
ASPECTS OF PARTIAL INFORMATION IN DATABASESLeonid LibkinA DISSERTATIONinCOMPUTER AND INFORMATION SCIENCEPresented to the Faculties of the University of Pennsylvania in Partial Ful�llment of theRequirements for the Degree of Doctor of Philosophy.1994Peter BunemanSupervisor of DissertationMark SteedmanGraduate Group Chairperson

c
 Copyright 1994byLeonid Libkin

Averbakh{KotovZurich, September 23, 19531. d2{d4 Ng8{f6 27. g4:f5 g6:f52. c2{c4 d7{d6 28. Rg1{g2 f5{f43. Ng1{f3 Nb8{d7 29. Be3{f2 Rf7{f64. Nb1{c3 e7{e5 30. Nc3{e2 Qd7:h3+!!5. e2{e4 Bf8{e7 31. Kh2:h3 Rf6{h6+6. Bf1{e2 0{0 32. Kh3{g4 Ng8{f6+7. 0{0 c7{c6 33. Kg4{f5 Nf6{d78. Qd1{c2 Rf9{e8 34. Rg2{g5 Rb8{f8+9. Rf1{d1 Be7{f8 35. Kf5{g4 Nd7{f6+10. Ra1{b1 a7{a5 36. Kg4{f5 Nf6{g6+11. d4{d5 Nd7{c5 37. Kf5{g4 Ng8{f6+12. Bc1{e3 Qd8{c7 38. Kg4{f5 Nf6:d5+13. h2{h3? Bc8{d7 39. Kf5{g4 Nd5{f6+14. Rb1{c1 g7{g6 40. Kg4{f5 Nf6{g8+15. Nf3{d2 Ra8{b8 41. Kf5{g4 Ng8{f6+16. Nd2{b3 Nc5:b3 42. Kg4{f5 Nf6{g8+17. Qc2:b3 c6{c5 43. Kf5{g4 Be7:g518. Kg1{h2 Kg8{h8 44. Kg4:g5 Rf8{f719. Qb3{c2 Nf6{g8 45. Bf2{h4 Rh6{g6+20. Be2{g4 Ng8{h6 46. Kg5{h5 Rf7{g721. Bg4:d7 Qc7:d7 47. Bh4{g5 Rg6:g5+22. Qc2{d2 Nh6{g8 48. Kh5{h4 Ng8{f623. g2{g4?! f7{f5 49. Ne2{g3 Rg5:g324. f2{f3 Bf8{e7 50. Qd2:d6 Rg3{g625. Rd1{g1 Re8{f8 51. Qd6{b8+ Rg7{g826. Rc1{f1 Rf8{f7 0-1

PrefaceIn most applications, information stored in databases is not complete. There are various sourcesof partiality of information. First, some information may be missing. For example, in a databaseof employees some salaries may not be recorded. Second source of partiality is con
icts thatoccur when di�erent databases are merged and they contradict each other. Another source ofpartiality is asking queries against several databases simultaneously. Even if all databases arecomplete, in most cases answers to such queries can only be approximated.The �eld of partial information in databases has not received the attention that it deserves.Most work on partial information in databases asks which operations of standard languages,like relational algebra, can still be performed correctly in the presence of simple forms of partialinformation like missing values. We believe that the problem should be looked at from anotherpoint of view: the semantics of partiality must be clearly understood and it should give us newdesign principles for languages for databases with partial information.The main goals of this thesis are to develop new analytical tools for studying partial informationand its semantics, and to use the semantics of partiality as the basis for design of query languages.This work should be distinguished from the body of work on partial information in arti�cialintelligence. In most arti�cial intelligence applications the main concern is the design of modelsfor speci�c applications that could eventually lead to fast algorithms. In this thesis we areinterested in representation and querying partial information in database systems. Consequently,we concentrate on general purpose solutions that are e�ectively implementable in the contextof database query languages and provide a
exible basis for future modeling challenges.We present a common semantic framework for various kinds of partial information which canbe applied in a context more general than the
at relational model. This semantics is basedon the idea of ordering objects in terms of being more informative. Such ordered semantics,which uses the ideas from the semantics of programming languages, cleanly intergrates all kindsof partial information and serves as a tool to establish connections between them. In addition,by analyzing mathematical properties of partial data, it is possible to �nd operations naturallyassociated with it that can be turned into programming language constructs. More precisely,having de�ned semantic domains for various kinds of collections of partial data, we can describev

vithem as free algebras, and this gives us the desired sets of operations.Various queries over partial databases can be formulated in terms of approximations. By an-alyzing di�erent situations in which a precise answer can not be obtained for a query askedagainst several databases, we propose a classi�cation of constructs that can be used to modelapproximations. Using the same approach as for collections, we de�ne the semantics and theorderings of approximations and show their intimate connection with combination of disjunctiveand conjunctive sets (so-called or-sets).We discuss languages for databases with partial information. We follow the recently proposedapproach to the design of query languages based on developing languages around operationsnaturally associated with the type constructors of their type systems. Such operations usuallycome from the universality properties of semantic domains of those types. A language for setsand or-sets is introduced and normalization theorem is proved. It allows to incorporate semanticsinto the language and to distinguish two levels of querying: structural and conceptual. We thenuse the semantic connection between sets, or-sets and approximations and show how to use thislanguage to work with approximations. Languages for multisets are also discussed.The language for sets and or-sets has been implemented on top of Standard ML. Its imple-mentation is described and and two typical examples of queries are given. One deals withquerying incomplete databases which often occur in computer aided design applications. Theother example deals with querying independent databases.Summing up, this thesis develops a new approach to dealing with partial information in databases.This approach is based on deep understanding of semantics of various kinds of partial informa-tion that may occur in many di�erent contexts, and on designing languages naturally associatedwith partial information, rather than adapting existing languages for complete databases.

AcknowledgementsIt has become a tradition to start the acknowledgement section of a dissertation by thankingthe advisor. I shall certainly do so, but I want to keep expressing gratitude in the chronologicalorder. It was �ve years ago that I �nished a manuscript entitled \Abstract Convexities in Latticesand Semilattices" which was supposed to be my PhD thesis in mathematics. I never got a PhDin math; my thesis was disassembled and published in a number of papers, and shortly after�nishing it I played my own Qd7:h3+ by switching to computer science. The way from latticesand convexity to partial information and query languages was not easy or fast: it lasted �veyears, went through �ve countries and, as for any critical move, there never will be a proof ofcorrectness. This move is truly an example of partial information { we will never know for sureif it is correct, and this is why the game is taken as the epigraph for the thesis1. But there isstill something that I can assert without a shadow of doubt: I would never be where I am todaywithout having written that manuscript. And I would have never achieved that without help ofa number of people.Most of all I would like to thank my parents for their support that allowed me to do researchwhen it was next to impossible. I also want to thank them for showing me that 5,000 miles isnot an obstacle for their support and encouragement that I feel every day. I am immeasurablygrateful to Ilya Muchnik, my advisor from 1985 till 1989, with whom I wrote thirteen papers,for being responsible for my real undergraduate education and for collaborating with me on somany projects. I want to thank J�anos Demetrovics for inviting me to visit Budapest in 1988and the Soviet authorities for unexpectedly allowing me to go; I recall that it was a pleasantsurprise for me and perhaps a move like g2-g4 on their part. J�anos and E.T. Schmidt from theInstitute of Mathematics in Budapest convinced me that I should stop writing in Russian andhelped me write my �rst English papers.J�anos gave an initial impulse to my transition to computer science. But it would not have beencomplete and I would not have ended up at Penn without help and good advice that came atthe crucial moment. I would like to thank Georg Gottlob, Paolo Atzeni, Joachim Biskup andVictor Vianu for their help during my short but very important stay in Europe in 1989{1990. Ialso would like to thank Mila and Yuri Chekanovsky who helped complete this transition and1The game is taken from Bronshtein [28]. vii

viiisupported me when I arrived to the US.Having done with the past, let's move to the present. I am very grateful to my advisor PeterBuneman for numerous comments, ideas, suggestions and for being largely responsible for thedevelopment of the main principles upon which this thesis is based. I am also grateful to themembers of the Penn database group (a.k.a. the \Tuesday Club"): Susan Davidson, WenfeiFan, Anthony Kosky, Rona Machlin, Dan Suciu, Val Tannen and Limsoon Wong. Val has beenextremely helpful since I came here. I can not think of a single piece of my database workin which in some way his in
uence is not present. I wrote seven papers with Limsoon andour collaboration was very pleasant and fruitful for me (and I hope for him as well). Dan'scomments often helped improve those papers and consequently this thesis. Achim Jung fromDarmstadt University gave me the �rst lessons in domain theory when we wrote our joint paper.He invited me to Darmstadt in October 92 where I learned about the problem of approximationin databases. I also would like to thank Hermann Puhlmann for his hospitality during my stayin Darmstadt. Carl Gunter was always very helpful, especially when I was trying to understandsome �ne points in the semantics of programming languages, before his excellent book appeared.Elsa Gunter has helped me a lot as my AT&T \mentor". She also in
uenced the implementationof OR-SML, the language that I built during my three-month stay at AT&T Bell Laboratoriesin 1993. I thank Paris Kanellakis for his comments on an earlier version of the thesis that haveled to many improvements.Many people read my papers upon which this thesis is based, and made useful suggestions. I wasalso very lucky to have presented the material of this thesis before very responsive audiences, andsome penetrating questions asked during or after my talks in
uenced the contents of the thesis.It is impossible to mention all names, and I apologize for unintentionally omitting some people.For their comments, suggestions, questions and encouragement I thank Susan Davidson, J�anosDemetrovics, Jean Gallier, Stephane Grumbach, Rick Hull, Tomasz Imielinski, Paris Kanellakis,Anthony Kosky, Alberto Mendelzon, Dale Miller, Inderpal Mumick, Shamim Naqvi, Teow-HinNgair, Atsushi Ohori, Jan Paredaens, Hermann Puhlmann, Jon Riecke, Anna Romanowska, BillRounds, Bernhard Thalheim, Kumar Vadaparty, Bennet Vance, Jan Van den Bussche, Dirk VanGucht, Victor Vianu, Steve Vickers and Scott Weinstein. I thank Paul Taylor for his diagrammacros, and Nan Biltz and Michael Felker for being a bu�er between me and UPenn bureaucracy;all three saved me hours and perhaps even days that I could then use for research.Finally, I gratefully acknowledge �nancial support provided by AT&T Doctoral Fellowship andNSF Grant IRI-90-04137.

ContentsPreface vAcknowledgements vii1 The Problem of Partial Information in Databases 11.1 Null values : 11.1.1 Early work on null values in databases : 11.1.2 Types of nulls : 71.1.3 Semantics and query evaluation : 91.1.4 Extension to complex objects : 121.2 Disjunctive information and or-sets : 161.2.1 De�nition and examples of or-sets : 161.2.2 Structural and conceptual queries : 181.3 Approximations : 191.3.1 Example: Querying independent databases : : : : : : : : : : : : : : : : : 191.3.2 Simple approximations : 211.3.3 Approximating by many relations : 231.4 Toward a general theory of partial information : : : : : : : : : : : : : : : : : : : 26ix

x CONTENTS2 Mathematical Background 312.1 Ordered sets and domains : 312.2 Algebras : 352.3 Adjunctions and monads : 362.4 Rewrite systems : 403 Preliminaries 433.1 Databases with partial information and domain theory : : : : : : : : : : : : : : : 443.1.1 Order on objects and partiality : 443.1.2 Schemes : 473.1.3 Dependency theory : 553.1.4 Queries : 603.2 Languages for programming with collections : 663.2.1 Data-oriented programming : 663.2.2 Sets : 693.2.3 Bags : 774 Semantics of Partial Information 874.1 Order and Semantics : 884.1.1 Orderings on collections : 884.1.2 Semantics of collections : 974.1.3 Formal models of approximations : 1024.2 Universality properties of partial data : 1114.2.1 Universality properties of collections : 1124.2.2 The iterated construction : 112

CONTENTS xi4.2.3 Universality properties of approximations : : : : : : : : : : : : : : : : : : 1165 Languages for partial information 1495.1 Languages for collections of partial data : 1505.1.1 Language for sets : 1505.1.2 Language for or-sets : 1585.1.3 Language for bags : 1605.2 Language for sets and or-sets : 1635.2.1 Syntax and semantics : 1665.2.2 Normalization and conceptual programming : : : : : : : : : : : : : : : : : 1705.2.3 Partial normalization : 1805.2.4 Losslessness of normalization : 1905.2.5 Costs of normalization : 1935.3 Programming with approximations : 1995.3.1 Structural recursion on approximations : : : : : : : : : : : : : : : : : : : 1995.3.2 Using sets and or-sets to program with approximations : : : : : : : : : : 2016 OR-SML 2056.1 Overview of OR-SML : 2056.1.1 Core language : 2076.1.2 Additional features : 2106.1.3 Implementation issues : 2176.2 Applications of OR-SML : 2206.2.1 Querying incomplete databases : 2206.2.2 Querying independent databases and approximations : : : : : : : : : : : : 225

xii CONTENTS7 Conclusion and further research 2337.1 Brief summary : 2337.2 Problems for further investigation : 235Bibliography 247Index 257

Chapter 1The Problem of Partial Informationin DatabasesIn this chapter we give a brief introduction into the theory of partial information in databases.In the �rst section, we recall some major developments in the �eld and consider various types ofnull values which are used most often to introduce partial information into relational databases.We discuss representation systems and problems with query evaluation. These are the onlytwo sub�elds in which signi�cant progress has been made. We review extensions of partialinformation to the complex object (nested relational) data model.Then we consider two di�erent kinds of partial information that have not received the sameamount of attention from the database community. One is disjunctive information representedvia or-sets; the other is a number of constructions of similar structure called approximations.Having surveyed the results known for these two kinds of partiality, we summarize open problemsthat we solve or demonstrate new approaches towards solving, and outline the structure of thethesis.1.1 Null values1.1.1 Early work on null values in databasesAny practical database management system must deal with the concept of partial information.It was observed by Maier [113] that the fact that the structure of information may not �t therelational model is not its only major limitation. Equally important is the reason that even ifinformation does �t the model, part of it may be missing for some reason. While there has beena
urry of activity lately in trying to go beyond the standard relational model, one can not1

2 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESsay the same about partial information. The topic is still unexplored, there are few signi�cantresults and there is no clear understanding of what partiality really means.Soon after Codd introduced his relational model, people realized that in real applications notall values may be present. For example, in a simple relation below that might be a part of auniversity or a corporation database, some values are missing and the symbol ni (no information)is used. Note that there could be several di�erent reasons for using ni. For example, a personmay not have a phone, or may have a phone but the number is unknown (for example, he mayhave forgotten it while �lling out a form which was later entered in a database), or there couldbe no information whatsoever (if a clerk was entering the data and did not know anything aboutthe phone in a particular o�ce).Name Salary Room TelephoneJohn 15K 075 niAnn 17K ni niMary ni 351 x-1595In 1975 Codd [39] perhaps did not consider it as a serious problem and suggested a simplesolution: a fact about a tuple is either true (1) or false (0) or neither (12) which is the case whenwe do not have a complete information. However, a few years later, Grant [63] showed thatCodd's solution leads to wrong results if we are to select certain tuples from the database. Heproposed an alternative solution which was, in fact, introduction of the Skolem constants fornulls, formally studied by Biskup [23] a few years later.The example given by Grant [63] and Codd [40] is essentially the following. Suppose we have aperson whose name is in a database but salary is unknown, as for Mary in the above example.Suppose that we want to partition the table into two: T1 containing employees with salaries lessthan 15K and T2 of employees with salaries at least 15K. Of course, we believe that T1 [T2should produce the original table back. But as a matter of fact, according to Codd's queryevaluation algorithm in the presence of null values [39], Mary will not be included in T1 nor inT2.Still, one very important observation was made in Codd [40]. Since every null value can bereplaced by a non-null value, each relation with nulls is represented by a set of relations withoutpartial information. Moreover, this set could be considered as the semantics of the given incom-plete relation. Thus, the most important lesson that we learn from the early work on partialinformation is that there is a need in better mathematical models for partial information and inbetter understanding of its semantics.In the late 70s and early 80s there were three major developments in the theory of partialinformation. First, the idea to use orderings as a means to express partiality emerged. Second,a rather rudimentary approach to disjunctive information was developed and an attempt was

1.1. NULL VALUES 3made towards a design of a query language speci�cally for partial information. Third, thedistinction between various assumptions on partiality was made and it was shown how thoseassumptions lead to di�erent semantics and query evaluation algorithms. Let us consider allthree.Orderings and partial informationWe believe that the idea of expressing partiality of information by means of orderings is due toVassiliou [172]. Two years after his initial work, this idea was further developed by Biskup [23].As a simple example, consider values that may occur in a database. Then ni is more partial, orless informative, than any nonpartial value v such as 15K or 'Mary'. Therefore, we impose anorder according to which ni � v for any nonpartial value v.Since databases are obtained by applying record and set constructors, we need to extend theorderings respectively. For records the most natural way to do it is componentwise. For recordswith �elds labeled by l1; : : : ; ln, we de�ne[l1 : v1; : : : ; ln : vn] � [l1 : v01; : : : ; l0n : v0n] i� 8i = 1; : : : ; n : vi � v0iFor sets there are various ways to extend a partial order, and typically the following one, per-ceived as a generalized subset ordering, was considered:X v Y i� 8x 2 X 9y 2 Y : x � yLet us brie
y consider two of the early works dealing with ordering on objects. Biskup [23]considered two null values. One is 9 and its meaning is the same as ni in the example above:there is no information about the value of an attribute and there exists a complete value thatcan be substituted for it. The other is a somewhat less natural value 8 meaning that any valueis a right substitution for it. For instance, a record [l1 : v1; l2 : 8] is just a short notation for aset of records [l1 : v1; l2 : v] for all possible values v. That is, 8 is not really a null value. This isfurther con�rmed by the ordering imposed on values:HHHHHH@@@ ���@@@��� ������v1 v2 v3 v4 : : :98Biskups's paper made two major contributions to the �eld. First, he showed that truth of certainlogical formulae about databases with added 9 and 8 values is intimately connected with the

4 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESordering. Second, he showed how to evaluate some of the standard database operations in thepresence of those values.Another approach to incorporating orderings as a means to express partiality into the relationalmodel was proposed by Zaniolo [181]. He considered one kind of null, ni, and de�ned theordering on tuples and sets in a way similar to the one given above; the only di�erence is thathe allowed to compare tuples over di�erent sets of attributes by inserting nulls in the missingcolumns. For example, a tuple [Name) 'Joe', Age) 25] is less informative than [Name)'Joe', Age) 25, Salary) 15K] because the former is extended to [Name) 'Joe', Age) 25,Salary) ni], which is less informative than the latter under the componentwise ordering.The notion of being more informative is extended from tuples to relations by the ordering givenabove, that is, R1 v R2 i� 8t1 2 R19t2 2 R2 : t1 � t2. This is a preorder, and it mightbe the case that both R1 v R2 and R2 v R1 hold; in this case R1 and R2 are information-wise equivalent and we write R1 �= R2. By an x-relation Zaniolo means an equivalence class ofrelations with respect to �=; an equivalence class of a relation R is denoted by R̂. It is easy toexpress the generalized notion of a tuple t belonging to an x-relation R̂ using the following fact:t 2 R0 for some R0 2 R̂ i� t � t0 for some t0 2 R. We use the notation t2̂R̂ for this notion ofbeing an element. Then one can rede�ne the union, intersection and di�erence on equivalenceclasses R̂1 and R̂2 as equivalence classes given by the following relations: ft j t2̂R̂1 or t2̂R̂2g,ft j t2̂R̂1 and t2̂R̂2g, ft j t2̂R̂1 and :(t2̂R̂2)g respectively.De�ning join is slightly trickier. First we say that two tuples t1 and t2 are joinable if, for anycommon attribute A, either in one of the two the A-value is ni or in both the A-values coincide.Since any two tuples can be viewed as tuples over the same set of attributes, we de�ne the joinof t1 and t2 of two joinable tuples by taking its A-value to be ni if both A-values in t1 and t2are ni, or v is either A-value of t1 is v or A-value of t2 is v and v 6= ni. For example,[Name) John;Age) 25]_ [Name) John;Room) 76] = [Name) John;Age) 25;Room) 76]The reason is that both tuples are �rst extended by adding ni to the missing �elds; then theyare found to be joinable and then the join is taken. Now, given a set X of attributes, a join oftwo equivalence classes of relations R̂1 and R̂2 on X is de�ned by R̂1 1X R̂2 = R̂ whereR = ft1 _ t2 j t12̂R1; t22̂R2; t1 and t2 are total on XgZaniolo [181] showed that the algebra thus de�ned can be used to query databases with partialinformation. In particular, he showed how to represent universal quanti�cation and negation inqueries.

1.1. NULL VALUES 5Disjunctive information and query languagesIn his classical papers, Lipski [109, 110] introduced two very important concepts that havein
uenced the theory of partial information ever since.First, he proposed a special data model for partial information. This data model1 is based noton null values but rather on assigning sets to objects and attributes. The idea is that for a givenobject x and a given attribute a, the value that x may have on a is taken from this assigned setXax . This data model is the �rst instance of the use of disjunctive information in the databaseliterature dealing with partial information. Disjunctive information is of special importance inthis thesis and we shall discuss it later in details.The second idea is based on the assumption that, in the presence of partial information, itis often impossible to evaluate queries precisely. Therefore, one should look for a reasonableapproximation. We believe that Lipski [109] was the �rst to explicitly state the requirementsthat two bounds for a query Q constitute the answer for partial databases:1. The lower approximation to the answer to Q, that is, those objects for we which one canconclude with certainty that they belong to the answer to Q.2. The upper approximation to the answer to Q, that is, those objects for we which one canconclude that they may belong to the answer to Q.However, it was not until ten years later that it was observed by Buneman, Davidson andWatters [31, 32] that those pairs of approximations may not only be regarded as results of queryevaluation but may also be used as a representation mechanism for certain kinds partial data.Studying such approximation constructs is central to this thesis and we shall present a thoroughstudy of them later.However, another idea from Lipski's papers [109, 110] was overlooked by many. Unlike mostother researchers, Lipski did not try to tie his data model to the standard relational data modeland consequently he did not use languages like the relational algebra. Instead, he designed aspecial language, that arose quite naturally from the structures he was considering. Thus, itwas the �rst instance (and unfortunately one of very few) when, instead of adapting existinglanguages to work with partial information, a new language was designed speci�cally for thepurpose of working with partial information. This is the approach we advocate throughout thisthesis and we shall see its many features later.1Called in [109, 110] information systems, which is in direct con
ict with the informations systems used inprogramming semantics [67].

6 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESOpen worlds and closed worldsIt was observed by Reiter [142] that certain assumptions on the nature of partiality are to bemade if we want to provide a notion of correctness of query evaluation algorithm. To explainthose assumptions, consider the following relation:Name Salary Roomni ni 076Mary 17K niOnce all or some information about missing values (ni's) is known, we have a relation thatrepresents better knowledge than the one above. However, there is a question what values areallowed in the new relation?One possible interpretation, called the closed world assumption or CWA, states that we can onlyimprove our knowledge about records that are already stored but can not invent new ones. Forexample, it is legal to add any record v1 v2 076 which improves upon the �rst record inthe relation. It is also possible to add a record Mary 17K 561 which is better knowledgethan that represented by the second record in a database. However, it is not possible to adda record Ann ni 561 as it does not improve any of the records already in the database.Indeed, it can not be seen as an improvement of the knowledge represented by the �rst record(since the o�ce number is 561 and not 076), nor the second one (as the name is Ann, not Mary).That is, the database is closed for adding new records.Contrary to that, the open world assumption or OWA allows adding records to database as wellas improving already existing records. Under the open world assumption, adding any recordconsidered above to the database is perfectly legal. That is, the database is open for adding newrecords.There is another interpretation of the CWA and the OWA. Facts stored in a database arepresumed to be positive facts. Then, under the CWA, we assume that if a fact is not representedin the database, then it is not true, i.e. we have a perfect picture of the world and nothing canbe added to it. Under the OWA, this is not the case and not having a fact stored in a databasedoes not tell us whether it should or should not be there.To summarize, Figure 1.1 shows how to replace missing values according to both assumptions.Reiter [142] de�ned the concept of a CWA answer to a query. He proved that minimal CWAanswers contain precisely one tuple, that CWA query evaluation distributes over intersection andunion, and that for a database that is consistent with the family of negations of facts stored in it,the CWA evaluation algorithm gives exactly the same result as the OWA evaluation algorithm.

1.1. NULL VALUES 7Name Salary RoomJohn 15K 076Ann ni 076Mary 17K 561�����CWA �Name Salary Roomni ni 076Mary 17K ni @@@@@OWA R Name Salary RoomJohn 15K 076Ann 13K 325Mary 17K 561Figure 1.1: Illustration to CWA and OWAComputational complexity of problems related to CWA or OWA was studied by Vardi [171]. Heassumed a very simple model of partiality, namely values of a subset U of a set of attributesV are missing. Then a V -relation R0 OWA-represents a U -relation R if R � �U(R0), and itCWA-represents R if R = �U (R0). Vardi considered certain problems related to dependencysatisfaction and inference for both representations. He obtained a number of results of thefollowing
avor: if a problem for OWA representations lies in a complexity class C, then thesame problem for CWA representations lies in the corresponding nondeterministic complexityclassNC. However, the situation is reverse for evaluation of boolean queries in all representationssatisfying a given set of dependencies. Then for CWA the problem is PSPACE-complete whereasit is co-r.e.-complete for OWA representations.1.1.2 Types of nullsSo far we have considered only one null value, ni, following Zaniolo [181]. There are other kindsof nulls in the literature.Existing unknown values. In all examples above, we have not said anything about existenceof a value that can be substituted for a null. For example, in the CWA completion of the databasein �gure 1.1, Ann has no salary. There could be several reasons for that. First, we may simplylack information about Ann's salary for some reason. For example, she was hired but is not onthe payroll yet. Secondly, it could be the case she does not have a salary. For example, she

8 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESmight be working voluntarily, without getting paid.In order to represent the �rst case, when a value does exist but is unknown at present time,existing unknown null values have been introduced. These have been studied most, see Codd[39, 40], Biskup [23], Maier [113], Grahne [62] etc. We shall often use un to denote such nulls.Nonexisting nulls. As we have just mentioned, one of the reasons for a value to be missing isthat it does not exist. Such values are denoted by ne; they were studied by Lerat and Lipski [94].The main reson that such values appear in a database is that some attributes are not alwaysapplicable. For example, not every employee may have a telephone; the \children" attributeis certainly not applicable to all people, nor are \maiden name" and even more so \spouse'sbusiness phone number".There is some confusion about considering ne as a null. Indeed, ne represents perfect knowledgein exactly the same way as any usual value. Knowing that Ann's maiden name is Smyth is asgood as knowing she is not married and does not have one, if our concern is partiality ofinformation. We shall see shortly that the intuition that ne \is not really a null value" will becon�rmed when we consider ordering on those values in more detail.No information nulls. These are nulls ni we have considered in the previous section. Havingni in a database simply means that there is no knowledge whatsoever about the situation.Having introduced these three kinds of nulls, let us reexamine the �rst example of a relationwith incomplete information given in this thesis. If we use nulls as follows:Name Salary Room TelephoneJohn 15K 075 neAnn 17K un niMary un 351 x-1595We certainly have better knowledge than we had using only the ni null value. First, we know thatJohn does not have a phone; moreover, we also obtained the knowledge that Mary and Ann dohave some salary but at this time it is unknown what their salaries are. Hence, information-wise,ni is the worst situation possible, while having either a value or ne gives us complete knowledgeabout the situation. un is an intermediate situation: it is better than ni but certainly worsethan any value, and it is incomparable with ne.Now, applying the idea of representing partiality by means of an order on values, we obtain theordering for the three kinds of nulls we studied in this section, see �gure 1.2. Perfect knowledge,i.e. knowledge that can not be improved, is represented by elements which are not dominatedby any other elements in this poset. In particular, ne is such.

1.1. NULL VALUES 9@@@ ���@@@ ������������nine unv0 v1 v2 : : : vn : : :Figure 1.2: Order on null valuesOpen null values. Another kind of null values was introduced by Gottlob and Zicari [59] inthe context of closed world databases. Assume we have a database with two kinds of null values,ne and un, and further assume the closed world assumption. Now, assume that we would liketo relax this closed world assumption for a given attribute, but retain it for the others. The ideaof Gottlob and Zicari was to introduce a new null, called open, which then will mean that thecorresponding attribute is \open", i.e. it may have arbitrary values and not only those consistentwith the information already stored in a database. We shall return to open null values laterwhen we study semantics of partiality.Generic nulls. In many cases we are not concerned with the meaning of null values and simplywant to distinguish nulls from non-nulls. Then we use generic nulls, which will be denoted by?. Generic nulls are often used in the literature if general properties of partial information areinvestigated, see Buneman et al. [33], Levene and Loizou [98].1.1.3 Semantics and query evaluationAssume we are given a relational database with nulls and a query written in the relationalalgebra. How does one evaluate that query on an incomplete relation?This is the question that has been studied most in the theory of partial information. A num-ber of approaches resulted in two landmark papers: Imielinski and Lipski [78] and Abiteboul,Kanellakis and Grahne [8] which are, in my opinion, the most profound contributions into thetheory of partial information in relational databases2.An incomplete database can represent many complete ones, which are often called possibleworlds. Let R be a relation, and let [[R]] be the semantics of R, that is, the set of all possibleworlds that R can denote. We explain later how [[�]] can be de�ned. For now it is only importantto understand that [[R]] is a family of relations. Let Q be a relational algebra query. We can2Some of the results from [8] can also be found in the book Grahne [62].

10 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESde�ne Q on [[R]] by Q([[R]]) = fQ(R0) j R0 2 [[R]]gThe question arises: how can we de�ne the action of Q on the incomplete relation R? The mostnatural requirement for this action of Q on R, which will be denoted by Q�(R), is to representprecisely Q([[R]]). That is, [[Q�(R)]] = Q([[R]]). Using terminology of Grahne [62], we call apair h[[�]];�i a strong representation system if [[Q�(R)]] = Q([[R]]) holds for any query Q which iswritten in a sublanguage of the relational algebra that uses only operations from �.As it was noted in Imielinski and Lipski [78], the structure of [[R]] is too irregular to allow h[[�]];�ibe a strong representation system for most �. Therefore, they suggested that one has to settlefor something less. Their idea was to look at the set of certain answers to Q which is de�ned asQc(R) =\Q([[R]]) =\fQ(R0) j R0 2 [[R]]gNow we say that h[[�]];�i is a weak representation system if for any query Q it is possible to �nda query Q� which represents the certain answer to Q, that is,\ [[Q�(R)]] = Qc(R)It was observed in Grahne [62] that the concepts of strong and weak representation systemscoincide when � includes all operations of the relational algebra.The next step is to de�ne some classes of relations with null values and the semantic function [[�]]for them. Codd tables are de�ned as relations in which variables can occur as well as constantsand every variable occurs at most once. Variables represent null values, and each variable canbe substituted by any value. That is, in terms of orderings, the basic domain of values that canoccur in Codd tables is shown below. It is a complete bipartite graph between variables xi's andconstants cj 's. In other words, every variable xi is less informative than every constant cj andconsequently can be replaced by it.������������QQQQQQQQQ������������AAAAAA HHHHHHHHHHHHQQQQQQQQQ@@@@@@ @@@@@@AAAAAA @@@@@@������ AAAAAA��������������� AAAAAA��������������������� ������x1 x2 x3 x4 x5c1 c2 c3 c4 c5 : : :: : :An inequality table is obtained from a Codd table by adding a �nite number of inequalitiesbetween variables and between variables and constants. Equality tables are obtained from Codd'stables by declaring some variables equal. That is, the condition that every variable may occurat most once is removed. A combination of equality and inequality tables, that is, an equality

1.1. NULL VALUES 11table with a set of inequalities attached to it, is called a global table. Finally, a conditionedtable is a global table with local conditions attached to each record. Those local conditions areconjunctions of equalities and inequalities. Below we give an example of each kind of tables.0 xy 1v zCodd table 0 xy 1x yEquality table x 6= 1 v 6= z0 xy 1v zInequality table x 6= 1 v 6= 20 xx 1v vGlobal table x 6= 1 v 6= 20 x z = zx 1 v = 0v v v 6= xConditioned tableTo de�ne the semantic function [[�]], we �st de�ne valuations as partial maps from variablesto constants. Given a valuation �, it can be extended to tables in a natural way (that is, byrequiring that all conditions hold under the valuation �). If a valuation does not satisfy thecondition associated with a given record, it is not de�ned on that record. Similarly, if the globalcondition is not satis�ed, then the valuation is not de�ned on a table with that global condition.That is, valuations extended to relations remain partial functions.For a given table R, let VAR(R) be the set of all variables that occur in R. For a given valuation�, let dom(�) be the set of variables on which � is de�ned. Now we can de�ne [[�]] under bothclosed and open world assumptions:[[R]]CWA = fR0 j 9� : VAR(R) � dom(�) & �(R) = R0g[[R]]OWA = fR0 j 9�9R00 : VAR(R) � dom(�) & �(R) = R00 & R00 � R0gThat is, the main di�erence between CWA and OWA interpretations is that the latter allowsadding any number of records that do not contain variables.The main results of Imielinski and Lispki [78] are the following:1. If � contains all operations of the relational algebra, then h[[�]]OWA ;�i is a strong repre-sentation system for tables without the global condition.2. If � contains all operations of the relational algebra except di�erence and selection withnegations present in the conditions, then h[[�]]OWA ;�i is a weak representation system forequality tables.3. If � consists of projection and selection only, then h[[�]]OWA;�i is not a weak representationsystem for equality tables.4. If � consists of projection and selection only, then h[[�]]OWA;�i is a weak representationsystem for Codd tables.

12 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES5. If � consists of projection, selection and union, then h[[�]]OWA;�i is not a weak represen-tation system for Codd tables.6. If � consists of projection and join, then h[[�]]OWA ;�i is not a weak representation systemfor Codd tables.7. If � does not contain di�erence, then h[[�]]CWA;�i is a weak representation system i� so ish[[�]]OWA;�i.Abiteboul, Kanellakis and Grahne [8] studied complexity of certain problems related to theCWA semantics of the tables. Two most important problems they studied are membership andcontainment.The membership problem has a parameter Q which is a query that can be evaluated in polyno-mial time. It has two inputs: a relation R0 without incomplete information and a conditionedtable R. The question is whether R0 2 [[R]]CWA.The containment problem two parameters, Q1 and Q2, which are queries that can be evaluatedin polynomial time. It has two conditioned tables R and R0 as an input. The question is whetherQ1([[R]]CWA) � Q2([[R0]]CWA).It was shown that the general containment problem lies in �p2 and the general membershipproblem lies in NP . In the case when the parameter of the membership problem is the identityquery id, the membership problem becomes polynomial for Codd tables but is NP-complete forequation and inequation tables. When both parameters of the containment problem are id, theproblem is in NP for global tables and equality tables, and even in PTIME when one input is aglobal table and the other is a Codd table. However, it is �p2-complete if one input is an equalitytable and the other is a conditioned table, or if one input is an inequality table and the other isa Codd table. More results of this
avor can be found in [8].Query evaluation algorithms for databases with null values have also been studied by Reiter[144]. He used his earlier framework of representing databases as �rst-order theories [143] andshowed how to incorporate existing but unknown nulls into it. In that setting, he demonstrateda sound query evaluation algorithm which is also complete under certain restrictions.1.1.4 Extension to complex objectsAll examples considered so far use the standard
at relational model. In the past few years manyattempts have been made to go beyond that model. Most of them focus on nested relations orcomplex objects. We give a brief description of those and then discuss the problem of addingpartial information into the complex object data model. The reader interested in development ofthe theory of nested relations per se should consult Schek and Scholl [156], Thomas and Fischer[167], Paredaens et al. [131] and the collection of articles [4].

1.1. NULL VALUES 13The basic idea is that attributes may be relation-valued themselves. For example, in the followingsimple database the attribute Sections is relation-valued as any course may have a number ofsections with di�erent teaching assistants. Attributes Course and Instructor are single-valued:their values are like CS1 or Brown.Course Instructor SectionsCS1 Smith Section# TA001 Ann002 JohnCS2 Brown Section# TA003 Michael004 JimAll operations of the relational algebra can be used with nested relations as well. However,for nested relations we need more than just relational algebra as it does not allow us to godeep inside the relations. Two operations for doing so have been proposed { nest and unnest.The unnest operation unnests values of some attributes. For example, unnesting the Sectionsattribute in the example above produces the usual (
at) relationCourse Instructor Section# TACS1 Smith 001 AnnCS1 Smith 002 JohnCS2 Brown 003 MichaelCS2 Brown 004 JimNesting over a group of attributes collects tuples with equal projections onto those attributes intonew relations, thus creating an additional level of nesting. For example, nesting over Section#and TA in the above
at relation will give us the original nested relation.The operations of nesting and unnesting are not mutually inverse, and doing unnest followed bynest we may lose some information. In the following example, we start with a nested relationand unnest the TA attribute and then nest over that attribute. The result, however, is di�erentfrom the original relation:

14 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESCourse TACS1 TA NameMaryJohnCS1 TA NameAnnCS2 TA NameJim UnnestTA- Course TA NameCS1 MaryCS1 JohnCS1 AnnCS2 Jim NestTA Name- Course TACS1 TA NameMaryJohnAnnCS2 TA NameJimThere are several algebras for nested relations based on adding nest and unnest to the
atrelational algebra, see Schek and Scholl [156] and Thomas and Fischer [167]. Colby [41] proposedan algebra in which operations can be de�ned recursively to go arbitrarily deep into nestedrelations, and showed that such an algebra is equivalent to the standard algebras of Schekand Scholl and Thomas and Fischer. Therefore, we can speak of the nested relational algebra,meaning any of these.There are two main problems with existing algebras for nested relations. One is using nest andunnest in majority of queries. Every nest or unnest requires restructuring of data, which makesthose algebras ine�ective. Second problem is very cumbersome syntax of the nested relationalalgebras. Indeed, to ask a query about atomic values in a complex object of nesting depth two,two unnest operations must be performed, then a relational algebra query must be asked whichmay or may not be followed by some nest operations.Therefore, if we aim at the design of a language capable of working with nested relations, weshould �nd a better language to start with. Fortunately, new languages for complex objectshave been invented recently which do not have many de�ciencies of the standard languages, seeBuneman et al. [34], Buneman, Tannen and Wong [26] and Libkin and Wong [105]. We presentthese languages in chapter 3.In many applications nested relations are restricted to those in partitioned normal form, seeAbiteboul and Bidoit [3], Roth, Korth and Silberschatz [151] and Van Gucht and Fischer [169].In such relations, the single-valued attributes form a key, and each nested subrelation is in thepartitioned normal form itself. The relation shown in the beginning of this subsection is such.An example of a non-partitioned normal form relation is given below. It can not be in thepartitioned normal form because it does not have any single-valued attributes.

1.1. NULL VALUES 15Employee Salary HistoryName DepartmentAnn CSMary Math Year Amount1992 12K1993 14KName DepartmentJim PhysicsJohn CS Year Amount1992 10K1993 11KNull values were introduced into partitioned normal form complex objects in Roth, Korth andSilberschatz [151]. They considered three kinds of null values: ni, un and ne. They de�nedan algebra on such complex objects with null values and claimed that the algebra was a precisegeneralization of the nested relational algebra restricted to partitioned normal form complexobjects. By \precise" they meant that queries commute with unnest in the following sense: if aquery Q sends a nested relation R into R0, then unnesting R over zero-order attributes and thenperforming Q on the result is the same as unnesting R0 over zero-order attributes. However,it was shown by Levene and Loizou [96] that projection in the algebra of Roth, Korth andSilberschatz is not a precise generalization of the standard projection.To remedy this, Levene and Loizou introduced the notion of information-wise equivalent nestedrelations in [98]. This notion is based on the idea of ordering. They started with one generic nulland the ordering ? � v for any value v and extended it component-wise to tuples. To extendit to sets, they used the ordering v shown in the section on orderings and null values. Then,if R1 v R2 and R2 v R1, they said that R1 and R2 are information-wise equivalent. Underthis notion of equivalence, it is possible to generalize the nested relational algebra in the preciseway, that is, in the way that agrees with respective operations on complete relations up to theinformation-wise equivalence.One major problem with the approach of Levene and Loizou [98] is that they used the standardnested relational algebra and inherited all of its problems and drawbacks. In particular, thedescription of their notion of null-extended join operator is almost one-page long, and manyother operations are rather hard to grasp.Finishing this section, let us mention brie
y some other directions of research on null valuesthat we do not address in the thesis. Updates in relational databases with null values have beenstudied in Abiteboul and Grahne [5] and Grahne [62]. Functional dependencies in relationaldatabases with existing unknown nulls were studied in Vassiliou [173] and Atzeni and Morfuni[17]. Dependencies in incomplete databases speci�ed by Horn clauses are one of the main subjectsof Grahne [62]. Dependencies in relations with existing unknown nulls are also studied in thecontext of the weak instance model, see Honeyman [74]. A generalization of the weak instancemodel that incorporates nonexisting nulls was given by Atzeni and De Bernardis [18]. Moreinformation on dependencies in incomplete relational databases can be found in Thalheim [166].

16 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESDependencies in nested relations with generic nulls are the main topic of Levene and Loizou[97].1.2 Disjunctive information and or-sets1.2.1 De�nition and examples of or-setsAs we mentioned before, the idea of using disjunctive information as a means to express partialitywas already present in Lipski [109, 110]. It was not until almost ten years later that the �rstattempt was made to introduce disjunctions explicitly into the standard relational model.Consider the following example. Suppose we have two databases, D1 and D2 shown below:D1 : Name SS# AgeJohn 123456789 24Mary 987654321 32 D2 : Name SS# AgeJohn 123456789 27Ann 564738291 25Assume that we merge D1 and D2. It is clear that records Mary 987654321 32 andAnn 564738291 25 should be in the resulting database. But what is the value of theAge �eld for John? Since SS# identi�es people uniquely3 , we have con
icting information com-ing from two databases, and this con
ict must be recorded in the newly created database untilone �nds out if John is 24 or 27 years of age.Therefore, both ages { 24 and 27 { are stored in the new database. However, the semantics ofthe Age attribute (which is now set-valued) is di�erent from the usual interpretation of sets indatabases. Rather than suggesting that John is both 24 and 27 years old, it says that John is24 or 27.Since such disjunctive sets, also called or-sets, have semantics that di�ers from the ordinarysets, we shall use a special notation hi for them. That is, the result of merging D1 and D2 isD : Name SS# AgeJohn 123456789 h24; 27iMary 987654321 32Ann 564738291 253Or at least is supposed to.

1.2. DISJUNCTIVE INFORMATION AND OR-SETS 17Again, we emphasize that the or-set h24; 27i denotes one of its elements. So semantically it iseither 24 or 27.It is interesting to note that one practical implementation of or-sets was done in early 80s inHungary, as I was told by J�anos Demetrovics [46]. Their primary motivation was police database,and their observations showed that di�erent witnesses of the same event often contradicted eachother; hence the need for or-sets. For example, one witness could say that a car used by robberswas green, another saw a red car and the third witness could have seen a car that was both redand green. A data model for such a database should allow all three statements to be stored in anappropriate way. Therefore, using only ordinary sets was no longer su�cient, and a rudimentarymodel of disjunctive information was used in that project.In early papers dealing with objects that may include or-sets (Imielinski and Vadaparty [82],Liu and Sinderraman [111], Ola [128]) a very limited model was considered. In fact, in thosepapers or-sets could only appear as entries in the usual relations, as it is in the example above.In Liu and Sinderraman [111] and Ola [128] extensions of the traditional relational algebrawere studied. As we mentioned before, this is not the approach we advocate here. Rather, weprefer Lipski's approach [110] that new languages should be designed for new kinds of partiality.That we should follow Lipski's approach is further con�rmed by many di�culties encounteredin the above mentioned papers. For example, to obtain the correctness result, in Ola [128] somerather ad-hoc types of tuples are introduced and representation systems are de�ned via thosetypes. Contrary to [111, 128] which used extensions of the relational algebra, in Imielinski andVadaparty [82] a logical language was used. Another logical language for or-sets was proposedin Sakai [153] but it was not feasible for many applications as it had an a priori upper boundon the number of elements in or-sets.In subsequent papers, such as Imielinski, Naqvi and Vadaparty [80, 81], Rounds [152] and Libkinand Wong [104] more general data models were considered. In particular, it was possible to freelycombine sets, records and or-sets.As we have said above, an or-set h1; 2; 3i denotes a single integer, of which we only know that itis either 1 or 2 or 3 but do not know which one. That is, or-sets are used to represent a specialcase of partial information. A singleton or-set corresponds to precise information; that is, h1idenotes the integer 1. An empty or-set can be interpreted as inconsistency as its meaning is\choose one out of nothing".In [80], Imiellinski, Naqvi and Vadaparty designed a data model and a logical query language foror-objects, following the approach of Abiteboul and Kanellakis [7]. Consequently, the semanticsand query language are rather involved. They also obtained some complexity results for theirlogical language. In particular, they were able to demonstrate co-NP-completeness result, andthey were successful in identifying certain restricted tractable fragments that are useful in real-life applications.A similar notion of disjunctive deductive databases was also studied in Minker [115]. However,

18 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESit is important to make a clear distinction between or-sets and disjunctive deductive databases(cf. [80]). In the latter arbitrary disjunctions are allowed. In contrast to that, we regard or-setsas a type constructor. Hence, or-sets can appear only in certain places speci�ed by a databaseschema. Furthermore, in the �eld of deductive databases, a database is considered as a theory,whereas representation of objects involving or-sets is purely structural. Finally, or-sets aredistinguished from other forms of disjunctive information by having two distinct interpretation,which are described in the following subsection.1.2.2 Structural and conceptual queriesAs we have just said, or-sets are distinguished from other kinds of disjunctive information byhaving two distinct interpretation. An or-set can either be treated at the structural level or at theconceptual level. The structural level concerns the precise way in which an or-set is constructed.The conceptual level concerns the meaning of or-sets. It sees an or-set as representing an objectwhich is equal to a member of the or-set. For example, the or-set h1; 2; 3i is structurally acollection of numbers; however it is conceptually a number that is either 1, 2, or 3.If an or-set is sitting inside another structure, such as a relation, it is not immediately clear whatthe whole object is conceptually. Consider our example of the database D that was obtained bymerging D1 and D2. Its representation that has been shown is on the structural level. To seewhat its meaning is, observe that John's age is (conceptually) either 24 or 27. Therefore, thewhole D is conceptually eitherName SS# AgeJohn 123456789 24Mary 987654321 32Ann 564738291 25 or Name SS# AgeJohn 123456789 27Mary 987654321 32Ann 564738291 25The two views of or-sets are complementary. Consider a design template used by an engineer.The template may indicate that component A can be built by either module B or module C.Such a template, as explained in [80], is structurally a complex object whose component A isthe or-set containing B and C. Moreover, A, B and C can in turn have the similar structure. Adesigner employing such a template should be allowed to query the structure of the template,for example, by asking what are the choices for component A. On the other hand, the designershould also be allowed to query about possible completed designs, for example, by asking if thereis a cheap complete design, or if all completed designs have do not exceed certain cost is some ofthe choices have been made. In the latter case, as the designer is still in the process of creatinga design, the \complete design" is purely conceptual. Both views of or-sets are important andshould be supported.

1.3. APPROXIMATIONS 19The structural interpretation of or-sets is quite clear. However, the conceptual interpretationrequires further exposition. For example, to go to the conceptual level from the structural level,we need operators prescribing the interaction of or-sets, records and ordinary sets. Several ofthem can be considered. For example, taking or-set brackets outside of records or sets by listingexplicitly all possible choices, as we just did with the database D. Such operators provide anidea of what to include in a structural query language. But what kind of operators should beprovided in a conceptual query language? Should there be an operator for testing whether twoobjects are conceptually equivalent? Should there be an operator for testing whether one objectis amongst the objects that a second object can conceptually be? Fortunately, it is not necessaryto make such chaotic \enhancements." We will show later that the operators informally describedabove are su�cient to construct a normal form (or, conceptual representation) of every objectunambiguously.1.3 ApproximationsIn this we section consider another kind of partiality which often arises when one tries to queryindependent databases that do not necessarily agree with each other. As it was observed bymany, an answer to a query against a number of independent databases can at best be approx-imated. That is, it is unrealistic to expect a precise answer.In this section we start with an example that illustrates the problems arising in querying in-dependent databases. We then proceed to introduce a number of models that are used forapproximated answers. There is a tradition to give food names to those. It started when Bune-man, Davidson and Watters [31, 32] introduced sandwiches, which consist of lower and upperapproximations and denote precisely what is in between, hence the name. Other constructionswere called mixes (Gunter [66]), snacks (Ngair [121], Puhlmann [141] although they were studiedmuch earlier by pure mathematicians: P lonka [135, 136], Balbes [19]), scones4 and salads (Libkin[103]). The generic name for these constructions is edible powerdomains (Libkin [103]). It isprobably not a very good naming convention, as names do not re
ect the structure of speci�capproximations. However, we follow the tradition and later introduce a new systematic notationfor all the constructs.1.3.1 Example: Querying independent databasesThe general problem of querying independent databases is the following: given a set of databasesD1; : : : ; Dn and a query q that can not be answered by using information from one of Di's, ap-proximate the answer to q by using information from all D1; : : : ; Dn. These problems have been4This is not a good choice of name suggested by Jung and then used by Puhlmann [141] as it is in con
ict withthe notion of a scone used in category theory and recently in the categorical models of polymorphic languages,see Mitchell and Scedrov [117].

20 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESinvestigated theoretically, and they gave rise to a number of constructions called approximations.Intuitively, given a query q, the databases are divided into two groups, one giving the upperapproximation to the answer to q and the other giving the lower approximations.Consider the following problem. Suppose the university database has two relations, Employeesand CS1 (for teaching the course CS1):EmployeesName SalaryJohn 15KAnn 17KMary 12KMichael 14K CS1Name RoomJohn 076Michael 320Assume that our query asks to compute the set TA of teaching assistants. We further assumethat only TAs can teach CS1 and every TA is a university employee. Also, for simplicity, we makean assumption that the Name �eld is a key. Of course this may not be the case, and solutions weconsider in this thesis work if no assumptions about keys were made. This assumption, however,makes the examples easier to understand.To be able to reason about entries in di�erent tables at the same time, we assume that all tableshave the same attributes by putting nulls in the missing columns:EmployeesName Salary RoomJohn 15K ?Ann 17K ?Mary 12K ?Michael 14K ? CS1Name Salary RoomJohn ? 076Michael ? 320Let us brie
y outline how the TA query can be answered. We know that every person in CS1 isa TA; therefore, CS1 gives us the certain part of the answer. Moreover, every TA is an employee,hence �nding people in the Employees relation who are not represented in the CS1 relation givesus the possible part of the answer to the TA query. Notice that it is possible to �nd possibleTAs because Name is a key. If it were not, we would have to use or-sets.Of course, in the real life applications, the situation is not always that close to ideal. Let us justbrie
y list the problems one should have in mind while querying independent databases:� Databases could be inconsistent. Then anomalies must be removed before a query couldbe evaluated. There are, however, a number of subproblems:

1.3. APPROXIMATIONS 211. Which database to believe? Each one can be updated.2. If in the example above we believe Employees and the Name �eld is not a key, assumewe have one John in Employees and two Johns in CS1. Then one of the Johns in CS1must be deleted. But which one?� Even if databases are consistent, but the Name �eld is not a key, there is no way to evaluatethe TA query unambiguously. For example, there could be two Johns with di�erent salariesin Employees, but only one in CS1. Assume a query \give the list of sure TAs" was asked.Then what is John's salary?Notice that these problems have not been addressed in Buneman, Davidson and Watters [31, 32].In the thesis we shall show how to solve these problems using various tools for programmingwith approximations and or-sets.1.3.2 Simple approximationsA pair of relations CS1 and Employees is called a sandwich (for TA). The Employees relation isan upper bound: every TA is an Employee. The CS1 relation is a lower bound: every entry inCS1 represents a TA. Notice that in our example records in CS1 and Employees are consistent:for every record CS1, there is a record in Employees consistent with it. That is, they are joinableand their join can be de�ned. For example,John 15K ? _ John ? 076 = John 15K 076Hence, a sandwich (for a query Q) is a pair of relations R1 and R2 such that R1 is an upperbound or an upper approximation to Q, R2 is a lower bound or a lower approximation to Q,and R1 and R2 are consistent.Assume a pair of consistent relations R1 and R2 is given. What is the semantics of the sandwich(R1; R2)? To emphasize that R1 is an upper approximation, we denote it by U from now on.Similarly, we denote the lower approximation R2 by L.To answer the question about semantics of (U; L) { at this stage, only informally { we appeal tothe idea of representing partial objects as elements of ordered sets. In a graphical representation,ordered sets will be shown as triangles standing on one of their vertices. That vertex representsthe minimal, or bottom element5. The side opposite to that vertex represents maximal ele-ments. In our interpretation of the order as \being less partial", maximal elements correspondto complete descriptions, i.e. those that do not have any partial information at all.5We almost always consider ordered sets with minimal elements.

22 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES
\\\\\\\\\\\ �����������

ZZZZZJJJJJJJ �������BBBBJJJJAAAAAAA U L� � �

Figure 1.3: Sandwich (U; L) and its semanticsThe graphical representation of a sandwich (U; L) is shown in �gure 1.3. Trapezoids standingon U and L represent graphically elements of the whole space which are bigger than an elementof U or L respectively. The semantics of a sandwich is a family of sets such as the one denotedby three bullets in the picture. There are two properties of such sets X that include them intothe semantic space of a sandwich:1. For every element l 2 L, there is an element x 2 X such that l � x.2. All X lies in the trapezoid standing on U . That is, for every x 2 X , there exists u 2 Usuch that u � x.Observe that in our particular example depicted in the picture, L is assumed to have twoelements. Since both of them are under elements of the three-bullet set, which in turn are allabove some elements of U , (U; L) satis�es the consistency condition, i.e. it is a sandwich.Now, assume that the Name �eld is a key. Then we can replace certain nulls in relations CS1 andEmployees by corresponding values, taken from the other relation. The reason is that certaintuples are joinable, and corresponding joins can be taken to infer missing values. One such joinwas shown in the beginning of this section. Since Name is a key, we know that there is only oneJohn and we assume that the same John is represented by both databases. Hence we infer thathe is in the o�ce 076 and his salary is 15K. Similarly for Michael we infer that he is in the o�ce320 and his salary is 14K. Thus, we can replace Employees and CS1 by Employees0 and CS10 asshown below:

1.3. APPROXIMATIONS 23
JJJJJJJJJ

AAAAAA ������AAA UL� � � �Figure 1.4: Mix (U; L) and its semanticsEmployees0Name Salary RoomJohn 15K 076Ann 17K ?Mary 12K ?Michael 14K 320 CS10Name Salary RoomJohn 15K 076Michael 14K 320We can regard CS10 and Employees0 as another approximation for TA. But this one satis�esa much stronger consistency condition than sandwiches: every record in CS10 is also found inEmployees0. We call a pair satisfying this consistency condition a mix. An example of a mix isshown in �gure 1.4.Mixes were introduced by Gunter [66] as an alternative approximation construct, whose prop-erties are generally easier to study than properties of sandwiches because of its consistencycondition in which no joins are involved. We shall discuss this phenomenon in details later.Semantics of mixes is de�ned in exactly the same way as semantics of sandwiches: we look atsets that represent all elements of the lower approximation and whose elements are representableby the upper approximation. In Figure 1.4, a set shown by four bullets is such.1.3.3 Approximating by many relationsLet us consider a more complicated situation. Assume now that CS1 has two sections: CS11and CS12, and each section requires a teaching assistant. Assume that we have a pool ofprospective TAs for each section that includes those graduate students who volunteered to beTAs for that section. Now suppose that the selection of TAs has been made, and those whohave been selected were entered in the database of employees, while the database of prospectiveTAs remained unchanged. This situation can be represented by an example below:

24 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESSSSSSSSSSSSS������������BBBBB �����AAAAAA ������ AAA ���L1 U L2� � �
Figure 1.5: Scone (U; fL1; L2g) and its semanticsEmployeesName Salary RoomJohn 15K ?Ann 17K ?Mary 12K ?Michael 14K ? Name Salary RoomJohn ? 076Jim ? ? CS11Name Salary RoomMichael ? 320Helen ? 451 CS12Since all the selections have been made, at least one of prospective TAs for each section isnow a TA and therefore there is a record in Employees for him or her. That is, in each of thesubrelations of CS1, at least one entry is consistent with the Employees relation.Let us summarize the main di�erence between this construction and sandwiches or mixes con-sidered in the previous section.1. The lower approximation is no longer a single relation but a family of relations.2. The consistency condition does not postulate that all elements in the lower approximationare consistent with the upper approximation, but rather that there exists and element ineach of the subrelations of the lower approximation that is consistent with the upper.Such approximations are called scones. We shall denote the lower approximation by L and itscomponents by L1, L2 etc. The graphical representation of a scone with the two-element L isshown in Figure 1.5.The semantics of a scone is a family of sets X that satisfy the following two properties:

1.3. APPROXIMATIONS 251. For every set L 2 L, there exist l 2 L and x 2 X such that l � x.2. All X lies in the trapezoid standing on U . That is, for every x 2 X , there exists u 2 Usuch that u � x.For example, in Figure 1.5 the set denoted by three bullets is such. Observe that the secondproperty is exactly the same for scones as it is for sandwiches and mixes, but the �rst one isdi�erent and it re
ects the di�erences in the structure of scones and sandwiches.Now let us look at the data represented by CS11 and CS12. Assume again that the Name �eld isa key. Observe that some preprocessing can be done before any queries are asked. In particular,there is no entry for Jim in the Employees relation. Hence, Jim could not have been chosen as apossible TA for a section of CS1. Similarly, Helen can be removed from CS12. Having removedJim and Helen from CS11 and CS12, we can now infer some of the null �elds as we did beforein order to obtain mixes from scones. Doing so in our example yields:EmployeesName Salary RoomJohn 15K 076Ann 17K ?Mary 12K ?Michael 14K 320 Name Salary RoomJohn 15K 076 CS11Name Salary RoomMichael 14K 320 CS12We now see that the condition expressing consistency of this approximation is much strongerthan the condition we used for scones. In fact, all elements in CS11 and CS12 are elements ofEmployees. In other words, taking into account that some entries can be nulls, we see that thenew consistency condition says that every element of every set in the lower approximation isbigger than some element of the upper approximation. Such constructions are called snacks,see Ngair [121], Puhlmann [141]. The graphical representation of a snack with two-element L isgiven in Figure 1.6.The semantics of snacks is de�ned precisely in the same way as the semantics of scones. For exam-ple, in Figure 1.6 the four-element set denoted by the bullets is in the semantics of (U; fL1; L2g).Thus, it is only the consistency condition that makes scones di�erent from snacks. The impor-tance of this condition will be studied later in the thesis.Finally, what if we have arbitrary data coming from two independent databases that may notbe consistent (as was discussed in the beginning of this section). For instance, we saw thatthere may be anomalies in the data that ruin various consistency conditions. Then we need amodel that would not require any consistency condition at all. Such a model was introducedand studied by Libkin [103]. Since it is in essence \all others put together", it is called salad.

26 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESSSSSSSSSSSSS������������������CCCCCC ��� �����JJJJJUL1 L2� � � �
Figure 1.6: Snack (U; fL1; L2g) and its semanticsAt this point we give a historical remark. Snacks were introduced long before scones. In fact,snacks were studied by Ngair in 1991, see [121]. A few initial results on scones were obtained byJung and Puhlmann only in late 1992. The reason it happened (despite the fact that scones mayappear more natural as a model of approximation, as we have seen) is that the development ofmodels for approximating partial data has been done in a rather ad-hoc manner: new consistencyconditions were introduced and studied. Since snacks appear simpler than scones, they wereinvented �rst.Later in the thesis we shall present a systematic approach that lists all possible consistencyconditions in conjunction with various data structures, thus giving us all possible approximationconstructs. We shall characterize each of them mathematically, and then develop a unifyingapproach that encompasses all of them.1.4 Toward a general theory of partial informationAs we have seen, there are a number of models for partial information in the database literature.Some of them are quite ad-hoc, based on speci�c needs arising in particular applications. We havecovered three main sources of partiality: null values, disjunctive information and approximations.There are no solid theoretical foundations for any of these, nor are there any results that showhow they are connected. Moreover, most models of partiality are developed only for the
atrelational model, and virtually nothing is known for more complicated database models. Thissituation in the �eld of partial information was summarized by Kanellakis in his recent survey[89]: \: : : for the representation and querying of incomplete information databases, thereare many partial solutions but no satisfactory full answer. It seems that the furtheraway we move from the relational data model, the fewer analytical and algebraic

1.4. TOWARD A GENERAL THEORY OF PARTIAL INFORMATION 27tools are available."Thus, to address the problem of partial information in databases and to move closer to satisfac-tory solutions that work for a large class of data models, one has to come up with new analyticaltools and show their applicability not only in the study of the extended data models but alsoin the development of new query languages for databases with partial information. Makingprogress in achieving these goals is the major motivation for this work. The main contributionof the thesis is the following:In this thesis we make a step toward a general theory of partial information indatabases. We do it by developing a new approach to partial information that in-tegrates all kinds of partiality within the same semantic framework. In addition togiving us necessary analytical and algebraic tools to study various kinds of partial in-formation, this framework also naturally suggests operations that should be includedinto the language that works with partial information. Techniques that are developedfor analyzing the structure of partial information can be applied to the study of thelanguages that deal with it.This general statement can be decomposed into the two key ideas upon which our approach topartial information is based.I. Partiality of data is represented via orderings on values.As we saw, this idea in its rudimentary form was already present in Biskup [23], Zanilo [181]and several other papers. However, they all had two major limitations. First, they dealt withthe relational model or very limited complex object model (such as Roth, Korthand Silberschatz[151]). Second, the class of null values was always given a priori, hence all the models lackedgenerality that we seek.A few recent results provided a basis for overcoming these limitations. Buneman, Jung andOhori [33] started developing a general framework for representing partial objects as elements ofcertain ordered sets that have been used extensively in the semantics of programming languages[67]. Their results were further extended by Ohori [124, 125], Levene and Loizou [95], Libkin[99] and Jung, Libkin and Puhlmann [88], which resulted in the theoretical foundation for thestudying of the problem of partial information.It was shown in Buneman, Jung and Ohori [33] that the existing models of null values andmany data models �t very nicely with their approach. They were successful in de�ning somenotions of the relational database theory such as scheme and functional dependencies. However,they encountered certain di�culties. For example, there is no \universal" way to order subsets

28 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESof ordered sets. They suggested using the Smyth ordering [157] known in the semantics ofconcurrency, mainly because it gives the natural join for free. But using the Smyth orderingoften leads to counterintuitive results. Other papers mentioned above used the Hoare ordering[68], but also without any justi�cation. Thus, the problem of choosing the way of extending theorderings to various collections is a central one and should be addressed.Once the problem of ordering various database objects has been resolved, one should look atthe fundamental properties of the semantic domains they give rise to. The reason why this is soimportant is the second central idea of this thesis.II. Semantics suggests programming constructs.How does one choose primitive operations upon which database query languages are constructed?An approach that has been increasingly popular in the past few years is to look at the operationsthat are naturally de�ned by the data types involved. This is an example of data-orientedprogramming of Cardelli [35].To answer the question about operations naturally associated with a data type, one has tounderstand �rst what the values of that data type are semantically and what is the structureof the semantic domain of the data type. In particular, one often tries to �nd universalityproperties of those semantic domains which guarantee existence and uniqueness of operationson data that can be turned into programming language syntax. This approach has been appliedto a number of data types and has proved extremely useful, see Buneman et al. [26, 34], Libkinand Wong [104, 105, 106], Suciu [161].Therefore, in this thesis we shall be looking for the universality properties of various kinds ofpartial data as a main tool for the language design. In other words, the mathematical propertiesof semantics of partial data will naturally suggest the programming primitives to be includedin the languages. Thus, the purpose of developing the semantics of partiality is twofold. First,we use it to integrate all kinds of partial information. Second, we use it to design languages forincomplete databases.Let us summarize the main contributions of the thesis.1. We de�ne a general model of representation of database objects in certain partially orderedsets to capture the notion of being less partial.2. We de�ne the semantics for sets and or-sets and use it to show how they must be ordered;3. We propose the \update" semantics, which explains being less partial as obtained via asequence of elementary updates that add information, and show that it leads to the sameorderings.

1.4. TOWARD A GENERAL THEORY OF PARTIAL INFORMATION 294. We analyze semantics and orderings on approximations and show how they can be encodedwith sets and or-sets.5. We exhibit universality properties for semantic domains of all kinds of partial information.6. We study the interaction of sets and or-sets and demonstrate a computable isomorphismbetween iterated semantic domains of those.7. We use the universality properties together with the above computable isomorphism todesign a language for sets and or-sets.8. We show how the meaning of or-objects can be incorporated into the language by meansof a process called normalization, and investigate structural and computational aspects ofthat process.9. We demonstrate that the universality properties for approximations do not lead to a rea-sonable programming language because of the complexity of the operations involved, andshow how to use the language for sets and or-sets to program with approximations.10. We describe implementation of the language for sets and or-sets and show how it can beused to query incomplete and independent databases.The structure of the thesisIn chapter 2 we present the mathematical background which is necessary to understand thisthesis. In chapter 3 we lay the foundation for our study of semantics of partiality and languagesto work with partial information. The notion of partial information in databases is re-examinedand connected with certain partially ordered spaces of descriptions used in the semantics ofprogramming languages. Several main concepts of the relational database theory are rede�nedin such a setting. Also in chapter 3 we explain the new approach to the design of query languageswhose gist is turning universality properties of collections into syntax.In chapter 4 we study the semantics of partial data. Orderings on collections and approxima-tions are de�ned via the semantics and updates and are shown to be the same. These resultsexplain how sets an or-sets of partial descriptions arise as free constructions. They also demon-strate a natural way of combining sets and or-sets to encode approximations. We show that allapproximations arise as free constructions as well. We also construct an isomorphism betweeniterations of semantic domains for sets and or-sets.In chapter 5 we apply the approach that makes programming syntax out of universality prop-erties to study languages for databases with partial information. We add order on objects as aprimitive and study the resulting languages. We then introduce the language for sets and or-sets and show how to normalize objects and explain why normalization provides us with passagefrom the structural to the conceptual level. Finally, we discuss two approaches to programming

30 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASESwith approximations. One is the structural recursion and the other is encoding approximationswith sets and or-sets.In chapter 6 we describe an implementation of the language for sets and or-sets on top ofStandard ML (hence called OR-SML). We give examples of queries which require disjunctiveinformation and demonstrate how to use the language to answer those queries. The language isextended in a way that allows dealing with bags and aggregate functions. It is also extensibleby user-de�ned base types. The language has been implemented as a library of modules inStandard ML. This allows the user to build just the database language as an independentsystem, or to interface it to other systems built in Standard ML. Since the system is running ontop of Standard ML and all database objects are values in the latter, the system bene�ts fromcombining a sophisticated query language with the full power of a programming language.Finally, in chapter 7 we summarize the main contributions of this thesis and outline prospectsfor further research.Relationship with work of othersMost of the results in the thesis are my own. However, on several occasions I did include someof the results that are due to my colleagues or that have been obtained jointly.In the �rst part of chapter 3 I mix my own results from Libkin [99] and Jung, Libkin andPuhlmann [88] with the results from Buneman, Jung and Ohori [33]. In the second part of thatchapter I present the approach which was originally developed by Buneman, Breazu-Tannen,Naqvi and Wong [25, 26]. Many properties of the languages it gives rise to have been studiedin my joint papers with Wong [105, 106, 107, 108] and I include some of the results that havebeen proven jointly by us.Or-sets are the main topic of my paper with Wong [104]. The normalization theorem for setsemantics was proved by us independently; the proof in the thesis as well as other variations ofthe normalization theorem are my own. The losslessness theorem that I prove is mine, althoughthere is a related losslessness result by Wong that appeared in [104].E. Gunter in
uenced the implementation of OR-SML in many ways and some of the examplesin our paper [69] that I use here are due to her.

Chapter 2Mathematical BackgroundIn this chapter we give mathematical background which is necessary to understand the results ofthis thesis. We present basic de�nitions and some results about ordered sets, universal algebras(paying particular attention to ordered algebras freely generated by posets), categories, adjointfunctors and associated monads, abstract rewrite systems and term rewrite systems. Coveringbasic domain theory, we give a somewhat unusual presentation of powerdomains. In view ofthis, we sketch a few proofs.2.1 Ordered sets and domainsA preorder on a set A is a re
exive transitive relation. A preorder is called a (partial) order if itis antisymmetric. A set with a partial order on it is called a poset. We shall use symbols �;-and the likes to denote orders.Let hA;�i be a poset, and x; y 2 A. We say that x and y are consistent (denoted by x"y) ifthere exists z 2 A such that x; y � z. A subset X � A is downward closed, or an order-ideal,if x 2 X and x0 � x imply x0 2 X . The order ideal generated by a set X is denoted by #X ;#X = fy � x j x 2 Xg. If X = fxg, then #X , also denoted by #x, is called principal. Theconcept of an upward closed set or a �lter is de�ned dually; for a �lter generated by X we usethe notation "X .A subset X � A is called directed if a common upper bound exists for any two elements of X ,that is, given x1; x2 2 X , there exists x 2 X such that x � x1; x2. A poset is called complete(abbreviated { cpo) if every directed subset X � A has a least upper bound tX . An element ofa cpo is called compact if it can not be below a least upper bound of a directed set X withoutbeing below an element of X . That is, x is compact if x � tX for a directed X implies x � x031

32 CHAPTER 2. MATHEMATICAL BACKGROUNDfor some x0 2 X . A cpo is called algebraic if every element is the least upper bound of compactelements below it, see C. Gunter [67]1.A domain is an algebraic cpo with bottom. Given a domain D, � denotes its order and KD isthe set of its compact elements.A cpo D is bounded complete if supremum of X � D, denoted by tX , exists whenever X isbounded above in D, i.e. there is a 2 D such that a � x for all x 2 X . We shall use a moreconvenient notation a1 _ : : :_ an instead of tfa1; : : : ; ang. An element x of a bounded completecpo D is compact if, whenever tX exists and x � tX , x � tX 0 where X 0 � X is �nite.In a bounded complete cpo the set of compact elements below any element is always directed;therefore, a bounded complete cpo is algebraic if any element is the supremum of all compactelements below it. Algebraic bounded complete cpos are also called Scott-domains. Equivalently,a Scott-domain is a domain which happens to be a complete meet-semilattice.A Scott-domain is called distributive if every principal ideal #x is a distributive lattice. It iscalled qualitative if all #x are Boolean lattices, cf. Girard [57].Given X; Y � D, the lower, the upper and the convex powerdomain orderings are given byX v[B , 8x 2 X9y 2 Y : x � yX v] Y , 8y 2 Y 9x 2 Y : x � yX v\ Y , X v[Y and X v] YSometimes they are called the Hoare, the Smyth and the Plotkin orderings respectively.A subset of an ordered set is called a chain if every two elements in it are comparable, and anantichain if no two elements in it are comparable. If hX;�i is an ordered set and Y � X , thenmax� Y and min� Y are sets of maximal and minimal elements of Y . We will use just maxYand min Y if the ordering is understood. A�n(X) stands for the set of all �nite antichains of X .For an arbitrary poset A, we denote hA�n(A);v[i by P[(A) and hA�n(A);v]i by P](A). Notethat we can canonically embed A into both P[(A) and P](A):8a 2 A : �(a) = fag 2 A�n(A)At this point, let us make a number of observations about the two constructs we have justintroduced. First of all, P[(A) is always a join-semilattice with bottom element and P](A) isalways a meet-semilattice with top element. Indeed, the join and meet operations are given byX t[Y = max(X [Y)1The name \algebraic" comes from lattice theory where it was motivated by the fact that algebraic lattices areexactly the lattices of subalgebras/congruences of algebras. Analog of the �rst result for certain cpos was givenin Libkin [102].

