ASPECTS OF PARTIAL INFORMATION IN DATABASES

Leonid Libkin

A DISSERTATION
n

COMPUTER AND INFORMATION SCIENCE

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy.
1994

Peter Buneman
Supervisor of Dissertation

Mark Steedman
Graduate Group Chairperson

© Copyright 1994
by
Leonid Libkin

Averbakh—-Kotov
Zurich, September 23, 1953

1. d2-d4 Ng8—f6 27, g&:ifb gb:fh
2. c2—c4 d7-d6 28. Rgl-g2 54
3. Ngl-f3 Nb8-d7 29. Be3-2 Rf7—f6
4. Nbl-c3 el—eb 30. Nc3-e2 Qd7:h3+1
5. e2—ed Bf8—e7 31. Kh2:h3 Rf6-h6+
6. Bfl-e2 0-0 32. Kh3-—g4 Ng8—f6+
7. 0-0 cl—cb 33. Kgi-5 Nf6—d7
8. Qdl-=2 Rf9-e8 34. Rg2-gb Rb8—18+4
9. Rfl-dl Be/—f8 35. Kifb—gd Nd7-f6+
10. Ral-bl al-ab 36. Kg4-—h Nf6—gb+
11, d4-d5 Nd7—cb 37. Kfb—gd Ng8—f6+
12. Bcl-e3 Qd8—c7 38. Kg4-h Nf6:d5+
13, h2-h3? Bc8-d7 39. Kfb—gd Nd5—f6+
14. Rbl-cl gl—gb 40. Kgd—fb Nf6—g8+
15, Nf3-d2 Ra8-b8 41. Kib—g4 Ng8—f6+
16. Nd2-b3 Ncb:b3 42, Kgd-t5 Nf6—g8+
17. Qc2:b3 cb—ch 43. KfS—g4 Be%:g5
18. Kgl-h2 Kg8-h8 44 Kgh:gh Rf8—f7
19. Qb3—c2 Nf6-g8 45. Bf2-h4 Rh6-gb-+
20. Be2-g4 Ng8-hbt 46. Kgb-hb Rff—g7
21. Bg4.dr Qcr:d7 47. Bh4—gh Rgb:gb+
22, Qc2-d2 Nhb6—g8 48. Kh5-h4 Ng38—f6
23, g2-gd?! f1—f5 49. Ne2—g3 Rgh:g3
24, f2-f Bf8—e7 50. Qd2:d6 Rg3-gb
25. Rdl-gl Re8—8 51. Qd6-b8+ Rg7-g8
26. Rcl-l Rf8—f7 0-1

Preface

In most applications, information stored in databases is not complete. There are various sources
of partiality of information. First, some information may be missing. For example, in a database
of employees some salaries may not be recorded. Second source of partiality is conflicts that
occur when different databases are merged and they contradict each other. Another source of
partiality is asking queries against several databases simultaneously. Even if all databases are
complete, in most cases answers to such queries can only be approximated.

The field of partial information in databases has not received the attention that it deserves.
Most work on partial information in databases asks which operations of standard languages,
like relational algebra, can still be performed correctly in the presence of simple forms of partial
information like missing values. We believe that the problem should be looked at from another
point of view: the semantics of partiality must be clearly understood and it should give us new
design principles for languages for databases with partial information.

The main goals of this thesis are to develop new analytical tools for studying partial information
and its semantics, and to use the semantics of partiality as the basis for design of query languages.

This work should be distinguished from the body of work on partial information in artificial
intelligence. In most artificial intelligence applications the main concern is the design of models
for specific applications that could eventually lead to fast algorithms. In this thesis we are
interested in representation and querying partial information in database systems. Consequently,
we concentrate on general purpose solutions that are effectively implementable in the context
of database query languages and provide a flexible basis for future modeling challenges.

We present a common semantic framework for various kinds of partial information which can
be applied in a context more general than the flat relational model. This semantics is based
on the idea of ordering objects in terms of being more informative. Such ordered semantics,
which uses the ideas from the semantics of programming languages, cleanly intergrates all kinds
of partial information and serves as a tool to establish connections between them. In addition,
by analyzing mathematical properties of partial data, it is possible to find operations naturally
associated with it that can be turned into programming language constructs. More precisely,
having defined semantic domains for various kinds of collections of partial data, we can describe

vi

them as free algebras, and this gives us the desired sets of operations.

Various queries over partial databases can be formulated in terms of approximations. By an-
alyzing different situations in which a precise answer can not be obtained for a query asked
against several databases, we propose a classification of constructs that can be used to model
approximations. Using the same approach as for collections, we define the semantics and the
orderings of approximations and show their intimate connection with combination of disjunctive
and conjunctive sets (so-called or-sets).

We discuss languages for databases with partial information. We follow the recently proposed
approach to the design of query languages based on developing languages around operations
naturally associated with the type constructors of their type systems. Such operations usually
come from the universality properties of semantic domains of those types. A language for sets
and or-sets is introduced and normalization theorem is proved. It allows to incorporate semantics
into the language and to distinguish two levels of querying: structural and conceptual. We then
use the semantic connection between sets, or-sets and approximations and show how to use this
language to work with approximations. Languages for multisets are also discussed.

The language for sets and or-sets has been implemented on top of Standard ML. Its imple-
mentation is described and and two typical examples of queries are given. One deals with
querying incomplete databases which often occur in computer aided design applications. The
other example deals with querying independent databases.

Summing up, this thesis develops a new approach to dealing with partial information in databases.
This approach is based on deep understanding of semantics of various kinds of partial informa-
tion that may occur in many different contexts, and on designing languages naturally associated
with partial information, rather than adapting existing languages for complete databases.

Acknowledgements

It has become a tradition to start the acknowledgement section of a dissertation by thanking
the advisor. I shall certainly do so, but I want to keep expressing gratitude in the chronological
order. It was five years ago that I finished a manuscript entitled “Abstract Convezities in Lattices
and Semilattices” which was supposed to be my PhD thesis in mathematics. I never got a PhD
in math; my thesis was disassembled and published in a number of papers, and shortly after
finishing it I played my own Qd7:h34 by switching to computer science. The way from lattices
and convexity to partial information and query languages was not easy or fast: it lasted five
years, went through five countries and, as for any critical move, there never will be a proof of
correctness. This move is truly an example of partial information — we will never know for sure
if it is correct, and this is why the game is taken as the epigraph for the thesis!. But there is
still something that I can assert without a shadow of doubt: I would never be where I am today
without having written that manuscript. And I would have never achieved that without help of
a number of people.

Most of all I would like to thank my parents for their support that allowed me to do research
when it was next to impossible. I also want to thank them for showing me that 5,000 miles is
not an obstacle for their support and encouragement that I feel every day. I am immeasurably
grateful to llya Muchnik, my advisor from 1985 till 1989, with whom I wrote thirteen papers,
for being responsible for my real undergraduate education and for collaborating with me on so
many projects. I want to thank Janos Demetrovics for inviting me to visit Budapest in 1988
and the Soviet authorities for unexpectedly allowing me to go; I recall that it was a pleasant
surprise for me and perhaps a move like g2-g4 on their part. Janos and E.T. Schmidt from the
Institute of Mathematics in Budapest convinced me that I should stop writing in Russian and
helped me write my first English papers.

Janos gave an initial impulse to my transition to computer science. But it would not have been
complete and I would not have ended up at Penn without help and good advice that came at
the crucial moment. I would like to thank Georg Gottlob, Paolo Atzeni, Joachim Biskup and
Victor Vianu for their help during my short but very important stay in Europe in 1989-1990. 1
also would like to thank Mila and Yuri Chekanovsky who helped complete this transition and

!The game is taken from Bronshtein [28].

vii

viii

supported me when I arrived to the US.

