Sciences, 52(3):495-505,
June 1996.

This article was processed using the ITEX macro package with LLNCS style

