
On the Power of Incremental Evaluation inSQL-like LanguagesLeonid Libkin1? and Limsoon Wong2??1 Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.libkin@bell-labs.com2 Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613.limsoon@krdl.org.sgAbstract. We consider IES(SQL), the incremental evaluation systemover an SQL-like language with grouping, arithmetics, and aggregation.We show that every second order query is in IES(SQL) and that thereare PSPACE-complete queries in IES(SQL). We further show that everyPSPACE query is in IES(SQL) augmented with a deterministic transitiveclosure operator. Lastly, we consider ordered databases and provide acomplete analysis of a hierarchy on IES(SQL) de�ned with respect toarity-bounded auxiliary relations.1 IntroductionThere are two kinds of incremental query evaluation in general. The �rst kindis where a query is de�nable in the ambient language. In this case, incrementalevaluation is possible and the main problem is to �nd e�cient algorithms toperform it [12, 13, etc.] The second kind is where a query is not de�nable inthe ambient language, and it is the main interest of this paper. The main ques-tions addressed in this setting deal with conditions under which it is possible toevaluate queries incrementally.Let us motivate this second kind of incremental query evaluation by a verysimple example using the relational calculus (�rst-order logic) as the ambientlanguage. Let parity be the query that returns true i� the cardinality of a setX is even. This query cannot be expressed in relational calculus, but it can beincrementally evaluated. Indeed, on the insertion of an x into X , one replacesthe current answer to parity by its negation if x 62 X , and keeps it intact ifx 2 X . On the deletion of an x from X , one negates the current answer if x 2 X ,and keeps the answer unchanged if x 62 X . Clearly, this algorithm is �rst-orderde�nable.We denote the class of queries that can be incrementally evaluated in alanguage L, using auxiliary relations of arity up to k, k > 0, by IES(L)k . We letIES(L)� be the class of queries incrementally evaluated in L without using any? Part of this work was done while visiting INRIA and Kent Ridge Digital Labs.?? Part of this work was done while visiting Bell Labs.

auxiliary data (like the parity example above). Finally, IES(L) is the union ofall IES(L)k .The most frequently considered class is IES(FO), which uses the relationalcalculus as its ambient language. There are several examples of queries belongingto IES(FO) that are not de�nable in FO [21, 7]. The most complex example isprobably that of [9], which is a query that is in IES(FO) but cannot be expressedeven in �rst-order logic enhanced with counting and transitive closure operators.It is known [7] that the arity hierarchy is strict: IES(FO)k � IES(FO)k+1, andthat IES(FO) � PTIME. Still, for most queries of interest, such as the transitiveclosure of a relation, it remains open whether they belong to IES(FO). It alsoappears [9] that proving lower bounds for IES(FO) is as di�cult as proving somecircuit lower bounds.Most commercial database systems speak SQL and most practical imple-mentations of SQL are more expressive than the relational algebra because theyhave aggregate functions (e.g., AVG, TOTAL) and grouping constructs (GROUPBY,HAVING). This motivated us [19] to look at incremental evaluation systems basedon the \core" of SQL, which comprises relational calculus plus grouping andaggregation. Somewhat surprisingly, we discovered the following. First, queriessuch as the transitive closure and even some PTIME-complete queries, can beincrementally evaluated by core SQL queries (although the algorithms presentedin [19] were quite ad hoc). Second, the arity hierarchy for core SQL collapses atthe second level.Our goal here is to investigate deeper into the incremental evaluation capa-bilities of SQL-like languages. In particular, we want to �nd nice descriptionsof classes of queries that can be incrementally evaluated. The �rst set of re-sults shows that the classes are indeed much larger than we suspected before.We de�ne a language SQL that extends relational algebra with grouping andaggregation, and show that:1. Every query