2.1. ORDERED SETS AND DOMAINS 33X u] Y = min(X [Y)and empty set is the bottom (top) element with respect to v[(v]).Furthermore, if A is a meet-semilattice, then the meet operation with respect to v[exists:X u[Y = maxfx ^ y j x 2 X; y 2 Y gand, if A is bounded complete, then the join with respect to v] exists:X t] Y = minfx _ y j x 2 X; y 2 Y; x_ y existsgAnother observation is almost obvious but it will be used numerous times in this thesis:Lemma 2.1 a) X v[Y i� maxX v[maxY ;b) X v] Y i� minX v] min Y ;c) X v\ Y i� maxX v[maxY and minX v] min Y . 2Another observation that will be used later as a very important tool for the language design, isthe following simple fact stating the universality properties of P[(�) and P](�).Lemma 2.2 a) Let A be a poset. Then for every join-semilattice with bottom element hS;_;?iand every monotone map f : A ! S, there exists a unique semilattice homomorphism f+ :P[(A)! S that makes the following diagram commute:A �- P[(A)@@@@@f R S?9!f+b) Let A be a poset. Then for every meet-semilattice with top element hS;^;>i and everymonotone map f : A ! S, there exists a unique semilattice homomorphism f+ : P](A) ! Sthat makes the following diagram commute:A �- P](A)@@@@@f R S?9!f+

34 CHAPTER 2. MATHEMATICAL BACKGROUNDProof. We prove a) only. Consider a �nite antichain X = fx1; : : : ; xng in A and de�nef+(X) = (? if n = 0f(x1)_ : : :_ f(xn) otherwiseThat f+ is a homomorphism follows from monotonicity of f and X = �(x1)t[: : :t[�(xn) andits uniqueness follows from the de�nition. 2It is well-known that both P[(�) and P](�) preserve bounded-completeness, see Gunter [67].We now turn our attention to the Plotkin construction, for which we also give a somewhatunusual description. De�ne conv(A) as a subset of A�n(A)�A�n(A) that consists of pairs (X; Y)with X v\ Y . These pairs are ordered by2 (X1; Y1) v\ (X2; Y2) i� X1 v] X2 and Y1 v[Y2.Notice that (X; Y) is in conv(A) i� there exists a �nite set Z(X;Y) � A such that X = minZ(X;Y)and Y = maxZ(X;Y); moreover, in this case (X1; Y1) v\ (X2; Y2) i� Z(X1;Y1) v\ Z(X1;Y1).We de�ne P\(A) as hconv(A)� f(;; ;)g;v\i. The universality property for this construction isgiven by the following lemma which uses v-ordered semilattices, i.e. semilattices hS; �;vi inwhich � is monotone with respect to the partial order v. That P\(A) is a v\-ordered semilatticefollows from the observation that (X1; Y1) �\ (X2; Y2) = (X1 u] X2; Y1 t[Y2) is a semilatticeoperation monotone with respect to v\.Lemma 2.3 Let A be a poset. Then for v-monotone semilattice hS; �;vi and every monotonemap f : A ! S, there exists a unique v-monotone semilattice homomorphism f+ : P\(A)! Sthat makes the following diagram commute (where �(a) = (fag; fag)):A �- P\(A)@@@@@f R S?9!f+Proof. De�ne f+ byf+(fx1; : : : ; xmg; fy1; : : : ; yng) = f(x1) � : : : � f(xm) � f(y1) � : : : � f(yn)2Note abuse of notation, but it will not lead to ambiguities.

2.2. ALGEBRAS 35It is easy to see that f+ is monotone with repsect to the additional order. It can also beseen that the above representation does not change if non-minimal (non-maximal) elements areadded to the �rst (second) component. Hence, f+((X1; Y1) �\ (X2; Y2)) = (�x2X1[X2f(x)) �(�y2Y1[Y2f(y)) = (�x2min(X1[X2)f(x)) � (�y2max(Y1[Y2)f(y)) = f+((X1; Y1)) � f+((X2; Y2)). Thatthe diagram commutes follows from the de�nition of f+. Its uniqueness follows from(fx1; : : : ; xmg; fy1; : : : ; yng) = �(x1) �\ : : : �\ �(xm) �\ �(y1) �\ : : : �\ �(yn). 2In the semantics of programming languages, usually the ideal completion is applied to P[(A),P](A) and P\(A), where A is taken to be KD for some domain D. It is easy to see thatin this case we obtain the standard constructions of the Hoare powerdomain [67], the Smythpowerdomain [157] and the Plotkin powerdomain [137]. However, for the purpose of this thesiswe shall not need use the ideal completion.For more information on domain theory, the reader is referred to Gunter [67], Gunter and Scott[68] and Abramsky and Jung [12].2.2 AlgebrasIn this section we recall a few de�nitions from universal algebra. A signature is just a collection
 of symbols, or operation names, with associated arities. An algebra is a pair hA;
i where A isa set, called carrier, and each operation ! in
 of arity n is interpreted as a function from An toA. We refer the reader to standard textbooks (Gr�atzer [64], Wechler [177]) for de�nitions of theconcepts of homomorphism, subalgebra etc. If it does not give rise to ambiguity, we occasionallyconfuse an algebra with its carrier.Let hA;
i be an algebra and X � A. Then [X] denotes the subalgebra of hA;
i generated byX . Let K be a class of algebras of the same signature. We say that hA;
i is freely generated byX in K if two conditions hold:(i) hA;
i is generated by X in , that is, [X] = A, and(ii) for any algebra hB;
i 2 K and any map f : X ! B there exists a unique homomorphismf+ : hA;
i ! hB;
i such that the following diagram commutes, where � is the embeddingof X into A:

36 CHAPTER 2. MATHEMATICAL BACKGROUNDX � �- hA;
i@@@@@f RhB;
i?9!f+Freely generated algebras need not exist for an arbitrary K and generally it is a hard result toprove their existence, see Gr�atzer [64]. One important case in which a positive result is wellknown is when K is a variety, or an equational class.In this thesis we shall mostly work with ordered algebras. In mathematical literature freelygenerated ordered algebras are typically considered with respect to embeddings that disregardorder, see Gr�atzer [64] and Bloom [24]. This no longer satis�es our needs in the denotationalsemantics which will be used throughout this thesis. The need for the theory of freely generatedordered algebras was recognized, for example, by Stoughton in his work on full abstraction [160].Although there are still no general results about existence of ordered algebras freely generated byposets, most classes of algebras we shall consider do possess them, and we shall not be concernedwith the lack of underlying mathematical theory, at least for the purpose of this work.An ordered algebra hA;
i has a predicate � as one of the symbols in the signature; its inter-pretation is a partial order on the carrier. A monotone homomorphism f : hA;
i ! hB;
i isa homomrphism which is monotone with respect to �. We say that hA;
i is freely generatedby X � A in a class K if the condition (i) above holds, and for every other hB;
i 2 K anda monotone f : X ! B there exists a unique monotone f+ that makes the diagram abovecommute.Occasionally, we shall also be slightly imprecise saying that an algebra hA;
i is freely generatedby a set X which is not a subset of A if the emdeddingX � � - Ais understood. Of course by that we mean that hA;
i is freely generated by �(X).Thus, we can reformulate lemma 2.2 as follows: For any posetA, P[(A) is the free join-semilatticewith bottom generated by A, and P](A) is the free meet-semilattice with top generated by A.2.3 Adjunctions and monadsThe reader may skip this section and still be able to understand the rest of the thesis. However,certain concepts de�ned here are very useful for understanding the mathematical structure

2.3. ADJUNCTIONS AND MONADS 37underlying the main principles of the language design. We refer the reader to Barr and Wells[21] or MacLane [112] for the de�nition of categories, functors and natural transformations.First of all, let us de�ne a number of categories that will be useful later.Set, the category of sets;FSet, the category of �nite sets;Poset, the category of posets and monotone maps;FSL, the category of �nite semilattices and semilattice homomorphisms. Two importantsubcategories are FSL0 and FSL1 that contain join (or meet) semilattices with bottom(top); the morphisms are required to preserve the special elements. If semilattices ofarbitrary cardinality are considered, the corresponding categories are denoted by SL0 andSL1.
-Alg, the category of
�algebras and homomorphism between them.Let A and B be categories and F : A ! B and G : B ! A be two functors. Then F is leftadjoint to G and G is right adjoint to F, written F a G, if the following two conditions hold:(i) There exists a natural transformation � : id! GF, and(ii) For any object A of A, any object B of B and any arrow A f�! G(B) in A there exists aunique F(A) g�! B in B such that the following diagram (in A) commutes (where �A isthe A-component of �): A �A- GF(A)@@@@@f RG(B)?G(g)The property expressed by the diagram is called the universal mapping property or just univer-sality property. It is closely related to the freeness conditions considered in the previous sections,as a few examples below show. In all of them, the right adjoint is the forgetful functor U that\forgets" the additional structure.1. Powerset can be considered as a functor P : Set ! SL0 that takes a set and returns itspowerset considered as a semilattice under the inclusion ordering. Its action on morphisms

38 CHAPTER 2. MATHEMATICAL BACKGROUNDis de�ned by \mapping" a function f from a set X to a set Y over subsets of X , i.e.P(f)(A) = ff(a) j a 2 Ag. Then P is left adjoint to U : SL0 ! Set. In other words, P(X)is the free join-semilattice with bottom generated by X .Restricting to �nite sets, we obtain an adjunction P�n a U.2. P[(�) can be considered as a functor from Poset to SL0. Its action on a monotone mapf : X ! Y is given by P[(f) : P[(X) ! P[(Y) where P[(f)(A) = maxff(a) j a 2 Ag.According ot the lemmas proved above, P[(�) is left adjoint to U : SL0 ! Poset. Similarlyfor P](�) : Poset! SL1, we have P](�) a U. Note that the action of P](�) on morphismsis given by P](f)(A) = minff(a) j a 2 Ag.3. More generally, let K be a full subcategory of
-Alg. Assume that for each set X , a freealgebra FK(X) generated by X in K exists. Then FK can be considered as a functor fromSet to
-Alg whose action on morphisms is given by the universality property. ThenFK a U.Associated with every adjunction F a G there is another natural transformation, � : FG! idB.The details of its construction can be found in Barr and Wells [21] and MacLane [112].The next construct to be introduced is closely associated with adjunctions. Given a categoryA, a monad on it is a triple hT; �; �i where T is an endofunctor (i.e. a functor T : A ! A)and � : id ! T and � : T2 ! T are natural transformations such that the following diagramscommute: T �T - T2 � T� T@@@@@= R 	�����=T?� T3 T� - T2T2�T? � - T?�Every adjunction F a G where F : A! B and G : B! A gives rise to a monad hGF; �;G�Fi onA.Consider three examples of this construction that will be used throughout the thesis.1. Consider P�n a U as an adjunction between �nite sets and semilattices. Then it gives riseto the monad hPs; �; �i where Ps is the powerset functor from FSet to itself, and for each�nite set X we have: �X : X ! Ps(X) x �X7�! fxg�X : Ps(Ps(X))! Ps(X) fX1; : : : ; Xng �X7�! X1 [: : :[Xn

2.3. ADJUNCTIONS AND MONADS 392. Consider P[a U as an adjunction between posets and semilattices. It gives rise to themonad hP[; �; �i where P[is now considered as a functor from Poset to itself, and foreach poset A we have: �A : A! P[(X) a �A7�! fag�A : P[(P[(X))! P[(X) fX1; : : : ; Xng �A7�! X1t[: : :t[Xn = max(X1[: : :[Xn)3. The construction for P] a U is similar except that u] is used instead of t[.It is also known that the converse is true as well, that is, every adjunction comes from a monad,The construction is due to Eilenberg and Moore and it is out of the scope of this thesis. In therest of this section we de�ne another construction giving an alternative description of monadsthat inspired some of the programming primitives we will be working with.Let T = hT; �; �i be a monad on A. Then the Kleisli category for T , denoted by Kl(T), has thesame objects as A, and its arrows are arrows A �! T(B) in A. The composition is obtainedby using the properties of the monad. To compose A f�! T(B) and B g�! T(C) in Kl(T), weobtain an arrow from A to T(C) byA f - T(B) T(g)- T2(C) �C- T(C)The identity is simply �A : A! T(A).There are two functors associated with the Kleisli category. One of them, G : Kl(T) ! Acoincides with T on objects and, given a morphism A f�! T(B), produces a morphism T(A) �!T(B) in A as follows: T(A) T(f)- T2(B) �B- T(B)The other one, F : A! Kl(T), is the identity on objects, and for A g�! B in A it produces amorphism A �! T(B) is Kl(T) as follows:A �A- T(A) T(g)- T(B)The reason Kl(T) can be called an alternative representation of a monad is the following. ForF and G just constructed, F a G, GF = T and the monad associated with F a G is T .

40 CHAPTER 2. MATHEMATICAL BACKGROUNDLet us apply the Kleisli constructions to the three main examples of this section. In thoseexamples, for the reasons that should emerge shortly, we shall use the notation ext for theaction of G on morphisms.1. Consider hPs; �; �i associated with the adjunction P a U. Given a function f : X ! P�n(Y),ext(f) is a function P�n(X)! P�n(Y) given by ext(f) = � � Ps(f) or equivalentlyext(f)(Z) = [z2Z f(z)2. Consider hP[(�); �; �i given by P[(�) a U. For a monotone map f : A ! P[(B), we haveext(f) = � � P[(f), or, ext(f)(C) = t[c2Cf(c) = max([c2C f(c))3. Similarly, for hP](�); �; �i arising from P](�) a U and a monotone f : A! P[(B), we haveext(f)(C) = u]c2Cf(c) = min([c2C f(c))This justi�es calling G on morphisms ext : it extends the action of f : A ! T(B) to T(A).If ext is given, it is also possible to reconstruct the functor T and the natural transformation� : T2 ! T for a given �. If A g�! B in A, then T(g) is given by ext(A g�! B �B�! T(B)). Forany object A, �A is obtained as ext(T2(A) id�! T2(A)). The reader can easily check that in allthree examples above, if we start with ext , we obtain the corresponding functor and the naturaltransformation �.There have been two primary motivations for using monads in computer science. One is ap-plication in the language design, which will be considered in detail later. Another one is usingmonads to de�ne a general notion of computation. This idea is due to Moggi [118] who de�nedT(A) as \computations of type A", where A could be a set or a domain or any other semanticobject representing a type. In fact, Moggi used a slightly more general construction that alsoaccommodates terminal objects and binary products. The use of monads to structure functionalprograms was discussed in Wadler [176]. A dual construction { comonad { was used by Brookesand Van Stone [29] in their work on intensional semantics of programming languages.2.4 Rewrite systemsWe shall need some basic facts about abstract and term rewrite systems, namely Newman'slemma and the critical pair lemma. For more information on rewrite systems, see Dershowitzand Jouannand [49] and Wechler [177].

2.4. REWRITE SYSTEMS 41An asbtract rewrite system (or reduction system) is a pair hA;!i where A is a set and ! is abinary relation. The transitive-re
exive closure of ! will be denoted by either �!�! or �!. Thesymmetric closure of !, that is, ! [!�1 is denoted by !, and we occasionally use for!�1.An element a 2 A is said to be a normal form if there is no b 2 A such that a! b. An elementa 2 A admits a normal form if there exists a normal form a0 such that a �!�! a0. We will mostlybe interested in systems in which every element admits a unique normal form.A rewrite system is called terminating or strongly normalizing if there is no in�nite sequence ofrewritings a1 ! a2 ! : : :an ! : : :. It is called con
uent or Church-Rosser if for any a �!�! a1and a �!�! a2 there exists a0 2 A such that a1 �!�! a0 and a2 �!�! a0. Diagramically,a		��� @@@RRa1 a2@@@RR 		���a0In a terminating Church-Rosser rewrite system every element admits a unique normal form.However, the property of being Church-Rosser is usually hard to verify, and this is due to thefact that the condition a1 � � a �!�! a2 is rather complicated. Replacing it by a1 � a �! a2we obtain weak Church-Rosser systems. Precisely, a rewrite system is called weakly Church-Rosser if for any a1 � a �! a2 there exists a0 2 A such that a1 �!�! a0 and a2 �!�! a0.Diagramically, a	��� @@@Ra1 a2@@@RR 		���a0Fortunately, in many cases verifying this su�ces, becauseLemma 2.4 (Newman) A terminating rewrite system is Church-Rosser i� it is weakly Church-Rosser. 2

42 CHAPTER 2. MATHEMATICAL BACKGROUNDTerm rewrite systems constitute the most important example of abstract rewrite systems. Let
 be a signature and X a set of variables. Then T
(X) denotes the set of all terms that canbe constructed from X by using operations from
. A (term) rewrite rule is an expressiont1 ! t2 where t1; t2 2 T
(X). A (term) rewrite system is a �nite collection R of term rewriterules. Associated with R, there is a binary relation �!R on T
(X) de�ned as follows. Assumes ! t 2 R, w is a term and � is a substitution. Then w[s�] �!R w[t�] where s� and t� aresubstituted at the same position in w, and no other terms are related by �!R.We shall need two results that establish when a term rewrite system is terminating and Church-Rosser.Lemma 2.5 Assume that there exists a function ' : T
(X) ! N such that u �!R v implies'(u) > '(v). Then �!R is terminating. 2Let s �! t and u �! v be two rewrite rules in R, with no variable in common (this can bedone by renaming variables appropriately). Suppose that a subterm of s at position p is not avariable and is uni�able with u, and let � be the most general uni�er. Then (t�; s�[v�]) (wherev� is substituted at the position p) is called a critical pair. CP (R) stands for the set of allcritical pairs between the rules of R.Lemma 2.6 (Critical pair lemma) Let R be a term rewrite system. If s �R u �!R t,then either there exists a term v such that s �!�!R v � �R t, or else s !CP (R) t. 2Applying the Newman lemma, we getCorollary 2.7 A terminating rewrite system R is Church-Rosser i� CP (R) ��!�!R � � �R.In other words, for every critical pair (s; t) there exists a term v such that s �!�!R v � �R t. 2

Chapter 3PreliminariesThis chapter covers the foundation for the study of the semantics of partiality and languagesto work with partial information. As we have observed earlier, the unifying theme for variouskinds of partial information is using ordered sets as their semantics, where meaning of the orderis \being more informative". There exist standard mathematical models for
at and nestedrelations without partial information. Once orderings on values come into play, there is a needin new basic models for incomplete databases. The �rst attempt to come up with such a modelwas done by Buneman, Jung and Ohori [33] and it was further developed in Libkin [99], Jung,Libkin and Puhlmann [88] and Levene and Loizou [95]. We present the model in the �rst sectionand study some of its properties. In particular, we show how to rede�ne the notions of scheme,functional and multivalued dependencies and operations of the relational algebra. Ordered setsthat we use for modeling partiality are domains typically used in the programming semantics.Secondly, we must develop a framework for the query language design. In the second section, weexplain Cardelli's data-oriented programming [35], in particular, the idea of using introductionand elimination operations for programming with data. We then go on and explain the approachof Buneman, Breazu-Tannen and Naqvi [25] that suggests to derive data-oriented languages fromoperations naturally associated with the data. Those operations come from the universalityproperties. Their approach was further developed in Breazu-Tannen, Buneman and Wong [26]where a simple reformulation of the nested relational algebra was found. Even more importantly,[26] suggested a uniform way of getting rid of non-well-de�nedness of programs. This way, incategorical terms, is going from an adjunctions to the associated monad. Before applying thisapproach to partial data in chapter 5, we demonstrate its usefulness by showing how it can beused with bags (multisets). Some of the results are taken from Libkin and Wong [105, 106, 107,108]. 43

44 CHAPTER 3. PRELIMINARIES3.1 Databases with partial information and domain theoryAs we have said many times in the introduction, most models of partiality of data can berepresented via orderings on values. In this section we study a new approach to databases whichtreats relations not as subsets of a Cartesian product but as subsets of some domain { a partiallyordered space of descriptions. This approach permits generalizations of relations that admit nullvalues and variants. We show how to de�ne the notion of a relation scheme in such a setting. Westudy properties of schemes. Then we show that operations analogous to projection, selectionand join retain the desired properties. Schemes also allow us to develop dependency theoryfor such generalized relations. They play an essential role in an extension of this model whichadmits a set constructor and is therefore useful for the study of higher-order relations and theirgeneralizations.Throughout this section, we consider only Scott domains.3.1.1 Order on objects and partialityIt has recently been discovered by Buneman et al. [33] that a representation of the underlyingprinciples of relational database theory can be found in the theory of domains which has beendeveloped as the basis of the denotational semantics of programming languages. This represen-tation does not take into account the details of the data structure and, therefore, allows us toextend the main principles of relational databases to much more general constructions. Use ofdomain theory in the generalization of relational databases may also help to establish the con-nection between data models and types, that is, to represent database objects (not necessarilyrelational databases) as typed objects in programming languages.In denotational semantics of programming languages expressions denote values, and the domainsof values are partially ordered. A database is a collection of objects having descriptions andmeanings. The meaning is the set of all possible objects described by a description. The meaninghaving been de�ned as a set, we can order descriptions by saying that a description d1 is betterthan a description d2 if it describes fewer objects, i.e. if it is a more precise description.Let [[d]] stand for the meaning of d. Suppose that d1 and d2 are the records in a relationaldatabase and d1 = [Dept: CIS;O�ce: 176];d2 = [Name: John;Dept: CIS;O�ce: 176]Assume that name, department and o�ce are the only attributes. Then the meaning of d1 isthe set of all possible records that refer to CIS people in o�ce 176, in particular, d2. Therefore,

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 45d2 is better than d1 because [[d]]2 � [[d]]1.If all descriptions of objects come from the same domain D which is partially ordered by �,then we can give the following de�nition of [[d]]:[[d]] def= fd0 2 D j d0 � dg = "dNow the following is immediate:Lemma 3.1 d1 � d2 i� [[d2]] � [[d1]]. 2The above ordering corresponds to the usual one in the theory of databases with incompleteinformation. For relations, it was used by Biskup [23], Imielinski and Lipski [78] and others.The same idea of ordering was used for complex objects in Bancilhon and Khosha�an [20].Before we go any further, let us �x the notation for records. A record with �eld names l1; : : : ; lkand corresponding values v1; : : : ; vk will be denoted by [l1: v1; : : : ; lk: vk]. We use the [] bracketsas others will be used for various collections later on. Fortunately, until chapter 6 when weswitch to the ML notation, lists are not used, and we are able to avoid confusion. We shalldenote the lith �eld of a record r by r(li) or r:li.Let V? = V[f?g where V is a set of non-partial values, ? corresponds to incomplete information(it is a generic null) and 8v 2 V : ? � v while all elements of V are incomparable. In other words,V? is a
at domain. Let L be a set of attributes (in the above example L = fName;Dept;O�ceg).Then the set of functions from L to V?, denoted by L ! V?, is ordered by d1 � d2 i� d1(l) � d2(l)for all l 2 L where d1; d2 : L ! V?. For example, if d1 and d2 are as in the above example, L =fName;Dept;O�ceg and V contains names of departments, people and numbers of o�ces, thend1; d2 2 L ! V? since d1 = [Name: ?;Dept: CIS;O�ce: 176]. Obviously d1 � d2.There is an alternative way of giving semantics of partial description by using maximal elementsof D. Recall that for every Scott domain D there exists a set Dmax � D such that for everyd 2 D there is dm 2 Dmax such that d � dm. In other words, Dmax is the antichain of maximalelements. For example, in the case of L ! V?, maximal elements are precisely records withoutnulls, that is, records without incomplete information. Therefore, it was proposed by some[31, 33, 78] to rede�ne semantics as[[d]]max def= fd0 2 Dmax j d0 � dg = "d \DmaxLet us brie
y outline some problems with this approach (we shall see more when we studyapproximations). First, consider (just informally) recursive values with nulls. For instance, ifwe have a type declaration person = [name:string, father:person], then elements of thistype are potentially in�nite sequences of names. In fact, if C is a domain of strings, then thesemantics of type person is given by a solution to the recursive domain equation D = C �D.

46 CHAPTER 3. PRELIMINARIESMaximal elements of D are then in�nite sequences of maximal elements of C and it is unlikelywe would be interested in approximating those. In fact, we are interested in descriptions of �nitelength ending with in�nitely many bottom elements, i.e. generic nulls.Un�nished experiments are another example. They are just sequences of observations made,say, every day. Formally, such experiments are partial functions from N to some domain C, andthese are ordered by f1 � f2 , 8n : f1(n) is de�ned) f2(n) is de�ned and f1(n) � f2(n).In this example maximal elements are totally de�ned functions f with im(f) � Cmax. Again,we see that partiality of information does not necessarily mean trying to approximate maximalelements, which are never reached.Finally, using [[]]max we lose the nice connection between the ordering and semantics. It is nolonger the case that [[d1]]max � [[d2]]max , d1 � d2. A simple counterexample is a �nite chain:for all elements their [[]]max is the top element.Looking at these examples gives us another important observation. Elements of type personthat can be stored in a database are precisely �nite sequences of names. Un�nished experimentsthat can be stored are precisely partial functions with �nite domains whose values can be stored.Mathematically speaking, these are compact elements. This �ts very well with the semantics ofcompact elements proposed by Dana Scott: in his approach they are \computable" functions;in our approach they are objects that can be stored in a database.We are now in the position to explain the main idea of Buneman et al. [33]. Consider the domainL ! V?. Its elements are records whose attributes are elements of L and values are taken fromV?. The relations are �nite sets of records, that is, �nite subsets of L ! V?. However, notevery �nite subset of L ! V? corresponds to a relation. If we have a subset containing bothd1 and d2 from our example, d1 is less informative than d2 and should be removed (notice thatwe can not argue this way for bags. Indeed, as we will show later, the ordering on bags ofpartial descriptions is quite di�erent from the ordering on sets). Less informative here meansthat d1 � d2. Therefore, relations correspond to �nite subsets of domains that do not containcomparable elements, that is, to antichains. Combining this with the idea of the previousparagraph that elements that can be stored correspond to compact elements of domains, wearrive at the (slightly changed) principle proposed by Buneman, Jung and Ohori [33]:Generalized relations are �nite antichains of compact elementsExample 3.1 Let L and V be as in the above examples. Letd3 = [Name: Ann;Dept: Math;O�ce: 628];d4 = [Name: Ann;Dept: Math;O�ce: ?](d4 shows that the person has not been assigned an o�ce yet). Then fd2; d3g is a generalizedrelation but neither fd1; d2g nor fd3; d4g is because d1 � d2 and d4 � d3. 2

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 47In the examples above we considered only one generic null value. We have seen already otherkinds of null values and orders on them. To order more complex structures, it is necessary tolift orders. To lift order to records is easy: it is just done componentwise. To lift order to setsis more problematic as domain theory does not provide us with a universal way to do so. Weshall brie
y discuss lower and upper orderings in this chapter, and later in chapter 4 we justifyusing the lower ordering for lifting to relations.3.1.2 SchemesIn the subsequent sections we shall develop dependency theory and a simple query languagefor the model presented above. To do so, we need to �nd an analog of the concept of scheme.Recall that in the relational database theory, a scheme is just a subset of attributes. We needthis concept to formulate the de�nitions of functional and multivalued dependencies and laterto de�ne analogs of the relational algebra operations such as projection and selection. In thissubsection we consider two de�nitions: one due to Bunemanet al. [33] and the other due toLibkin [99].Consider the usual relational algebra projection, where relations are allowed to have nulls. Let L0be a subset of the set of attributes L. If y � pL0(x), then y has nulls in the positions correspondingto attributes in L � L0. Hence, pL0(y) = y, and this shows that IL0 = fpL0(x) j x 2 L ! V?g isan ideal. Furthermore, if pL0(x) _ pL0(y) exists, it still has nulls in all positions correspondingto L � L0, and hence it belongs to IL0 .Ideals which are closed under existing suprema are called strong ideals. The observation we havejust made shows that as the �rst approximation to the de�nition of scheme we can take strongideals. However, this is not good enough as the following example shows:Example 3.2 Let L and V be as in the examples of the previous subsection. LetI1 = f[Name: v;Dept: ?;O�ce: ?] j v 2 V?g:Then I1 is a strong ideal and for any d = [Name: v1;Dept: v2;O�ce: v3] its projection ontoI1 is pI1(d) = [Name: v1;Dept: ?;O�ce: ?]. The set of maximal elements of I1 is f[Name: v;Dept: ?; O�ce: ?] j v 2 Vg.Let I2 = #d where d 2 L ! V?. Then I2 is a strong ideal with unique maximal element d andfor any d0 2 L ! V? : pI2(d0) = d ^ d0. 2Therefore, we need more for the analogy of projection in relational algebra than being a projec-tion onto a strong ideal. In fact, that ideal must satisfy some additional properties. In L ! V?schemes correspond to subsets of L. That is, a projection onto the scheme corresponding to

48 CHAPTER 3. PRELIMINARIESS � L is given bypS(x) = x0 where x0(l) = x(l) if l 2 S and x0(l) = ? otherwise:These projections will be called canonical. It is a natural requirement for the de�nition ofscheme and projection in an arbitrary domain that the projections be canonical when restrictedto L ! V?. One can easily see that for every x 2 L ! V? the ideal #x is strong while theprojection p#x is not canonical.In L ! V? schemes correspond to the subsets of L and projections to the canonical projections.It is natural to de�ne the concept of scheme such that, being applied to L ! V?, it will giverise exactly to canonical projections. Also, schemes should be signi�cant parts of a domain thatre
ect the structure of the whole domain. This means that if the elements of a domain aretreated as database objects (for example, records in relations), then projection into an idealgenerated by a scheme should correspond to losing some piece of information and the samepieces of information are lost for all the elements of the domain. This means that projectionsgenerated by schemes are in a way homogeneous.If we have two maximal elements of a domain (complete descriptions) and they are projectedinto a scheme (i.e. the same pieces of information are ignored) then the projections can not becomparable. This observation leads us to the following de�nition.De�nition 3.1 Let D be a domain and S an antichain in D such that #S is a strong ideal.Then S is called a scheme in D if projection p#S(x) of any element of x 2 Dmax is a maximalelement in #S.If S � D is a scheme, then #S is called a scheme-ideal and p#S is called a scheme-projection.We shall write pS instead of p#S .The picture below illustrates these concepts.
AAAAAAAAAAAA ������������BBBM@@@@@@RCCCCCCW �������pS pS pSD S#S Dmax

In the reasonings that led us to the above de�nition we took into account only how we loseinformation by projecting into a scheme. In Buneman et al. [33] another aspect of the problem

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 49was considered : what can be said about the lost information? Can we consider it independentlyand \add" to another object (element of a domain)?The idea of [33] was that, given a scheme S, there is its complement (as there is a complementL�S for every S � L for the domain L ! V?), and projecting into S is simply losing informationcorresponding to the complement of S. Assuming that the pieces of information contained inprojections into the scheme and its complement are independent, we can combine them. To bemore precise, if we have an object and its projection into a scheme is less than an element of thisscheme, we can add lost information to the latter element. This corresponds precisely to theslide condition of Buneman et al. [33]. We say that a strong ideal I satis�es the slide conditionif for any x 2 D and y 2 I, pI(x) � y implies that x _ y exists. This property obviously holdsfor canonical projections in L ! V?. The following picture illustrates the slide condition (xIstands for pI(x)):
SSSSSSSSSSSS ������������SSSSSS���CCCCCC DIx xI yx _ yr rrrDe�nition 3.2 ([33, 88]) Let D be a domain and S an antichain such that #S is a strong ideal.Then S is called a semi-factor if #S satis�es the slide condition, that is, if x 2 D and y 2 #Sare such that pS(x) � y, then x _ y exists. #S is called a semi-factor ideal, and pS is called asemi-factor projection.Every semi-factor is a scheme; the converse is not true in general. If it were true, it would mean(informally) that for all the schemes their complements exist, because we could consider theparagraph before the de�nition of semi-factor as an informal proof. In a certain class of domainsthis can be formally proved, and we will �nish this section with such a result.Example 3.3 Let d2; d3 be as in the examples 1 and 2. Letr1 = [Name: John;Dept: ?;O�ce: ?];r2 = [Name: ?;Dept: CIS;O�ce: 176];r3 = [Name: Ann;Dept: Math;O�ce: ?];

50 CHAPTER 3. PRELIMINARIESr4 = [Name: ?;Dept: ?;O�ce: 628]:Let D = fd2; d3; r1; r2; r3; r4;?g where ? is the tuple with all null values. The diagram of Dis shown below:
@@@@@@@@��������DDDDDDDDLLLLLLLL�������������

���LLLLLLLL��������
d2 d3r1 r4r2 r3?
r rr r r rrThis domain has no semi-factors except f?g and Dmax while it has eight proper schemes:fr1; r3g, fr2; r3g, fr1; r4g, fr2; r4g, fd2; r3g, fd2; r4g, fd3; r1g, fd3; r2g. 2In order to justify both de�nitions we must prove that they describe exactly canonical projectionswhen applied to the domain L ! V?.Proposition 3.2 S is a scheme (or a semi-factor) of L ! V? i� pS is a canonical projection.Proof. We prove the proposition for schemes only. (See [33] for semi-factors). The 'if ' part isimmediate. To prove the 'only if ' part, consider a scheme S. De�ne L � L as L = fl 2 L :r(l) 6= ?; where r = pS(r00) for some r00 2 (L ! V?)maxg. Now we are to show that pS is thecanonical projection onto L. That is, we are to show that r(l) = r0(l) for all l 2 L and r0(l) = ?for l 62 L provided that r0 = pS(r).If l 62 L, consider any r00 � r, r00 2 (L ! V?)max. Then pS(r00)(l) = ? � pS(r)(l) = r(l).Thus r(l) = ?. If l 2 L, consider two cases. If r(l) = ?, then r0 � r and r0(l) = ? too. Ifr(l) = v, by de�nition of L there is a maximal element r00 such that pS(r00)(l) = v0 6= ?. Ifv0 6= v, consider another maximal element rv that di�ers from r00 only in its lth component whichis v. If pS(rv)(l) = ?, then r00 _ rv exists, which contradicts the de�nition of scheme. Thus,pS(rv)(l) = v, and a record rv whose only nonbottom component is rv(l) = v is in #S. Sincerv � r, rv is also below r0, which proves r0(l) = v = r(l). 2

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 51If L is �nite, L ! V? is isomorphic to Vn?, where n = jLj. Therefore, in direct products of
atdomains all schemes are semi-factors. Theorem 3.10 below will generalize this fact.We shall mostly use schemes rather than semi-factors because the de�nition of schemes is moregeneral and does not make use of any additional assumptions and, as we are going to show,schemes satisfy almost all properties that were proved in order to justify the de�nition of semi-factor in Buneman et al. [33]. In the rest of the subsection we prove some properties of schemesand state a result characterizing qualitative domains in which the concepts of scheme and semi-factor coincide.Let A;B � D be two sets. We de�ne A _B as the pointwise supremum, i.e. A _ B = fa _ b :a 2 A; b 2 B; a _ b existsg.Proposition 3.3 Let D be a distributive domain. Then1) If A;B are scheme-ideals, then so is A _B.2) The set of scheme-ideals over D is a complete lattice.Proof. We are going to prove a more general fact, namely that for any indexed set of scheme-ideals Ai; i 2 I , A = WAi is a scheme-ideal (the supremum is de�ned pointwise). Then both 1)and 2) will easily follow.Prove that A is a strong ideal. Of course, it is closed under all existing joins since so are all Ais.To show that it is an ideal, consider x = _xi, where xi 2 Ai, and y � x. Since D is a domain,y is the join of all compact elements below it. Let a � y be compact. Then a � xi1 _ : : :_ xik ,and by distributivity there are x0ij � xij , j = 1; :::; k, such that a = x0i1 _ : : :_ x0ik . Thus, a 2 A,and since A is closed under existing joins, y 2 A. Therefore, A is a strong ideal.Our next step is to show that pA(x) = W pAi(x). Let pA(x) = _ai, where ai 2 Ai. Then eachai � pA(x) � x. Since ai 2 Ai, ai � pAi(x). Thus, pA(x) � W pAi(x). The equality now followsfrom pAi(x) � pA(x).To �nish the proof, show that A is a scheme-ideal. Let x; y 2 Dmax and pA(x) � pA(y). Thenfor each index i: pAi(x) � pA(y) � y. Since Ai is a scheme-ideal, pAi(x) = pAi(y), hencepA(x) = pA(y). Thus, A is a scheme-ideal. 2The same results have been proved for semi-factors in [33]. Notice that scheme-ideals may notbe closed under intersection in contrast to the case of semi-factor ideals. For example, in thedomain shown below, both fx2; y0;?g and fx1; y1; y0;?g are scheme-ideals, but their intersectionfy0;?g is not.

52 CHAPTER 3. PRELIMINARIES
SSSSSS������CCCCCCCCCCCC���AAA������CCCCCC���?x1 x2 y0y1 y2rr r r rrr r

Proposition 3.3(2) says that schemes ordered by v[form a lattice if D is distributive. A questionarises : what can be said about other powerdomain orderings v] and v\? The following resultshows that these orderings coincide for schemes in any domain. The same result for semi-factorswas proved in [33].Theorem 3.4 Let D be an arbitrary domain and S1; S2 two schemes. Then S1 v[S2 i� S1 v]S2 i� S1 v\ S2.Proof. According to the de�nition of v\, it is enough to prove that S1 v[S2 i� S1 v] S2. LetS1 v[S2. Consider any x 2 S2. We have to show the existence of an element z 2 S1 such thatz � x. Let x0 2 Dmax; x0 � x. Since S1 v[S2, there exists y 2 S2 such that z = pS1(x0) � y. Ify = x, we are done. Otherwise, z and x are incomparable, and since z 2 #S2 (because z � y),z _ x exists. Thus, z _ x > x and z _ x 2 #S2 (because S2 is a scheme), a contradiction.Let, conversely, S1 v] S2. We are to prove that for every x 2 S1 there exists z 2 S2 such thatx � z. Let x0 2 Dmax; x0 � x. Let z = pS2(x0). Since S1 v] S2, there exists y 2 S1 such thaty � z. If y = x, we are done. Otherwise, y _ x exists, since y and x are bounded by x0, whichcontradicts the fact that S1 is a scheme. Theorem is proved. 2Proposition 3.5 Let D = D1�D2 (or D = D1+D2). Then S is a scheme in D i� S = S1�S2(or S = S1 + S2) for some schemes S1 and S2 in D1 and D2, respectively. 2At this point, let us consider restrictions of our main de�nitions to the compact elements. First,to be able to speak of projections of compact elements onto compact elements of strong ideals,one must restrict the class of domain as the following lemma shows. Recall that ACC standsfor the \ascending chain condition" which states that there are no in�nite ascending chainsx1 � x2 � x3 � : : :.Lemma 3.6 If D is a domain, then the following are equivalent:

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 53(i) For any strong ideal I and x 2 KD, pI(x) 2 KD.(ii) KD is downward closed, i.e. #KD = KD.(iii) #x satis�es ACC for any x 2 KD.Proof. (i)) (ii). Let x 2 KD and y � x. Then by (i) y = p#y(x) is in KD.(ii)) (iii). Assume KD = #KD. If x 2 KD is such that #x does not satisfy ACC, considera chain x1 � x2 � x3 � : : : � x. Then x0 = tixi is not a compact element, but x0 � x. Thiscontradiction shows that #x satis�es ACC.(iii)) (i). Let I be a strong ideal and x 2 KD. Then pI(x) = W(y j y � x and y 2 KD \ I).Since #x satis�es ACC, pI(x) is a join of only �nitely many y's and as such is compact. 2Therefore, if D satis�es any condition of the lemma, we can restrict our attention to compactelements only. A projection is now de�ned aspI(x) = _y�x and y2I y for x 2 KDThat allows us to rede�ne semi-factors at the level of compact elements. We say that I � KDis a compact semi-factor ideal if it is downward closed, closed under �nite least upper boundsand satis�es the slide condition for compact elements.Proposition 3.7 Let D be a domain such that #KD = KD. Then I �! I \KD establishes abijection between semi-factor ideals and compact semi-factor ideals.Proof. It is easy to see that I \KD is a compact semi-factor ideal whenever I is a semi-factorideal since compact elements are projected into compact elements. To see that the correspon-dence is bijective, we must prove that I = fWX j X � I \KD; WX existsg. The � inclusionis obvious. Conversely, let x 2 I and let X = #x\KD. Then X � I \KD and x = WX , whichproves the reverse inclusion and the proposition. 2Thus, one can reason about semi-factors entirely on the level of compact elements. In this aspectsemi-factors are better suited for developing the database concepts in the domain-theoreticmodel. Another advantage of semi-factors will be seen when multivalued dependencies arestudies. However, schemes are more general than semi-factors and in most cases the desiredresults can be stated for schemes.We �nish this section by two results of the same spirit. Both of them relate the properties ofschemes that one would expect in a domain like L ! V? to the internal structure of the domain.Observe that in L ! V? no element of a scheme can be replaced by another element such thatthe resulting set is still a scheme. To capture this property, we say that a scheme S in an

54 CHAPTER 3. PRELIMINARIESarbitrary domain D is saturated if, for any x 2 S, there is no y 2 D; y 6= x such that (S� x)[yis a scheme. We say that D is coatomic if every element is a meet of maximal elements. Noticethat L ! V? is coatomic and all schemes in L ! V? are saturated.Proposition 3.8 If D is coatomic, then all schemes in D are saturated.Proof. Let D be a coatomic domain. Assume that S a non-saturated scheme in D, i.e.(S� x)[y is a scheme for some x 2 S and y 6= x. If S = fxg, then pS(z) = x for any z 2 Dmaxand x � Vz2Dmax z = ? since D is coatomic. Hence, if (S � x) [y were a scheme, y wouldequal bottom yielding y = x. This contradiction shows that S has at least two elements. Nowconsider three cases.Case 1: y < x. Since D is coatomic, there exists ym 2 Dmax such that ym � y but ym 6� x. Letz = pS(ym). Since ym 6� x, z 6= x. Therefore, z; y 2 (S � x) [y and z"y which contradicts thede�nition of scheme.Case 2: y > x. Now we can �nd xm 2 Dmax such that xm � x and xm 6� y. Let z =p(S�x)[y(xm). Since xm 6� y, x 2 S�x and x"z which again contradicts the de�nition of scheme.Case 3: y and x are not comparable. Similarly, we can �nd xm 2 Dmax such that xm � x andxm 6� y and the proof proceeds as in the second case. Thus, all three cases lead to contradictionwhich proves the proposition. 2Corollary 3.9 Let D be a coatomic domain and S a scheme. If S 0 � S, then S is not a scheme.2The reader can easily establish a number of properties of saturated schemes. For instance,even in distributive domains it is possible to �nd examples of saturated schemes which are notsemi-factors and examples of semi-factors which are not saturated. Saturated scheme-ideals mayfail to be closed under intersection. The converse of proposition 3.8 is not true: there exists adomain in which all schemes are saturated but which is not coatomic.Our next result is a precise characterization of those qualitative domains in which the conceptsof scheme and semi-factor coincide. Informally, this results states that in a certain class ofdomains the concepts of scheme and semi-factor coincide i� the domain looks like L ! V?. Theproof is not given here. It relies on the theory of decomposition of domains developed by Jung,Libkin and Puhlmann [88].Theorem 3.10 Let D be a qualitative domain. Every scheme of D is a semi-factor i�D 'Yi2IDi

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 55where each Di has no proper scheme; the schemes of D are in 1-1 correspondence with subsetsof I. 23.1.3 Dependency theoryThe purpose of this section is to develop some basic dependency theory for our domain modelof databases. Functional dependencies were introduced in Buneman et al. [33] for semi-factors;here we show that all the results remain true for schemes. The major contribution of thissection is introduction of multivalued dependencies for generalized relations and proving thedecomposition theorem. However, some work must be done before we can de�ne multivalueddependencies. In the relational theory these dependencies establish relationship not only betweenprojections into two schemes, but also between projections into a complement of one of them,i.e. all the operations of Boolean algebra { intersection, union and complement { are involved.From proposition 3.3 we know that analogs of only two operations { intersection and union {have been de�ned for the schemes so far. Therefore, we need to de�ne complements for schemes.In order to do that, it is necessary to restrict the class of domains. It will turn out that thisclass consists of the qualitative domains.Functional dependenciesHaving introduced the notion of scheme, we can de�ne functional dependencies. If S1; S2 areschemes in a domain D, then a functional dependency is an expression of the form S1 ! S2.Usually in the theory of databases with incomplete information dependencies are de�ned onlyon the schemes projections into which do not contain tuples with null values. This conditioncan be equivalently expressed as: for any record in a relation there is a record in a scheme whichis less informative than the relation record. In other words, if R is a relation and S is a scheme,then S v] R.Now we can de�ne satis�ability for functional dependencies. Let R � D be a relation. We saythat R satis�es a functional dependency S1 ! S2 if S1; S2 v] R and pS2(x) = pS2(y) wheneverpS1(x) = pS1(y) for every x; y 2 R.Functional dependencies in distributive domains have been investigated in [33] for the particularcase of semi-factors, and the following analogs of the Armstrong axioms are due to [33], whereF is a set of functional dependencies and hSchemes(D);�i is the complete lattice of schemesover distributive domain D (cf. proposition 3.3).(a) If S1; S2 2 Schemes(D), S1 � S2 and S2 ! S2 2 F , then S2 ! S1 2 F .(b) If for any i 2 I : S ! Si 2 F where S; Si 2 Schemes(D), then S ! Wi2I Si 2 F .

56 CHAPTER 3. PRELIMINARIES(c) If S1 ! S2 2 F and S2 ! S3 2 F , where S1; S2; S3 2 Schemes(D), then S1 ! S3 2 F .We need the additional condition S2 ! S2 2 F to guarantee consistency since generally it maynot be the case that S2 v] R. The result of [33] proved for semi-factors is also true for schemes:Proposition 3.11 The Armstrong Axioms (a){(c) are consistent and complete for relations indistributive domains.Proof. Prove consistency �rst. (a) Let S2 ! S2 2 F . Then S2 v] R. Since S1 � S2 inSchemes(D), #S1 � #S2 and S1 v[S2. According to theorem 3.4, S1 v] S2, hence S1 v] R.Thus, S2 ! S1 2 F .(b) Let Si v] R, i 2 I . Prove that SI = Wi2I Si v] R. Let r 2 R. Then for any i 2 I thereis such si 2 Si that si � r. Therefore, sI = _i2Isi � r. Since D is distributive, sI 2 SI (cf.proposition 3.3), and SI v] R. Now let pS(x) = pS(y) for x; y 2 R. ThenpSI (x) = _i2I pSi(x) = _i2I pSi(y) = pSI (y):Thus, S ! SI 2 F .(c) is obvious. Completeness follows from the fact that our model is a generalization of thestandard relational model. Therefore, we have more relations available. 2Complements of schemesOur goal is to introduce multivalued dependencies for generalized relations. A multivalueddependency X !! Y , where X; Y are sets, uses the projection onto X[Y . While [correspondsto _ in the domain model, there is no analog for the complement. More precisely, the posetof schemes is a lattice if the domain is distributive, but schemes may fail to have complementsin contrast to the case of L ! V?. Thus, our goal is twofold. First, we de�ne complements ofschemes and the proceed to introduce multivalued dependencies and prove the decompositiontheorem.Consider the domain L ! V?. Its schemes correspond to subsets of L, with scheme-projectionsbeing canonical projections. The complement of a scheme corresponds to projecting onto thecomplementary subset of L. Suppose that we have de�ned the concept of a complement. Let pbe a scheme-projection and p the projection corresponding to the scheme's complement. Whatshould the properties of p be? First, if we have any element x 2 D, then p(x) ^ p(x) = ?.Suppose that x 2 D. Then p(x) \forgets" about information contained in p(x). The fact thatp is the complement of p means that all information contained in x can be reconstructed fromp(x) and p(x), i.e. x = p(x) _ p(x). That means that in order to introduce complements, we

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 57have to require that all principal ideals #x in D be complemented lattices. Moreover, theymust be uniquely complemented since we want to speak about the complement. The followingproposition shows why we restrict our attention only to qualitative domains.Proposition 3.12 Any principal ideal of a domain D is a uniquely complemented lattice i� Dis a qualitative domain.Proof follows immediately from the de�nition of qualitative domains and the fact that anyuniquely complemented algebraic lattice is Boolean, see Salii [154]. 2There is another elegant way to de�ne complements due to Jung [87]. Let S � D be a schemein any domain D . We de�ne IS as the set of maximal elements of fx 2 D : pS(x) = ?g. It canbe shown that IS is not generally a scheme. In order to be able to operate with complements,we have to make two observations.Proposition 3.13 Let D be a qualitative domain and S any scheme. Then #IS = #IS. Thatis, IS is the set of maximal elements of IS. Moreover, #IS is a strong ideal.Proof. #IS � #IS easily follows from the observation that y � pS(x) implies pS(y) = ?. Toprove the renverse inclusion, consider an element x 2 #IS , i.e. pS(x) = ?. Let x0 � x be amaximal element. We �nish the proof by showing that x � pS(x0). If x is not under pS(x0),then z = x ^ pS(x0) 6= ? since #x0 is Boolean. Then z 2 #S and z � x, hence ? = pS(x) � z, acontradiction. Thus, x � pS(x0).To show that #IS (and therefore #IS) is a strong ideal, consider an indexed family xi 2 D; i 2 Isuch that pS(xi) = ? for all i and x = Wi2I xi exists. By [33] pS(x) = Wi2I pS(xi). Therefore,pS(x) = ? and x 2 #IS , which proves strongness. 2The following example shows why IS may fail to be a scheme even in a qualitative domain:S = fx1; yg is a scheme, but IS = fx2g is not.AAA �����������AAAx1 x2 yrr r rrGiven a scheme S in a qualitative domain, we can correctly de�ne its complement as IS . As wementioned above, the complement of a scheme may fail to be a scheme. However, complementsof semi-factors are schemes, as the following result shows.

58 CHAPTER 3. PRELIMINARIESProposition 3.14 The complement of a semi-factor is a scheme in any qualitative domain.Proof. Let S be a semi-factor in a qualitative domain D. Denote the projection onto #IS asp. (This projection is correctly de�ned since #IS is a strong ideal.) Suppose that there arex1; x2 2 Dmax such that p(x1) > p(x2). Then pS(p(x1)) = ? � pS(x2), and y = p(x1) _ pS(x2)exists since S is a semi-factor. Since pS(x2) � y and p(x2) < p(x1) � y, x2 � y. Thus, y = x2since x2 2 Dmax. The lattice #x2 is Boolean, therefore z = pS(x2) ^ p(x1) 6= ? since p(x1)is greater than pS(x2)'s complement in #x2. However, z � p(x1), thus pS(z) = ?, which isimpossible since z � pS(x2) and hence is in #S. This contradiction shows that projections ofmaximal elements can not be comparable; thus the complement of S is a scheme. 2If IS is a scheme, we say that S has the complement (which is IS) and denote it by S. Ofcourse, any semi-factor is complemented by proposition 3.14.Multivalued dependenciesNow that the complements have been de�ned, the de�nition of multivalued dependencies inqualitative domains can be given.De�nition 3.3 Let D be a qualitative domain and S a scheme having the complement S. LetS0 be a scheme. We say that a relation R � D satis�es multivalued dependency S 0 !! S if forevery x; y 2 R with pS0(x) = pS0(y) there exists z 2 R such that pS0(z)_ pS(z) = pS0(x)_ pS(x)and pS0(z) _ pS(z) = pS0(y) _ pS(y).If D is L ! V?, this is the usual de�nition of multivalued dependency in a relational database.Notice that multivalued dependencies, like functional dependencies, should be considered onlyon schemes the projections into which do not contain null values. As it was shown above, itmeans that a scheme is less than a relation in the Smyth ordering v]. Therefore, in the abovede�nition the following should hold: S 0_S v] R and S 0_S v] R. It can be easily concluded fromthese inclusions that R � Dmax. Therefore we will consider only relations without incompleteinformation when speaking of multivalued dependencies.The above introduced functional and multivalued dependencies satisfy two standard properties.The proof is immediate from the de�nitions.Proposition 3.15 Let D be a qualitative domain, and S a scheme having complement S. LetS0 be a scheme, and R a relation without incomplete information, i.e. a �nite subset of Dmax.Then1) If R satis�es S 0 ! S then R satis�es S 0 !! S;2) If R satis�es S 0 !! S, then R satis�es S 0!! S. 2

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 59It was shown in Buneman et al. [33] that the natural join operation in the relational algebracorresponds to the join t] in the Smyth ordering. We have shown that the complement of asemi-factor in a qualitative domain is a scheme and de�ned multivalued dependencies. Now weare in the position to formulate the decomposition theorem.Theorem 3.16 Let D be a qualitative domain, and R a relation without incomplete information(that is, a �nite subset of Dmax). Let S and S 0 be semi-factors of D. Then R satis�es multivalueddependency S 0 !! S i� R = [pS0 _ pS(R)] 1 [pS0 _ pS(R)], where join 1 is t].Proof. To simplify the notation, we will write xS and RS instead of pS(x) and pS(R). S 0 _ Swill be denoted by S1 and S 0 _ S by S2; the corresponding projections are x1 and x2.Since S is the complement of S, xS_xS = x1_x2 = x for any x. By proposition 3.3, x1 = xS_xS0and x2 = xS _ xS0 . We will also need the following fact: xS0 = x1 ^ x2. Indeed, since #x is aBoolean lattice and xS and xS complement each other in #x, x1^x2 = (xS_xS0)^(xS_xS0) = xS0 .The following picture illustrates the relationship between di�erent projections of x.AAA��� ��@@��� AAAxS xS0 xSx1 = xS _ xS0 x2 = xS _ xS0xr r rr rrAccording to the de�nitions introduced above, R obeys S 0 !! S i� xS0 = yS0 implies theexistence of such z that z1 = x1 and z2 = y2.Recall the de�nition of the join: R0 1 R00 = minfx 2 Dj9r0 2 R0; r00 2 R00 : r0 _ r00 � xg. Forexample, if x = x0 _ x00, then x = x0 1 x00. In particular, x = x1 1 x2 for any x. Having donethe preliminary work, we can now proceed to prove the theorem.� Let R obey the dependency S 0 !! S. We must show that R = R1 1 R2. Suppose x 2 R.Then x = x1 _ x2, and x is not in R1 1 R2 i� there exist t; t0 2 R such that x > t1 _ t02.Assume such t; t0 exist. Let v = tS _ t0S (it exists since it is bounded by x). Supposev 62 Dmax. Then there is v0 2 Dmax; v0 > v. Since both S and S are schemes, v0S = tS andv0S = t0S . Therefore, v0 = tS _ t0S = v. This shows v 2 Dmax. Since v � x, v = x. But thenx = v � t1 _ t02 < x. This contradiction shows that x 2 R1 1 R2, i.e. R � R1 1 R2.Let, conversely, x 2 R1 1 R2, i.e. for some t; t0 2 R : x = t1_ t02. As we have shown above,x 2 Dmax. Since S1 is a scheme, x1 = t1; projecting both parts into S 0 we get xS0 = tS0 .Analogously, xS0 = t0S0 . Thus tS0 = t0S0 . Since R obeys S 0 !! S, there is such v 2 R thatv1 = t1 and v1 = t02. Hence v = v1 _ v2 = t1 _ t02 = x, i.e. x 2 R. Thus, R = R1 1 R2.

60 CHAPTER 3. PRELIMINARIES� Let, conversely, R = R1 1 R2. We have shown above that for any x and y the elementx1 _ y2 is maximal if it exists; therefore, if x1 _ y2 exists for some x; y 2 R, it must belongto R according to the de�nition of join.Consider x; y 2 R such that xS0 = yS0 . Then pS0_S(y2) = pS0(y2)_pS(y2) = yS0 _pS(yS0)_pS(yS) = yS0 = xS0 � x1. Since both S and S 0 are semi-factors, so is S _ S 0 [33]. Hencez = y2 _ x1 exists and is an element of R.We will �nish the proof that R obeys S 0 !! S by showing that z1 = x1 and z2 = y2.Calculate z1: z1 = pS0_S(y2 _ x1) = pS0(y2) _ pS(y2) _ pS0(x1) _ pS(x1) = pS0(yS0 _ yS) _pS(yS0_yS)_pS0(xS0_xS)_pS(xS0_xS) = yS0_pS(yS0)_pS(yS)_xS0_xS = yS0_xS0_xS =xS0 _ xS = x1. Similarly z2 = y2. Theorem is proved. 2Let us �nish this section by an observation that supports the reasonings that led us to twoalternative de�nitions of scheme. It was said before that only a very natural assumption thatcomplete descriptions are projected into complete descriptions is behind the de�nition of scheme,while in the de�nition of semi-factors it is implicitly assumed that each scheme is complementedand projecting is just throwing away those pieces of information which belong to this comple-ment. So it did not appear as a complete surprise that a scheme may fail to have a complementeven in a qualitative domain while a semi-factor is always complemented in such a domain.The above theorem that relates multivalued dependencies and decompositions of relations in aqualitative domain holds for semi-factors but not for schemes because we do need complementsand the possibility to work with the information \thrown away". Notice, however, that the 'onlyif' part remains true if S 0 is an arbitrary scheme and S is a scheme having complement S.3.1.4 QueriesIn this section we shall �nd analogs of the main operations of relational algebra for generalizedrelations. Schemes introduced before will be used to de�ne projections. Generalized relationswill be considered as �nite antichains in database domains. Let us describe the operations ofthe algebra as in Libkin [99].1: Union: Let D be a domain and R1; R2 two relations. Then their union is de�ned as R1~[R2 =max(R1 [R2): Observe that this is the join in the Hoare powerdomain. That is,R1~[R2 = R1 t[R2We need the max operation because R1 [R2 may fail to be an antichain, but R1~[R2 always is.R1~[R2 can be interpreted as the set of the most informative elements from R1 and R2.2: Di�erence: Let D be a domain and R1; R2 two relations. Then R1 � R2 is the usual setdi�erence. Since R1 �R2 � R1, it is a relation.

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 61Intersection can be expressed as R1 \R2 = R1 � (R1 �R2).3: Cartesian (direct) product : Let D1; D2 be two domains and R1; R2 relations in D1; D2 respec-tively. Then R1�R2 is a relation in D1�D2 de�ned as R1�R2 = fhr1; r2i j r1 2 R1; r2 2 R2g:4: Projection: Given a (database) domain D, we de�ne projection as projection into a scheme-ideal #S in D. If D is L ! V?, then projections thus de�ned coincide with projections in therelational algebra.If R � D is a relation and S is a scheme, pS(R) may fail to be an antichain. Therefore, we needtwo operations of projection:pminS (R) = min pS(R); pmaxS (R) = max pS(R):If R is a one-element relation, these two projections coincide and we will write simply pS(R).The above de�ned operations also coincide for relations without incomplete information, i.e.subsets of Dmax.5: Selection: We can also de�ne selection using the concept of scheme. First we have to de�neconditions. As usually, if c1, c2 are conditions, then so are c1 _ c2; c1&c2 and :c1. Schemes arenecessary to de�ne conditions we start with. Let S; S 0 � D be schemes, a 2 #S, x 2 D. Thenthe elementary conditions are pS(x)�a, pS(x)�pS0(x), where � 2 f<;�;=; 6=;�; >g.Let R � D be a relation. that is, an antichain in D. If c : D ! ftrue ; falseg is a condition, thenthe selection is de�ned as �c(R) = fx 2 R : c(x) = trueg:If we do not know what the class B of basic domains is and how D was constructed from the basicdomains, the above de�ned selection is all we can get. However, if we know a concrete procedureof construction of D (for example, a term in the signature h�;+i with variables from B), thenwe can de�ne more complex conditions. For example, if the database domain is D � D � D,then we are able to select those elements whose �rst and third projections coincide.We can give the selection more power if we introduce binary relations on domains from B. Forexample, if P is a binary relation on D1 2 B and #S = D1, then we can introduce conditions like(pS(x); a) 2 P . This is necessary because, for example, domain of natural numbers is representedin domain theory as a
at domain N? = f?; n0; n1; n2; : : :g where ni corresponds to the naturalnumber i, and the ordering of N? is given by letting ? be less than all ni's. We can not concludethat 1 < 2 from this information. Therefore, we need a binary relation P on N? describing theordering of natural numbers as comparing values stored in a database is one of the most typicaloperations used in queries over relational databases. Therefore, it is essential that the selectionon database domains be powerful enough to be able to carry out various comparisons.To de�ne such powerful selection we �rst need the de�nition of similar schemes and a 1-1correspondence between their scheme-ideals. In the above example of D � D � D schemes

62 CHAPTER 3. PRELIMINARIESD�f?g�f?g and f?g�f?g�D should be similar and 1-1 correspondence between their scheme-ideals associates the �rst and the third projections of any record. This gives us a possibility tocompare projections on di�erent schemes. As it was said earlier, we may want, for example, toselect records with coinciding �rst and third projections.In what follows, assume that only record and variant constructors are allowed. That is, D canbe represented as t(D1; : : : ; Dn) where t is a term in the signature h�;+i and D1; : : : ; Dn 2 B(for example, N? �N?� (N? + (Bool�N?))). We now de�ne similarity of two schemes S; S 0and mapping 'S!S0 : #S ! #S 0.� If S is a scheme in D 2 B, then S is similar to itself and 'S!S is the identity mapping on#S.� Let D = t(D1; : : : ; Dn), where Di 2 B, i = 1; : : : ; n. Suppose S; S 0 are two schemes inD. Assume that the last operation of t is �, i.e. t(�) = t1(�) � : : :� tk(�) and the lastoperation of each ti is not �. Then S = S1 � : : : � Sk and S 0 = S 01 � : : : � S 0k whereSi; S 0i are schemes in ti(D1; : : : ; Dn). Then S is similar to S 0 i� there are i and j such thatti = tj , Si is similar to S 0j in ti(D1; : : : ; Dn) = tj(D1; : : : ; Dn) and Sl = f?tl(D1;:::;Dn)g,S 0p = f?tp(D1;:::;Dn)g, l 6= i; p 6= j. 'S!S0 maps a record x 2 #S with only nonbottom ithcomponent xi 2 #Si to the record whose only nonbottom jth component is 'Si!S0j (xi).� If the last operation of the term is +, then S = S1 + :::+ Sk and S 0 = S 01 + :::+ S 0k whereSi; S 0i are schemes in ti(D1; : : : ; Dn). Then S is similar to S 0 i� each Si is similar to S 0i inti(D1; : : : ; Dn), and for any x 2 #S : 'S!S0(x) = 'Si!S0i(x) if x 2 Si.Example 3.4 Let S = f?g � f?g � D and S 0 = D � f?g � f?g be two scheme-ideals inD � D � D. Then S and S 0 are similar and 'S!S0(f?;?; xg) = fx;?;?g. Scheme-idealsD + (f?g �D) and D + (D� f?g) are similar in D + (D �D). 2Now we can extend the list of possible elementary conditions by adding the conditions of form'S!S0(pS(x))�pS0(x) where S; S 0 are two similar schemes in a database domain D.As we said before, one may also want to de�ne some binary relations on basic domains. LetP ki ; k 2 Ii be a family of binary relations on Di 2 B, where Ii is (possibly empty) set of indices.We say that a scheme S of a database domain D = t(D1; : : : ; Dn) is also a scheme in a basicdomain Di if S = t(f?g; : : : ; Si; : : : ; f?g) where Si � Di is a scheme. In this case we can identifyelements of #S and #Si.The third type of elementary conditions includes the conditions (pS(x); a) 2 P ki and (pS(x),pS0(x))2 P ki where S; S 0 are schemes in Di identi�ed with Si, a 2 Si and k 2 Ii.With such extensions being added, selection covers the usual selection in the relational algebra.

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 63Example 3.5 Consider a relation with variants describing companies. Each record containsthe following information: name, total donations for non-pro�t companies, gross revenue andcosts for pro�t companies. Below are examples of records with variants:r1 = [Name: X; Status: hNon� pro�t: [Donations: 1; 000; 000]i];r2 = [Name: Y; Status: hPro�t: [Revenue: 2; 000; 000;Costs: 1; 000; 000]i]:Let D be a domain of names. Then the above records are elements of a database domainD � (N? + (N? �N?)). Consider the following schemes:S1 = f?Dg � (N? + (f?N?g � f?N?g));S2 = f?Dg � (f?N?g+ (N? � f?N?g));S3 = f?Dg � (f?N?g+ (f?N?g �N?)):Then S1; S2; S3 are also schemes in N? and S2 is similar to S3.Let P be a binary relation on N? such that (ni; nj) 2 P i� i � j, (?; x) 2 P for all x 2 N?.Consider the following conditions: c1 � (pS1(x) 6= ?N?) (to be more precise, we should comparepS1(x) with an element of #S1, that is, with f?D;?N? � f1gg), c2 � ((pS3(x); pS2(x)) 2 P).Let R be a relation in the above database domain. Then �c1(R) selects non-pro�t companiesfrom R while �c2(R) selects companies working well, that is, whose gross revenue exceeds costs.26: Natural join: Join was introduced in [33] as the supremum in the Smyth ordering. That is,given two relations (antichains) R1; R2 � D, their join is R1t]R2. It was proved that for domainL ! V? the above de�ned operation coincides with the natural join in relational algebra. Weuse more convenient and customary symbol 1 instead of t].There is another way to think of the join operation. Given two generalized relations R1; R2 � D,their join R1 1 R2 is the set of minimal (in D) elements which are greater than some elementof R1 and some element of R2 :R1 1 R2 = minfx 2 D j 9r1 2 R1; r2 2 R2 : r1 � x; r2 � xg:This formula follows from the de�nition of R1 t] R2 and basic properties of the Smyth power-domain ordering v] [33, 157].Several conditions were given in Tanaka and Chang [164] that the analog of the natural join inobject-oriented model should satisfy. Informally, they are: 1) if there are no common attributesof two relations, the result of the join is isomorphic to their direct (Cartesian) product; 2) if tworelations are de�ned over the same sets of attributes, the result of the join is their intersection;

64 CHAPTER 3. PRELIMINARIES3) the join of two relations can be obtained as union of pairwise joins of their elements (if theseexist). Join is also known to be associative in relational algebra, see Ullman [168].Let us formalize these properties.1) Let R1 � D1; R2 � D2 be two relations, and D1 \ D2 = ;. Let R01 = R1 � f?2g andR02 = R2 � f?1g be two relations in D1 �D2. Then R01 1 R02 = R1 �R2.2) Let R1; R2 � Dmax be two relations. Then R1 1 R2 = R1 \ R2.Formalizing property 3) we must keep in mind that the union of pairwise joins may containcomparable elements while relations are antichains. Therefore, after �nding union of individualjoins we have to eliminate some elements in order to obtain an antichain. According to Imielinskiand Lipski [78], there is no \semantically correct" way to do it. Since joining relations with nullvalues may often yield counter-intuitive results (cf. [78, 123]) we think that formalizing the thirdproperty we have to eliminate nonminimal elements, i.e. to leave the least informative elementsamong pairwise joins.Let us illustrate it by the following example. Consider two relations:R1 : Name Room PhoneJohn 076 ?John ? 1595 R2 : Name Room SalaryJohn 076 12KTaking element-wise joins gives us two records over attributes Name, Room, Phone, Salary.One is r1 = John 076 ? 12K and the other is r2 = John 076 1595 12K . Clearly,r1 � r2. Hence, taking maximal records into the result of the join operation tells us that Johnis in the room 076, makes 12K and has the telephone number 1595, even though there is noindication in R1 and R2 that this should be the case. Taking the minimal record r1 as the resultis indeed consistent with the information stored in R1 and R2. Summing up, the third propertyof the join operation is the following.3) Let R;R0 � D be two relations, and R = fr1; : : : ; rng; R0 = fr01; : : : ; r0mg. Then R 1 R0 =min(S(frig 1 fr0jg : i = 1; :::; n; j = 1; :::; m)).4) If R1; R2; R3 � D are three relations, then R1 1 (R2 1 R3) = (R1 1 R2) 1 R3.Proposition 3.17 The join operation t] satis�es 1) - 4).Proof. Let us �rst rewrite the de�nition of the join operation as R1 1 R2 = minfr1 _ r2jr1 2R1; r2 2 R2; r1 _ r2 exists g.1) If r01 2 R01, then r01 is of form hr1;?i for some r1 2 R2. Similarly each r2 2 R2 is of

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 65form h?; r2i for some r2 2 R2. Thus for any r01 2 R01 and r02 2 R02 their join exists; in fact,hr1;?i _ h?; r2i = hr1; r2i. Notice that fhr1; r2ijr1 2 R1; r2 2 R2g is an antichain provided thatso are R1 and R2. Thus R01 1 R02 = R1 �R2.2) If both R1 and R2 are subsets ofDmax, then r1_r2 exists i� r1 = r2. Hence R1 1 R2 = R1\R2.3) follows immediately from the formula for the join operation given above and an observationthat fr0g 1 fr00g is r0 _ r00 if this join exists and empty otherwise.4) follows from the basic properties of the powerdomain ordering v], see [33, 67, 157]. 2Recall that the join operation in the algebra of Zaniolo [181] is de�ned only if there are nooccurrences of null values for attributes which are common for both relations. In this case,starting with antichains, we always obtain an antichain as the result. Therefore, even thoughZaniolo suggests taking maximal elements among individual joins of records and the Smyth joinoperation takes minimal elements, they coincide in the limited setting where Zaniolo's operationis de�ned.It is known that in relational algebra join can be expressed via projection, selection and Cartesianproduct. This is not true for generalized relations. However, if the underlying domain is thedirect product of domains, then such a representation for join exists. Let D = D1 � : : :�Dnand R1; R2 be two relations in D. For any x 2 D by xi we mean its ith component, i.e.projection to Di. Let R � D be a relation, and I(R) = fi j 9r 2 R : ri 6= ?Dig. LetSi = f?g � : : :�Dk(i) � : : :� f?g where k(i) = i if i � n and n � i otherwise and Dk(i) is theith factor among 2n factors. Then Si is a scheme in D�D. Let S be the direct product of suchSis that i 2 I(R1) for i � n and i� n 62 I(R1) for i > n. Let c be the conjunction of conditionspSi(x) = pSn+i(x) for all i 2 I(R1) \ I(R2). ThenR1 1 R2 = pminS (�c(R1 �R2)):We �nish this section by observation that the above de�ned operations indeed form an algebra,that is, generalized relations are closed under union ~[, di�erence, Cartesian product, projections,selection and join. The proof is immediate from the de�nitions.Theorem 3.18 Generalized relations are closed under the operations ~[;�;�; pmin; pmax; �;1.2Summing up, we have seen how relational algebra can be reconstructed in the domain model.However, we shall not use this algebra as the basis for our languages. In section 3.2 we describe anew formalism for design of relational query languages which will generalize smoothly to manykinds of collections, ordered or not. We shall use that formalism as a foundation for querylanguages for partial information.

