On the Power of Incremental Evaluation in
SQL-like Languages

Leonid Libkin'* and Limsoon Wong?**

! Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.
libkin@bell-labs.com

2 Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613.
limsoon@krdl.org.sg

Abstract. We consider [ES(SQL), the incremental evaluation system
over an SQL-like language with grouping, arithmetics, and aggregation.
We show that every second order query is in IES(SQL) and that there
are PSPACE-complete queries in IES(SQL). We further show that every
PSPACE query is in IES(SQL) augmented with a deterministic transitive
closure operator. Lastly, we consider ordered databases and provide a
complete analysis of a hierarchy on IES(SQL) defined with respect to
arity-bounded auxiliary relations.

1 Introduction

There are two kinds of incremental query evaluation in general. The first kind
is where a query is definable in the ambient language. In this case, incremental
evaluation is possible and the main problem is to find efficient algorithms to
perform it [12,13, etc.] The second kind is where a query is not definable in
the ambient language, and it is the main interest of this paper. The main ques-
tions addressed in this setting deal with conditions under which it is possible to
evaluate queries incrementally.

Let us motivate this second kind of incremental query evaluation by a very
simple example using the relational calculus (first-order logic) as the ambient
language. Let PARITY be the query that returns true iff the cardinality of a set
X is even. This query cannot be expressed in relational calculus, but it can be
incrementally evaluated. Indeed, on the insertion of an x into X, one replaces
the current answer to PARITY by its negation if z € X, and keeps it intact if
z € X. On the deletion of an x from X, one negates the current answer if x € X,
and keeps the answer unchanged if z ¢ X. Clearly, this algorithm is first-order
definable.

We denote the class of queries that can be incrementally evaluated in a
language £, using auxiliary relations of arity up to k, k > 0, by IES(L);. We let
IES(L). be the class of queries incrementally evaluated in £ without using any

* Part of this work was done while visiting INRIA and Kent Ridge Digital Labs.
** Part of this work was done while visiting Bell Labs.

auxiliary data (like the PARITY example above). Finally, IES(L) is the union of
all IES(L)y,.

The most frequently considered class is IES(FQO), which uses the relational
calculus as its ambient language. There are several examples of queries belonging
to IES(FO) that are not definable in FO [21,7]. The most complex example is
probably that of [9], which is a query that is in IES(FO) but cannot be expressed
even in first-order logic enhanced with counting and transitive closure operators.
It is known [7] that the arity hierarchy is strict: IES(FO);, C IES(FO)p41, and
that IES(FO) C PTIME. Still, for most queries of interest, such as the transitive
closure of a relation, it remains open whether they belong to IES(FO). It also
appears [9] that proving lower bounds for IES(FO) is as difficult as proving some
circuit lower bounds.

Most commercial database systems speak SQL and most practical imple-
mentations of SQL are more expressive than the relational algebra because they
have aggregate functions (e.g., AVG, TOTAL) and grouping constructs (GROUPBY,
HAVING). This motivated us [19] to look at incremental evaluation systems based
on the “core” of SQL, which comprises relational calculus plus grouping and
aggregation. Somewhat surprisingly, we discovered the following. First, queries
such as the transitive closure and even some PTIME-complete queries, can be
incrementally evaluated by core SQL queries (although the algorithms presented
in [19] were quite ad hoc). Second, the arity hierarchy for core SQL collapses at
the second level.

Our goal here is to investigate deeper into the incremental evaluation capa-
bilities of SQL-like languages. In particular, we want to find nice descriptions
of classes of queries that can be incrementally evaluated. The first set of re-
sults shows that the classes are indeed much larger than we suspected before.
We define a language SOL that extends relational algebra with grouping and
aggregation, and show that:

1. Every query whose data complexity is in the polynomial hierarchy (equiva-
lently: every second-order definable query) is in IES(SQL).

2. There exists PSPACE-complete queries in IES(SQL).

3. Adding deterministic transitive closure to SOC (a DLOGSPACE operator)
results in a language that can incrementally evaluate every query of PSPACE
data complexity.

In the second part of the paper, we compare the IES hierarchy in the cases of
ordered and unordered types. We show that the |ES(SQL); hierarchy collapses at
level 1 in the case of ordered types. We further paint the complete picture of the
relationship between the classes of the ordered and the unordered hierarchies;
see Figure 2.