whose data complexity is in the polynomial hierarchy (equiva-lently: every second-order de�nable query) is in IES(SQL).2. There exists PSPACE-complete queries in IES(SQL).3. Adding deterministic transitive closure to SQL (a DLOGSPACE operator)results in a language that can incrementally evaluate every query of PSPACEdata complexity.In the second part of the paper, we compare the IES hierarchy in the cases ofordered and unordered types. We show that the IES(SQL)k hierarchy collapses atlevel 1 in the case of ordered types. We further paint the complete picture of therelationship between the classes of the ordered and the unordered hierarchies;see Figure 2.As one might expect, the reason for the enormous power of SQL-like lan-guages in terms of incremental evaluation is that one can create and maintainrather large structures on numbers and use them for coding queries. In somecases, this can be quite ine�cient. However, we have demonstrated elsewhere [6]that coding an algorithm for incremental evaluation of transitive closure in SQLis reasonably simple. Moreover, it has also been shown [22] that the performance

is adequate for a large class of graphs. Thus, while the proofs here in generaldo not lend themselves to e�cient algorithms (nor can they, as we show howto evaluate presumably intractable queries), the incremental techniques can wellbe used in practice. However, proving that certain queries cannot be incremen-tally evaluated in SQL within some complexity bounds appears beyond reach,as doing so would separate some complexity classes, cf. [15].Organization In the next section, we give preliminary material, such asa theoretical language SQL capturing the grouping and aggregation featuresof SQL, the de�nition of incremental evaluation system IES, a nested relationallanguage, and the relationship between the incremental evaluation systems basedon the nested language and aggregation.In Section 3, we prove that IES(SQL), the incremental evaluation systembased on core SQL, includes every query whose data complexity is in the poly-nomial hierarchy. We also give an example of a PSPACE-complete query whichbelongs to IES(SQL), and show that SQL augmented with the deterministic tran-sitive closure operator can incrementally evaluate every query of PSPACE datacomplexity.In Section 4, we consider a slightly di�erent version of SQL, denoted bySQL<. In this language, base types come equipped with an order relation. Weshow that the IES(SQL<)k hierarchy collapses at the �rst level, and explain therelationship between the classes in both IES(SQL)k and IES(SQL<)k hierarchies.2 PreliminariesLanguages SQL and NRC A functional-style language that captures the es-sential features of SQL (grouping and aggregation) has been studied in a numberof papers [18, 5, 15]. While the syntax slightly varies, choosing any particular onewill not a�ect our results, as the expressive power is the same. Here we workwith the version presented in [15].The language is de�ned as a suitable restriction of a nested language. Thetype system is given byBase := b j Qrt := Base� : : :�Baset := B j rt j frtg j t� : : :� tThe base types are b and Q , with the domain of b being an in�nite set U ,disjoint from Q . We use � for product types; the semantics of t1 � : : : � tn isthe cartesian product of domains of types t1; : : : ; tn. The semantics of ftg is the�nite powerset of elements of type t. We use the notation rt for record types,and let B be the Boolean type.A database schema � is a collection of relation names and their types of theform frtg. For a relation R 2 �, we denote its type by tp�(R). Expressions ofthe language over a �xed relational schema � are shown in Figure 1. We adoptthe convention of omitting the explicit type superscripts in these expressionswhenever they can be inferred from the context. We brie
y explain the semantics