66 CHAPTER 3. PRELIMINARIES3.2 Languages for programming with collections3.2.1 Data-oriented programmingIn this section we give an overview of the data-orientation as a new programming languageparadigm (cf. Cardelli [35]) and demonstrate some important instances such as languages forsets and bags. In particular, we cover a new approach that uses universality properties ofcollections as a source of operations that are to be included in a language.It was observed by Cardelli [35] that while traditional programming languages are mostly al-gorithmic and procedure-oriented and pay little attention to handling of data, dealing withinformation systems in general and databases in particular requires more emphasis on the data.Databases are designed using some data models, e.g. relational, complex object, etc. To makeit possible to program with data, it is necessary to represent the concept of a data model in aprogramming language. The best way to do it is to use type systems as a representation of datamodels.Representing data models via type systems often allows static type-checking of programs whichis particularly important in handling large data as run-time errors are very costly. To make surethat the type system is not too restrictive and does not limit the programmer's freedom, someform of polymorphism must be allowed. We allow all type constructs to be polymorphic, e.g. aset type constructor can be applied to any type, a product type constructor can be applied toany pair of types etc.It was suggested by Cardelli [35] that one use introduction and elimination operations associatedwith a type constructor as primitives of a programming language. The introduction operationsare needed to construct objects of a given type whereas the elimination operations are used todeconstruct them, or rather to do some computation with them. For example, for records, theintroduction operation is forming a record with given �elds, and the elimination operations areprojections.Since databases work with various kinds of collections, it is important to look at the introduc-tion and elimination operations associated with those collections. One way to do it is to �ndoperations that are naturally associated with collections. To do so, we de�ne semantics of acollection type and try to characterize it by �nding out if it has a universality property.Universality properties immediately tell us what are the introduction and the elimination op-erations. Assume we have a collection type constructor that we denote by C(�) and a type t.Recall that by universality property we mean that it is possible to �nd a set
 of operations onthe semantic domain of C(t), which we denote by [[C(t)]], and a map � : [[t]] ! [[C(t)]] such thatfor any other
-algebra hX;
i and a map f : [[t]] ! X there exists a unique
-homomorphismf+ such that

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 67[[t]] �- h[[C(t)]];
i@@@@@f RhX;
i?f+Hence, the introduction operations are � and those in
 as we can use them to constructany object of type C(t) from objects of type t. The elimination operations are given by theuniversality property. In fact, the general elimination operation is the one that takes f into f+.It is often called the structural recursion.Notice, however, that the structural recursion has as its parameters the interpretation of theoperations of
 on X . Should it happen that in a particular application those do not satisfythe intended axioms (usually equations), the resulting program f+ may not be well-de�ned.(We shall see some examples shortly). Therefore, it is particularly important to ensure well-de�nedness. One way to do it is to require that hX;
i be h[[C(s)]];
i for some type s. Then forany function f of type t ! C(s), the unique completing homomorphism of the diagram below,f+, is of type C(t)! C(s) and it is always well-de�ned.[[t]] � - h[[C(t)]];
i@@@@@f Rh[[C(s)]];
i?f+ = ext(f)The reader who chose not to skip the optional section on adjunctions and monads can now berewarded. He can see now that there is no mysticism in what we have been doing. In fact, thegeneral form of the structural recursion corresponds to the adjunction given by the universalityproperty while the restricted form is precisely the Kleisli category of the corresponding monad!Indeed, f+ in that case is what we called ext(f).More precisely, assume that semantic domains of all types are objects in some category A andthat C is a functor from A to
-Alg. Since every [[t]] is an object of A, there exists a forgetfulfunctor U :
-Alg! A. In fact, U simply \forgets" the additional structure given by
, that is,U(h[[C(t)]];
i) = [[C(t)]]. Further assume that � is a natural transformation between id and CU(this will be the case on all applications). Then the universality property stated above meansthat C is left adjoint to U, that is, C a U.

68 CHAPTER 3. PRELIMINARIESLet hT; �; �i be the monad associated with the adjunction C a U, where T = UC. Then, for anytype t, �[[t]] is an arrow from [[t]] to [[C(t)]]. In other words, we can regard � as a polymorphicfunction of type t ! C(t). Similarly, �[[t]] is an arrow from [[C(C(t))]] to [[C(t)]]. Thus, � can beunderstood as a polymorphic function of type C(C(t)) to C(t).Finally, T = UC is a functor on A. Given a function f : s ! t and its semantic interpretation[[f]] which a function from [[s]] to [[t]] in A, T([[f]]) is a function from [[C(s)]]! [[C(t)]]. That is, Tcan be regarded as a polymorphic constructor that takes a function of type s ! t and returnsa function of type C(s)! C(t).Associated with a monad, there is its Kleisli category. In particular, there is a functor from theKleisli category of a monad to the original category A whose action on an arrow A! T(B) inthe Kleisli category is an arrow T(A)! T(B) in A. In our terminology, this can be representedas a polymorphic constructor that takes a function of type t! C(s) and produces a function oftype C(t)! C(s). This constructor corresponds to taking f into f+ in the universality diagramwhen the target is h[[C(s)]];
i. In our terminology, this constructor is called ext . Its examplesfor various adjunctions have been given in section 2.3.The fact that the Kleisli category describes a monad can be translated into certain equations onthe polymorphic functions and constructs de�ned above. It is a simple exercise to go throughthe constructions of section 2.3 and see that the following hold:ext(f) = � � T(f) � = ext(id) T(f) = ext(� � f)Therefore, there are two equivalent presentations of the restricted form of structural recursion:one is h�; exti and the other is hT; �; �i.In two subsequent sections we apply this approach to sets and bags. Before we proceed withthe technical development, let us o�er some remarks on the origins of this approach and someof its features that are out of the scope of this thesis.This approach �nds its origins in functional languages like Machiavelli [127] which use specialconstructs to work with sets. It was �rst proposed in Breazu-Tannen, Buneman and Naqvi[25] (a related language was studied almost simultaneously by Immerman, Stemple and Patnaik[86]). Its various restrictions, properties and generalizations to other collections were studied inBreazu-Tannen, Buneman and Wong [26], Wong [179], Libkin and Wong [104, 105, 106, 107, 108]and Suciu [161].There are a few logical languages for complex objects, e.g. COL of [6] and f-logic of [90].However, recently the idea of using functional languages rather than logical ones for databaseprogramming has been advocated by many researchers. A survey of functional languages for

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 69databases can be found in Buneman [30]. Mathematical foundations for development of suchlanguages for relational databases have been studied in Hillebrand, Kanellakis and Mairson [72]and Hillebrand and Kanellakis [73]. Atkinson et al. [16] point out that one of the advantages ofusing functional languages is having a simple comprehension syntax associated with them thatclosely resembles conventional query languages like SQL. It is important to note that for thelanguages studied here there is an associated comprehension syntax that gives us the languagesof exactly the same expressive power, see Buneman et al. [34]. Initially, the idea of usingcomprehensions in functional programming appeared in Wadler [175]. Immerman, Patnaik andStemple [86] and Stemple and Sheard [159] studied languages closely related to those to bepresented shortly. There is an important distinction between their approach and the one thatwe are using here: the main computing engine of their language, the set-reduce operation, isbased on nondeterministic choice of elements from a set, whereas there is no nondeterminism inany of the languages we study. A functional language for sets based on the operations comingfrom the consideration of the Plotkin powerdomain was studied in Poulovassilis and Small [140].In the next section we describe two forms of structural recursion on sets. We discuss problemswith them such as non-well-de�nedness, and show how to overcome these problems by imposingsimple syntactic restrictions which correspond to the ext constructor. The language thus ob-tained turns out to be equivalent to what is known in database theory as the nested relationalalgebra. Strictly speaking, there are several nested relational algebras and calculi: of Thomasand Fischer [167], of Schek and Scholl [156], of Colby [41] and of Abiteboul et al. [2]. But sinceall of them are known to be equivalent, we speak of the nested relational algebra.The methodology of using structural recursion and monads has the advantage of being easilyapplied to any kind of collections for which a universality property is known. We show how touse the approach to design the language for nested bags. We shall also discuss some propertiesof query language for bags and its representation in a set language. These results will playan important role when it comes to choosing primitives to be used in the implementation of alanguage for sets and or-sets.3.2.2 SetsThe language being described is designed to work with nested sets and records. For simplicity ofexposition, we assume only products (these are su�cient to simulate records). Types of objects(object types) are given by the following grammar:t ::= b j unit j bool j t� t j ftgHere b ranges over an unspeci�ed collection of base types (like int, string etc.) and unit is atype whose domain consists of a unique element denoted by ().

70 CHAPTER 3. PRELIMINARIESSemantics of the product type is as usual: [[t� s]] = f(x; y) j x 2 [[t]]; y 2 [[s]]g. Semantics of theset type is the �nite powerset. That is, [[ftg]] = fX j X ��n [[t]]g.Expressions of the language have type s! t where s and t are object types. Let us consider thequestion of what should be included into such language. For each type constructor there mustthe introduction and the elimination operations. For products these are pair formation and twoprojections. Since all expressions are functions, we include (f; g) : s � t ! r if f : s ! r andg : t! r and �1 : s� t ! s; �2 : s� t ! t. For type unit there is only one introduction operation! : t! unit which always returns the unique element () of type unit .To see what must be included for sets, recall that the semantic constructor of the set type, the�nite powerset P�n, can be regarded as a functor from Set, the category of sets, to SL0, thecategory of join-semilattices with zero. Moreover, P�n is left adjoint to the forgetful functor U :SL0 ! Set and � de�ned by �X : X ! P�n(X) where �X(x) = fxg is a natural transformationfrom id to UP�n. This tell us that for any join-semilattice with zero hA;_; 0i and a functionf : X ! A there is a unique homomorphism f+ such that the following diagram commutes:X �- hP�n(X);[; ;i@@@@@f R hA;_; 0i?f+Therefore, the introduction operations for the set type constructor are ;, the singleton formation� and union [. To represent any constant c of type t as a function, we make it a functionKc : unit! t. Thus, ; is represented in the language as a function empty : unit ! ftg.The universality property also tells us what the decomposition operation is. The followingfunction is uniquely de�ned, provided e and u supply its range with the structure of a semilatticewith zero:fun s sru [e; h; u](;) = ej s sru [e; h; u](fxg) = h(x)j s sru [e; h; u](A[B) = u(s sru[e; h; u](A); s sru [e; h; u](B))Here s sru stands for the \structural recursion on the union presentation of sets". So, onepossibility to deal with sets is to add the empty set, singleton formation, union and s sru asoperations on sets.However, if e and u do not supply the range of s sru with the structure of a semilattice withzero, then s sru may not be well-de�ned. For example, if e is 0 of type int, h always returns

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 711, and u is +, one may think that s sru [0; �x:1;+] is the cardinality of a set. But this isfalse as the following example shows: 1 = s sru [0:�x:1;+](f1g) = s sru [0:�x:1;+](f1; 1g) = 2.Unfortunately, Breazu-Tannen and Subrahmanyam [27] showed that checking if s sru [e; h; u] iswell-de�ned is undecidable.To ensure well-de�nedness, we have to go to the monad or its Kleisli category as it was explainedin section 3.2.1. Going back to the examples from section 2.3, we can see what the operationsT, � and ext are. T simply maps a function of type s! t over a set of type fsg returning a setof type ftg. For example, T(�x:x+ 1)f1; 2; 3g= f2; 3; 4g. From now on, we shall call it map. �takes a set of sets of type s and returns their union. For example, �(ff1; 3; 5g; f2; 4; 6g; f1; 5gg) =f1; 2; 3; 4; 5; 6g. And ext(f) is de�ned as � �map(f).Thus, at this time we can add map(�) and � as the elimination operations to the language.Note that there is still no way to interact between sets and products and to compare ob-jects. So, we add an operator �2 : s � ftg ! fs � tg whose semantics is �2(x; fy1; : : : ; yng) =f(x; y1); : : : ; (x; yn)g and the equality test. The operator �2 comes from the notion of a strongmonad, see Moggi [118]. Finally, to make the language compositional, we allow composition offunctions.The language we have obtained is shown in the �gure 3.1 below. It is denoted by NRL (nestedrelational language). We have added the type of booleans and the if-then-else construct. Forall expressions in the �gure 3.1 we showed their most general types in the superscripts. In thefuture, those superscripts will be usually omitted as the most general type of any expression canbe inferred.Writing NRL expressions we shall occasionally use one level of �-abstraction (no higher orderfunctions) and application of a ��term to an object. This is possible because there is a calculusequivalent to NRA which allows such operations, see Breazu-Tannen, Buneman and Wong [26]and Libkin and Wong [105].The following was proved in Breazu-Tannen, Buneman and Wong [26], Paredaens and Van Gucht[132] and Wong [179].Theorem 3.19 1) NRL has precisely the expressive power of the nested relational algebra.Moreover, if eq is replaced by either of membership test, subset test, intersection or di�erencetogether with an emptiness test, the expressive power remains the same.2) NRA is conservative over relational algebra. That is, the expressive power of the sublanguageof NRA obtained by restricting input and output types to
at types (that is, sets of products ofbase types) is precisely that of the relational algebra. 2This theorem tells us about limitations of the language. Since it has essentially the power of the�rst order logic, it can not express recursive queries or parity of cardinality. There are varioustools for analyzing the expressiveness of the �rst order logic, such as Ehrenfaucht-Fra��ss�e games,

72 CHAPTER 3. PRELIMINARIES
Category with productsg : u! s f : s! tf � g : u! t c : bool f : s! t g : s! tif c then f else g : s! t f : u! s g : u! t(f; g) : u! s� t�s;t1 : s� t! s �s;t2 : s� t! t !t : t! unitKc : unit! Type(c) idt : t! t eqs : s � s! boolSet monad�s;t2 : s � ftg ! fs� tg �t : t! ftg [t : ftg � ftg ! ftg�t : fftgg ! ftg empty t : unit! ftg f : s! tmap f : fsg ! ftgFigure 3.1: Expressions of NRL

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 730/1 laws (see Fagin [51]), Hanf's lemma (see Fagin et al. [52]). Here we demonstrate anothertool, the bounded degree, which was proposed by Libkin and Wong [108]. It has an advantage ofbeing more uniform than other techniques.Let G = hV;Ei be a graph. De�ne in-deg(v) = card(fv0 j (v0; v) 2 Eg) and out-deg(v) =card(fv0 j (v; v0) 2 Eg). The degree set of G, deg(G), is de�ned as fin-deg(v) j v 2 V g [fout-deg(v) j v 2 V g � N. One of the reasons why most recursive queries are not �rst-orderde�nable is that they may take in a graph1 whose degree set contains only small integers andmay return a graph whose degree set is large. The de�nition below captures this intuition.De�nition 3.4 Let L be a language. It is said to have the bounded degree property (at types) if, for any f : fs � sg ! fs � sg that is de�nable in L and for any number k there exists anumber c, depending on f and k only, such that card(deg(f(G))) � c for any graph G satisfyingdeg(G) � f0; 1; : : : ; kg.First, let us show how the bounded degree property can be used to prove various inexpressibilityresults. We consider the following queries:� chain : fs � sg ! bool is a query that takes a graph and returns true i� the graph is achain, that is, a tree such that the out-degree of each node is at most 1.� bbtree : fs � sg ! bool is a query that takes a graph and returns true i� the graph is abalanced binary tree, that is, a binary tree in which all paths from the root to the leaveshave the same length.� dtc : fs � sg ! fs � sg is the deterministic transitive closure. That is, if G = hV;Eiis a digraph, then dtc(G) = hV;E 0i where (v1; vk) 2 E 0 i� there is a path (v1; v2) 2E; : : :; (vk�1; vk) 2 E such that vi+1 is a unique descendant of vi, i = 1; : : : ; k � 1. SeeImmerman [84].The deterministic transitive closure is a �rst-order complete problem for DLOGSPACE [84]. Itis not hard to show that chain and bbtree are at most as hard as dtc. That is, if L is a languagethat has at least the power of the �rst order logic (relational algebra), then both chain andbbtree are expressible in L augmented with dtc, see Libkin and Wong [108].Proposition 3.20 Let L be a language that has at least the power of the relational algebra.Then, if L has the bounded degree property at type s, then neither chain : fs � sg ! bool norbbtree : fs� sg ! bool is expressible in L.1We use graphs for the simplicity of exposition. Relational structures of arbitrary �nite arity can be used.

74 CHAPTER 3. PRELIMINARIESProof. We o�er a proof by picture. Assume chain is de�nable; then it is possible to de�ne anexpression that, when given a chain as an input, returns its transitive closure. As shown below,using chain it is possible to determine if a precedes b by re-arranging two edges and checking ifthe resulting graph is a chain. First, edges from a and b to their successors a0 and b0 are removedand then two edges are added: one from a to b0 and the other from the node with no outcomingedges to a0: 6&%�6&%� ?$'6& %-- -- --.a a0 b b0b b0 a a0But this contradicts the bounded degree property as we started with an n�node graph whosedegree set is f0; 1g and ended up with f0; 1; : : : ; ng.If bbtree is de�nable, it is possible to determine if two nodes in a balanced binary tree are atthe same level by re-arranging two edges as follows and checking if the result is still a balancedbinary tree: ��������� @@@@@@@@@......���	 @@@R......QQQQs����+......a ba0 a00 b0 b00Again, we start with an n�node graph whose degree set is f0; 1; 2g and, making cliques of thenodes at the same level, end up with a graph whose degree set has cardinality log2(n+ 1). 2The main reason we study this property is that it holds in NRL.Theorem 3.21 NRL has the bounded degree property at base types.Proof sketch. Let f : fb� bg ! fb� bg be an NRC expression where b is a base type. Then,by conservativity, f is equivalent to a relational algebra expression. Let E be an input to f andE 0 = f(E); both E and E 0 are sets of pairs of elements of type b. Then for some �rst-order

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 75expression F we have 8a8b : (a; b) 2 E 0 $ F (a; b; E) where E appears in F as a predicate ofform E(x; y).By a neighborhood of radius r of x in E we mean the set of all nodes whose distance from x (thatis, the length of a minimal path in E) does not exceed r. We denote the r-neighborhood of x byNr(x). By Nr(X) we mean Sx2X Nr(x). According to Gaifman [55], F is a Boolean combinationof certain sentences and formulae with a; b as free variables in which all quanti�ers are boundedto some neighborhoods of a and b. Moreover, the maximal radius of those neighborhoods, r,is determined by F . If deg(G) � f0; : : : ; kg, then it is possible to �nd the number qr of allnonisomorphic neighborhoods of radius up to r. In fact, qr � pr2p2r where pr = (2k + 1)r is anupper bound on the size of Nr(x). (Whenever we speak of a neighborhood, we assume we alsoknow its \center". This is the reason for multiplying by pr, which represents a choice of thecenter element).Now consider a partition X1; : : : ; Xq2r+1 of the set of nodes into subsets of nodes having iso-morphic neighborhoods of radius 2r + 1. Let a1; a2 belong to the same class Xi. If b 62N2r+1(a1) [N2r+1(a2), then Nr(a1; b) and Nr(a2; b) are isomorphic. In particular, (a1; b) 2 E 0i� (a2; b) 2 E 0.Let Ya = fb j (a; b) 2 E 0g. Then there exists a constant di that depends on r and k onlysuch that j card(Ya1)� card(Ya2) j� di whenever a1; a2 2 Xi. Indeed, for elements b outside ofN2r+1(a1)[N2r+1(a2), (a1; b) i� (a2; b), and hence the only di�erence is in the edges either insideor between those neighborhoods. But the upper bound on the number of those is determinedby k and r. In fact, it is at most 2p22r+1+ 2p2r+1. Now assume that a1 and a2 are such elementsin the class in the partition that the cardinality of Ya1 is minimal and the cardinality of Ya2 ismaximal. Then we derive that the number of di�erent outdegrees restricted to targets outsideof respective 2r + 1 neighborhoods is at most di. Since the number of possible outdegreesinside 2r + 1 neighborhoods is bounded above by p2r+1, we obtain that the number of di�erentoutdegrees in a given partition class Xi is at most p2r+1 + di. Since the number of elements inthe partition is at most q2r+1, this tells us that the number of distinct outdegrees in E 0 dependsonly on k and r. In fact, it is bounded above by q2r+1Pq2r+1i=1 (p2r+1+di). The proof for indegreesis similar. 2Corollary 3.22 None of the following are expressible in NRL: dtc, transitive closure, testsfor connectivity of directed and undirected graphs, testing whether a graph is a tree, testing foracyclicity. 2Therefore, there is a need in primitives that enrich the expressive power of the language. Wehave seen one of them - the structural recursion on the union presentation. Alternatively, onecan construct sets using \insert presentation", and de�ne s sri , structural recursion on the insertpresentation, as follows:

76 CHAPTER 3. PRELIMINARIESfun s sri [e; i](;) = ej s sri [e; i](insert(x;X)) = i(x; s sri [e; i](X))The typing rules for both structural recursion constructs are as follows:e : t h : s! t u : t� t! ts sru[e; h; u] : fsg ! t e : t i : s� t ! ts sri [e; i] : fsg ! tThe semantics of s sri is given by s sri [e; i](fx1; : : : ; xng) = i(x1; i(x2; : : :i(xn; e) : : :)). Unfortu-nately, s sri retains the major of problem of s sru . It is well-de�ned i� i(x; i(x; a)) = i(x; a) andi(x; i(y; a)) = i(y; i(x; a)). That is, it must be irrelevant in which order elements of a set are pro-cessed and how many duplicates are found. It was shown by Breazu-Tannen and Subrahmanyam[27] that these conditions are generally undecidable.So, both forms of the structural recursion can express recursive queries like transitive closure,but they are not necessarily well-de�ned. The question arises: is there a well-de�ned constructthat adds su�cient power to the language?One solution proposed by Abiteboul and Beeri [1] and Gyssens and Van Gucht [70] was toinclude powerset as a primitive. The type of powerset is ftg ! fftgg and it returns the set ofall subsets of a given set. It was shown by Abiteboul and Beeri that many recursive queries,such as the transitive closure, can be expressed in NRL(powerset). Moreover, Breazu-Tannen,Buneman and Wong [26] and independently Gyssens and Van Gucht [70] showed thatTheorem 3.23 NRL(s sri) ' NRL(powerset). 2However, using powerset has a big disadvantage: it has exponential complexity. For example,to compute transitive closure of a relation, it is necessary to take the powerset of the totalrelation of the domain. Moreover, it was shown recently by Suciu and Paredaens [162] thatany expression for transitive closure in NRA(powerset) needs exponential space to be evaluated.Thus, using powerset as an alternative to the structural recursion is unsatisfactory.Another alternative was proposed by Libkin and Wong [105]2. It is the loop construct given byf : s! sloop(f) : ftg � s! s2I was informed recently that Saraiya [155] studied the same construct and proved one direction of theorem3.24.

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 77with the following semantics: given an n-element set X and an object x : s, then loop(f)(X; x) =fn(x). Then the following holds:Theorem 3.24 NRL(s sri) ' NRL(loop). 2We shall prove a similar theorem for bags later. The proof of theorem 3.24 is essentially thesame. Note that simulation of loop with s sri is e�cient, while the reverse simulation requiresexponential time. In the subsection dealing with bags we shall demonstrate an e�cient simula-tion.3.2.3 BagsSets and bags are closely related structures. While sets have been studied intensively by thetheoretical database community, bags have not received the same amount of attention. However,real implementations frequently use bags as the underlying data model. For example, the \selectdistinct" construct and the \select average of column" construct of SQL can be better explainedif bags instead of sets are used.To use our approach, we �rst change the type system tot ::= b j unit j bool j t� t j fjtjgwhere the fjjg brackets are used for bags. To see what the bag constructs are, we must exhibita universality property for bags.Let X be a set and Pb(X) the set of all �nite bags of elements of X . De�ne] as the additiveunion on bags. For example, fja; a; bjg] fja; b; b; bjg = fja; a; a; b; b; b; bjg. Then hPb(X);]; fjjgiis the free commutative monoid generated by X . That is, for any other commutative monoidhA; ?; ei, any map f from X to A and � : X ! Pb(X) de�ned by �(x) = fjajg, there exists aunique monoid homomorphism f+ such that the following diagram commutes:X �- hPb(X);]; fjjgi@@@@@f R hA; ?; ei?f+

78 CHAPTER 3. PRELIMINARIESTherefore, the introduction operations for the bag type constructor are the empty bag fjjg,the singleton formation which we denote by b � to distinguish it from the corresponding setconstruct, and the additive union].The universality property also tells us what the elimination operation is. The following functionis uniquely de�ned, provided e and u supply its range with the structure of a commutativemonoid:fun b sru[e; h; u](;) = ej b sru[e; h; u](fxg) = h(x)j b sru[e; h; u](A[B) = u(b sru [e; h; u](A); b sru [e; h; u](B))Note that calculation of cardinality of bag as b sru [0; �x:1;+] is now correct as 0 and + dosupply N with the structure of a commutative monoid. However, b sru [0; id;�] is not well-de�ned because �1 = b sru [0; id;�](fj1; 2jg) = b sru [0; id;�](fj2; 1jg) = 1. The reason of courseis that � is not commutative. Moreover, it was shown by Breazu-Tannen and Subrahmanyam[27] that checking preconditions for b sru to be well-de�ned is generally undecidable.There is an insert presentation of the bag structural recursion given by the constructe : t i : s � t! tb sri(i; e) : fjsjg ! tIts semantics is similar to the semantics of s sri . Moreover, it has the same expressive poweras b sru . However, it is required that i satisfy the commutativity precondition: i(a; i(b;X)) =i(b; i(a;X)), which again can not be automatically veri�ed [27].Therefore, we need to impose syntactic restriction to ensure well-de�nedness, that is, we mustgo from the adjunction to the monad. In this case it means adding mapping of a function overbags, b map, and
attening bag of bags, b �. For example,b map(�x:x+ 1)(fj1; 1; 2; 3; 3jg) = fj2; 2; 3; 4; 4jgb �fjfj1; 1jg; fj1; 1jg; fj1; 2; 2jgjg = fj1; 1; 1; 1; 1; 2; 2jgNote that unlike mapping over sets, b map always preserves the cardinality of a bag.Now we can add the bag monad constructs shown in the table below to the general categoricalconstructs (composition, pairing etc) to obtain the language that we call NBL { the nested baglanguage.

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 79Bag monadb �s;t2 : s� fjtjg ! fjs� tjg b �t : t! fjtjg]t : fjtjg � fjtjg ! fjtjgb �t : fjfjtjgjg ! fjtjg b empty t : unit! fjtjg f : s! tb map f : fjsjg ! fjtjgRecall that the equality test was included in NRL, and we showed that it was enough to de�nevarious other tests (membership, subset), di�erence, intersection etc. However, this is not thecase with bags. Moreover, with bags we have a new important construct: duplicate elimination.Our �rst goal is to study the relative expressive power of the following operations (see Grumbachand Milo [60] and Libkin and Wong [105]) with respect to NBL. In what follows, count(d; B) isthe number of occurrences of an element d in a bag B.� monus : fjsjg � fjsjg ! fjsjg. monus(B1; B2) evaluates to a B such that for everyd : s, count(d; B) = count(d; B1) � count(d; B2) if count(d; B1) > count(d; B2); andcount(d; B) = 0 otherwise.� max : fjsjg � fjsjg ! fjsjg. max (B1; B2) evaluates to a B such that for every d : s,count(d; B) = max(count(d; B1); count(d; B2)).� min : fjsjg � fjsjg ! fjsjg. min(B1; B2) evaluates to a B such that for every d : s,count(d; B) = min(count(d; B1); count(d; B2)).� eq : s � s! bool { equality test.� member : s� fjsjg ! bool { membership test.� subbag : fjsjg � fjsjg ! bool { subbag test.� unique : fjsjg ! fjsjg. unique(B) eliminates duplicates from B. That is, for every d : s,count(d; B) > 0 if and only if count(d; unique(B)) = 1.The following result of Wong (see Libkin and Wong [105]) gives a precise characterization ofexpressive power of these constructs relative to NBL.Theorem 3.25 monus can express all primitives other than unique. unique is independent ofthe rest of the primitives. min is equivalent to subbag and can express both max and eq. memberand eq are interde�nable and both are independent of max . 2

80 CHAPTER 3. PRELIMINARIESThe results of theorem 3.25 can be visualized in the following diagram.monusmin subbag unique��max eq memberWe therefore work with the strongest combination of those primitives: monus and unique . Thelanguage NBL(monus ; unique) will be denoted by BQL (Bag Query Language).How can we study the expressiveness of BQL? One idea is to �nd a set language equivalent toBQL in terms of expressive power. Here we exhibit such a language. Add natural numbers, N,as a base type equipped with the following: addition +, multiplication �, modi�ed subtraction(monus) : and summation P: f : s! NP f : fsg ! Nwith semantics P f(fx1; : : : ; xng) = f(x1) + : : :+ f(xn). Observe that + can be expressed withP.Theorem 3.26 BQL ' NRL(N;�; �; :). 2Of course, in order to speak of the equivalence of the languages with di�erent type systems, onehas to give a translation between those type systems. For theorem 3.26, sets are translated intobags in a straightforward manner and bags are represented as sets of pairs \element-number ofoccurrences".One of the reasons this equivalence is useful is that the set language equivalent to BQL possesseswhat is called the conservative extension property. That is, its expressive power is independentfrom the set height of the intermediate data, see Libkin and Wong [105]. As a consequence,Theorem 3.27 Let U be a property of natural numbers. That is, U � N. Then membership inU can be expressed in BQL i� either U or N� U is �nite.Proof sketch. Assume that U and N�U are both in�nite and that membership in U is de�nable.Then the following function p : N ! N is de�nable in NRL(N;�; �; :): p(n) = 1 if n 2 U andp(n) = 0 if n 62 U . By conservativity, p can be de�ned without using any set constructs, i.e. itis constructed from the arithmetic functions, constants and if-then-else. It is not hard to show

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 81that in this case p coincides with a polynomial almost everywhere. Since it has in�nitely manyroots, it must then be zero almost everywhere, contradiction. 2Corollary 3.28 None of the following functions is expressible in BQL:� parity test;� division by a constant;� bounded summation;� bounded product;� gen : N! fjNjg given by gen(n) = fj0; 1; : : : ; njg. 2We still would like to know if the queries of corollary 3.22 are de�nable in BQL or equivalentlyin NRL(N;�; �; :). One way to show they are not de�nable is to prove that BQL possesses thebounded degree property. This approach is very problematic as, to the best of our knowledge,there is no known logic capturing the language NRL(N;�; �; :) nor its
at fragment. The proofof the bounded degree property for NRL is based on Gaifman's result about local formulae [55].That result was proved by the quanti�er elimination. This poses a problem if we try to provethe bounded degree property for
at types in NRL(N;�; �; :) or BQL.It was shown by Libkin and Wong [106] that adding operations to NRL that capture the expres-sive power of BQL amounts essentially to adding aggregate functions. Inexpressibility of recursivequeries in languages with aggregates was studied by Consens and Mendelzon [42]. They showedthat the transitive closure is not expressible in a �rst-order language with aggregate functions,provided DLOGSPACE is strictly included in NLOGSPACE.However, there is no simple proof of inexpressibility results we want to show based on this kindof complexity arguments. For example, the deterministic transitive closure is a DLOGSPACE-complexity query. If it can be shown that the complexity of BQL queries is in a class that isstrictly lower than DLOGSPACE, then we would have shown that the deterministic transitiveclosure is not de�nable in BQL. It is known that AC0 � DLOGSPACE [54]. Queries writtenin NRL have AC0 data complexity [163]. This inclusion implies that the parity test (is thecardinality of a set even?) and the transitive closure cannot be expressed in NRC because theycan not be done within AC0 [54].If BQL had AC0 data complexity, the same argument would work for it. However, it is nothard to see that there are non-AC0 queries that one can write in BQL since multiplication isnot in AC0 [54]. As a more interesting example of a non-AC0 query, consider the restrictionof NRL(N;�; �; :) with just two base types: N and unit . We are going to show that in such arestriction parity of the cardinality of a set is de�nable. First, we needTheorem 3.29 If a linear order �b is given at each base type b, then a linear order �s at eachtype s can be expressed in NRL(N;�; �; :). 2

82 CHAPTER 3. PRELIMINARIESThe proof of this result is based on the following lemma (see Libkin and Wong [107] for details):Lemma 3.30 Given a partially ordered set hA;�i, de�ne an ordering - on its �nite powersetP�n(A) as follows: X - Y i� max((X�Y)[(Y �X)) � Y , or, equivalently, if 8x 2 X�Y 9y 2Y �X : x � y. Then - is a partial order. Moreover, if � is linear, then so is -. 2Since the usual ordering on naturals is de�nable (n � m i� n : m = 0), by theorem 3.29 thelinear ordering �s is available at any type. Then the cardinality of a set X : fsg is odd i� thereis x 2 X such that fy 2 X j y �s xg and fy 2 X j x �s yg have equal cardinality. Since testingfor equal cardinality can be done in NRL(N;�; �; :), one can test whether a set has odd numberof elements. Thus, we exhibited another non-AC0 query that can be de�ned in NRL(N;�; �; :).Note that this does not mean that parity of cardinality can be de�ned at any unordered type.Therefore, one needs new techniques to study expressiveness of bag languages. Such techniqueswere proposed recently in Libkin and Wong [108] where the following was proved:Theorem 3.31 None of the following are expressible in BQL (or equivalently NRL(N;�; �; :)):dtc, chain, bbtree, transitive closure, tests for connectivity of directed and undirected graphs,testing whether a graph is a tree, testing for acyclicity. 2However, it remains open whether BQL has the bounded degree property.Summing up, going from sets to bags buys us aggregate functions, but we still can not expressrecursive queries. Of course they can be expressed with structural recursion, but then veri�cationof preconditions becomes undecidable. Hence, one needs other ways to enhance the expressivepower.Following Abiteboul and Beeri [1], Grumbach and Milo [60] introduced the powerbag operatorinto their nested bag language. The semantics of powerbag is the function that produces a bagof all subbags of the input bag. For example,powerbagfj1; 1; 2jg= fjfjjg; fj1jg; fj1jg; fj2jg; fj1; 1jg; fj1; 2jg; fj1; 2jg; fj1; 1; 2jgjgThey also de�ned the powerset operator on bags as unique � powerbag . For example,powersetfj1; 1; 2jg= fjfjjg; fj1jg; fj2jg; fj1; 1jg; fj1; 2jg; fj1; 1; 2jgjgWe do not consider powerset on bags further because of the following result.Proposition 3.32 BQL(powerbag) ' BQL(powerset).Proof sketch. Suppose a bag B is given; then another bag B0 can be constructed such thatfor any a 2 B, B0 contains a pair (a; fja; : : : ; ajg) where the cardinality of the second component

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 83is count(a; B). Let B00 = unique(B0); then B00 can be computed by BQL. Now observe thatchanging the second component of every pair to its powerset and then b map(b �2) followedby
attening will give us a bag where each element a 2 B will be given a unique label. Nowapplying powerset to this bag followed by elimination of labels produces powerbag(B). 2In contrast to the set languages, the structural recursion for bags is strictly stronger thanpowerbag .Theorem 3.33 BQL(powerbag) $ BQL(b sri).Proof sketch. First, powerbag can be expressed using b sri , cf. [25]. Then it can be shownthat any function in BQL(powerbag) produces outputs whose sizes are bounded by an elementaryfunction on the size of the input, but in BQL(b sri) it is possible to de�ne a function that on theinput of size n produces the output of the hyperexponential size (where the height of the stackof powers depends on n) and hence can not be bounded by an elementary function. 2As an illustration of theorem 3.33, we characterize precisely the classes of arithmetic functionsthat both languages express. It also gives an alternative proof of theorem 3.33.Theorem 3.34 a) The class of functions f : N� : : :�N! N de�nable in BQL(b sri) coincideswith the class of primitive recursive functions.b) The class of functions f : N � : : :� N ! N de�nable in BQL(powerbag) coincides with theclass of Kalmar-elementary functions. 2Similar results for other languages for bags or sets with built-in natural numbers were provedin Grumbach and Milo [60] and Immerman et al. [86].The bounded loop construct for bags is given byf : s! sloopt(f) : fjtjg � s! sIts semantics is as follows: loop(f)(fjo1; : : : ; onjg; o) = f(: : : f(o) : : :) where f is applied n timesto o.Similarly to the set case, we haveTheorem 3.35 BQL(loop) ' BQL(b sri).

84 CHAPTER 3. PRELIMINARIESProof. For the BQL(loop) � BQL(b sri) part, it su�ces to observe that loop(f)(n; e) = b sri(f ��2; e)(n), where n is a shorthand for the bag of n units.To prove BQL(b sri) � BQL(loop), we �rst de�ne a function g : fjtjg ! fjfjt � Njgjg whereN, as usual, is an abbreviation for fjunitjg. This function g, when applied to a bag B, pro-duces the bag whose elements are bags of pairs, such that mapping �1 over such a bag givesB and mapping �2 gives a bag of numbers from 1 to n where n is the cardinality of B. More-over, g(B) contains all possible labeling of elements by numbers. For example, gfja; bjg =fjfj(a; 1); (b; 2)jg; fj(a; 2); (b; 1)jgjg.To show that such g is de�nable, �rst notice that powerbag is de�nable in BQL(loop). Indeed,it is easy to de�ne an expression that, given a bag, produces all subbags of cardinality one lessthan the cardinality of the bag. Now using the loop construct with such an expression gives uspowerset and therefore powerbag . If n is the cardinality of B (which is obtained by applyingb map(!) to B), then powerset applied to it produces the bag of all numbers from 0 to n. Hence,we can construct a bag of all numbers from 1 to n. Now take the cartesian product of thisbag and B and denote it by B0. Then powerbag(B0) contains all bags whose elements are pairs,the �rst component being an element of B and the second component being a number from1 to n. Such a bag B00 makes it to the output of g i� the two conditions are satis�ed: �rst,b map(�1)(B00) = B and second, b map(�2)(B00) = fj1; : : : ; njg. Since equality test and selectionare available, g can be de�ned in BQL(loop).Now we must de�ne b sri(i; e) : fjsjg ! t in BQL(loop). Given a bag B : fjsjg, to determinethe value of b sri(i; e) on B �rst apply g to B to obtain B0. De�ne h : fjs � Njg � t !fjs � Njg � t as follows. h(B0; a) selects the pair (b; k) from B0 with the maximal k and returns(B0monusfj(b; k)jg; i(b; a)). Now loop(h) applied to (B; (B0; e)), where B0 is an element of B0,returns a pair whose second component is the value of sri(i; e) on B if elements of B areenumerated for applying the structural recursion as they are labeled in B0. Threfore, mappingthis loop over B0 we obtain all possible outcomes of b sri(i; e)(B) depending on in which orderi was applied. If b sri(i; e) is well-de�ned, then the order does not matter and applying uniquegives us a singleton bag that contains b sri(i:e)(B). This shows that b sri is expressible inBQL(loop). 2Note that as in the set case, the simulation of loop with b sri is e�cient, while the reversesimulation requires exponential time. However, if linear orderings are given at base types, onecan e�ciently lift them to arbitrary types (cf. theorem 3.29) and de�ne a function sort : fsg !fs � Ng such that sort(X) = f(x1; 1); : : : ; (xn; n)g whenever x1 �s : : : �s xn by counting thenumebr of elements in a set which are less than a given element. Using sort we can make bothtranslations e�cient: going from loop to b sri we use sort to pick an order in which elementsare given to b sri for processing.Theorem 3.35 also sheds some light on theorem 3.34 by showing that its statement is veryintuitive and well expected. There are two classical results in recursion theory [122]. One, due

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 85to Meyer and Ritchie, states that the functions computable by the language that has assignmentstatement and for n do S, are precisely the primitive recursive functions. The semantics offor n do S is to repeat S n times. A similar result by Robinson, later improved by Gladstone,says that the primitive recursive functions are functions built from the initial functions bycomposition and iteration. That is, f(n; ~x) = g(n)(~x), see [122]. The structural recursion forbags is essentially the for{do construct and, not surprisingly, it expresses precisely the primitiverecursive functions.We have seen the equivalence BQL ' NRL(N;�; �; :). Now it is natural to ask whether itcontinues to hold (under the translations of theorem 3.26) when set and bag languages areaugmented with powerset and powerbag or structural recursion. Consider the following primitivein the set language (cf. corollary 3.28):gen : N! fNg; gen(n) = f0; 1; : : : ; ngUnder translations of theorem 3.26, it corresponds to the bag language primitive that takes abag of n units and returns bag of bags containing i units for each i = 0; 1; : : : ; n. In other words,it is powersetunit = unique � powerbagunit.Having made this observation, we can show the separation result.Theorem 3.36 a) NRL(N;�; �; : ; powerset) $ BQL(powerbag);b) NRL(N;�; �; : ; s sri) $ BQL(b sri). 2Now we have a problem of �lling the gap between set and bag languages with power operatorsor structural recursion. It turns out that the gen primitive is su�ciently powerful to do the job.Theorem 3.37 a) NRL(N;�; �; : ; powerset ; gen) ' BQL(powerbag);b) NRL(N;�; �; : ; s sri ; gen) ' BQL(b sri). 2We shall use these equivalences later for making decision about adding power to the implemen-tation of the language for sets and or-sets.This concludes our discussion of the background we need in order to develop the semantics ofpartiality and to design query languages for partial data.WHERE ARE WE NOW AND WHERE ARE WE GOING?

86 CHAPTER 3. PRELIMINARIESIt is time to pause for a moment and see where we have arrived to and where we should go fromhere. In the introduction. we formulated two main themes of this thesis: partiality of data isrepresented via orderings on values and semantics suggests programming constructs.In this chapter, we have developed the background necessary to put these ideas to work. First,we have studied the domain-theoretic model that accommodates various collections of partialvalues. Then we have seen how universality properties of semantics of datatypes can be turnedinto the programming language syntax.Our �rst task is to specialize the general theory of section 3.1 to various collections of partial data.These include sets under both closed and open world assumptions, or-sets and the approximationconstructs. Keeping our second goal of developing query languages in mind, not only do we haveto come up with semantic models for those, but we also must �nd their universality properties.Having developed the semantics of collections and proved their universality properties, we canuse the general techniques of section 3.2 to design languages to work with partial information.Semantics of partial data is studied in the next chapter. We exhibit orderings and semantic do-mains for all kinds of collections we have seen and, furthermore, prove the universality propertiesfor those semantic domains.We then proceed in chapter 5 to design languages for sets and or-sets (possibly with null values)and approximation constructs. We shall show that the language for sets and or-sets possessesmany intersting properties. Two are of special importance. First, semantics of objects can beincorporated into the language by means of normalization of objects. The process of normal-ization will be studied in details. Second, we show that the language has adequate expressivepower to encode approximation constructs and program with them.Finally, in chapter 6 we describe a practical system based on the language for sets and or-setsand show how it can be used for querying incomplete databases and producing approximateanswers to queries.

Chapter 4Semantics of Partial InformationThe purpose of this chapter is to study the semantics of partial data. Our �rst goal is tochoose orderings on various kinds of collections. To do so, we formalize elementary updateson collections which improve our knowledge about the real world situation represented by thatdata, that is, add information. Then we characterize transitive closures of those updates, thusobtaining the orderings. We carry out this program for OWA and CWA sets and bags, or-setsand all approximations.We use the orderings to de�ne the semantics of collections of partial objects. It will be shownthat the semantics and the orderings agree naturally. Furthermore, we establish an intimateconnection between approximation constructs and certain objects obtained by combination ofOWA sets and or-sets. This semantic connection will be used extensively in chapter 5 to designlanguages for giving approximate answers to queries.Our approach to the programming language design is based on turning universality property ofsemantics of types into syntax. In the second half of this chapter we describe various collectionsas free ordered algebras. These include OWA and CWA sets, or-sets and two iteration constructs,that correspond to sets of or-sets and or-sets of sets.Furthermore, we show that most approximations arise as free constructions. To do so, we �rstde�ne formal models of approximations and propose a classi�cation of those. The proposedclassi�cation gives rise to ten possible approximation constructs. We study them thoroughlyand prove that some of them possess universality properties. Some of them are shown not tobe free ordered algebras generated by posets in a \naive" way, but we �nd a way to repairit by showing that they do possess universality properties with respect to di�erent generatingposets and restricted classes of maps. It will be seen in chapter 5 that such characterizations aresu�cient for de�ning the general structural recursion based language and certain sublanguagesthereof. 87

88 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION4.1 Order and SemanticsThere are several goals we want to pursue in this section. First, we show how sets under bothOWA and CWA, or-sets and bags should be ordered. We then use the orderings to give thesemantics of collections of partial data. Second, we analyze the approximation constructs andpropose a classi�cation of those. Having done this, we de�ne and study orderings and semanticsof the approximation constructs in the same way as we did it for the other collections. Finally,we show how to represent the approximation constructs using sets and or-sets.4.1.1 Orderings on collectionsIn this section we study the following general problem. Given a poset hA;�i and the family of allcollections (sets, bags, or-sets etc.) over A, how do we order those? As usual, our interpretationof the partial order is \being more informative". What does it mean to say that one collectionof partial descriptions is more informative than another?The technique we use to answer this question is the following. We try to de�ne \elementaryupdates" that add information. For example, for CWA databases such updates should addinformation to individual records. For OWA we may have additional updates that add recordsto a database. For or-sets, reducing the number of possibilities adds information as an or-setsdenotes one of its elements. We formalize those updates and then look at their transitive closure.That is, a collection C1 is more informative than C2 if C1 can be reached from C2 by a sequenceof elementary updates that add information. We characterize �ve orderings that arise this way:for OWA sets, CWA sets, or-sets and bags under both CWA and OWA.As we mentioned in section 3.1, redundancies represented by comparable elements can usuallybe removed. That is, we often represent database objects as antichains. Therefore, there aretwo ways to perform updates that add information. One way is to keep all elements, even thosethat are comparable. The other way is to remove redundancies, that is, to make sure that theresult of each elementary update is an antichain again. These two ways lead to some orderingson either antichains of ordered sets or arbitrary subsets thereof. We shall consider both andshow that they coincide.Ordering CWA databasesIn a closed world database, it is possible to update individual records but it is impossible to addnew records. To understand what the elementary updates are, let us consider again the examplewe used in chapter 1.

4.1. ORDER AND SEMANTICS 89Name Salary Room? ? 076Mary 17K ? CWA- Name Salary RoomJohn 15K 076Ann ? 076Mary 17K 561In these relations, we use generic nulls. The �rst relation says that there exists room 076, andthat Mary makes 17K. Note that there could be more than one person in 076. To see why, it mightbe easier to consider the �rst relation as obtained from the second one by losing information.Assume we had information about two people in 076 and then lost information about their namesand salaries. As the result, there are two copies of the record ? ? 076 . However, we aredealing with sets and duplicates are always removed. Therefore, losing information containedin two records would result in getting just one record in the new database. In other words, anincomplete record can be updated in various ways that give rise to a number of new records,and this is consistent with the closed world assumption.The third record in the updated database is obtained from the second record in the initialdatabase by adding the salary value. Thus, we see that the way the closed world databases aremade more informative is via getting more information about individual records. The followingpicture illustrates those updates. We simply remove an element (record) from a database andreplace it by a number of more informative elements (records).�� ���� ��BBBBBBB �������� � ��There are two ways to formalize those updates, depending on whether arbitrary sets or onlyantichains are allowed. Let X � A be a �nite subset of the poset A. Let x 2 X and X 0 � Abe a �nite nonempty subset of A such that x � x0 for all x0 2 X 0. Then we allow the followingupdate: X CWA7�! (X � x) [X 0For antichains, we need to impose two additional restrictions. First, X 0 must be an antichain,and second, the result must be an antichain. To ensure that the second requirement is satis�ed,we keep only maximal elements. That is, in the case of antichains the legitimate updates areX CWA7�!a max((X � x) [X 0)

90 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONWe now say that X vCWA Y if X; Y � A and Y can be obtained from X by a sequence ofupdates CWA7�!, that is, vCWA is the transitive closure of CWA7�! on P�n(A). Similarly, X vCWAa Y ifX; Y are �nite antichains of A and Y can be obtained from X by a sequence of updates CWA7�!a,that is, vCWAa is the transitive closure of CWA7�!a on A�n(A).Our claim is the following.The closed world databases must be ordered by the Plotkin ordering.We justify it by provingTheorem 4.1 a) Let X; Y 2 P�n(A). Then X vCWA Y i� X v\ Y .b) Let X; Y 2 A�n(A). Then X vCWAa Y i� X v\ Y .Proof. The proof of part a) is easy. First, X CWA7�! Y implies X v\ Y and hence X vCWA Yimplies X v\ Y . Conversely, if X v\ Y , let Yx = fy 2 Y j y � xg. Then updates X CWA7�!(X � x) [Yx give a way from X to Y .To prove part b) �rst observe that X CWA7�!a Y implies X v\ Y and hence X vCWAa Y impliesX v\ Y .AssumeX; Y 2 A�n(A) and X v\ Y . We prove by induction on the cardinality ofX[Y that thereexists a family fX1; : : : ; Xlg of subsets of X [Y such that X CWA7�!a X1 CWA7�!a : : : CWA7�!a Xl CWA7�!a Y .In the case when either X or Y is a singleton, we need just one CWA7�!a arrow. Assume thatcard(X) = m, card(Y) = k, m; k > 1 and for any sets of cardinalities less than m and k thestatement above is true.Let X0 be a minimal (with respect to inclusion) subset of X such that X v\ Y . We �rst showthat X0 and Y are CWA7�!a related by a sequence of subsets of X0 [Y . If X0 is a singleton, this isimmediate. If X0 has more than one element, consider x 2 X0. Then X0 � x 6v\ Y . Therefore,there exists an element y 2 Y such that y 6� z for any z 2 X0 � x (otherwise we would haveX0 � x v\ Y). Let Y 0 be the set of all y 2 Y with this property; we know Y 0 6= ;. ThenX0� x v\ Y � Y 0. Indeed, if x0 2 X0 � x, then there exists y 2 Y such that x0 � y. Moreover,y 62 Y 0 by the de�nition of Y 0. Hence, X0 � x v[Y � Y 0. If y 2 Y � Y 0, then there existsx0 2 X0 such that x0 � y. If x is the only element in X0 that is under y, then y 2 Y 0. Hence,we can pick x0 2 X0 � x. This shows X0 � x v] Y � Y 0 and hence X0 � x v\ Y � Y 0.Now by induction hypothesis we can �nd a sequence Z1; : : : ; Zp of subsets of (X0�x)[(Y �Y 0)such that X0�x CWA7�!a Z1 CWA7�!a : : : CWA7�!a Zp CWA7�!a Y �Y 0. Since for any Z � (X0�x)[(Y �Y 0),Z[Y 0 is an antichain, we obtain X0 CWA7�!a (X0�x)[Y 0 CWA7�!a Z1[Y 0 CWA7�!a : : : CWA7�!a Zp[Y 0 CWA7�!a(Y �Y 0)[Y 0 = Y . To see that X vCWAa Y , we apply exactly the same updates to X . The only

4.1. ORDER AND SEMANTICS 91di�erence with the sequence of updates above is that now at any stage there are possibly someelements of X�X0 added. However, they disappear at the last stage as X v\ Y and we alwaysapply max. This shows X vCWAa Y . Theorem is proved. 2Corollary 4.2 Let X and Y be �nite antichains in A such that X v\ Y . Then it is possible to�nd a sequence of antichains X1; : : : ; Xn such that X1; : : : ; Xn � X [Y and X CWA7�!a X1 CWA7�!a: : : CWA7�!a Xn CWA7�!a Y . 2Ordering OWA databasesIn an open world database, it is possible to update individual records and add new records. Asin the case of the CWA databases, consider a simple example to understand what the elementaryupdates are. Name Salary Room? ? 076Mary 17K ? OWA- Name Salary RoomJohn 15K 076Ann ? 325Mary 17K 561Some of the records in the second relation, that we view as a more informative one, are obtainedby modifying records of the original relation. However, one record, Ann ? 325 can notbe obtained by modifying any record in the original database. The reason it was put there isthat the database is open for new records. Under this interpretation, we view adding recordsas an update that adds information. In the above example, adding that record improves ourknowledge about what can be a university or a company database of employees.The following picture illustrates updates that are used to improve information stored in anopen world database. Not only do we allow replacing an element (record) by a number of moreinformative elements (records), but we also allow adding new records.�� ���� ���� ��BBBBBBB �������� � � ���

92 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONSimilarly to the CWA case, there are two ways to formalize these updates, depending on whetherarbitrary sets or only antichains are allowed. Let X � A be a �nite nonempty subset of theposet A. Let x 2 X and X 0 � A be a �nite subset of A such that x � x0 for all x0 2 X 0. Let X 00be an arbitrary �nite subset of A. Then we allow the following updates:X OWA7�! (X � x) [X 0 and X OWA7�! X [X 00For antichains, we impose an additional restriction that the result always be an antichain. We doit by keeping only maximal elements in the results, see section 3.1. Another reason for keepingonly maximal elements will be seen shortly. Therefore, in the case of antichains the legitimateupdates are X OWA7�!a max((X � x) [X 0) and X OWA7�! max(X [X 00)We say that X vOWA Y if X; Y � A and Y can be obtained from X by a sequence of updatesOWA7�!, that is, vOWA is the transitive closure of OWA7�! on P�n(A). Similarly, X vOWAa Y if X; Y are�nite antichains of A and Y can be obtained from X by a sequence of updates OWA7�!a, that is,vOWAa is the transitive closure of OWA7�!a on A�n(A).Our main claim about ordering of OWA databases is the following.The open world databases must be ordered by the Hoare ordering.We justify it by provingTheorem 4.3 a) Let X; Y 2 P�n(A). Then X vOWA Y i� X v[Y .b) Let X; Y 2 A�n(A). Then X vOWAa Y i� X v[Y .Proof. The proof of part a) is very similar to the proof of a) in theorem 4.1. To prove b),�rst observe that the inclusion vOWA�v[is immediate. Let X; Y 2 A�n(A) and X v[Y . LetYX = fy 2 Y j 9x 2 X : x � yg. Then X v\ YX and by theorem 4.1 we can �nd a familyX1; : : : ; Xn of subsets of X [YX such that X CWA7�!a X1 CWA7�!a : : : CWA7�!a Xn CWA7�!a YX . Since CWA7�!updates are a particular case of OWA7�! updates, we obtain X OWA7�!a X1 OWA7�!a : : : OWA7�!a Xn OWA7�!aYX OWA7�!a max(YX [(Y � YX)) = Y which proves X vOWAa Y . 2Corollary 4.4 Let X and Y be �nite antichains in A such that X v[Y . Then it is possible to�nd a sequence of antichains X1; : : : ; Xn such that X1; : : : ; Xn � X [Y and X OWA7�!a X1 OWA7�!a: : : OWA7�!a Xn OWA7�!a Y . 2Ordering or-setsWe now de�ne update rules for or-sets. We start with a simple example.

4.1. ORDER AND SEMANTICS 93X1 : * Name Salary RoomJohn ? 076Ann ? ?Mary 17K ? + or� set�! X2 : * Name Salary RoomJohn ? 076Ann 13K ? +There are two reasons why we view X2 as a more informative or-set than X1. First, additionalinformation about Ann was obtained. It is now known that her salary is 13K. Second, one of therecords was removed. Note that removing an element from an or-set makes it more informative.Indeed, while h1; 2; 3i is an integer which is either 1 or 2 or 3, h1; 2i is an integer which is 1 or2, so we have additional information that it can not be 3. Finally, h1i is an example of perfectknowledge as it stands for the integer 1.Therefore, we consider two types of updates on or-sets: improving information about individualrecords and removing elements:X or7�! (X � x) [X 0 if x 2 X and x � x0 for all x0 2 X 0 and X 0 6= ;X or7�! X � x if x 2 X and X � x 6= ;To rede�ne these updates for antichains, we must decide how redundancies in or-sets are removed.We suggest that only minimal elements be kept in the results. To see why, consider the followingor-set with two comparable records: * Name RoomJohn 076John un +This or-set denotes a person whose name is John and who is either in room 076 or in an unknownroom. The semantics of this is exactly as having one record for John in an unknown room. (Thiswill be made precise in the next section.) Hence, we prefer to retain the minimal elements. Thenthe updates for antichains becomeX or7�! min((X � x) [X 0) if x 2 X and x � x0 for all x0 2 X 0 and X 0 6= ;X or7�! X � x if x 2 X and X � x 6= ;Our next claim about orderings on collections is the following.

94 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONThe or-sets must be ordered by the Smyth ordering.To make it formal, we de�ne vor and vora as the transitive closure of or7�! and or7�!a respectively.Theorem 4.5 a) Let X; Y 2 P�n(A), X; Y 6= ;. Then X vor Y i� X v] Y .b) Let X; Y 2 A�n(A), X; Y 6= ;. Then X vora Y i� X v] Y .Proof. The proof of a) is similar to proofs of a) in theorems 4.1 and 4.3. To prove b), �rstobserve that X or7�!a Y implies X v] Y , and hence X vora Y implies X v] Y .Now we prove the following claim. If X v\ Y , X \ Y = ; and X 0 v\ Y for no propersubset X 0 � X , then X vora Y and moreover only elements of X [Y are used in the or7�!atransformations. We prove it by induction on card(X [Y). When one set is a singleton,the statement is immediate. Assume cardinalities of both X and Y are bigger than one. LetYx = fy 2 Y j y � xg. We claim that there exists x 2 X such that X � x v\ Y � Yx. Assumethat this is not the case. Then for any x, X � x 6v\ Y � Yx. That is, there exists x1 2 X suchthat x1 is not under any element of Y � Yx. In other words, Yx1 � Yx. Continuing, we obtainYx � Yx1 � Yx2 � : : :. Since X and Y are �nite, we have Yxi = Yxj for some distinct xi and xj .But in this case X�xi v\ Y which contradicts the minimality of X . Hence, X�x v\ Y �Yx forsome x. By the induction hypothesis, X�x vora Y �Yx. Since only elements of (X�x)[(Y �Yx)were used in the transformations, X vora (Y � Yx) [x or7�!a Y which �nishes the proof of theclaim.Now it is easy to see that the condition X \ Y = ; can be dropped as adding X \ Y to anytransformation does not interfere with its result. Hence, X v\ Y implies X vora Y if X isminimal such with respect to inclusion.Let X v] Y . De�ne XY = fx 2 X j 9y 2 Y : x � yg. Then XY v\ Y . Let X 0Y be a minimalwith respect to inclusion subset of XY such that X 0Y v\ Y . Then X vora X 0Y vora Y �nishes theproof. 2Corollary 4.6 Let X and Y be �nite antichains in A such that X v] Y . Then it is possible to�nd a sequence of antichains X1; : : : ; Xn such that X1; : : : ; Xn � X [Y and X or7�!a X1 or7�!a: : : or7�!a Xn or7�!a Y . 2Ordering bagsWe now use similar techniques to de�ne orderings for bags. Even though the orderings appearsomewhat awkward, we demonstrate e�ective algorithms to test whether two bags are compa-rable.

4.1. ORDER AND SEMANTICS 95First of all, let us see why the naive approach would not work. Bags over a poset A are oftenrepresented as sets of pairs (a; n) where a is an element of A and n is the number of occurrences.Pairs could be ordered in the usual way: (a; n) � (b;m) i� a � b and n � m. While this orderinghas many nice properties, it is counterintuitive from the practical point of view. Having a bagrather than a set means that each element of a bag represents an object and if there are manyoccurrences of some element, then at the moment certain objects are indistinguishable. Forexample, initially we might have a bag of three null values, representing our knowledge aboutthree objects. Suppose this bag fj?;?;?jg is later updated to fja; b; cjg. We want to say thatthe latter is more informative than the former. But that is not in the above ordering because itrequires that the three nulls be replaced by three identical objects; that is, fja; a; ajg, fjb; b; bjg,or fjc; c; cjg. Each of them is more informative than fj?;?;?jg but fja; b; cjg is unfortunately not!Mathematical aspects of partial information represented by bags were studied by Vickers [174].He de�ned the concept of re�nements which, among other instances, includes both the orderingthat we shall propose shortly and the ordering that we have just seen. Therefore, his approachis too general to be adopted here.To extend the update idea to bags, recall again that each element of a bag represents an objectand if there are many occurrences of some element, then at the moment certain objects are in-distinguishable. This justi�es the following de�nition. We say that a bag B2 is more informativethan a bag B1 if B2 can be obtained from B1 by a sequence of updates of the following form: (1)an element a is removed from B1 and is replaced by an element b such that b is more informativethan a, and under OWA in addition (2) an element b is added to B1.Formally, let hA;�i be a partially ordered set. Let Pb(A) be the set of all �nite bags whoseelements are in A. Then we de�ne the following updates for elements of Pb(A). Under bothCWA and OWA we haveB CWA (Bmonusfjajg)] fjbjg and B OWA (Bmonusfjajg)] fjbjg where a 2 B:In addition, under OWA we add a new updateB OWA B] fjbjgAs usual, by ECWA and EOWA we denote the transitive closure of CWA and OWA respectively. Todescribe these relations, let Nq denote the totally unordered poset whose elements are naturalnumbers (the superscript is used to distinguish it fromN which typically denotes natural numberswith the usual ordering). For a �nite bag B and an injective map � : B ! Nq, which is sometimescalled labeling, by �(B) we denote the set f(b; �(b)) j b 2 Bg. In other words, � assigns a uniquelabel to each element of a bag. If B 2 Pb(A), the ordering on pairs (b; n) where b 2 B andn 2 Nq is the usual pair ordering; that is, (b; n) � (b0; n0) i� b � b0 and n = n0.Proposition 4.7 The binary relations ECWA and EOWA on bags are partial orders. Given twobags B1 and B2, B1 ECWA B2 (B1 EOWA B2) i� there exist labelings � and on B1 and B2respectively such that �(B1) v\ (B2) (respectively �(B1) v[(B2)).

96 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONProof. We prove the statement about EOWA ; the statement about ECWA is proved similarly. Wewrite B1 4[B2 if there exist � and such that �(B1) v[(B2). First demonstrate that 4[isa partial order. It is obviously re
exive.To prove transitivity, let B1 4[B2 and B2 4[B3. That is, �(B1) v[�(B2) and �(B2) v[(B3).Let
 be a bijection on N such that
 � � = �. De�ne � as
 � �. Then for every b 2 B1 there isb0 2 B2 such that b � b0 and �(b) = �(b0). Therefore, �(b) = �(b0) and there exists b00 2 B3 suchthat (b00) = �(b0) and b00 � b0. This shows �(B1) v[(B3) and hence B1 4[B3.To show that 4[is anti-symmetric, let B1 4[B2 and B2 4[B1. As was shown above, there exista; � and such that �(B1) v[�(B2) v[(B1). In particular, if we de�ne g : �(B1)! (B1) byg(b; n) = (b0; n) where (b0) = n, it is easy to see that g is one-to-one, monotone and in
ationary.Since B1 is �nite, it is the identity map. If b00 2 B2 and �(b00) = n, then b � b00 � b0 = b, sob = b00 where �(b) = (b0) = n. Therefore, every element of B1 is in B2 and vice versa, i.e.B1 = B2. This shows that 4[is a partial order.Since B1 OWA B2 implies B1 4[B2, we conclude EOWA � 4[. Conversely, if B1 4[B2, i.e.�(B1) v[(B2), then, according to 4.3, (B2) can be obtained from �(B1) by a sequence ofOWA7�! updates which, if we drop indices, are translated into OWA updates on bags. Therefore,B1 EOWA B2, which proves EOWA = 4[. 2The Hoare ordering v[of sets can be e�ectively veri�ed. Indeed, if two sets are given, there isan O(n2) time complexity algorithm to check if they are comparable. The description of EOWAgiven above seems to be somewhat awkward algorithmically. However, it is not much harder totest for.Proposition 4.8 There exists an O(n5=2) time complexity algorithm that, given two bags B1and B2 in Pb(A), returns true if B1 EOWA B2 (B1 EOWA B2) and false otherwise.Proof. The proof is almost the same for both EOWA and EOWA. Given B1 and B2, considertwo labelings � and on B1 and B2. Assume without loss of generality that the codomainsof � and are disjoint. De�ne a bipartite graph G = hV;Ei by V := �(B1) [(B2) andE := f((b; n); (b0; n)) j (b; n) 2 �(B1); (b0; n0) 2 (B2); b � b0g. It can be easily concludedfrom proposition 4.7 that B1 EOWA B2 i� there is a matching in G that contains all �(B1). Inother words, B1 EOWA B2 i� the cardinality of the maximal matching in G is that of B1. Theproposition now follows from the facts that all maximal matching in G have the same cardinality(as bases of a matroid) and that the Hopcroft-Karp algorithm �nds a maximal matching inO(n5=2) where n is the cardinality of V (see [75]). 2There is a big di�erence between orders on sets and bags. While X v[Y does not say anythingabout cardinality of X and Y , B1 EOWA B2 implies that the cardinality of B1 is less than orequal to the cardinality of B2. This re
ects our point of view that having a bag rather than

4.1. ORDER AND SEMANTICS 97a set means that each element of a bag represents a distinct object. Therefore, the cardinalitycan not be reduced in the process of obtaining more information. In particular, in the set casethe Hoare ordering can be obtained as the transitive closure of the following binary relation:X 7! (X � X 0) [fxg where x � x0 for all x0 2 X 0 and X 7! X [fxg. However, applyingthe same idea to bags amounts to the loss of information about the number of occurrencesof each element in a bag. Precisely, let J be de�ned as the transitive closure of �, whereB1 � (B1monusB01)] fjbjg, b � b0 for any b0 2 B01, and B1 � B1] fjbjg. It can be easily shownthat B1 J B2 i� unique(B1) v[unique(B2). And, in our opinion, this is not the right orderingon bags as it loses information about duplicates.It can also be shown easily that, unlike v[and v], the orderings EOWA and ECWA may not haveleast upper or greatest lower bounds and may fail to take bounded complete posets into boundedcomplete posets. The reader is invited to �nd simple counterexamples.4.1.2 Semantics of collectionsRecall that in section 3.1 the semantics of a database object d which is an element of an orderedset A was de�ned as the set of all elements of A that it can possibly denote, that is, the set ofall elements in A that are greater than or equal to d:[[d]] = "d = fd0 2 A j d0 � dgFollowing this de�nition and the results of the previous section, we can de�ne the semantics ofsets under OWA and CWA. Assume that elements of sets are taken from a partially ordered setA. Then we de�ne the semantic functions [[�]]OWAset ; [[�]]OWA; [[�]]CWAset ; [[�]]CWA where index set standsfor the set semantics (as opposed to the antichain semantics for which we do not use an index),as follows:[[X]]OWAset = fY 2 P�n(A) j X v[Y g [[X]]OWA = fY 2 A�n(A) j X v[Y g[[X]]CWAset = fY 2 P�n(A) j X v\ Y g [[X]]CWA = fY 2 A�n(A) j X v\ Y gAs we mentioned in section 3.1, sometimes only subsets of maximal elements of A (if suchelements exist) are taken into account. In this case we use index max instead of set in thesemantic function.In what follows, we shall mostly consider the open world assumption. Hence, if no superscriptis used, it is assumed that we deal with the OWA sets or bags. That is, [[]] is the same as [[]]OWAand [[]]set is the same as [[]]OWAset .There are a number of useful properties of these semantic functions which we summarize in thefollowing proposition. An easy proof is left to the reader.