Having done with the past, let’s move to the present. I am very grateful to my advisor Peter
Buneman for numerous comments, ideas, suggestions and for being largely responsible for the
development of the main principles upon which this thesis is based. I am also grateful to the
members of the Penn database group (a.k.a. the “Tuesday Club”): Susan Davidson, Wenfei
Fan, Anthony Kosky, Rona Machlin, Dan Suciu, Val Tannen and Limsoon Wong. Val has been
extremely helpful since I came here. I can not think of a single piece of my database work
in which in some way his influence is not present. 1 wrote seven papers with Limsoon and
our collaboration was very pleasant and fruitful for me (and I hope for him as well). Dan’s
comments often helped improve those papers and consequently this thesis. Achim Jung from
Darmstadt University gave me the first lessons in domain theory when we wrote our joint paper.
He invited me to Darmstadt in October 92 where I learned about the problem of approximation
in databases. I also would like to thank Hermann Puhlmann for his hospitality during my stay
in Darmstadt. Carl Gunter was always very helpful, especially when I was trying to understand
some fine points in the semantics of programming languages, before his excellent book appeared.
Elsa Gunter has helped me a lot as my AT&T “mentor”. She also influenced the implementation
of OR-SML, the language that I built during my three-month stay at AT&T Bell Laboratories
in 1993. I thank Paris Kanellakis for his comments on an earlier version of the thesis that have
led to many improvements.

Many people read my papers upon which this thesis is based, and made useful suggestions. I was
also very lucky to have presented the material of this thesis before very responsive audiences, and
some penetrating questions asked during or after my talks influenced the contents of the thesis.
It is impossible to mention all names, and I apologize for unintentionally omitting some people.
For their comments, suggestions, questions and encouragement I thank Susan Davidson, Janos
Demetrovics, Jean Gallier, Stephane Grumbach, Rick Hull, Tomasz Imielinski, Paris Kanellakis,
Anthony Kosky, Alberto Mendelzon, Dale Miller, Inderpal Mumick, Shamim Naqvi, Teow-Hin
Ngair, Atsushi Ohori, Jan Paredaens, Hermann Puhlmann, Jon Riecke, Anna Romanowska, Bill
Rounds, Bernhard Thalheim, Kumar Vadaparty, Bennet Vance, Jan Van den Bussche, Dirk Van
Gucht, Victor Vianu, Steve Vickers and Scott Weinstein. I thank Paul Taylor for his diagram
macros, and Nan Biltz and Michael Felker for being a buffer between me and UPenn bureaucracy;
all three saved me hours and perhaps even days that I could then use for research.

Finally, T gratefully acknowledge financial support provided by AT&T Doctoral Fellowship and
NSF Grant IRI-90-04137.

Contents

Preface v
Acknowledgements vii
1 The Problem of Partial Information in Databases 1
1.1 Null values . . . o o o0 o e 1
1.1.1 Early work on null values in databases 1

1.1.2 Typesofnulls 0o 7

1.1.3 Semantics and query evaluation Lo 9

1.1.4 Extension to complex objects 12

1.2 Disjunctive information and or-sets Lo Lo 16
1.2.1 Definition and examples of or-setso 16

1.2.2 Structural and conceptual querieso 18

1.3 Approximations L e e e e 19
1.3.1 Example: Querying independent databases 19

1.3.2 Simple approximationso e 21

1.3.3 Approximating by many relations oL 23

1.4 Toward a general theory of partial information 26

X

X CONTENTS

2 Mathematical Background 31
2.1 Ordered sets and domains L 0 e 31
2.2 Algebras oL e 35
2.3 Adjunctions and monads Lo Lo 36
2.4 Rewrite systems Lo e 40

3 Preliminaries 43
3.1 Databases with partial information and domain theory 44

3.1.1 Order on objects and partiality 44
3.1.2 Schemes L 47
3.1.3 Dependency theory 55
3.1.4 Queries . .o oL L e 60
3.2 Languages for programming with collections 66
3.2.1 Data-oriented programming e 66
3.2.2 Sets . .o 69
3.23 Bagso 77

4 Semantics of Partial Information 87

4.1 Order and Semantics L oL e e 88
4.1.1 Orderings on collections oo o 88
4.1.2 Semantics of collections oL oL 97
4.1.3 Formal models of approximations Lo 102

4.2 Universality properties of partial data 0. 111
4.2.1 Universality properties of collections 112

4.2.2 The iterated construction e 112

CONTENTS

4.2.3 Universality properties of approximations

5 Languages for partial information
5.1 Languages for collections of partial data
5.1.1 Language forsets
5.1.2 Language for or-sets
5.1.3 Language forbags
5.2 Language for sets and or-sets
5.2.1 Syntax and semantics
5.2.2 Normalization and conceptual programming
5.2.3 Partial normalization
5.2.4 Losslessness of normalization
5.2.5 Costs of normalization
5.3 Programming with approximations

5.3.1 Structural recursion on approximations

5.3.2 Using sets and or-sets to program with approximations

6 OR-SML
6.1 Overview of OR-SML,
6.1.1 Corelanguage
6.1.2 Additional featureso,
6.1.3 Implementation issues
6.2 Applications of OR-SML
6.2.1 Querying incomplete databases

6.2.2 Querying independent databases and approximations

xi

116

149

150

150

158

160

163

166

170

180

190

193

199

199

201

205

xii CONTENTS

7 Conclusion and further research 233
7.1 Brief summaryo 233
7.2 Problems for further investigation o oo oL 235

Bibliography 247

Index 257

Chapter 1

The Problem of Partial Information
in Databases

In this chapter we give a brief introduction into the theory of partial information in databases.
In the first section, we recall some major developments in the field and consider various types of
null values which are used most often to introduce partial information into relational databases.
We discuss representation systems and problems with query evaluation. These are the only
two subfields in which significant progress has been made. We review extensions of partial
information to the complex object (nested relational) data model.

Then we consider two different kinds of partial information that have not received the same
amount of attention from the database community. One is disjunctive information represented
via or-sets; the other is a number of constructions of similar structure called approximations.
Having surveyed the results known for these two kinds of partiality, we summarize open problems
that we solve or demonstrate new approaches towards solving, and outline the structure of the
thesis.

1.1 Null values

1.1.1 Early work on null values in databases

Any practical database management system must deal with the concept of partial information.
It was observed by Maier [113] that the fact that the structure of information may not fit the
relational model is not its only major limitation. Equally important is the reason that even if
information does fit the model, part of it may be missing for some reason. While there has been
a flurry of activity lately in trying to go beyond the standard relational model, one can not

2 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

say the same about partial information. The topic is still unexplored, there are few significant
results and there is no clear understanding of what partiality really means.

Soon after Codd introduced his relational model, people realized that in real applications not
all values may be present. For example, in a simple relation below that might be a part of a
university or a corporation database, some values are missing and the symbol ni (no information)
is used. Note that there could be several different reasons for using ni. For example, a person
may not have a phone, or may have a phone but the number is unknown (for example, he may
have forgotten it while filling out a form which was later entered in a database), or there could
be no information whatsoever (if a clerk was entering the data and did not know anything about
the phone in a particular office).

‘ Name ‘ Salary ‘ Room ‘ Telephone ‘

John 15K 075 ni
Ann 17K ni ni
Mary ni 351 x-1595

In 1975 Codd [39] perhaps did not consider it as a serious problem and suggested a simple
solution: a fact about a tuple is either true (1) or false (0) or neither (§) which is the case when
we do not have a complete information. However, a few years later, Grant [63] showed that
Codd’s solution leads to wrong results if we are to select certain tuples from the database. He
proposed an alternative solution which was, in fact, introduction of the Skolem constants for
nulls, formally studied by Biskup [23] a few years later.