here. The set of free variables of an expression e is de�ned in a standard wayby induction on the structure of e and we often write e(x1; : : : ; xn) to explicitlyindicate that x1, ..., xn are free variables of e. Expressions Sfe1 j x 2 e2g andPfe1 j x 2 e2g bind the variable x (furthermore, x is not allowed to be free ine2 for this expression to be well-formed).For each �xed schema � and an expression e(x1; : : : ; xn), the value ofe(x1; : : : ; xn) is de�ned by induction on the structure of e and with re-spect to a �-database D and a substitution [x1:= a1; : : : ; xn:= an] thatassigns to each variable xi a value ai of the appropriate type. We writee[x1:= a1; : : : ; xn:= an](D) to denote this value; if the context is understood,we shorten this to e[x1:= a1; : : : ; xn:= an] or just e. We have equality test onboth base types. On the rationals, we have the order and the usual arithmeticoperations. There is the tupling operation (e1; : : : ; en) and projections �i;n ontuples. The value of feg is the singleton set containing the value of e; e1 [e2computes the union of two sets, and ; is the empty set.To de�ne the semantics of S and P, assume that the value of e2 is the setfb1; : : : ; bmg. Then the value of Sfe1 j x 2 e2g is de�ned to bem[i=1 e1[x1:=a1; : : : ; xn:=an; x:=bi](D):The value of Pfe1 j x 2 e2g is c1 + : : : + cm, each ci is the value ofe1[x1:=a1; : : : ; xn:=an; x:=bi], i = 1; : : : ;m.xt : t R 2 �R : tp�(R) 0; 1 : Q e1; e2 : Qe1 + e2; e1 � e2; e1 � e2; e1 � e2 : Qe1; e2 : b= (e1; e2) : B e1; e2 : Q= (e1; e2) : B e1; e2 : Q< (e1; e2) : B e : B e1 : t e2 : tif e then e1 else e2 : te1 : t1 : : : en : tn(e1; : : : ; en) : t1 � : : :� tn i � n e : t1 � : : :� tn�i;n e : tie : rtfeg : frtg e1 : frtg e2 : frtge1 [e2 : frtg ;rt : frtge1 : frt 1g e2 : frt2gSfe1 j xrt2 2 e2g : frt1g e1 : Q e2 : frtgPfe1 j xrt 2 e2g : QFig. 1. Expressions of SQL over schema �

Properties of SQL The relational part of the language (without arithmetic andaggregation) is known [18, 3] to have essentially the power of the relational alge-bra. When the standard arithmetic and theP aggregate are added, the languagebecomes [18] powerful enough to code standard SQL aggregation features such asthe GROUPBY and HAVING clauses, and aggregate functions such as TOTAL, COUNT,AVG, MIN, MAX, which are present in all commercial versions of SQL [1].Another language that we frequently use is the nested relational calculusNRC. Its type system is given byt := b j B j t� : : :� t j ftgThat is, sets nested arbitrarily deep are allowed. The expressions of NRC areexactly the expressions of SQL that do not involve arithmetic, except that thereis no restriction to
at types in the set operations.Incremental evaluation systems The idea of an incremental evaluation sys-tem, or IES, is as follows. Suppose we have a queryQ and a languageL. An IES(L)for incrementally evaluating Q is a system consisting of an input database, ananswer database, an optional auxiliary database, and a �nite set of \update"functions that correspond to di�erent kinds of permissible updates to the inputdatabase. These update functions take as input the corresponding update, theinput database, the answer database, and the auxiliary database; and collectivelyproduce as output the updated input database, the updated answer database,and the updated auxiliary database. There are two main requirements: the con-dition O = Q(I) must be maintained, where I is the input database, and Ois the output database; and that the update functions must be expressible inthe language L. For example, in the previous section we gave an incrementalevaluation system for the parity query in relational calculus. That system didnot use any auxiliary relations.Following [21, 7, 8, 19], we consider here only queries that operate on rela-tional databases storing elements of the base type b. These queries are thosewhose inputs are of types of the form fb� : : : � bg. Queries whose incrementalevaluation we study have to be generic, that is, invariant under permutations ofthe domain U of type b. Examples include all queries de�nable in a variety ofclassical query languages, such as relational calculus, datalog, and the while-looplanguage. The criteria for permissible update are restricted to the insertion anddeletion of a single tuple into an input relation.While the informal de�nition given above is su�cient for understanding theresults of the paper, we give a formal de�nition of IES(L), as in [19], which isvery similar to the de�nitions of FOIES [7] and Dyn-C [21]. Suppose the typesof relations of the input database are frt1g; : : : ; frtmg, where rt1; : : : ; rtm arerecord types of the form b � : : : � b. We consider elementary updates of theform ins i(x) and del i(x), where x is of type rt i. Given an object X of typeS = frt1g � : : :� frtmg, applying such an update results in inserting x into ordeleting x from the ith set in X , that is, the set of type frt ig. Given a sequence