As one might expect, the reason for the enormous power of SQL-like lan-
guages in terms of incremental evaluation is that one can create and maintain
rather large structures on numbers and use them for coding queries. In some
cases, this can be quite inefficient. However, we have demonstrated elsewhere [6]
that coding an algorithm for incremental evaluation of transitive closure in SQL
is reasonably simple. Moreover, it has also been shown [22] that the performance

is adequate for a large class of graphs. Thus, while the proofs here in general
do not lend themselves to efficient algorithms (nor can they, as we show how
to evaluate presumably intractable queries), the incremental techniques can well
be used in practice. However, proving that certain queries cannot be incremen-
tally evaluated in SQL within some complexity bounds appears beyond reach,
as doing so would separate some complexity classes, cf. [15].

Organization In the next section, we give preliminary material, such as
a theoretical language SOL capturing the grouping and aggregation features
of SQL, the definition of incremental evaluation system IES, a nested relational
language, and the relationship between the incremental evaluation systems based
on the nested language and aggregation.

In Section 3, we prove that IES(SQL), the incremental evaluation system
based on core SQL, includes every query whose data complexity is in the poly-
nomial hierarchy. We also give an example of a PSPACE-complete query which
belongs to IES(SQL), and show that SOL augmented with the deterministic tran-
sitive closure operator can incrementally evaluate every query of PSPACE data
complexity.

In Section 4, we consider a slightly different version of SQL, denoted by
SOL<. In this language, base types come equipped with an order relation. We
show that the IES(SQL <) hierarchy collapses at the first level, and explain the
relationship between the classes in both IES(SQL); and IES(SQL <) hierarchies.

2 Preliminaries

Languages SQC and NRC A functional-style language that captures the es-
sential features of SQL (grouping and aggregation) has been studied in a number
of papers [18, 5, 15]. While the syntax slightly varies, choosing any particular one
will not affect our results, as the expressive power is the same. Here we work
with the version presented in [15].

The language is defined as a suitable restriction of a nested language. The
type system is given by

Base:=b | Q
rt := BASE X ... X BASE
t:=B | rt |{rt} | tx...xt

The base types are b and Q, with the domain of b being an infinite set U,
disjoint from Q. We use x for product types; the semantics of t; X ... X t,, is
the cartesian product of domains of types t1,...,¢,. The semantics of {t} is the
finite powerset of elements of type t. We use the notation r¢ for record types,
and let B be the Boolean type.

A database schema o is a collection of relation names and their types of the
form {rt}. For a relation R € o, we denote its type by tp,(R). Expressions of
the language over a fixed relational schema o are shown in Figure 1. We adopt
the convention of omitting the explicit type superscripts in these expressions
whenever they can be inferred from the context. We briefly explain the semantics

here. The set of free variables of an expression e is defined in a standard way
by induction on the structure of e and we often write e(z1,...,z,) to explicitly
indicate that z1, ..., , are free variables of e. Expressions (J{e1 | € e2} and
> {e1 | € ez} bind the variable z (furthermore, is not allowed to be free in
es for this expression to be well-formed).

For each fixed schema ¢ and an expression e(xi,...,z,), the value of
e(r1,...,xy,) is defined by induction on the structure of e and with re-
spect to a o-database D and a substitution [z1:= ay,...,2Zn:= a,] that
assigns to each variable z; a value a; of the appropriate type. We write
e[z1:= ay,...,zn:= a,](D) to denote this value; if the context is understood,
we shorten this to e[z1:= aj,...,x,:= a,] or just e. We have equality test on
both base types. On the rationals, we have the order and the usual arithmetic
operations. There is the tupling operation (e1,...,e,) and projections m; , on
tuples. The value of {e} is the singleton set containing the value of e; e; U ez
computes the union of two sets, and () is the empty set.