98 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONProposition 4.9 1. If X; Y ��n A, then [[Y]]OWAset � [[X]]OWAset i� X vOWA Y i� X v[Y .2. If X; Y 2 A�n(A), then [[Y]] � [[X]] i� X vOWAa Y i� X v[Y .3. If X ��n A, then [[X]] = [[maxX]] and [[X]]OWAset = [[maxX]]OWAset .4. If X; Y ��n A, then [[Y]]CWAset � [[X]]CWAset i� X vCWA Y i� X v\ Y .5. If X ��n A, then [[X]]CWAset = [[maxX [minX]]CWAset and [[X]]CWA = [[maxX [minX]]CWA. 2In chapter 1 we discussed Reiter's work [142] on the CWA databases. He de�ned a CWA answerto a query as a certain set of complete tuples. In our terminology, this corresponds to �ndingan answer to a query with respect to the [[]]CWAmax semantic function. Reiter [142] proved thatCWA query evaluation distributes over union and intersection, and that whenever a database isconsistent with the negations of the facts stored in it, the OWA and the CWA query evaluationalgorithms produce the same result. He also proved that the minimal CWA answers containexactly one tuple.The following proposition shows that analogs of these results hold in our setting. Note that tosay that a database X is consistent with negation of any fact stored in it, is the same as to saythat any y 62 X is consistent with some x 2 X . In other words, if every z 2 A lies under somezm 2 Amax, then X v] Amax. Finally, a domain of n-ary relations with one kind of null is theproduct of n copies of an in�nite
at domain. In view of this, the proposition below says thatthe results of [142] are preserved, at least in the spirit.Proposition 4.10 Let A be a poset such that each element is under an element of Amax. Then1) If A is a product of n copies of in�nite
at domains and Y 2 [[X1 \X2]]CWAmax , then Y = Y1\Y2where Y1 2 [[X1]]CWAmax and Y2 2 [[X2]]CWAmax .2) For any poset A, [[X1 [X2]]CWAmax = fY1 [Y2 j Y1 2 [[X1]]CWAmax ; Y2 2 [[X2]]CWAmaxg.3) If X v] Amax, then [[X]]CWAmax = [[X]]OWAmax .4) If X is bounded above in A, then a minimal nonempty Y 2 [[X]]CWAmax is a singleton. 2For or-sets the situation is di�erent. Recall that or-sets can be treated at both structural andconceptual levels. At the structural level we just de�ne [[X]]or = fY 2 P�n(A) j X v] Y g (orusing A�n(A) if we need an antichain semantics.) The following proposition is immediate fromthe de�nitions.Proposition 4.11 1. If X; Y ��n A, then [[Y]]or � [[X]]or i� X vor Y i� X v] Y .2. If X; Y 2 A�n(A), then [[Y]]or � [[X]]or i� X vora Y i� X v] Y .3. If X ��n A, then [[X]]or = [[minX]]or. 2

4.1. ORDER AND SEMANTICS 99Similar semantic functions can be de�ned for bags, depending on whether OWA or CWA is used.Unlike sets, bags are not subject to removal of redundancies as every entry in a bag representsa distinct object and nothing can be deleted.Note that propositions 4.9 and 4.11 justify using maximal elements to remove redundanciesfrom sets under OWA and using minimal elements to remove redundancies from or-sets. Forsets under CWA, it is necessary to retain both minimal and maximal elements; the elementswhich are strictly in between can be removed as the �fth item in proposition 4.9 suggests.The semantic functions above could also be used to de�ne the semantic domains of types. Forexample, assume that we have the following type systemt ::= b j t � t j ftgOWA j ftgCWA j htiWe now de�ne the structural semantics [[]]s that corresponds to the structural interpretation ofor-sets.Suppose that for each base type b its semantic domain [[b]]s is given. We de�ne the semanticdomains of all types inductively. Suppose we want to deal with antichains. Then� [[t� s]]s = [[t]]s � [[s]]s.� [[ftgOWA]]s = hA�n([[t]]s);v[i = P[([[t]]s).� [[ftgCWA]]s = hA�n([[t]]s);v\i.� [[hti]]s = hA�n([[t]]s);v]i = P]([[t]]s).The structural semantics of objects is de�ned inductively.� For each base type b and an element x of this type, [[x]]s = "x = fx0 2 [[b]]s j x0 � xg.� If x = (x1; x2), then [[x]]s = [[x1]]s � [[x2]]s.� Let X be a CWA set of type ftgCWA, then [[X]]s = [[X]]CWA. Similarly, for OWA sets,[[X]]s = [[X]]OWA.� Let X = hx1; : : : ; xni be an or-set of type hti. Then [[X]]s = [[X]]or.Note that the last clauses in the de�nitions of type and object semantics say that we have de�nedthe structural semantics of or-sets. That is, we viewed or-sets as collections and not as singleelements they could represent. Our next goal is to de�ne the conceptual semantics of or-sets.

100 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONSemantics of sets and or-setsOur purpose here is to de�ne a semantics to be used when or-sets are dealt with at the conceptuallevel. This semantic function takes database objects into �nitely generated �lters of ordered sets.For simplicity, assume that we have the following type system:t ::= b j t � t j ftg j htiand that we are dealing with the open world assumption.We shall denote the semantic function that deals with the conceptual representation of or-setsby [[]]c. We know that conceptually an or-set is one of its elements. That is, conceptuallyX = hd1; : : : ; dni is one of di's. If di's themselves are partial descriptions, they may denoteother elements. Hence, whatever the semantic function [[]] for the elements of X is, we have[[X]]c = Sx2X [[x]].If the semantic function [[]] satis�es the property that [[x]] � [[y]] i� y � x, then [[x]] = "x and weobtain [[X]]c = [x2X "x = "XHence, from the results of the previous section and the properties of the Smyth order, weconclude that in this particular case [[]]c for or-sets satis�es all properties listed in proposition4.11.To de�ne the conceptual semantics of types, we assume that a semantic domain [[b]]c is givenfor each base type b. We now de�ne semantic domains of arbitrary types as follows. Note thatthere are two possibilities for the semantics of the set type constructor, but the de�nition of thesemantics of objects will work with both of them.� [[t� s]]c = [[t]]c � [[s]]c.� [[ftg]]c = hA�n([[t]]);v[i = P[([[t]]c) or [[ftg]]c = hP�n([[t]]c);v[i.� [[hti]]c = [[t]]c.The last clause corresponds to the fact that conceptually an or-set is just one of its elements.Semantics of each object is now going to be a �nitely generated �lter F = "ff1; : : : ; fng ="f1 [: : :["fn. Again, we de�ne it inductively.� For each base type b and an element x of this type, [[x]]c = "x = fx0 2 [[b]]c j x0 � xg.� If x = (x1; x2), then [[x]]c = [[x1]]c � [[x2]]c.

4.1. ORDER AND SEMANTICS 101� Let X = fx1; : : : ; xng be a set of type ftg. Then [[X]]c = fY j 8i = 1; : : : ; n : Y \[[xi]]c 6= ;g.Here Y is taken from P�n([[t]]c) or A�n([[t]]c) depending on the de�nition of the semantics oftypes.� Let X = hx1; : : : ; xni be an or-set of type hti. Then [[X]]c = [[x1]]c [: : :[[[xn]]c.Before we prove that this semantic function possesses the desired properties, let us make a fewobservation. First, the de�nition of the semantics of or-sets agrees with the de�nition of [[]]or givenabove. Second, to understand the semantics of pairs and sets, consider tow simple examples. Letx1 = h1; 2i, x2 = h3; 4i. Assume that there is no ordering involved. The semantics of x1 is thena set f1; 2g and the semantics of x2 is f3; 4g. Therefore, [[(x1; x2)]]c = f(1; 3); (1; 4); (2; 3); (2; 4)g.Now consider (x1; x2). It is a pair whose �rst component is 1 or 2 and whose second componentis 3 or 4. Hence, it is one of the following pairs: (1; 3); (1; 4); (2; 3); (2; 4). And this is exactlywhat the semantic function [[]]c tells us.For semantics of sets, consider X = fx1; x2g = fh1; 2i; h3; 4ig. It is is a set that has at least twoelements: one is 1 or 2, and the other is 3 or 4. Hence, it must contain one of the followingsets (since we believe in OWA): f1; 3g; f1; 4g; f2; 4g; f3; 4g. Now look at [[X]]c. A set Y belongsto [[X]]c if Y \ [[h1; 2i]]c = Y \ f1; 2g 6= ; and Y \ [[h3; 4i]]c = Y \ f3; 4g 6= ; which happens ifand only if Y contains one of the four sets above. This justi�es our de�nition of the conceptualsemantics of sets.Now we can prove the following.Proposition 4.12 For every object x of type t, [[x]]c is a �nitely generated �lter in [[t]]c. Fur-thermore, if x and y are of type t and x � y in [[t]]s, then [[y]]c � [[x]]c.Proof. Prove the �rst statement by induction. For objects of base types it is given by thede�nition. For pairs, it is easy to show that if x1 and x2 are �nitely generated �lters in [[t1]]cand [[t2]]c respectively, then [[x]]c is a �nitely generated �lter in [[t1 � t2]]c. For sets, let X =fx1; : : : ; xng be a set of type ftg. Let [[xi]]c = "ff i1; : : : ; f inig. Let G be the set of maps g :f1; : : : ; ng ! N such that 1 � g(i) � ni for all i. De�ne G(X) = minv[fff ig(i) j i = 1; : : : ; ng jg 2 Gg. Then Y 2 [[X]]c i� there exists Y 0 2 G(X) such that Y 0 v[Y . Therefore, [[X]]c = "G(X).This shows that [[X]]c is a �nitely generated �lter. For arbitrary sets, the proof proceeds similarlybut we do not have to take min. The second result will be proved later (see theorem 5.17 inchapter 5.) 2From the properties of the structural and conceptual semantics, we obtainCorollary 4.13 If x and y are objects of the same type, then [[x]]s = [[y]]s implies [[x]]c = [[y]]c.2

102 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONThe converse is not true: hh1; 2i; h3ii and hh1i; h2i; h3ii are structurally di�erent objects of typehhintii, but [[hh1; 2i; h3ii]]c = [[hh1i; h2i; h3ii]]c = f1; 2; 3g.The importance of the conceptual semantics will be seen in the next chapter when we show thatnormalization of or-objects does not change the meaning.Relationship between CWA sets, OWA sets and or-setsThere is a naturally arising question: do we really need all three kinds of collections { OWA sets,CWA sets and or-sets? Can not we just represent some of them using the others? The answer tothis question is that we do need all three kinds of collections and no such representations exist.First, let us see what could be a representation of, say, OWA sets with or-sets. It could be aprocedure that, given a poset A and X 2 A�n(A), calculates Y 2 A�n(A) such that Z 2 [[X]] i�Z 2 [[Y]]or. The following proposition tells us that it is impossible to do so.Proposition 4.14 For every poset A which is not a chain, there exists X 2 A�n(A) such thatfor no Y 2 A�n(A) the following holds: 1) [[X]] = [[Y]]or; 2) [[X]]or = [[Y]]; 3) [[X]] = [[Y]]CWAset ; 4)[[X]]CWAset = [[Y]]; 5) [[X]]or = [[Y]]CWAset ; 6) [[X]]CWAset = [[Y]]or.Proof. 1) Assume A has two incomparable elements x and y and let X = fxg. Assume Y is suchthat [[fxg]] = [[Y]]or. Then fxg v[fx; yg v] fyg and hence fyg 2 [[fxg]], contradiction. For 2),consider the same poset by take X to be fx; yg. For 3), take the same poset and take X = fxg.Assume there is Y such that [[fxg]] = [[Y]]or. Then fx; yg 2 [[fxg]] and hence Y v] fx; yg. Wehave fxg v[Y , so there is an element z � y such that x � z, contradiction. The proof of 4) issimilar. We invite the reader to �nd similar easy proofs for 5) and 6). 24.1.3 Formal models of approximationsIn this section we re-examine the approximation constructs such as sandwiches, mixes andsnacks introduced in chapter 1. We do it by applying the idea of representing database objectswith partial information as elements of certain ordered sets, and then getting all approximationconstructs as families of antichains in those posets.Recall the de�nition of a sandwich. It is given by an upper approximation U and a lowerapproximation L which satisfy the following consistency condition: for every u 2 U there isl 2 L such that u and l are consistent. The notion of consistency here is the same as consistencyin posets. If there are two records, then they are consistent if there is a record that is aboveboth of them in the ordering. For example, 1 2 ? and ? 2 3 are consistent as theyhave a common upper bound 1 2 3 , but 1 2 ? and ? 4 3 are not consistent as

4.1. ORDER AND SEMANTICS 103there are no common upper bounds. Recall that we use the notation x"y to denote the fact thatx and y are consistent. Now we can give a formal de�nition of sandwiches.De�nition 4.1 Given a poset hA;�i, a sandwich over A is a pair of �nite antichains (U; L)satisfying the following consistency condition:8l 2 L 9u 2 U : u"lU is usually referred to as the upper approximation and L as the lower approximation. Thefamily of all sandwiches over A is denoted by P 8̂ (A) (the reason for this notation will be seenshortly).For example, Name Salary RoomJohn 15K ?Ann 17K ?Mary 12K ?Michael 14K ? and Name Salary RoomJohn ? 076Michael ? 320form a sandwich. First, each relation can be considered as a subset of V?�V?�V? as explainedin section 3.1. Moreover, sinceJohn ? 076 " John 15K ? and Michael ? 320 " Michael 14K ?the pair satis�es the consistency condition and hence forms a sandwich in V?�V?�V?, wherethe �rst relation is the upper approximation and the second relation is the lower approximation.The consistency condition for sandwiches can be equivalently stated in the following way. A pairof �nite antichains (U; L) is a sandwich if there exists a set W such that U v] W and L v[W .Observe that U = ; implies L = ;.Recall that in chapter 1 we used the assumption that the Name �eld is a key to infer additionalinformation about the relations shown above. It led us to the following relations:Name Salary RoomJohn 15K 076Ann 17K ?Mary 12K ?Michael 14K 320 and Name Salary RoomJohn 15K 076Michael 14K 320The di�erence is that now for each record in the second relation there is a record in the �rstrelation that is less or equally informative. This is the de�nition of mixes.

104 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONDe�nition 4.2 Given a poset hA;�i, a mix over A is a pair of �nite antichains (U; L) satisfyingthe following consistency condition: 8l 2 L 9u 2 U : u � lU is usually referred to as the upper approximation and L as the lower approximation. The familyof all mixes over A is denoted by P8(A) (the reason for this notation will be seen shortly).Observe that the consistency condition for mixes can be also stated as U v] L. Again, U = ;implies L = ;.Now recall the de�nition of scones. In a scone, the lower approximation is a family of sets(relations), as shown below.Name Salary RoomJohn 15K ?Ann 17K ?Michael 14K ? Name Salary RoomJohn ? 076Jim ? ?Name Salary RoomMichael ? 320The consistency condition that relates the upper and the lower approximations now says thatfor every set in the lower approximation, there exists an element in that set that is consistentwith an element of the upper approximation. Therefore, we can formalize the notion of a sconeas follows.De�nition 4.3 Given a poset hA;�i, a scone over A is a pair (U;L) where U is a �nite an-tichain, and L = fL1; : : : ; Lkg is a family of �nite nonempty antichains which is itself anantichain with respect to v]. That is, Li 6v] Lj if i 6= j. In addition, a scone is required tosatisfy the consistency condition: 8L 2 L 9l 2 L 9u 2 u : u"lWe refer to U as the upper approximation and to L as the lower approximation. The family ofall scones over A is denoted by PP 9̂ (A).Note that the consistency condition for scones can be reformulated as "L \ "U 6= ; for anyL 2 L.The last construction that we have seen in chapter 1 was a snack. Snacks are obtained fromscones in the same way as mixes are obtained from sandwiches: by using the assumption about

4.1. ORDER AND SEMANTICS 105keys, additional information is inferred. Moreover, the record for Jim disappears as it is nowinferred that Jim is not a TA. In our example, assuming that Name is a key, this yields:Name Salary RoomJohn 15K 076Ann 17K ?Michael 14K 320 Name Salary RoomJohn 15K 076Name Salary RoomMichael 14K 320Thus, now we know that every record in every relation in the lower approximation is at least asinformative as some record in the upper approximation. This leads us to the following de�nition.De�nition 4.4 Given a poset hA;�i, a snack over A is a pair (U;L) where U is a �niteantichain, and L = fL1; : : : ; Lkg is a family of �nite nonempty antichains which is itself anantichain with respect to v]. That is, Li 6v] Lj if i 6= j. In addition, a snack is required tosatisfy the consistency condition:8L 2 L 8l 2 L 9u 2 u : u � lWe refer to U as the upper approximation and to L as the lower approximation. The family ofall snacks over A is denoted by PP8(A).The consistency condition for snacks can be equivalently stated as U v] L for any L 2 L.Now let us look at these constructs again. There are three main parameters that may vary andgive rise to new constructs.1. The lower approximation is either a set or a set of sets.2. The consistency condition is of formQl 2 L 9u 2 U C(u; l) for simple lower approximations and8L 2 L Ql 2 L 9u 2 U C(u; l) for multi-set lower approximations,where Q is a quanti�er (either 8 or 9) and C(u; l) is a condition that relates u and l.3. The condition C(u; l) is either u � l or u"l.Therefore, we have eight constructions since each of the parameters that may vary { the struc-ture of the lower approximation, the quanti�er Q and the condition C(u; l) { has two possiblevalues. For constructs that have a single set lower approximation we use notation P and for the

106 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONconstructs with multi-set lower approximation we use PP. The rest is indicated in the superscriptwhich consists of one or two symbols. The �rst is always a quanti�er and indicates whether 8or 9 is used as Q. The second is omitted if the condition is u � l, and it is ^ if the conditionis u"l (to indicate that there is an element above u and l). Moreover, we have seen a need forconstructs with no consistency condition, in order to deal with inconsistencies in independentdatabases. For such constructs we shall use just one superscript ;.Summing up, we have ten possible constructs: P8;PP8;P 8̂ ;PP8̂ ;P9;PP9;P 9̂ ;PP9̂ ;P;;PP;. Someof them we have seen already: P8(A) is the family of mixes over A, P 8̂ (A) is the family ofsandwiches over A, PP8(A) is the family of snacks over A and PP 9̂ (A) is the family of scones overA. This is summarized in the table below.type of consistency condition (quanti�er{condition)L-part 8 u � l 8 u"l 9 u � l 9 u"l no conditionone set P8 (mix) P 8̂ (sandwich) P9 P 9̂ P;family of sets PP8 (snack) PP8̂ PP9 PP9̂ (scone) PP;Our next goal is to de�ne orders on all approximation constructs and their semantics.Ordering approximationsOur approach to ordering approximations is the same as the one we used for ordering collections.We de�ne elementary updates that add information and then de�ne orderings as transitiveclosure of those updates. It is important to mention that we use the open world assumption forthe lower approximation as it describes the approximated collection only partially.Let us �rst introduce the rules for constructions with one-set lower approximation (like mixesand sandwiches). The idea behind these rules is that there are three ways to make a pair moreinformative: to obtain additional information about elements already in one of the sets; tomake the lower approximation more informative by adding new elements and to make the upperapproximation more informative by reducing the number of possibilities, i.e. by removing someelements. This is formalized as follows:1. (U; L) 7! (U � u; L).2. (U; L) 7! (min((U � u) [V); L) where v � u for all v 2 V .3. (U; L) 7! (U;max((L� l)[L0)) where l � l0 for all l0 2 L0.4. (U; L) 7! (U;max(L [l)).

4.1. ORDER AND SEMANTICS 107Similarly, updates 1 and 2 will work for approximation constructs with the multi-set lowerapproximation. However, we need new rules for the lower approximation. Recall that in a multi-set lower approximation each set contributes at least one element into the result (an element ofthe semantics) and elements of that set list possible choices of elements to be included in theresults. Hence, adding new sets into L as well as deleting elements from L 2 L add information.Now we can formalize updates as follows. We use symbol max] to denote maximum with respectto v].1. (U;L); (U � u;L).2. (U;L); (min((U � u) [V);L) where v � u for all v 2 V .3. (U;L); (U;max](L [L)).4. (U;L); (U;max]((L � L) [(L� l))) if L� l 6= ;.5. (U;L); (U;max]((L � L) [min((L� l)[L0))) where l � l0 for all l0 2 L0.We now de�ne two orderings, called the Buneman orderings, see [33, 66]. For pairs (U; L) and(U 0; L0), let (U; L) vB (U 0; L0) i� U v] U 0 and L v[L0In other words, vB=v] � v[. For pairs (U;L) and (U 0;L0), let(U;L) vBf (U 0;L0) i� U v] U 0 and 8L 2 L 9L0 2 L0 : L v] L0In other words,vBf =v] �(v])[. The index f is ised in vBf to indicate that the ordering deals withfamilies of sets in the lower approximations, whereas vB deals with simple lower approximations.Our main claim about orderings on approximations is the following.The approximations must be ordered by the Buneman orderings.We justify it by proving the following theorem. Recall that � over an arrow is used as a notationfor the transitive-re
exive closure.Theorem 4.15 a) Let (U; L) and (V;M) be two approximations with one-set lower approxima-tion (e.g. mixes, sandwiches etc.) Then (U; L) �7! (V;M) i� (U; L) vB (V;M).b) Let (U;L) and and (V;M) be two approximations with multi-set lower approximation (e.g.snacks, scones etc.) Then (U;L) �; (V;M) i� (U;L) vBf (V;M).Proof. We prove part b) here; the proof of part a) is similar (and in fact easier). First, observethat whenever S1 ; S2 and both S1 and S2 are approximation constructs with the multi-set

108 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONlower approximation, then S1 vBf S2. Hence, the transitive closure of ; is included in vBf . Toprove the converse, let (U;L) vBf (V;M). Since L(v])[M, by theorem 4.3 there is a sequenceL OWA7�!a L1 OWA7�!a : : : OWA7�!a Lk OWA7�!a M such that Li � L [M. In particular, each (U;Li) is asnack (scone) if (U;L) and (V;M) are snacks (scones). For tranformation Li OWA7�!a Li+1 thereare two cases.Case 1. Li+1 = max](L [L0). In this case (U;Li); (U;Li+1) follows from the de�nitions.Case 2. Li+1 = max]((Li � L) [L0) where L v] L0. Then, by theorem 4.5, there is a sequenceL or7�!a L1 or7�!a L2 or7�!a : : : or7�!a Lp or7�!a L0 such that each Lj is a subset of L[L0. In particular,this shows that (U;max]((Li � Lj) [Lj+1)) is a snack or a scone respectively. Now there aretwo subcases. In the �rst subcase, Lj+1 = min(Lj � l) and then (U;max]((Li � L) [Lj)) ;(U;max]((Li�L)[Lj+1)) follows from the de�nition. Similarly, it holds for the second subcasewhen Lj+1 = min((Lj � l)[L0).Therefore, (U;Li) �; (U;Li+1) which implies (U;L) �; (U;M). Now from theorem 4.5 wehave U or7�!a U1 or7�!a U2 or7�!a : : : or7�!a Ur or7�!a V such that each Ui is a subset of U [V .Since "V � "U , this implies consistency condition for each (Ui;M). Each Ui ; Ui+1 is eitherUi ; Ui � u or Ui ! min((Ui � u) [U 0) where u0 � u for all u0 2 U 0. In both cases,(Ui;M); (Ui+1;M). Therefore, (U;M) �; (V;M) which �nishes the proof of (U;L) �; (V;M).The result for mixes and sandwiches is easily proved along the same lines. 2Thus, when we consider approximation constructs P i(A) and PP(A), where i 2 f8; 9; 8̂ ; 9̂ ; ;g,we assume that they are ordered by vB and vBf respectively.Semantics of approximationsTo understand the semantics of the approximation constructs, recall the example of queryingindependent databases from chapter 1. We used two relations, Employees and CS1, to approxi-mate the set of teaching assistants. We assumed that a set TA is approximated by Employeesand CS1 if every record in CS1 represents (is less than) a record in TA and every record in TAis represented (is greater than) by a record in Employees. In other words, CS1 v[TA and TAv] Employees.For scones and snacks, where CS1 was subdivided into a family of relations CS1i, we assumedthat at least one element from each CS1i represents an element in TA. That is, TA v] Employees,and for all i, there exists an element in CS1i that represents an element of TA. In other words,"CS1i \ "TA 6= ;.To formalize it, we introduce two semantic functions. For constructions with one-element lowerapproximations (like mixes and sandwiches) we have

4.1. ORDER AND SEMANTICS 109[[(U; L)]] = fX 2 P�n(A) j U v] X and L v[Xg[[(U; L)]]max = fX 2 P�n(Amax) j U v] X and L v[XgFor constructions with multi-element lower approximations (like snacks and scones) we have[[(U;L)]] = fX 2 P�n(A) j U v] X and 8i : "Li \X 6= ;g[[(U;L)]]max = fX 2 P�n(Amax) j U v] X and 8i : "Li \X 6= ;gNote that for both mixes and sandwiches, it is guaranteed that there semantics is not empty.(Of course for [[]]max we have to require that every x 2 A be bounded above by xm 2 Amax.)The same is true for any S 2 P 9̂ (A). However, it is easy to see that for S 2 P;(A), [[S]] 6= ; i�S 2 P 9̂ (A).The semantics of mixes and sandwiches has been studied in Buneman et al. [33] and Gunter[66]. Here we concentrate on the constructs with the multi-element L-part.Let A be a three element chain a < b < c and S1 = (a; b) and S2 = (a; c) two snacks over A.Then [[S1]]max = [[S2]]max but S1 is strictly below S2 in the snack order. A more complicatedexample of incomparable S1 and S2 such that [[S1]]max � [[S2]]max can also be found. Thus, thesemantics in terms of maximal elements does not agree very well with the ordering of snackswhich is supposed to mean being more partial. However, we can show (cf. Ngair [121]) thatProposition 4.16 If S1 and S2 are two snacks, then S1 vBf S2 i� [[S2]] � [[S1]].Proof. Let S1 = (U;L) and S2 = (V;M). Prove the 'if ' part �rst. Assume [[S2]] � [[S1]]. Pickarbitrarily an element mM from each M 2 M. Then V 0 = V [fmM jM 2 Mg 2 [[S2]] andtherefore V 0 2 [[S1]] which means U v] V 0 v] V . Hence, U v] V .Let M = ;. Then L = ; because if L 6= ;, then ; 2 [[S2]] but ; 62 [[S1]]. Hence, in this caseS1 vBf S2.Assume M 6= ; and S1 6vBf S2; then 9L 8M 9m 2 M 8l 2 L : l 6� m. Let L 2 L be a set forwhich the statement above is true; then, selecting appropriate m for each M 2 M we obtain aset Q such that Q\M 6= ; for all M 2 M and 8l 2 L8q 2 Q : l 6� q. In other words, "L\Q = ;.On the other hand, Q 2 [[S2]] � [[S1]] and therefore "L\Q 6= ; for all L 2 L. This contradictionshows S1 vBf S2.To show the 'only if ' part, assume S1 vBf S2 and Q 2 [[S2]]. Then U v] V v] Q and, givenL 2 L, there exist M 2 M such that "M � "L and therefore Q\ "L 6= ;. This shows Q 2 [[S1]].Proposition is proved. 2Unfortunately, this is no longer true for scones because, given the following A:

110 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION���� @@@@@@ ���>?a b clet S1 = (a; b) and S2 = (a; c) be two scones over A. Then ff>g; fa;>gg = [[S1]] = [[S2]] but S1and S2 are incomparable.However, there is a very close connection between semantics of scones and snacks and theordering. In some sense, the family of snacks over A is the maximal subclass of scones over Aon which the semantics and the orderings agree. To formulate this rigorously, let S1 4 S2 i�[[S2]] � [[S1]]. Then 4 is a preorder and the induced equivalence relation is denoted by "4.Proposition 4.17 For a bounded complete poset A, hPP 9̂ (A);4i="4 �= PP8(A).Proof. If A is bounded complete, then for two �nite sets U and L the set min("U \ "L) isalso �nite. Hence, we de�ne : PP 9̂ (A) ! PP8(A) by ((U;L)) = (U; fmin("U \ "L)gjL 2 L).Clearly, [[S]] = [[(S)]] and ((S)) = (S). According to proposition 4.16, (S) is the onlysnack in the "4-equivalence class of S. Moreover, is monotone because, if U v] V and L v] M ,then min("L \ "U) v] min("M \ "V). This �nishes the proof of the proposition. 2The following result follows directly from the de�nitions.Proposition 4.18 Given S 2 PP;(A), [[S]] 6= ; i� S 2 PP 9̂ (A). 2Summing up, scones are the maximal class of approximation constructs with multi-set L-partthat has well-de�ned semantics, and snacks are the maximal subclass of scones over on whichthe semantics and the orderings agree.Using or-sets to encode approximationsWe have seen already that orderings on approximations are obtained by combining orderings thatwere suggested for OWA sets and or-sets. This brings up the idea of using or-sets in encodingapproximations. We show an intimate connection between the semantics of sets, or-sets andapproximations that suggests a clean way of encoding approximations with sets and or-sets.First, consider the semantics of a mix (or a sandwich) (U; L). Let X 2 [[(U; L)]]. Then L v[Xwhich means X 2 [[L]]s where L is considered as an ordinary set. Furthermore U v] X meansX 2 [[U]]s where U is considered as an or-set. Thus, we have

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 111Proposition 4.19 For any mix (sandwich) (U; L) where U = fu1; : : : ; ung and L = fl1; : : : ; lkg,X 2 [[(U; L)]] i� X 2 [[fl1; : : : ; lkg]]s and X 2 [[hu1; : : : ; uni]]s. 2Furthermore, assume that all elements of U and L come from a poset A. Then X 2 [[(U; L)]]means that X 2 [[fl1; : : : ; lkg]]c and X � [[hu1; : : : ; uni]]c. This suggests that the lower approxi-mation be encoded as a set and the upper as an or-set.Now consider constructions like snacks and scones. Then the following is immediate from thede�nitions.Proposition 4.20 Assume that U 2 A�n(A) and L is an antichain (with respect to v]) of�nite antichains of A. Let (U;L) be an element of PPi(A), where i 2 f8; 9; 8̂ ; 9̂ ; ;g, whereU = fu1; : : : ; ung and L = fL1; : : : ; Lkg, Li = fli1; : : : ; limig. Then X 2 [[(U;L)]] i�X � [[hu1; : : : ; uni]]c and X 2 [[fhl11; : : : ; l1m1i; : : : ; hlk1; : : : ; l1mkig]]cThis proposition suggests that the lower approximation be encoded as a set of or-sets andthe upper as an or-set. Summing up, we have the following correspondence between types ofapproximations over type t and sets and or-sets:Approximations EncodingP i([[t]]), i 2 f8; 9; 8̂ ; 9̂ ; ;g hti � ftgPP i([[t]]), i 2 f8; 9; 8̂ ; 9̂ ; ;g hti � fhtigIt will be seen in chapter 5 that these encodings provide a convenient way of programmingwith approximations, which has a number of advantages over the approach based on structuralrecursion and monads.4.2 Universality properties of partial dataThe goal of this section is to demonstrate the universality properties of various collections thatlater will be used as a basis for the programming syntax design. We have seen examples ofturning universality properties into syntax in section 3.2.The collections we study include sets and or-sets. We concentrate on sets under the open worldassumption. We also look at the iterated constructions which correspond to the objects of typeshftgi and fhtig. These will be of special importance when we study normalization of or-objects.Finally, we characterize approximation constructs as free algebras.

112 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONTo explain the setting before we embark on a lengthy technical development (and thus save timefor the reader who does not want to read the proofs and just want to look at the theorems), wealways start with a partially ordered set A and characterize various constructions as free orderedalgebras generated by A. That is, the general form of the results is �nding the signature
 of anordered algebra on each construction C(A) and an embedding � : A! C(A) such that for eachordered
-algebra hX;
i and each monotone map f : A ! X , there exists a unique monotone
-homomorphism that makes the following diagram commute:A � �- hC(A);
i@@@@@f RhX;
i?9!f+Constructions C that we consider are the following. For sets (under OWA) we use P[(A); foror-sets we use P](A). We consider two iterated constructions P[(P](A)) and P](P[(A)). Andwe study approximations P i(A) and PP i(A) where i 2 f8; 9; 8̂ ; 9̂ ; ;g.4.2.1 Universality properties of collectionsUniversality properties of P[(A) and P](A) have been demonstrated already. In lemma 2.2 itwas proved that P[(A) is the join-semilattice with bottom element freely generated by A andP](A) is the meet-semilattice with top element freely generated by A. In other words, if weconsider P[as a functor from Poset to SL0 and P] as a functor from Poset to SL1, then wehave the following adjunctions:P[a USL0!Poset P] a USL1!Posetwhere Us are forgetful functors. This adjunction cuts down to an adjunction of categories inwhich all objects are �nite. The monads corresponding to these adjunctions have been shownin section 2.3. We shall return to them again in chapter 5.4.2.2 The iterated constructionWe have seen that or-sets correspond to the Smyth powerdomain and sets correspond to theHoare powerdomain. If we would like to see how sets and or-sets can interact, we should look ata combination of these two constructions. (This is similar to the way the de�nition of a strong

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 113monad was introduced. One needed an interaction of a functor T with products. In the caseof the languages from section 3.2, this resulted in adding �2 which provides interaction betweensets or bags and products.)We have two ways of combining the the semantic constructions corresponding to sets and or-sets: P[](A) = P[(P](A)) and P][(A) = P](P[(A)). The question that arises is which one toconsider. The answer is: either one. This is possible because Flannery and Martin [53] provedthat P[](A) and P][(A) are isomorphic. However, from their proof it is impossible to derive theisomorphism we would be able to use, as they proved the isomorphism at the level of informationsystems, cf. C. Gunter [67].Later Heckmann [71] tried to simplify the proof. His proof, however, was based on a numberof universality properties which postulated existence and uniqueness of certain mappings, anda combination of some of those was shown to be the desired isomorphism. This again is notsatisfactory. Finally, in Libkin [100], an elementary proof was given in which the isomorphismwas explicitly constructed. We state the result here, and later use the isomorphism to add aprimitive providing interaction between sets and or-sets to the language for those collections.An element of P][(A) is a �nite antichain, with respect to v[, of �nite antichains of elementsof A, and a element of P[](A) is a �nite antichain, with respect to v], of �nite antichains ofelements of A. Given a �nite set of �nite sets X = fX1; : : : ; Xng where Xi = fxi1; : : : ; xikig, letFX be the set of functions f : f1; :::; ng! N such that for any i: 1 � f(i) � ki. For f 2 FX , letf(X) = fxif(i) j i = 1; : : : ; ng. If all Xi's are subsets of A, de�ne two maps � and � as follows:�(X) = minf2FXv[(max f(X))�(X) = maxf2FXv](min f(X))Theorem 4.21 � : P[](A) ! P][(A) and � : P][(A) ! P[](A) are mutually inverse isomor-phisms between P[](A) and P][(A).Proof. We have to show that � maps P[](A) to P][(A), � maps P][(A) to P[](A) and � and �are mutually inverse and monotone. The �rst two claims follow immediately from the de�nitionsof � and �. To complete the proof, show that � is monotone and � � � = id. By duality theproof of monotonicity of � and � � � = id can be obtained.Recall that if V and W are �nite subsets of an arbitrary poset, then 1) V v[W i� maxV v[maxW and 2) V v] W i� minV v] minW . Notice that both P][(A) and P[](A) have bottomand top elements. These are ; and f;g, and they are mapped to each other by � and �. Hence,in the rest of the proof we do not consider empty sets.Throughout this proof, X is de�ned as above, i.e. X = fX1; : : : ; Xng and each Xi consists ofelements xij , j = 1; : : : ; ki.

114 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONClaim 1: � is monotone.Proof of claim 1: Let X ;Y = fY1; :::; Ymg 2 P[](A) and X v[Y . We must prove �(X) v] �(Y).In view of the above observations, it is enough to show that for any f 2 FY there exists g 2 FXsuch that g(X) v[f(Y). Since for each i = 1; : : : ; n there exists ji such that Xi v] Yji , thereis an element xipi 2 Xi such that xipi � yjif(ji). Let g(i) = pi. Then for this function g one hasfxig(i) j i = 1; : : : ; ng v[fyif(i) j i = 1; : : : ; mg, i.e. g(X) v[f(Y). Claim 1 is proved.Let X 2 P[](A) and Y = fY1; : : : ; Ymg = �(X) 2 P][(A). By 1) and 2) above, to show that� � � = id, i.e. that �(Y) = X , it su�ces to proveClaim 2: For any f 2 FY there exists Xi 2 X such that f(Y) v] Xi.Claim 3: Every Xi is in �(Y).Proof of claim 2: Let Z be the collection of all sets f(X) where f 2 FX ; Z = fZ1; : : : ; Zkg.Then for any g 2 FZ , there exists Xi 2 X such that Xi is contained in g(Z) because, if this isnot the case, for any Xi 2 X there exists ji � ki such that xiji 2 Xi and, for any f 2 FX , g onf(X) picks an element di�erent from xiji . If we de�ne f0 such that f0(i) = ji, g may pick onlyelements of form xiji on f0(X), a contradiction. Therefore, g(Z)v] Xi for some i.Let f 2 FY . Let H be the set of functions in FX that correspond to elements of Y = �(X) or,in other words, maxh(X) 2 Y for h 2 H . Then, for any h0 2 FX �H , there exists a functionh 2 H such that max h(X) v[maxh0(X), i.e. h(X) v[h0(X). Since h 2 H , maxh(X) 2 Y , i.e.maxh(X) = Yi. If f(i) = j, then there is an element in h0(X) that is greater than yij . De�ne afunction g 2 FZ to coincide with f on those Zi's that are given by functions in H . On Zi thatcorresponds to f 2 FX �H , let g pick an element which is greater than some yij where f(i) = j(we have just shown it can be done). Then f(Y) v] fzig(i) j i = 1; : : : ; kg = g(Z). We know thatthere exists Xi 2 X such that g(Z) v] Xi. Thus, f(Y) v] Xi. Claim 2 is proved.Proof of claim 3: Prove that for any xij 2 Xi there exists Yl 2 Y such that xij 2 Yl. Consider theset F ijX of functions f 2 FX such that f(i) = j. If for no f 2 F ijX : xij 2 max f(X), then thereexists Xp 2 X such that all elements of Xp are greater than xij , i.e. Xi v] Xp which contradictsour assumption that X is an antichain with respect to v]. Hence, xij 2 max f(X) for at leastone function in F ijX . Since X is an antichain, for any p 6= i there exists xpq 2 Xp which is notgreater than any element of Xi. Change f to pick such an element for any p 6= i. Then xijis still in max f(X). There exists a function f 0 2 FX such that max f 0(X) v[max f(X) andmax f 0(X) 2 �(X). If f 0(i) = j 0 6= j, then, since f 0(X) v[f(X) and Xi is an antichain, xij0 � xpqfor some p and q, where p 6= i. But this contradicts the de�nition of f . Hence, f 0(i) = j andxij 2 max f 0(X) because xij 2 max f(X). Since max f 0(X) = Yl for some index l, xij 2 Yl 2 Y .Let Y 0 be the collection of elements of Y that contain elements of Xi. Then we can de�ne afunction f 2 FY on elements of Y 0 to pick all elements of Xi. Each Yj 2 Y � Y 0 either containsan element of Xi or contains an element which is greater than some xip 2 Xi. Let f pick anysuch element. Then min f(Y) = Xi. Suppose Xi 62 �(Y). Then Xi v] min g(Y) for some

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 115function g 2 FY such that min g(Y) 2 �(Y). By claim 2, g(Y) v] Xj for some Xj . Hence,min g(Y) v] Xj and since X is an antichain with respect to v], Xi = Xj = min g(Y) 2 �(Y).This �nishes the proof of claim 3 and the theorem. 2Now, let us see what � does if there is no order involved. In this case an input to � can beconsidered as a set of or-sets:X = fhx11; : : : ; x1k1i; : : : ; hxn1 ; : : : ; xnknigThen �(X) is the or-set of sets hfx1f(1); : : : ; xnf(n)g j f 2 FX iThat is, all possible choices encoded by or-sets are explicitly listed. Notice that we used a verysimilar construction in the proof of proposition 4.12 to show that the conceptual semantics ofany object is a �nitely generated �lter. We shall use � as a programming primitive extensivelyin chapter 5.The iterated construction does possess a universality property.Theorem 4.22 For any poset A, P[](A) is the free distributive lattice with top and bottomgenerated by A.Proof. First, P[](A) is a distributive lattice with top and bottom since P[(A) is a distributivelattice for any A, and P[](A) has top element f;g and bottom element ;. Now we must provethe following: for any distributive lattice with bottom and top hD;?>i, and any monotone mapf : A ! D, there exists a unique homomorphism of distributive lattices with top and bottomf+ that makes the following diagram commute (where �(x) = ffxgg):A � �- hP[](A);t[;u[; f;g; ;i@@@@@f R hD;_;^;?;>i?9!f+To de�ne f+, �rst notice that f+(;) = ? and f+(f;g) = >. Other elements of P[](A) areantichains X , with respect to v], of antichains of A. Let X = fX1; : : : ; Xng where Xi =fxi1; : : : ; xikig. Then de�ne f+(X) = n_i=1 kîj=1 f(xij)

116 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONClearly, f+(�(x)) = f(x). Let us show that f+ is a homomorphism. Given X and Y =fY1; :::; Ymg, then X t[Y = max](X [Y) and X u[Y = max]fX u] Y j X 2 X ; Y 2 Yg =max]fmin(X [Y) j X 2 X ; Y 2 Yg. Notice that V v] W implies Vv2V f(v) � Vw2W f(w).Moreover, X (v])[Y implies f+(X) � f+(Y). Hence, writing expressions for f+ we may leavenonminimal elements in individual antichains and nonmaximal elements in families of antichains.With this in mind, we calculatef+(X t[Y) = _Z2X[Y ẑ2Z f(z) = f+(X)_ f+(Y) andf+(X u[Y) = _X2X ;Y2Y ^z2X[Y f(z) =(_X2X x̂2X f(x)) ^ (_Y 2Y ŷ2Y f(y)) = f+(X)^ f+(Y)Thus, f+ is a homomorphism. Its uniqueness follows from X = t[i u]j �(xji). Theorem is proved.2This result can be generalized for slightly changed iterated constructions. Let P[6=;(A) and P]6=;be de�ned as P[and P] except that the empty antichain is not allowed. Let P[]6=; and P][6=; berespective compositions of P[6=; and P]6=;. Then analyzing the proofs of theorems 4.21 and 4.22,it is easy to see that the following holds.Corollary 4.23 For an arbitrary poset A, P[]6=;(A) and P][6=;(A) are isomorphic. Moreover,P[]6=;(A) is the free distributive lattice generated by A. 2In particular, P[]6=; a U form an adjoint pair of functors between categories Poset and DL,where DL is the category of distributive lattices and U is the forgetful functor DL! Poset.4.2.3 Universality properties of approximationsThe main purpose of this section is to describe all approximation constructions, that is, P i(A)and PP i(A), as free ordered algebras generated by A. Of course we have to explain how A isviewed as a subset of those. This is achieved by de�ning two functions (for which we use thesame notation)A � �- P i(A) : �(x) = (x; x) and A � �- PPi(A) : �(x) = (x; fxg)

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 117Notice that we often omit the set brackets fg when we deal with singletons. In particular, byfxg we meant a family of sets that consists of one singleton. In proofs, we shall also occasionallyomit commas separating elements of sets, writing xyz for fx; y; zg.It would be ideal if could obtain freeness results for all constructions, but there is one obstacle.Consider a poset A and x; y 2 A such that x"y. Then (x; y) is a sandwich and (x; fyg) is ascone. Thus, if P 8̂ (A) or PP 9̂ (A) were free algebras generated by A, there would be a way toconstruct (x; y) or (x; fyg) from the singletons like (x; x) or (x; fxg). But this way must use theinformation about consistency in A and therefore can not be \universal"!We shall make this precise by proving that the approximation constructs with u"l used in theconsistency condition do not arise as free ordered algebras generated by A. But we give a methodto repair the failure of certain approximations to be free algebras. The idea is that informationabout consistency in A must be conveyed by the generating poset. We de�ne the consistentclosure of A as A"A = f(a; b) j a 2 A; b 2 A; a"bgThe consistent closure of A can be embedded into P i(A) and PP i(A) (where i 2 f9̂ ; 8̂ g) bymeans of the following functions:A"A � �"- P i(A) : �"(x; y) = (x; y) and A"A � �"- PPi(A) : �"(x; y) = (x; fyg)When the structure of an arbitrary free algebra is described, it is assumed that � is an arbitrarymap of generators into an algebra of the given signature. This is no longer enough for orderedconstructions like P[(A) and P](A) because those are free ordered algebras generated by orderedsets. In particular, we always start with a monotone map that is to be extended to a monotonehomomorphism. In the case of sandwiches or scones, we go even further and impose additionalstructure on the generating poset. This structure must be consistent with the resulting algebra.To guarantee it, we put additional restriction on the map f saying that the structure of A"Ashould not be destroyed by f . We call such maps admissible. Of course there will be di�erentde�nitions of admissibility for di�erent kinds of approximations. When we say that an algebrais freely generated by a poset with respect to a class C of maps, we mean that any map f in Ccan be extended to a monotone homomorphism.In the rest of this section we prove three kinds of results. The constructs not using u"l; u; l 2 Ain the consistency condition are found to be certain ordered algebras freely generated by A.Those that do use such consistency conditions can not be obtained as free algebras generatedby A. However, some of them can be obtained as algebras freely generated by A"A with respectto properly restricted (admissible) maps.Operations used in the free algebra characterizations are either operations similar to the \formalunion" such as in the characterization of the Plotkin powerdomain [137], or modal operations

118 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONin the spirit of Winskel [178] or operations associated with the orderings (such as in�mum) orother binary operations that can be viewed as combinations of the above.Universality of P8(A) (mixes)The characterization of the mixes as free ordered algebras was given by C. Gunter [66]. For thesake of completeness, we recall it here. We shall also need the same algebras for dealing withsandwiches.De�nition 4.5 A mix algebra hM;+;2; ei has partially ordered carrier M , one monotone bi-nary operation + and one monotone unary operation 2. hM;+; ei is a semilattice with identitye, and in addition the following equations must hold:1) 2(x+ y) = 2x+ 2y,2) 22x = 2x,3) 2x � x,4) x+2x = x,5) x+2y � x.A mix homomorphism of two mix algebras hM1;+1;21; e1i and hM2;+2;22; e2i is a monotonemap f : M1 ! M2 such that f(x +1 y) = f(x) +2 f(y); f(21x) = 22f(x) and f(e1) = f(e2).That is, in addition to being homomorphism in the usual sense, f must be monotone as well.P8(A) can be given the structure of a mix algebra by taking the ordering vB and de�ning(U; L) + (V;M) = (min(U [V);max(L [M)) 2(U; L) = (U; ;) e = (;; ;)Theorem 4.24 (C. Gunter [66]) P8(A) is the free mix algebra generated by A. That is, forany mix algebra M and a monotone map f : A !M there exists a unique mix homomorphismf+ : P8(A)!M that makes the following diagram commute:A � �- hP8(A);+;2; ei@@@@@f RhM;+;2; ei?9!f+ 2

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 119Universality of P 8̂ (sandwiches)We would like to characterize sandwiches as a free construction over A. Suppose we start withthe same function � : A ! P 8̂ (A) given by �(x) = (x; x). For any pair x; y 2 A such thatx"y, there is a sandwich (x; y) over A. Thus, if we view P 8̂ (A) as a free algebra in a certainsignature, there must be a way to construct (x; y) out of pairs with identical components. Butthis way must use information that x"y and therefore can not be \universal". To be precise, thefollowing holds.Theorem 4.25 It is impossible to �nd a family
 of operations on sandwiches such that P 8̂ (�)would be left adjoint to the forgetful functor from the category of ordered
-algebras to Poset.In other words, for no
 is P 8̂ (A) the free ordered
-algebra generated by A.Proof. Assume that there exists a set of operation
 such that P 8̂ (A) the free ordered
-algebra generated by A for any poset A. Let A = fx; y; zg be an antichain and A0 = fx0; y0; z0gbe a poset such that x0; y0 - z0 and x0 6- y0, y0 6- x0. Let f : A ! P 8̂ (A0) be de�ned byf(a) = (a0; a0); a 2 A. Now the assumed universality property tells us that f can be extendedto a monotone
-homomorphism f+ : P 8̂ (A) ! P 8̂ (A0). Let S 2 P 8̂ (A0). Since P 8̂ (A0)is the free
-algebra generated by A0, we can �nd a term t in the signature
 such that S =t(�(x0); �(y0); �(z0)). Since �(x0) = f(x) = f+(�(x)) and similarly for y0 and z0, we obtainS = f+(t(�(x); �(y); �(z))) = f+(S0) for some S0 2 P 8̂ (A). Therefore, f+ is onto.De�ne P 8̂:xy(A) as the set of elements of P 8̂ (A) which are not under (x; x) or (y; y). Itis easy to check that P 8̂:xy(A) includes the following: (z; z), (xz; z), (yz; z), (z; ;), (xz; xz),(yz; yz), (xy; xy), (xyz; xz), (xyz; yz), (xyz; xy), (xyz; z). Similarly, de�ne P 8̂:x0y0(A0) as theset of elements of P 8̂ (A0) which are not under (x0; x0) or (y0; y0). These are: (x0; y0), (y0; x0),(x0y0; z0), (z0; x0y0), (x0; z0), (z0; x0), (y0; z0), (z0; y0), (z0; ;), (z0; z0). Since f+ is monotone, wederive that its restriction on P 8̂:xy(A) must be an onto map from a subset of P 8̂:xy(A) toP 8̂:x0y0(A0). Observe that in P 8̂:xy(A) the only element that is not above (xyz; z) is (z; ;). Hence,if f+((xyz; z)) = S 2 P 8̂:x0y0(A0), then f+(P 8̂:xy(A)� f(z; ;)g) is a subset of the principal �lterof S in P 8̂:x0y0(A0). However, P 8̂:x0y0(A0) has four minimal elements: (x0; y0), (y0; x0), (x0y0; z0) and(z0; ;) which shows that f+ can not be an onto monotone map between P 8̂:xy(A) and P 8̂:x0y0(A0).This contradiction shows that P 8̂ (A) can not be obtained as the free
-algebra generated byA. 2Therefore, as we suggested in the introduction to this section, the information about consistencyin A must be conveyed by the generating poset. That is, we use A"A instead of A. The surprisingresult now says that sandwiches over A are the free mix algebra generated by the consistentclosure of A under the same interpretation of the operations of mix algebras! Of course, we needan admissibility condition.

120 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONDe�nition 4.6 Let M be a mix algebra. A monotone map f : A"A ! M is called admissible(or sandwich-admissible) if f(x; y) + f(z; y) � f(x; y) and 2f(x; y) = 2f(x; z).Theorem 4.26 Given a poset A, P 8̂ (A) is the free mix algebra generated by A"A with respectto the admissible maps. That is, given a mix algebra M and an admissible map f : A"A ! M ,there exists a unique mix homomorphism f+ : P 8̂ (A) ! M such that the following diagramcommutes: A"A � �"- hP 8̂ (A);+;2; ei@@@@@f R hM;+;2; ei?9!f+Proof. We omit an easy veri�cation that P 8̂ (A) is a mix algebra.Let us �rst establish a number of useful properties of admissible maps. In what follows, f isalways an admissible map from A"A to M .1) Assume v - u and u"l. Then f(u; l) + f(v; l) = f(v; l).First, f(u; l) � f(v; l). By monotonicity of +, f(v; l) = f(v; l) + f(v; l) � f(v; l) + f(u; l). Butsince f is admissible, f(u; l) + f(v; l)� f(v; l). Hence, 1) holds.2) Assume p % l, v"l and q"p. Then f(v; l) + f(q; p) = 2f(v; v) + f(q; p).First show f(q; p) + f(q; l) = f(q; p). By monotonicity, f(q; p) + f(q; l) � f(q; p) + f(q; p) =f(q; p). On the other hand, f(q; p) + f(q; l) � f(q; p) + 2f(q; l) = f(q; p) + 2f(q; p) = f(q; p),which proves the equation. Since 2f(v; v) = 2f(v; l) � f(v; l), the � inequation for 2) holds.Conversely, f(v; l) + f(q; p) = f(v; l) + f(q; l) + f(q; p) = 2f(v; l) + f(v; l) + f(q; l) + f(q; p) �2f(v; l)+ f(q; l)+ f(q; p) � 2f(v; v)+ f(q; p) which shows the reverse inequation. 2) is proved.3) If l - m, then f(v; l) + f(q;m) = 2f(v; v) + f(q;m).The � inequation is obvious. As in the proof of 2), we obtain f(v; l)+f(q;m) = f(v; l)+f(q; l)+f(q;m) = 2f(v; l)+f(v; l)+f(q; l)+f(q;m)� 2f(v; l)+f(q; l)+f(q;m)� 2f(v; l)+f(q;m) =2f(v; v) + f(q;m).4) Assume v - u. Then f(v; l) = f(u; l) + 2f(v; v).

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 121First, f(u; l)+f(v; l)� f(v; l) = f(v; l)+f(v; l)� f(u; l)+f(v; l); hence f(u; l)+f(v; l) = f(v; l).Now we have: f(v; l) = f(v; l) + f(u; l) � f(u; l) + 2f(v; l) = f(u; l) + 2f(v; v). On the otherhand, f(v; l) = f(v; l) + 2f(v; l)� f(u; l) + 2f(v; v), proving 4).5) If v % u, then 2f(u; u) +2f(v; v) = 2f(v; v).According to the proof of 4), f(u; v) + f(v; v) = f(v; v) and from this 5) follows immediately.6) Assume u"l and v"l. Then f(v; l) + 2f(u; u) = f(v; l) +2f(u; u) + f(u; l).Since 2f(u; u) = 2f(u; l) � f(u; l), the � inequality holds. Since f(v; l) + f(u; l) � f(v; l), weobtain the reverse inequality.Now let us come back to the statement of the theorem. Let S = (U; L) be a sandwich over Awith U = fu1; : : : ; ung and L = fl1; : : : ; lkg. Since S is a sandwich, for every lj 2 L there existsuij 2 U such that lj"uij . Let I � [n]�[k] be the set of pairs of indices such that (i; j) 2 I , ui"lj .Then(1) S = X(i;j)2I(ui; lj) +2 nXi=1(ui; ui)From now on we assume that summation over an empty set is the identity for the + operation.It shows that (1) holds even if one of the components of a sandwich is empty.Using representation (1), de�ne f+ for an admissible f : A"A!M as follows:(2) f+(S) = X(i;j)2I f(ui; lj) +2 nXi=1 f(ui; ui)Let us show that f+ is a homomorphism. Prove that f+ is monotone �rst. Let S1 = (U; L)and S2 = (V;M) be two sandwiches such that S1 vB S2, that is, U v] V and L v[M . LetS = (U;M). Observe that S is a sandwich. Therefore, the proof of f+(S1) � f+(S2) is containedin the following two claims.Claim 1: f+(S1) � f+(S).Proof of claim 1: If L = ;, then claim follows easily from (1), admissibility and equation 4 ofmix algebras. For L 6= ;, since L v[M , there is a sequence of sets L0 = L; L1; : : : ; Ln = Msuch that each Li � L [M and either Li+1 = max(Li [l) or Li+1 = max((Li � L0) [l)where l0 - l for all l0 2 L0, see theorem 4.3. Then each (U; Li) is a sandwich. We mustshow f+(U; Li) � f+(U; Li+1). Consider the �rst case, i.e. Li+1 = max(Li [l). To verifyf+(U; Li) � f+(U; Li+1) in this case, it is enough to show 2f(u; u)+f(u; l)� 2f(u; u) if u"l and,if there is an element l0 2 L such that l0 � l, then f(u0; l0)+f(u; l)+2f(u; u) � f(u0; l0)+2f(u; u)

122 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONif u0"l0. The �rst one is easy: 2f(u; u) + f(u; l) = 2f(u; l) + f(u; l) = f(u; l) � 2f(u; u). Thesecond one follows from monotonicity of +: f(u; l) +2f(u; u) � 2f(u; l) = 2f(u; u).Consider the second case, i.e. Li+1 = max((Li � L0) [l). Assume u"l. Then u"l0 for any l0 2 L0.Therefore, any summand f(u; l) in (2) for (U; Li+1) is bigger than f(u; l0) in (2) for (U; Li). Nowsuppose there is l0 2 L0 such that u0"l0 but u0 is not consistent with l. If l is consistent with someu 2 U , then u"l0. Therefore, to �nish the proof of claim 1, we must show that f(u0; l0)+f(u; l0) �f(u; l). But this follows from admissibility of f : f(u0; l0) + f(u; l) � f(u; l0) � f(u; l). Claim 1is proved.Claim 2: f+(S) � f+(S2).Proof of claim 2: Again, we assume non-emptiness, since for empty sets the proof of claim 2readily follows from (1). We start with proving the following. Given a sandwich (W;N) andn 2 N , let wn be arbitrarily chosen element of W such that wn"n. Then, given an admissiblefunction f , f+(W;N) de�ned by (2) equals Pn2N f(wn; n) + 2Pw2W f(w;w). To prove this,assume that there are two elements w1 and w2 in W consistent with n 2 N . Then we mustshow f(w1; n) + f(w2; n) + 2f(w1; w1) + 2f(w2; w2) = f(w1; n) + 2f(w1; w1) + 2f(w2; w2).That the left hand side is less than the right hand side follows from admissibility. On the otherhand, f(w1; n) +2f(w1; w1) +2f(w2; w2) = f(w1; n) +2f(w2; n) +2f(w1; w1) +2f(w2; w2) �f(w1; n) + f(w2; n) +2f(w1; w1) +2f(w2; w2) which proves our claim.Now, to prove claim 2, consider S2 = (V;M) and let vm be an element of V consistent withm 2 M . Since U v] V , let um be an element of U under vm. Then um"m. Also, let uv bean element of U under v 2 V . Then 2Pu2U f(u; u) = 2Pv2V f(uv; uv) + 2Pu6=uv f(u; u) �2Pv2V f(uv; uv) � 2Pv2V f(v; v). Now, by the claim proved above, f+(S) =Pm2M f(um; m)+2Pu2U f(u; u) �Pm2M f(vm; m) +2Pv2V f(v; v) = f+(S2) which �nishes the proof of claim2 and monotonicity of f+.Now we demonstrate that f+ preserves the operations of the signature of the mix algebras.Since 2 distributes over +, 2f+(S) = P(i;j)2I 2f(ui; lj) +Pi2f(ui; ui). Since 2f(ui; lj) +2f(ui; ui) = 2f(ui; ui), we obtain 2f+(S) = Pni=12f(ui; ui) = f+(2S). Moreover, since2e = e, this also holds when one of components is empty. In addition, f+(;; ;) = e.That f+ is a +-homomorphism easily follows from (2) when one of the components is empty. Soin the rest of the proof we assume that the second components of all sandwiches are not empty.Let S1 = (U; L), S2 = (V;M). Let S = S1+S2 = (W;N). Consider a pair (ui; lj) with (i; j) 2 I.There are three cases: this pair is either present in the representation (1) of S or ui % vk forsome vk 2 V \min(U [V) or lj - mk 2M \max(L [M).Consider the second case. We have vk"lj . Assume lj - p and p 2 N . We know that p"q for someq 2 W . Since f(vk ; lj) + f(q; p) + 2f(vk; vk) = f(q; p) + 2f(v; v) by 2), we obtain f+(S) =f+(S) + f(vk; lj). Furthermore, since 2f(vk; vk) + f(ui; lj) + f(vk; lj) = 2f(vk; vk) + f(vk ; lj)

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 123by 1), we have f+(S) = f+(S) + f(vk; lj) + f(ui; lj).Consider the third case. Assume ui is greater or equal than some v 2 W and mk"q for q 2 W .Then f(v; lj) + f(q;mk) = 2f(v; v) + f(q;mk) by 3), and hence f+(S) = f+(S) + f(v; lj). Sincef(v; lj) = f(u; lj) + 2f(v; v) by 4), we obtain f+(S) = f+(S) + f(ui; lj).Assume that u % v. Since 2f(u; u) + 2f(v; v) = 2f(v; v) by 5), we obtain f+(S) = f+(S) +2f(ui; ui) for any ui.All this shows that f+(S) can be rewritten as f+(S1) + f+(S2) +X where X is a sum of someelements of form f(ui; mj) or f(vi; lj). Consider a pair (ui; mj) such that ui"mj . There existsvk such that vk"mj . Since f(vk ; mj) +2f(ui; ui) = f(vk ; mj) +2f(ui; ui) + f(ui; mj) by 6), thesummand f(ui; mj) can be safely removed from X . Thus, any summand can be removed fromX and f+(S) = f+(S1) + f+(S2). Therefore, f+ is a homomorphism.The uniqueness of f+ follows from (1). Since f+(�"(x; x)) = f(x; x) + 2f(x; x) = f(x; x), wehave f+ � �" = f . The theorem is proved. 2Universality of P9For P9(A), the situation is analogous to mixes. That is, there exists a family of operations
such that P9(A) is the free ordered
-algebra generated by A.Recall that a left normal band is an algebra hB; �i such that � is associative, idempotent andx � y � z = x � z � y, see Romanowska and Smith [149].De�nition 4.7 An algebra hB;�; �i is called a distributive bi-LNB algebra if:1) � and � are left normal band operations.2) All distributive laws between � and � hold.3) a� (b � c) = a� b.4) (a � b)� b = (b � a)� a.Some useful equalities can be derived from 1) - 4). For example, a � (b � c) = a � b � a � c =a � b � a = a � b � a � b = a � b and a � b� a � c = a � b � a = a � b � a � b = a � b. It followsimmediately from 3) and 4) that (a � b)� (b � a) = (b � a)� (a � b).We need not include the order in the signature as it is de�nable.Lemma 4.27 In a distributive bi-LNB algebra, a � b := b� a = a � b de�nes a partial order.Moreover, � and � are monotone with respect to �.

124 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONProof. First, let us show that b� a = a � b implies a� b = a and b �a = b. If a � b = b� a, thenb�a = b�a�b = b�(b�a) = b�b�a = b�b = b. Moreover, a = a�a = a�a�b = a�b�a = a�b.Because of idempotency, � is re
exive. To prove transitivity, let a � b and b � c. We mustshow a � c = c� a. Calculate c� a = c � b� a� b = (c� b) � b� a = b � c � b� a = b � c� a =(b�a)� (c�a) = a�b�c�a�b�a= a�b�c�a= a�b�c�a�b�c= a�b�c. On the other hand,a � c = (a� b) � c � b = a � c � b� b � c � b = a � c � b� b = (a� b) � (c� b)b = a � b � c � b = a � b � c.Hence, c� a = a � c and a � c. Finally, if a � b and b � a, then a� b = a and b � a = b. Hence,b = b � a = a� b = a, which �nishes the proof that � is a partial order.Assume that a � b. To see that a� c � b� c, calculate (a� c) � (b� c) = a � b�a � c� c � b� c=a � b� a � c = b� a � c = (b� c)� (a � c). Similarly, � is monotone in its second argument.To show a � c � b � c, calculate a � c � b � c = (a � b) � c = b � a � c = b � c � a � c. Similarly,c � a� c � b = c � (a� b) = c � b � a = c � a � c � b. Hence, � is monotone. 2Thus, we treat distributive bi-LNB algebras as ordered algebras.We interpret the operations � and � on P9(A) as follows:(U; L)� (V;M) = (min(U [V); L) (U; L) � (V;M) = (U;max(L [M))Note that under this interpretation x + y = (x � y)� y where the + operation is the one usedfor mixes and sandwiches. Hence, 4) is just commutativity of +.Theorem 4.28 P9(A) is the free distributive bi-LND algebra algebra generated by A. That is,for any distributive bi-LND algebra B and any monotone map f : A! B, there exists a uniquehomomorphism which completes the following diagram:A � �- hP9(A);�; �i@@@@@f R hB;�; �i?9!f+Proof. First observe that if (U; L) 2 P9(A), then U; L 6= ;. We leave it to the reader to �ndan easy proof that P9(A) satis�es all equations of the distributive bi-LND algebras under thegiven interpretation of � and � and that S1 vB S2 i� S1 � S2 = S2 �S1. Given (U; L) 2 P9(A),we can �nd u 2 U and l 2 L such that u1 - l1. Then, using P� for repeated applications of �,and N for repeated applications of �, we can see that(U; L) =P� u2U�(u) � �(u1) � �(l1) �Ol2L �(l)

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 125if in the summation over elements of U the �rst summand is below an element of L. Now, givena monotone f from A into an algebra B, de�ne f+ : P9(A)! B as follows:f+(U; L) =P� u2Uf(u) � f(u1) � f(l1) �Ol2L f(l)Our �rst goal is to show that in the above representation any number of expressions of formf(u0)�f(l0), where u0 - l0, can be added after f(u1)�f(l1). This is indeed correct, as f(u0) � f(l0)implies f(u0) � f(l0) = f(l0) and f(l0) is subsumed by Nl2L f(l).Denote f(u1)�: : :�f(un) by ~U forU = fu1; : : : ; ung and f(l1)�: : :�f(lk) by L̂ for L = fl1; : : : ; lkg.Then f+((U; L)) = ~U � f(ui1) � : : : � f(uim) � L̂ for any number of uij 's which are under someelements of L.To show that f+ is well-de�ned, we must prove that its value does not change if we pick adi�erent �rst summand in ~U as long as it is below an element of L. It su�ces to prove thefollowing. Let ui � li, i = 1; 2. Then (f(u1) � f(u2)) � L̂ = (f(u2) � f(u1)) � L̂. This can befurther reduced to proving (f(u1)� f(u2)) � f(l1) � f(l2) = (f(u2)� f(u1)) � f(l1) � f(l2). Again,we calculate(f(u1)� f(u2)) � f(l1) � f(l2) = f(u1) � f(l1) � f(l2)� f(u2) � f(l1) � f(l2) =(f(l1)� f(u1)) � f(l2)� (f(l2)� f(u2)) � f(l1) =f(l1) � f(l2)� f(l2) � f(l1)� f(u1) � f(l2)� f(u2) � f(l1)Similarly,(f(u2)� f(u1)) � f(l1) � f(l2) = f(l2) � f(l1)� f(l1) � f(l2)� f(u1) � f(l2)� f(u2) � f(l1)Now the desired equality follows from the equality (a � b)� (b � a) = (b � a) � (a � b) which istrue in all bi-LNB algebras.Our next goal is to show that any number of nonminimal elements can be added to U and anynumber of nonmaximal elements can be added to L and that it does not change the value off+. That is, writing expressions for f+ we may disregard min and max operations.Assume that u - u0 and u0 is added to U . There are two cases. If f(u0) is not the �rst summandin gU [u0, then f(u) � f(u0) = f(u), so we may disregard f(u0). It is also possible that f(u0)can be used in the expression for f+ between ~U and L̂, in which case it can also be disregardedas, if it is below some l, then f(u0) � f(l) = f(l). Finally, consider the case when f(u0) is the�rst summand. It is only possible if u - u0 - l for some l 2 L. To prove that f(u0) can bedropped and replaced by f(u) in this case, we must show (f(u0)�f(u))�f(l) = f(u)�f(l). Sincef(u) � f(u0) and f(u0)�f(u) = f(u)�f(u0), we obtain (f(u0)�f(u))�f(l) = f(u)�f(u0)�f(l) =f(u) � f(l) � f(u0) = f(u) � f(l).