U of updates, U(X) denotes the result of applying the sequence U to an objectX of type S.Given a query Q of type S ! T (that is, an expression of type T with freevariables of types frt1g; : : : ; frtmg), and a type Taux (of auxiliary data), considera collection of functions FQ:finit : S ! T fauxinit : S ! Tauxf idel : rt i � S � T � Taux ! T faux;idel : rt i � S � T � Taux ! Tauxf iins : rt i � S � T � Taux ! T faux;iins : rt i � S � T � Taux ! TauxGiven an elementary update u, we associate two functions with it. The functionfu : S�T�Taux ! T is de�ned as �(X;Y; Z):f idel(a;X; Y; Z) if u is del i(a), and as�(X;Y; Z):f iins(a;X; Y; Z) if u is ins i(a). We similarly de�ne fauxu : S�T�Taux !Taux.Given a sequence of updates U = fu1; : : : ; ulg, de�ne inductively the collec-tion of objects: X0 = ; : S;RES 0 = finit(X0); AUX 0 = fauxinit (X0) (where ; oftype S is a product of m empty sets), andXi+1 = ui+1(Xi)RES i+1 = fui+1(Xi;RES i;AUX i)AUX i+1 = fauxui+1(Xi;RES i;AUX i)Finally, we de�ne FQ(U) as RES l.We now say that there exists an incremental evaluation system for Q in Lif there is a type Taux and a collection FQ of functions, typed as above, suchthat, for any sequence U of updates, FQ(U) = Q(U(;)). We also say then thatQ is expressible in IES(L) or maintainable in L. If Taux is a product of
at typesfrtg, with rts having at most k components, then we say that Q is in IES(L)k .Since every expression in NRC or SQL has a well-typed function associatedwith it, the de�nition above applies to these languages.Properties of IES Clearly, every query expressible in L belongs to IES(L)�. Whatmakes IES interesting is that many queries that are not expressible in L can stillbe incrementally evaluated in L. For example, the transitive closure of undirectedgraphs belongs to IES(FO)2 [21, 7]. One of the more remarkable facts aboutIES(FO), mentioned already in the introduction, is that the arity hierarchy isstrict: IES(FO)k (IES(FO)k+1 [7]. Also, every query in IES(FO) has PTIMEdata complexity.A number of results about IES(SQL) exist in the literature. We know [4] thatSQL is unable to maintain transitive closure of arbitrary graphs without usingauxiliary relations. We also know that transitive closure of arbitrary graphsremains unmaintainable in SQL even in the presence of auxiliary data whosedegrees are bounded by a constant [5]. On the positive side, we know that ifthe bounded degree constraint on auxiliary data is removed, transitive closure ofarbitrary graphs becomes maintainable in SQL. In fact, this query and even thealternating path query belong to IES(SQL)2. Finally, we also know [19] that the

IES(SQL)k hierarchy collapses to IES(SQL)2. We shall use the following result[19] several times in this paper.Fact 1 IES(NRC) � IES(SQL). �3 Maintainability of Second Order QueriesWe prove in this section that we can incrementally evaluate all queries whosedata complexity is in the polynomial hierarchy PHIER (equivalently, all queriesexpressible in second order logic). The proof, sketched at the end of the section,is based on the ability to maintain very large sets using arithmetic, which su�cesto model second-order expressible queries.Theorem 1. SQL can incrementally evaluate all queries whose data complexityis in the polynomial hierarchy. That is, PHIER � IES(SQL). �The best previously known [19] positive result on the limit of incremental evalu-ation in SQL was for a PTIME-complete query. Theorem 1 shows that the classof queries that can be incrementally evaluated in SQL is presumably much largerthan the class of tractable queries. In particular, every NP-complete problem isin IES(SQL).The next question is whether the containment can be replaced by equality.This appears unlikely in view of the following.Proposition 1. There exists a problem complete for PSPACE which belongs toIES(SQL). �Note