The example given by Grant [63] and Codd [40] is essentially the following. Suppose we have a
person whose name is in a database but salary is unknown, as for Mary in the above example.
Suppose that we want to partition the table into two: T} containing employees with salaries less
than 15K and T3 of employees with salaries at least 15K. Of course, we believe that Ty U T,
should produce the original table back. But as a matter of fact, according to Codd’s query
evaluation algorithm in the presence of null values [39], Mary will not be included in T} nor in
TQ.

Still, one very important observation was made in Codd [40]. Since every null value can be
replaced by a non-null value, each relation with nulls is represented by a set of relations without
partial information. Moreover, this set could be considered as the semantics of the given incom-
plete relation. Thus, the most important lesson that we learn from the early work on partial
information is that there is a need in better mathematical models for partial information and in
better understanding of its semantics.

In the late 70s and early 80s there were three major developments in the theory of partial
information. First, the idea to use orderings as a means to express partiality emerged. Second,
a rather rudimentary approach to disjunctive information was developed and an attempt was

1.1. NULL VALUES 3

made towards a design of a query language specifically for partial information. Third, the
distinction between various assumptions on partiality was made and it was shown how those
assumptions lead to different semantics and query evaluation algorithms. Let us consider all
three.

Orderings and partial information

We believe that the idea of expressing partiality of information by means of orderings is due to
Vassiliou [172]. Two years after his initial work, this idea was further developed by Biskup [23].

As a simple example, consider values that may occur in a database. Then ni is more partial, or
less informative, than any nonpartial value » such as 15K or "Mary’. Therefore, we impose an
order according to which ni < » for any nonpartial value v.

Since databases are obtained by applying record and set constructors, we need to extend the
orderings respectively. For records the most natural way to do it is componentwise. For records

with fields labeled by l4,...,1,, we define

1 ivr, eyl i) <[l 00l iff Vi=1,.0.n: v; <o)

For sets there are various ways to extend a partial order, and typically the following one, per-
ceived as a generalized subset ordering, was considered:

XCYifftvae XdyeY: a2<y

Let us briefly consider two of the early works dealing with ordering on objects. Biskup [23]
considered two null values. One is 3 and its meaning is the same as ni in the example above:
there is no information about the value of an attribute and there exists a complete value that
can be substituted for it. The other is a somewhat less natural value V meaning that any value
is a right substitution for it. For instance, a record [l; : vy, {3 : V] is just a short notation for a
set of records [l : vy, ls : v] for all possible values v. That is, V is not really a null value. This is
further confirmed by the ordering imposed on values:

v
3

Biskups’s paper made two major contributions to the field. First, he showed that truth of certain
logical formulae about databases with added 3 and V values is intimately connected with the

4 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

ordering. Second, he showed how to evaluate some of the standard database operations in the
presence of those values.

Another approach to incorporating orderings as a means to express partiality into the relational
model was proposed by Zaniolo [181]. He considered one kind of null, ni, and defined the
ordering on tuples and sets in a way similar to the one given above; the only difference is that
he allowed to compare tuples over different sets of attributes by inserting nulls in the missing
columns. For example, a tuple [Name = 'Joe’, Age = 25] is less informative than [Name =
"Joe’, Age = 25, Salary = 15K] because the former is extended to [Name = "Joe’, Age = 25,
Salary = ni|, which is less informative than the latter under the componentwise ordering.

The notion of being more informative is extended from tuples to relations by the ordering given
above, that is, By C Ry ilTVt; € R13t; € Ry : ¢ < tg. This is a preorder, and it might
be the case that both R{ C Ry and Ry T Ry hold; in this case Ry and Rs are information-
wise equivalent and we write By = R,. By an z-relation Zaniolo means an equivalence class of
relations with respect to 2; an equivalence class of a relation R is denoted by R. It is easy to
express the generalized notion of a tuple ¢ belonging to an z-relation R using the following fact:
t € R’ for some R’ € R iff t < ¢ for some ¢ € R. We use the notation &R for this notion of
being an element. Then one can redefine the union, intersection and difference on equivalence
classes Rl and RQ as equivalence classes given by the following relations: {t | téRl or téRQ},

{t| té€Ry and t€Ry}, {t | tERy and —(tERy)} respectively.

Defining join is slightly trickier. First we say that two tuples t; and i, are joinable if, for any
common attribute A, either in one of the two the A-value is ni or in both the A-values coincide.
Since any two tuples can be viewed as tuples over the same set of attributes, we define the join
of t; and t5 of two joinable tuples by taking its A-value to be ni if both A-values in #; and ¢y
are ni, or v is either A-value of ¢; is v or A-value of ¢; is v and v # ni. For example,

[Name = John, Age = 25] V [Name = John, Room = 76] = [Name = John, Age = 25, Room = 76]

The reason is that both tuples are first extended by adding ni to the missing fields; then they
are found to be joinable and then the join is taken. Now, given a set X of attributes, a join of
two equivalence classes of relations R1 and R2 on X is defined by R1 X x R2 R where

R={t1Vity| t1€ERy, 2ERy, t1 and ty are total on X}

Zaniolo [181] showed that the algebra thus defined can be used to query databases with partial
information. In particular, he showed how to represent universal quantification and negation in
queries.

1.1. NULL VALUES 5

Disjunctive information and query languages

In his classical papers, Lipski [109, 110] introduced two very important concepts that have
influenced the theory of partial information ever since.

First, he proposed a special data model for partial information. This data model! is based not
on null values but rather on assigning sets to objects and attributes. The idea is that for a given
object & and a given attribute a, the value that 2 may have on « is taken from this assigned set
X2, This data model is the first instance of the use of disjunctive information in the database
literature dealing with partial information. Disjunctive information is of special importance in
this thesis and we shall discuss it later in details.

The second idea is based on the assumption that, in the presence of partial information, it
is often impossible to evaluate queries precisely. Therefore, one should look for a reasonable
approximation. We believe that Lipski [109] was the first to explicitly state the requirements
that two bounds for a query () constitute the answer for partial databases:

1. The lower approzimation to the answer to), that is, those objects for we which one can
conclude with certainty that they belong to the answer to ().

2. The upper approzimation to the answer to (7, that is, those objects for we which one can
conclude that they may belong to the answer to).

However, it was not until ten years later that it was observed by Buneman, Davidson and
Watters [31, 32] that those pairs of approximations may not only be regarded as results of query
evaluation but may also be used as a representation mechanism for certain kinds partial data.
Studying such approximation constructs is central to this thesis and we shall present a thorough
study of them later.

However, another idea from Lipski’s papers [109, 110] was overlooked by many. Unlike most
other researchers, Lipski did not try to tie his data model to the standard relational data model
and consequently he did not use languages like the relational algebra. Instead, he designed a
special language, that arose quite naturally from the structures he was considering. Thus, it
was the first instance (and unfortunately one of very few) when, instead of adapting existing
languages to work with partial information, a new language was designed specifically for the
purpose of working with partial information. This is the approach we advocate throughout this
thesis and we shall see its many features later.

!Called in [109, 110] information systems, which is in direct conflict with the informations systems used in
programming semantics [67].

6 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

Open worlds and closed worlds

It was observed by Reiter [142] that certain assumptions on the nature of partiality are to be
made if we want to provide a notion of correctness of query evaluation algorithm. To explain
those assumptions, consider the following relation:

‘ Name ‘ Salary ‘ Room ‘
ni ni 076
Mary | 17K ni

Once all or some information about missing values (ni’s) is known, we have a relation that
represents better knowledge than the one above. However, there is a question what values are
allowed in the new relation?