To define the semantics of |J and)", assume that the value of ey is the set
{b1,...,b;m}. Then the value of | J{e; | x € ea} is defined to be

1[$15:a17 cen a-rn::anam::bi](D)'

s

=1

The value of Y {e; | € ey} is ¢1 + ... + ¢, each ¢; is the value of

eilzi:=ay, ..., zpi=an,x:=b], i =1,...,m.
Reo 61,82:@
zt it R:tp,(R) 0,1:Q e1+es, €1 —e2, €1 %€2, €1 ~€2:Q
e1,e2: b er,e2:Q e1,ez:Q e:B ei:t ex:t
= (e1,e2): B = (e1,e2): B < (e1,e2): B if e then ey else es : t
e1:ti1 ... en:ty 1<n ety X...Xt1y
(81,...,6n):t1><...)<tn m,ne:ti
e:rt er:{rt} es:{rt}
{e} : {rt} erUes: {rt} 0" {rt}
er:{rt1} eax:{rt2} e1:Q er:{rt}
Ufer | 2™ € e2} : {rt:1} Y{er |z €e2}: Q

Fig. 1. Expressions of SOL over schema o

Properties of SOL The relational part of the language (without arithmetic and
aggregation) is known [18, 3] to have essentially the power of the relational alge-
bra. When the standard arithmetic and the > aggregate are added, the language
becomes [18] powerful enough to code standard SQL aggregation features such as
the GROUPBY and HAVING clauses, and aggregate functions such as TOTAL, COUNT,
AVG, MIN, MAX, which are present in all commercial versions of SQL [1].

Another language that we frequently use is the nested relational calculus
NRC. Tts type system is given by

t =0 B| tx...xt| {t}

That is, sets nested arbitrarily deep are allowed. The expressions of N'RC are
exactly the expressions of SOL that do not involve arithmetic, except that there
is no restriction to flat types in the set operations.

Incremental evaluation systems The idea of an incremental evaluation sys-
tem, or |ES, is as follows. Suppose we have a query @) and a language £. An |ES(L)
for incrementally evaluating () is a system consisting of an input database, an
answer database, an optional auxiliary database, and a finite set of “update”
functions that correspond to different kinds of permissible updates to the input
database. These update functions take as input the corresponding update, the
input database, the answer database, and the auxiliary database; and collectively
produce as output the updated input database, the updated answer database,
and the updated auxiliary database. There are two main requirements: the con-
dition O = @Q(I) must be maintained, where I is the input database, and O
is the output database; and that the update functions must be expressible in
the language L. For example, in the previous section we gave an incremental
evaluation system for the PARITY query in relational calculus. That system did
not use any auxiliary relations.

Following [21,7,8,19], we consider here only queries that operate on rela-
tional databases storing elements of the base type b. These queries are those
whose inputs are of types of the form {b x ... x b}. Queries whose incremental
evaluation we study have to be generic, that is, invariant under permutations of
the domain U of type b. Examples include all queries definable in a variety of
classical query languages, such as relational calculus, datalog, and the while-loop
language. The criteria for permissible update are restricted to the insertion and
deletion of a single tuple into an input relation.

While the informal definition given above is sufficient for understanding the
results of the paper, we give a formal definition of IES(L), as in [19], which is
very similar to the definitions of FOIES [7] and Dyn-C [21]. Suppose the types
of relations of the input database are {rt},...,{rty,}, where rty,...,rt,, are
record types of the form b x ... x b. We consider elementary updates of the
form ins;(z) and del;(z), where = is of type rt;. Given an object X of type
S ={rt1} x ... x {rt,}, applying such an update results in inserting z into or
deleting z from the ith set in X, that is, the set of type {rt;}. Given a sequence

U of updates, U(X) denotes the result of applying the sequence I to an object
X of type S.

Given a query @ of type S — T (that is, an expression of type T with free
variables of types {rt1},...,{rtm}), and a type Taux (of auxiliary data), consider
a collection of functions Fg:

fnit : S =T a0 S = Taux
foairtix SXT X Taux = T fI57" 17t X S X T X Toux = Taux
i oty X SXT X Taux = T 2% 1t xS X T X Taux — Taux

ins ins

Given an elementary update u, we associate two functions with it. The function
fu it SXTxTyyx — Tis defined as A\(X,Y, Z).fi (a, X, Y, Z) if uis del;(a), and as

MNX,Y,Z).fi(a, X,Y, Z)if uis ins;(a). We similarly define f3%* : SxT X Tpux —
Taux-
Given a sequence of updates U = {uy,...,u }, define inductively the collec-

tion of objects: Xo = 0 : S, RES¢ = finit(Xo), AUXo = f21¥(Xo) (where () of
type S is a product of m empty sets), and

Xiv1 = uip1(Xy)
RESH_l = fui+1 (Xla RESZ, AUXZ)
AUX i1 = [(X4, RES;, AUX;)
Finally, we define Fo(U) as RES;.