that this is not su�cient to conclude the containment of PSPACE inIES(SQL), as the notion of reduction for dynamic complexity classes is morerestrictive than the usual reduction notions in complexity theory, see [21]. In fact,we do not know if PSPACE is contained in IES(SQL). We can show, however, thata mild extension of SQL gives us a language powerful enough to incrementallyevaluate all PSPACE queries. Namely, consider the following addition to thelanguage: e : frt � rtgdtc(e) : frt � rtgHere dtc is the deterministic transitive closure operator [16]. Given a graph withthe set of edges E, there is an edge (a; b) in its deterministic transitive closurei� there is a deterministic path (a; a1), (a1; a2), ..., (an�1; an), (an; b) in E; thatis, a path in which every node ai, i < n, and a have outdegree 1. It is known[16] that dtc is complete for DLOGSPACE. We prove the following new result.Proposition 2. SQL + dtc can incrementally evaluate all queries ofPSPACE data complexity. That is, PSPACE � IES(SQL + dtc). �We now sketch the proofs of these results. We use the notation }(Bk) tomean the powerset of the k-fold cartesian product of the set B : fbg of atomicobjects. The proof of Theorem 1 involves two steps. In the �rst step, we show

that }(Bk) can be maintained in NRC for every k, when B is updated. In thesecond step, we show that if the domain of each second order quanti�er is madeavailable to NRC, then any second order logic formula can be translated toNRC. The �rst of these two steps is also needed for the proof of Propositions 2and 1, so we abstract it out in the following lemma.Lemma 1. NRC can incrementally evaluate }(Bk) for every k when B : fbgis updated.Proof sketch. Let PBok and PBnk be the symbols naming the nested relation}(Bk) immediately before and after the update. We proceed by induction on k.The simple base case of k = 1 (maintaining the powerset of a unary relation) isomitted. For the induction case of k > 1, we consider two cases.Suppose the update is the insertion of a new element x into theset B. By the induction hypothesis, NRC can maintain }(Bk�1). So wecan create the following nested sets: Y0 = ff(x; : : : ; x)gg and Yi =ff(z1; : : : ; zi; x; zi+1; : : : ; zk�1) j (z1; : : : ; zk�1) 2 Xg j X 2 PBnk�1g, for i = 1,..., k � 1. Let cartprod be the function that forms the cartesian product of twosets; this function is easily de�nable in NRC. Let allunion be the function thattakes a tuple (S1, ..., Sk) of sets and returns a set of sets containing all possibleunions of S1, ..., Sk; this function is also de�nable in NRC because the num-ber of combinations is �xed once k is given. Then it is not di�cult to see thatPBnk = fX j Y 2 (PBok cartprod Y0 cartprod Y1 cartprod � � � cartprodYk�1); X 2allunion(Y)g.Suppose the update is the deletion of an existing element x from the set B.Then all we need is to delete from each of PB1, ..., PBk all the sets that havex as a component of one of their elements, which is de�nable in NRC. �Proof sketch of Theorem 1. Let Q : frtg be a query in PHIER, with input rela-tions R1; : : : ; Rm of types frt ig. Then Q is de�nable by a second-order formulawith n free �rst-order variables, where n is the arity of rt . Suppose this formulais �(x) = Q1S1 : : :QpSp�(x; S1; : : : ; Sp); where � is a �rst-order formula in thelanguage of Ris, Sis, and equality; Qs are the quanti�ers 8 and 9; and each Sihas arity ki. Then, to maintain Q in NRC, we have to maintain: (a) the activedomain B of the database R1; : : : ; Rm, and (b) all }(Bki). Note that the de�-nition of IES(NRC) puts no restriction on types of auxiliary relations. Since asingle insertion into or deletion from a relation Ri results in a �xed number ofinsertions and deletions in B that is bounded by the maximal arity of a rela-tion, we conclude from Lemma 1 that all }(Bki) can be incrementally evaluated.Since NRC has all the power of �rst-order logic [3], we conclude that it can in-crementally evaluate Q by maintaining all the powersets and then evaluating a�rst-order query on them. �Proof sketch of Proposition 1. It is not hard to show that with }(Bk), one canincrementally evaluate the reachable deadlock problem, which is known tobe PSPACE-complete [20].