126 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONIf l0 - l is added to L, f(l0) does not change the value of f+ as f(l) � f(l0) = f(l). Therefore, wemay disregard all max and min operations in expressions for f+.At this point we are ready to show that f+ is a homomorphism. Its uniqueness will followfrom the representation of elements of P9(A) from singletons and well-de�nedness of f+. LetS1 = (U; L) and S2 = (V;M). Let u1 - l1 and v1 - m1 for u1 2 U; l1 2 L; v1 2 V;m1 2M . Then f+(S1) � f+(S2) = P� v2V (f+(S1) � f(v) � f(v1) � M̂). For two vi and vj , considerf+(S1) � f(vi) � f(v1) � M̂ and f+(S1) � f(vj) � f(v1) � M̂ . Since L 6= ;, they are the same,because a � b�a � c = a � b is a derivable equality. Hence, f+(S1) � f+(S2) = f+(S1) � f(v1) � M̂ .Since v1 - m1, we have f(m1) � f(v1) = f(m1) and hence x � f(v1) � M̂ = x � M̂ for any x.Thus, f+(S1) � f+(S2) = ~U � f(u1) � L̂ � M̂ = ~U � f(u1) � dL [M = f+(S1 � S2). Therefore, f+is a �-homomorphism.Now consider f+(S1) � f+(S2). From the equational theory, we immediately have f+(S1) �f+(S2) = (~U � f(u1) � L̂)� ~V . Furthermore, since (a� c) � b = a � b� c � b = a � b� c, we havef+(S1)� f+(S2) = (~U � ~V) � f(u1) � L̂ = gU [V � f(u1) � L̂ = f+(S1)� f+(S2). Thus, f+ is ahomomorphism. Theorem is proved. 2Universality of P;Recall that P;(A) is the poset of pairs of �nite antichains (U; L) ordered by vB. Hence, it isisomorphic to the direct product of P[(A) and P](A), each of them being a free construction.A product of free algebras is not necessarily a free algebra. However, for the case of P;(A) weexhibit a simple way of combining mixes with their \dual" algebras to obtain the universalityproperty for P;(A).De�nition 4.8 An algebra hB;+;2;3i is called a bi-mix algebra if hB;+;2i is a mix algebra(see de�nition 4.5), x = 2x + 3x and hB;+;3i is a dual mix algebra. By this we mean that3 is a closure, that is, 3 is monotone, 3x � x, 33x = 3x and 3(x+ y) = 3x+ 3y, and inaddition x+3x = x and x+3y � x.We give P;(A) the structure of a bi-mix algebra by interpreting + and 2 in the same way asfor P8(A) and by putting 3(U; L) = (;; L).Theorem 4.29 P;(A) is the free bi-mix algebra generated by A. That is, for any bi-mix algebraB and any monotone map f : A! B, there exists a unique homomorphism which completes thefollowing diagram:

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 127A � �- hP;(A);+;2;3i@@@@@f R hB;+;2;3i?9!f+Proof. It is easy to check that P;(A) is a bi-mix algebra under the given interpretation of theoperations. To prove freeness, we �rst need a few facts about bi-mix algebras.Let e = 23x. We have y+3x � y and hence by monotonicity 2y+e � 2y. Adding 3y to bothsides, we get by monotonicity that 3y+2y+e � 3y+2y and hence y � y+e � y which provesthat e is the identity of +. Similarly, if we de�ne e0 = 32x, then e0 is the identity of + andtherefore e = e0. This shows that the identity of + can be correctly de�ned as e = 23x = 32yfor arbitrary x and y. Since x � 2x, we have 3x � 32x = e. Similarly, 2x � e. It is also easyto see that 2e = 3e = e.Now, given (U; L) 2 P;(A), observe that(U; L) = 2Xu2U �(u) + 3Xl2L �(l)As usual, summation over ; is assumed to be e. Then, given f : A! B, de�ne f+ : P;(A)! Bas follows: f+((U; L)) = 2Xu2U f(u) + 3Xl2L f(l)First, f+(�(x)) = f+((x; x)) = 2f(x) +3f(x) = f(x) and hence f+ � � = f . Now we are goingto show that f+ is a homomorphism. Its uniqueness will then follow from the representation ofelements of P;(A) given above.Before we show that f+ is monotone, let us check that the value of f+ does not change if anelement l0 - l 2 L is added to L or an element u0 % u 2 U is added to U . Indeed, to prove theformer, observe that f(l0) � f(l) and 3f(l0) +3f(l) � 3f(l) +3f(l) = 3f(l). For the latter,2f(u) � 2f(u) + 2f(u0) � 2f(u) and hence 2f(u) + 2f(u0) = 2f(u).To show that f+ is monotone, observe that if (U; L) vB (V;M), then U vora V and L vOWAa Mand hence V can be obtained from U by a sequence of updates described in theorem 4.5 andM can be obtained from L by a sequence of updates described in theorem 4.3. It is easy to seethat updates that replace an element by a number of bigger elements are monotone. Considerremoving an element u from U . If U = fug, then Pu02;2f(u0) = e � 2f(u). If u0 2 U � fug,then 2f(u0) � 2f(u0) +2f(u) which proves monotonicity in this case. Finally, if L = ; and an

128 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONelement is l added, then 3f(l) �Pl02;3f(l0) = e. If l 2 L and l0 is added, we have monotonicitybecause 3f(l) +3f(l0) � 3f(l).Now we are ready to prove that f+ is preserves +, 2 and3. First,2f+((U; L)) = 22Pu2U f(u)+23Pl2L f(l) = 2Pu2U f(u) + e = f+(2(U; L)). Similarly, 3f+((U; L)) = f+(3(U; L)). Thefact that + is preserved follows immediately from the de�nition of f+ and the observation thatnonminimal elements in U and nonmaximal elements in L do not a�ect the value of f+. 2Universality of PP8 (snacks)Snacks were �rst introduced by Buneman and then studied by Ngair in his dissertation [121].Later they were characterized by Puhlmann [141] as free distributive bisemilattices [61, 134].Since Pulhmann's proof is not very complicated and since it exploits an unusual presentationof the equational theory, for the sake of completeness we prove the characterization theoremhere. We then shall demonstrate the connection between snacks and theory of P lonka's sums ofalgebras [149, 135].First observe that the ordering vBf gives PP8(A) the structure of a meet-semilattice [141] where(U;L)^ (V;M) = (min(U [V);max]fmin(L [M) j L 2 L;M 2 Mg)De�nition 4.9 (see [61, 134]). A bisemilattice is an algebra hB;+; �i such that + and � aresemilattice operations. A bisemilattice B is called distributive if both distributive laws hold, thatis: x(y+z) = xy+xz and x+yz = (x+y)(x+z). (For convenience, we often omit � in formulasand equations.)When we speak of the ordering on a bisemilattice B, we mean the ordering associated with �,that is, x � y i� xy = x.PP8(A) can be given the structure of distributive bisemilattice by making � to be the greatestlower bound operation above and by de�ning + as(U;L) + (V;M) = (min(U [V);max](L [M))Observe that the empty snack e = (;; ;) is the identity for +.De�nition 4.10 A snack algebra is a distributive bisemilattice in which + has identity e.A homomorphism of snack algebras is a homomorphism in the usual algebraic sense. In otherwords, there is no need to require monotonicity as we did for mixes, because it is implied: ifx � y, then h(x) � h(y) = h(x � y) = h(x) and h(x) � h(y).

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 129Theorem 4.30 Given a poset A, PP8(A) is the free snack algebra generated by A. That is,for any snack algebra Sn and a monotone map f : A ! Sn, there exists a unique snackhomomorphism f+ : PP8(A)! Sn such that the following diagram commutes:A � �- hPP8(A);+; �; ei@@@@@f RhSn;+; �; ei?9!f+Proof. We omit veri�cation that PP8(A) is a snack algebra (in fact, the distributivity laws willbe veri�ed later in the greater generality).Given a snack S = (U;L) where U = fu1; : : : ; ung and L = fL1; : : : ; Lkg, Li = fli1; : : : ; likig, wehave(3) S = (nYi=1 �(ui))e+ kXi=1 kiYj=1 �(lij)Then, if monotone f : A! Sn is given, de�ne f+ : PP8(A)! Sn by(4) f+(S) = (nYi=1 f(ui))e+ kXi=1 kiYj=1 f(lij)Clearly, f+(;; ;) = e and f+(�(x)) = f(x) � e + f(x) = f(x). We must show that f+ is ahomomorphism.We start with a few easy observations. First, notice that for a snack algebra + is monotonewith respect to �. Indeed, take b � c and observe that (a + b)(a+ c) = a + bc = a + c, hencea + b � a + c. Let us now take three elements a � b � c. We have: ae + c � ae + ae + c �ae+ b+ c � ae+ c+ c = ea+ c. Hence, ae+ b+ c = ae+ c. Furthermore, consider arbitrary aand b. Since abe(a+ b) = abe, we have abe � (a+ b)e. On the other hand, ae+ be is below a, band e, and hence ae+ be � abe. Thus, abe = (a+ b)e.Let x - y in A. Then f(x) � f(y) and hence f(x) � f(y) = f(x). Therefore, if X and Y are two�nite subsets of A equivalent with respect to v], then Qx2X f(x) = Qy2Y f(y).Furthermore, assume U v] X v] Y for U;X; Y 2 P�n(A). Then we have Qu2U f(u) � e �Qx2X f(x) � Qy2Y f(y) and therefore Qu2U f(u) �e+Qx2X f(x)+Qy2Y f(y) = Qu2U f(u) �e+Qy2Y f(y). This observation shows that writing an expression for f+(S1 + S2) and f+(S1 � S2)

130 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONone may disregard all max and min operations. That is, for S1 = (U;L) and S2 = (V;M),(5) f+(S1 + S2) = Yu2U f(u) � Yv2V f(v) � e+ XL2LYl2L f(l) + XM2M Ym2M f(m)(6) f+(S1 � S2) = Yu2U f(u) � Yv2V f(v) � e+ XL2L;M2MYl2L f(l) � Ym2M f(m)That f+(S1 + S2) = f+(S1) + f+(S2) follows immediately from (5).Let us denote Qx2X by ~X. Then f+(S1 � S2) = ~U ~V e+ ~Ue �PM ~M + ~V e �PL ~L+PL ~L �PM ~M .The last summand is easily seen to be PL;M ~L � ~M . Since PM ~M � ~V , the last summand is alsogreater than ~V e �PL ~L which can therefore be dropped. Similarly, ~Ue �PM ~M can be dropped.Thus, f+(S1 � S2) = f+(S1) � f+(S2) which shows that f+ is a homomorphism. Its uniquenessfollows from (3). 2We now show that a particular case of this theorem (when A is a discrete order) is well known.If A is discrete, then any subset of A is an antichain, and the consistency condition says thatLi � U for any snack (U; fL1; : : : ; Lkg). To rede�ne bisemilattice operations, simply remove allmin's and replace max] with min�.Fix U � A and consider LU = fL j (U;L) is a snackg. Then it is easy to see that hLU ;+; �i isthe free distributive lattice generated by U . It shows that PP8(A) is what is known in universalalgebra as the P lonka sum of free distributive lattices over the semilattice hP�n(A);[i whichitself is the free semilattice generated by A. Now, the result of P lonka [134] tells us that suchconstruction is isomorphic to a free distributive bisemilattice. Thus, we have shown how toextend the result of [134] to arbitrary generated posets and how to include the identity constantinto the signature.Universality of PP8̂The di�erence between elements of PP8(A) and PP 8̂ (A) is that in the latter the consistencycondition is similar to that in sandwiches: for any (U;L) in PP8̂ (A), and any L 2 L, there existsW such that L v[W and U v] W . Our goal is to show that PP8̂ (A) can not be described asa free ordered algebra generated by A. Recall that we de�ned + as an operation on snacks by(U;L) + (V;M) = (min(U [V);max](L [M)). It is easy to see that elements of PP8̂ (A) areclosed under this operation as well.Theorem 4.31 Let
+ be a set of operations on elements of PP8̂ (A) such that + is a derivedoperation. Then PP8̂ (�) is not left adjoint to the forgetful functor from the category of ordered

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 131
+-algebras to Poset. In other words, for no
+ is PP8̂ (A) the free ordered
+-algebra generatedby A.Proof. Assume that there exists a set of operation
+ such that P 8̂ (A) the free ordered
-algebra generated by A for any poset A and + is a derived operation. Let A = fx; y; zg bean antichain and A0 = fx0; y0; z0g be a poset such that x0; y0 - z0 and x0 6- y0, y0 6- x0. Letf : A ! PP8̂ (A0) be de�ned by f(a) = (a0; a0); a 2 A. Now the assumed universality propertytells us that f can be extended to a monotone
+-homomorphism f+ : PP8̂ (A)! PP8̂ (A0). LetS 2 PP 8̂ (A0). Since PP 8̂ (A0) is the free
+-algebra generated by A0, we can �nd a term t in thesignature
+ such that S = t(�(x0); �(y0); �(z0)). Since �(x0) = f(x) = f+(�(x)) and similarlyfor y0 and z0, we obtain S = f+(t(�(x); �(y); �(z))) = f+(S0) for some S0 2 PP8̂ (A). Therefore,f+ is an onto +-homomorphism.Using the fact that f+ is a +-homomorphism, we �nd f+((xy; fx; yg)) = f+((x; x) + (y; y)) =(x0; x0) + (y0; y0) = (x0y0; fx0; y0g) and f+((xz; fx; zg)) = f+((x; x) + (z; z)) = (x0; x0) + (z0; z0) =(x0; z0). Similarly, f+((yz; fy; zg)) = (y0; z0). De�nePP8̂0 (A) = PP 8̂ (A)� #f(x; x); (y; y); (xy; fx; yg); (xz; fx; zg); (yz; fy; zg)g andPP 8̂0 (A0) = PP 8̂ (A0)� #f(x0; x0); (y0; y0); (x0y0; fx0; y0g); (x0; z0); (y0; z0)gSince f+ maps PP 8̂ (A) � PP 8̂0 (A) into PP8̂ (A0) � PP8̂0 (A0), there must be an onto map from asubset of PP8̂0 (A) onto PP8̂0 (A0). Now we can �nd that PP8̂0 (A) = f(xyz; fx; y; zg); (z; z); (z; ;)gand PP8̂0 (A0) = f(z0; z0); (z0; fx0; y0g); (z0; x0); (z0; y0); (z0; x0y0); (z0; ;); (x0y0; z0)g. Therefore, thereis no map from a subset of PP8̂0 (A) onto PP8̂0 (A0). This contradiction proves the theorem. 2Universality of PP9The consistency condition for (U;L) 2 PP9(A) says that "U \L 6= ; for every L 2 L. Therefore,PP9(A) is closed under + de�ned, as usual, by (U;L) + (V;M) = (min(U [V);max](L [M)).Our goal is to show that PP9(A) can not be described as a free ordered algebra generated byA. This is more surprising than similar results for approximation constructs using u"l in theconsistency condition. Here no information about consistency is needed, but we still can not�nd a free algebra characterization.Theorem 4.32 Let
+ be a set of operations on elements of PP9(A) such that + is a derivedoperation. Then PP9(�) is not left adjoint to the forgetful functor from the category of ordered
+-algebras to Poset. In other words, for no
+ is PP9(A) the free ordered
+-algebra generatedby A.Proof. Consider two posets: A = fx; y; zg and A0 = fx0; y0; z0g. In A, x; y - z and x and yare incomparable. A0 is a chain: x0 - y0 - z0. De�ne f : A ! A0 by f(x) = x0; f(y) = y0 andf(z) = z0. Clearly, f is monotone.

132 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONAssume that there exists a signature
+ such that for any poset B, hPP9(B);
+i is the free
+algebra generated by B. Then we would have a monotone +-homomorphism f+ : PP9(A) !PP9(A0) such that f+((x; x)) = (x0; x0); f+((y; y)) = (y0; y0) and f+((z; z)) = (z0; z0). Thenwe have f+((xy; fx; yg)) = f+((x; x) + (y; y)) = (x0; x0) + (y0; y0) = (x0; y0) and f+((y; z)) =f+((y; y) + (z; z)) = (y0; y0) + (z0; z0) = (y0; z0).Since f+ is monotone and (x; xy) � (x; x), we obtain f+((x; xy)) = (x0; x0). Similarly, f+((xy;xy)) = (x0; x0). Then (x0; x0) = f+((xy; xy)) = f+((x; xy) + (y; xy)) = (x0; x0) + f+((y; xy)).Since (y; xy) � (y; y), f+((y; xy)) can be either (y0; y0) or (x0; y0) or (x0; x0). The equality abovethen tells us that f+((y; xy)) = (x0; x0).Now we use these values of f+ to calculate (y0; z0) = f+((y; z)) = f+((y; xy) + (y; z)) =f+((y; xy)) + f+((y; z)) = (x0; x0) + (y0; z0) = (x0; z0). This contradiction shows that f : A! A0can not be extended to a monotone +-homomorphism between PP9(A) and PP9(A0) and hencePP9(A) is not a free
+-algebra generated by A. 2Universality of PP 9̂ (scones)Scones were introduced recently by Jung and a few initial results were proved by Puhlmann[141]. For example, it was shown that scones preserve bounded completeness and distributivity,while snacks preserve the former but not the latter.If x; y 2 A and x"y, then (x; fyg) is a scone. Thus, we have the same problem as we had withsandwiches: it is no longer enough to start with A itself as a generating poset if we want torepresent scones as a free construction. That is, some information about consistency must beincorporated into the generating poset. As we did in the case of sandwiches, we use A"A as thegenerating poset.Let us now describe the algebra. Recall that a left normal band is an algebra hB; �i where � isidempotent, associative and x � y � z = x � z � y, see Romanowska and Smith [61, 149].De�nition 4.11 A scone algebra is an algebra hSc;+; �; ei where + is a semilattice operationwith identity e, � is a left normal band operation, + and � distribute over each other, theabsorption laws hold and e � x = e. Formally, in addition to � being left normal band and +being semilattice operation, the following hold:1) x+ y � z = (x+ y) � (x+ z);2) (x+ y) � z = x � z + y � z;3) z � (x+ y) = z � x+ z � y;4) x+ x � y = x;5) e+ x = x+ e = x;6) e � x = e.

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 133In other words, a scone algebra is \almost distributive lattice" { commutativity of one of theoperations is replaced by the law of the left normal bands. Scone algebras are known as idem-potent distributive semirings with semilattice and left zero bands reducts. There is no knowncharacterization of such algebras we could bene�t from (though the characterization of freeidempotent distributive semirings with semilattice reducts is known, see [147]).If Sc is a scone algebra, de�ne x �y = x�y+y �x. It is an easy observation that � is a semilatticeoperation. An ordering on Sc is de�ned according to this operation, that is, x � y , xy = x.Similarly to the case of snacks, this implies monotonicity of any homomorphism.To give PP 9̂ (A) the structure of a scone algebra we must show how to de�ne + and �. The +operation is de�ned as for snacks, and(U;L) � (V;M) = (U;max]fmin(L [M) j L 2 L;M 2 Mg)It is easy to check that (U;L) � (V;M) satis�es the consistency condition. e is the empty scone(;; ;). Similarly to the case of sandwiches, a de�nition of admissibility is needed to preserve theadditional structure given by the consistent closure of A.De�nition. Let hSc;+; �; ei be a scone algebra. A monotone map f : A"A ! Sc is calledadmissible if f(u; l) � f(v;m) = f(u;m) � f(w; l) and f(u; l) � e = f(u;m) � e.Theorem 4.33 Given a poset A, PP 9̂ (A) is the free scone algebra generated by A"A with respectto admissible maps. That is, for any scone algebra Sc and an admissible map f : A"A ! Sc,there exists a unique scone homomorphism f+ : PP 9̂ (A) ! Sc which completes the followingdiagram: A"A � �"- hPP 9̂ (A);+; �; ei@@@@@f R hSc;+; �; ei?9!f+Proof. We shall verify the distributivity laws in the proof of algebraic characterization of thesalads in the next subsection. Distributivity laws for scones then follow from the observationthat the second components of (U;L) � (V;M) and (U;L) � (V;M) coincide. Equation 4) isimmediate. Thus, PP 9̂ (A) is a scone algebra.We now need some observations about the scone algebras. In what follows, f is an admissiblemap from A"A to a scone algebra Sc. The de�nition of admissibility can be rewritten to f(u; l)�f(v;m) = f(u; l) � f(w;m) = f(u;m) � f(v; l).

134 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION1) + is monotone with respect to the ordering given by �.Let b � a. Then (a+c)(b+c) = (a+c)�(b+c)+(b+c)�(a+c) = c+a�b+b�a = c+ab = b+c,i.e. b+ c � a+ c.2) � distributes over +.x(y + z) = x � (y + z) + (y + z) � x = x � y + y � x+ x � z + z � x = xy + xz.3) If a � b, then a � e � b � e.(a � e) � (b � e) = a � b � e+ b � a � e = (a � b+ b � a) � e = (ab) � e = a � e.4) f(x; y) + f(z; y) � f(x; y).f(x; y) + f(z; y) � f(x; y) = (f(x; y) + f(z; y)) � f(x; y) + f(x; y) � (f(x; y)+ f(z; y)) = (f(x; y) +f(x; y) � f(z; y)) + f(z; y) � f(x; y) = f(x; y) + f(z; y) � f(z; y) = f(x; y) + f(z; y).5) If a - b, then f(a; a) � e+ f(b; b) � e = f(a; a) � e.First of all, f(a; a) � e+ f(b; b) � e = f(a; a) � e+ f(b; a) � e = (f(a; a) + f(b; a)) � e � f(a; a) � eby 3) and 4). Furthermore, f(a; a) = f(a; a) + f(a; a) � f(a; a) + f(b; b) by 1) and thereforef(a; a) � e � (f(a; a) + f(b; b)) � e which �nishes the proof.6) If a - b and b"x, then f(x; a) � f(b; b) = f(x; a).We have f(x; a) � f(b; b) = f(x; a) � f(x; b) = f(x; b) � f(x; a). Hence f(x; a) � f(b; b) = f(x; a) �f(x; b) + f(x; b) � f(x; a) = f(x; a) � f(x; b) = f(x; a) because f(x; a) � f(x; b).7) For any a"b, f(a; b) � f(b; a) � f(a; b).It is easy to see that (f(a; b) � f(b; a)) � f(a; b) = f(a; b) � f(b; a).8) If a - b, then f(b; b) � f(a; a) = f(b; a).By admissibility and 7), f(b; b) � f(a; a) = f(b; a) � f(a; b) � f(b; a). On the other hand,f(b; a) � (f(b; b)� f(a; a)) = f(b; a) � f(b; b)� f(a; a) + f(b; b)� f(a; a) � f(b; a) = f(b; a) � f(b; b)�f(b; a) + f(b; b) � f(b; a) � f(b; a) = f(b; a) � f(b; b) + f(b; b) � f(b; a) = f(b; a) � f(b; b) = f(b; a).Hence, f(b; a) � f(b; b) � f(a; a) which proves 8).Since Q is already used to denote repeated applications of �, for many applications of � we shalluse
.Let S = (U;L) be a scone over A. Since "U \ "L 6= ; for all L 2 L, there exists a pair (ui; ljki)for every j such that ui"ljki . Let i(j) and k(j) be some indices such that ui(j)"ljk(j). Then S can

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 135be represented as(7) S = Xu2U �"(u; u) � e+ XLj2L(�"(ui(j); ljk(j)) �Ol2Lj �"(l; l))Recall that summation over ; is the identity. We will never need product over the empty indexset for all antichains in the second component are nonempty. Moreover, observe that in (7) itdoes not matter how pairs (i(j); k(j)) are chosen.Using (7), de�ne(8) f+(S) = Xu2U f(u; u) � e+ XLj2L(f(ui(j); ljk(j)) �Ol2Lj f(l; l))Our �rst goal is to verify that f+ is well-de�ned, that is, it does not depend on how pairsi(j); k(j) are chosen. To save space, denote Nl2L f(l; l) by L̂. First observe that any numberof applications of f to a consistent pair (u; l) for l 2 Lj can be put after f(ui(j); ljk(j)) because,by admissibility, f(ui(j); ljk(j)) � f(u; l) = f(ui(j); ljk(j)) � f(l; l) and � is idempotent. To �nish theproof of well-de�nedness, it is enough to show that the following equation holds: f(u; u) � e +f(u0; u0) � e + f(u; l) � L̂ = f(u; u) � e + f(u0; u0) � e + f(u0; l0) � L̂ where u; u0 2 U and l; l0 2 L.By distributivity, this reduces to showing that f(u; u) � e + f(u0; u0) � e + f(u; l) � f(l0; l0) =f(u; u)�e+f(u0; u0)�e+f(u0; l0)�f(l; l). Because of the symmetry in this equation, it is enoughto provef(u; u) � e+ f(u0; u0) � e + f(u; l) � f(l0; l0) � f(u; u) � e + f(u0; u0) � e+ f(u0; l0) � f(l; l)Denote f(u; u)�e+f(u0; u0)�e by p, f(u; l)�f(l0; l0) by q and f(u0; l0)�f(l; l) by r. We must showq+ p � r+ p. By 2), (q+ p)(r+ p) = rq+ rp+ qp+ p. By monotonicity of + (see 1)), it enoughto prove qp � r. We prove more. In fact, p � r. First observe that if a � b, then a � e � b � c.Indeed, (a � e) � (b � c) = a � e+ b � e = a � e by the same argument as in 5). Thus, we must showp � f(u; l). Calculate p�f(u; l) = (f(u; u)+f(u0; u0))�e�f(u; l) = (f(u; u)+f(u0; u0))�e�f(u; l)+f(u; l)�(f(u; u)+f(u0; u0))�e = (f(u; u)+f(u0; u0))�e+f(u; l)�e= f(u; u)�e+f(u0; u0)�e = p.Thus, p � r and this �nishes the proof of well-de�nedness.Our next goal is to show, as we did for snacks, that if we drop max and min in de�ning operationson scones, formula (7) will remain true. That will make it much easier to prove that f+ is ahomomorphism.First observe that if u 2 U and v % u, then ~U � e = gU [v � e (we use notation ~U as a shorthandfor Pu2U f(u; u)). This follows immediately from 5).Consider the L-part. In order to show that for l0 % l 2 L, the corresponding summand of (8)remains the same if f(l0; l0) is added, we must show f(u; l0) � f(l; l) � f(l0; l0) = f(u; l0) � f(l; l).The left hand side is equal to f(u; l0)�f(l; l)�f(l; l0) and by 6) f(l; l)�f(l; l0) = f(l; l). Therefore,the left hand side is equal to f(u; l0) � f(l; l).

136 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONFinally, it must be shown that adding M v] L 2 L does not change the value of the righthand side of (8). Assume u 2 U , m 2 M and l 2 L are such that m � l and u"l (we can �ndsuch because of the consistency condition and M v] L). Let a = L̂ and b = M̂ . We mustshow f(u; l) � a + f(u;m) � b = f(u; l) � a (it was already shown that it does not matter whichconsistent pair is chosen in representation (8)). Let a0 = f(u; l) � a and b0 = f(u;m) � b. First,a0 � b0 = (f(u; l) � f(u;m) + f(u;m) � f(u; l)) � a � b = (f(u; l) � f(u;m)) � a � b = f(u;m) � a � b.Since L v] M and f(c; c) � f(d; d) = f(d; c) for d % c by 8), we obtain a0 � b0 = f(u;m) � b = b0.Hence b0 � a0 and a0 + b0 � a0 by 1). To prove the reverse inequality, a0 � a0 + b0, calculatea0�(a0+b0) = a0+(a0�b0) = a0+a0�b0+b0�a0 = f(u; l)�a+f(u; l)�f(u;m)�a�b+f(u;m)�f(u; l)�a�b.By admissibility, f(u; l)�f(u;m) = f(u;m)�f(u; l). Therefore, a0 �(a0+b0) = f(u; l)�a+f(u; l)�a � f(u;m) � b= a0 +a0 � b0 = a0. Thus, a0 � a0 + b0 and this �nishes the proof that the summandcorresponding to M v] L can be added to (8).Now we are ready to prove that f+ is a homomorphism. First, f+(;; ;) = e � e+ e = e.Let S1 = (U;L1) and S2 = (V;M). Writing expression (8) for f+(S1 + S2) we can use U [V asthe �rst component and L[M as the second. We know that it does not matter how we pick anelement from U [V to be consistent with some element of a set from L [M. For every L 2 Lchoose uL 2 U which is consistent with some lL 2 L and similarly for every M 2 M choosevM 2 V which is consistent with some mM 2M . Then we havef+(S1+S2) = Xu2U[V f(u; u)�e+XL2L(f(uL; lL)� L̂)+ XM2M(f(vM ; mM)�M̂) = f+(S1)+f+(S2)Clearly, this also holds if either L or M or both are empty.Let aL = f(u; l)�L̂, cM = f(v;m)�M̂ where u"l, v"m, v 2 V , u 2 U , l 2 L 2 L and m 2M 2 M.Let b = ~U � e and d = ~V � e. Then f+(S1) � f+(S2) = (PL2L(aL + b)) � (PM2M(cM + d)) =PL2L;M2M(aL �cM +aL �d+b�cM+b�d). Since d = ~V �e, aL �d = aL�e and aL �cM +aL �d =aL � cM + aL � e = aL � cM . Similarly, b � d = b � e. Since b = ~U � e, b = b � e. Therefore,b � cM = b � e = b and b � d = b � e = b. Therefore, f+(S1) � f+(S2) =PL2L;M2M(aL � cM) + b.Consider aL � cM . Since f(v;m) occurs inside the expression, by admissibility it can be changedto f(m;m). Therefore, aL � cM = f(u; l) � L̂ � M̂ . Thus,f+(S1) � f+(S2) = b+ XL2L;M2Mf(u; l) � L̂ � M̂ =Xu2U f(u; u) � e+ XN2fL[M jL2L;M2Mgf(u; l) � N̂ = f+(S1 � S2)Now, to �nish that proof that f+ is a homomorphism, it is enough to show that f+(S1)�f+(S2) =f+(S1 � S2) if one of the components is empty. Assume L = ;. Then the equation followsfrom x � e � y = x � e and the fact that S1 � S2 = S1. If M = ;, then f+(S1) � f+(S2) =(~U �e+PL2L f(uL; lL)� L̂)� ~V �e = ~U �e+PL2L f(uL; lL)�e = ~U �e = f+(U; ;) = f+(S1�S2).Thus, f+ is a homomorphism.

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 137The uniqueness of f+ follows from (7) and well-de�nedness of (8). Finally, f+(�"(x; y)) =f(x; x) � e+ f(x; y) � f(y; y) = f(x; y) � e+ f(x; y) = f(x; y). This shows f+ � �" = f . Theoremis proved. 2Now we prove that it is impossible to characterize PP 9̂ (A) as a free ordered algebra generated byA, such that all operations of the scone algebras are present. That is, they are derived operationsof the signature.Theorem 4.34 Let
Sc be a set of operations on scones such that +; � and e are derived op-erations. Then PP 9̂ (�) is not left adjoint to the forgetful functor from the category of ordered
Sc-algebras to Poset. In other words, for no
Sc is PP 9̂ (A) the free ordered
Sc-algebra gen-erated by A.Proof. Let x; y - z in A. Then ((x; x) � (;; ;) + (z; z)) � (y; y) = (x; y). Now consider thefollowing poset A = fx; y; z; vg. In this poset x; y - z, x; y - v and fx; yg and fz; vg areantichains. Now consider the following scone algebra Sc1 = hB;+; �; ei. Its carrier is a four-element chain p1 > p2 > p3 > p4. We interpret + as minimum of two elements, � as maximum,and e = p1. It is easy to see that Sc1 is a scone algebra as it is a distributive lattice.De�ne f : A! B as follows: f(z) = p1; f(v) = p2; f(x) = p3 and f(y) = p4. Now suppose thatf can be extended to a homomorphism f+ : PP 9̂ (A)! Sc. Thenf+((x; y)) = f+((�(x) � e + f(z)) � �(y)) =(f(x) � e+ f(z)) � f(y) = maxfminfmaxfp1; p3g; p1g; p4g = p1On the other hand, f+((x; y)) = f+((�(x) � e+ f(v)) � �(y)) =(f(x) � e+ f(v)) � f(y) = maxfminfmaxfp1; p3g; p2g; p4g = p2Hence, p1 = p2, which contradicts the de�nition of B. This shows that f can not be extendedto a homomorphism of scone algebras. 2The main observation we used in the proof of theorem 4.34 was the following. If x"y, then thescone (x; y) can be obtained as follows: (x; y) = (�"(x) � e + �"(z)) � �"(y), provided x; y - z.Therefore, the question arises: is it possible to restrict the class of maps from A to scone algebrasin such a way that the universality diagram will be obtained for such maps. The next theoremwe are going to prove gives us a way to do so. But �rst we need a new de�nition of admissibility.De�nition 4.12 A monotone function f : A ! Sc from a poset A to a scone algebra Sc iscalled scone-admissible if, for any two consistent pairs x"y1 and x"y2 such that x; yi � zi; i = 1; 2,the following holds:(f(x) � e+ f(z1)) � f(y1) � f(y2) = (f(x) � e+ f(z2)) � f(y1) � f(y2)

138 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONTheorem 4.35 For any poset A, PP 9̂ (A) is the free scone algebra generated by A with respectto scone-admissible maps. That is, for any scone algebra Sc and a scone-admissible map f :A! Sc, there exists a unique scone homomorphism which completes the following diagram:A � �- hPP 9̂ (A);+; �; ei@@@@@f R hSc;+; �; ei?9!f+Proof. Let f : A! Sc be a scone-admissible map. De�ne 'f : A"A! Sc by'f((x; y)) = (f(x) � e+ f(z)) � f(y) if x; y - zIt follows from the de�nition of scone-admissible maps that 'f is well-de�ned. That is, ifx; y - z1; z2, then (f(x) � e+ f(z1)) � f(y) = (f(x) � e+ f(z1)) � f(y) � f(y) = (f(x) � e+ f(z2)) �f(y) � f(y) = (f(x) � e+ f(z1)) � f(y) and hence the value of 'f((x; y)) does not depend on thechoice of z above x and y.Let � : A! A"A be given by �(a) = (a; a). Our next goal is to prove two claims.Claim 1. 'f is admissible (according to de�nition before theorem 4.33).Claim 2. 'f �� = f .Before we prove these two claims, let us show how the theorem follows from them. Consider thefollowing diagram. A � - A"A �"- PP 9̂ (A)@@@@@'f R Sc?9!f+Since 'f is admissible and �" � � = �, we can �nd a homomorphism f+ such that f+ � � =f+ � �" � � = 'f � � = f . Assume f� is another homomorphism PP 9̂ (A) ! Sc such thatf� � � = f . Consider (x; y) 2 A"A, x; y - z. Then �"(x; y) = (�(x) � e + �(z)) � �(y). Hence,f�(�"(x; y)) = (f(x) � e + f(z)) � f(y) = 'f ((x; y)) which shows that f� � �" = 'f . Then, byclaim 2 and theorem 4.33, we obtain f� = f+ and thus there is a unique homomorphic extensionof f .Proof of claim 1. First, we must show 'f((x; y1))�e = 'f((x; y2))�e if x; y1 - z1 and x; y2 - z2.From the properties of scone algebras, it follows that a�e+b�e = a�e if a � b. Since f(x) � f(z1),

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 139we obtain 'f((x; y1))�e = (f(x)�e+f(z1))�f(y1)�e = f(x)�e+f(z1)�e = f(x)�e. Similarly,'f((x; y2)) � e = f(x) � e = 'f((x; y1)).For the second condition in the de�nition of admissibility, assume u; l - xul and v;m - xvm.Moreover, let u;m - xum and w; l - xwl. We must show 'f((u; l)) � 'f((v;m)) = 'f((u;m)) �'f((w; l)). Observe that b � c implies a�b�c = a�c in a scone algebra. Hence, f(xul)�f(xvm)�f(m) = f(xul) � f(m). Moreover, as we saw already, f(u) � e + f(xul) � e = f(u) � e. Now wecalculate:'f((u; l)) �'f ((v;m)) = (f(u) � e+ f(xul)) � f(l) � (f(v) � e+ f(xvm)) � f(m) =(f(u) � e+ f(xul) � e + f(xul) � f(xvm)) � f(l) � f(m) =(f(u) � e+ f(xul) � f(xvm)) � f(l) � f(m) = (f(u) � e + f(xul)) � f(l) � f(m)Similarly, 'f ((u;m)) �'f ((w; l)) = (f(u) + f(xum)) � f(l) � f(m)Now the desired equality follows from scone-admissibility of f . Claim 1 is proved.Proof of claim 2. 'f((x; x)) = (f(x) � e + f(x)) � f(x) = f(x) � e + f(x) = f(x). Claim 2 andthe theorem are proved. 2Universality of PP;In this section we describe PP;(A) { a construction which can be seen as \all others put togetherwith no restrictions". This justi�es the name of the salad. Salads can be viewed as snacks orscones without the consistency condition.Similarly to the case of P;(A), PP;(A) is isomorphic to the direct product of P](A) and the iter-ated construction from section 4.2.2. Both possess universality property, but, as we mentionedalready, a product of two free algebras need not be a free algebra. However, similarly to thecase of P;(A), we �nd a way to combine the two in a way that gives us a characterization ofPP;(A) as a free ordered algebra.De�nition 4.13 A salad algebra hSd;+; �;2;3i is an algebra with two semilattice operations+ and � and two unary operation 2 and 3 such that the following equations hold:1) x � (y + z) = x � y + x � z.2) x = 2x+3x.3) 2(x+ y) = 2x+ 2y = 2x �2y = 2(x � y).4) 3(x+ y) = 3x+3y.5) 3(x � y) = 3x �3y.6) 2x �3y = 2x.7) 3x �3y +3x = 3x.

140 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION8) 33x= 3x.9) 22x = 2x.De�ne an ordering � on a salad algebra according to the � operation: x � y i� xy = x. Thenevery homomorphism of salad algebras is monotone with respect to the ordering.De�ne 2Sd = f2x j x 2 Sdg and 3Sd = f3x j x 2 Sdg. Some useful properties of salads aresummarized in the following proposition.Proposition 4.36 Given a salad algebra Sd, the distributivity law x+yz = (x+y)(x+z) holds.Consequently, +, 2 and 3 are monotone. In addition, the following holds:(i) 2x � x � 3x.(ii) 3Sd is a distributive lattice.(iii) + and � coincide on 2Sd.(iiii) 23x = 32y.Proof. Using 2) and distributivity law 1) calculate (x+y)(x+z) = (2x+2y+3x+3y)(2x+2z +3x+3z) = (by 1) and 6)) = 2x+ 2y + 2z +3x+3x �3y +3x �3z +3y �3z = (by7)) = 2x + 2y + 2z +3x+ 3y �3z. Similarly, x + yz = 2x + 3x+ (2y +3y)(2z +3z) =2x + 3x + 2y + 2z + 3y � 3z. Hence, (x + y)(x + z) = x + yz. Now monotonicity of +follows from the distributivity laws. That 2 and 3 are monotone, follows from 4) and 6). Toprove (i), calculate x � 2x = (2x + 3x)2x = 2x + 3x � 2x = 2x + 2x = 2x. Moreover,x �3x = (2x+3x)3x= 2x �3x+3x = 2x+3x = x.(ii) and (iii) follow immediately from the de�nitions.(iiii) By 7), 2x � 32y; hence 32x � 32y and by symmetry 32x = 32y. Similarly, 23x =23y. De�ne e3 = 32x and e2 = 23x. The equations above show that e3 and e2 are well-de�ned. Now calculate e3 + x = 32x+ x = 32x+3x+ x = 3(2x+ x) + x = 3x+ x = x.Similarly, e2 + x = 23x+ x = 23x+ 2x+ x = 2(3x+ x) + x = 2x+ x = x. Thus, both e3and e2 are identities for +. Therefore, e3 = e3 + e2 = e2. 2This proposition tells us that we can give the following equivalent de�nition of a salad algebra: Asalad algebra is a distributive bisemilattice hSd;+; �i on which a projection 2 and a closure 3 arede�ned such that 2Sd is a semilattice, 3Sd is a lattice, x = 2x+3x and 8x 2 2Sd 8y 2 3Sd:x � y.There is also one property of salad algebras that is worth mentioning and that follows directlyfrom the de�nitions. Given a semilattice hS;_i with bottom, a pair of ideals I1 and I2 is calleda general decomposition of S if bottom is the only common element of I1 and I2 and every s inS has a unique representation as s = s1_s2 where s1 2 I1 and s2 2 I2. If S is a bounded lattice,general decompositions become direct decompositions. For a large class of posets with partially

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 141de�ned lubs general decompositions are in 1-1 correspondence with neutral complemented ideals,see Jung, Libkin and Puhlmann [88].Proposition 4.37 Given a salad algebra Sd, 2Sd and 3Sd form a general decomposition ofSd.Proof. Let �+ denote the ordering given by +, that is, x �+ y i� x + y = y. Let x �+ 2y.Then 3x+32y = 32y, i.e. 3x+ e3 = e3 and 3x = e3. Now x = 3x+2x = e3 +2x = 2x.Hence x 2 2Sd, which shows that 2Sd is an ideal. Similarly, 3Sd is an ideal. It follows from(iiii) of the lemma that 2Sd\3Sd = feg where e = e2 = e3. Finally, let x = 2y +3z. Then2x = 2y+23z = 2y and similarly 3x = 3z. Hence, x = 2x+3x is a unique representation ofx as a sum of elements from 2Sd and 3Sd. Thus, 2Sd and 3Sd form a general decomposition.2Let us now show how the salad algebra operations are interpreted on PP;(A). Operations + and� are de�ned precisely as for snacks. For 2 and 3,2(U;L) = (U; ;) 3(U;L) = (;;L)Theorem 4.38 Given a poset A, PP;(A) is the free salad algebra generated by A. That is, forevery monotone map f from A to a salad algebra Sd there exists a unique salad homomorphismf+ : PP;(A)! Sd such that the following diagram commutes:A � �- hPP;(A);+; �;2;3i@@@@@f RhSd;+; �;2;3i?9!f+Proof. First verify that PP;(A) is a salad algebra. We need to check the distributivity law and7); all others are straightforward. Let S1 = (U;L);S2 = (V;M) and S3 = (W;N). Our goal isto show S1 � (S2 + S3) = S1 � S2 + S1 � S3. The �rst components of the left hand and the righthand sides coincide. It this case it is easier to work with �lters rather than antichains { it allowsus to drop max and min operations. In particular, it is enough to show thatf"(L [K)jL 2 L; K 2 M[Ng =f"LM jLM 2 fL[M jL 2 L;M 2 Mgg[f"LN jLN 2 fL[N jL 2 L; N 2 Ngg

142 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONLet C be an element of the left hand side, i.e. C = "(L[K). Without loss of generality, K 2 M.Then C is in the right hand side. Conversely, if C is in the right hand side, say C = "LM forLM = L[M , then C = "(L[M) and therefore is in the left hand side. This shows the equalityabove. Now, taking minimal elements for each �lter and applying max] to both collections wouldgive us second components of the lhs and the rhs of the distributivity equation, which thereforeare equal.Now prove 7), that is, 3(U;L) �3(V;M) + 3(U;L) = 3(U;L). The �rst components of bothsides are ;. The second component of the left hand side is max](L [max]fmin(L [M)jL 2L;M 2 Mg). Since min(L [M) v] L, this expression is equal to max]L = L. Hence, 7) holds.Thus, PP;(A) is a salad algebra.Now show that PP;(A) is a free salad algebra. Given a salad S = (U;L),(9) S = 2Xu2U �(u) +3XL2LYl2L �(l)To see that this also works for empty components, observe that 2e = 3e = e.Now, given monotone f : A! Sd, de�ne(10) f+(S) = 2Xu2U f(u) +3XL2LYl2L f(l)We have: f+(�(x)) = f+((x; fxg)) = 2f(x) + 3f(x) = x. Now we must show that f+ is ahomomorphism. First, it follows immediately from the properties of 2 and 3 and the fact thate = 23x = 32y is the identity for + (see lemma) that f+(2S) = 2f+(S) and f+(3S) =3f+(S).Assume X v] Y , Y 6= ;, and let xy be an element in X below y 2 Y . Then2Xx2X f(x) �2Xy2Y f(y) = 2(Xx2X f(x) + Xy2Y f(y)) = 2Xx2X f(x) + 2Xy2Y (f(y) + f(xy)) =2Xx2X f(x) + 2Xy2Y (f(y) � f(xy)) = 2Xx2X f(x) +2Xy2Y f(xy) = 2Xx2X f(x)Therefore, if X and Y are equivalent with respect to v], 2Px2X f(x) = 2Py2Y f(y). Ournext goal is to show that 3Qx2X f(x) +3Qy2Y f(y) = 3Qy2Y f(y) if Y 6= ;. Since X v] Y ,we have Qx2X f(x) � Qy2Y f(y) and then the equation above follows from 7). Finally, letx0 % x 2 X . Then f(x0) � f(x) and Qx2X f(x) = f(x0) �Qx2X f(x).These three observations show that max and min operations can be disregarded when one writesan expression for f+ on S1 + S2 or S1 � S2. Therefore, for S1 = (U;L) and S2 = (V;M),f+(S1 + S2) = 2 Xx2U[V f(x) +3(XL2LYl2L f(l) + XM2M Ym2M f(m)) = f+(S1) + f+(S2)

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 143To calculate f+(S1 �S2), observe thatPi2I 2xi �Pj2J 3yj =Pi2I;j2J 2xi �3yj =Pi2I 2xi andthis is also true if I = ; because e �3y = e. Therefore,f+(S1 � S2) = (2Xu2U f(u) +3XL2LYl2L f(l)) � (2Xv2V f(v) +3 XM2M Ym2M f(m)) =(2Xu2U f(u) �2Xv2V f(v)) + (2Xv2V f(v) �3 XM2M Ym2M f(m)) ++(2Xv2V f(v) �3XL2LYl2L f(l)) + (3XL2LYl2L f(l) �3 XM2M Ym2M f(m)) =2Xu2U f(u) +2Xv2V f(v) +3 XL2LM2M(Yl2Lf(l) � Ym2M f(m)) =2 Xx2U[V f(x) +3 XL2LM2M Yy2L[M f(y) = f+(S1) � f+(S2)Thus, f+ is a homomorphism. Its uniqueness follows from (9). Theorem is proved. 2Let us summarize the results on the universality properties of approximations in the followingtable. For each construction with u � l used in the consistency condition (with one exception)we found a free algebra characterization. For constructions with u"l used in the consistencycondition, we showed that they do not arize as free algebras generated by the poset itself, butdo arize as free constructions generated by A"A (with respect to a restricted class of map). Weuse dna (does not apply) for constructions based on the u � l consistency condition with A"Aas the generating poset. Notice that there are still three ni null values { these questions remainopen. type of consistency condition (quanti�er{condition)L-part; generator 8 u � l 8 u"l 9 u � l 9 u"l no conditionone set; A mix algebra ne bi-LNB algebra ni bi-mix algebraone set; A"A dna mix dna ni dnafamily of sets; A snack algebra ne ne ne salad algebrafamily of sets; A"A dna ni dna scone algebra dnaRelationship between the approximationsIn this subsection we study the relationship between the four best-known approximations: mixes,sandwiches, scones, and snacks. We also show that we can view them as instances of the mostgeneral construction: salads, that is, PP;(A). We will substantiate the assertion that by their\complexity" the approximation constructs should be places asSalads ! Scones ! Snacks ! Sandwiches ! Mixes

144 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONand algebras as Salads ! Scones ! Snacks ! MixesThe reader is invited to see how other constructions studied in this chapter will �t into the generalpicture. We consider only �ve approximation constructions to keep the diagrams reasonablysmall.Relationship between algebras. The general technique we use is the following. Given analgebra hA;
i, let
0 be a subset of
 and
00 a set of derived operations. Let � = (
�
0)[
00.Then A can be considered as a �-algebra which is called �-reduct of hA;
i, see Gr�atzer [64].We denote a map that takes an
-algebra hA;
i and returns the �-algebra hA;�i by '
!�.We now de�ne reductions for the algebras from the previous section. The superscripts of thesereductions contain the information about its argument. They are the same as superscipts forthe approximations themselves, except that we use index f (family) for PP i's. For example, asnack reduct of a scone will be denoted by '9̂ !8f .De�nition. a) Given a salad algebra Sd = hA;+; �;2;3i, de�ne its reducts as follows:Scone reduct ';!9̂ (Sd) = hA;+; �; ei where x � y = x �3y and e = 32x.Snack reduct ';!8f (Sd) = hA;+; �; ei where e = 32x.Mix reduct ';!8(Sd) = hA;+;2; ei where e = 32x.b) Given a scone algebra Sc = hA;+; �; ei, de�ne its reducts as follows:Snack reduct '9̂ !8f (Sc) = hA;+; �; ei where x � y = x � y + y � x.Mix reduct '9̂ !8(Sc) = hA;+;2; ei where 2x = x � e.c) Given a snack algebra Sn = hA;+; �; ei, de�ne its mix reduct '8f!8(Sn) as hA;+;2; ei where2x = x � e.Our �rst goal is to show that the concepts above are well-de�ned, i.e. that a mix reduct is a mixalgebra, scone reduct is a scone algebra etc. We then proceed to show that it does not matterwhich path we choose, i.e. a mix reduct of a scone reduct of a salad is a mix reduct of a saladetc.Proposition 4.39 The reducts above are well-de�ned.Proof. We start with reducts of salads. First demonstrate that ';!9̂ (Sd) is a scone algebra.That e is the identity for + was already proved. Distributivity of � over + is obvious. We

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 145must show the other distributivity law: a + x � y = (a + x) � (a+ y). To prove this, calculatea+ xa = a + (2x+3x)(2a+3a) = a+ 2x �2a+ 2x+ 2a+3x �3a = a+ 2x+3x �3a =a+(2x+3x)3a= a+a�3a. Now, a+x�y = a+x�3y = (a+x)(a+3y) = a+xa+a�3y+x�3y =a+x �3a+a �3y+x �3y = (a+x)(3a+3y) = (a+x)�(a+y). This proves distributivity. That� is a left normal band operation is obvious. We have e �x = 32x �3x= 3(2x �x) = 32x = e.Finally, x+x�y = x+(2x+3x)�3y = x+2x+3x�3y = x+2x+3x+3x�3y = x+2x+3x = x.Therefore, ';!9̂ (Sd) is a scone algebra.We have already shown in the previous section that + and � distribute over each other; hence,';!8f (Sd) is a snack algebra. To check that ';!8(Sd) is a mix algebra, verify the equationsof the mix algebra. The �rst two are also equations of the salad algebras, and we have shownalready that x+2x = x and 2x � x. Thus, we must show x+2y � x. Calculate (x+2y)x =x+2y � x = x +2y �2x+2y �3x = x +2x+ 2y = x+ 2y. Hence, x+2y � x.Now consider reducts of scones. To show that '9̂ !8f (Sc) is a scone algebra, we must verify thedistributivity laws. One of them was veri�ed in the proof of the characterization of scones. Theother one is also easy: x+y �z = x+y�z+z�y = (x+y)�(x+z)+(x+z)�(x+y) = (x+y)(x+z).The next step is to verify that 2x = x � e satis�es the equations of the mix algebras. We havex+2x = x+ x � e = (x+ x) � (x+ e) = x and x �2x = x � x � e+ x � e � x = x � e = 2x, hence2x � x. Finally, (x + y � e)x = (x + y � e) � x+ x � (x + y � e) = x + y � e + x � e = x + y � e.Therefore, x+ 2y � x and '9̂ !8(Sc) is a mix algebra.Finally, if in a snack algebra 2x is de�ned as xe, then x+ xe = (x + x)(x + e) = x, xxe = xeand (x+ ye)x = x + yex � x+ x = x. Thus, '8f!8(Sn) is a mix algebra and this �nishes theproof of the proposition. 2Our next goal is to show path independence, that is, it does not matter if we perform reductionfrom one algebra to another directly or via a number of steps. This can be formalized as follows.Theorem 4.40 The following diagram commutes (where the arrow from Sd to Sn is ';!8fand the arrow from Sc to Mix is '9̂ !8):Sd ';!9̂ - Sc@@@@@@@R	�������Mix';!8? � '8f!8 Sn?'9̂ !8f

146 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONProof. We have already shown that reductions are well-de�ned. Consider '9̂ !8 � ';!9̂ :Sd! Mix. The identity for + is e = 32x and the box operation of the result, 20x, is de�nedas 20x = x � e = x �332x= (2x+3x) �23x = 2x �23x+3x �23x = 2x+23x+23x =2x+ e = 2x. Hence, '9̂ !8 � ';!9̂ = '9̂ !8. Now consider '8f!8 � ';!8f : Sd! Mix. Thebox operation of the result is 20x = xe = (2x+3x)32x= 2x+e = 2x, hence '8f!8�';!8f =';!8. Then consider '8f!8 � '9̂ !8f � ';!9̂ : Sd ! Mix. The box operation of the result is20x = x �Sn e = x�e+e�x = x �332x+32x �3x= x �23x+23x �3x= 2x+e = 2x. Thus,'8f!8 � '9̂ !8f � ';!9̂ = ';!8. To show ';!8f = '9̂ !8f � ';!9̂ , it is enough to show thatx�y = x�3y+y �3x. But this is easy: x�y = (2x+3x)�(2y+3y) = 2x�2y+2x+2y+3x�3y =2x+2y+3x �3y and x �3y+ y �3x = (2x+3x) �3y+ (2y+3y) �3x = 2x+2y+3x �3y.Finally, to show that '9̂ !8 = '8f!8 �'9̂ !8f , observe that x � e+ e � x = x � e+ e = x � e andtherefore 2x is the same for both reductions. Theorem is proved. 2Embeddings. We show that the reductions introduced above correspond to the embeddingsof the approximation constructions. The general idea is as follows. Assume that a poset A isgiven and P 0 and P 00 are two approximation constructions such that P 0 is \higher" than P 00in the hierarchy shown in the beginning of the section. That is, there is a reduction ' thattakes P 0(A) and makes it an algebra in the signature corresponding to P 00. Depending on thegenerating poset for P 00(A), consider either �(A) or �"(A) which is a subset of P 0(A). Then thesubalgebra of '(P 0(A)) generated by this subset is P 00(A). Moreover, this construction is \pathindependent" in the sense of theorem 4.40. To formalize it, we use the notationP 0(A) [�(A)] � '- P 00(A) or P 0(A) [�"(A)] � '- P 00(A)The meaning of these arrows is: Take P 0(A) and consider it as an algebra corresponding to P 00(by means of '). Then its subalgebra generated by �(A) (or �"(A)) is P 00(A).Theorem 4.41 In the following diagram all arrows are well-de�ned and the diagram commutes:

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 147PP;(A) [�"(A)] � ';!9̂ - PP9̂ (A)@@@@@@@@@@@@@@@@R
PPPPPPPPPPPPPPPPPPPPPPPPPq	�������������

��� @@@@@@@[�(A)] � '9̂ !8fR PP8(A))�������������������������	�������[�"(A)] � '8f!8P8(A)[�(A)] � ';!8? � [�(A)] P 8̂ (A)?The arrows not shown on the diagram are:[�(A)] � ';!8f : PP;(A)! PP8(A) [�"(A)] � ';!8 : PP;(A)! P 8̂ (A)[�(A)] � '9̂ !8 : PP9̂ (A)! P8(A) [�"(A)] � '9̂ !8 : PP 9̂ (A)! P 8̂ (A)[�(A)] � '8f!8 : P 8̂ (A)! P8(A)Proof. Full proof requires a lot of easy calculations so we only sketch it here. First observethat all de�nitions of new operations for reductions agree with their interpretation. For example,given two scones (U;L) and (V;M) in PP 9̂ (A), the value of (U;L) � (V;M) in '9̂ !8f (PP9̂ (A))is (U;L) � (V;M) + (V;M) � (U;L) = (min(U [V);max]fL [M jL 2 L;M 2 Mg) which isindeed the in�mum operation in PP8(A). The veri�cation that other reductions agree with theoperations on approximations is also straightforward. Now representations of sandwiches (1),snacks (3), scones (7) and mixes as(11) (U; L) = 2Xu2U �(u) +Xl2L �(l)tell us that all arrows are well-de�ned. Commutativity follows in a straightforward way fromthe representations (1), (3), (7), (11) and theorem 4.40. 2This completes our discussion of the semantics of partial data. We have de�ned orderings onvarious kinds of collections and used them to de�ne the formal semantics of those. The semantic

148 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATIONdomains of the collection type constructors have been shown to possess universality properties.We shall use the universality properties in the next chapter to design programming languagesfor partial information, as described in section 3.2.

Chapter 5Languages for partial informationIn previous chapters we have developed the semantics of partial information that was based onone of the two main principles of this thesis: partiality of data is represented via orderings onobjects. In this chapter we use the semantic results to build languages for databases with partialinformation, following the second principle which says that semantics suggests programmingconstructs.We start with languages for sets under the open world assumption. Since the universalityproperties for arbitrary sets and antichains are essentially the same, we obtain two very closelanguages, and show that one of them, dealing with antichains, can naturally be viewed as asublanguage of the other. We give several reasons why it is better to view the language dealingwith the ordered semantics as a sublanguage of the language for the set-theoretic semantics.One of them is that in the former it is important to be able to identify the monotone fragmentof the language, but this is undecidable. We show that two languages considered so far { thelanguage of Zaniolo and the domain theoretic algebra from section 3.1 { are sublanguages of thelanguage for OWA sets.We also consider languages for or-sets, viewed structurally, and prove similar results. Havingde�ned languages for sets and or-sets, we combine them to obtain a new language called or-NRL.Since it is necessary to distinguish between sets and or-sets, we enhance the language with aprimitive that provides interaction between sets and or-sets. This primitive is precisely theisomorphism � from section 4.2.2.The language or-NRL has a number of very important properties. First, it is possible to de�ne afunction that lists all possibilities encoded by an or-object. This enables the language to answerconceptual queries such as: is there a complete design of a given cost? Moreover, we show thatunder both set-theoretic and antichain semantics the process of listing all possibilities encodedby an object always yields the same result, no matter what strategy is used. We call this result149

150 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONnormalization theorem. The process of listing all possibilities is also called normalization.We show that normalization can be quite expensive. In fact, we determine tight upper boundson the size of normalized objects and the number of possibilities that arbitrary or-objects canencode. Then we observe that it is not always necessary to complete the process of normalizationto answer a conceptual query. However, it is not always the case that partial normalization isunambiguous. That is, the analog of the normalization theorem need not hold. Nevertheless, weare able to identify very strong su�cient conditions for such an analog to hold, and then provethe partial normalization theorem that unambiguously determines a representation of object ofone type at another type. This allows us to answer certain conceptual queries faster.We also demonstrate a losslessness result, which says that the loss of structural information inthe process of normalization does not have any e�ect with respect to the large class of queries.Finally, we discuss two approaches to programming with approximations. One is based on struc-tural recursion and monads. It is now applicable due to the characterization of approximationsas free constructions. However, we show that there are certain problems with using this ap-proach. The other is encoding approximations with sets and or-sets and using the language forsets and or-sets. We show how all monad primitives for approximations can then be encoded inthat language and argue that this makes it a better candidate for a programming language forapproximations.5.1 Languages for collections of partial data5.1.1 Language for setsIn this section we consider a language for sets under the open world assumption. This language isbased on the universality property. Since the universality properties of the semantic domains ofsets with no partial information involved and of sets under OWA are essentially the same { bothare free semilattices, but one is generated by a set and the other by a poset { the languages areessentially similar and the only syntactic di�erence is replacing equality test by comparabilitytest. The only semantic di�erence is that in the language for partial information we operatewith antichains rather than arbitrary sets, as is suggested by the semantic domain for OWAsets. We shall see that the language we de�ne can be viewed as a sublanguage of NRL withorders on base types. We study some of its properties and explain how two languages that wehave seen (Zaniolo's algebra [181] and the domain algebra of section 3.1) can be viewed as itssublanguages.The language we are about to describe is based on the universality properties for OWA sets.Recall that for a given set X , hP�n(X);[; ;i is the free semilattice with bottom generated by X .For posets, the result is similar: given a poset A, hP[(A);t[; ;i is the free ordered semilattice

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 151with bottom generated by A. Therefore, following section 3.2, we de�ne two variations of thestructural recursion, the one dealing with antichains using index a. Since we do not considerstructural recursion on bags in this chapter, we use sru and sri instead of s sru and s sri .fun sru[e; h; u](;) = ej sru[e; h; u](fxg) = h(x)j sru[e; h; u](At[B) = u(sru[e; h; u](A); sru[e; h; u](B))fun srua[e; h; u](;) = ej srua[e; h; u](fxg) = h(x)j srua[e; h; u](At[B) = u(srua[e; h; u](A); srua[e; h; u](B))As we discussed in section 3.2, the general structural recursion need not be well-de�ned. Hence,we used the operation of the Kleisli category of the corresponding adjunction as primitives ofthe programming language. For sets, we usedmap(f)fx1; : : : ; xng = ff(x1); : : : ; f(xn)g �(fX1; : : : ; Xng) = X1 [: : :[Xn �(x) = fxgSimilarly, for antichains we would have (cf. section 2.3)mapa(f)fx1; : : : ; xng = maxff(x1); : : : ; f(xn)g �(x) = fxg�a(fX1; : : : ; Xng) = X1 t[: : :t[Xn = max(X1 [: : :[Xn)In addition to the equality test, which was chosen as a primitive in NRL, we include a newprimitive which tests whether two objects of type t are comparable as elements of the semanticdomains [[t]]1. That is, we assume that the ordering on base types is given, and it is lifted topairs component-wise and to sets by using the Hoare ordering:� (x; y) �s�t (x0; y)0, x �s x0 and y �t y0.� x �fsg y , x �[s y (i.e. 8o 2 x 9o0 2 y : o �s o0).Now we give the expressions of the language which we call NRLa; see �gure 5.1.Let us make a few observations about this language.Proposition 5.1 Assume that �b is given for any base type b. Then �s is de�nable in NRLawithout using �s as a primitive.1Since we do not use or-sets, the structural semantics [[]]s and the conceptual semantics [[]]c coincide. Thisjusti�es using just [[]] in this section.

152 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION
Category with productsg : u! s f : s! tf � g : u! t c : bool f : s! t g : s! tif c then f else g : s! t f : u! s g : u! t(f; g) : u! s� t�s;t1 : s� t! s �s;t2 : s� t! t !t : t! unitKc : unit! Type(c) idt : t ! t �s: s � s! boolOWA sets monad (given by P[)�s;t2 : s� ftg ! fs� tg �t : t! ftg t[t : ftg � ftg ! ftg�ta : fftgg ! ftg empty t : unit! ftg f : s! tmapa f : fsg ! ftgFigure 5.1: Expressions of NRLa

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 153Proof. We only have to check that �fsg is de�nable if �s is. Assume X; Y are sets of type fsg.Then we create an object f(x; Y) j x 2 Xg of type fs� fsgg and check for every (x; Y) if thereexists y in Y such that x �s y. This is achieved by �rst applying �2 to (x; Y) and then mapping�s over the result and testing whether true occurs in the output. 2Proposition 5.2 Under the assumption that �b can be tested in O(1) time, the time complexityof verifying x �s y is O(n2), where n is the total size of x and y.Proof. De�ne the size of a base type object to be 1 and the size of a set or a pair to be the sumof the sizes of its elements (components). We prove by induction on the structure of objects thattesting�t of two objects o1; o2 of type t can be done in O(size (o1)�size (o2)). Then the propositionwill follow. Let X = fx1; : : : ; xkg and Y = fy1; : : : ; ylg be sets of type fsg. According to theproof of proposition 5.1, checking whether X �fsg Y requires some preprocessing that costs atmost O(size (X) � size (Y)) and, by the induction hypothesis, O(Pki=1Plj=1(size (xi) � size (yj)))for actual comparisons. We have Pki=1Plj=1(size (xi) � size (yj))) � size (Y)Pki=1 size (xi) �size (X) � size (Y), which �nishes the proof. 2Now we can show that using NRL is su�cient becauseTheorem 5.3 NRLa is a sublanguage of NRL(�b).Proof. We have already shown in proposition 5.1 how to de�ne �s for any s if �b is given.The rest is to observe that mapa(f)(X) = maxmap(f)(X) and �a(X) = max(�(X)). Hence,de�nability of max would imply that NRLa is a sublanguage of NRL(�b). It is easy to see thatmaxX is implementable by deleting such elements x 2 X for which there exists x0 2 X withx � x0 and x 6= x0. Indeed, if � is present, there is a �rst order formula that is true i� x 2 maxXand hence even operations of the relational algebra su�ce. 2However, there is one subtle point. Assume that we have two sets X1 and X2 of type ftg suchthat maxX1 = maxX2. That is, X1 and X2 represent the same object in [[ftg]]. Let f : ftg ! sbe a function de�nable in NRL. Is it true that f(X1) and f(X2) represent the same objectin [[s]]? Unfortunately, the answer to this question is negative. To see why, consider x and yof type t such that x �t y and x 6= y. Assume that g : t ! s is such that g(x) and g(y) arenot comparable by �s. Then map(g)(fyg) = fg(y)g and map(g)(fx; yg) = fg(x); g(y)g. Eventhough maxfyg = maxfx; yg, we have max(map(g)(fyg)) 6= max(map(g)(fx; yg)).The reason this happens is that g is not a monotone function. Requiring monotonicity issu�cient to repair this problem. De�ne the following translation function (�)� on objects thatforces objects in the set-theoretic semantics into the objects in the antichain semantics:� For x of base type b, x� = x.

154 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION� For x = (x1; x2), x� = (x�1; x�2).� For X = fx1; : : : ; xng, X� = maxfx�1; : : : ; x�ng.We say that a function f : s! t de�nable in NRL agrees with the antichain semantics if x� = y�implies f(x)� = f(y)�. We say that it is monotone i� x �s y implies f(x) �t f(y).Proposition 5.4 A monotone function f de�nable in NRL agrees with the antichain semantics.If f is not monotone, then map(f) does not agree with the antichain semantics.Proof. First prove that x �s y i� x� �s y� for any x; y of type s and vice versa. Prove itby induction. The only interesting case is the set type constructor. Let X = fx1; : : : ; xng andY = fy1; : : : ; ymg be two sets of type fsg. Assume X �fsg Y . Then 8xi 2 X 9yj 2 Y : xi �s yjand by induction hypothesis 8xi 2 X 9yj 2 Y : x�i �s y�j . Hence, fx�1; : : : ; x�ng �fsg fy�1; : : : ; y�mgand then X� �fsg Y �. Conversely, if X� �fsg Y �, then fx�1; : : : ; x�ng �fsg fy�1; : : : ; y�mg and byinduction hypothesis 8xi 2 X 9yj 2 Y : xi �s yj , that is, X �fsg Y .Since x� is an antichain for any x, this observation implies that x� = y� for x; y of type s i�x �s y and y �s x.Now assume f : s! t is monotone and x� = y�. Then x �s y and y �s x and hence f(x) �t f(y)and f(y) �t f(x) which proves f(x)� = f(y)�. That is, f agrees with antichain semantics.Assume f : s ! t is not monotone, i.e. f(x) 6�t f(y) for some x <s y. We have x� �sy� and hence fx; yg� = fyg�. Moreover, x� 6= y� for otherwise we would have y �s x.Now, map(f)(fx; yg) = ff(x); f(y)g and map(f)(fyg) = ff(y)g and it is easy to see thatff(x); f(y)g� 6= ff(y)g� if f(y) <t f(x) or f(y) and f(x) are incomparable. Proposition isproved. 2Therefore, we would like to identify the subclass of monotone functions de�nable in NRL.Unfortunately, it is not possible to do it algorithmically. Not being able to decide monotonicityis another reason why we prefer to view NRLa as a sublanguage of NRL in which the antichainsemantics can be modeled, rather than a separate language.Theorem 5.5 It is undecidable whether a function f de�nable in NRL is monotone.Proof. Assume monotonicity is decidable. Now, given two NRL functions f; g : fsg ! t, de�nea new function � : fsg ! fboolg as follows:�(x) := if x = ; then ftrueg else if f(x) = g(x) then ftrueg else ffalsegHere fxg is syntactic sugar for �(x). Now, if want to check whether f(x) = g(x) for all x, check iff(;) and g(;) are the same and then check if � is monotone. Thus having a test for monotonicity

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 155would give us equality test for functions of type fsg ! t. Such functions include all functionsde�nable in the relational algebra, and it is known that equality of those is undecidable, seeImielinski and Lipski [79]. This shows that monotonicity of NRL expressions is undecidable. 2There are some intersting anomalies of the antichain semantics. The most surprising of all isthat [[�]] = [[powerset]] or, in other words, NRLa(powerset) = NRLa. Indeed, since for anyY 2 P�n(X) we have Y � X and hence Y v[X , then under the antichain semantics [[P�n(X)]] =[[maxP�n(X)]] = [[fXg]] = [[�(X)]]. There are two lessons we learn from this interesting collapse.First, as we have said already, it is better to view NRLa as a sublanguage of NRL rather thana separate language. Second, powerset is not a good candidate to enrich expressiveness of thelanguage. (Of course, the theorem of Paredaens and Suciu [162] is a much stronger argumentagainst powerset !)The next question we are going to address is that of conservativity of NRL over NRLa. Givena family of primitives ~p interpreted for both set theoretic and antichain semantics, we say thatNRL(�b; ~p) is conservative over NRLa(~p) if for any function f de�nable in NRL(�b; ~p) andsatisfying the condition that f(x) = f(x)� for any x = x�, such f is de�nable in NRLa(~p). Wedo not know if NRL(�b) is conservative overNRLa. However, we can show that it is conservativewhen augmented with aggregate functions as in section 3.2.Proposition 5.6 NRL(N;P; �; : ;�b) is conservative over NRLa(N;P; �; :).Proof sketch. The key observation is that in the language with arithmetic functions it ispossible to assign unique numerical ranks to elements in a set if linear orders at base types aregiven. Indeed, this follows from theorem 3.29 since we can lift the linear order to all types, andthen for each element of a set use P to count the number of elements not greater than it in thelinear order. A careful analysis of the lifting procedure and rank assignment shows that theycan be done in NRLa(N;P; �; :) as well.Now consider x = x�. Since all its subobjects of set type are antichains, we can do the followingin NRLa(N;P; �; :). For each set subobject of x�, assign unique ranks to its elements. Nowwe have a new object x1 such that x1 = x�1 and all elements in all sets in x have their ranksattached to them. Then we can de�ne the action of f on this object. The only two cases thatrequire special care to make sure information is not lost are union and
attening. For X [Y ,we �rst create f(x; 1) j x 2 Xg and f(y; 2) j y 2 Y g and then union those. For �(fX1; : : : ; Xng),assume that the rank of Xi is i. Then create ff(x; 1) j x 2 X1g; : : : ; f(x; n) j x 2 Xngg andapply � to it. The equality test also requires some care as it needs to be de�ned in such a waythat it disregards all attached indices, but it also can be done.At the end, we have essentially f(x) except that many integers are attached to its subobjects.We simply remove those using projections. Since f(x) = f(x)�, it is guaranteed that no loss ofinformation occurs while those ranks are projected out, and hence the result is f(x). 2

156 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONNow we give two examples of using NRL(�b), based on the fact that NRLa is it sublanguage(see theorem 5.3). First, we explain how Zaniolo's language described in section 1.1 can beviewed as a sublanguage of NRL(�b). Second, we do it with the language of section 3.1 whichis based on the domain model.Example: Zaniolo's languageRecall that in the language of Zaniolo [181] there is only one kind of nulls { ni. The ordering onrecords was de�ned component-wise and it was lifted to relations by using the Hoare ordering.Zaniolo's language was initially designed for
at relations only but here we show how to extendit to the nested relations.The main notion was that of x-relation which was an equivalence class with respect to the Hoareordering. That is, R1 and R2 are equivalent if R1 v[R2 and R2 v[R1. In our terminology thismeans that #R1 = #R2. Therefore, we can pick a canonical representative of each equivalenceclass which is given by the max operation. That is, the canonical representative of the equivalenceclass of R is maxR. Clearly, #R1 = #R2 implies maxR1 = maxR2.The next notion used for de�ning the operations was that of generalized membership: t2̂R i�t � t0 for some t0 2 R. In other words, t2̂R i� t 2 #R. Using this notion, Zaniolo de�ned thefollowing main operations: R1[̂R2 = maxft j t2̂R1 or t2̂R2gR1\̂R2 = maxft j t2̂R1 and t2̂R2gR1�̂R2 = maxft j t2̂R1 and :(t2̂R2)gWe assume that all base types are Scott domains. This is certainly true in the original Zaniolo'smodel as he only considered
at domains. If we use nested relations, it is still guaranteed thatwe only deal with bounded complete posets, that is, gratest lower bounds of consistent pairs arede�ned at all types. With this in mind, we see how the above operations are translated into thestandard order-theoretic language we advocate in this thesis:R1[̂R2 = maxft j t 2 #R1 or t 2 R2g = max #R1 [#R2 = R1 t[R2R1\̂R2 = max #R1 \ #R2 = maxfr1 ^ r2 j r1 2 R1; r2 2 R2g = R1 u[R2R1�̂R2 = maxft j t2̂R1 and :(t2̂R2)g = R1 � #R2Thus, Zaniolo's union, intersection and di�erence are order-theoretic analogs of the usual set-theoretic union, intersection and di�erence. Next we notice that these operations are de�nablein NRLa and hence in NRL(�b). We have seen already that max is de�nable, so we only needthe following lemma which is proved by an easy induction and de�nitions of t[and u[.