We now say that there exists an incremental evaluation system for @ in L
if there is a type Thux and a collection Fg of functions, typed as above, such
that, for any sequence U of updates, Fo(U) = Q(U(})). We also say then that
Q is expressible in IES(L) or maintainable in L. If T, is a product of flat types
{rt}, with rts having at most k components, then we say that @ is in IES(L).

Since every expression in N'RC or SOL has a well-typed function associated
with it, the definition above applies to these languages.

Properties of IES Clearly, every query expressible in £ belongs to IES(L).. What
makes TES interesting is that many queries that are not expressible in £ can still
be incrementally evaluated in £. For example, the transitive closure of undirected
graphs belongs to IES(FO), [21,7]. One of the more remarkable facts about
IES(FO), mentioned already in the introduction, is that the arity hierarchy is
strict: IES(FO)y, C IES(FO)p41 [7]. Also, every query in IES(FO) has PTIME
data complexity.

A number of results about IES(SQCL) exist in the literature. We know [4] that
SQL is unable to maintain transitive closure of arbitrary graphs without using
auxiliary relations. We also know that transitive closure of arbitrary graphs
remains unmaintainable in SQL even in the presence of auxiliary data whose
degrees are bounded by a constant [5]. On the positive side, we know that if
the bounded degree constraint on auxiliary data is removed, transitive closure of
arbitrary graphs becomes maintainable in SQL. In fact, this query and even the
alternating path query belong to IES(SQL),. Finally, we also know [19] that the

IES(SQL) hierarchy collapses to |IES(SQL)s. We shall use the following result
[19] several times in this paper.

Fact 1 IES(V'RC) C IES(SQL). O

3 Maintainability of Second Order Queries

We prove in this section that we can incrementally evaluate all queries whose
data complexity is in the polynomial hierarchy PHIER (equivalently, all queries
expressible in second order logic). The proof, sketched at the end of the section,
is based on the ability to maintain very large sets using arithmetic, which suffices
to model second-order expressible queries.

Theorem 1. SOL can incrementally evaluate all queries whose data complexity
is in the polynomial hierarchy. That is, PHIER C IES(SQL). O

The best previously known [19] positive result on the limit of incremental evalu-
ation in SQL was for a PTIME-complete query. Theorem 1 shows that the class
of queries that can be incrementally evaluated in SOL is presumably much larger
than the class of tractable queries. In particular, every NP-complete problem is
in IES(SQL).

The next question is whether the containment can be replaced by equality.
This appears unlikely in view of the following.

Proposition 1. There exists a problem complete for PSPACE which belongs to
IES(SQL). O

Note that this is not sufficient to conclude the containment of PSPACE in
IES(SQL), as the notion of reduction for dynamic complexity classes is more
restrictive than the usual reduction notions in complexity theory, see [21]. In fact,
we do not know if PSPACE is contained in IES(SQL). We can show, however, that
a mild extension of SOL gives us a language powerful enough to incrementally
evaluate all PSPACE queries. Namely, consider the following addition to the
language:

e:{rt x rt}
dtc(e) : {rt x rt}

Here dtc is the deterministic transitive closure operator [16]. Given a graph with
the set of edges E, there is an edge (a,b) in its deterministic transitive closure
iff there is a deterministic path (a,a;), (a1,a2), ..., (an—1,ay), (an,b) in E; that
is, a path in which every node a;, i < n, and a have outdegree 1. It is known
[16] that dtc is complete for DLOGSPACE. We prove the following new result.