Proof sketch of Proposition 2. Let Q be a PSPACE query. It is known then thatQ is expressible in partial-�xpoint logic, if the underlying structure is ordered.We know [19] that an order relation on the active domain can be maintainedin SQL. We also know [2] that Q is of the form PFPy;S�(x;y; S), where � is a�rst-order formula. To show that Q is in IES(SQL+dtc) we do the following. Wemaintain the active domain B, an order relation on it, and }(Bk) where k =jy j.We maintain it, however, as a
at relation of type fQ �b� : : :�bg where subsetsare coded; that is, a tuple (c;a) indicates that a belongs to a subset of Bk codedby c. That this can be done, follows from the proof of IES(NRC) � IES(SQL)in [19]. We next de�ne a binary relation R0 of type fQ � Qg such that a pair(c1; c2) is in it if applying the operator de�ned by � to the subset of Bk codedby c1 yields c2. It is routine to verify that this is de�nable. Next, we note thatthe outdegree of every node of R0 is at most 1; hence, dtc(R0) is its transitiveclosure. Using this, we can determine the value of the partial �xpoint operator.�Limitations of Incremental Evaluation in SQL Having captured the wholeof the polynomial hierarchy inside IES(SQL), can we do more? Proving lowerbounds in the area of dynamic complexity is very hard [21, 9] and SQL isapparently no exception. Still, we can establish some easy limitations. Moreprecisely, we address the following question. We saw that the powerset of Bkcan be incrementally evaluated in NRC. Does this continue to hold for iter-ated powerset constructions? For example, can we maintain sets like }(}(Bk)),}(}(B) cartprod }(B)), etc.? If we could maintain }(}(Bk)) in NRC, it wouldhave shown that PSPACE is contained in IES(SQL). However, it turns out theLemma 1 is close to the limit. First, we note the 2-DEXPSPACE data complexityof IES(SQL).Proposition 3. For every query in IES(SQL) (even without restriction to
attypes) there exist numbers c; d > 0 such that the total size of the input database,answer database, and auxiliary database after n updates is at most cdn .Proof. It is known that SQL queries have PTIME data complexity [18]. Thus, iff(n) is the size of the input, output and auxiliary databases after n updates, weobtain f(n + 1) � Cf(n)m for appropriately chosen C;m > 0. The claim nowfollows by induction on n. �We use }j(Bk) to mean taking the powerset j times on the k-fold cartesianproduct of the set B of atomic objects. We know that }(Bk) can be maintainedby NRC. For the iterated case, not much can be done.Corollary 1. Let j > 1. }j(Bk) can be maintained by NRC when B is updatedi� j = 2 and k = 1.Proof sketch. First, we show that }2(B) can be maintained. Let B : fbg denotethe input database. Let PPB = }(}(B)) : fffbggg denote the answer database.B is initially empty. PPB is initially ffg; ffggg. Suppose the update is theinsertion of a new atomic object x into B. Let � = fU [ffxg[v j v 2 V g j U 2

PPBo; V 2 PPBog. Then PPBn = PPBo [� is the desired double powerset.Suppose the update is the deletion of an old object x from B. Then we simplydelete from PPB all those sets that mention x. Both operations are de�nable inNRC.That }j(Bk) cannot be maintained for (j; k) 6= (2; 1), easily follows from thebounds above, as 22n2 is not majorized by cdn for any constants c; d. �4 Low Levels of the IES hierarchyWe know that the class of queries that can be evaluated incrementally in SQL isvery large. We also know from earlier work [4, 19] that with restrictions on theclass of auxiliary relations, even many PTIME queries cannot be maintained.Thus, we would like to investigate the low levels of the IES(SQL) hierarchy. Thiswas partly done in [19], under a severe restriction that only elements of basetypes be used in auxiliary relations. Now, using recent results on the expressivepower of SQL-like languages and locality tools from �nite-model theory [14,15], we paint the complete picture of the relationship between the levels of thehierarchy.In many incremental algorithms, the presence of an order is essential. Whilehaving an order on the base type b makes no di�erence if binary auxiliary rela-tions are allowed (since one can maintain an order as an auxiliary relation), thereis a di�erence for the case when restrictions on the arity of auxiliary relationsare imposed. We thus consider an extension of SQL denoted by SQL< which isobtained by a adding a new rule e1; e2 : b<b (e1; e2) : Bwhere <b is interpreted as an order on the domain of the base type b. The mainresult now relates the levels of the IES(SQL)k and IES(SQL<)k hierarchies.Theorem 2. The relationships shown in the diagram in Figure 2 hold.Here A � - B means that A is a proper subset of B, andA �.- B means that A 6� B and B 6� A.Proof sketch. The containment 13 was shown in this paper (Theorem 1). Thehierarchy collapse 8, as well as the inclusion 6 and the maintenance of order 14are from [19]. We also note that in SQL, one can incrementally evaluate a queryq0 such that q0(D) = 2n, where n is the size of the active domain of D. However,it is known that the maximal number SQL or SQL< can produce is at mostpolynomial in the size of the active domain and the maximal number stored inthe database. This shows inclusions 2, 5 and half of 9: IES(SQL)� 6� SQL<.Next, consider an input of type fbg, and a queryq1(X) = �2jXj if jX j is a power of 20 otherwise