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 157Lemma 5.7 If the least upper bound _b : b� b! b and the greatest lower bound ^b : b� b! bare given for any base type b, then the least upper bound _s : s � s ! s and the greatest lowerbound ^s : s � s! s are de�nable in NRLa for every type s. 2The last operation of Zaniolo's language is the join (we omit projection and selection as theseare standard and of course de�nable in NRLa). The join with respect to a set X of attributeswas de�ned asR1 1X R2 := maxft1 _ t2 j t12̂R1; t22̂R2; t1 and t2 are total on XgWithout the condition that t1 and t2 must be total on X that translates into maxft1 _ t2 jt1 2 R1; t2 2 R2g and hence is de�nable in NRLa by taking cartesian product of R1 and R2and mapping _ over it. In the case of
at relations, it is also possible to check if the valueof a projection is ni since ni is available as a constant of base types now. Hence, the totalitycondition can be checked, and since selection is de�nable, so is 1X . Summing up, we haveTheorem 5.8 The language of Zaniolo is a sublanguage of NRLa, and hence NRL. 2Notice that in the case of model with one null ni we do not have to require orderings on basetypes as these are de�nable using just equality test.Example: Domain-theoretic languageA simple language based on the domain model was introduced in section 3.1. It had six opera-tions: union, di�erence, selection, projection, cartesian product and join. The reason for havingsix operations rather than the usual �ve was that the join was not de�nable via the rest of theoperations for all domains, but only for domains of a special structure. The union operationwas t[which is, as we have just seen, de�nable in NRLa. Di�erence was the usual set di�erence(which was su�cient to de�ne the di�erence as in Zaniolo's language). Projection and selectionwere based on the concept of scheme (see section 3.1). Here we assume that there are onlytrivial schemes, that is, those given by the �leds of records or components of pairs. Therefore,projection and selection are de�nable in NRLa.The join operation was de�ned as the Smyth join t], that is,R1 t] R2 = minfx j 9r1 2 R1 9r2 2 R2 : r1 � x and r2 � xg == minfr1 _ r2 j r1 2 R1 and r2 2 R2gTherefore, by lemma 5.7, R1 t] R2 is de�nable in NRLa. Summing up, we obtain

158 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONProposition 5.9 The domain-theoretic algebra of section 3.1 is a sublanguage of NRLa andhence of NRL(�b). 2Notice that here we do have to include �b as the domains of base types could be arbitrary.5.1.2 Language for or-setsIn this section we follow the method developed in the previous section. The language we aregoing to describe is based on the universality properties for or-sets. One of the languages, NRLor,disregards order, and views or-sets structurally, that is, just as subsets of a given set. The other,NRLora , also views or-sets structurally, but takes into account the ordering and regards or-setsas antichains.Given a poset A, hP](A);u]; ;i is the free ordered semilattice with top generated by A. Recallthat X1 u] X2 = min(X1 [X2). Hence, the syntax of two languages NRLor and NRLora is verysimilar to the syntax of NRL and NRLa. In particular, the category with products part is justinherited from those languages. So here we only give the monad constructs. Types are given bythe following grammar for both NRLor and NRLora .t ::= b j unit j bool j t � t j htiThe monad primitives are shown in �gure 5.2The only di�erence between the semantics of two languages is the interpretation of or �a andor mapa which was shown already in section 2.3:or mapa(f)(hx1; : : : ; xni) = minhf(x1); : : : ; f(xn)ior �ahX1; : : : ; Xni = X1 u] : : :u] Xn = min(X1 [: : :[Xn)Since or-sets are ordered by the Smyth ordering and redundancies are removed by taking minimalelements, we augment the de�nitions of orderings on complex objects and forcing sets intoantichains from the previous section as follows:� x �hsi y , x �]s y (i.e. 8o0 2 y 9o 2 x : o �s o0) � hx1; : : : ; xni� = minhx�1; : : : ; x�niNow one can repeat the proofs of the previous section verbatim and arrive at the followingtheorem.Theorem 5.10 1. If �b is given at any base type b, then �s is de�nable in NRLora withoutusing �s as a primitive.

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 159
Or-Set monad of NRLoror �2s;t : s� hti ! hs� ti or �t : t! hti or [t : hti � hti ! htior �t : hhtii ! hti or empty t : unit! hti f : s! tor map f : hsi ! htiOr-Set monad of NRLora (given by P])or �2s;t : s� hti ! hs� ti or �t : t! hti u]t : hti � hti ! htior �ta : hhtii ! hti or empty t : unit! hti f : s! tor mapa f : hsi ! htiFigure 5.2: Expressions of NRLor and NRLora

160 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION2. Under the assumption that �b can be tested in O(1) time, the time complexity of verifyingx �s y is O(n2), where n is the total size of x and y.3. NRLora is a sublanguage of NRLor(�b).4. Any monotone function f de�nable in NRLor agrees with the antichain semantics. If f isnot monotone, then or map(f) does not agree with the antichain semantics.5. It is undecidable whether a function f de�nable in NRLor is monotone. 2These languages per se are not of great practical interest. In the next section we combine NRLwith NRLor and add a new operation that provides a meaningful interaction between sets andor-sets. Then we show that a great deal of structural and conceptual queries can be expressedin the resulting language.5.1.3 Language for bagsAs we explained in sections 3.2 and 4.1.1, the main di�erence between having bags and sets asthe underlying data model is that in a bag every entry represents a distinct object. Therefore,having equal entries means that at the present time we have only partial information abouttwo objects and they can not be distinguished. Having two objects x and y such that x is lessinformative than y still means that x and y are distinct and now we know less about x than weknow about y. In particular, in bags there are no redundancies arising from having comparableelements, and bags need not be represented as antichains.This interpretation of bags led us to two orderings ECWA and EOWA depending on whether webelieve in OWA or CWA. These orderings are quite di�erent from v\ and v[used for CWAsets and OWA sets respectively. We have seen that v\ and v[are de�nable in the standardlanguage for sets NRL or standard language for antichains NRLa which is a sublanguage of NRLif orderings on base types are provided. However, the situation with bags is quite di�erent. Inthe standard bag language BQL, which is the bag counterpart of NRL, it is impossible to de�neECWA and EOWA.Theorem 5.11 The orderings ECWA and EOWA are not de�nable in BQL.Proof. We prove this in two stages. First, consider the following problem called SDR. Givenan object o of type fjfjtjgjg such that all bags are in fact sets, that is, all elements occur at mostonce. Does o have a system of distinct representatives? We also need a slight modi�cation ofthis problem SDR= asking whether there exists a system of distinct representatives having thesame cardinality as the number of bags in o.We prove the following.

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 161Claim 1. If EOWA is de�nable in BQL, then SDR is de�nable in BQL.Claim 2. If ECWA is de�nable in BQL, then SDR= is de�nable in BQL.Claim 3. Neither SDR nor SDR= is de�nable in BQL.In proving these claims, we use theorem 3.26 from section 3.2 which says that instead of BQLwe can consider NRL with natural numbers and simple arithmetic which we denote by NRLnat.Proof of claim 1. If EOWA or ECWA is de�nable in BQL, then we can write a function that liftsan order on elements of type t to the order on elements of type fjtjg. It is enough to restrict ourattention to bags without duplicates.Assume that a family S = fS1; : : : ; Sng of sets of type ftg is given. Then we do the following.First, by using � we �nd dom(S) = S1 [: : : [Sn and then assign unique ranks to elementsof dom(S) (see the remark after theorem 3.35 which explains how to do it in NRLnat.) Alsoassign unique ranks to the sets in S. From now on, assume the indices of the sets are theirranks. Then attach the ranks of elements of dom(S) to elements of Si's. It is easy to see thatthis can be done in NRLnat. Thus, we have an object S 0 of type fft � Ngg. Now de�ne anew set V which consists of pairs (s;m) such that s is the element of dom(S) with rank 1 andm = card(dom(S)) + 1; : : : ; card(dom(S)) + 1 + n. Again, this can be done in NRLnat. Noticethat V \ dom(S 0) = ;.Now de�ne a binary relation on V [dom(S 0) by letting (s;m) � (s0; j) i� s0 2 Sm�card(dom(S)).Then, according to proposition 4.8, V EOWA dom(S 0) (when these are considered as bags) i� Shas a system of distinct representatives. Hence, runing SDR on S is reduced to testing EOWAbetween two bags. This completes the proof of claim 1.Proof of claim 2. We just repeat all the steps of proof of claim 1 and observe V ECWA dom(S 0)i� SDR= has a solution on S.To prove claim 3, we de�ne a new query called chain even. It takes an input of type ft� tg andreturns a boolean. If the input is a chain (i.e. a tree with out-degree at most 1), then it returnstrue if the length of the chain is even and false if it is odd. If the input is not chain, the outputis arbitrary.Claim 4. chain even is not de�nable in NRLnat.Proof. It was shown in Libkin and Wong [108] that in BQL, for every boolean query q on simplecircuits there exists a number l such that either q(c) = true for all circuits c of length � lor q(c) = false for all circuits c of length � l. Now consider the following query q0 which isde�nable with chain even. Take in a simple a circuits and consider all chains that are obtainedby removing one edge from a circuit, and map chain even over all such chains. It is easy to seethat q0(c) = ftrueg if the length of c is odd and q0(c) = ffalseg if the length of c is even. Thiscontradicts the result of [108]. The claim is proved.Now we need the following lemma which reduces SDR and SDR= to chain even. In fact, this is

162 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONa �rst order reduction.Let Xm = fx1; : : : ; xmg; m > 2, be a chain such that xi+1 is immediate successor of xi, i =1; : : : ; m� 1. De�ne Sm as ffx1g; fxmggSffxi�1; xi+1g j i = 2; : : : ; m� 1g.Lemma. Sm has a system of distinct representatives i� m is even.Proof of lemma. First, �x some notation. Given Xm, let Y mi be fx1g for i = 1, fxmg for i = mand fxi�1; xi+1g for 1 < i < m. If a family fY mi g of sets has a system of distinct representatives,then we use c(Ymi) to denote the representative of Y mi .We prove this lemma by induction on m. For m = 3; 4 it is easy to see that lemma is true. Now,assume that m > 4 and m is even. By induction hypothesis, we know Sm�2 has a system ofdistinct representatives. For any i < m � 2, Y mi = Y m�2i . Furthermore, Y m�2m�2 = fxm�2g (andhence c(Y m�2m�2) = xm�2), Y mm�2 = fxm�3; xm�1g, Y mm�1 = fxm�2; xmg, Y mm = fxmg. Then Smhas a system of distinct representatives de�ned as follows. For k < m � 2, c(Y mk) = c(Y m�2k).For m� 2, c(Y mm�2) = xm�1, and c(Ymm�1) = xm�2 and c(Y mm) = xm. Hence, Sm has a system ofdistinct representatives.Now let m > 4 be odd. We know Sm�2 does not have a system of distinct representatives.Assume Sm does have it. Then c(Y mm) = fxmg and c(Y mm�1) = xm�2 are forced. For c(Ymm�2)there are two choices: xm�3 and xm�1. If c(Y mm�2) = xm�3, then note that xm�1 is not presentin any other Y ml and hence will never get selected. But since the cardinalities of Xm and Smcoincide, this means Sm does not have a system of distinct representatives. This contradictionshows that c(Y mm�2) = xm�1. Therefore, for any i < m� 2, c(Y mi) = xj where j < m� 2. SinceY mi = Y m�2i for i < m�2, then by taking c(Y m�2i) = c(Y mi) for i < m�2 and c(Ym�2m�2) = xm�2we obtain a system of distinct representatives for Sm�2, contradiction. Hence, Sm does not havea system of distinct representatives. This �nishes the proof of the lemma.Now claim 3 follows from the lemma and claim 4. Indeed, if SDR (or even SDR= since cardi-nalities of Xm and Sm coincide) were de�nable, by the lemma we would be able to test whethera chain has even or odd length. This �nishes the proof of the theorem. 2Therefore, any implementation of BQL that is supposed to deal with the problem of partialinformation must provide ECWA and EOWA as additional primitives.Corollary 5.12 Neither NRL nor NRL with arithmetic functions can de�ne a function of typeffsgg ! bool that tests whether a family of sets has a system of distinct representatives. 2Unlike most queries whose inexpressibility has been proved earlier, this one is a truly nestedquery: it has no �rst order analog.

5.2. LANGUAGE FOR SETS AND OR-SETS 1635.2 Language for sets and or-setsIn this section we introduce the main theoretical language of this thesis that combines sets andor-sets. We study its properties and later show how it can be used to deal with approximations.This language also serves as the core of the system called OR-SML which will be described inthe next chapter.As we often said, or-sets have emerged from applications within the design and planning areas,and in particular computer aided design. Now we give a simple example of an incomplete designdatabase and use it to illustrate the main problems that arise in querying such databases. Wethen proceed to solve some of those problems.Example: Querying incomplete databaseAssume that we have a database containing an incomplete design. For example, a part mayconsist of several subparts and each of them can be chosen from several possibilities with di�erentparameters like price and reliability. To give an example, assume that we have a design whichrequires two subparts, A and B. An A is either A1 or A2. The part A1 consists of two subparts:A1:1 and A1:2. An A1:1 is either x or y and an A1:2 is either z or v. The part A1:2 consists ofthree subparts: A2:1, A2:2 and A2:3. An A2:1 is either p or q, an A2:2 is either r or s and anA2:3 is either t or u. A B consists of B1 and B2. A B1 is either w or k and a B2 is either lor m. This incomplete design is shown in �gure 5.3. We use dashed lines to represent possiblechoices.Now assume that for every subpart that can make it into the completed design (those aredenoted by lower case letters) we have two parameters: its cost c(�) and reliability r(�). Belowwe give examples of structural queries, that is, queries asking questions about the structuralrepresentation of an incomplete design, and conceptual queries, that is, queries asking questionsabout completed designs which are not stored in a database and thus are purely conceptual.Structural Queries{ List all possible subparts of A1.{ What is the cost of w?{ How many possible choices are there for A2:3?{ Which choice for A2:3 has the minimal cost?Conceptual Queries{ Is there a complete design that costs less than $50?

164 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION
������ BB BB BB ������ BB BB BB������ BB BB BB ������ BB BB BB ������ BB BB BB ������ BB BB BB ������ BB BB BB

�������� HH HH HH HHA2 B1 B2x y z v w k l mq s t
A1.2 A2.1 A2.2 A2.3A1.1 A1 A B

p r u
DESIGN

Figure 5.3: An incomplete design

5.2. LANGUAGE FOR SETS AND OR-SETS 165{ Is there a complete design that costs less than $65 and whose reliability is at least93%?{ What is the least expensive complete design?{ What is the most reliable complete design?{ How many complete designs are there?We would like to design a language that is capable of supporting both kinds of queries. To doit, we need a way to ask conceptual queries like the ones above. Let us explain, at this pointjust informally, how this can be done.First, we must represent DESIGN as an object in the language. We assume that types are builtfrom base types by using the product, set fg and or-set hi type constructors. We build thedesign bottom-up. First, we obtainA1:1 = hx; yiA1:2 = hz; viA2:1 = hp; qiA2:2 = hr; siA2:3 = ht; uiB1 = hw; kiB2 = hl;miNowB = (B1; B2). The A part requires more care. We see from the diagram that A = hA1; A2i.Hence, A1 and A2 must be of the same type. This means that it is impossible to represent A1as (A1:1; A1:2) and A2 as (A2:1; (A2:2;A2:2)) for then A = hA1; A2i would not typecheck.Therefore, we represent A1 and A2 as sets. That is, we buildA1 = fA1:1; A1:2gA2 = fA2:1; A2:2;A2:3gA = hA1; A2iand �nally DESIGN = (A;B). Assuming that all descriptions of the smallest subparts (thosethat are denoted by the lower case letters) have type t, the type of DESIGN ishfhtigi � (hti � hti)

166 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONNow consider A1 = fhx; yi; hz; vig which is of type fhtig. It is a set which has four possiblevalues: fx; zg; fx; vg; fy; zg; fy; vg. To obtain or-sets containing these sets from A1 one needsessentially the isomorphism between the iterated constructions � described in section 4.2.2. Ifwe apply it to both A1 and A2, we obtain two objects of type hftgi. Now A becomes an objectof type hhftgii and we make it an object of type hftgi by applying or � which, as we remarkedearlier, does not change the meaning.Similarly, B is an object of type hti�hti and one can list all possibilities encoded by B by takingthe cartesian product of B1 and B2. Hence, B becomes an object of type ht� ti. Now the wholeDESIGN becomes an object of type hftgi � ht � ti. Again, we take the cartesian product andobtain an object of type hftg � (t� t)i.Intuitively, elements of this object are the complete designs. Therefore, we can write conceptualqueries by simply selecting certain elements from this or-set. So, in order to �nd out if we canask those conceptual queries, we must answer the following questions:� Given any object o involving or-sets, is it possible to construct an object o0 which is an or-set containing objects not involving or-sets such that o0 represents all possibilities encodedby o?� Does o0 depend on the order in which operations like cartesian product and � in ourexample are performed?In this section we introduce a language for sets and or-sets and show that using that languagewe can construct o0 from o in a way that is \path independent", that is, does not depend onthe order in which operations are applied. That object o0 will be called the normal form of o,and the language will be capable of expressing a function normalize that takes o into o0. Thenconceptual queries simply become queries asked against normal forms.5.2.1 Syntax and semanticsThe language we present deals with sets and or-sets. Its type system is given byt ::= b j unit j bool j t � t j ftg j htiIts expressions simply combine expressions of NRL and NRLor. However, if we do just that,there is no way to distinguish between sets and or-set, because all arrows coming out of sets (or-sets) go to sets (or-sets). The way to distinguish between the two is to look at their interaction.That is, we want to know what is the connection between fhtig and hftgi.Since ordering on sets corresponds to the Hoare ordering, and ordering on or-sets is the Smythordering, we would like to see if there is a natural correspondence between the operators P[] and

5.2. LANGUAGE FOR SETS AND OR-SETS 167P][. As we saw in section 4.2.2, these two operators always produce isomorphic domains, so wetake one of the isomorphisms as a primitive in the language. Summing up, we have the languagefor writing structural queries over sets and or-sets, which we call or-NRL. Its expressions areshown in �gure 5.4.Syntax of or-NRLa is the same except that � is used instead of eq and the following operationshave index a; map; or map; �; or � and �.Semantics. The semantics of all constructs other than � has been given already. Now de�nethe semantics of � and �a.Let X = fX1; : : : ; Xng be a set of or-sets where Xi = hxi1; : : : ; xinii. Let FX be the set of allchoice functions on X , that is, the set of all functions f : f1; : : : ; ng ! N such that 1 � f(i) � nifor all i = 1; : : : ; n. Then �(X) = hfxif(i) j i = 1: : : : ; ng j f 2 FX i�a(X) = minv[hmaxfxif(i) j i = 1: : : : ; ng j f 2 FX iTherefore, according to theorem 4.21, �ta is an isomorphism between [[fhtig]]s and [[hftgi]]s andin addition �a(X) = �(X)�.Recall that objects involving or-sets have two di�erent semantics: the structural semantics [[]]sand the conceptual semantics [[]]c. Therefore, every expression of or-NRL or or-NRLa has inter-pretation with respect to both [[]]s and [[]]c. The remark about � used the structural semantics;the conceptual semantics will be studied in the next section.Combining techniques from the previous section, we can easily show the following properties ofor-NRL and or-NRLa (see theorem 5.10.)Theorem 5.13 1. If �b is given at any base type b, then �s is de�nable in or-NRLa withoutusing �s as a primitive.2. Under the assumption that �b can be tested in O(1) time, the time complexity of verifyingx �s y is O(n2), where n is the total size of x and y.3. or-NRLa is a sublanguage of or-NRL(�b).4. For any two objects x; y of type s, x �s y i� x� �s y�.5. Any monotone function f de�nable in or-NRL agrees with the antichain semantics. If fis not monotone, then map(f) and or map(f) do not agree with the antichain semantics.6. It is undecidable whether a function f de�nable in or-NRL is monotone. 2

168 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONOperators shared by NRL and NRLorg : u! s f : s! tf � g : u! t c : bool f : s! t g : s! tif c then f else g : s! t f : u! s g : u! t(f; g) : u! s� t�s;t1 : s� t! s �s;t2 : s� t! t !t : t! unitKc : unit! Type(c) idt : t! t eqt : t � t! boolOperators from set monad of NRL�s;t2 : s� ftg ! fs � tg �t : t! ftg [t : ftg � ftg ! ftg�t : fftgg ! ftg empty t : unit! ftg f : s! tmap f : fsg ! ftgOperators from or-set monad of NRLoror �2s;t : s � hti ! hs� ti or �t : t! hti or [t : hti � hti ! htior �t : hhtii ! hti or empty t : unit! hti f : s! tor map f : hsi ! htiInteraction of sets and or-sets�t : fhtig ! hftgiFigure 5.4: Syntax of or-NRL

5.2. LANGUAGE FOR SETS AND OR-SETS 169One of or-NRL primitives, �, is essentially a translation of conjunctive normal form into dis-junctive normal form. This operation may be very expensive. Indeed, if its argument is acollection of n two-element or-sets, all 2n elements being distinct, then � produces an or-setcontaining 2n n-element sets. The result that we are going to formulate can be intuitively un-derstood as follows: the expressive power of � is that of powerset . However, powerset doesnot use the hi type constructor. To be able to speak of the equivalence of expressive power oflanguages one of which uses or-sets and the other does not, for technical purposes only, we in-troduce the functions or to set : hti ! ftg and set to or : ftg ! hti with the obvious semantics:or to set(hx1; : : : ; xni) = fx1; : : : ; xng and set to or(fx1; : : : ; xng) = hx1; : : : ; xni. We remarkhere that, if or to set and set to or are given, then NRL and NRLor are interde�nable.Proposition 5.14 or-NRL(or to set; set to or; �) �= or-NRL(or to set; set to or; powerset).Proof. First, powerset can be expressed as follows:powerset = or to set � � �map(or [� (or � � empty�!; or � � �))Conversely, we must show that � is de�nable in or-NRL(or to set; set to or; powerset). It isknown that the test for equal cardinality can be implemented using powerset (see [26]). Tocheck whether card(X) � card(Y), notice that� �map(�Z: if equal card?(X;Z) then X else fg)(powerset(Y))returns X if card(X) � card(Y) and fg otherwise, thus giving us the test for lesser cardinality.Now, given an input of type fhtig, �rst apply map(or to set) to it and then
atten the result,thus obtaining the set of elements that occur in the input. Applying powerset now gives the setof all sets of those elements. A set of elements of the input makes it to the output if and onlyif two conditions hold: �rst, its cardinality does not exceed the cardinality of the input (i.e. thenumber of or-sets) and it has a nonempty intersection with any element of the input, unless theinput is fg. Since selection, lesser cardinality test, intersection and test for nonemptiness arede�nable in NRL selection over the powerset followed by an application of set to or yields thedesired result. 2Example: Membership problem for equality tables in or-NRLAs a simple example of applicability of or-NRL to classical problems of incomplete informationin relational databases, we show how to use it to solve the membership problem for equalitytables. Recall that equality tables are relations where variables can be used as well as nonpartialvalues, and each variable may occur more than once. The membership problem is to determine,given an equality table and a relation without variables, if the relation is a possible world for

170 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONthe table. That is, if it is possible to instantiate variables to values such that the table will beinstantiated into the given relation. It is known that this problem is NP-complete, so we cannot hope to give a solution that does not use the expensive �.For simplicity of exposition, assume that we have a base type b having both variables x1; : : : andvalues v1; : : : and that it is possible to distinguish between variables and values. A relation R isan object of type fb� bg such that no variable occurs in it. A table T is also an object of typefb� bg but now variables may occur.It is possible to �nd the set of all variables that occur in T using the fact that select is de�ablein NRL:VarT := select(is variable) �map(�1)(T) [select(is variable) �map(�2)(T)All values that occur in R can be found asValR := map(�1)(R) [map(�2)(R)We saw in the proof of proposition 5.14 that powersetor : ftg ! hftgi is de�nable in or-NRL.So, the next step is to compute powersetor(cartprod(VarT �ValR)) and select those sets in itin which every variable from VarT occurs exactly once. We denote this resulting object of typehfb� bgi by Assign.Each element of Assign can be viewed as an assignment of values to variables, so it can beapplied to T in the following sense. For every x in Assign (which is a set of pairs variable-value,we can write a function that substitutes each variable in T by the corresponding value, and thenmap this function over Assign. The reader is invited to see how such a function can be writtenin or-NRL.The resulting object is nowX of type hfb�bgiwhich is the or-set of all possible relations that canbe obtained from T by using valuation maps whose values are in ValR. Therefore, R is a possibleworld for T if and only if R is a member of X . To verify this, we write or map(�x:eq(x;R))(X)and then check if true is in the result. This gives us the membership test.It is interesting to note that the membership problem for Codd tables, while being of polynomialtime complexity, requires solving the bipartite matching problem which can be reformulated asa problem of �nding a system of distinct representatives, see Abiteboul et al. [8]. Therefore, thepower of NRL is too limited to solve the membership problem even for Codd tables. However,with the power of �, the language can solve a much more complicated membership for equalitytables.5.2.2 Normalization and conceptual programmingThe main goal of this section is to show that every object involving or-sets has a unique rep-resentation of type hti where t does not involve or-sets. That is, all possibilities encoded by

5.2. LANGUAGE FOR SETS AND OR-SETS 171or-objects can be listed and, moreover, in a way that is implementable in or-NRL.We start with a few examples in which we use the set-theoretic semantics. If a pair (x; y) ofor-sets is given, say, (h1; 2i; h3; 4i), on conceptual level we must deal with all possible objects itcan conceptually stand for, that is, with or-set of pairs h(1; 3); (1; 4); (2; 3); (2; 4)i. In this casethe function that carries out transformation of structural representation to conceptual one canbe given as or � � or map(or �1) � or �2. Another example of the passage from structural toconceptual level is given by the primitive �s : fhsig ! hfsgi, provided that s is in the or-set freefragment.Let us consider a more sophisticated example. Given an object x = (fh1; 2i; h3ig; h1; 2i) of typefhintig � hinti. Denote the �rst component by y. Applying or �2 to x �rst yields h(y; 1); (y; 2)iwhich is an object of type hfhintig � inti. Applying or map(� � �1; �2) yields an objecth(hf1; 3g; f2; 3gi; 1); (hf1; 3g; f2; 3gi; 2)iof type hhfintgi � inti. Finally, applying or � � or map(or �1) yieldsh(f1; 3g; 1); (f1; 3g; 2); (f2; 3g; 1); (f2; 3g; 2)iof type hfintg� inti. This can be considered as a conceptual level object for all the possibilitiesare listed.However, one could have used another strategy to list all the possibilities. For example, to apply(� ��1; �2) �rst to obtain an object of type hfintgi� hinti and then or � � or map(or �1) � or �2to obtain an object of type hfintg � inti. It is easy to check that such a strategy results inprecisely the same object as the previous one.In fact, there is a general result saying that each type has a unique representation at theconceptual level { such that no or-set type occurs in the type expression except as the outermosttype constructor. For reasons that should emerge shortly we call such a type a normal form.Furthermore, for each object of type t there exists its unique representation at the conceptuallevel whose type is the normal form of t.To state these results precisely, introduce the rewrite rules for type expressions:t � hsi �! ht � si hti � s �! ht� sihhtii �! hti fhtig �! hftgiProposition 5.15 The above rewrite system is terminating and Church-Rosser. The normalform nf (t) for type t can be found as follows: If t does not use hi, then nf (t) = t. Otherwise,remove all angle brackets from t. If the resulting type is t0, then nf (t) = ht0i.

172 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONProof. To show that the rewrite system is terminating, de�ne the following function on types.Considering types as their derivation trees, let ki be the number of occurrences of hi on the ithlevel of the derivation tree of type t. If the height of the derivation tree is n, de�ne '(t) as�ni=1ki � i. It is easy to see that if t �! t0, then '(t) > '(t0). Hence, any rewriting terminates.To prove Church-Rosserness, one has to �nd the critical pairs, see section 2.4, which in essenceare pairs of terms that can give rise to ambiguity in rewriting, and show that for any criticalpair (�1; �2) there exists a term � such that �1 �!�! � and �2 �!�! � . A straightforward analysisof our rewrite system reveals the following critical pairs: 1) (hfhtigi; fhtig); 2) (ht�hsii; t�hsi);3) (hhsi � ti; hs � htii) and 4) (hhsi � ti; hhsii � t) and their symmetric analogs. The terms towhich both components of critical pairs rewrite are hftgi for 1), ht� si for 2) and hs� ti for 3)and 4). Thus, the rewrite system is Church-Rosser and, therefore, has unique normal forms.The proof of the last statement is by induction on the structure of a given type. We limitourselves only to types containing hi. The base case is immediate. In general case, considerthree subcases: 1) t = t1 � t2, 2) t = ft1g, 3) t = ht1i. In subcase 1, t0 = t01 � t02, hence, if botht1 and t2 contain or-sets, nf (t1) = ht01i; nf (t2) = ht02i and t �!�! ht01i � ht02i �!�! ht01 � t02i = ht0iwhich is a normal form. Thus, nf (t) = ht0i. The simple proofs of other cases are omitted. 2Having de�ned rewrite rules for types, we must show how to apply these rules to instances.First, associate a function in or-NRL with each rule as follows:or �2 : t � hsi �! ht � si or �1 : hti � s �! ht� sior � : hhtii �! hti � : fhtig �! hftgiIn the case of using antichain semantics, that is, or-NRLa, we replace or � and � by or �a and�a respectively.Let t be a type and p a position in the derivation tree for t such that applying a rewrite rule withassociated function f to t at p yields type s. Our aim is to de�ne a function app(t; p; f) : t! sshowing the action of rewrite rules on objects. De�ne it by induction on the structure of t:� if p is the root of the derivation of t, then app(t; p; f) = f ;� if t = t1 � t2 and p is in t1 , then app(t; p; f) = (app(t1; p; f) � �1; �2);� if t = t1 � t2 and p is in t2, then app(t; p; f) = (�1; app(t2; p; f) � �2);� if t = ft0g then app(t; p; f) = map(app(t0; p; f));

5.2. LANGUAGE FOR SETS AND OR-SETS 173� if t = ht0i then app(t; p; f) = or map(app(t0; p; f)).Notice that the de�nition of app relies on the fact that the functions associated with the rewriterules are polymorphic. Again, for or-NRLa we use corresponding operations with index a fromor-NRLa, and denote the corresponding application function by appa.Given a type t and a rewriting strategy r := t f1�! t1 f2�! : : : fn�! tn = nf (t) such that therewrite rule with associated function fi is applied at a position pi, we can extend the functionapp to app(t; r) : t! nf (t) byapp(t; r) := app(tn�1; pn; fn) � : : : � app(t1; p2; f2) � app(t; p1; f1)We now formulate the main theorem which states that it is possible to compute all possibilitiesa given or-object represents, and that computation is \path independent". We discuss someimportant consequences of this result before giving a (somewhat lengthy) proof.Theorem 5.16 (Normalization) Given a type t, any two rewrite strategies r1; r2 : t �!�! nf (t)yield the same result on objects in or-NRL and or-NRLa. That is, for any object x of type t,app(t; r1)(x) = app(t; r2)(x) and appa(t; r1)(x) = appa(t; r2)(x) 2Therefore, all objects with the same meaning at the conceptual level rewrite to the same normalform. The intuitive notion of the conceptual meaning can now be rigorously de�ned as thenormal form. So now we can de�ne the conceptual query language or-NRL+ by adding the newconstruct normalizet : t! nf (t)to or-NRL. The conceptual query language for the antichain semantics or-NRL+a can be de�nedby adding normalizeta : t! nf (t) to or-NRLa.By the normalization theorem, normalizet can be implemented as app(t; r) where r : t �!�! nf (t)and normalizeta can be implemented as appa(t; r). Notice that, for any given t, normalizet andnormalizeta can be expressed in or-NRL and or-NRLa (maybe in more than one way) but it isimpossible to express them polymorphically.As an illustration of using normalization, consider the example with the incomplete designdatabase. Assuming that the cost function c(�) is given for all pieces, it is possible to calculatethe cost function cost for the complete designs. Now, to �nd out if it is possible to completedesign using $50, one would writeselect(�x:x > 50)(or map cost normalize(DESIGN))

174 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION(recall that select is de�nable in or-NRL). To list the designs which cost exactly $70, one wouldwrite select(�x:cost(x) = 70)(normalize(DESIGN))Moreover, it is possible to express all examples of conceptual queries listed in the beginning ofthis section. We shall return to this example later in chapter 6 and show how those conceptualqueries can be implemented in a practical language OR-SML which is based on or-NRL.Before we prove the normalization theorem, let us make one important observation. The nor-malization theorem states that [[app(t; r1)(x)]]s = [[app(t; r2)(x)]]s, no matter what r1 and r2. Ofcourse, this also implies that the conceptual semantics of the two is the same. However, there isa much closer connection between normalization and the conceptual semantics. The slogan is:Normalization preserves conceptual semantics.In other words, the following holds.Theorem 5.17 For any type t and any object x of type t,[[x]]c = [[normalize(x)]]c and [[x]]c = [[normalizea(x)]]cThat is, [[normalize]]c = [[normalizea]]c = [[id]]c.Proof. We prove this theorem for the antichain semantics; the proof for the set-theoreticsemantics is similar (and in fact easier). We must show that all four operations used in theprocess of normalization do not change the conceptual semantics. We do it by cases. Recall that[[x]]c is a �nitely generated �lter in [[t]]c for any x of type t. First, we need to prove the following.Claim. If x and y are of type t and x �t y, then [[y]]c � [[x]]c.Prove this by cases. The base type case and the product type case are immediate. Let X =hx1; : : : ; xni, Y = hy1; : : : ; ymi be of type hti and let X �hti Y . Then 8yi 2 Y 9xj 2 X : xj �t yiand hence 8yi 2 Y 9xj 2 X : [[yj]]c � [[xi]]c and then [[Y]]c � [[X]]c.Let X = fx1; : : : ; xng, Y = fy1; : : : ; ymg be of type ftg and let X �ftg Y . Then 8x 2 X9y 2Y : x �t y, that is, [[y]]c � [[x]]c. This also means min [[x]]c v] min [[y]]c. Now considerX 0 = fmin [[x1]]c; : : : ;min [[xn]]cg and Y 0 = fmin [[y1]]c; : : : ;min [[ym]]cg. Then X 0 (�]t)[Y 0. Nowrecall from the proof of proposition 4.12 that [[X]]c = "�a(X 0) where �a(X 0) is considered as acollection of sets, and similarly [[Y]]c = "�a(Y 0). From the proof of theorem 4.21 we know that�a(X 0) (�[t)] �a(Y 0) which means �a(X 0) �]ftg �a(Y 0) and hence "�a(Y 0) � "�a(X 0). Therefore,[[Y]]c � [[X]]c. This �nishes the proof of the claim. Now we prove that all operations used in theprocess of normalization preserve [[]]c.Case 1: or �2. Let [[x]]c = Fx and [[yi]]c = Fi for i = 1; : : : ; n. Then for Y = hy1; : : : ; yni wehave [[Y]]c = Sni=1 Fi = FY and [[(x; Y)]]c = Fx � FY . On the other hand, [[or �2(x; Y)]]c =

5.2. LANGUAGE FOR SETS AND OR-SETS 175[[h(x; y1); : : : ; (x; yn)i]]c = Sni=1(Fx � Fi) = Fx � Sni=1 Fi = Fx � FY . Hence, [[(x; Y)]]c =[[or �2(x; Y)]]c. The case of or �1 is similar.Case 2: or �a. Let X = hX1; : : : ; Xni and Xi = hxi1; : : : ; xinii for i = 1; : : : ; n. Let [[xij]]c = F ij .Then [[X]]c = SiSj F ij . By monotonicity of [[]]c, we obtain[[X]]c = [xij2min(X1[:::[Xn)F ijand hence [[X]]c = [[or �a(X)]]c.Case 3: �a. Let X = fX1; : : : ; Xng where Xi = hxi1; : : : ; xinii for i = 1; : : : ; n. Let [[xij]]c = F ij .Then [[X]]c is the �lter generated by such �nite antichains Y that Y \F i 6= ; for all i = 1; : : : ; nwhere F i = Snij=1 F ij . Now, �a(X) = minv[hmaxff(xif(i)) j i = 1; : : : ; ng j f 2 FX i. Therefore,by monotonicity of [[]]c, [[�a(X)]]c is the �lter generated by all �nite antichains Y such thatfor every i = 1; : : : ; n, Y \ F if(i) 6= ; for at least one f 2 FX . Now it is easy to see that[[�a(X)]]c = [[X]]c.Therefore, all operations used in normalization do not change the value of [[]]c and hence [[x]]c =[[normalizea(x)]]c for any x. 2Proof of the normalization theoremWe start with normalization for the set-theoretic semantics. Let us �rst explain the strategy forproving the theorem. We de�ne an abstract rewrite system on objects by letting x! y i� y canbe obtained from x by application of one of the rewrite rules for types to x (by means of app).For instance, (1; hh1i; h2ii)! (1; h1; 2i) by applying hhtii ! hti in the second position. If x is oftype t and y is of type s, then t! s according to the rewrite system for types. Moreover, normalforms with respect to our new rewrite system are precisely objects whose types are normal form.Therefore, the rewrite system is terminating according to proposition 5.15.Now our goal is to prove that the new rewrite system is weakly Church-Rosser. Then, byNewman's lemma (see section 2.4) it will follow that it is Church-Rosser and has unique normalforms. Since for a rewriting r from t to s, y = app(t; r)(x) implies that x �!�! y, the uniquenessof normal forms will imply the normalization theorem.To prove weak Church-Rosserness, we have to show that for x ! x1 and x ! x2, there existsx0 such that x1; x2 �!�! x0. We shall often view types as trees. Assume that x ! x1 by meansof rule r1 in position p1 in t and x! x2 by means of rule r2 in position p2 in t. We denote thefunctions that correspond to rules r1 and r2 by f1 and f2 respectively. Notice that if positionsp1 and p2 are in two di�erent subtrees determined by a pair formation, then the existence ofx0 is immediate. Hence, we can assume that one position, say p1, is closer to the root than p2because fg and hi are unary type constructors.

176 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONNow we prove weak Church-Rosserness by cases which are given by the rewrite rules applied inposition p1. Subcases will be given by rewrite rules applied in position p2.Case 1. The rule applied in p1 is s � hti ! hs � ti. The object therefore is a pair (x1; x2) andthe function applied is or �2. Now we have three subcases.Subcase 1.1. p2 occurs inside the tree for s. Assume that app(s; p2; r2)(x1) = x01. Then weobtain h(x1; xi2) j xi2 2 x2i�����or �2 � @@@@@or map(f2 � �1; �2)R(x1; x2) h(x01; xi2) j xi2 2 x2i@@@@@(f2 � �1; �2) R �����or �2�(x01; x2)Subcase 1.2. p2 occurs inside t. That is, rewriting is apllied to elements of or-set x2. Forx2 = hyiii, assume that f2(yi) = zi. Then we obtainh(x1; yi) j yi 2 x2i�����or �2 � @@@@@or map(�1; f2 � �2)R(x1; x2) h(x1; zi) j yi 2 x2i@@@@@(�1; or map(f2) � �2) R �����or �2�(x1; hziii)Subcase 1.3. p2 coincides with the root of hti. Since the root of hti is the or-set type,the only rule that can be applied is hht0ii ! ht0i, that is, t = ht0i. Now assume x2 =hX1; : : : ; Xpi where each Xi is an or-set of type ht0i. Let V = X1 [: : : [Xp. Then weobtain

5.2. LANGUAGE FOR SETS AND OR-SETS 177h(x1; X i)ipi=1 or map(or �2)- hh(x; y) j y 2 Xii j i = 1; : : : ; pi�����or �2 � @@@@@or �R(x1; x2) h(x1; y) j y 2 V i@@@@@(�1; or � � �2)R ��������or �23(x1; V) id - (x1; V)Case 2. The rule applied in p1 is hhtii ! hti. The object therefore is an or-set of or-setsX = hX1; : : : ; Xpi where Xi = hxi1; : : : ; xinii and the function applied is or �. Now we have twosubcases.Subcase 2.1. p2 occurs inside the tree for t. Assume that for each element xij in Xi wehave f2(xij) = yij . Let Yi = or map(f2)(Xi). Then we obtainhxij j i = 1; : : : ; p; j = 1; : : : ; nii�����or � � @@@@@or map(f2)RX hyij j i = 1; : : : ; p; j = 1; : : : ; nii@@@@@or map(or map(f2))R �����or ��hYi j i = 1; : : : ; piSubcase 2.1. p2 is the root of hti, that is, p2 is the immediate successor of p1. Hence, theonly rule that can be applied at p2 is hhsii ! hsi. In other words, t = hsi and X has typehhhsiii. Rewriting at p2 is then or map(or �). Therefore, two reducts of X are or �(X) andor map(or �(X)). The case now holds because or � � or map(or �)(X) = or � � or �(X).Case 3. The rule applied in p1 is fhtig ! hftgi. The object therefore is a set of or-setsX = fX1; : : : ; Xpg where Xi = hxi1; : : : ; xinii and the function applied is �. Now we have twosubcases.

178 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONSubcase 3.1. p2 is inside t. Assume that applying f2 to every xij yields yij . The result ofapplying f2 (in the sense of app) to X is fhyij j j = 1; : : : ; niii = 1; : : : ; pg. Now we can seethat the following diagram commutes and hence the case holds.hfxih(i) j i = 1; : : : ; pg j h 2 FX i������ � @@@@@or map(map(f2))RX hfyih(i) j i = 1; : : : ; pg j h 2 FX i@@@@@map(or map(f2))R �������fhyij j j = 1; : : : ; nii j i = 1; : : : ; pgSubcase 3.2. p2 is the root of hti. In this case the only rule that can be applied ishht0ii ! ht0i and hence t = ht0i. In particular, applying f2 now is map(or �). Now it canbe seen that the following diagram commutes which proves the case. In that diagram weonly give types of intermediate objects.� : hfht0igi or map(�)- � : hhft0gii������ � @@@@@or �RX : fhht0iig � : hft0gi@@@@@map(or �) R �������� : fht0ig id - � : fht0igThis �nishes the proof that for the set-theoretic semantics the rewrite system is weak Church-Rosser and therefore the normalization theorem holds.To prove normalization for or-NRLa, recall the translation from the set-theoretic semantics intothe antichain semantics: x� = x for any x of base type, (x; y)� = (x�; y�), fx1; : : : ; xng� =maxfx�1; : : : ; x�ng and hx1; : : : ; xni� = minhx�1; : : : ; x�ni. Now we need two lemmas.Lemma 5.18 Any function f in the fragment of or-NRL that does not contain [; or [and eq,is monotone.

5.2. LANGUAGE FOR SETS AND OR-SETS 179Proof is by induction. We consider only a few cases. Most cases, such as projections, pairing,composition, singleton and pair-with are immediate. That � is monotone follows from theorem4.21. Let X ;Y be of type fftgg and X �fftgg Y . Then consider x 2 �(X). Since x 2 X forsome X 2 X , there exists Y 2 Y such that X �ftg Y and then there exists y 2 Y such thatx �t y. This shows �(X) �ftg �(Y). The proof for or � is similar.Assume that g : t ! s is monotone and consider X; Y : ftg such that X �ftg Y . Let g(x) 2map(g)(X). Then there exists y 2 Y such that x �t y and hence g(x) �s g(y) which showsmap(g)(X)�fsg mapa(g)(Y). The proof for or map is similar. 2Let f be a function de�nable in or-NRL. By fa we denote the corresponding function in or-NRLa,that is, the function obtained from f by replacing set-theoretic operations with their antichaincounterparts, e.g. by replacing or map with or mapa and so on.Lemma 5.19 Let f be a function in the fragment of or-NRL that does not contain [, or [,equality and comparability tests. Then for any object x, fa(x�) = f(x�)�.The proof is again by induction on f . We show a few cases here. The proof for � is easily derivedfrom theorem 4.21. Given X of type fftgg, consider �a(X �). It is easy to see that �a(X �) =max(�(maxfX� j X 2 Xg)) = �(X �)� and so the case holds. The case for map, observe thatmapa(ga)(X�) = max(map(ga)(X)) = maxfga(x�) j x� 2 X�g = maxfg(x�)� j x� 2 X�g =map(g)(X�)�. Similarly, the case for or map holds. Finally, consider h = f � g where g : s ! tand f : t ! u. Then by induction hypothesis ha(x�) = f(g(x�)�)� and h(x�)� = f(g(x�))�.Since g and f come from a monotone fragment of or-NRL, we obtain g(x�) �t g(x�)� �t g(x�)and therefore f(g(x�)) �u f(g(x�)�) �u f(g(x�)) which shows f(g(x�)�)� = f(g(x�))� and henceha(x�) = h(x�)�. This �nishes the proof. 2To prove normalization for the antichain semantics, we de�ne the rewrite system on objects inexactly the same way we did it for the set-theoretic semantics. Now our goal is to show that thesystem is weakly Church-Rosser.Assume that we have an object x in the antichain semantics, that is, x = x�, and assumethat it can be rewritten to two objects x1 and x2. That is, there exist two functions f andg which are in fact instances of appa such that x1 = fa(x) and x2 = ga(x). Let y1 = f(x)and y2 = g(x). By the proof of normalization theorem for set-theoretic semantics we knowthat there exists an object z (in set-theoretic semantics) such that both y1 and y2 rewrite toz. That is, for some function f 0 and g0, which are compositions of instances of app, we havef 0(y1) = g0(y2) = z. Now using the fact that [; or [and eq are not present in functions thatarise as instances of app and hence these functions are monotone, we apply the previous lemmato obtain f 0a(x1) = f 0a(fa(x)) = f 0(f(x))� = z� = g0(g(x))� = g0a(ga(x)) = g0a(x2). Since f 0aand g0a are compositions of instances of appa, this means that the rewrite system is weaklyChurch-Rosser and normalization for the antichain semantics follows.

180 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION5.2.3 Partial normalizationWe have seen that the normalization process can be quite expensive. Indeed, since � hasessentially the expressive power of powerset and can be applied several times in the course ofnormalization, the resulting object may be of at least exponential size. In section 5.2.5 we shallgive tight upper bounds for the costs of normalization. Meanwhile, we would like to ask anotherquestion. Is it possible to answer conceptual queries faster?First, we are going to show that even simple existential queries like \is there a complete designthat costs less than $50?" can be very expensive. Then we proceed to suggest a method thatoccasionally allows to answer queries without completing the normalization process.The importance of existential queries was emphasized in Imielinski et al. [80, 81]. Essentially, anexistential query asks whether there exists a possibility { in the normal form { satisfying a givenproperty. In terms of or-NRL+, if nf (s) = hti and p : t ! bool is a predicate, 9(p) : hti ! boolis a predicate which is true of y : hti if or map(p)(y) : hbooli is an or-set containing the truevalue. Given an object y of type s, one may ask a query 9(p)(normalize(y)). Clearly, this querycan be answered in time polynomial in the size of normalize(y), but can it be answered in timepolynomial in the size of y?The following example gives a negative answer to this question, provided P 6= NP . Assumepk : ftg ! bool evaluates to true if and only if cardinality of the set is at most k. Let b abase type. For an object x of type fhbig, one may ask a query Q(k; x) = 9(pk)(normalize(x)).It is immediately seen that this query evaluates to true i� there exists a system of distinctrepresentatives of elements of x (which are or-sets) whose size is at most k. The problem of�nding a system of distinct representatives of size � k is known to be NP-complete, see [56].Therefore, the problem whether Q(k; x) evaluates to true is NP-complete.Thus, there is no hope that even simple existential queries can be answered e�ciently. Doesthat mean we always have to go through the whole process of normalization? Not necessarily so.Consider the following query about the incomplete design in �gure 5.3. Is it possible to buildpart A using $45? Of course we do not have to normalize the whole DESIGN but only the Acomponent. In other words, instead of normalizing an object of type hfhtigi � (hti � hti) andgetting an object of type hftg� (t� t)i, it is enough to get an object of type hftgi� (hti � hti),leaving the B component intact.The question that naturally arises is whether it is possible to do this unambiguously. That is,if t �!�! t0, and r1 and r2 are two strategies that perform this rewriting, is it true that app(t; r1)and app(t; r2) are the same as functions of type t! t0?It is not hard to see that the answer to this question is negative, as shown in example in �gure5.5.

5.2. LANGUAGE FOR SETS AND OR-SETS 181hhh1; 2i; h3ii; hh4i; h5iii : hhhintiii@@@@@or �Rhh1; 2; 3i; h4; 5ii : hhintiior map(or �)? hh1; 2i; h3i; h4i; h5ii : hhintiiFigure 5.5: A counterexample to unambiguity of partial rewritingHowever, the result that we are going to prove says that this is essentially the only possiblecounterexample. We need a couple of de�nitions �rst.De�nition 5.1 A �-type is a type that does not contain a subtype hhtii. A �-rewrite strategyr : t �!�! s between two �-types t and s is a rewrite strategy such that, whenever a subtype hht0iiappears as the result of application of a rewrite rule, the next rewrite rule is hht0ii ! ht0i.For example, hti � ht� fhtigi is a �-type andhti � ht� fhtigi �! hti � ht � hftgii �! hti � hht� ftgii �! hti � ht� ftgiis a �-rewrite strategy. Notice that it does not go all the way to the normal form.Now the slogan isThe normalization theorem holds for �-rewrite strategies between �-types.Before we formulate and prove the partial normalization theorem, we need a few results dealingwith the structure of types involving the or-set type constructor. Recall that by t �!�! s we meanthat t can be rewritten to s in zero or more steps using the four rules given before proposition5.15. Now we write t � s if s is obtained from t by removing some of the or-set brackets. Inother words, s is obtained from t by applying the rules in �gure 5.6.Now de�ne a binary relation C on types by means of four rules in �gure 5.7.Theorem 5.20 Rules in �gure 5.7 are sound and complete for �!�!. In other words, s �!�! t i�s C t.Proof. First prove the following. Let sor be a type obtained from s by inserting a pair ofor-set brackets. In terms of trees, it just means inserting a new node marked by hi somewhere.

182 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONhti � t t � shti � s t � shti � hsi t � sftg � fsgt � st� t0 � s � t0 t � st0 � t � t0 � s t � s t0 � s0t� t0 � s � s0Figure 5.6: Rules for �t C t t C t0 s C s0t � t0 C s� s0t C sftg C fsg t � t0 t0 C st C hsiFigure 5.7: Rules for CThen sor �!�! hsi. We prove this by cases. If s is a base type, then sor could only be hsi. Ifs = s1� s2, then in the case when or-set brackets are put around s, we are done. Assume or-setbrackets are inserted inside s1. Then sor = s1or � s2 �!�! hs1i � s2 �!�! hs1 � s2i = hsi. Assumes = fs0g. Again, if we put or-set brackets around s, we are done. Assume that a new pair ofor-set brackets is put in s0. Then sor = fs0org �!�! fhs0ig �!�! hfs0gi = hsi. The proof for s = hs0iis similar. Therefore, if t � s, then t was obtained from s by inserting a number of pairs ofor-set brackets in s and hence t �!�! hsi.Now we prove soundness of the rules in �gure 5.7. The �rst three rules are obvious, so only thelast one needs to proved. Assume that we know t0 �!�! s and let t � t0. We must show t �!�! hsi.By the remark made above we obtain t �!�! ht0i. Therefore, t �!�! ht0i �!�! hsi, which provessoundness.To prove completeness, we must show how to derive all four rewrite rules for types from therules in �gure 5.7. First, we obtainhti � s � t� s t� s C t � shti � s C ht� si t � hsi � t � s t � s C t � st� hsi C ht� si

5.2. LANGUAGE FOR SETS AND OR-SETS 183For the rules for sets and or-sets, we havefhtig � ftg ftg C ftgfhtig C hftgi hhtii � t t C thhtii C htiFinally, we need to show that if a subtype s of a type t rewrites to s0, then t rewrites to t[s0=s].In other words, if s C s0, then t C t[s0=s]. We prove it by induction on the structure of t. If theposition of s is the immediate successor of a product or a set node, then this follows immediatelyfrom the rules in �gure 5.7. Now assume that the position of s is the immediate successor of theor-set node. Then we obtain hsi � s ...s C s0hsi C hs0ias required. This �nishes the proof of the theorem. 2The last rule in �gure 5.7 resembles the cut rule in the sequent calculus [58] as it introduces anew variable t0. In the sequent calculus it is possible to eliminate the cut rules but the cost isthe hyperexponential blow-up in the length of the proof, see Girard [58]. The last rule in �gure5.7 does not suggest an immediate search strategy to prove that t C hsi but rather a search forthe right t0. Thus, the following question arises. Given two types t and s, how hard is it tocheck if t �!�! s? One may fear that it is at least exponential in the size of s and t, as suggestedby the rules for C. Fortunately, we can prove the following result.Proposition 5.21 There exists a O(n2) time complexity algorithm that, given two types s andt, returns true if s �!�! t and false otherwise.Proof. First, de�ne a carcass of type t, denoted by t̂, as follows. If nf (t) = ht0i, then t̂ = t0,otherwise t̂ = t. Now, according to proposition 5.15, s �!�! t implies ŝ = t̂. Therefore, we assumethat the �rst stage of the algorithm is to check that ŝ = t̂. This can be done in linear time inthe size of t and s.Assume s and t are given such that s �!�! t. The proof of theorem 5.20 gives us a translationof any rewriting strategy into a proof using the rules for C. Analysing these rules, we see thatall of them are forced except the case when t = ht0i. That is, if t = t1 � t2, then we should haves = s1 � s2 and s1 C t1 and s2 C t2 must be proved. If t = ft0g, then we should have s = fs0gand s0 C t0 must be proved.Assume that t = ht0i. Analyzing the translation from �!�! into C given in the proof of theorem5.20, we can see that there are only three instances of applying this rule to show s C ht0i. Inthree of them, the subproof for the C relation is a one-step proof (equality).

184 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONTherefore, when we have to prove s C ht0i, we do the following. First, we check if t0 = t01 � t02.If this is so, we check if s = s1 � s2. If this is again so, we check if s1 = ht01i and s2 = t02. If thisis so, we stop since we succeeded in proving s C ht0i. If this is not so, the rule for product couldnot have been used in the translation of �!�! to C.Next we check if t0 = ft00g. If this is so, we check if s = fht00ig and if this is the case, we stop aswe succeeded in proving s C ht0i. If this is not so, the rule for sets could not have been used inthe translation of �!�! to C.Then we check if s = hht00ii. If this is so, we stop as s C ht0i is proved. If this is not so, the rulefor or-sets of or-sets could not have been used in the translation of �!�! to C.If going through these steps the algorithm does not stop, the translation from �!�! to C tells usthat the only way to prove s C ht0i is to check that s = hs0i and to prove s0 C t0. Hence, weremove one or-set type constructor and then repeat all steps for the simpler types s0 and t0. Thegoal is proved when all its subgoals are proved, that is, in proving each subgoal the algorithmstops returning success.Analyzing this algorithm, we see that after each step the goal is reduced to a simpler subgoal(or two of them in the case of product) and that the only operations performed are a constantnumber of equality tests which can be done in linear time. Since the number of equality testsperformed is linear in the size of the input, the time complexity of the algorithm is O(n2). 2Since sizes of types are typically small (as compared to sizes of objects), this O(n2) algorithmwill work very fast. Notice that we assumed that types are represented as trees. This is the casein the implementation called OR-SML which we shall describe in the next chapter. Had typesbeen given as strings, due to the simple grammar for types, they can be parsed by an LR parserto obtain the tree representation in linear time [13]. Hence, the algorithm for checking s C t isstill of O(n2) time complexity.Our main goal is to prove the normalization theorem for �-rewrite strategies between �-types.The �rst question is how to obtain �-rewrite strategies and �-types. Let us see why the naiveapproach would not work. Given a type t, de�ne Mt as the type obtained by deleting multipleor-set brackets from t. That is, Mb = b, Ms� t = Ms�Mt, Mftg = fMtg, Mhhtii = MhMti andMhti = hMti if t is not of form ht0i. Obviously, for any t, Mt is a �-type. Now given two types tand s such that t C s, is it true that Mt C Ms.The answer to this question is negative. Indeed, take t = b� hhbii and s = hb� hbii, where b isa base type. Then t C s, but Mt = b� hbi 6C Ms = hb� hbii. However, we still can prove thefollowing result.Proposition 5.22 If s and t are two �-types such that s C t, then there exists a �-rewritestrategy that rewrites s to t.

5.2. LANGUAGE FOR SETS AND OR-SETS 185Proof. Let s C t. Then there is a rewrite strategy that rewrites s to t, i.e. s �!�! t. Considerthe �rst step at which the condition for �-rewrite strategy is violated. That is, in some reducts0 of s a subtype of form hht0ii appeared, but the next rule is not the one that rewrites hht0iito ht0i. Since t is a �-type and does not have double or-set brackets, this pair of or-set bracketsmust disappear in the process of rewriting. There are three possible cases.Case 1. The product rule is used to eliminate the double or-set brackets. That is, t0 may havebeen rewritten to some t00 and then the rule hht00ii � t01 ! hht00i � t01i was used. According tothe rules for C, this means that in s0, hht0ii appeared in the context hht0ii� t1 and that t1 C t01.Since s is a �-type and s0 is the �rst reduct in which a pair of or-set brackets appeared that wasnot canceled at the next step, there are two possible ways for it to appear.Subcase 1.1. t0 = t01 � t02 and a pair of or-set brackets around t0 appeared by applyingthe rule t01� ht02i ! ht01� t02i. Therefore, the type that was rewritten to hht0ii � t1 washt01 � ht02ii � t1. Now it can be rewritten to hht00i � t01i as follows:ht01 � ht02ii � t1 ! h(t01 � ht02i)� t1i ! hht01 � t02i � t1i = hht0i � t1i �!�! hht00i � t01iNote that the �rst two rules satisfy the conditions for �-rewriting.Subcase 1.2 when t0 = t01 � t02 and the ruled applied is ht01i � t02 ! ht01 � t02i is similarto the subcase 1.1.Subcase 1.3. t0 = ft01g and a pair of or-set brackets around t0 appeared by applying therule fht01ig ! hft01gi = ht0i. Therefore, according to the rules for C, the type that wasrewritten to hht0ii� t1 was hfht01igi� t1. Now it can be rewritten to hht00i� t01i as follows:hfht01igi � t1 ! hfht01ig � t1i ! hhft01gi � t1i = hht0i � t1i �!�! hht00i � t01iAgain, note that the �rst two rules satisfy the conditions for �-rewriting.Case 2. The set rule is used to eliminate the double or-set brackets. That is, t0 may have beenrewritten to some t00 and then the rule fhht00iig ! hfht00igi was used. According to the rules forC, this means that in s0, hht0ii appeared in the context fhht0iig. Since s is a �-type and s0 isthe �rst reduct in which a pair of or-set brackets appeared that was not canceled at the nextstep, there are two possible ways for it to appear.Subcase 2.1. t0 = t01 � t02 and a pair of or-set brackets around t0 appeared by applyingthe rule t01 � ht02i ! ht01 � t02i. Therefore, the type that was rewritten to fhht0iig wasfht01 � ht02iig. Now it can be rewritten to hfht00igi as follows:fht01 � ht02iig ! hft01 � ht02igi ! hfht01 � t02igi = hfht0igi �!�! hfht00igi

186 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONSubcase 2.2. t0 = t01 � t02 and a pair of or-set brackets around t0 appeared by applyingthe rule ht01i � t02 ! ht01 � t02i. This case is similar to 2.1.Subcase 2.3. t0 = ft01g and a pair of or-set brackets around t0 appeared by applyingthe rule fht01ig ! hft01gi = ht0i. Therefore, the type that was rewritten to fhht0iig wasfhfht01igig. Now it can be rewritten to hfht00igi as follows:fhfht01igig ! hffht01iggi ! hfhft01gigi = hfht0igi �!�! hfht00igiNote that in all three subcases the new rules we introduce satisfy the conditions for �-rewriting.Case 3. In hht0ii, t0 could be rewritten to t00 = ht01i and then the pair of or-set bracketsaround to t00 is canceled by applying the rule hht01ii ! ht01i. That is, hht0ii �!�! hht01ii. Thisequivalently could be achieved by rewriting hht0ii as follows:hht0ii ! ht0i �!�! ht00i = hht01iiNotice that the �rst rule is an instance of �-rewriting: double or-set brackets are canceledimmediately after they appeared.Now we de�ne a measure of a rewriting from s to t as the total number of instances of hhii inall intermediate results of rewritings such that those double or-set brackets are not canceled byapplying the � rule at the next step. If the measure of a rewriting is at least one, we can �ndan instance of the �rst appearance of hhii that is not canceled immediately afterwards, and usethe above algorithm to decrease the measure by at least one. Hence, this algorithm eventuallyproduces a rewrite strategy of measure zero, and such is a �-strategy. Proposition is proved. 2Now that we know that there exist �-rewrite strategies between �-types t1 and t2 satisfyingt1 C t2, we can prove the following result.Theorem 5.23 (Partial Normalization) Given two �-types t1 and t2 such that t1 C t2, anytwo �-rewrite strategies r1; r2 : t1 �!�! t2 yield the same result on objects in or-NRL andor-NRLa. That is, for any object x of type t1,app(t1; r1)(x) = app(t1; r2)(x) and appa(t1; r1)(x) = appa(t2; r2)(x)Proof. The proof is going to follow the proof of the normalization theorem, but here we needto do most of the work with types rather than object. Again, we de�ne a rewrite system onobjects by letting x of type s1 rewrite in one step to y of type s2 if t1 C s1 C s2 C t2 and one ofthe following holds. Either s1 is a �-type and y is obtained by applying one type rewrite rule(in the sense of app) to x, or x has one subobject of type hhs0ii and y is obtained from x byapplying the type rewrite rule hhs0ii ! hs0i. Then, in order to prove the theorem, similarly to

5.2. LANGUAGE FOR SETS AND OR-SETS 187the case of the normalization theorem, we must show that thus de�ned abstract rewrite systemis weakly Church-Rosser.To show this, we go through all the cases considered in the proof of theorem 5.16 and observethat some of them (1.3, 2.1, 2.2, 3.2) can not happen with the new de�nition of rewriting.Let us list all others, leaving only types in the diagrams. Notice that in all the diagrams, iftypes we start with are �-types, and rewritings s �!�! s0 and t �!�! t0 are �-rewritings, then allintermediate types are �-types and all rewritings are �-rewritings.Case 1. Two di�erent components of a pair are rewritten.Case 2. This case corresponds to case 1.1 in the proof of normalization. These two cases areshown in the diagrams below.s0 � t���� @@@Rs� t s0 � t0@@@R ����s� t0Case 1 hs� ti���� @@@Rs � hti hs0 � ti@@@R ����s0 � htiCase 2Case 3. This case corresponds to case 1.2 in the proof of normalization, where t0 6= ht00i.Case 4. This case corresponds to case 1.2 in the proof of normalization, where t0 = ht00i. It isnot hard to see that the diagram below commutes.hs� ti���� @@@Rs� hti hs� t0i@@@R ����s� ht0iCase 3 hs � ti - hs� ht00ii === hs� ht00ii����s� hti hhs� t00ii?@@@Rs � hht00ii - s � ht00i - hs� t00i?Case 4Case 5. This case corresponds to case 3.1 in the proof of normalization, where t0 6= ht00i.Case 6. This case corresponds to case 3.1 in the proof of normalization, where t0 = ht00i. Thatthe diagram commutes follows from commutativity of diagrams for cases 3.1 and 3.2 in the proofof normalization (see theorem 5.16).