Proposition 2. SOL + dic can incrementally evaluate all queries of
PSPACE data complezity. That is, PSPACE C |IES(SQL + dic). O

We now sketch the proofs of these results. We use the notation p(B¥) to
mean the powerset of the k-fold cartesian product of the set B : {b} of atomic
objects. The proof of Theorem 1 involves two steps. In the first step, we show

that o(B*) can be maintained in N'RC for every k, when B is updated. In the
second step, we show that if the domain of each second order quantifier is made
available to N'RC, then any second order logic formula can be translated to
NRC. The first of these two steps is also needed for the proof of Propositions 2
and 1, so we abstract it out in the following lemma.

Lemma 1. N'RC can incrementally evaluate p(B*) for every k when B : {b}
s updated.

Proof sketch. Let PBy and PB}' be the symbols naming the nested relation
©(B*) immediately before and after the update. We proceed by induction on .
The simple base case of kK = 1 (maintaining the powerset of a unary relation) is
omitted. For the induction case of k > 1, we consider two cases.

Suppose the update is the insertion of a new element 2 into the
set B. By the induction hypothesis, N'RC can maintain p(B*~'). So we
can create the following nested sets: Yo = {{(z,...,2)}} and YV; =
G,z 2, 2iga, oo 26-1) | (21,000, 28—1) € X} | X € PBp_,}, fori =1,
..., k — 1. Let cartprod be the function that forms the cartesian product of two
sets; this function is easily definable in N'RC. Let allunion be the function that
takes a tuple (Si, ..., Sg) of sets and returns a set of sets containing all possible
unions of S, ..., Sk; this function is also definable in A"RC because the num-
ber of combinations is fixed once k is given. Then it is not difficult to see that
PBp ={X |Y € (PBjy, cartprod Yy cartprod Y1 cartprod - -- cartprodYy_1),X €
allunion(Y)}.

Suppose the update is the deletion of an existing element = from the set B.
Then all we need is to delete from each of PBy, ..., PBj, all the sets that have
x as a component of one of their elements, which is definable in N'RC. O

Proof sketch of Theorem 1. Let @ : {rt} be a query in PHIER, with input rela-
tions Ry,..., Ry, of types {rt;}. Then @ is definable by a second-order formula
with n free first-order variables, where n is the arity of rt. Suppose this formula
is ¢(x) = Q151 ...QpSpa(x, S1,...,Sp); where a is a first-order formula in the
language of R;s, S;s, and equality; Qs are the quantifiers V and 3; and each S;
has arity k;. Then, to maintain @ in A"RC, we have to maintain: (a) the active
domain B of the database Ry,..., R,,, and (b) all p(B*!). Note that the defi-
nition of IES(ANRC) puts no restriction on types of auxiliary relations. Since a
single insertion into or deletion from a relation R; results in a fixed number of
insertions and deletions in B that is bounded by the maximal arity of a rela-
tion, we conclude from Lemma 1 that all p(B*¢) can be incrementally evaluated.
Since N'RC has all the power of first-order logic [3], we conclude that it can in-
crementally evaluate () by maintaining all the powersets and then evaluating a
first-order query on them. O

Proof sketch of Proposition 1. It is not hard to show that with p(B*), one can
incrementally evaluate the REACHABLE DEADLOCK problem, which is known to
be PSPACE-complete [20].

Proof sketch of Proposition 2. Let (Q be a PSPACE query. It is known then that
@ is expressible in partial-fixpoint logic, if the underlying structure is ordered.
We know [19] that an order relation on the active domain can be maintained
in SOL. We also know [2] that @ is of the form PFP, s¢(x,y,S), where ¢ is a
first-order formula. To show that @ is in IES(SQL + ditc) we do the following. We
maintain the active domain B, an order relation on it, and p(B¥) where k =|y|.
We maintain it, however, as a flat relation of type {Q x b x...x b} where subsets
are coded; that is, a tuple (c, @) indicates that a belongs to a subset of B* coded
by c. That this can be done, follows from the proof of IES(NRC) C IES(SQL)
n [19]. We next define a binary relation Ry of type {Q x Q} such that a pair
(c1,¢2) is in it if applying the operator defined by ¢ to the subset of B¥ coded
by ¢; yields ¢o. It is routine to verify that this is definable. Next, we note that
the outdegree of every node of Ry is at most 1; hence, dtc(Rg) is its transitive
closure. Using this, we can determine the value of the partial fixpoint operator.
(I