One possible interpretation, called the closed world assumption or CWA, states that we can only
improve our knowledge about records that are already stored but can not invent new ones. For
example, it is legal to add any record ‘ vy ‘ Vg ‘ 076 ‘ which improves upon the first record in

the relation. It is also possible to add a record ‘ Mary ‘ 17K ‘ 561 ‘Which is better knowledge
than that represented by the second record in a database. However, it is not possible to add
a record ‘ Ann ‘ ni ‘ 561 ‘ as it does not improve any of the records already in the database.
Indeed, it can not be seen as an improvement of the knowledge represented by the first record
(since the office number is 561 and not 076), nor the second one (as the name is Ann, not Mary).
That is, the database is closed for adding new records.

Contrary to that, the open world assumption or OWA allows adding records to database as well
as improving already existing records. Under the open world assumption, adding any record
considered above to the database is perfectly legal. That is, the database is open for adding new
records.

There is another interpretation of the CWA and the OWA. Facts stored in a database are
presumed to be positive facts. Then, under the CWA, we assume that if a fact is not represented
in the database, then it is not true, i.e. we have a perfect picture of the world and nothing can
be added to it. Under the OWA, this is not the case and not having a fact stored in a database
does not tell us whether it should or should not be there.

To summarize, Figure 1.1 shows how to replace missing values according to both assumptions.

Reiter [142] defined the concept of a CWA answer to a query. He proved that minimal CWA
answers contain precisely one tuple, that CWA query evaluation distributes over intersection and
union, and that for a database that is consistent with the family of negations of facts stored in it,
the CWA evaluation algorithm gives exactly the same result as the OWA evaluation algorithm.

1.1. NULL VALUES 7

‘ Name ‘ Salary ‘ Room ‘

John 15K 076
Ann ni 076
Mary 17K 561

CWA
‘ Name ‘ Salary ‘ Room ‘
ni ni 076
Mary | 17K ni
OWA ‘ Name ‘ Salary ‘ Room ‘

John 15K 076
Ann 13K 325
Mary 17K 561

Figure 1.1: Tllustration to CWA and OWA

Computational complexity of problems related to CWA or OWA was studied by Vardi [171]. He
assumed a very simple model of partiality, namely values of a subset U of a set of attributes
V' are missing. Then a V-relation R’ OWA-represents a U-relation R if R C my(R'), and it
CWA-represents R if R = 7mp(R'). Vardi considered certain problems related to dependency
satisfaction and inference for both representations. He obtained a number of results of the
following flavor: if a problem for OWA representations lies in a complexity class C, then the
same problem for CWA representations lies in the corresponding nondeterministic complexity
class NC. However, the situation is reverse for evaluation of boolean queries in all representations
satisfying a given set of dependencies. Then for CWA the problem is PSPACE-complete whereas
it is co-r.e.-complete for OWA representations.

1.1.2 Types of nulls

So far we have considered only one null value, ni, following Zaniolo [181]. There are other kinds
of nulls in the literature.

Existing unknown values. In all examples above, we have not said anything about existence
of a value that can be substituted for a null. For example, in the CWA completion of the database
in figure 1.1, Ann has no salary. There could be several reasons for that. First, we may simply
lack information about Ann’s salary for some reason. For example, she was hired but is not on
the payroll yet. Secondly, it could be the case she does not have a salary. For example, she

8 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

might be working voluntarily, without getting paid.

In order to represent the first case, when a value does exist but is unknown at present time,
existing unknown null values have been introduced. These have been studied most, see Codd
[39, 40], Biskup [23], Maier [113], Grahne [62] etc. We shall often use un to denote such nulls.

Nonexisting nulls. As we have just mentioned, one of the reasons for a value to be missing is
that it does not exist. Such values are denoted by ne; they were studied by Lerat and Lipski [94].
The main reson that such values appear in a database is that some attributes are not always
applicable. For example, not every employee may have a telephone; the “children” attribute
is certainly not applicable to all people, nor are “maiden name” and even more so “spouse’s
business phone number”.

There is some confusion about considering ne as a null. Indeed, ne represents perfect knowledge
in exactly the same way as any usual value. Knowing that Ann’s maiden name is Smyth is as
good as knowing she is not married and does not have one, if our concern is partiality of
information. We shall see shortly that the intuition that ne “is not really a null value” will be
confirmed when we consider ordering on those values in more detail.

No information nulls. These are nulls ni we have considered in the previous section. Having
ni in a database simply means that there is no knowledge whatsoever about the situation.

Having introduced these three kinds of nulls, let us reexamine the first example of a relation
with incomplete information given in this thesis. If we use nulls as follows:

‘ Name ‘ Salary ‘ Room ‘ Telephone ‘

John 15K 075 ne
Ann 17K un ni
Mary un 351 x-1595

We certainly have better knowledge than we had using only the ni null value. First, we know that
John does not have a phone; moreover, we also obtained the knowledge that Mary and Ann do
have some salary but at this time it is unknown what their salaries are. Hence, information-wise,
ni is the worst situation possible, while having either a value or ne gives us complete knowledge
about the situation. un is an intermediate situation: it is better than ni but certainly worse
than any value, and it is incomparable with ne.

Now, applying the idea of representing partiality by means of an order on values, we obtain the
ordering for the three kinds of nulls we studied in this section, see figure 1.2. Perfect knowledge,
i.e. knowledge that can not be improved, is represented by elements which are not dominated
by any other elements in this poset. In particular, ne is such.

1.1. NULL VALUES 9

Vo U1 V2 Up,

ne
un

ni

Figure 1.2: Order on null values

Open null values. Another kind of null values was introduced by Gottlob and Zicari [59] in
the context of closed world databases. Assume we have a database with two kinds of null values,
ne and un, and further assume the closed world assumption. Now, assume that we would like
to relax this closed world assumption for a given attribute, but retain it for the others. The idea
of Gottlob and Zicari was to introduce a new null, called open, which then will mean that the
corresponding attribute is “open”, i.e. it may have arbitrary values and not only those consistent
with the information already stored in a database. We shall return to open null values later
when we study semantics of partiality.

Generic nulls. In many cases we are not concerned with the meaning of null values and simply
want to distinguish nulls from non-nulls. Then we use generic nulls, which will be denoted by
L. Generic nulls are often used in the literature if general properties of partial information are
investigated, see Buneman et al. [33], Levene and Loizou [98].

1.1.3 Semantics and query evaluation

Assume we are given a relational database with nulls and a query written in the relational
algebra. How does one evaluate that query on an incomplete relation?

This is the question that has been studied most in the theory of partial information. A num-
ber of approaches resulted in two landmark papers: Imielinski and Lipski [78] and Abiteboul,
Kanellakis and Grahne [8] which are, in my opinion, the most profound contributions into the
theory of partial information in relational databases?.

An incomplete database can represent many complete ones, which are often called possible
worlds. Let R be a relation, and let [R] be the semantics of R, that is, the set of all possible
worlds that R can denote. We explain later how [-] can be defined. For now it is only important
to understand that [R] is a family of relations. Let @) be a relational algebra query. We can

2Some of the results from [8] can also be found in the book Grahne [62].

10 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

define () on [R] by
QUIRD = {Q(R") | B’ € [R]}

The question arises: how can we define the action of ¢) on the incomplete relation R? The most
natural requirement for this action of) on R, which will be denoted by @*(R), is to represent
precisely Q([R]). That is, [Q*(R)] = Q([R]). Using terminology of Grahne [62], we call a
pair ([-], ©) a strong representation system if [Q*(R)] = Q([R]) holds for any query @ which is
written in a sublanguage of the relational algebra that uses only operations from 0.