SQL< � 2- IES(SQL<)� �3- IES(SQL<)1 ==4 IES(SQL<)k�1 13� PHIERI.............9R I.............11RSQL1[6 � 5- IES(SQL)�10[6 � 6- IES(SQL)112[6 � 7- IES(SQL)214wwwwwwwww ====8 IES(SQL)k�2Fig. 2. IES(SQL)k and IES(SQL<)k hierarchiesThis query belongs to IES(SQL)1, as we can maintain the set f0; 1; 2; : : : ; 2jXjgand then use standard techniques to test for the powers of 2. However, q1 62IES(SQL<)�. Indeed, if jX j= 2m� 1, then q1(X) = 0 and thus on an insert intoX , the maintenance query would have to produce an integer exponential in thesize of the input. This shows 3, 6, and half of 11: IES(SQL)1 6� IES(SQL<)�.The proof of collapse 4 proceeds similarly to the proof of 8 in [19]. To reducearity 2 to arity 1, we maintain a large enough initial segment of natural numbers(but still polynomial) which we use to code tuples by numbers, where an elementof base type b is coded by its relative position in the ordering of the active domain,and tuples are coded using the standard pairing function. Then 4 and 7 imply12. For the remaining relationship, we use locality techniques from �nite-modeltheory [10, 11, 14]. We shall now consider queries on tuples of
at relationsof types fb� : : : � bg into a relation of type of the same form. Given an inputdatabaseD, which is a tuple of relationsR1; : : : ; Rk, we de�ne the Gaifman graphG(D) on its active domain as an undirected graph with (a; b) being an edge in itif one of Ris has a tuple that contains both a and b. By a distance in D, we meanthe distance in its Gaifman graph. Given a tuple t, by SDr (t) we mean the set ofall elements of the active domain of D at a distance at most r of some elementof t. These are neighborhoods of tuples, which can be considered as databases ofthe same schema as D, by restricting the relations of D onto them. Two tuplesare said to have the same r-type if their r-neighborhoods are isomorphic. Thatis, there is a bijection f : SDr (t1) ! SDr (t2) such that f(t1) = t2 and for everytuple u of elements of SDr (t1), u 2 Ri implies f(u) 2 Ri, and for every v inSDr (t2), v 2 Ri implies f�1(v) 2 Ri.We now say (see [14], where connection with Gaifman's theorem [11] is ex-plained) that a query Q is local if there exists an integer r such that, if t1 andt2 have the same r-type in D, then t1 2 Q(D) i� t2 2 Q(D). We shall use thefact [15] that every query of pure relational type (no rationals) in SQL is local.Now 1 follows from locality of SQL, and the fact that SQL< expresses allqueries de�nable in �rst-order logic with counting over ordered structures (see[15]), which is known to violate locality [14]. For other relationships, considerthe following query. Its input type is fb � bg � fbg; its output is of type fbg.We shall refer to the graph part of the input as G and to the set part as P ;

that is, the input is a pair (G;P). A pair is good if G is the graph of a successorrelation, and P is its initial segment. A query q is good if it has the followingproperties whenever its input is good: (1) If n = 2jPj, where n is the number ofnodes in G, then q(G;P) is the transitive closure of the initial segment de�nedby P ; (2) If n 6= 2jPj, then q(G;P) = ;. It can be shown that there is a goodquery q in SQL<|this is because with counting power we can encode fragmentsof monadic second-order on small portions of the input [14].As the next step, we show that no such good q can belong to IES(SQL)1. Thisshows the second half of 11 (that IES(SQL<)� 6� IES(SQL)1), 10, 12, and secondhalf of 9. It also shows 7, because we know SQL< � IES(SQL)2. To prove this,we �rst reduce the problem to inexpressibility of a good query in SQL in thepresence of additional unary relations. This is because we can consider an inputin which 2jPj�1 = n. For such an input, the answer to q is ;, but on an insertinto P it becomes the transitive closure of the segment de�ned by P . As thenext step, we show that locality of SQL withstands adding numerical relations,those of type fQ � : : :� Qg, as long as there is no ordering on b. To prove this,we �rst code SQL into an in�nitary logic with counting, as was done in [15], andthen modify the induction argument from [17] to prove locality in the presenceof extra numerical relations. Finally, a �nite number, saym, of unary relations oftype fbg, amounts to coloring nodes of a graph with 2m colors. If we assume thatq is de�nable with auxiliary unary relations, we �x a number r witnessing itslocality, and choose n big enough so that there would be two identically coloreddisjoint neighborhoods of points a and b in P . This would mean that the r-typesof (a; b) and (b; a) are the same, but these tuples can clearly be distinguished byq. This completes the proof. �5 Open ProblemsWe have shown that PHIER � IES(SQL), but it remains open whether a largercomplexity class can be subsumed. One possibility is that all PSPACE queriesare maintainable in SQL. While we showed that there is a PSPACE-completeproblem in IES(SQL), this does not mean that all PSPACE queries are main-tainable, as IES in general is not closed under the usual reductions (polynomialor �rst-order), and we do not yet know of any problem complete for PSPACEunder stronger reductions, de�ned in [21], that would belong to IES(SQL).The proof of PHIER � IES(SQL) does not lend itself to an e�cient algorithmfor queries of lower complexity. In fact, it is not clear if such algorithms existin general, and proving, or disproving their existence, is closely tied to deepunresolved problems in complexity. However, coding the maintenance algorithmsfor some useful queries (e.g., the transitive closure) in SQL is quite easy [6]and in fact the maintenance is quite e�cient for graphs of special form [22].Thus, while general results in this area are probably beyond reach, one couldconsider restrictions on classes of inputs that would lead to e�cient maintenancealgorithms.