Limitations of Incremental Evaluation in SQL Having captured the whole
of the polynomial hierarchy inside |IES(SQL), can we do more? Proving lower
bounds in the area of dynamic complexity is very hard [21,9] and SQL is
apparently no exception. Still, we can establish some easy limitations. More
precisely, we address the following question. We saw that the powerset of B*
can be incrementally evaluated in NRC. Does this continue to hold for iter-
ated powerset constructions? For example, can we maintain sets like p(p(B*)),
o(p(B) cartprod p(B)), etc.? If we could maintain p(p(B*)) in N'RC, it would
have shown that PSPACE is contained in IES(SQL). However, it turns out the
Lemma 1 is close to the limit. First, we note the 2-DEXPSPACE data complexity
of IES(SQL).

Proposition 3. For every query in |IES(SQL) (even without restriction to flat
types) there exist numbers c,d > 0 such that the total size of the input database,
answer database, and auziliary database after n updates is at most c@" .

Proof. It is known that SQC queries have PTIME data complexity [18]. Thus, if
f(n) is the size of the input, output and auxiliary databases after n updates, we
obtain f(n + 1) < Cf(n)™ for appropriately chosen C,m > 0. The claim now
follows by induction on n. O

We use @/ (B*) to mean taking the powerset j times on the k-fold cartesian
product of the set B of atomic objects. We know that p(B*) can be maintained
by N'RC. For the iterated case, not much can be done.

Corollary 1. Let j > 1. p/(B*) can be maintained by N'RC when B is updated
iff j=2and k=1.

Proof sketch. First, we show that p?(B) can be maintained. Let B : {b} denote
the input database. Let PPB = p(p(B)) : {{{b}}} denote the answer database.
B is initially empty. PPB is initially {{}, {{}}}. Suppose the update is the
insertion of a new atomic object z into B. Let A = {UU{{z}U v |veV}|U €

PPB°, V € PPB°}. Then PPB™ = PPB° U A s the desired double powerset.
Suppose the update is the deletion of an old object x from B. Then we simply
delete from PPB all those sets that mention x. Both operations are definable in
NRC.

That @/ (B*) cannot be maintained for (j, k) # (2, 1), easily follows from the

bounds above, as 22" is not majorized by ¢¢" for any constants c, d. O

4 Low Levels of the IES hierarchy

We know that the class of queries that can be evaluated incrementally in SOL is
very large. We also know from earlier work [4, 19] that with restrictions on the
class of auxiliary relations, even many PTIME queries cannot be maintained.
Thus, we would like to investigate the low levels of the IES(SQL) hierarchy. This
was partly done in [19], under a severe restriction that only elements of base
types be used in auxiliary relations. Now, using recent results on the expressive
power of SQL-like languages and locality tools from finite-model theory [14,
15], we paint the complete picture of the relationship between the levels of the
hierarchy.

In many incremental algorithms, the presence of an order is essential. While
having an order on the base type b makes no difference if binary auxiliary rela-
tions are allowed (since one can maintain an order as an auxiliary relation), there
is a difference for the case when restrictions on the arity of auxiliary relations
are imposed. We thus consider an extension of SO denoted by SOL< which is
obtained by a adding a new rule

ei,es: b
<p (61,62) ' B

where <j is interpreted as an order on the domain of the base type b. The main
result now relates the levels of the IES(SQL);, and IES(SQL <), hierarchies.

Theorem 2. The relationships shown in the diagram in Figure 2 hold.
Here A————~ B means that A is a proper subset of B, and
A< » B means that AZ B and B € A.

Proof sketch. The containment 13 was shown in this paper (Theorem 1). The
hierarchy collapse 8, as well as the inclusion 6 and the maintenance of order 14
are from [19]. We also note that in SOC, one can incrementally evaluate a query
o such that go(D) = 2™, where n is the size of the active domain of D. However,
it is known that the maximal number SO or SOL< can produce is at most
polynomial in the size of the active domain and the maximal number stored in
the database. This shows inclusions 2, 5 and half of 9: IES(SQL). ¢ SOC<.
Next, consider an input of type {b}, and a query