As it was noted in Imielinski and Lipski [78], the structure of [R] is too irregular to allow ([-], ©)
be a strong representation system for most ©. Therefore, they suggested that one has to settle
for something less. Their idea was to look at the set of certain answers to () which is defined as

Q:(R) = (QURD = [{Q(®&) | & € [R]}

Now we say that ([-], ©) is a weak representation system if for any query @) it is possible to find
a query @* which represents the certain answer to (), that is,

NIQ*(R)] = Q:(R)

It was observed in Grahne [62] that the concepts of strong and weak representation systems
coincide when O includes all operations of the relational algebra.

The next step is to define some classes of relations with null values and the semantic function [-]
for them. Codd tables are defined as relations in which wvariables can occur as well as constants
and every variable occurs at most once. Variables represent null values, and each variable can
be substituted by any value. That is, in terms of orderings, the basic domain of values that can
occur in Codd tables is shown below. It is a complete bipartite graph between variables z;’s and
constants ¢;’s. In other words, every variable z; is less informative than every constant ¢; and
consequently can be replaced by it.

An inequality table is obtained from a Codd table by adding a finite number of inequalities
between variables and between variables and constants. Fquality tables are obtained from Codd’s
tables by declaring some variables equal. That is, the condition that every variable may occur
at most once is removed. A combination of equality and inequality tables, that is, an equality

1.1. NULL VALUES 11

table with a set of inequalities attached to it, is called a global table. Finally, a conditioned
table is a global table with local conditions attached to each record. Those local conditions are
conjunctions of equalities and inequalities. Below we give an example of each kind of tables.

‘x;él‘vgéz‘ ‘x;él‘v;zéQ‘ ‘x;él‘v;éQ‘ ‘

0|2 0]z 0 x 0 x 0 x z=z

y |1 y |1 Y 1 T 1 T 1 v=10

vz x|y v z v v v v v#
Codd table Equality table Inequality table Global table Conditioned table

To define the semantic function [-], we fist define valuations as partial maps from variables
to constants. Given a valuation v, it can be extended to tables in a natural way (that is, by
requiring that all conditions hold under the valuation v). If a valuation does not satisfy the
condition associated with a given record, it is not defined on that record. Similarly, if the global
condition is not satisfied, then the valuation is not defined on a table with that global condition.
That is, valuations extended to relations remain partial functions.

For a given table R, let VAR(R) be the set of all variables that occur in R. For a given valuation
v, let dom(v) be the set of variables on which v is defined. Now we can define [-] under both
closed and open world assumptions:

[Rlowa = {R' | Iv: VAR(R) C dom(v) & v(R) = R'}
[Rlows = {R' | 3R": VAR(R) C dom(v) & v(R) = R" & R" C R}
That is, the main difference between CWA and OWA interpretations is that the latter allows

adding any number of records that do not contain variables.

The main results of Imielinski and Lispki [78] are the following:

1. If © contains all operations of the relational algebra, then ([-Joywa,®) is a strong repre-
sentation system for tables without the global condition.

2. If © contains all operations of the relational algebra except difference and selection with
negations present in the conditions, then ([-Jowa,©) is a weak representation system for
equality tables.

3. If © consists of projection and selection only, then ([-]ywa, ©) is not a weak representation
system for equality tables.

4. If O consists of projection and selection only, then ([-Jowa,©) is a weak representation
system for Codd tables.

12 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

5. If O consists of projection, selection and union, then ([-Jowa,©) is not a weak represen-
tation system for Codd tables.

6. If © consists of projection and join, then ([-]owa,©) is not a weak representation system

for Codd tables.

7. If © does not contain difference, then ([-]oyw,, @) is a weak representation system iff so is

<[[']]OWA7 ®>

Abiteboul, Kanellakis and Grahne [8] studied complexity of certain problems related to the
CWA semantics of the tables. Two most important problems they studied are membership and
containment.

The membership problem has a parameter) which is a query that can be evaluated in polyno-
mial time. It has two inputs: a relation R’ without incomplete information and a conditioned
table R. The question is whether R’ € [R]cwa-

The containment problem two parameters, (1 and (), which are queries that can be evaluated
in polynomial time. It has two conditioned tables R and R’ as an input. The question is whether

Q1([Rlowa) € Q2[R owa)-

It was shown that the general containment problem lies in IIY and the general membership
problem lies in A/P. In the case when the parameter of the membership problem is the identity
query id, the membership problem becomes polynomial for Codd tables but is A/P-complete for
equation and inequation tables. When both parameters of the containment problem are id, the
problem is in AP for global tables and equality tables, and even in PTIME when one input is a
global table and the other is a Codd table. However, it is II5-complete if one input is an equality
table and the other is a conditioned table, or if one input is an inequality table and the other is
a Codd table. More results of this flavor can be found in [8].

Query evaluation algorithms for databases with null values have also been studied by Reiter
[144]. He used his earlier framework of representing databases as first-order theories [143] and
showed how to incorporate existing but unknown nulls into it. In that setting, he demonstrated
a sound query evaluation algorithm which is also complete under certain restrictions.

1.1.4 Extension to complex objects

All examples considered so far use the standard flat relational model. In the past few years many
attempts have been made to go beyond that model. Most of them focus on nested relations or
complex objects. We give a brief description of those and then discuss the problem of adding
partial information into the complex object data model. The reader interested in development of
the theory of nested relations per se should consult Schek and Scholl [156], Thomas and Fischer
[167], Paredaens et al. [131] and the collection of articles [4].

1.1. NULL VALUES 13

The basic idea is that attributes may be relation-valued themselves. For example, in the following
simple database the attribute Sections is relation-valued as any course may have a number of
sections with different teaching assistants. Attributes Course and Instructor are single-valued:
their values are like CS1 or Brown.

‘ Course ‘ Instructor ‘ Sections ‘
‘ Section# ‘ TA ‘
Cs1 Smith 001 Ann
002 John
‘ Section# ‘ TA ‘
Cs2 Brown 003 Michael
004 Jim

All operations of the relational algebra can be used with nested relations as well. However,
for nested relations we need more than just relational algebra as it does not allow us to go
deep inside the relations. Two operations for doing so have been proposed — nest and unnest.
The unnest operation unnests values of some attributes. For example, unnesting the Sections
attribute in the example above produces the usual (flat) relation

‘ Course ‘ Instructor ‘ Section# ‘ TA ‘

CS1 Smith 001 Ann
CS1 Smith 002 John
CS2 Brown 003 Michael
CS2 Brown 004 Jim

Nesting over a group of attributes collects tuples with equal projections onto those attributes into
new relations, thus creating an additional level of nesting. For example, nesting over Section#
and TA in the above flat relation will give us the original nested relation.

The operations of nesting and unnesting are not mutually inverse, and doing unnest followed by
nest we may lose some information. In the following example, we start with a nested relation
and unnest the TA attribute and then nest over that attribute. The result, however, is different
from the original relation:

14 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

‘ Course ‘ TA ‘
TA N ‘ Course ‘ TA
_Name
CS1 Mary ‘ Course ‘ TA _Name ‘ TA Name
John UnnestTa g:i AJ/{)ZLIE NestTaA Name CS1 AJ/{;LIZ
CS1 TAAName CS1 Ann Ann
nn -
CS2 Jim 5o TA Namo
S TA_Name —
Jim

There are several algebras for nested relations based on adding nest and unnest to the flat
relational algebra, see Schek and Scholl [156] and Thomas and Fischer [167]. Colby [41] proposed
an algebra in which operations can be defined recursively to go arbitrarily deep into nested
relations, and showed that such an algebra is equivalent to the standard algebras of Schek
and Scholl and Thomas and Fischer. Therefore, we can speak of the nested relational algebra,
meaning any of these.