188 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONhftgi���� @@@Rfhtig hft0gi@@@R ����fht0igCase 5 hftgi - hfht00igi === hfht00igi����fhtig hhft00gii?@@@Rfhht00iig - fht00ig - hft00gi?Case 6Notice that commutativity of these diagrams is not su�cient to conclude that the rewrite systemwe de�ned is weakly Church-Rosser. There is one additional condition, namely that for allintermediate types s0 it must be the case that s0 C t2. To show that this is so, we must provethe following.For case 1, we must show that if s0� t C t2 and s� t0 C t2, then s0� t0 C t2. For case 2, we mustshow that of hs� ti C t2 and s0 � hti C t2, then hs0 � ti C t2 if s C s0. For case 3 we must provethat hs� ti C t2 and s� ht0i C t2 imply that hs � t0i C t2 if t C t0. For case 4 it is necessary toshow that t C ht00i, hs� ti C t2 and s� hht00ii C t2 imply hs� t0i C t2. For case 5, we must provethat hftgi C t2 and fht0ig C t2 together with t C t0 imply hft0gi C t2. Finally, in case 6 we mustprove that hft00gi C t2 whenever hftgi C t2, fhht00iig C t2 and t C ht00i.In the rest of the proof, whenever a type t is given, t0 will always denote a type which is obtainedfrom t by removing some or-set brackets. That is, t � t0.Before we prove these cases, let us make the following observation. Assume hvi is a �-type. Ift and t0, such that t C t0 C v and t C hvi, then t0 C hhuii for some type u. Indeed, the way therewriting works is that some pairs of or-set brackets move up in the carcass of a type, and somemultiple or-set brackets are canceled. Therefore, the only possibility for t C v and t C hvi tohold simultaneously is that v = hv0i. Again, looking at how rewriting works, we see that anyrewriting t �!�! hhv0ii must go through t0 and hence t0 C hhv0ii.Now consider case 1. If t2 is a product type, say w � u, we obtain that s0 C w and t0 C uand hence s0 � t0 C t2. The other possibility is that t2 = hwi. In this case, for some typesu1 � s0 � t and u2 � s � t0 is must be the case that u1 C w and u2 C w from which we derivethat w is a product type since hwi is a �-type. Let w = w1 � w2. Now u1 C w1 � w2 can betranslated into three possible cases, depending on whether u1 is s00� t or s00� t0 or s0� t0 wheret � t0 and s0 � s00. Similarly three cases arise for u2. Since t C ht0i and s0 C hs00i, we obtains0 � t0 C hw1 � w2i in all cases but the following one: t0 C w2 and s0 C w1. In this case wehave t C hw2i and s C hw1i. Then, by the observation made above, wi = hw0ii, i = 1; 2, ands0 � t0 C hhw01ii � hhw02ii C hhw01i � hw02ii C hwi = t2 as required. Case 1 is proved.Consider case 2. Since hs� ti C t2, we obtain t2 = hwi. Moreover, w is either a product or a set

5.2. LANGUAGE FOR SETS AND OR-SETS 189type. Now for some types u1 � hs� ti and u2 � s0 � hti we have u1; u2 C w. This shows that wis a product type, say w1�w2. Moreover, u1 � s� t. Again, there are three possibilities how u1and u2 can be obtained by removing or-set brackets from components, and it is easy to see thatin all of them s0 � t C w or s0 � t C hwi, both proving hs0 � ti C t2. For example, if u1 = s0 � tand u2 = s0 � t0, then s0 C w1 and t C w2 and s0 � t C w. If u1 = s� t0 and u2 = s00 � hti, thens0 C hw1i and t C hw2i and s0 � t C hw1i � hw2i C hwi. Case 2 is proved.Consider case 3. We have hs � ti C t2 and hence t2 = hwi. Since s � ht0i C hwi and t2 is a�-type, we obtain that w is a product type, i.e. w = w1 � w2. Now we have that for sometypes u1 � s� t and u2 � s� ht0i, this holds: u1; u2 C w. If for some t00 � t0 it is the case thatht00i C w2, then it is not hard to see that s � t0 C w1 � w2 or s � t0 C hw1i � w2 depending onwhether s rewrites to w1 or hw1i. In both cases hs� t0i C t2. Similarly, the case holds if t0 C w2.The only remaining case is when ht0i C w2. Then we must have that u2 = s0 � ht0i and hences C hs0i C hw1i. Since ht0i C w2, we have w2 = hui and u is not of form hu0i because w2 is a�-type. Therefore, ht0i C hui leaves two possibilities: either t0 C u or t0 C hui. If t0 C hui, thens� t0 C hw1i�w2 C hwi and we are done. So consider the case when t0 C u. From u1 C w1�w2we also have that either t0 C w2 and then t C hw2i C hui or t C w2 = hui. Hence, t C t0 C u andt C hui. As we remarked earlier, this must imply that u is an or-set type, i.e. u = hu0i but thiswould contradict the assumption that w2 is a �-type. Hence, this case leads to a contradictionand in all other cases it was shown that hs� t0i C t2. Hence, case 3 holds.Notice that nowhere in the proof of case 3 did we use the assumption that t0 6= ht00i. Nowconsider case 4. Since s � hht00ii C t2 is a part of a �-rewrite strategy and t2 is a �-type, weobtain s� ht00i C t2. Now the proof of case 3 tells us that hs� t00i C t2 which proves case 4.Now consider case 5. We have hftgi C t2 and hence t2 = hwi for some w. Moreover, w can notbe of form hw0i since t2 is a �-type. Now we have fht0ig C hwi and hence for some u � fht0igwe have u C w. Since w is not of form hw0i, it must be fw0g for some w0.Now we have three cases. First, u could be ft0g and in this case ft0g C fw0g implies t0 C w0and then hft0gi C hfw0gi = t2 and we are done. In the second case, for some t00 � t0, we havefht00ig C w and hence ht00i C w0. Then we have t0 C ht00i C w0. Then hft0gi C hfw0gi = hwi = t2.Finally, in the third case we have ft00g C fw0g and t00 C w0; hence t0 C ht00i C hw0i. Nowhft0gi C hfhw0igi C hhfw0gii C hfw0gi = t2. This �nishes the proof of case 4.Since we have not used the assumption that t0 6= ht00i anywhere, this also proves case 6. Indeed,since fhht00iig C t2 is a part of a �-rewrite strategy and t2 is a �-type, we obtain fht00ig C t2 andthen the proof of case 5 applies. Hence, all cases are proved, and this tells us that the rewritesystem is weakly Church-Rosser.This �nishes the proof of partial normalization for the set-theoretic semantics. The proof forthe antichain semantics is obtained by repeating the proof of normalization for the antichainsemantics verbatim, thus showing that weak Church-Rosserness of the corresponding rewrite

190 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONsystem for antichains follows from the result we have just proved. Theorem is completely provednow. 2To add partial normalization to the language, one has to introduce a new function pnorm t1;t2 :t1 ! t2 which is de�ned if t1 and t2 are �-types and t1 C t2. According to proposition 5.22,there exists a �-rewrite strategy r : t1 �!�! t2 and then by theorem 5.23 we can correctly de�nethe semantics of pnorm t1;t2 as app(t1; r) and the semantics of pnormt1;t2a as appa(t1; r). Thesetwo functions are de�nable in or-NRL and or-NRLa, but not polymorphically.Repeating the proof of theorem 5.17 verbatim, we obtain the following result.Corollary 5.24 For any two �-types t1 and t2 such that t1 �!�! t2 and any object x of type t1,[[x]]c = [[pnorm t1;t2(x)]]c and [[x]]c = [[pnorm t1;t2a (x)]]cIn other words, [[pnorm t1;t2]]c = [[pnorm t1;t2a]]c = [[id]]c. 2There are many open questions about partial normalization. Even though we can test if s C te�ciently and we know that there exists a �-rewriting from s to t if s and t are �-types,algorithmic aspects of �nding a �-rewrite strategy between �-types need to be further explored.Partial normalization must also be combined with a smart evaluation strategy to help answerqueries faster.As another important consequence of partial normalization, notice that it allows us to compareobjects of di�erent types in terms of their partiality. Previously we were able to compareonly objects of the same type. That is, the function � had type s � s ! bool . Now partialnormalization gives us a canonical representation of an object of type s at type t where s C tand s and t are �-types. Therefore, we can say if x of type s is more informative than y of typet by checking if pnorms;t(x) �t y. This appears to be a new phenomenon in the �eld of partialinformation.5.2.4 Losslessness of normalizationThis section investigates whether the process of normalization loses anything \that can be re-garded as critical." If loss of information is inevitable in the general case, then one wouldlike to obtain a set of general su�cient (and, if possible, necessary) conditions that guaranteelosslessness of normalization.In chapter 1 we discussed the concept of representation system for relational databases withpartial information. A representation system is in fact a semantic function that maps everyincomplete relation R into the set of possible worlds thatR can represent. Of course the question

5.2. LANGUAGE FOR SETS AND OR-SETS 191that immediately arises is whether any loss of information occurs as the result of replacing Rwith the corresponding set of possible worlds. That is, if we evaluate a query on each of thepossible worlds, can the resulting family of relations be represented by one incomplete relation?Observe that the normalization process is very closed in the spirit to the representation systems.That is, we replace an incomplete object by the or-set of objects it can represent. So, again wemay ask if this representation is lossless, that is, if loss of the structural information has anyimpact on the conceptual queries.First, let us see how this problem can be formalized in a wrong way which is just a reformulationof the concept of a strong representation system. Suppose an object x is given and we ask aquery against each possibility represented by x. That is, we apply a function f that does not useor-sets to all objects in normalize(x). Let the result of this be an or-set hy1; : : : ; yni. That is,or map(f)(normalize(x)) = hy1; : : : ; yni. The question we ask is whether there exists an objecty such that normalize(y) = hy1; : : : ; yni.The answer to this question is positive because we can just take y to be or map(f) � normalize!Of course the reason we can do this is that we can use normalize in the language whereas theconcept of representation systems can not be expressed in the standard database languages.Therefore, we should look for another formalization of losslessness of normalization.Given an or-NRL-de�nable function f : s! t and an object x : s containing some or-sets. Thenx conceptually represents several values x1; :::; xn. Suppose f(x) is an object containing or-sets;then it conceptually represents several values y1; :::; ym. It is desirable to discover which one ofx1; :::; xn leads to which one of y1; :::; ym. This is a question of searching for a conceptual analogof f that associates each xi in normalize x to a subset of normalize(f x).The idea of the conceptual analog of a query is illustrated in �gure 5.8. One would like toknow which combination of the conceptual values of the input give rise to which subset of theconceptual values of the output. However, the ideal situation can only be approximated. Asa �rst attempt, for each possible conceptual value xi of the input x, we aim only to accountfor some of the conceptual values in the output that are due to it. This approximation toconceptual analog is illustrated in �gure 5.8. Some conceptual values yj in the output may beleft unaccounted for. For example, the last element of normalize y in the �gure. Similarly, thepicture given for each input xi is only partial. For example, the second element of normalize xin the �gure might in reality contribute to three values in the output but the conceptual analogdiscovers only two.Now restrict types only to those containing or-sets. De�ne purely or-types by the followinggrammar: t ::= hbi j t � t j ftg j hti. It is possible to force any type into a purely or-type by putting or-set brackets around every occurrence of a base type. Its action on objectsis represented by taking each base type subobject z into or �(z). We call such a functionpreserve. It can be easily seen that any object x is conceptually equivalent to preserve(x),i.e. normalize(x) = normalize(preserve(x)) provided x has or-sets. That is, without loss of

192 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONh f fi fh f f f�� �� fim �
��f 6 6-?AAAAAAU ������� CCCCCWSSSSSw@@@@@@R������������� 6x ynormalize f
preserve(f) normalize

Figure 5.8: Conceptual analog of function fgenerality we can speak of objects preserve(x).Given an or-NRL-function f : s ! t and two objects x : s and y = f(x) : t, let normalize(x) =hx1; : : : ; xni and normalize(y) = hy1; : : : ; ymi, nf (s) = hs0i and nf (t) = ht0i. Our motivationto study losslessness is to �nd a conceptual analog of f . What can such an analog be? Asthe �rst approximation, it is given by a function f 0 : s0 ! ht0i which associates with eachelement xi in normalize(x) a subset of normalize(y), thus de�ning the action of f on elementsits input could possibly stand for. This is illustrated in �gure 5.8. Note that the second elementof normalize(x) is mapped into a two-element subset of normalize(y) and the last element ofnormalize(y) is not accounted for. The morphism preserve(f) : nf (s) ! nf (t) can now bede�ned as or � � or map(f 0).How could one re�ne the action of f on elements of normalized object? There are two waysto do so. First, to require that this action be de�ned unambiguously, that is, f 0 maps everyelement from normalize(x) into a unique element of normalize(y), thus having type s0 ! t0.preserve(f) can then be reconstructed as or map(f 0). Secondly, one may require that all theelements of normalize(y) be accounted for, that is, preserve(f) �normalize(x) = normalize(y).In other words, preserve(f) is onto.Proposition 5.25 Let s and t be purely or-types and f : s! t a function de�nable in or-NRLthat does not use or empty and any primitive p whose type has or-sets. Then there exists aconceptual analog preserve(f) which is generally of form or ��or map(�) and of form or map(�)if f does not use or [. If f does not use pairing, �2 and or �2, the conceptual analog is alsoonto.Proof is by induction on the structure of f . Most of its steps are quite straightforward, so wejust show a few cases as an example. Consider the case f = �2 : s � ftg ! fs � tg. Since s

5.2. LANGUAGE FOR SETS AND OR-SETS 193and t are purely or-types, nf (s) = hs0i and nf (t) = ht0i. Then preserve(�2) must have typehs0 � ft0gi ! hfs0 � t0gi. We take preserve(�2) to be or map(�s0;t02). An easy application of thenormalization theorem shows that for any object x of type s�ftg, or map(�s0;t02)�normalize(x) �normalize � �s;t2 (x). Therefore, being onto can not be maintained for �2.As another illustration, consider f = or [: hti � hti ! hti. To see why the translation cannot be of form or map(�), let t be a base type, say int, and consider an object x = (h1; 2i; h3i).Applying normalize � or [gives h1; 2; 3i while applying normalize yields h(1; 3); (2; 3)i and nomapping over the latter object can produce the former. So in the general case the translationof or [is preserve(or [) = or � � or map(or [(or � � �1; or � � �2)):Induction hypothesis is applied for pairing, map, or map and composition. The case of pairingis similar to �2; the translation of map is a straightforward application of induction hypothesis.In the case of composition one can easily show that, given a composition f � g such that eitherpreserve(f) or preserve(g) is of form or � � or map(�), preserve(f � g) is such and if bothpreserve(f) and preserve(g) are of form or map(�), then so is preserve(f � g). Moreover, thetranslation maintains being onto, depending on f and g. As an illustration, consider f and gsuch that preserve(f) = or � � or map(f 0) and preserve(g) = or � � or map(g0). Thenpreserve(f � g) = or � � or map(or � � or map(g0) � f 0)In the case of f = or map(f 0) : hsi ! hti, if both hsi and hti are normalized, preserve(f) = f ; ifboth are unnormalized, then preserve(f) = preserve(f 0). Since we are considering only purelyor-types, s (or t) is a normal form i� s0 (or t0) is a base type. Therefore, the case when t is anormal form and s is not is impossible. If s is a normal form and t is not, then preserve(f) =or � � or map(normalize � f 0). Notice that if or [is not used, f 0 can produce only or-singletonson elements of a base type. In this case f 0 = or � � f 00 and preserve(f) = or map(f 00). 25.2.5 Costs of normalizationWe have seen before that the complexity of or-NRL+ queries can be exponential. In particular,the cardinality of normalize(x) can be exponential in the size of x provided that � was used inthe course of normalization. In fact, we showed that powerset can be expressed using �. If onetries to estimate the cost of normalization by \brute force," a hyperexponential upper boundcan be immediately obtained: indeed, if n is the size of x, applying the costly � O(n) timesseems to yield a hyperexponential bound.In this section we show that the fear of hyperexponentiality is not justi�ed. In fact, bothcardinality of normalize(x) and its size are in the worst case exponential in the size of x. The �rstresult in this section explains why consecutive applications of � still yield objects of exponentialsize. Then we proceed to �nd upper bounds on the cardinality and the size of normalized objects.

194 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONLet x be an object and y = normalize(x). De�ne m(y) as the number of elements in y if it is anor-set and 1 otherwise. Uniformly, m(x) = jnormalize(or �(x))j. The size of an object is de�nedinductively: the size of an atomic object is 1, size (x; y) = size x + size y, size fx1; : : : ; xng =size hx1; : : : ; xni = size x1 + : : :+ size xn.To work with objects, it is convenient to associate rooted labeled trees with them. A treeT x associated with an atomic object x is de�ned as a one-node tree labeled by x. T (x; y)is a tree with the root labeled by � and two subtrees rooted at its children are T x and T y.T fx1; : : : ; xng (or T hx1; : : : ; xni) is a tree whose root is labeled by fg (or hi) and n subtreesrooted at its children are T x1; : : : ; T xn. In view of this de�nition, m(x) can be rede�ned as thenumber of children of the root of T normalize(x) if the root is labeled by hi and 1 otherwise.size x is the number of leaves in T x.Intuitively, the following proposition says that the \internal" structure of T x does not contributeto the creation of new possibilities in normalize(x), and the number of such possibilities m(x)is determined by the or-sets which are closest to the leaves.Proposition 5.26 Let x be an object, and v1; : : : ; vk the nodes in T x labeled by hi, such thatthe subtrees rooted at vi's do not have other nodes labeled by hi (i.e. they are or-sets closest tothe leaves). Let mi be the number of children of vi, i = 1; :::; k. Then, if k 6= 0,m(x) � kYi=1(mi + 1)Proof is by induction on the structure of the object. We consider only objects containing or-sets. The base case (i.e. or-sets of objects of base types) is obvious. Let x = (x1; x2). Assumethat both x1 and x2 contain or-sets and v1; : : : ; vp are nodes of T x1 and vp+1; : : : ; vk are nodes ofT x2. Then, by induction hypothesis, m(x1) � Qpi=1(mi + 1) and m(x2) � Qki=p+1(mi + 1). Bycoherence, normalize(x) = or �((normalize(x1); normalize(x2))) where or � pairs each item inits �rst argument with each item in its second argument (it can be easily expressed in or-NRL).Therefore, m(x) � m(x1)m(x2) � Qki=1(mi + 1). Two other cases when either x1 or x2 containsor-sets are similar.Let x = fx1; : : : ; xng. Then all xi's contain or-sets. Again, by coherence,normalize(x) = �(fnormalize(x1); : : : ; normalize(xn)g)Therefore, m(x) � Qni=1m(xi) and the result follows from the induction hypothesis.Finally, if x = hx1; : : : ; xni, there are two cases. If xi's do not contain or-sets, then m(x) = n �n+ 1. If they do contain or-sets, then by coherencenormalize(x) = or �(hnormalize(x1); : : : ; normalize(xn)i)

5.2. LANGUAGE FOR SETS AND OR-SETS 195i.e. m(x) � �ni=1m(xi) � Qni=1m(xi) because m(�) � 2. The case now follows from thehypothesis. 2This proposition explains why there is an exponential upper bound for m(x) despite the factthat � can be applied many times. The following three results �nd upper bounds on the numberof elements in the normal form and its size in terms of the size of object rather than the treestructure. We �rst formulate the results and then give their proofs.Theorem 5.27 Let x be an object with size x = n. Thenm(x) � 3p3 nMoreover, for any n divisible by 3 there exists an object x such that size x = n and m(x) = 3p3 n.2Theorem 5.28 Let x be an object with size (x) = n where n > 1. Thensize normalize(x) � n2 3p3 n 2Corollary 5.29 Let x = normalize(y) and size x = n. ThenO(logn) � size y � n 2The upper bound of theorem 5.28 is not tight. The following result exhibits a tight upperbound for a large class of objects. This shows that the previous theorem can not be signi�cantlyimproved.Theorem 5.30 Let x be an object with size x = n containing or-sets. Assume that everysubobject of type fht0ig has size at least 21, every subobject of type t0 � ht00i or ht00i � t0 has sizeat least 6 and every subobject of type hht0ii has size at least 3, where t0 and t00 do not use theor-set type constructor. Then size normalize(x) � n3 3p3 nMoreover, for any n divisible by 3 there exists an object x such that size x = n andsize normalize(x) = n3 3p3 n. 2Since the size of normalizea(x) can not exceed the size of normalize(x), and since all examplesdemonstrating tightness of upper bounds do not use orderings, we obtainCorollary 5.31 All results of theorems 5.27, 5.28 and 5.30 hold for the antichain semantics,that is, for normalizea. 2

196 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONProofs of theoremsProof of theorem 5.27. As in the proof of proposition 5.26, consider only objects containingor-sets. Proceed by induction on the number of steps of normalization. If the object is alreadynormalized, we are done. Assume normalize(x) is obtained by one step of normalization. Thenthis step is one of the maps associated with the rewrite rules, so we have four cases. Notice thatin the base cases we may assume w.l.o.g that any element of a set or an or-set is of base typesince this will give us the maximal possible m(x) for a given size x.Case 1. x = (x1; x2) where x1 = hx11; : : : ; x1n�1i. Then normalize(x) = or �1(x) and it is an easyarithmetic exercise to show that m(x) = n � 1 � 3p3 n.Case 2 when or �2 is applied to obtain the normal form is similar.Case 3. Let x = fX1; : : : ; Xkg where each Xi is an or-set hxi1; : : : ; xikii where all xij are elementsof base types. Since we are interested in upper bound, assume w.l.o.g. that all xij 's are distinct(if they are not, some of sets in normalize(x) could collapse). Let X = Si;j xij . De�ne a graphG = (X;E) where (xi1j1 ; xi2j2) is in E i� i1 6= i2. Let normalize(x) = �(x) = hY1; : : : ; Ypi (Yk 'sare sets). Then it follows from the de�nition of � that Y1; : : : ; Yp are precisely the cliques of G.Since n = size x = jXj, applying the upper bound on the number of cliques for a graph with nvertices [119], we obtain p = m(x) � 3p3 n.Case 4. x = hX1; : : : ; Xki where Xi's are or-sets of a base type. Then normalize(x) = or �(x)and m(x) � n. Again, simple arithmetic shows that n � 3p3 n. Hence, m(x) � 3p3 n.The proof of the general case is very similar to the proof of proposition 5.26 and we will showonly step. Let x = fx1; : : : ; xkg where xi's are not normalized. Then normalize(x) is obtained byapplying � to fnormalize(x1); : : : ; normalize(xn)g. Let size xi = ni. By induction hypothesis,m(xi) � 3p3 ni . We now havem(x) � kYi=1m(xi) � kYi=1 3p3 ni � 3p3 nThe other cases are similar. To show the tightness of the upper bound, let n = 3k; k > 0. Assumethat we have a base type whose domain is in�nite (typical example is int). Let b1; : : : ; bn be ndistinct elements of such a type. Letx = fhb1; b2; b3i; hb4; b5; b6i; : : : ; hbn�2; bn�1; bnigThen size x = n and normalize(x) = �(x) contains 3k = 3p3 n elements. The theorem iscompletely proved.Proof of theorem 5.28. Similarly to the proof of theorem 5.27, proceed by induction on thesteps of normalization. We start with base cases, i.e. consider application of or �2 or or �1 or� or or �.

5.2. LANGUAGE FOR SETS AND OR-SETS 197Case 1. x = (x1; x2) where x1 = hx11; : : : ; x1ki. Let size x1 = s1, size x1i = �i. Then s1+�1+ : : :+�k = n. Since normalize(x) = or �1(x), size normalize(x) = ks1+�1+: : :+�k = ks1+(n�s1) �(n� s1)s1 + n� s1 � 2n� 2. Since empty sets and or-sets are excluded, n � 2 in this case andtherefore 2n� 2 � n2 3p3 n.Case 2 when or �2 is applied is similar.Case 3. Let x = fX1; : : : ; Xlg where each Xi is an or-set hxi1; : : : ; xikii where all xij have typescontaining no or-set. Let size xij = sij andkiXj=1 sij = �i lXi=1 �i = nThen an easy calculation shows that size normalize(x) = size �(x) is given by�1 � k2 � ::: � kl + �2 � k1 � k3 � ::: � kl + : : :+ �l � k1 � ::: � kl�1 � l � �1 � : : : � �lTherefore, we need to maximize l � �1 � : : : � �l under constraint �1 + : : :+ �l = n. A standardargument shows that such a maximum is bounded above by8><>: 1 if n = 1n2p2 n if 1 < n < 21n3 3p3 n if n � 21If it easy to see that for n > 1, the upper bounds given above are less than n2 3p3 n. If n = 1,then the size of the normal form is also 1.Case 4. x = hX1; : : : ; Xli where Xi's are or-sets of a type that does not contain or-sets. Thennormalize(x) = or �(x). Since the or � does not change size, size normalize(x) < n2 3p3 n for alln � 2. If n = 1, then size normalize(x) = 1.To complete the inductive proof, we show that after each step of normalization that producesa normalized subobject x00, that is, x00 = normalize(x0) for a subobject x0 of x, either size x00 �n2 3p3 n is satis�ed if n = size x0 > 1, or size x00 = 1 if n = 1. This will complete the proof. Twocases corresponding to application of or �1 or or �2 are similar to the case of �, so we show hereonly the case of application of �.Let x = fx1; : : : ; xkg where each xi is an unnormalized object. Let x0i = normalize(xi) and kibe the cardinality of x0i, i.e. ki = m(xi). Let ni = size xi. By theorem 5.27, ki � 3p3 ni . Firstconsider the case when all ni > 1.Let x0i = hyi1; : : : ; yikii, i = 1; : : : ; k. By sij we denote size yij . By induction hypothesis,8i = 1; : : : ; k : kiXj=1 sij � ni2 3p3 ni

198 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONnormalize(x) is obtained by applying � to fx01; : : : ; x0kg, i.e. its elements are sets of represen-tatives of x01; : : : ; x0k. Since we are interested in an upper bound, we may assume that all theelements of x01; : : : ; x0k are distinct. Then each element of x0i will be present in k(i) = (Qkj=1 kj)=kisets. Therefore, the upper bound for size normalize(x) can be calculated as the sum of the sizesof all elements of x01; : : : ; x0k multiplied by the number of their occurrences in the normalizedobject, i.e. size normalize(x) � kXi=1 kiXj=1 k(i)sij = kXi=1 k(i) kiXj=1 sij �kXi=1 ni2 k(i) 3p3 ni � 3p3 n1+:::+ni kXi=1 ni2 = n2 3p3 nIf all ni = 1, then size normalize(x) = k = n. If n > 1, then n � n2 3p3 n and if n = 1, that is,size x = 1, then size normalize(x) = 1.Now consider the general case, i.e. n1; : : : ; np > 1 and np+1; : : : ; nk = 1. Normalization of xi fori > p results in a size one object. Let �0 = n1 + : : :+ np and �1 = k � p. Clearly �0 + �1 = n.Had we applied � only to fx01; : : : ; x0pg, it would have resulted in an object whose size is boundedabove by �02 3p3 �0 according to the calculations for the case where all ni > 1. But taking intoaccount �1 size one objects adds size �1 to every element of the or-set normalize(x). Since thereare at most 3p3 �0 such sets, we obtainsize normalize(x) � �02 3p3 �0 + �1 3p3 �0Since �0 > 1, �0 + 2�1 � (�0 + �1) 3p3 �1 which showssize normalize(x) � �02 3p3 �0 + �1 3p3 �0 � n2 3p3 nFinally, if or � is applied in the process of normalization, it does not change size. Assume x =hx1; : : : ; xki where each xi is an unnormalized object. Let x0i = normalize(xi) and ni = size xi.Assume n1; : : : ; np > 1 and np+1 = : : := nk = 1. De�ne �0 and �1 as in the case of applying �.Then, by induction hypothesis,size normalize(x) � pXi=1 ni2 3p3 ni + �1 � �02 3p3 �0 + �1 � n2 3p3 nIf all ni = 1, then two cases arise. If n > 1, then size normalize(x) = n � n2 3p3 n, and if n = 1,then size normalize(x) = n = 1. Theorem is proved.Proof of theorem 5.30. We have to rework the base cases only. Since no subobject involvingor-sets can have size one, the induction step easily goes through, cf. the proof of theorem 5.28.

5.3. PROGRAMMING WITH APPROXIMATIONS 199The case of applying � was already proved, see proof of theorem 5.28. For the case of applyingor �1 or or �2, we established an upper bound 2n� 2. It is easily seen that 2n� 2 � n3 3p3 n forn � 6. Finally, applying or � does not a�ect size, and n � n3 3p3 n for n � 3.To show sharpness, consider example from the proof of theorem 5.28. Letx = fhb1; b2; b3i; hb4; b5; b6i; : : : ; hbn�2; bn�1; bnigwhere all bi's are distinct elements of a base type. Then �(x) contains 3p3 n elements, eachhaving cardinality n3 . Thus, size normalize(x) = n3 3p3 n. Theorem is proved.5.3 Programming with approximationsIn this section we study programming with approximations. First, we use the approach thatturns universality properties of collections into programming syntax. Since most approximationconstructions possess universality properties, as we showed in section 4.2, this approach is ap-plicable. However, it has a number of drawbacks. First, dealing with ordered collections, werun into the problem of identifying monotone fragments of the language. As we have seen inexamples ofNRLa and or-NRLa, this leads to undecidable problems. Second, although there is acorrespondence between di�erent algebras used to characterize approximations, it is not alwaysthe case that some of them can be expressed in terms of the others. Consequently, instead ofhaving a language with just one structural recursion construct, or one set of monad operations,we need one for each approximation which makes the language very inconvenient to use.In an attempt to overcome these problems, we look at the semantic connection between approxi-mations and sets and or-sets established in propositions 4.19 and 4.20. This connection suggeststhat approximation constructions can be encoded with sets and or-sets. We use these encodingsto show that all monads arising from the universality properties of approximations can be ex-pressed in or-NRLa. In addition, if type t encoded a certain approximation construction, thenthe ordering �t de�nable in or-NRLa is precisely the Buneman ordering used for that kind ofapproximations.5.3.1 Structural recursion on approximationsWe start with mixes. Mixes will be considered as a new type constructor. That is, for any typet we now have a new type t mix such that [[t mix]] = P8([[t]]). Since mixes arise as free mixalgebras, we can de�ne the structural recursion on mixes as follows:

200 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONfun sr mix [e; f; u; h](;; ;) = ej sr mix [e; f; u; h](�(x)) = f(x)j sr mix [e; f; u; h](M1 + M2) = u(sr mix [e; f; u; h](M1); sr mix [e; f; u; h](M2))j sr mix [e; f; u; h](2M) = h(sr mix [e; f; u; h](M))Similarly to the case of sets and bags, sr mix is well-de�ned i� e; u; h0 supply its range with thestructure of a mix algebra. Now if we consider only those mixes whose second component isempty, checking this precondition is the same as checking whether e and u supply its range withthe structure of a semilattice with identity, and this is undecidable according to Breazu-Tannenand Subrahmanyam [27]. Therefore, well-de�nedness of sr mix is undecidable.Our approach is to impose syntactic restriction on the general form of structural recursion.That is, to go from structural recursion to a monad. In the case of mixes it yields the followingconstruct: mix ext(f) def= sr mix [(;; ;); f;+;2]provided f sends elements of type t to s mix . In this case mix ext(f) is a function of typet mix ! s mix . However, this alone does not eliminate the need to verify preconditions in thecase when we use the ordered semantics. As we have just shown, restricting mixes to thosewith the empty second component we obtain a sublanguage of the expressive power of the NRLmonad constructs. Therefore, monotonicity of f is needed for well-de�nedness of mix ext . Andwe know that even in NRLa monotonicity is undecidable.Our second example is sandwiches. Again, we view them as a type constructor t sand such that[[t sand]] = P 8̂ ([[t]]). Since sandwiches arise as free mix algebras generated by the consistentclosure, we can de�ne the structural recursion on sandwiches as follows:fun sr sand [e; f; u; h](;; ;) = ej sr sand [e; f; u; h](�"(x; y)) = f(x; y)j sr sand [e; f; u; h](S1 + S2) = u(sr sand [e; f; u; h](S1); sr sand [e; f; u; h](S2))j sr sand [e; f; u; h](2S) = h(sr sand [e; f; u; h](S))If we consider the subset of sandwiches generated by A, then it coincides with the family of mixesover the same poset, see theorem 4.41. Therefore, well-de�nedness of sr sand is undecidable.The monad construct ext sand(f) def= sr sand [(;; ;); f;+;2]is well-de�ned i� f is monotone which again is undecidable.As our last example, we consider snacks which again are viewed as a type constructor: t snack isa type whose semantic domain is PP8([[t]]). Since snacks are free algebras in the signature havingone nullary operation and two binary operations, we de�ne the structural recursion on them asfollows:

5.3. PROGRAMMING WITH APPROXIMATIONS 201fun sr snack [e; f; u; h](;; ;) = ej sr snack [e; f; u; h](�(x)) = f(x)j sr snack [e; f; u; h](S1 + S2) = u(sr snack [e; f; u; h](S1); sr snack [e; f; u; h](S2))j sr snack [e; f; u; h](S1 � S2) = h(sr snack [e; f; u; h](S1); sr snack [e; f; u; h0](S2))Again, by restricting our attention only to snacks with empty second component, we see that thewell-de�nedness condition, which for snacks requires + and � to form a distributive semilatticewith e being the identity for +, is now the same as well-de�nedness for the structural recursionon sets and hence undecidable. The monad constructext snack(f) def= sr snack [(;; ;); f;+; �]is similarly well-de�ned i� f is monotone, and monotonicity is undecidable even in the NRLfragment.The reader is invited to do similar exercises with other approximations and observe similar phe-nomena. Now we can summarize the major problems of using the approach based on structuralrecursion and monads for programming with approximations.� Most operations used in the universality properties for approximations are not as intuitiveas union, intersection and so on. Therefore, the average programmer would have a veryhard time trying to write a program that uses constructs like sr mix or ext snack .� All approximations have di�erent equational characterizations, and therefore there areten forms of structural recursion and ten sets of the monad primitives. This means thatthe language must contain all of them and therefore it is going to be too complicatedto comprehend even for a theoretician, let alone a programmer. Furthermore, in manyapplications more than one approximation model is used, and therefore in addition to tenapproximations we also need a few dozen of operations that coerce one approximation intoanother.� Veri�cation of preconditions remains a big problem and it can not be taken care of by thecompiler as the preconditions are undecidable { even for the monad operations when theordered model is used.Therefore, we need a unifying framework for programming with approximations. And such aframework is given by the language for sets and or-sets or-NRL.5.3.2 Using sets and or-sets to program with approximationsWhen we discussed semantics of sets, or-sets and approximations, we saw that approximationscan be encoded as objects in the type system of or-NRL. In fact, the following encoding wasproposed:

202 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATIONApproximations Encodingt mix ; t sand and similar hti � ftgt snack ; t scone and similar hti � fhtigUsing these encodings, we can encode the monad operations on approximations. Consider mixes.First we notice that the Buneman ordering for mixes over type t, which is v] � v[, is precisely�hti�ftg. For f : t! s mix, where s mix is now abbreviation for hsi � fsg, we havemix ext(f) = �(U; L):(or �a(or mapa(�1 � f)(U)); �a(mapa(�2 � f)(L)))Mix singleton is de�ned as � mix (x) = (or �; �). Then, for g : s! t,mix map(g)(U; L) = (or mapa(g)(U);mapa(g)(L)) : s mix ! t mix and� mix = �x:(or �a(or mapa(�1))(x); �a(mapa(�2)(x))) : s mix mix ! s mixNow we have the following standard monad equations for any monotone f and g:- mix ext(f) = � mix (mix map(f))- � mix = mix ext(�x:x)- mix map(g) = mix ext(�x:� mix (g(x)))Our second example is snacks. We use t snack as an abbreviation for hti � fhtig. First observethat �t snack is precisely the Buneman order used for snacks, and hence our encoding againagrees with the ordering. But the important question is how to express ext snack(f) : s snack !t snack if f : s! t snack is given.Assume that we have a snack S = (U;L) of type s snack . Then ext snack(f)(S) can be foundas ext snack(f)(S) = (Xu2U f(u)) � e+ XL2LYl2L f(l)Look at the �rst component. If f(u) = (Vu; Nu), then it is equal to min(Su2U Vu) and thereforecan be expressed as C0 = or �a(or mapa(�1 � f)(�1 S)).Now �x L 2 L. Assume that f(l) = (Wl;Ml) for each l 2 L. ThenYl2L f(l) = (min [l2LWl;max](min([l2LMl jMl 2 Ml)))To �nd the �rst component, compute or �a(or mapa(�1 � f)(L). To �nd the second component,observe that X = or mapa(�2�f)(L) is hMl j l 2 Li. Therefore, the second component is simplymapa(or �a(�a(X))). Here �a is the inverse of �a, that is, isomorphism between the semantic

5.3. PROGRAMMING WITH APPROXIMATIONS 203domains of types hftgi and fhtig. It is not hard to see that in the presence of set to or andor to set it is possible to express �a in or-NRL. Hence, we can write a functiong := (or �a � or mapa � (�1 � f);mapa � or �a � �a � or mapa � (�2 � f))which, when applied to L, produces Ql2L f(l) = (ZL;NL).Now we need to calculate PL(ZL;NL) = (minSL ZL;max](SLNL)). The second componentcan be obtained as C2 = �a(mapa(�2 � g)(L))and it is of type fhtig. To compute the �rst component, we need a way out of sets to get anor-set. This is achieved by writing C1 = or �a(set to or(mapa(�1 � g)))(L). Finally, we haveext snack(f)(S) = (or [a(C0; C1); C2)Summing up, we obtain the following result.Theorem 5.32 All monad constructs arising from the universality properties of approximationsand all operations given by those universality properties can be expressed in or-NRL(�b), possiblyenhanced with set to or and or to set in the case of multi-element lower approximations. 2We do not give the proofs for other approximations, but it proceeds straightforwardly along thesame lines as the proofs for mixes and snacks, following representation of approximations fromsingleton developed in the proofs of their universality properties.Therefore, we believe that encoding approximations and using or-NRL with very little extrapower is a much better way to program with those than using just structural recursion andmonads based on the universality properties. In the next chapter we give examples of program-ming with approximations in a practical language based on or-NRL.

204 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Chapter 6OR-SMLIn this chapter we describe a functional database language OR-SML for handling disjunctiveinformation in database queries, and its implementation on top of Standard ML [114]. Thecore language of this implementation is or-NRL, hence the name OR-SML. We give examplesof queries which require disjunctive information (such as querying incomplete or independentdatabases) and show how to use the language to answer the queries. The language is extendedin a way that allows dealing with bags and aggregate functions. It is also con�gurable byuser-de�ned base types.Since the system runs on top of Standard ML and all database objects are values in the latter,the system bene�ts from combining a sophisticated query language with the full power of aprogramming language. The language has been implemented as a library of modules in Stan-dard ML. This allows the user to build just the database language as an independent system,or to interface it to other systems built in Standard ML. The ML module system makes theimplementation of di�erent parts of the language virtually independent and thus easy to changewithout touching the rest of the system.We describe OR-SML in the �rst section. In the second section of this chapter, we show how itcan be applied to problems of querying independent and incomplete databases.6.1 Overview of OR-SMLAs we have just said, the core language of OR-SML is or-NRL. But the system OR-SMLincludes much more than just or-NRL. First, normalization is present as a primitive. Somelimited arithmetic is added to elevate the language to the expressive power of the bag languageBQL. We show how bags and certain aggregate functions can be encoded. OR-SML also allows205

206 CHAPTER 6. OR-SMLprogramming with structural recursion on sets and or-sets. The system is extensible with user-de�ned base types. It provides a mechanism for converting any user-de�ned functions on basetypes into functions that �t into the type system of OR-SML. It also gives a way \out of complexobjects" into SML values. This is necessary, for example, if OR-SML is a part of a larger systemand the OR-SML query is part of a larger computation that needs to analyze the result of thequery to proceed. OR-SML comes equipped with libraries of derived functions that are helpfulin writing programs or advanced applications such as querying independent databases.We chose Standard ML (SML) as the basis for our implementation in order to combine thesimplicity of or-NRL queries with features of a functional programming language [114]. OR-SML bene�ts from it in a number of ways:1. OR-SML queries may involve and become involved in arbitrary SML procedures. Theusefulness of this is enhanced by the presence of higher-order functions in SML, allowingSML functions to be arguments to queries and queries to be arguments to SML functions.2. OR-SML is implemented as a library of modules in SML. This allows the user to buildjust the database language as an independent system, or to interface it to other systemsbuilt in SML.3. The stand-alone version of OR-SML is implemented as a library loaded into the interactivesystem of SML, and as such is an interactive system itself. One interacts with OR-SML byentering declarations and expressions to be evaluated into the top-level read-evaluate-printloop of SML. The results are then bound to SML identi�ers for future use.4. The SML module system makes the implementation of di�erent parts of the languagevirtually independent and easily modi�able.As of now, the system is suitable for querying small and medium size databases (hundredsof records), which are fairly common. To extend its capabilities to handle large databases,certain changes need to be made; in particular, optimizations in the presence of disjunctiveinformation need to be added to OR-SML. As we have just mentioned, due to the modularityof the implementation, such changes can often be made without a�ecting the way the systemlooks to the end-user.In what follows we shall need some of the SML syntax. The interested reader is referred toMilner at al. [114] for the de�nition of Standard ML or to Paulson [133] for a more humaneintroduction. But the following \primer" should be su�cient to understand the examples in thischapter.In SML, val binds an identi�er and - is the SML prompt, so - val x = 2; binds x to 2 andval x = 2 : int is the SML response saying that x is now bound to 2 which is of type int.fun is used for function declaration. Functions in SML can also be created without being namedby using the construct (fn x => body(x)). For example

6.1. OVERVIEW OF OR-SML 207- 3 + (fn x => x + 1) 2;val it = 6 : int- fun makepair x = (fn y => (x,y));val makepair = fn : 'a -> 'b -> 'a * 'b- val makepairwith1 = makepair 1;val makepairwith1 = fn : 'a -> int * 'a- makepairwith1 2;val it = (1,2) : int * intSymbols like 'a are used to indicate polymorphic types. For example, makepairwith1 takes avalue v of any type 'a and forms a pair (1; v) of type int * 'a.If a function is applied to its argument and the result is not bound to any variable, then SMLassigns it a special identi�er it which lives until it is overridden by the next such application.We have seen two examples of this above. If one writes - factorial 4;, this will cause theSML response val it = 24 : int. let : : : in : : : end is used for local binding. The [: : :]brackets denote lists; "" is used for strings. The symbol @ is used for list append. For example:- let val a = ["a","b"]val b = ["b","c"]in a @ b end;val it = ["a","b","b","c"] : string list6.1.1 Core languageThe core language of OR-SML is or-NRL. In the table below we show the correspondencebetween or-NRL primitives and their names in OR-SML.or-NRL name OR-SML name or-NRL name OR-SML namef � g comp(f,g) if � then � else cond�1; �2 p1, p2 ! bang(f; g) pair(f,g) id id� sng empty empty[union � flat�2 pairwith map smapor � orsng or empty oremptyor [orunion or � orflator �2 orpairwith or map orsmap� alpha normalize normalLet us describe how these constructs are represented over SML. Every complex object has typeco. We shall refer to the type of an object or a function in or-NRL as its true type. Types of

208 CHAPTER 6. OR-SMLcomplex objects can be inferred; they are SML values having type co type. When OR-SMLprints a complex object together with its type, it uses :: for the true type, as : co is used to showthat the SML type of the object is co. Values are created by functions create : string -> coor make : unit -> co (interactive creation). The function make is terminated by typing \.".For example:- val a = make();{ <1,2,3>, <4,5,6>,<7,8> }.val a = {<1, 2, 3>, <7, 8>, <4, 5, 6>} :: {<int>} : co- val b = create "(2,'abc')";val b = (2, 'abc') :: int * string : coNotice that the order of elements in the set was changed. This is the result of the duplicateelimination algorithm which will be discussed later.Typechecking is done in two steps. Static typechecking is simply SML typechecking; for example,trying to call union(a,a,a) will cause an ML type error. However, since all objects have typeco, the SML typechecking algorithm can not detect all type errors statically. For example, MLwill see nothing wrong with union(a,b) even though the true types of a and b are fhintig andint � string . Hence, the remaining type errors are detected dynamically by OR-SML and anappropriate exception is raised. For instance,- union(a,b);uncaught exception BadtypeunionThe language we presented can express many functions commonly found in query languages,for example, Boolean and, or and negation, membership test, subset test, di�erence, selection,cartesian product and their counterparts for or-sets, see section 3.2 and [26, 104]. These functionsare included in OR-SML in the form of a structure called Set. Some examples of programmingusing the core language and functions from Set are given below. Notice that we use '...' forstrings to distinguish them from SML strings.- alpha (create "{<1,2>,<2,3>}");val it = <{2}, {1, 2}, {1, 3}, {2, 3}> :: <{int}> : co- val x1 = create "{1,2}";val x1 = {1, 2} :: {int} : co- smap (pair(id,id)) x1;val it = {(1, 1), (2, 2)} :: {int * int} : co- val x2 = create "{3,4}";val x2 = {3, 4} :: {int} : co- union(x1,x2);

6.1. OVERVIEW OF OR-SML 209val it = {1, 2, 3, 4} :: {int} : co- Set.cartprod(x1,x2);val it = {(1, 3), (1, 4), (2, 3), (2, 4)} :: {int * int} : co- val y = create "<1,2,3,4>";val y = <1, 2, 3, 4> :: <int> : co- val z = create "'ab'";val z = 'ab' :: string : co- orpairwith(z,y);val it = <('ab', 1), ('ab', 2), ('ab', 3), ('ab', 4)> :: <string * int> : co- orsmap p1 it;val it = <'ab'> :: <string> : coNormalization of types and objects is represented in OR-SML by two functions normalize :co type -> co type and normal co -> co. For example,- val x = create "{(1,<2,3>),(4,<5,6>)}";val x = {(1, <2, 3>), (4, <5, 6>)} :: {int * <int>} : co- normalize (typeof x);val it = <{int * int}> : co_type- normal x;val it = <{(1, 2), (4, 5)}, {(1, 3), (4, 5)}, {(1, 2), (4, 6)}, {(1,3), (4, 6)}> : coOR-SML allows user de�ned base types. Values of these types have type base in ML. Theuser is required to supply a structure containing basic information about the base type whena particular version of OR-SML is built. One of the functions that is included in this user-supplied structure is parsing; its type is string -> base. If user-de�ned base types are used,then creation of objects requires special care. Objects of base type are printed in parenthesesand preceded by the symbol @. They also must be input accordingly if make or create is used.For example, in a version of OR-SML with real numbers, one would write:- val a = create "@(2.5)";val a = @(2.5) :: real : coIn the case of reals numbers, the symbol "." plays a crucial role and can not be used to indicatethe end of the input to make. There is a way to change the symbol whose meaning is \end ofobject".- End_symb := "!";val it = () : unit- val b = make ();{ @(2.5), @(3.5), @(4.5) }!val b = {@(2.5), @(3.5), @(4.5)} :: {real} : co

210 CHAPTER 6. OR-SMLThere are also a number of functions that make complex objects out of ML objects. These arenecessary, for example, if a user-de�ned base type is supplied without a parser. In this caseobjects can be created using constructor functions. The function mkbaseco is used to producea complex object (that is, an element of type co) from an element of base type. Similarly,mkintco produces complex object integers, mkprodco produces a pair from two complex objectsand mksetco and mkorsco produce sets and or-sets from lists of complex objects. For example:- val a = [[2.5,3.7],[4.5,5.3]];val a = [[2.5,3.7],[4.5,5.3]] : real list list- val co_a = mksetco(map (fn z => mkorsco(map mkbaseco z)) a);val co_a = {<@(2.5), @(3.7)>, <@(4.5), @(5.3)>} :: {<real>} : coThere are various styles for printing objects and object types. Some of them are better suited forprinting normalized objects, while others do not distinguish between sets and or-sets. All stylesfor objects and types can be freely combined, giving OR-SML a total of nine di�erent printingstyles. A new printer can be installed by using the functions printer and printer type of typeint -> unit. These functions can be invoked at any time. Further details can be found in thesystem manual E. Gunter and Libkin [69]. In examples in this chapter we use di�erent printingstyles. For instance, we often chose not to print types of objects if those do not �t on one line.This concludes our discussion of the core language. In the subsequent sections we will show howto enrich the language to make it suitable for solving problems related to normalization andapproximations.6.1.2 Additional featuresArithmetic functionsOR-SML has integers as one of its base types. The following operations are available on integers:addition, multiplication, monus, summation over sets and or-sets and gen. In the table belowwe give their OR-SML names:or-NRL name OR-SML name or-NRL name OR-SML name+ plus � mult: monus P sumgen gen or P orsumThe reason these operators have been included comes primarily from our discussion of bags. Aswe have seen, these operators elevate a set language to a bag language (with power operators

6.1. OVERVIEW OF OR-SML 211and/or structural recursion). If bags are represented as sets of pairs of \element{number ofoccurrences", all functions on bags from subsection 3.2.3 can now be modeled easily in OR-SML. For example, under the assumption that in a bag X for each element all its occurrencesare recorded once (that is, we can not have pairs (a; 2) and (a; 3) instead of one pair (a; 5)), thedi�erence of two bags X � Y isselect(�z::eq(�2(z); 0))(map(�x:(�1(x);monus(�2(x);�(�2)(select(�y:eq(�1(x); �1(y)))(Y)))))(X))We are using a function select from Set which takes in a predicate p : t! bool and a set X : ftgand returns fx 2 X j p(x)g. Below we show how to implement these functions in OR-SML.First, total second column would look like- val x = create "{('a',2),('b',4),('c',1)}";val x = {('c', 1), ('a', 2), ('b', 4)} :: {string * int} : co- val y = create "{('b',1),('b',2),('c',3),('d',1)}";val y = {('d', 1), ('b', 1), ('b', 2), ('c', 3)} :: {string * int} : co- sum p2 y;val it = 7 :: int : coBag di�erence can be implemented as follows:fun bag_diff (x,y) = letfun equals_a a = select (fn z => eq(p1(z),p1(a))) yin select (fn v => neg(eq(p2(v),mkintco(0))))(smap (fn z => mkprodco(p1(z),monus(p2(z),(sum p2 (equals_a z))))) x)end;val bag_diff = fn : co * co -> co- bag_diff(x,y);val it = {('b', 1), ('a', 2)} :: {string * int} : coVarious functions can be implemented using arithmetic functions. Two of them, which are ofparticular importance, are included in the standard library Set. One is card, and the other isrank assignment function sort : fsg ! fs� intg discussed in subsection 3.2.3. Note that cardis simply summation of the constant function:- val card = sum (fn x => mkintco(1));val card = fn : co -> co- card (create "{1,2,3,4}");val it = 4 :: int : coTo be able to assign unique ranks to elements of a set, it is necessary to lift order to all types,as it is done in theorem 3.29. This is implemented by means of a function leq:co -> co inthe structure Set that compares objects of the same true type (if true types do not coincide, itraises exception Cannotcompare.) For example:

212 CHAPTER 6. OR-SML- val a = create "{<1,2,3>, <4,5,6>, <8,4>}";val a = {<1, 2, 3>, <4, 8>, <4, 5, 6>} :: {<int>} : co- val b = create "{<2,5,6>, <1,3>, <4,2>}";val b = {<1, 3>, <2, 4>, <2, 5, 6>} :: {<int>} : co- val c = create "{1,2,3}";val c = {1, 2, 3} :: {int} : co- leq(a,b);val it = F :: bool : co- leq(b,a);val it = T :: bool : co- leq(b,c);uncaught exception Cannotcompare- sort a;val it = {(<1, 2, 3>, 1), (<4, 8>, 3), (<4, 5, 6>, 2)} :: {(<int> * int)} : coPrimitives involving base typesSince the system allows user-de�ned base types, it must provide a way of making functions onthose base types into functions that �t into the type system of OR-SML. For example, if theuser-de�ned base type is real, there must be a way to have a function plus : co * co -> cowhose semantics is addition of real numbers. Furthermore, there is a need for a mechanism oftranslation of predicates on base types into predicates on complex objects that can be used withcond and select.The solution to this problem is given by the function apply that takes a function f : baselist -> base and returns a function from co to co representing the action of f on complex ob-jects. For example, if val f co = apply f, then f co applied to a complex object (r1; (r2; r3))yields f [r1,r2,r3] in the form of a complex object.In practice, most of the primitives on base types are unary or binary. Therefore, OR-SML hasa special feature that allows you to apply binary and unary functions on base types by usingfunctions apply unary, apply binary and apply op2. The di�erence between apply binaryand apply op2 is that apply binary produces a function of type co -> co whose true typeis supposed to be b � b ! b. That is, the argument must be a pair. The function apply op2produces a function of type co * co -> co. For predicates, apply test takes a function oftype (base -> bool) and returns it in the form of a function on complex objects.Example:- val addone_co = apply_unary (fn x => x + 1.0);val addone_co = fn : co -> co- val x = create "{ @(2.5),@(4.5) }";val x = {@(2.5), @(4.5)} :: {real} : co

6.1. OVERVIEW OF OR-SML 213- smap addone_co x;val it = {@(3.5), @(5.5)} :: {real} : co- val addreal_co = apply_binary (fn ((x:real),(y:real)) => x + y);val addreal_co = fn : co -> co- smap addreal_co (Set.cartprod(x,x));val it = {@(5.0), @(7.0), @(9.0)} : co- val biggerthanthree_co = apply_test (fn x => x > 3.0);val biggerthanthree_co = fn : co -> co- Set.select biggerthanthree_co x;val it = {@(4,5)} :: {real} : coStructural recursionStructural recursion on sets and or-sets a very powerful programming tool for query languages.Unfortunately, it is too powerful because it is often unsafe. A function de�ned by structuralrecursion is not guaranteed to be well-de�ned, and well-de�nedness can not be generally checkedby a compiler. It is, however, often helpful in writing programs or changing types of big databases(rather than reinputting them), so we have decided to include structural recursion in OR-SML.Structural recursion on sets and or-sets is available to the user by means of two constructs srand orsr. f : s� t! t e : tsr(e; f) : fsg ! t f : s� t! t e : torsr(e; f) : hsi ! tThey take an object e of type t and a function f of type s� t! t and return a function sr(e; f)of type fsg ! t or a function orsr(e; f) of type hsi ! t respectively. The semantics is asfollows: sr(e; f)fx1; : : : ; xng = f(x1; f(x2; f(x3; : : :f(xn; e) : : :))) and similarly for orsr. Thetwo functions implementing structural recursion are SR.sr and SR.orsr. For example, to �ndthe product of elements of a set, one may use structural recursion as follows:- val fact = SR.sr((create "1"),mult);val fact = fn : co -> co- fact (create "{1,2,3,4,5}");val it = 120 :: int : coThere are a few functions that can be written with help of structural recursion which are includedin the library \sr.lib". Among them are set to or : ftg ! hti and or to set : hti ! ftg that

214 CHAPTER 6. OR-SMLconvert sets into or-sets and vice versa, powerset : ftg ! fftgg (which can also be implementedusing just �), and pick : ftg ! t which picks an element of a set.In section 3.2 we showed that structural recursion is equivalent to the loop construct that iteratesa function once for each element of a set. In the following example we show how to implementloop and how to use it to iterate the function that increments an integer given number of times.Recall that c from the example of applying sort is a three-element set.- fun loop f = (fn (X,z) => SR.sr(z, (fn (v1,v2) => f(v2)))(X));val loop = fn : (co -> co) -> co * co -> co- val one = create "1";val one = 1 :: int : co- fun intaddone x = plus(x,one);val intaddone = fn : co -> co- loop intaddone (c,one);val it = 4 :: int : coMoreover, using sort it is now possible to give an e�cient translating from loop to structuralrecursion:- fun select_max X = Set.select (fn z => eq(p2(z),Set.card(X))) X;val select_max = fn : co -> co- fun new_sr (e,f) =let fun g INPUT = let val X_curr = p1 INPUTval RES_curr = p2 INPUTval x_max = select_max X_currin mkprodco(Set.diff(X_curr,x_max),flat((smap(fn z => (smap (fn v => f(p1(z),v)) RES_curr))x_max)))endin (fn X => p2(loop g (X,mkprodco((Set.sort(X),sng(e))))))end;val new_sr = fn : co * (co * co -> co) -> co -> co- val new_fact = new_sr((create "1"),mult);val new_fact = fn : co -> co- new_fact (create "{1,2,3,4,5}");val it = {120} :: {int} : coThis example shows the \cost" one has to pay for translation from loop into structural recursion(cf. theorem 3.35): instead of a value v, the translation produces the singleton fvg.

6.1. OVERVIEW OF OR-SML 215I/OTo support a form of persistence for databases, OR-SML provides means for writing lists ofcomplex objects to �les and reading such lists back in later. There are two modules for �le I/Oin OR-SML: one working with binary �les and one with ASCII �les. Working with ASCII �lesis relatively safe: if there is any problem with reading an object, an exception will be raised. (Itis not safe from editing). However, it requires a parser for objects of base type, because stringsread from a �le are parsed to create complex objects.If a parser for objects of base type was not provided, then the binary input-output module mustbe used. Since binary I/O is an unsafe feature of Standard ML [158], all binary �les are requiredto have the extension \.db". If it is not used, OR-SML will add it and ask if the operationshould be continued. It is also possible to obtain the list of all �les with extension \.db" in thecurrent directory using the function show db:unit -> unit.The ASCII input-output module provides two functions: store db: co list * string -> unittakes a database and a �le name and stores the database. For example, store db (db,"mydb")stores a list of complex objects db in a �le "mydb". To read a database, use retrieve db :string -> co list. This function takes a �le name and returns the database stored in that�le.If a parser for objects of base type was not provided, it is necessary to use the binary input-output module. Function write db: co list * string -> unit is used to write a databaseto a �le. For example, write db(db,"mydb.db") will write a list of complex objects db intothe �le \mydb.db". Moreover, write db(db,"mydb.db") and write db(db,"mydb") will havethe same e�ect. Databases are read by using the function read db: string -> co list. Forinstance, val db = read db("mydb") creates a list of complex objects stored in \mydb.db".Example (in this example we use function tl that produces the tail of a list).- val DB = let val a = create "{1,2,3}"val b = create "{2,3,4}"val c = create "{5,6,7}"in [a,b,c] end;val DB = [{1, 2, 3},{2, 3, 4},{5, 6, 7}] : co list- store_db(DB,"mydbfile");val it = () : unit- write_db (tl(DB), "mydbfile");File names must have extension .dbDo you want to write your database in mydbfile.db?(yes,no) yesDatabase written to mydbfile.dbval it = () : unit- show_db();

216 CHAPTER 6. OR-SMLmydbfile.dbNow we have two �les, one named mydbfile and containing three sets, and the other namedmydbfile.db and containing two sets. It is possible to read them back:- val get_big_DB = retrieve_db "mydbfile";val get_big_DB = [{1, 2, 3},{2, 3, 4},{5, 6, 7}] : co list- val get_small_DB = read_db "mydbfile";File names must have extension .dbDo you want to read your database from mydbfile.db?(yes,no) yesWarning: read is an unsafe operation.If there is a problem with your file, it will throw you out of orsmlAre you ready to read the file? (yes,no) yesval get_small_DB = [{2, 3, 4},{5, 6, 7}] : co listDeconstruction of complex objectsIt may be the case that after evaluating a query, the user may need to write some program todeal with the result. Since all operations of OR-SML work with type co, there is a need tohave a way out of complex objects to the usual ML types. The structure DEST contains somefunctions to deconstruct complex objects and obtain ML values. For example, to convert anobject of true type fhintig (which still has SML type co) into int list list, one writes:- val a = create "{<1,2>,<3,4>}";val a = {<1, 2>, <3, 4>} : co- DEST.co_to_list a;val it = [<1, 2>,<3, 4>] : co list- map DEST.co_to_list it;val it = [[1,2],[3,4]] : co list list- map (map DEST.co_to_int) it;val it = [[1,2],[3,4]] : int list listOrderings and antichainsIn chapter 5 we saw that the language for the antichain semantics, or-NRLa, can be viewed asa sublanguage of or-NRL. This point of view is supported by OR-SML. It provides a library ofderived functions dealing with orderings and antichains. Among them are leqdom that compareselements of the same true type (that is, it implements the order �t), meet and join that computethe meet and join operations, set max and orset min that select maximal and minimal elementsfrom sets and or-sets to implement the transformation x! x� we used throughout chapter 5.

6.1. OVERVIEW OF OR-SML 217Note that the true type of join and meet is t � t ! hti. If the join (or meet) of two objects xand y is de�ned, then the corresponding function produces a singleton containing that join ormeet. If it is not de�ned, it produces hi.Example:- val a = create "{<1,2,3>,<1,2>,<3,4,5>,<3,4>}";val a = {<1, 2>, <1, 2, 3>, <3, 4>, <3, 4, 5>} :: {<int>} : co- val b = create "{<1,2,5,4>,<1,2,4>}";val b = {<1, 2, 4>, <1, 2, 4, 5>} :: {<int>} : co- val a1 = set_max a;val a1 = {<1, 2>, <3, 4>} :: {<int>} : co- val b1 = set_max b;val b1 = {<1, 2, 4>} :: {<int>} : co- leqdom(b1,a1);val it = T :: bool : co- join(a, (create "{<7,8>}"));val it = <{<1, 2>, <3, 4>, <7, 8>}> :: <{<int>}> : co6.1.3 Implementation issuesIn this subsection we brie
y describe the general structure of OR-SML implementation anddiscuss duplicate elimination.The general structure of the implementation of OR-SML is given in �gure 6.1. This �gure showsdependencies between the pieces of the implementation. Each piece is implemented as an SMLfunctor. A short description of each piece is given in �gure 6.2.In the initial version of OR-SML, duplicate elimination was done straightforwardly. That is, aO(n2) time complexity algorithm was used. However, a number of experiments revealed that itwas mostly the duplicate elimination component that hampered the performance of the system.In the current version we use the following hash function for objects:h(o) = 8>>>>>>><>>>>>>>: 1 if o : unito if o : intjo j if o : stringif o then 1 else 0 if o : boolh(o1) + h(o2) if o = (o1; o2)h(o1) + : : :+ h(on) if o = fo1; : : : ; ong or o = ho1; : : : ; oniThen it is easy to show that, for any type involving sets and or-sets of a type with non-�nitedomain, for two randomly generated objects o1 and o2, the probability of h(o1) = h(o2) is zero.Therefore, the expected running time of the duplicate elimination with hashing is O(n logn).Some results showing performance of OR-SML with two kinds of duplicate elimination algorithm

218 CHAPTER 6. OR-SML
PPPPPPPPP BBBBBBBBB�����������������@@@@@@@@@@@@@@@@@@@@@@

AAAAAAAAAAAAAAAAAAAAAA
CCCCCCCCCCCCCCCCCCCCCC@@@@@@ ������@@@@@@������@@@@@@ ����������������������������������

PARSER BUILD ORSMLALGEBRAIO ASCIIPRINT MAKETYPE DUPELIM SR DESTRUCT IO BINCOMMONBTS (user-supplied)Figure 6.1: OR-SML implementation

6.1. OVERVIEW OF OR-SML 219
BTS { Base Type Structure. It is supplied by the user to build a new versionof OR-SML with additional base types.COMMON { contains some auxiliary functions used in all other modules.TYPE { provides functions to work with complex object types.DUPELIM { duplicate elimination.SR { implementation of structural recursion.DESTRUCT { functions for destruction of complex objects.IO BIN { operations for binary �le I/O.MAKE { takes as an input structures created by TYPE and DUPELIM and pro-vides functions for creating complex objects.PRINT { takes in the structure created by TYPE and provides printing routines.PARSER { takes in the structure created by MAKE and gives the parser for complexobjects.ALGEBRA { implements operations of the language.IO ASCII { takes in the structures created by PRINT and PARSER and providesoperations for the ASCII �le I/O.BUILD ORSML { builds the system and exports it together with ML compiler.Figure 6.2: Description of OR-SML modules

220 CHAPTER 6. OR-SMLCartesianProductsize 50� 50 75� 75 100� 100 150� 150withouthashing 26.5 130.5 400.85 1927.37withhashing 0.47 1.49 3.12 10.56Flatteningsize 200 400 600 800 1000 4000withouthashing 0.02 0.11 0.23 0.37 0.65 10.79withhashing 0.01 0.02 0.03 0.04 0.07 0.18Figure 6.3: Comparison of two duplicate elimination algorithmsare shown in �gure 6.3. Two functions for which we determined running time are cartesianproduct and
attening of a large set of sets.6.2 Applications of OR-SMLIn this section we show how to use OR-SML to ask conceptual queries if only a compact repre-sentation of incomplete objects is stored in a database, and how to solve some of the problemsof querying independent databases described in section 1.3.6.2.1 Querying incomplete databasesIn this subsection we show applications of normalization of databases. We start with a databasecontaining an incomplete design and ask certain queries about possible completed designs. Wethen show how to write these queries using normalization.Assume that we have a database containing the incomplete design shown in �gure 5.3. Thatis, the whole design requires two subparts, A and B. An A is either A1 or A2. The part A1consists of two subparts: A1:1 and A1:2. An A1:1 is either x or y and an A1:2 is either z orv. The part A1:2 consists of three subparts: A2:1, A2:2 and A2:3. An A2:1 is either p or q, anA2:2 is either r or s and an A2:3 is either t or u. A B consists of B1 and B2. A B1 is eitherw or k and a B2 is either l or m. Now assume that we know the cost and reliability of eachpart that can make it into the completed designs (that is, for parts denoted by the lower case

6.2. APPLICATIONS OF OR-SML 221letters.) Part Cost Reliabilityl 12 0.94m 14 0.95w 17 0.96k 11 0.93x 21 0.999y 20 0.98z 13 0.95v 14 0.955p 12 0.95q 13 0.96r 18 0.97s 17 0.96t 19 0.98u 20 0.99Now we can create OR-SML values describing these parts as follows:val l = create "('l',(12,@(0.94)))";val m = create "('m',(14,@(0.95)))";val w = create "('w',(17,@(0.96)))";val k = create "('k',(11,@(0.93)))";val x = create "('x',(21,@(0.999)))";val y = create "('y',(20,@(0.98)))";val z = create "('z',(13,@(0.95)))";val v = create "('v',(14,@(0.955)))";val p = create "('p',(12,@(0.95)))";val q = create "('q',(13,@(0.96)))";val r = create "('r',(18,@(0.97)))";val s = create "('s',(17,@(0.96)))";val t = create "('t',(19,@(0.98)))";val u = create "('l',(20,@(0.99)))";Each part has true type string � (int � real). Now B can be created as- val B = mkprodco ((mkorsco [w,k]), (mkorsco [l,m]));val B =(<('k', (11, @(0.93))), ('w', (17, @(0.96)))>,<('l', (12, @(0.94))), ('m', (14, @(0.95)))>) : co

222 CHAPTER 6. OR-SMLand A1, A2 and A can be created as- val A1 = mksetco [(mkorsco [x,y]), (mkorsco [z,v])];val A1 ={<('z', (13, @(0.95))), ('v', (14, @(0.955)))>,<('y', (20, @(0.98))), ('x', (21, @(0.999)))>} : co- val A2 = mksetco [(mkorsco [p,q]), (mkorsco [r,s]), (mkorsco [t,u])];val A2 ={<('p', (12, @(0.95))), ('q', (13, @(0.96)))>,<('s', (17, @(0.96))), ('r', (18, @(0.97)))>,<('t', (19, @(0.98))), ('l', (20, @(0.99)))>} : co- val A = mkorsco [A1, A2];val A =<{<('z', (13, @(0.95))), ('v', (14, @(0.955)))>,<('y', (20, @(0.98))), ('x', (21, @(0.999)))>},{<('p', (12, @(0.95))), ('q', (13, @(0.96)))>,<('s', (17, @(0.96))), ('r', (18, @(0.97)))>,<('t', (19, @(0.98))), ('l', (20, @(0.99)))>}> : coFinally, the whole design is created as- val design = mkprodco (A,B);val design =(<{<('z', (13, @(0.95))), ('v', (14, @(0.955)))>,<('y', (20, @(0.98))), ('x', (21, @(0.999)))>},{<('p', (12, @(0.95))), ('q', (13, @(0.96)))>,<('s', (17, @(0.96))), ('r', (18, @(0.97)))>,<('t', (19, @(0.98))), ('l', (20, @(0.99)))>}>,(<('k', (11, @(0.93))), ('w', (17, @(0.96)))>,<('l', (12, @(0.94))), ('m', (14, @(0.95)))>)) : coInferring the type of design and normalizing it shows us the type of the database of completeddesigns.val ndt =<({(string * (int * real))} *((string * (int * real)) * (string * (int * real))))> : co_typeHence, one can write the cost function which is the sum of the costs of all the parts. In thisparticular case it is

6.2. APPLICATIONS OF OR-SML 223- fun cost X =let fun cost1 X = sum (fn z => p1(p2(z))) (p1 X)fun cost2 X = p1(p2(p1(p2(X))))fun cost3 X = p1(p2(p2(p2(X))))in plus(cost1(X), plus(cost2(X),cost3(X))) end;val cost = fn : co -> coCalculating reliability may be a bit harder because it depends on how di�erent parts are con-nected. In the case of parallel connection of two parts with individual reliabilities r1 and r2, thereliability is calculated as r1 + r2 � r1 � r2, whereas for the series connection it is r1 � r2. To beable to operate with these functions, we must have them as functions from complex objects tocomplex objects. That is, we need the following:- val rminus = apply_op2 (fn (x:real,y:real) => x - y);val rminus = fn : co * co -> co- val rmult = apply_op2 (fn (x:real,y:real) => x * y);val rmult = fn : co * co -> co- val rprod = SR.sr ((create "@(1.0)"), rmult);val rprod = fn : co -> co- val par_rel = apply_op2 (fn (x:real,y:real) => x + y - (x * y));val par_rel = fn : co * co -> coNow we can calculate reliabilities for A, B1 and B2, assuming that subparts of A are connectedin series.- fun relA X = rprod (smap (fn z => p2(p2(z))) (p1 X));val relA = fn : co -> co- fun relB1 X = p2(p2(p1(p2(X))));val relB1 = fn : co -> co- fun relB2 X = p2(p2(p2(p2(X))));val relB2 = fn : co -> coWith these functions, it is possible to write various reliability functions depending on the way A,B1 and B2 are connected. For example, if only series connection is used, then the total reliabilityfunction is the product of relA, relB1 and relB2. In our example, we assume parallel connectionof B1 and B2 and series connection of A and B. Then- fun reliability X = rmult(relA(X), par_rel(relB1(X),relB2(X)));val reliability = fn : co -> coNow assume that we want to answer the following conceptual queries:

224 CHAPTER 6. OR-SML� How many completed designs are there?� Which completed design has the best reliability?� Which completed design that costs less than n dollars has the best reliability?To answer these queries, we �rst normalize design, creating the or-set of all possible completeddesigns:val nd = normal design; (* output omitted *)Now it is possible to get all information about reliabilities and costs of completed designs bysaying orsmap cr nd where cr is the function fn x => mkprodco ((cost x), (reliabilityx)). To answer our queries, we write- orsum (fn z => mkintco(1)) nd;val it = 48 : coHence, there are 48 completed designs. To �nd the one that has the best reliability, we writethe following query- fun is_better(x,y) = apply_test (fn (z:real) => z > 0.0) (rminus(x,y));val is_better = fn : co * co -> co- fun is_best (x,obj) = eq((Set.orselect(fn y => is_better(reliability(y),reliability(x)))obj), orempty);val is_best = fn : co * co -> coand then ask- val select_best = Set.orselect (fn y => is_best(y,nd)) nd;val select_best =<({('v', (14, @(0.955))), ('x', (21, @(0.999)))},(('w', (17, @(0.96))), ('m', (14, @(0.95)))))> : co- orsmap cr select_best;val it = <(66, @(0.95213691))> : co

6.2. APPLICATIONS OF OR-SML 225Thus, we see that the design with the best reliability costs only $66, even though the cost variesfrom $56 to $82, as we know from mapping cr over nd. So, as it often happens, one does nothave to buy the most expensive thing to get the best quality.Finally, to select the design with the best reliability that costs under n dollars, we write afunction- fun bestunder n =let val des_under_n = (Set.orselect (fn y =>eq(mkintco(0),monus(cost(y),mkintco(n))))nd)in Set.orselect (fn y => is_best(y,des_under_n)) des_under_nend;val bestunder = fn : int -> coand then ask for the best design that costs under, say, $62:- bestunder 62;val it =<({('v', (14, @(0.955))), ('x', (21, @(0.999)))},(('k', (11, @(0.93))), ('m', (14, @(0.95)))))> : co- orsmap cr it;val it = <(60, @(0.9507058425))> : coAgain, it is not necessary to get the most expensive design for the best quality.Summing up, we see that normalization is a very powerful tool for answering conceptual queries.Many queries that would be practically impossible to answer in just the structural language,now can be programmed in a matter of minutes in OR-SML.6.2.2 Querying independent databases and approximationsIn this subsection we discuss various solutions to the problem of �nding teaching assistants, givenrelations Employees of employees and CS1 of people teaching the course CS1. First, considerthe following example:

226 CHAPTER 6. OR-SMLEmployeesName SalaryJohn 10KJohn 15KMary 12KSally 17K CS1Name RoomJohn 076Jim 320Sally 120Assume that our query asks to compute the set TA of teaching assistants. We further assumethat only TAs can teach CS1 and every TA is a university employee.Let us recall the problems we face answering the TA query. First, the databases are inconsistent.Jim teaches CS1 and hence he is a TA and an employee, but there is no record for Jim in theEmployees relation. To get rid of this anomaly, we must decide if we believe CS1 or Employees.If the former is the case, then the problem is solved by adding Jim from CS1 to Employees.However, a more intersting case is when we believe the Employees relation. Here we have twopossibilities.� The Name �eld is a key. This is the assumption made in Buneman et al. [31, 32]. Thenthe record corresponding to Jim is deleted from CS1.� The Name �eld is not a key. This may cause problems if there are several anomalousrecords. For example, if there were two records with name Jim in CS1 but only one inEmployees, then one record should be deleted from CS1, but which one? We suggest usingor-sets to represent both possibilities, as this is the best knowledge that can be obtained.Now assume there are no inconsistencies in relations. We have to �nd an approximation of theset of TAs, that is, we have to �nd people who certainly are TAs and those who could be. Again,there are two cases.� The Name �eld is a key. Then all people in CS1 are TAs, and those in Employees whoare not represented in CS1 could be TAs. Now, to produce an approximation, two thingsmust be done:- For every entry in CS1, try to infer as much information about it as possible usingEmployees. In our example that means adding the Salary �eld. To do so, check allrecords in Employees consistent with a given record in CS1 and, if such a record isfound, use the value of its Salary �eld. Inferring such additional information wascalled promotion in [31, 32].- For each entry of Employees, check if that entry is also represented by the CS1relation. If it is not, then we found a possible TA.

6.2. APPLICATIONS OF OR-SML 227� The Name �eld is not a key. Then it is impossible to determine promotion unambiguouslybecause there could be two records in Employees with the same Name �led but di�erentSalary �elds. Our solution is to use or-sets to represent both possibilities. Then, for eachpossible choice of records in Employees corresponding to records in CS1 we have uniquelydetermined set of possible TAs.We are going to show how some of the operations described above can be done in OR-SML.First we have to de�ne a framework for doing operations like promotion and consistency check.As before, we assume that all records have the same �elds by putting ? (null) into the missing�elds. This allows us to take joins and meet of records. Notice that the join of two records isnot necessarily de�ned.Now we show how a query \approximate the set of TAs" can be done in OR-SML. Since Em-ployees and CS1 are going to make either a sandwich or a mix for TA, we make Employees anor-set and CS1 a set. We now represent the data as follows:- val emp = make();<('John', ({@(10.00)}, {})), ('John', ({@(15.00)}, {})),('Mary', ({@(12.00)}, {})), ('Sally', ({@(17.00)}, {}))>!- val cs1 = create "{('John',({},{76})), ('Jim',({},{320})), ('Sally',({},{120}))}";The �rst problem we face is getting rid of inconsistencies in the database. In our particularexample, Jim is in CS1 but not in the Employees. Assuming we believe the Employees relation,we remove this anomaly as follows:- fun remove_anomaly compat (R,S) =let fun compat_to_X (X,x) =Set.ormember(mkboolco(true),(orsmap (fn z => compat(z,x)) X));in Set.select (fn z => compat_to_X (R,z)) S end;- val new_cs1 = remove_anomaly compatible (emp,cs1);val new_cs1 = {('John', ({}, {76})), ('Sally', ({}, {120}))} : coHere compatible is a function that tests whether the join of two elements is de�ned:fun compatible (x,y) = neg(eq(join(x,y),orempty));Now, consider the solution proposed by Buneman et al. [31, 32]. Given an element x 2 CS1,let y1; : : : ; yn be those elements in Employees that can be joined with x. Then x0 = Vi(x _ yi)was called a promotion of x. (Intuitively, the promotion of x adds all information about x from

228 CHAPTER 6. OR-SMLEmployees.) The solution was to take all promotions of elements in CS1 as \sure TAs" andelements of Employees not consistent with those promotions as \possible TAs". However, thissolution was contingent upon the condition that the name �eld is a key. With this condition, wecan easily program the solution of [31, 32] using a function promote and a new relation emp1:- fun promote compat (R,S) =let fun compat_to_x (X,x) = Set.orselect (fn z => compat(z,x)) Xin alpha (smap (fn z => big_meet (orflat(orsmap (fn v => join(z,v))(compat_to_x (R,z)))))S) end;- val emp1 = make();<('John', ({@(10.00)}, {})), ('Mary',({@(12.00)}, {})), ('Sally', ({@(17.00)}, {}))>!- val promoted_cs1 = promote compatible (emp1,new_cs1);val promoted_cs1 = <{('John', ({@(10.0)}, {76})), ('Sally', ({@(17.0)}, {120}))}> : coHere big meet calculates the meet of a family of objects. Observe that this operation correspondsprecisely to forcing a sandwich into a mix using the assumption about keys.Now it is possible to separate sure TAs from possible TAs:fun divide compat (R,S) = letfun compat_to_set (X,x) = member(mkboolco(true),(smap (fn z => compat(z,x)) X))in (orselect (fn z => neg(compat_to_set (S,z))) R, S) end;fun divide_all compat (R,S) = orsmap (fn z => mkprodco(divide compat (p1(z),p2(z))))(orpairwith(R,S));- val res = divide_all compatible (emp1,promoted_cs1);val res = <(<('Mary', ({@(12.0)}, {}))>,{('John', ({@(10.0)}, {76})), ('Sally', ({@(17.0)}, {120}))})> : coTherefore, John from o�ce 76 and with salary 10K and Sally from o�ce 120 and with salary17K are de�nitely TAs and Mary with salary 12K and not known o�ce may be a TA.However, if the name �eld is not a key, this solution will not work. For example, both Johnsfrom Employees will be joined with John from CS1, and when the meet is taken, the salary�eld is lost. But this is not what the information in the database tells us. We know that oneJohn from Employees teaches CS1, but we do not know which John. Since either could be, thesolution is to use an or-set to represent this situation. In particular, we take all possible joinsx_ y1; : : : ; x_ yn and make them into an or-set, which now plays the role of the promotion of x.