References1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,1995.2. S. Abiteboul, V. Vianu. Computing with �rst-order logic. JCSS 50 (1995), 309{335.3. P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of programming withcomplex objects and collection types. Theoretical Computer Science, 149(1):3{48,September 1995.4. G. Dong, L. Libkin, and L. Wong. On impossibility of decremental recomputationof recursive queries in relational calculus and SQL. In DBPL'95, page 8.5. G. Dong, L. Libkin, and L. Wong. Local properties of query languages. In Theo-retical Computer Science, to appear. Extended abstract in ICDT'97.6. G. Dong, L. Libkin, J. Su and L. Wong. Maintaining the transitive closure ofgraphs in SQL. In Int. J. Information Technology, 1999, to appear.7. G. Dong and J. Su. Arity bounds in �rst-order incremental evaluation and def-inition of polynomial time database queries. Journal of Computer and SystemSciences 57 (1998), 289{308.8. G. Dong, J. Su, and R. Topor. Nonrecursive incremental evaluation of Datalogqueries. Annals of Mathematics and Arti�cial Intelligence, 14:187{223, 1995.9. K. Etessami. Dynamic tree isomorphism via �rst-order updates to a relationaldatabase. In PODS'98, pages 235{243.10. R. Fagin, L. Stockmeyer, M. Vardi, On monadic NP vs monadic co-NP, Informa-tion and Computation, 120 (1994), 78{92.11. H. Gaifman, On local and non-local properties, in \Proceedings of the HerbrandSymposium, Logic Colloquium '81," North Holland, 1982.12. A. Gupta, I. S. Mumick and V. S. Subrahmanian. Maintaining views incrementally.In SIGMOD'93, pages 157{166.13. A. Gupta and I.S. Mumick. Maintenance of materialized views: problems, tech-niques, and applications. Data Engineering Bulletin 18 (1995), 3{18.14. L. Hella, L. Libkin and J. Nurmonen. Notions of locality and their logical charac-terizations over �nite models. J. Symb. Logic, to appear.15. L. Hella, L. Libkin, J. Nurmonen and L. Wong. Logics with aggregate operators.In LICS'99, pages 35{44.16. N. Immerman. Languages that capture complexity classes. SIAM Journal ofComputing, 16:760{778, 1987.17. L. Libkin. On counting logics and local properties. In LICS'98, pages 501-512.18. L. Libkin and L. Wong. Query languages for bags and aggregate functions. Journalof Computer and System Sciences 55 (1997), 241{272.19. L. Libkin and L. Wong. Incremental recomputation of recursive queries with nestedsets and aggregate functions. In DBPL'97, pages 222{238.20. C. Papadimitriou. Computational Complexity. Addison Wesley, 1994.21. S. Patnaik and N. Immerman. Dyn-FO: A parallel dynamic complexity class.Journal of Computer and System Sciences 55 (1997), 199{209.22. T.A. Schultz. ADEPT { The advanced database environment for planning andtracking. Bell Labs Technical Journal, 3(3):3{9, 1998.