There are two main problems with existing algebras for nested relations. One is using nest and
unnest in majority of queries. Every nest or unnest requires restructuring of data, which makes
those algebras ineffective. Second problem is very cumbersome syntax of the nested relational
algebras. Indeed, to ask a query about atomic values in a complex object of nesting depth two,
two unnest operations must be performed, then a relational algebra query must be asked which
may or may not be followed by some nest operations.

Therefore, if we aim at the design of a language capable of working with nested relations, we
should find a better language to start with. Fortunately, new languages for complex objects
have been invented recently which do not have many deficiencies of the standard languages, see
Buneman et al. [34], Buneman, Tannen and Wong [26] and Libkin and Wong [105]. We present
these languages in chapter 3.

In many applications nested relations are restricted to those in partitioned normal form, see
Abiteboul and Bidoit [3], Roth, Korth and Silberschatz [151] and Van Gucht and Fischer [169].
In such relations, the single-valued attributes form a key, and each nested subrelation is in the
partitioned normal form itself. The relation shown in the beginning of this subsection is such.
An example of a non-partitioned normal form relation is given below. It can not be in the
partitioned normal form because it does not have any single-valued attributes.

1.1. NULL VALUES 15

‘ Employee ‘ Salary History ‘
‘ Name ‘ Department ‘ ‘ Year ‘ Amount ‘
Ann CS 1992 12K
Mary Math 1993 14K
‘ Name ‘ Department ‘ ‘ Year ‘ Amount ‘
Jim Physics 1992 10K
John CS 1993 11K

Null values were introduced into partitioned normal form complex objects in Roth, Korth and
Silberschatz [151]. They considered three kinds of null values: ni, un and ne. They defined
an algebra on such complex objects with null values and claimed that the algebra was a precise
generalization of the nested relational algebra restricted to partitioned normal form complex
objects. By “precise” they meant that queries commute with unnest in the following sense: if a
query @) sends a nested relation R into R’, then unnesting R over zero-order attributes and then
performing @) on the result is the same as unnesting R’ over zero-order attributes. However,
it was shown by Levene and Loizou [96] that projection in the algebra of Roth, Korth and
Silberschatz is not a precise generalization of the standard projection.

To remedy this, Levene and Loizou introduced the notion of information-wise equivalent nested
relations in [98]. This notion is based on the idea of ordering. They started with one generic null
and the ordering 1 < » for any value v and extended it component-wise to tuples. To extend
it to sets, they used the ordering C shown in the section on orderings and null values. Then,
if R{ € Ry and Ry C Ry, they said that R and Ry are information-wise equivalent. Under
this notion of equivalence, it is possible to generalize the nested relational algebra in the precise
way, that is, in the way that agrees with respective operations on complete relations up to the
information-wise equivalence.

One major problem with the approach of Levene and Loizou [98] is that they used the standard
nested relational algebra and inherited all of its problems and drawbacks. In particular, the
description of their notion of null-extended join operator is almost one-page long, and many
other operations are rather hard to grasp.

Finishing this section, let us mention briefly some other directions of research on null values
that we do not address in the thesis. Updates in relational databases with null values have been
studied in Abiteboul and Grahne [5] and Grahne [62]. Functional dependencies in relational
databases with existing unknown nulls were studied in Vassiliou [173] and Atzeni and Morfuni
[17]. Dependencies in incomplete databases specified by Horn clauses are one of the main subjects
of Grahne [62]. Dependencies in relations with existing unknown nulls are also studied in the
context of the weak instance model, see Honeyman [74]. A generalization of the weak instance
model that incorporates nonexisting nulls was given by Atzeni and De Bernardis [18]. More
information on dependencies in incomplete relational databases can be found in Thalheim [166].

16 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

Dependencies in nested relations with generic nulls are the main topic of Levene and Loizou

[97].

1.2 Disjunctive information and or-sets

1.2.1 Definition and examples of or-sets

As we mentioned before, the idea of using disjunctive information as a means to express partiality
was already present in Lipski [109, 110]. It was not until almost ten years later that the first
attempt was made to introduce disjunctions explicitly into the standard relational model.

Consider the following example. Suppose we have two databases, Dy and Dy shown below:

‘ Name ‘ SS# ‘ Age ‘ ‘ Name ‘ SS# ‘ Age ‘
Dyt | John | 123456789 | 24 Dy: | John | 123456789 [27 |
Mary | 987654321 | 32 Ann | 564738291 | 25 |

Assume that we merge Dy and D,. It is clear that records ‘ Mary ‘ 987654321 ‘ 32 ‘ and
‘ Ann ‘ 564738291 ‘ 25 ‘ should be in the resulting database. But what is the value of the
Age field for John? Since SS# identifies people uniquely®, we have conflicting information com-
ing from two databases, and this conflict must be recorded in the newly created database until
one finds out if John is 24 or 27 years of age.

Therefore, both ages — 24 and 27 — are stored in the new database. However, the semantics of
the Age attribute (which is now set-valued) is different from the usual interpretation of sets in
databases. Rather than suggesting that John is both 24 and 27 years old, it says that John is
24 or 27.

Since such disjunctive sets, also called or-sets, have semantics that differs from the ordinary
sets, we shall use a special notation () for them. That is, the result of merging Dy and Dy is

‘ Name ‘ SS# ‘ Age ‘
John | 123456789 | (24,27)
Mary | 987654321 32
Ann | 564738291 25

®Or at least is supposed to.

1.2. DISJUNCTIVE INFORMATION AND OR-SETS 17

Again, we emphasize that the or-set (24,27) denotes one of its elements. So semantically it is
either 24 or 27.

It is interesting to note that one practical implementation of or-sets was done in early 80s in
Hungary, as [was told by Jdnos Demetrovics [46]. Their primary motivation was police database,
and their observations showed that different witnesses of the same event often contradicted each
other; hence the need for or-sets. For example, one witness could say that a car used by robbers
was green, another saw a red car and the third witness could have seen a car that was both red
and green. A data model for such a database should allow all three statements to be stored in an
appropriate way. Therefore, using only ordinary sets was no longer sufficient, and a rudimentary
model of disjunctive information was used in that project.

In early papers dealing with objects that may include or-sets (Imielinski and Vadaparty [82],
Liu and Sinderraman [111], Ola [128]) a very limited model was considered. In fact, in those
papers or-sets could only appear as entries in the usual relations, as it is in the example above.
In Liu and Sinderraman [111] and Ola [128] extensions of the traditional relational algebra
were studied. As we mentioned before, this is not the approach we advocate here. Rather, we
prefer Lipski’s approach [110] that new languages should be designed for new kinds of partiality.
That we should follow Lipski’s approach is further confirmed by many difficulties encountered
in the above mentioned papers. For example, to obtain the correctness result, in Ola [128] some
rather ad-hoc types of tuples are introduced and representation systems are defined via those
types. Contrary to [111, 128] which used extensions of the relational algebra, in Imielinski and
Vadaparty [82] a logical language was used. Another logical language for or-sets was proposed
in Sakai [153] but it was not feasible for many applications as it had an a priori upper bound
on the number of elements in or-sets.

In subsequent papers, such as Imielinski, Naqvi and Vadaparty [80, 81], Rounds [152] and Libkin
and Wong [104] more general data models were considered. In particular, it was possible to freely
combine sets, records and or-sets.

As we have said above, an or-set (1,2, 3) denotes a single integer, of which we only know that it
is either 1 or 2 or 3 but do not know which one. That is, or-sets are used to represent a special
case of partial information. A singleton or-set corresponds to precise information; that is, (1)
denotes the integer 1. An empty or-set can be interpreted as inconsistency as its meaning is
“choose one out of nothing”.