21 if | X| is a power of 2
0 otherwise

w(X) = {

2 3 4 13
SQL< 5 IES(SOL<). > IES(SQLS); — IES(SOL<)i>1 O PHIER
V_. V_.
1 2 10 B 14
..A ...A

SOL >+ IES(SQL). —» IES(SQL), — IES(SQL)2

IES(SQL)k>2

Fig. 2. IES(SQL)x and IES(SQL<);, hierarchies

This query belongs to IES(SQL);, as we can maintain the set {0,1,2,...,2%}
and then use standard techniques to test for the powers of 2. However, q; ¢
IES(SQL).. Indeed, if | X |= 2™ — 1, then ¢;(X) = 0 and thus on an insert into
X, the maintenance query would have to produce an integer exponential in the
size of the input. This shows 3, 6, and half of 11: IES(SQL); Z IES(SQL)..

The proof of collapse 4 proceeds similarly to the proof of 8 in [19]. To reduce
arity 2 to arity 1, we maintain a large enough initial segment of natural numbers
(but still polynomial) which we use to code tuples by numbers, where an element
of base type b is coded by its relative position in the ordering of the active domain,
and tuples are coded using the standard pairing function. Then 4 and 7 imply
12.

For the remaining relationship, we use locality techniques from finite-model
theory [10,11,14]. We shall now consider queries on tuples of flat relations
of types {b x ... x b} into a relation of type of the same form. Given an input
database D, which is a tuple of relations Ry, ..., Ry, we define the Gaifman graph
G(D) on its active domain as an undirected graph with (a, b) being an edge in it
if one of R;s has a tuple that contains both a and b. By a distance in D, we mean
the distance in its Gaifman graph. Given a tuple ¢, by SP(t) we mean the set of
all elements of the active domain of D at a distance at most r of some element
of t. These are neighborhoods of tuples, which can be considered as databases of
the same schema as D, by restricting the relations of D onto them. Two tuples
are said to have the same r-type if their r-neighborhoods are isomorphic. That
is, there is a bijection f : SP(t;) — SP(ts) such that f(¢;) = t5 and for every
tuple u of elements of SP(t;), w € R; implies f(u) € R;, and for every v in
SP(ty), v € R; implies f~(v) € R;.

We now say (see [14], where connection with Gaifman’s theorem [11] is ex-
plained) that a query @ is local if there exists an integer r such that, if ¢; and
t have the same r-type in D, then t; € Q(D) iff t2 € Q(D). We shall use the
fact [15] that every query of pure relational type (no rationals) in SOL is local.

Now 1 follows from locality of SOC, and the fact that SOL< expresses all
queries definable in first-order logic with counting over ordered structures (see
[15]), which is known to violate locality [14]. For other relationships, consider
the following query. Its input type is {b x b} x {b}; its output is of type {b}.
We shall refer to the graph part of the input as G and to the set part as P;

that is, the input is a pair (G, P). A pair is good if G is the graph of a successor
relation, and P is its initial segment. A query ¢ is good if it has the following
properties whenever its input is good: (1) If n = 21, where n is the number of
nodes in G, then ¢(G, P) is the transitive closure of the initial segment defined
by P; (2) If n # 211, then ¢(G, P) = (. It can be shown that there is a good
query ¢ in SQL<—this is because with counting power we can encode fragments
of monadic second-order on small portions of the input [14].

As the next step, we show that no such good ¢ can belong to IES(SQL);. This
shows the second half of 11 (that IES(SQL<). € IES(SQL)1), 10, 12, and second
half of 9. It also shows 7, because we know SQL< C IES(SQL),. To prove this,
we first reduce the problem to inexpressibility of a good query in SQL in the
presence of additional unary relations. This is because we can consider an input
in which 2=1 = n. For such an input, the answer to ¢ is (), but on an insert
into P it becomes the transitive closure of the segment defined by P. As the
next step, we show that locality of SOL withstands adding numerical relations,
those of type {Q x ... x Q}, as long as there is no ordering on b. To prove this,
we first code SQL into an infinitary logic with counting, as was done in [15], and
then modify the induction argument from [17] to prove locality in the presence
of extra numerical relations. Finally, a finite number, say m, of unary relations of
type {b}, amounts to coloring nodes of a graph with 2™ colors. If we assume that
q is definable with auxiliary unary relations, we fix a number r witnessing its
locality, and choose n big enough so that there would be two identically colored
disjoint neighborhoods of points a and b in P. This would mean that the r-types
of (a,b) and (b, a) are the same, but these tuples can clearly be distinguished by
q- This completes the proof. O