6.2. APPLICATIONS OF OR-SML 229Then, taking the or-set brackets outside, we obtain the or-set with all possible answers to theTA query.fun solution compat (R,S) = let fun get_R_a a = orselect (fn z => compat(z,a)) Rin orpairwith(R, alpha(smap get_R_a S)) end;val solution = fn : (co * co -> co) -> co * co -> co- val result = solution compatible (emp, new_cs1);val result =<(<('John', ({@(10.0)}, {})), ('Mary', ({@(12.0)}, {})),('John', ({@(15.0)}, {})), ('Sally', ({@(17.0)}, {}))>,{('John', ({@(10.0)}, {})), ('Sally', ({@(17.0)}, {}))}),(<('John', ({@(10.0)}, {})), ('Mary', ({@(12.0)}, {})),('John', ({@(15.0)}, {})), ('Sally', ({@(17.0)}, {}))>,{('John', ({@(15.0)}, {})), ('Sally', ({@(17.0)}, {}))})> : coWe now see that there are two possible answers to the TA query: both say that Mary could bea TA and that Sally is a TA, and one says that John making 10K is a TA while the other saysthat John making 15K is a TA.Summing up, we have seen that one of the canonical problems of querying independent databasescan be solved by OR-SML. Moreover, using or-sets gives us the correct answer even if the keyconstraints do not hold, something that the solution of Buneman et al. [31, 32] falls short ofdoing.As the �nal example, we demonstrate the implementation of mixes as a new OR-SML datatype,as was suggested in chapter 5. The operations we have on mixes are the monad operationmix ext , operations of the mix algebra, and type inference. That is, to implement mixes, wecreate a structure MIX of signature MIXSIG following the description of mix ext given in chapter5. These signature and structure are shown in �gure 6.4.Using mix ext, it is possible to implement monad operations like map mix and flat mix asfollows:- local open MIX infun map_mix f = mix_ext (fn x => mix_sng(f x))val flat_mix = mix_ext (fn x => ((p1(x),p2(x)):mix))endval map_mix = fn : (co -> co) -> MIX.mix -> MIX.mixval flat_mix = fn : MIX.mix -> MIX.mixThe following simple example shows how mixes can be created and manipulated. We assumethat three complex objects a, b and c which are respectively 1,2 and 3, are given. Then we show

230 CHAPTER 6. OR-SMLsignature MIXSIG =sigtype mixval mix_sng : co -> mixval mix_plus : mix * mix -> mixval mix_box : mix -> mixval mix_ext : (co -> mix) -> mix -> mixval typeof_mix : mix -> unitendstructure MIX = structtype mix = co * cofun mix_sng x = ((orsng(x), sng(x)):mix)fun mix_plus ((x:mix),(y:mix)) = let val (x1,x2) = xval (y1,y2) = yin ((orset_min(orunion(x1,y1)),set_max (union (x2,y2))):mix)endfun mix_box (x:mix) = let val (x1,_) = x in ((x1,empty):mix) endfun mix_ext (f : co -> mix) =(fn (MX:mix) =>let val (U,L) = MXval FIRST = orsmap (fn v =>let val (v1,_) = f vin v1 end)Uval SECOND = smap (fn v =>let val (_,v2) = f vin v2 end)Lin ((orset_min(orflat FIRST),set_max (flat SECOND)):mix)end)fun typeof_mix (x:mix) = let val (x1,_) = xval tx = tp_print(typeof x1)val tp = substring (tx,1,size(tx)-2)in print (tp^" mix\n\n") endend; Figure 6.4: Implementation of mixes in OR-SML

6.2. APPLICATIONS OF OR-SML 231how the function, that for any object n creates a mix encoded as (hn+ 1; n+ 2i; fn+ 1g), canbe extended to a mix over integers by means of mix ext.- val big = mix_plus(mix_sng(a),mix_plus(mix_sng(b),mix_sng(c)));val big = (<1, 2, 3>,{1, 2, 3}) : mix- val small = mix_plus(mix_sng(a),mix_sng(b));val small = (<1, 2>,{1, 2}) : mix- val newmix = mix_plus(small, mix_box(big));val newmix = (<1, 2, 3>,{1, 2}) : mix- map_mix intaddone newmix;val it = (<2, 3, 4>,{2, 3}) : mix- fun f x = mix_plus(mix_box(mix_plus(mix_sng(intaddone(x)),mix_sng(intaddone(intaddone(x))))),mix_sng(intaddone(x)));val f = fn : co -> mix- mix_ext f newmix;val it = (<2, 3, 4, 5>,{2, 3}) : mix- typeof_mix newmix;int mixThis shows that OR-SML is capable of supporting operations on approximations arising fromtheir universality properties, as well as some nontraditional operations like promotion and remov-ing anomalies. Such operations may often occur in real life applications. This further con�rmsthat or-NRL (and hence OR-SML) has adequate power to program with approximations, and isin fact a good candidate for a language for solving problems like querying independent databases.

232 CHAPTER 6. OR-SML

Chapter 7Conclusion and further research7.1 Brief summaryWe started this thesis with a survey of the �eld of databases with partial information and �nallyarrived to a point where we had a well thought out language for partial information. The maintool was using new techniques to understand the semantics of partiality.In chapter 1 we formulated two main principles of our approach: partiality of data is representedvia orderings on values and semantics suggests programming constructs. In chapter 3 we madea �rst step toward applying these principles to the study of databases with partial information.First, a general order-theoretic model of partial information was developed. Second, we presentedan approach to design of query languages based on the universality properties of the semanticdomains corresponding to the type constructors. In chapter 4 we studied the semantics of variouskinds of partial information and proved the universality properties. In chapter 5 we used thoseuniversality properties to design and study languages for partial information. Finally, in chapter6 we described an implementation of a query language based on these ideas.Before we discuss open problems, let us brie
y recall the main contributions of this thesis.� We have surveyed the �eld of partial information in databases and analyzed structuresand techniques used for studying partial information. We have concluded that there areno adequate analytical and algebraic tools available for the study of partial information.� We have suggested a new approach to the study of partial information based on two mainpremises. One says that the concept of being more informative is represented as an orderingon objects. The other says that the right programming constructs should be derived fromthe mathematical properties of the semantics of partial data.233

234 CHAPTER 7. CONCLUSION AND FURTHER RESEARCH� We have extended the approach of Buneman, Jung and Ohori [33] that treats databaseobjects as elements of domains. In particular, it was shown how schemes can be de�nedand how multivalued dependencies and decompositions are related in such a generalizedsetting.� We have described the approach to the language design based on turning universalityproperties of collections into programming syntax. We have introduced new tools foranalyzing expressibility of such languages and explained the di�erence between using setsand bags (multisets).� Two levels of manipulating or-sets { structural and conceptual { were clearly distinguished.� We have shown how all known approximation constructs arise in the problem of query-ing independent databases. Based on the analysis of the models of approximations, wesuggested a new classi�cation of those.� We have used the \update" semantics to de�ne orderings for �ve kinds of collections:sets under OWA and CWA, bags under OWA and CWA and or-sets. Orderings for setsunder OWA and CWA and or-sets are the Hoare, the Plotkin and the Smyth orderingsrespectively.� Based on the orderings for collections, we have de�ned their semantics. For objects in-volving or-sets we have given both structural and conceptual semantics. We have shownthat the semantic domains of collections have the universality properties.� For the �rst time, an isomorphism between the iterated powerdomains (Smyth and Hoare)has been explicitly constructed. This isomorphism has given us a primitive to include intothe structural language for sets and or-sets to provide interaction between sets and or-sets.It has also been proved that the iterated construction possesses a universality property.� Semantics for approximations has been given and the orderings have been determinedusing the update approach. From this it has been concluded how approximations can bemodeled with sets and or-sets.� Most constructions used in approximations have been characterized as free algebras. Thatis, they all possess universality properties which allow to incorporate them into a program-ming language. Some of them have been shown not to arise as free algebras. However, forthose approximations it is possible to obtain restricted universality properties.� Languages for collections based on their universality properties have been de�ned. Thelanguages arising from the ordered semantics were shown to be sublanguages of the lan-guages arising from the set theoretic semantics. However, well-de�nedness of functions onordered objects within the languages based on the set theoretic semantics turned out tobe undecidable.� It was proved that the orderings for bags under both OWA and CWA are not de�nable inthe standard bag language BQL.

7.2. PROBLEMS FOR FURTHER INVESTIGATION 235� The language or-NRL based on combining sets and or-sets and using the isomorphismbetween the iterated powerdomains has been introduced. or-NRL was shown to containsome known languages for partial information as sublanguages.� The normalization theorem for or-NRL has been proved for both set theoretic and orderedsemantics. That is, all objects normalize to the same object, no matter how they arenormalized. The normalization construct gives us the language to query sets and or-setsat the conceptual level.� The costs of normalization have been studied and tight upper bounds have been found.� The partial normalization theorem for or-NRL has been proved for both set theoretic andordered semantics. That is, for properly restricted types, all objects of type t normalize tothe same object of type s, no matter how they are normalized. It was shown that partialnormalization may help answer conceptual queries faster.� Structural recursion and monad languages have been studied for all approximations. Themonad constructs have been shown to require preconditions which are generally undecid-able. It also has been shown that the monad languages for approximations are sublan-guages of or-NRL.� The language OR-SML based on or-NRL and BQL has been implemented on top of Stan-dard ML. Its applications in querying incomplete and independent databases have beenshown.7.2 Problems for further investigationIn this section we outline some problems that must be further investigated. Discussion of someof them is quite speculative as the �eld is new and many areas have not been looked into at all.However, we show a number of very concrete problems that should be solvable using techniquesdeveloped in this thesis. The problems are given in no particular order.Bags, aggregate functions and partial informationMost theoretical results in the �eld of databases deal with sets, whereas most practical imple-mentations use bags as the underlying model. It has not been until just a few years ago thatpeople started paying attention to theoretical problems arising in the study of databases thatuse multisets. Albert [14] proposed a number of operations for bags and studied some of theirproperties. Grumbach and Milo [60] introduced a bag algebra and proved some complexity re-sults. At the same time, Chaudhuri and Vardi [38] showed that many optimization principlesdo not carry over from sets to bags.

236 CHAPTER 7. CONCLUSION AND FURTHER RESEARCHIncorporating aggregate functions into relational languages was also studied by Klug [92] andOzsoyoglu et al. [129] who introduced aggregate functions by de�ning them separately for eachcolumn of a relation. An alternative approach using a technique called hiding was used byKlausner and Goodman [91]. Both approaches are rather clumsy and do not show any clearconnection between bags and aggregate functions.Finally, in Libkin and Wong [105, 108] it was proved that in terms of expressive power addingbags is precisely adding aggregate function; see also theorem 3.26. However, very little is knowabout expressibility of languages with aggregate function. For example, Consens and Mendelzon[42] showed inexpressibility of transitive closure assuming separation of complexity classes, andMumick and Shmueli [120] gave a rather involved argument to show that certain recursive queryis not de�nable in a language with a limited number of aggregate functions.If we could only show that the bounded degree property, proved in section 3.2 for NRL, alsoholds for BQL, many results on expressive power would follow immediately. We believe that thebounded degree property does hold for BQL, but proving this remains open. The main reasonthis problem seems to be hard is that there is no logic capturing BQL or its
at fragment. Manytraditional languages for databases do not produce new values (are internal in terminology ofHull [76]), but this is certainly not the case for BQL which is translated into a language withaggregates and hence can produce new values. Finding logics that capture such languages isa di�cult task. For example, the logic with counting quanti�ers [85] does not have enough\generating ability" to capture BQL. And results like the bounded degree property are provedby using locality properties which in turn are based on the quanti�er elimination procedure.Very little is known about interaction of partial information and bags or aggregate functions. Inthis thesis we were able to de�ne orderings on bags and, using certain results about expressivepower of BQL, showed that it can not de�ne the orderings. This leads to a number of questions.What is the minimal \natural" set of operations that can be added to BQL to enable it tode�ne the orderings? What are the corresponding operations in the set language with aggregatefunctions? What is a natural interpretation of orderings on bags when they are translated intothe set language? In other words, how partial information interacts with aggregate functions?How aggregate functions are evaluated on partial data? Although there are a number of ad-hocsolutions in practical languages, there has been no systematic study of these problems.Another set of intersting questions arises when one studies the ability to calculate by usingbags. We showed that three di�erent bag languages can express classes of extended polynomials,elementary and primitive recursive functions. It can also be shown that there is a correspondencebetween slightly enchanced versions of BQL and small classes of primitive recursive functionslike E1 and E2 (see Rose [150] for the de�nition.) It is not known what orderings on bags giveus in terms of the arithmetic power.Our ordering for bags is closely connected with the ordering used by Pollard and Moshier [139]in linguistic applications. This connection could be worth studying.

7.2. PROBLEMS FOR FURTHER INVESTIGATION 237Sets under the closed world assumptionMost results in chapter 5 were proved for sets under the open world assumption. Which resultsremain true if we switch to the closed world assumption? We saw that CWA sets can berepresented in or-NRLa by simply keeping both maximal and minimal elements, and thereforeall operations arising from the CWA set monad can be expressed. But the interaction betweenCWA and or-sets has not been studied. What is the right primitive that provides such aninteraction? It must be an analog of �, but we do not know if there is a commutativity resultfor the Smyth and Plotkin powerdomains. So, one of the questions is the following. Is there ananalog of theorem 4.21 that relates the iterated Smyth and Plotkin constructions?If there is such an analog, and if it can be converted into a programming primitive, can werecover the normalization theorem? If yes, is it possible to represent such a normalization inor-NRLa? If not, what is the main problem and is there a way around it?Recursive types and valuesThe complex object data model, which was the main object of study in this thesis, usuallyserves as the underlying model for object-oriented databases. But object-oriented databasesinclude more than that. In particular, they often deal with recursive values. That is, objectscan be de�ned recursively. In many models this is achieved by introducing objects identi�ers,see Abiteboul and Kanellakis [7]. In practice, these are implemented as pointers. However, theformal semantics of recursive types and values, and in particular recursive types and values inthe presence of partial information, must be worked out.Since semantics of recursive types is usually obtained as a limit construction, this suggests usingdomain instead of arbitrary posets. Assume that we add the recursive type constructor to thetype system: t := x j b j unit j t � t j ftg j �x:twhere x ranges over type variables, and �x:t is a recursive type constructor (x must be free int.) A similar type system was considered, for example, in Lamersdorf [93] in the context of asimple language, but no semantics was given. How do we de�ne the semantics of these types?Since semantics of recursive types is usually obtained as a solution to an equation, which in turnis a (co)limit in some category, we have to switch to categories of domains from categories ofposets. It was suggested by Gunter [65] that one formulate a number of requirements on thecategory of domains in which the semantics of types is to be found. In [65] such conditions weregiven for categories suitable for giving semantics of types used in functional languages. However,[65] did not consider the set type constructor.Now, following Gunter [65], let us try to formulate a number of requirements on the category

238 CHAPTER 7. CONCLUSION AND FURTHER RESEARCHof domains C that is suitable for giving semantics of recursive complex object types. First ofall, its objects must be closed under � (product type) and }[(�) which is Idl(P[(K�)), the idealcompletion of P[(K�). Second, it must contain the domains of base types (which are usually
atdomains). Third, domain equations of form D = F(D), where F is a functor composed from theconstant base type functors, products and }[(�), must have a solution in C. This guaranteesthat the semantics of recursive types can still be found in C.Of course the category SFP and even the category of Scott domains satisfy these requirements.But these categories contain too many domains that never arise as domains of types. Recall thatwe interpret compact elements as objects that can actually be stored in a database. If we havean object x that can be stored and an object y that is less informative than x, then, providedor-sets are not used, it must be possible to store y is a database. In other words, domains Dwhich are objects of C must satisfy the following condition: #KD = KD. This is precisely thecondition that enabled us to de�ne schemes at the level of compact elements, see proposition3.7.Now we formulate the requirements on the categories C for database semantics.1. All objects of C must be domains satisfying #KD = KD.2. C must contain
at domains and be closed under � and }[(�).3. Any equation D = F(D) must have a solution in C where F is an endofunctor on C builtfrom constant base type functors by using � and }[(�).As the �rst attempt we could consider C1 that consists precisely of Scott domains satisfying#KD = KD. But this category does not satisfy 2). It is known that the decreasing chaincondition is preserved by }[(�) [22]. However, C2 that contains domains in which #x satis�es thedecreasing chain condition for any x 2 KD, does not satisfy 1. Now, take C3 in which objectsare those domains which are objects in both C1 and C2. That is, domains in which #x doesnot have in�nite chains for any x 2 KD. Even restricting this, we take C4 to be the categoryof I-domains which satisfy the condition that #x is �nite for any x 2 KD. Now it is possible toprove that C3 and C4 satisfy conditions 1, 2 and 3, and so do their full subcategories given bydistributive domains, and subcategories thereof in which morphisms carry compact elements tocompact elements, see Libkin [101]. Moreover, the category of dI-domains (distributive domainssatisfying the property I) and stable maps (preserving in�ma of bounded pairs) also satis�esconditions 1, 2 and 3 [101].So, we have a number of categories in which semantics of recursive complex object types canbe found. But this is not the end of the story, because there are two major issues that mustbe addressed. First, condition 1 is not longer satis�ed if we add the or-set type constructor.Or-sets correspond to the Smyth powerdomain }](�) = Idl(P](K�)) which does not preserve even

7.2. PROBLEMS FOR FURTHER INVESTIGATION 239the decreasing chain condition. Hence, condition 1 must be replaced by another condition foror-sets. The search for such a condition continues.All recursive database objects have �nite representation and could be stored in a database.But we can easily see that they are not necessarily compact elements in the domains of theirtypes. For example, consider �x:string � x. Its elements are in�nite sequences of strings, andcompact elements are those in which almost all entries are ?string . We can think of this typeas, for example, type person = [Name:string, spouse:person]. Its elements certainly have �niterepresentation, but are not compact elements of the domain of person. Therefore, we need toidentify elements of the domains which have a �nite representation. This identi�cation mustbe done order-theoretically. Similar problems have been studied by Ohori [123, 125] but heconsidered the model based on the regular trees [44]. Such a model does not seem to be suitablefor dealing with partial information, whereas using the domain based model is well justi�ed.Therefore, a proper de�nition of elements having a �nite representation and identi�cation ofelements of solutions of recursive domain equations having �nite representations remain openproblems. We believe that progress towards solving these problems will suggests the rightoperations to be used for programming with recursive complex objects.Types and schemasHull [77] studied connections between database schemas and complex objects in the type systemthat includes variant types but does not include or-sets. He de�ned a number of reductionsthat are similar to the rewrite rules applied to or-types. These reductions were shown to forma Church-Rosser rewrite system, and hence each database schema had a unique normal form.If we consider variants as two-element or-sets (similarly pairs can be considered as two elementsets), then all rewrites in Hull [77] will becomes rewrites in our system for or-types. But ouranalysis of the rewrite system is much deeper than just establishing Church-Rosserness. Inparticular, we characterized the rewrite system in terms of the partial order C on types andgave an e�cient algorithm that tests this order. Therefore, one might expect that our analysisof the rewrite system for types may help gain a better understanding of transformations ofdatabase schemas. For example, it may help produce e�cient algorithms that check if oneschema could be transformed into another.Constraints and partial informationIn this thesis we developed type systems and languages for databases with partial information,but did not cover a very important area of constraints. Relatively little is known about con-straints in relational databases with nulls (see [17, 18, 62, 74, 97, 131, 166]) and virtually nothingis known about constraints for other kinds of partial information. To the best of our knowledge,

240 CHAPTER 7. CONCLUSION AND FURTHER RESEARCHno work has been done on understanding how the ordering interacts with constraints.An idea that proved to be useful for relational databases with the ni nulls is to introduce analogsof some constrains in a \disjunctive" manner, see Atzeni and Morfuni [17] and Thalheim [165].Following Thalheim [165], we consider keys. In a usual relational database, a set K of attributesis a key if �K(t1) 6= �K(t2) for any two distinct tuples t1 and t2. A family K = fK1; : : : ; Kngof sets of attributes is called a key set [165] if for any two distinct tuples t1 and t2, there existsa Ki 2 K such that t1 and t2 are de�ned on Ki (that is, none of the Ki-values is ni) and�Ki(t1) 6= �Ki(t2). For relations without null values this simply means that SK is a key. A keyset is minimal if all Kis are singletons. The disjunctive nature of such constraints matches theusual key constrains in the closed world semantics.Proposition 7.1 For any relation R with ni null values and a set K of attributes, K = ffkg jk 2 Kg is a minimal key set i� �K\def(t;t0)(t) = �K\def(t;t0)(t0) implies t = t0, where def(t; t0) isthe set of attributes on which both t and t0 are de�ned. Furthermore, this implies that for anyT 2 [[R]]CWAmax with card T � card R, K is a key of T . 2The converse to the last statement is not true. Consider R = f(ni; 1); (2; 1)g. Then for any Tas in the statement of the proposition, the �rst attribute is a key, but it is not a key set for R.We believe that this idea of making one constraint into a family while maintaining a closeconnection with the intended semantics can be quite productive. The concept of a key set canbe reformulated as 8t; t0 8K 2 K : (K � def(t; t0)) �K(t) = �K(t0))) t = t0. This in turnimplies that SK is a key for any T 2 [[R]]CWAmax and shows that keys can be further generalizedto functional dependencies and probably a to greater class of dependencies given in a �rst orderlanguage with equality.Let us give a simple example to illustrate some of the problems arising from using other nulls.Consider a simple relation Name Dept Roomne ne 76We interpret this relation as saying that room 76 does not belong to any department and isempty. Now, consider a di�erent relation:Name Dept Roomne ne 76Joe CS 76Jim ne 76

7.2. PROBLEMS FOR FURTHER INVESTIGATION 241This relation says that there is one room 76 which does not have people in it and does notbelong to any department, and there is another room, also named 76, that belongs to CS andJoe sits in it. Moreover, there is yet another room 76 which does not belong to any departmentbut has someone named Jim in it.Of course we can not represent the second database as a �rst order theory as in Reiter [143],because it would yield a contradiction: P (Joe;CS; 76) & :9x:9y P (x; y; 76). However, it stillmakes perfect sense. But now assume that there is a constraint which says that there is only oneroom 76. While having two records Joe CS 76 and Ann Math 76 does not contadictit, having a record ne ne 76 does contradict the constraint as it would be imply theexistence of two rooms 76: one with Joe and Ann in it, and one empty. Even though the nenull is a maximal element in the ordering and is treated in the same way as the usual nonpartialvalues, it does behave di�erently in the presence of constraints.How could one approach the problem of dealing with constraints in databases with partialinformation? Since we advocate the order-theoretic models of databases and consider rathercomplicated type systems, we believe one should try to apply the approach that formalizes con-straints independently of the particular kind of data structures involved. For example, one mayuse the lattice theoretic approach to dependencies and normalization developed in Demetro-vics et al. [47] and Day [45] or de�ne dependencies as certain classes of �rst order formulaeas in Fagin [50]. One may also bene�t from using these approaches since most papers dealingwith constraints in the complex object model only study constraints on the top level attributes[48, 130, 169]. But at this point there is almost no understanding how constraints interact withpartial information represented via orderings on objects. The area is completely open.Genericity, computability and polymorphismThis subsection is de�nitely the most speculative of all. One of the important problems indatabase theory is identifying important classes of queries and designing languages capable ofexpressing those queries. There are several ways in which database query languages are di�erentfrom traditional programming languages. First, most database queries are internal (see Hull[76]). That is, they only manipulate with values stored in a database and do not create newvalues. Second, they are generic. Most de�nitions of genericity, such as in Chandra and Harel[36], assume that there is only one domain of values and simply require that queries be invariantunder permutations of such a domain. For instance, a query computing the transitive closure ofa relation is such but the query returning the sum of two largest numbers stored in a databaseis not.Many researchers tried to identify languages capable of expressing precisely all generic queriesfrom a given complexity class over relational databases. A language for all computable querieswas given in Chandra and Harel [36]. In Immerman [83] and Vardi [170] languages for theclass PTIME were given, and Abitebouland Vianu [9] showed how to capture PSPACE. Their

242 CHAPTER 7. CONCLUSION AND FURTHER RESEARCHresults use an assumption that a linear ordering is given on objects. The question we wouldlike to investigate is how using partial order that represents incompleteness of information willa�ect the main de�nitions, like genericity, and results about capturing complexity classes. Thesituation when we have a partial order falls between the totally ordered case and the totallyunordered case which appears to be much harder, cf. Abiteboul and Vianu [10] and Immermanand Lander [85]. Note also that we want to look at these problems in the context of typedlanguages, whereas in the above mentioned papers it is always assumed that only one domainof values is present.Another interesting project is to try to make precise a rather vague idea of establishing con-nection between genericity and polymorphism. Genericity means that the queries are invariantunder permutations of the domains, and this is very close in the spirit to the idea of paramet-ric polymorphism. Until recently, genericity has not been considered in the context of typeddatabase languages. In Libkin and Wong [107], a type system with type variables was studied.That is, types are given by t := x j b j unit j t � t j ftg where x ranges over type variables.Then the de�nition of genericity of a query of type s! t was reformulated, where s and t mayhave some type variables. That de�nition is much closer to various de�nitions of polymorphicfunctions and can serve as a good starting point.Note that in all our languages (even including the SML implementation of or-NRL that useshigher-order functions) we deal only with instances of predicative polymorphism [116]. That is,in universal types 8x:t, the range of x does not involve universal types. For instance, the typeof transitive closure can be viewed as 8x:fx� xg ! fx� xg where x ranges over object types.The de�nition of genericity in Libkin and Wong [107] is set-theoretic. An intersting problem is to�nd out whether there exist set-theoretic models for universal types in database query languageslike NRL. We have the set type constructor, so one may expect to observe a phenomenon similarto Reynolds [146] where a power construction was used to refute the existence of set-theoreticmodels for universal types. On the other hand, we deal only with instances of predicativepolymorphism, and it may be possible that the complications of [146] will be irrelevant.Invariance under permutations no longer su�ces as the de�nition of genericity if we deal withincomplete information represented via orderings on domains of object types. We need to extendthe de�nition to accommodate orderings. This situation appears to be quite similar { at least inthe spirit { to characterizing �-de�nability (see Plotkin [138]): invariance under permutations isan obvious �rst try, but it does not work. Instead, invariance under logical relations is needed.Being invariant under logical relations is what parametric polymorphism is semantically, seeMitchell [116]. To extend the standard de�nitions from those suitable for languages based on�-calculi to languages with sets, one has to lift logical relations to powerdomains and not onlyto function spaces. To the best of our knowledge, this has not been done, and it might be worthlooking at.Returning to the problem of invariance under permutations or logical relations, we have a number

7.2. PROBLEMS FOR FURTHER INVESTIGATION 243of new questions. First, one may want to describe functions expressible in the languages that wehave studied as functions which are invariant and satisfy some additional conditions. This ideaof course comes directly from the problem of �-de�nability, since we suggest that our languagescan be viewed as \canonical" languages for partial information, very much in the same way as�-calculus is the basis for the functional programming. Conversely, one may take some class C ofqueries and search for a language that expresses exactly all invariant queries in C. Observe thatif C is a complexity class, then this is the problem of capturing such a class that was discusseda few paragraphs ago. There is an indication that this problem may be very hard for importantclasses like PTIME, with or without presence of partial information.Using ordered semantics we have advocated can be helpful in �nding models of universal typesinvolving sets. There exist domain-theoretic models of polymorphism. An interesting projectwould be to extend the model of Coquand et al. [43] based on Grothendieck �brations to in-clude the set and or-set type constructors. From the results of this thesis we know what thecorresponding domain constructions are: they are the Hoare and the Smyth powerdomains. Itwould be worth checking if the results of Coquand et al. [43] carry over to these powerdomains.Since we deal mostly with predicative polymorphism, there is hope that many complications ofthe impredicative polymorphism will not show up, and carrying out the project of understandinggenericity as polymorphism of functions in typed languages with sets will be possible. Of coursethe most important outcome of this project would be having the database community speak ofpolymorphic functions rather than generic queries.Formal models of approximationsThe theory of approximation in databases started just a few years ago and there are manytopics to be investigated. First, the algebraic characterization given in this thesis points out toan intimate connection between these constructions and various algebras with idempotent binaryoperations that have been extensively studied, most notably by Romanowska and Smith, see[61, 149, 148, 147]. In [148] they characterized freely generated meet-distributive bisemilattices,that is, bisemilattices satisfying only one distributive law. In [147] idempotent semirings withsemilattice reducts are characterized. These algebras are closely related to the scone algebras.Algebras corresponding to three kinds of approximations (or absence thereof) have not beendiscovered yet. Even though we showed that using structural recursion and monads based onthe universality properties of approximations is not the right approach to program with them,�nding such characterization is still helpful as it would allow us to extend theorem 5.32 to includeall ten constructions.Another open problem is applying Abramsky's approach [11] that �nds logical theories corre-sponding to various constructions on domains. For mixes this was done by Gunter [66]. Recently,some progress has been made in Darmstadt in applying Abramsky's approach to snacks. It may

244 CHAPTER 7. CONCLUSION AND FURTHER RESEARCHalso be interesting to see what, if any, are the connections between our work and recent workby Chaudhuri and Kolaitis [37] on approximating recursive datalog programs with nonrecursiveones.How to answer conceptual queries faster?We suggested using normalization as a means of answering conceptual queries and demonstratedits usefulness. However, we showed that normalization can be quite expensive. Hence, one hasto look for ways to normalize faster.We considered one approach to the problem. Often it is not necessary to normalize all wayto the normal form to answer a query. We proved a partial normalization result saying thatfor types without occurrences of subtypes hhtii, an analog of the normalization theorem holds.Hence, for such types it is possible to do partial normalization. Even though in all examples wehave encountered there were no occurrences of types of form hhtii other than at the intermediatestages of the rewriting, we believe that it is still possible to improve the partial normalizationtheorem by extending it to a larger class of types.Even more importantly is to combine partial normalization with a smart evaluation strategy.Most queries asked against normal forms are existential queries. That is, the queries asking ifthere is a possibility in the normal form satisfying certain properties. Presently, the normal-ization process computes all possibilities and then outputs them. The evaluation strategy weneed should evaluate normalization lazily. That is, it should try to produce an element of anormal form, check if it satis�es a given property and then go on. This kind of optimizationthat produces the �rst answer fast was considered by Wong [180] for his implementation of alanguage based on NRL. In addition to using such optimizations, it would be desirable if queryevaluation algorithm tried to use some heuristics that would help produce an answer satisfyingthe given condition faster.We said that or-objects are typically present in the problems arising in design and planningareas, and in particular in computer aided designs. Such objects are usually very large, and itis necessary to combine all possible ways to speed up the query evaluation process. One step ofthis process { the partial normalization { has been developed in this thesis. Devising a smartquery evaluation algorithm is an important open problem.New features of OR-SMLThere are a number improvements in the implementation of OR-SML that could be made.First of all, real records must be added. (Now they are simulated with pairs.) A proper setof operations on records should be identi�ed and some operations of the language, such asnormalization, must be reprogrammed. From the de�nition of normalization it can be seen

7.2. PROBLEMS FOR FURTHER INVESTIGATION 245that record concatenation should become a new primitive operation. Therefore, we shall needto add new tools for representing records and computing with them to the existing OR-SMLimplementation. There are a number of known techniques for doing this, such as in Ohori [126]and R�emy [145].At this moment null values can only be added to the user-de�ned base types. Therefore, OR-SML needs a way for the user to specify null values for already existing types and to de�ne anorder on them. Finally, using new tools such as the \visible compiler" of Appel and MacQueen[15], the system could be made much more user-friendly.However, we believe that these changes to the existing implementation should not be made beforemany questions related to bags, closed world sets and recursive types are clari�ed, because theymay cause additional changes. Only those changes that will for sure remain in the languagecapable of working with recursive types, bags and closed world sets, could be made at thisstage.

246 CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

Bibliography[1] S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complex objects. InProc. Int. Workshop on Theory and Applications of Nested Relations and Complex Objects, Darm-stadt, 1988.[2] S. Abiteboul, C. Beeri, M. Gyssens and D. Van Gucht. An introduction to the completeness oflanguages for complex objects and nested relations. In [4], pages 117{138.[3] S. Abiteboul and N. Bidoit. Non �rst normal form relations: an algebra allowing data restructuring.Journal of Computer and System Sciences 33 (1986), 361{393.[4] S. Abiteboul, P.C. Fischer and H.-J. Schek, editors. \Nested Relations and Complex Objects".Springer LNCS 361, Springer Verlag, 1989.[5] S. Abiteboul and G. Grahne. Update semantics for incomplete databases. In Proc. Very LargeDatabases (1985), 1-12[6] S. Abiteboul and S. Grumbach. COL: a logical based language for complex objects. in \Advances inDatabase Programming Languages" (F. Bancilhon and P. Buneman, eds.), ACM Press, 1990, pages347{374.[7] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In SIGMOD 89,pages 159{173.[8] S. Abiteboul, P. Kanellakis and G. Grahne. On the representation and querying of sets of possibleworlds. Theoretical Computer Science 78 (1991), 159{187.[9] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. Journal ofComputer and System Sciences 43 (1991), 62{124.[10] S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proceedings of ACM Symp.on the Theory of Computing, 1991.[11] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic 51 (1991), 1{77.[12] S. Abramsky and A. Jung. Domain Theory. Chapter in Volume 3 of the \Handbook of Logic inComputer Science", Cambridge University Press, 1994.[13] A. Aho, R. Sethi, and J. Ullman. \Compilers: Principles, Techniques and Tools". Addison Wesley,1985.[14] J. Albert. Algebraic properties of bag data types. In Proceedings of Very Large Databases{91, pages211{219. 247

248 BIBLIOGRAPHY[15] A. Appel and D. MacQueen. Separate compilation for Standard ML. In Proceedings of the SIGPLAN'94 Conf. on Programming Language Design and Implementation.[16] M. Atkinson, P. Richard and P. Trinder. Bulk types for large scale programming. In Next GenerationInformation System Technology, Springer LNCS 504, Springer Verlag, 1990, pages 228-250.[17] P. Atzeni and N. Morfuni. Functional dependencies and constraints on null values in databaserelations. Information and Control, 70 (1986), 1-31.[18] P. Atzeni and M. De Bernardis. A new basis for the weak instance model. In PODS-87, pages 79{86.[19] R. Balbes. A representation theorem for distributive quasilattices. Fundamenta Mathematicae 68(1970), 207-214.[20] F. Bancilhon and S. Khosha�an. A calculus for complex objects. In PODS 1986, pages 53{59.[21] M. Barr and C. Wells. \Category Theory for Computing Science". Prentice Hall, 1990.[22] G. Birkho�. \Lattice Theory". 3rd ed, Amer. Math. Soc., 1967.[23] J. Biskup. A formal approach to null values in database relations. In: \Advances in Data BaseTheory", Volume 1, Prenum Press, New York, 1981.[24] S. Bloom. Varieties of ordered algebras. Journal of Computer and System Sciences 13 (1976),200{212.[25] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Proc. of3rd Int. Workshop on Database Programming Languages, pages 9{19, Naphlion, Greece, August 1991.[26] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In LNCS 646:Proc. ICDT, Berlin, Germany, October, 1992, pages 140{154. Springer-Verlag, October 92.[27] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of programming withsets/bags/lists. In LNCS 510: Proc. of 18th ICALP, Madrid, Spain, July 1991, pages 60{75.Springer Verlag, 1991.[28] D. Bronshtein. \The chess struggle in practice: candidates tournament, Zurich 1953". D. McKayCo., New York, 1978.[29] S. Brookes, K. Van Stone. Monads and comonads in intensional semantics. Technical Report CMU-CS-93-140, Carnegie Mellon University, April 1993.[30] P. Buneman. Functional programming and databases. In \Research Topics in Functional Program-ming", (D. Turner ed), Addison-Wesley, 1990, pages 155{169.[31] P. Buneman, S. Davidson and A. Watters. A semantics for complex objects and approximate answers.Journal of Computer and System Sciences 43(1991), 170{218.[32] P. Buneman, S. Davidson and A. Watters. Querying independent databases. Information Science,46 (1988), 1{34.[33] P. Buneman, A. Jung, A. Ohori. Using powerdomains to generalize relational databases. TheoreticalComputer Science 91(1991), 23{55.[34] P. Buneman, L. Libkin, D. Suciu, V. Tannen and L. Wong. Comprehension syntax. SIGMODRecord, 23 (1994), 87{96.[35] L. Cardelli. Types for data-oriented languages. In Proceedings of EDBT-88 (J.W. Schmidt, S. Ceriand M. Missiko� eds), Springer Lecture Notes in Computer Science, vol. 303, Springer Verlag, 1988.

BIBLIOGRAPHY 249[36] A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer andSystem Sciences, 25 (1982), 99{128.[37] S. Chaudhuri and Ph. Kolaitis. Can Datalog be approximated? In Proceedings of the 13th Conferenceon Principles of Database Systems, Minneapolis MN, May 1994, pages 86{96.[38] S. Chaudhuri and M. Vardi. Optimization of real conjunctive queries. In Proceedings of 12th ACMSymposium on Principles of Database Systems, pages 59{70, Washington, D. C., May 1993.[39] E.F. Codd. Understanding relations. Bulletin of ACM SIGMOD, 1975, pages 23{28.[40] E.F. Codd. Extending the database relational model to capture more meaning. ACM Trans. DatabaseSystems 4 (1979), 397{434.[41] L. Colby. A recursive algebra for nested relations. Information Systems 15 (1990), 567{582.[42] M. Consens and A. Mendelzon. Low complexity aggregation in GraphLog and Datalog. TheoreticalComputer Science 116 (1993), 95{116.[43] T. Coquand, C. Gunter and G. Winskel. Domain theoretic models of polymorphism. Informationand Computation 81 (1989), 123{167.[44] B. Courcelle. Fundamental properties of in�nite trees. Theoretical Computer Science 25 (1983),95{169.[45] A. Day. The lattice theory of functional dependencies and normal decompositions. Intern. J. ofAlgebra and Computation 2 (1992), 409{431.[46] J. Demetrovics. private communication.[47] J. Demetrovics, L. Libkin and I. Muchnik. Functional dependencies in relational databases : a latticepoint of view. Discrete Applied Mathematics 40 (1992), 155-185.[48] J. Demetrovics, L. R�onyai and H.N. Son. An approach for normalization, composition and decom-position of attributes. In LNCS 646: Proc. ICDT, Berlin, Germany, October, 1992, pages 71{85.Springer-Verlag, October 92.[49] N. Dershowitz and J.-P. Jouannand. Rewrite Systems. Chapter 6 in \Handbook of TheoreticalComputer Science", North Holland, 1990, pages 243{320.[50] R. Fagin. Horn clauses and database dependencies. Journal of ACM 29 (1982), 952{985.[51] R. Fagin. Finite model theory | a personal perspective. Theoretical Computer Science, 116 (1993),3{32.[52] R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs monadic co-NP. In Proceedings of 8thIEEE Conference on Structure in Complexity Theory, pages 19{30, May 1993.[53] K.E. Flannery and J.J. Martin. Hoare and Smyth power domain constructors commute undercomposition. Journal of Computer and System Sciences 40 (1990), 125-135.[54] M. Furst, J. Saxe and M. Sipser. Parity, circuits and the polynomial time hierarchy. Math. SystemsTheory, 17:13{27, 1984.[55] H. Gaifman. On local and non-local properties. In: Proceedings of the Herbrand Symposium, LogicColloquium '81, North Holland, 1982, pages 105{135.[56] M. Garey and D. Johnson. \Computers and Intractability : A Guide to the Theory of NP- complete-ness". San Francisco, W.H. Freeman, 1979.

250 BIBLIOGRAPHY[57] J.-Y. Girard. The system F of variable types : �fteen years later. Theoretical Computer Science 45(1986), 159{192.[58] J.-Y. Girard. \Proofs and Types", Cambridge University Press, 1987.[59] G. Gottlob and R. Zicari. Closed world databases opened through null values. In Proc. Very LargeDatabases (1988), 50{61.[60] S. Grumbach and T. Milo. Towards tractable algebras for bags. Proceedings of the 12th Conferenceon Principles of Database Systems, Washington DC, 1993, pages 49{58.[61] G. Gierz and A. Romanowska. Duality for distributive bisemilattices. J. Austral. Math. Soc. (A) 51(1991), 247{275.[62] G. Grahne. \The Problem of Incomplete Information in Relational Databases". Springer-Verlag,Berlin, 1991.[63] J. Grant. Null values in relational databases. Information Processing Letters 6 (1977), 156{157.[64] G.Gr�atzer. \Universal Algebra". Springer Verlag, 1980.[65] C. Gunter. Comparing categories of domains. In \Mathematical Foundations of Programming Se-mantics (A. Melton ed), Springer Lecture Notes in Computer Science, vol. 239, Springer, Berlin,1985, pages 101{121.[66] C. Gunter. The mixed powerdomain. Theoretical Computer Science 103 (1992), 311{334.[67] C. Gunter. \Semantics of Programming Languages". The MIT Press, 1992.[68] C. Gunter and D. Scott. Semantic Domains. Chapter 12 in \Handbook of Theoretical ComputerScience", ed. J. van Leeuwen (North Holland, 1990), pages 633{674.[69] E. Gunter and L. Libkin. OR-SML: a functional database programming language for disjunctiveinformation and its applications. In Proceedings of the Conference on Database and Expert SystemsApplications DEXA-94, Springer Verlag, to appear.[70] M. Gyssens and D. Van Gucht. The powerset algebra as a natural tool to handle nested databaserelations. Journal of Computer and System Sciences 45 (1992), 76{103.[71] R. Heckmann. Lower and upper power domain constructions commute on all cpos. InformationProcessing Letters 40 (1991), 7-11.[72] G. G. Hillebrand, P. C. Kanellakis, and H. G. Mairson. Database query languages embedded inthe typed lambda calculus. In Proceedings of 8th IEEE Symposium on Logic in Computer Science,Montreal, Canada, June 1993, pages 332{343.[73] G. G. Hillebrand and P. C. Kanellakis. Functional database query languages as typed lambda calculiof �xed order. In Proceedings of the 13th Conference on Principles of Database Systems, MinneapolisMN, May 1994, pages 222{231.[74] P. Honeyman. Testing satisfaction of functional dependencies. Journal of the ACM, 29 (1982),668{677.[75] J. Hopcroft and R. Karp. An n5=2 algorithm for maximum matchings in bipartite graphs. SIAMJ. Computing 4 (1973), 225{231.[76] R. Hull. Relative information capacity of simple relational database schemata. SIAM Journal ofComputing, 15 (1986), 865{886.

BIBLIOGRAPHY 251[77] R. Hull. A survey of theoretical research on typed complex database objects. In \Databases"(J. Paredaens ed.) Academic Press, London, 1987, pages 193{256.[78] T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of ACM31(1984), 761{791.[79] T. Imielinski and W. Lipski. The relational model of data and cylindric algebras, Journal ofComputer and System Science 28 (1984), 80{102.[80] T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects | a data model for design andplanning applications. In Proc. of ACM-SIGMOD, Denver, Colorado, May 1991, pages 288{297.Full paper submitted to ACM TODS.[81] T. Imielinski, S. Naqvi, and K. Vadaparty. Querying design and planning databases. In LNCS 566:Deductive and Object Oriented Databases, pages 524{545, Berlin, 1991. Springer-Verlag.[82] T. Imielinski and K. Vadaparty. Complexity of querying databases with or-objects. In PODS-89.[83] N. Immerman. Relational queries computable in polynomial time. Information and Control, 68(1986), 86{104.[84] N. Immerman. Languages that capture complexity classes. SIAM J. Comput. 16 (1987), 760{778.[85] N. Immerman and E. Lander. Describing graphs: A �rst order approach to graph canonization. In\Complexity Theory Retrospective", Springer Verlag, Berlin, 1990.[86] N. Immerman, S. Patnaik and D. Stemple. The expressiveness of a family of �nite set languages. InProceedings of the 10th Symposium on Principles of Database Systems, 1991, pages 37{52.[87] A. Jung. personal communication.[88] A. Jung, L. Libkin and H. Puhlmann. Decomposition of domains. In: Proceedings of the Conferenceon Mathematical Foundations of Programming Semantics{91, Springer LNCS 598, Springer Verlag,Berlin, 1992, pages 235{258.[89] P. Kanellakis. Elements of Relational Database Theory. Chapter 17 in \Handbook of TheoreticalComputer Science", North Holland, 1990, pages 1075{1156.[90] M. Kifer and G. Lausen. F-Logic: a higher-order language for reasoning about objects, inheritanceand scheme. In SIGMOD 89, pages 134{146.[91] A. Klausner and N. Goodman. Multirelations: semantics and languages. In Proceedings of VeryLarge Databases{85, pages 251{258.[92] A. Klug. Equivalence of relational algebra and relational calculus query languages having aggregatefunctions. Journal of the ACM 29 (1982), 699{717.[93] W. Lamersdorf. Recursively de�ned complex objects. In [4], pages 176{189.[94] N. Lerat and W. Lipski. Nonapplicable nulls. Theoretical Computer Science 46 (1986), 67{82.[95] M. Levene and G. Loizou. The nested relation type model: An application of domain theory todatabases. The Computer Journal 33 (1990), 19-30.[96] M. Levene and G. Loizou. Correction to \Null values in nested relational databases" by M. A. Roth,H. F. Korth, and A. Silberschatz. Acta Informatica 28 (1991), 603-605.[97] M. Levene and G. Loizou. Semantics of null extended nested relations. ACM Trans. DatabaseSystems 18 (1992), 414-459.

252 BIBLIOGRAPHY[98] M. Levene and G. Loizou. A fully precise null extended nested relational algebra. FundamentaInformaticae 19 (1993), 303-343.[99] L. Libkin. A relational algebra for complex objects based on partial information. In LNCS 495:Proceedings of Symposium on Mathematical Fundamentals of Database Systems{91, pages 36{41,Rostock, 1991. Springer-Verlag.[100] L. Libkin. An elementary proof that upper and lower powerdomain constructions commute.Bulletinof the EATCS, 48 (1992), 175{177.[101] L. Libkin. Denotational semantics for complex objects and functions on them. Unpublished notes,University of Pennsylvania, 1992.[102] L. Libkin. A remark about algebraicity in complete partial orders. Journal of Pure and AppliedAlgebra 86 (1993), 75{77.[103] L. Libkin. Algebraic characterization of edible powerdomains. Technical Report MS-CIS-93-70/L&C71, University of Pennsylvania, 1993.[104] L. Libkin and L. Wong. Semantic representations and query languages for or-sets. Proceedings ofthe 12th Conference on Principles of Database Systems, Washington, DC, May 1993, pages 37{48.[105] L. Libkin and L. Wong. Some properties of query languages for bags. In Proceedings of the FourthWorkshop on Database Programming Languages, Manhattan NY, August 30{September 1, 1993,Springer Verlag, 1994, pages 97{114.[106] L. Libkin and L. Wong. Aggregate functions, conservative extension and linear order. In Proceedingsof the Fourth Workshop on Database Programming Languages, Manhattan NY, August 30{September1, 1993, Springer Verlag, 1994, pages 282{294.[107] L. Libkin and L. Wong. Conservativity of nested relational calculi with internal generic functions.Information Processing Letters 49 (1994), 273{280.[108] L. Libkin and L. Wong. New techniques for studying set languages, bag languages and aggregatefunctions. In Proceedings of the 13th Conference on Principles of Database Systems, MinneapolisMN, May 1994, pages 155{166.[109] W. Lipski. On semantic issues connected with incomplete information in databases. ACMTrans. Database Systems 4 (1979), 262{296.[110] W. Lipski. On databases with incomplete information. J. ACM 28 (1981), 41{70.[111] K.C. Liu and R. Sinderraman. Inde�nite and maybe information in relational databases. ACMTrans. Database Systems 15 (1990), 1{39.[112] S. MacLane. \Categories for the Working Mathematician". Springer Verlag, 1971.[113] D. Maier. \The Theory of Relational Databases". Computer Science Press, 1983.[114] R. Milner, M. Tofte and R. Harper. \The De�nition of Standard ML". The MIT Press, 1990.[115] J. Minker, editor. \Foundations of Deductive Databases and Logic Programming". M. KaufmannPublishers, 1988.[116] J. Mitchell. Type systems for programming languages. Chapter 8 in \Handbook of TheoreticalComputer Science", North Holland, 1990, pages 365{458.[117] J. Mitchell and A. Scedrov. Notes on sconing and relators. In Computer Science Logic-92, SpringerLNCS 702, 1993, pages 352{378.

BIBLIOGRAPHY 253[118] E. Moggi. Notions of computation and monads. Information and Computation, 93 (1991), 55{92.[119] J. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics 3(1965), 23{28.[120] I. S. Mumick and O. Shmueli. How expressive if strati�ed aggregation. Annals of Mathematics andArti�cial Intelligence, 1994, to appear.[121] T.-H. Ngair. \Convex Spaces as an Order-theoretic Basis for Problem Solving" (PhD Thesis).Technical Report MS-CIS-92-60, University of Pennsylvania, 1992.[122] P. Odifreddi. \Classical Recursion Theory". North Holland, 1989.[123] A. Ohori. \A Study on Semantics, Types and Languages for Databases and Object-oriented Pro-gramming". PhD Thesis, University of Pennsylvania, 1989.[124] A. Ohori. Orderings and types in databases. In \Advances in Database Programming Languages"(F. Bancilhon and P. Buneman, eds.), ACM Press, 1990, pages 97{116.[125] A. Ohori. Semantics of types for database objects. Theoretical Computer Science 76 (1990), 53{91.[126] A. Ohori. A compilation method for ML-style polymorphic record calculi. In Proc. of Symp. onPrinciples of Programming Languages, 1992, pages 145{165.[127] A. Ohori, V. Breazu-Tannen and P. Buneman. Database programming in Machiavelli: a polymor-phic language with static type inference. In SIGMOD 89, pages 46{57.[128] A. Ola. Relational databases with exclusive disjunctions. In Data Engineering 92, pages 328-336.[129] G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos. Extending relational algebra and relational calculuswith set-valued attributes and aggregate functions. ACM Transactions on Database Systems, 12(1987), 566{592.[130] Z. M. Ozsoyoglu and L.-Y. Yuan. A new normal form for nested relations. ACM Transaction onDatabase Systems, 12 (1987), 111{136.[131] J. Paredaens, P. De Bra, M. Gyssens and D. Van Gucht. \The Structure of the Relational DataModel". Springer, Berlin, 1989.[132] J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions into
at algebraexpressions. ACM Transaction on Database Systems, 17 (1992), 65{93.[133] L.C. Paulson. \ML for the Working Programmer". Cambridge University Press, 1991.[134] J. P lonka. On distributive quasilattices. Fundamenta Mathematicae 60 (1967), 191{200.[135] J. P lonka. On a method of construction of abstract algebras. Fundamenta Mathematicae 61 (1967),183{189.[136] J. P lonka. On free algebras and algebraic decompositions of algebras from some equational classesde�ned by regular equations. Algebra Universalis 1 (1971), 261{264.[137] G. Plotkin. A powerdomain construction. SIAM Journal of Computing 5 (1976), 452{487.[138] G. Plotkin. Lambda-de�nability in the full type hierarchy. In \To H.B. Curry: Essays on Combi-natory Logic, Lambda Calculus and Formalism", edited by J. Seldin and J. Hindley, Academic Press,London, 1980, pages 363{373.[139] C. Pollard and D. Moshier. Unifying partial descriptions of sets. Manuscript, 1993.

254 BIBLIOGRAPHY[140] A. Poulovassilis and C. Small. A domain theoretic approach to integrating functional and logicaldatabase languages. In Proceedings of Very Large Databases{93, pages 416{428.[141] H. Puhlmann. The snack powerdomain for database semantics. In LNCS 711: Proceedings of Con-ference on Mathematical Foundations of Computer Science, Gdansk, Poland, 30 August{3 September1993, (Andrzej M. Borzyszkowski and Stefan Sokolowski, eds.), Springer Verlag, 1993, pages 650{659.[142] R. Reiter. On closed world databases. In \Logic and Databases", H. Gallaire and J. Minker eds,Plenum Press, 1978, pages 55{76.[143] R. Reiter. Towards a logical reconstruction of relational database theory. In: \On ConceptualModeling" (M. Brodie and J. Schmidt eds.), Springer Verlag, 1984, pages 163{189.[144] R. Reiter. A sound and sometimes complete query evaluation algorithm for relational databaseswith null values. J. ACM 33 (1986), 349{370.[145] D. R�emy. E�cient representation of extensible records. In ACM SIGPLAN Workshop on ML andits applications, 1922, pages 12{16.[146] J. Reynolds. Polymorphism is not set-theoretic. In \Semantics of Data Types" (G. Kahn, D. Mac-queen and G. Plotkin eds), Springer Lecture Notes in Computer Science, vol. 173, Springer, Berlin,1984, pages 145{156.[147] A. Romanowska. Free idempotent distributive semirings with a semilattice reduct. Math. Japonica27 (1982), 467{481.[148] A. Romanowska and J.D.H. Smith. Bisemilattices of subsemilattices. J. Algebra 70 (1981), 78{88.[149] A. Romanowska and J.D.H. Smith. \Modal Theory: An Algebraic Approach to Order, Geometryand Convexity". Heldermann Verlag, Berlin, 1985.[150] H. Rose. \Subrecursion: Functions and Hierarchies". Clarendon Press, 1984.[151] M.A. Roth, H.F. Korth and A. Silberschatz. Null values in nested relational databases. ActaInformatica, 26 (1989), 615{642.[152] B. Rounds. Situation-theoretic aspects of databases. In Proceedings of Conference on SituationTheory and Applications, CSLI vol. 26, 1991, pages 229-256.[153] H. Sakai. On a framework for logic programming with incomplete information. Fundamenta Infor-maticae 19 (1993), 223{234.[154] V.N. Salii. \Lattices with Unique Complements" (AMS, Providence, RI, 1988).[155] Y. Saraiya. Fixpoints and optimizations in a language based on structural recursion on sets.Manuscript, December 1992.[156] H.-J. Schek and M. Scholl. The relational model with relation-valued attributes. InformationSystems 11 (1986), 137{147.[157] M.B. Smyth. Power domains. Journal of Computer and System Sciences 16 (1978), 23{36.[158] Standard ML of New Jersey: User's guide. Version 0.93, February 1993. AT&T Bell Laboratories.[159] D. Stemple and T. Sheard. A recursive base for database programming primitives. In Next Gener-ation Information System Technology, Springer LNCS 504, Springer Verlag, 1990, pages 311{352.[160] A. Stoughton. \Fully Abstract Models of Programming Languages". Pitman, London, 1988.

BIBLIOGRAPHY 255[161] D. Suciu. Bounded �xpoints for complex objects. In Proceedings of the Fourth Workshop onDatabase Programming Languages, Manhattan NY, August 30{September 1, 1993, Springer Verlag,1994, pages 263{281.[162] D. Suciu and J. Paredaens. Any algorithm in the complex object algebra with powerset needsexponential space to compute transitive closure. In Proceedings of the 13th Conference on Principlesof Database Systems, Minneapolis MN, May 1994, pages 201{109.[163] D. Suciu and V. Tannen. A query language for NC. In Proceedings of the 13th Conference onPrinciples of Database Systems, Minneapolis MN, May 1994, pages 167{178.[164] K. Tanaka and T.-S. Chang. On natural join in object-oriented databases. In : Proc. of Int. Conf.on Deductive and Object-Oriented Databases. Kyoto, December 1989.[165] B. Thalheim. On semantic issues connected with keys in relational databases permitting null values.J. Inf. Process. and Cybernet., 25(1/2):11{20, 1989.[166] B. Thalheim. \Dependencies in Relational Databases". Teubner-Texte zur Mathematik, Band 126,Stuttgart-Leipzig, 1991.[167] S.J. Thomas and P. Fischer. Nested relational structures. In P. Kanellakis editor, \Advances inComputing Research: The Theory of Databases", pages 269{307, JAI Press, 1986.[168] J.D. Ullman. \Principles of Database and Knowledge-Base Systems". Computer Science Press,1988.[169] D. Van Gucht and P. Fischer. Multilevel nested relational structures. Journal of Computer andSystem Sciences 36 (1988), 77{105.[170] M. Vardi. The complexity of relational query languages. In Proc. of ACM Symp. on the Theory ofComputing, 1982, pages 137{146.[171] M. Vardi. On the integrity of databases with incomplete information. In Proc. 5th ACM Symp. onPrinciples of Database Systems (1986), 252{266.[172] Y. Vassiliou. Null values in database management { a denotational semantics approach. In: SIG-MOD 1979, pages 162{169.[173] Y. Vassiliou. Functional dependencies and incomplete information. In: Very Large Databases 1980,pages 260{269.[174] S. Vickers. Geometric theories and databases. In P. Johnstone and A. Pitts, editors, Applications ofCategories in Computer Science, volume 177 of London Mathematical Society Lecture Notes, pages288{314. Cambridge University Press, 1992.[175] P. Wadler. Comprehending monads. In Proceedings of ACM Conference on Lisp and FunctionalProgramming, Nice, June 1990.[176] P. Wadler. The essence of functional programming. In Proc. of Symp. on Principles of ProgrammingLanguages, 1992, pages 1-14.[177] W. Wechler. \Universal Algebra for Computer Scientists". Springer-Verlag, Berlin, 1992.[178] G. Winskel. Powerdomains and modality. Theoretical Computer Science 36 (1985), 127{137.[179] L. Wong. Normal forms and conservative properties for query languages over collection types. InPODS 93, pages 26{36, Washington, D. C., May 1993.

256 BIBLIOGRAPHY[180] L. Wong. \Querying Nested Collections", PhD Thesis, University of Pennsylvania, 1994.[181] C. Zaniolo. Database relations with null values. Journal of Computer and System Sciences 28(1984), 142{166.

IndexAAbiteboul, S. 9, 12, 14, 15, 17, 69, 76, 82, 170,237, 241Abramsky, S. 35, 243Adjoint functors 37Albert, J. 235Algebra 35, 36bi-LNB 123bi-mix 127carrier of 35freely generated 35mix 118ordered 36freely generated 36reduct of 144relational 9, 10, 60, 71nested 14, 15, 69, 71salad 140scone 133signature of 35snack 129Algebraic cpo 32Anomalies in databases 20, 226removal of 227Antichain 32Appel, A. 245Approximations 19{26as free algebras 117{144classi�cation of 105, 106encoding of 111in OR-SML 225{231lowerby many relations 24simple 21mix 23, 104orderings on 106{108relationship between 144{148salad 25sandwich 21, 103

scone 24, 104semantics of 108{110snack 25, 105upper 21Arithmetic of bag languages 80, 83Ascending Chain Condition 52Atkinson, M. 69Atzeni, P. 15, 240BBalanced binary tree 73unde�nability of 73, 75Balbes, R. 19Bancilhon, F. 45Barr, M. 37, 38Beeri, C. 76, 82Bernardis, M. 15Bidoit, N. 14Bisemilattice 128distributive 128Biskup, J. 2, 3, 8, 27, 45Bloom, S. 36Bounded degree property 73applications of 73in nested relational language 74Breazu-Tannen, V. 14, 30, 43, 68, 71, 76, 78, 200Brookes, S. 40Buneman, P. 5, 9, 14, 19, 21, 27, 28, 30, 43, 44,46{49, 51, 55, 59, 68, 69, 71, 76, 109,128, 226, 227, 229, 234CCardelli, L. 28, 43, 66Category 37FSL 37Kleisli of monad 39Poset 37Set 37257

258 INDEXChain 32Chandra, A. 241Chang, T. 63Chaudhuri, S. 235, 244Closed World Assumption 6, 88{91, 237, 240Codd, E.F. 2, 8Colby, L. 14, 69Complex objects 12{15as OR-SML type 207types of 69Consens, M. 81, 236Conservativity of languages 71, 80, 155Consistencyin posets 31of approximations 21{25Containment problem 12Coquand, T. 243Critical pair 42, 172Critical pair lemma 42DDavidson, S. 5, 19, 21Day, A. 241De�nability of queriesin bag languages 80{85, 160{162in set languages 71{75Demetrovics, J. 241Dependency 241functionalin generalized relations 55, 56in relations with nulls 15, 240multivalued 58{60Dershowitz, N. 40Directed subset 31Distinct representativessystems of 160, 162, 170, 180unde�nability of 162Domain 32coatomic 54distributive 32
at 45, 61qualitative 32Scott 32Duplicate elimination 79in OR-SML 217{220

EElementbottom 32compact 31maximal 32minimal 32top 32FFagin, R. 73, 241Filter 31�nitely generated 101in conceptual semantics 101Fischer, P. 12, 14, 69Flannery, K. 113Functionadmissible 118, 120, 133, 138aggregate 81, 155, 235, 236monotone 154undecidability of 154Functor 37adjoint 37, 117left 37, 38, 67, 70right 37forgetful 37, 67, 70GGaifman, H. 75Girard, J.-Y. 32, 183Goodman, N. 236Gottlob, G. 9Grahne, G. 8{10, 12, 15Grant, J. 2Gr�atzer, G. 35, 36, 144Grumbach, S. 79, 82, 83, 235Gunter, C. 19, 23, 32, 34, 35, 109, 113, 118, 119,237, 243Gunter, E. 30, 210Gyssens, M. 76HHarel, D. 241Heckmann, R. 113Hillebrand, G. 69Homomorphism 35

INDEX 259monotone 36Honeyman, P. 15Hopcroft, J. 97Hull, R. 236, 239, 241IIdeal 31completion 35principal 32strong 47Imielinski, T. 9{11, 17, 45, 64, 155, 180Immerman, N. 68, 69, 73, 83, 241, 242Iterated constructions 112, 113isomorphism of 113universality of 115JJouannand, J.-P. 40Jung, A. 19, 26, 27, 30, 35, 43, 46, 54, 57, 132,141, 234KKanellakis, P. 9, 12, 17, 26, 69, 237Karp, R. 97Key set 240Khosha�an, S. 45Klausner, A. 236Klug, A. 236Kolaitis, Ph. 244Korth, H. 14, 15, 27LLander, E. 242Languagefor bags 78for sets and or-sets or-NRL 168nested relational 69, 71, 72for antichains 152null values in 15of Zaniolo 4, 156, 157Latticefree distributive 116uniquely complemented 57Least upper bound 31Left normal band 123

Lerat, N. 8Levene, M. 9, 15, 16, 27, 43Libkin, L. 14, 17, 19, 27, 28, 30, 32, 43, 47, 54,68, 71, 73, 76, 79{82, 113, 141, 161, 210,236, 238, 242Lipski, W. 5, 8{11, 16, 17, 45, 64, 155Liu, K. 17Loizou, G. 9, 15, 16, 27, 43Loopequivalence to structural recursion 77, 83,214in bag languages 83in set languages 76Losslessness theorem 192M�-rewriting 181�-type 181MacLane, S. 37MacQueen, D. 245Maier, D. 1, 8Mairson, H. 69Martin, J. 113Membershipproblem 12, 169test 71, 79Mendelzon, A. 81, 236Milner, R. 206Milo, T. 79, 82, 83, 235Minker, J. 17Mitchell, J. 19, 242Mixes 23, 104in OR-SML 229{231properties of 118, 119semantics of 23, 109Modules of OR-SML 217Moggi, E. 40, 71Monad 38in programming syntax 67, 68Monus 80as bag di�erence 79Morfuni, N. 15, 240Moshier, D. 236Mumick, I.S. 236NNaqvi, S. 17, 30, 43, 68

260 INDEXNewman's lemma 41Ngair, T.-H. 19, 25, 26, 109, 128Normalization 166, 170{199costs of 193{195in conceptual queries 173, 223in OR-SML 209, 224of objects 172, 173of types 171partial 186theorem 173Null values 1{16existing unknown un 8generic 9no information ni 2nonexisting ne 8open 9ordering of 9OOhori, A. 27, 30, 43, 46, 234, 239, 245Open World Assumption 6, 91, 92Operationelimination 66, 67introduction 66, 67nest 13unnest 13Operator� 167, 168composition 72conditional 72
attening 71, 72map 71, 72naturally associated with type 66, 67normalize 173pair-with 71, 72pairing 72singleton 70, 72, 78union 70, 72additive 77Or-setsexamples of 163{165, 220in complex objects 17, 165in relations 16, 17OrderBuneman 107Hoare 32, 92lifting of 81, 151, 158partial 31

Plotkin 32, 90Smyth 32, 94Orders for partialityon approximations 107on bags 96computing of 96unde�nability of 160on or-sets 94de�nability of 158on setsde�nability of 151under CWA 90under OWA 92Ozsoyoglu, Z.M. 236PParedaens, J. 12, 71, 76, 155Patnaik, S. 68, 69Paulson, L. 206P lonka, J. 19, 128, 130Plotkin, G. 242Pollard, C. 236Poset 31bounded complete 32complete (cpo) 31Poulovassilis, A. 69Powerbag 82Powerdomain orderings 32Powerdomains 35Powerset 38as primitive on bags 82as primitive on sets 76�nite 38, 70Programmingdata-oriented 66{69with approximations 199{203Promotion 226Puhlmann, H. 19, 25{27, 30, 43, 54, 128, 132,141QQueriesconceptual 18, 19, 149, 163, 173generic 241internal 236, 241polymorphic 68, 71, 242structural 18, 19, 163

INDEX 261RRecordsconsistent 103joinable 4, 21Redundanciesin bags 99in or-sets 93in sets 88removal of 99Reiter, R. 6, 12, 98, 241Relationsgeneralized 46nested 13with disjunctive information 16with nulls 2Remy, D. 245Rewrite rule 42Rewrite system 41Church-Rosser 41for complex objects 175for object types 171terminating 41weakly Church-Rosser 41Reynolds, J. 242Romanowska, A. 123, 133, 243Rose, H. 236Roth, M. 14, 15, 27Rounds, B. 17SSalad 25properties of 140{143semantics of 109, 110Salii, V. 57Sandwich 21, 103properties of 119{123semantics of 22, 109Saraiya, Y. 76Scedrov, A. 19Schek, H.-J. 12, 14, 69Schemes in domains 47{55as semi-factors 54complements of 56{58de�nition of 48orderings on 52projection on 48canonical 48, 50

saturated 54Scholl, M. 12, 14, 69Scone 24, 104properties of 132{139semantics of 24, 109, 110Scott, D. 35, 46Semanticsconceptual 100{102of objects 99of or-sets 99of setsunder CWA 97under OWA 97of types 70, 99structural 99Semi-factor 49Semilatticefree with bottom 36free with top 36Sheard, T. 69Shmueli, O. 236Silberschatz, A. 14, 15, 27Sinderraman, R. 17Small, C. 69Smith, J.D.H. 123, 133, 243Snack 25, 105properties of 128{130semantics of 25, 109Stemple, D. 68, 69Stoughton, A. 36Structural recursion 67on bags 78on insert presentation 76, 78on or-sets 213on sets 70, 76, 151, 213on union presentation 70preconditions for 67, 76, 78veri�cation of 71, 76restricted form of 68Subalgebra 35Subrahmanyam, R. 71, 76, 78, 200Suciu, D. 28, 68, 76, 155Summation operator 80TTable 11Codd 10, 11, 170conditioned 11

262 INDEXequality 11, 169Tanaka, K. 63Tannen, V. see Breazu-Tannen, V.Test comparability 151, 152equality 71membership 71, 79subbag 79subset 71Thalheim, B. 15, 240Thomas, S. 12, 14, 69Transitive closure 75, 76, 82deterministic 73Typebase 69collection 66variable 237Type constructorbag 77or-set 99product 69recursive 237set 69, 99UUllman, J. 64Universality properties 66of approximations 117{144of or-sets 33, 113of sets 33, 113of sets of or-sets 115VVadaparty, K. 17Valuation 11Van Gucht, D. 14, 71, 76Vardi, M. 7, 235, 241Vassiliou, Y. 3, 15Vianu, V. 241Vickers, S. 95WWadler, P. 40, 69Watters, A. 5, 19, 21Wechler, W. 35, 40Wells, C. 37, 38

Winskel, G. 118Wong, L. 14, 17, 28, 30, 43, 68, 71, 73, 76, 79{82,161, 236, 242, 244ZZaniolo, C. 4, 7, 27, 65, 150, 156Zicari, R. 9