In [80], Imiellinski, Naqvi and Vadaparty designed a data model and a logical query language for
or-objects, following the approach of Abiteboul and Kanellakis [7]. Consequently, the semantics
and query language are rather involved. They also obtained some complexity results for their
logical language. In particular, they were able to demonstrate co-AP-completeness result, and
they were successful in identifying certain restricted tractable fragments that are useful in real-
life applications.

A similar notion of disjunctive deductive databases was also studied in Minker [115]. However,

18 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

it is important to make a clear distinction between or-sets and disjunctive deductive databases
(cf. [80]). In the latter arbitrary disjunctions are allowed. In contrast to that, we regard or-sets
as a type constructor. Hence, or-sets can appear only in certain places specified by a database
schema. Furthermore, in the field of deductive databases, a database is considered as a theory,
whereas representation of objects involving or-sets is purely structural. Finally, or-sets are
distinguished from other forms of disjunctive information by having two distinct interpretation,
which are described in the following subsection.

1.2.2 Structural and conceptual queries

As we have just said, or-sets are distinguished from other kinds of disjunctive information by
having two distinct interpretation. An or-set can either be treated at the structurallevel or at the
conceptual level. The structural level concerns the precise way in which an or-set is constructed.
The conceptual level concerns the meaning of or-sets. It sees an or-set as representing an object
which is equal to a member of the or-set. For example, the or-set (1,2,3) is structurally a
collection of numbers; however it is conceptually a number that is either 1, 2, or 3.

If an or-set is sitting inside another structure, such as a relation, it is not immediately clear what
the whole object is conceptually. Consider our example of the database D that was obtained by
merging Dy and Dj. Its representation that has been shown is on the structural level. To see
what its meaning is, observe that John’s age is (conceptually) either 24 or 27. Therefore, the
whole D is conceptually either

‘ Name ‘ SS# ‘ Age ‘ ‘ Name ‘ SS# ‘ Age ‘
John | 123456789 | 24 or John | 123456789 | 27
Mary | 987654321 | 32 Mary | 987654321 | 32
Ann | 564738291 | 25 Ann | 564738291 | 25

The two views of or-sets are complementary. Consider a design template used by an engineer.
The template may indicate that component A can be built by either module B or module C'.
Such a template, as explained in [80], is structurally a complex object whose component A is
the or-set containing B and C'. Moreover, A, B and C' can in turn have the similar structure. A
designer employing such a template should be allowed to query the structure of the template,
for example, by asking what are the choices for component A. On the other hand, the designer
should also be allowed to query about possible completed designs, for example, by asking if there
is a cheap complete design, or if all completed designs have do not exceed certain cost is some of
the choices have been made. In the latter case, as the designer is still in the process of creating
a design, the “complete design” is purely conceptual. Both views of or-sets are important and
should be supported.

1.3. APPROXIMATIONS 19

The structural interpretation of or-sets is quite clear. However, the conceptual interpretation
requires further exposition. For example, to go to the conceptual level from the structural level,
we need operators prescribing the interaction of or-sets, records and ordinary sets. Several of
them can be considered. For example, taking or-set brackets outside of records or sets by listing
explicitly all possible choices, as we just did with the database D. Such operators provide an
idea of what to include in a structural query language. But what kind of operators should be
provided in a conceptual query language? Should there be an operator for testing whether two
objects are conceptually equivalent? Should there be an operator for testing whether one object
is amongst the objects that a second object can conceptually be? Fortunately, it is not necessary
to make such chaotic “enhancements.” We will show later that the operators informally described
above are sufficient to construct a normal form (or, conceptual representation) of every object
unambiguously.

1.3 Approximations

In this we section consider another kind of partiality which often arises when one tries to query
independent databases that do not necessarily agree with each other. As it was observed by
many, an answer to a query against a number of independent databases can at best be approx-
imated. That is, it is unrealistic to expect a precise answer.

In this section we start with an example that illustrates the problems arising in querying in-
dependent databases. We then proceed to introduce a number of models that are used for
approximated answers. There is a tradition to give food names to those. It started when Bune-
man, Davidson and Watters [31, 32] introduced sandwiches, which consist of lower and upper
approximations and denote precisely what is in between, hence the name. Other constructions
were called mizes (Gunter [66]), snacks (Ngair [121], Puhlmann [141] although they were studied
much earlier by pure mathematicians: Plonka [135, 136], Balbes [19]), scones* and salads (Libkin
[103]). The generic name for these constructions is edible powerdomains (Libkin [103]). It is
probably not a very good naming convention, as names do not reflect the structure of specific
approximations. However, we follow the tradition and later introduce a new systematic notation
for all the constructs.

1.3.1 Example: Querying independent databases

The general problem of querying independent databases is the following: given a set of databases
Dq,.... D, and a query ¢ that can not be answered by using information from one of D;’s, ap-
proximate the answer to ¢ by using information from all Dq,..., D,. These problems have been

*This is not a good choice of name suggested by Jung and then used by Puhlmann [141] as it is in conflict with
the notion of a scone used in category theory and recently in the categorical models of polymorphic languages,
see Mitchell and Scedrov [117].

20 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

investigated theoretically, and they gave rise to a number of constructions called approzimations.
Intuitively, given a query ¢, the databases are divided into two groups, one giving the upper
approximation to the answer to ¢ and the other giving the lower approximations.

Consider the following problem. Suppose the university database has two relations, Employees
and CS1 (for teaching the course CS1):

Employees
‘ Name ‘ Salary ‘ Cs1
John 15K ‘ Name ‘ Room ‘
Ann 17K John 076
Mary 12K Michael | 320
Michael | 14K

Assume that our query asks to compute the set TA of teaching assistants. We further assume
that only TAs can teach CS1 and every TA is a university employee. Also, for simplicity, we make
an assumption that the Name field is a key. Of course this may not be the case, and solutions we
consider in this thesis work if no assumptions about keys were made. This assumption, however,
makes the examples easier to understand.

To be able to reason about entries in different tables at the same time, we assume that all tables
have the same attributes by putting nulls in the missing columns:

Employees
‘ Name ‘ Salary ‘ Room ‘ Cs1
John 15K L ‘ Name ‘ Salary ‘ Room ‘
Ann 17K 1 John 1 076
Mary 12K 1 Michael 1 320
Michael | 14K 1

Let us briefly outline how the TA query can be answered. We know that every person in CS1 is
a TA: therefore, CS1 gives us the certain part of the answer. Moreover, every TA is an employee,
hence finding people in the Employees relation who are not represented in the CS1 relation gives
us the possible part of the answer to the TA query. Notice that it is possible to find possible
TAs because Name is a key. If it were not, we would have to use or-sets.

Of course, in the real life applications, the situation is not always that close to ideal. Let us just
briefly list the problems one should have in mind while querying independent databases:

e Databases could be inconsistent. Then anomalies must be removed before a query could
be evaluated. There are, however, a number of subproblems:

1.3. APPROXIMATIONS 21

1. Which database to believe? Fach one can be updated.

2. If in the example above we believe Employees and the Name field is not a key, assume
we have one John in Employees and two Johns in CS1. Then one of the Johns in CS1
must be deleted. But which one?

e Even if databases are consistent, but the Name field is not a key, there is no way to evaluate
the TA query unambiguously. For example, there could be two Johns with different salaries
in Employees, but only one in CS1. Assume a query “give the list of sure TAs” was asked.
Then what is John’s salary?

Notice that these problems have not been addressed in Buneman, Davidson and Watters [31, 32].
In the thesis we shall show how to solve these problems using various tools for programming
with approximations and or-sets.