5 Open Problems

We have shown that PHIER C IES(SQL), but it remains open whether a larger
complexity class can be subsumed. One possibility is that all PSPACE queries
are maintainable in SQL. While we showed that there is a PSPACE-complete
problem in IES(SQL), this does not mean that all PSPACE queries are main-
tainable, as IES in general is not closed under the usual reductions (polynomial
or first-order), and we do not yet know of any problem complete for PSPACE

under stronger reductions, defined in [21], that would belong to IES(SQL).

The proof of PHIER C IES(SQL) does not lend itself to an efficient algorithm
for queries of lower complexity. In fact, it is not clear if such algorithms exist
in general, and proving, or disproving their existence, is closely tied to deep
unresolved problems in complexity. However, coding the maintenance algorithms
for some useful queries (e.g., the transitive closure) in SQL is quite easy [6]
and in fact the maintenance is quite efficient for graphs of special form [22].
Thus, while general results in this area are probably beyond reach, one could
consider restrictions on classes of inputs that would lead to efficient maintenance
algorithms.

References

1.

2.
3.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

S. Abiteboul, V. Vianu. Computing with first-order logic. JCSS 50 (1995), 309-335.
P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming with
complex objects and collection types. Theoretical Computer Science, 149(1):3-48,
September 1995.

G. Dong, L. Libkin, and L. Wong. On impossibility of decremental recomputation
of recursive queries in relational calculus and SQL. In DBPL’95, page 8.

G. Dong, L. Libkin, and L. Wong. Local properties of query languages. In Theo-
retical Computer Science, to appear. Extended abstract in ICDT’97.

G. Dong, L. Libkin, J. Su and L. Wong. Maintaining the transitive closure of
graphs in SQL. In Int. J. Information Technology, 1999, to appear.

G. Dong and J. Su. Arity bounds in first-order incremental evaluation and def-
inition of polynomial time database queries. Journal of Computer and System
Sciences 57 (1998), 289-308.

G. Dong, J. Su, and R. Topor. Nonrecursive incremental evaluation of Datalog
queries. Annals of Mathematics and Artificial Intelligence, 14:187-223, 1995.

K. Etessami. Dynamic tree isomorphism via first-order updates to a relational
database. In PODS’98, pages 235—243.

R. Fagin, L. Stockmeyer, M. Vardi, On monadic NP vs monadic co-NP, Informa-
tion and Computation, 120 (1994), 78-92.

H. Gaifman, On local and non-local properties, in “Proceedings of the Herbrand
Symposium, Logic Colloquium ’81,” North Holland, 1982.

A. Gupta, I. S. Mumick and V. S. Subrahmanian. Maintaining views incrementally.
In SIGMOD’93, pages 157-166.

A. Gupta and I.S. Mumick. Maintenance of materialized views: problems, tech-
niques, and applications. Data Engineering Bulletin 18 (1995), 3-18.

L. Hella, L. Libkin and J. Nurmonen. Notions of locality and their logical charac-
terizations over finite models. J. Symb. Logic, to appear.

L. Hella, L. Libkin, J. Nurmonen and L. Wong. Logics with aggregate operators.
In LICS’99, pages 35—44.

N. Immerman. Languages that capture complexity classes. SIAM Journal of
Computing, 16:760-778, 1987.

L. Libkin. On counting logics and local properties. In LICS’98, pages 501-512.

L. Libkin and L. Wong. Query languages for bags and aggregate functions. Journal
of Computer and System Sciences 55 (1997), 241-272.

L. Libkin and L. Wong. Incremental recomputation of recursive queries with nested
sets and aggregate functions. In DBPL’97, pages 222-238.

C. Papadimitriou. Computational Complezrity. Addison Wesley, 1994.

S. Patnaik and N. Immerman. Dyn-FO: A parallel dynamic complexity class.
Journal of Computer and System Sciences 55 (1997), 199-209.

T.A. Schultz. ADEPT - The advanced database environment for planning and
tracking. Bell Labs Technical Journal, 3(3):3-9, 1998.