1.3.2 Simple approximations

A pair of relations CS1 and Employees is called a sandwich (for TA). The Employees relation is
an upper bound: every TA is an Employee. The CS1 relation is a lower bound: every entry in
CS1 represents a TA. Notice that in our example records in CS1 and Employees are consistent:
for every record CS1, there is a record in Employees consistent with it. That is, they are joinable
and their join can be defined. For example,

| John | 15K | L |v| John | L [076 |=[John | 15K | 076 |

Hence, a sandwich (for a query @) is a pair of relations Ry and Ry such that Ry is an upper
bound or an upper approximation to ¢}, Ry is a lower bound or a lower approximation to @),
and R; and R, are consistent.

Assume a pair of consistent relations Ry and R is given. What is the semantics of the sandwich
(R1, R2)? To emphasize that Ry is an upper approximation, we denote it by U from now on.
Similarly, we denote the lower approximation R by L.

To answer the question about semantics of (U, L) — at this stage, only informally — we appeal to
the idea of representing partial objects as elements of ordered sets. In a graphical representation,
ordered sets will be shown as triangles standing on one of their vertices. That vertex represents
the minimal, or bottom element®. The side opposite to that vertex represents maximal ele-
ments. In our interpretation of the order as “being less partial”, maximal elements correspond
to complete descriptions, i.e. those that do not have any partial information at all.

®We almost always consider ordered sets with minimal elements.

22 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

N

Figure 1.3: Sandwich (U, L) and its semantics

The graphical representation of a sandwich (U, L) is shown in figure 1.3. Trapezoids standing
on U and L represent graphically elements of the whole space which are bigger than an element
of U or L respectively. The semantics of a sandwich is a family of sets such as the one denoted
by three bullets in the picture. There are two properties of such sets X that include them into
the semantic space of a sandwich:

1. For every element [€ L, there is an element z € X such that [< z.

2. All X lies in the trapezoid standing on U. That is, for every z € X, there exists u € U
such that v < z.

Observe that in our particular example depicted in the picture, L is assumed to have two
elements. Since both of them are under elements of the three-bullet set, which in turn are all
above some elements of U, (U, L) satisfies the consistency condition, i.e. it is a sandwich.

Now, assume that the Name field is a key. Then we can replace certain nulls in relations CS1 and
Employees by corresponding values, taken from the other relation. The reason is that certain
tuples are joinable, and corresponding joins can be taken to infer missing values. One such join
was shown in the beginning of this section. Since Name is a key, we know that there is only one
John and we assume that the same John is represented by both databases. Hence we infer that
he is in the office 076 and his salary is 15K. Similarly for Michael we infer that he is in the office
320 and his salary is 14K. Thus, we can replace Employees and CS1 by Employees’ and CS1’ as
shown below:

1.3. APPROXIMATIONS 23

Figure 1.4: Mix (U, L) and its semantics

Employees’
| Name | Salary | Room | CSs1’
John 15K 076 ‘ Name ‘ Salary ‘ Room ‘
Ann 17K 1 John 15K 076
Mary 12K 1 Michael | 14K 320
Michael | 14K 320

We can regard CS1’ and Employees’ as another approximation for TA. But this one satisfies
a much stronger consistency condition than sandwiches: every record in CS1’ is also found in
Employees’. We call a pair satisfying this consistency condition a miz. An example of a mix is
shown in figure 1.4.

Mixes were introduced by Gunter [66] as an alternative approximation construct, whose prop-
erties are generally easier to study than properties of sandwiches because of its consistency
condition in which no joins are involved. We shall discuss this phenomenon in details later.

Semantics of mixes is defined in exactly the same way as semantics of sandwiches: we look at
sets that represent all elements of the lower approximation and whose elements are representable
by the upper approximation. In Figure 1.4, a set shown by four bullets is such.

1.3.3 Approximating by many relations

Let us consider a more complicated situation. Assume now that CS1 has two sections: CS1y
and CS1y, and each section requires a teaching assistant. Assume that we have a pool of
prospective TAs for each section that includes those graduate students who volunteered to be
TAs for that section. Now suppose that the selection of TAs has been made, and those who
have been selected were entered in the database of employees, while the database of prospective
TAs remained unchanged. This situation can be represented by an example below:

24 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

Figure 1.5: Scone (U, {Ly, L,}) and its semantics

Employees

‘ Name ‘ Salary ‘ Room ‘
John 4 076 CS14

‘ Name ‘ Salary ‘ Room ‘
John 15K 1

Ann 17K 1 Jim = =
Mary 12K €
Michael | 14K 1 | Name | Salary | Room |
Michael 1 320 CS1,
Helen 1 451

Since all the selections have been made, at least one of prospective TAs for each section is
now a TA and therefore there is a record in Employees for him or her. That is, in each of the
subrelations of CS1, at least one entry is consistent with the Employees relation.

Let us summarize the main difference between this construction and sandwiches or mixes con-
sidered in the previous section.

1. The lower approximation is no longer a single relation but a family of relations.

2. The consistency condition does not postulate that all elements in the lower approximation
are consistent with the upper approximation, but rather that there exists and element in
each of the subrelations of the lower approximation that is consistent with the upper.

Such approximations are called scones. We shall denote the lower approximation by £ and its
components by Ly, Ly etc. The graphical representation of a scone with the two-element £ is
shown in Figure 1.5.

The semantics of a scone is a family of sets X that satisfy the following two properties:

1.3. APPROXIMATIONS 25

1. For every set L € L, there exist [€ L and 2 € X such that [< z.

2. All X lies in the trapezoid standing on U. That is, for every z € X, there exists u € U
such that v < z.

For example, in Figure 1.5 the set denoted by three bullets is such. Observe that the second
property is exactly the same for scones as it is for sandwiches and mixes, but the first one is
different and it reflects the differences in the structure of scones and sandwiches.

Now let us look at the data represented by CS1; and CS1,. Assume again that the Name field is
a key. Observe that some preprocessing can be done before any queries are asked. In particular,
there is no entry for Jim in the Employees relation. Hence, Jim could not have been chosen as a
possible TA for a section of CS1. Similarly, Helen can be removed from CS1;. Having removed
Jim and Helen from CS1; and CS1;, we can now infer some of the null fields as we did before
in order to obtain mixes from scones. Doing so in our example yields:

Employees
‘ Name ‘ Salary ‘ Room ‘ ‘ Name ‘ Salary ‘ Room ‘ cs1
John | 15K | 076 [John | 15K | 076 | !
Ann 17K 1
Mary 12K €
Vichael | 14K 390 ‘ Name ‘ Salary ‘ Room ‘ S,

| Michael | 14K [320 |

We now see that the condition expressing consistency of this approximation is much stronger
than the condition we used for scones. In fact, all elements in CS1; and CS1, are elements of
Employees. In other words, taking into account that some entries can be nulls, we see that the
new consistency condition says that every element of every set in the lower approximation is
bigger than some element of the upper approximation. Such constructions are called snacks,
see Ngair [121], Puhlmann [141]. The graphical representation of a snack with two-element £ is
given in Figure 1.6.

The semantics of snacks is defined precisely in the same way as the semantics of scones. For exam-
ple, in Figure 1.6 the four-element set denoted by the bullets is in the semantics of (U, {L1, L2}).
Thus, it is only the consistency condition that makes scones different from snacks. The impor-
tance of this condition will be studied later in the thesis.

Finally, what if we have arbitrary data coming from two independent databases that may not
be consistent (as was discussed in the beginning of this section). For instance, we saw that
there may be anomalies in the data that ruin various consistency conditions. Then we need a
model that would not require any consistency condition at all. Such a model was introduced
and studied by Libkin [103]. Since it is in essence “all others put together”, it is called salad.

26 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

Figure 1.6: Snack (U, {L1, L2}) and its semantics

At this point we give a historical remark. Snacks were introduced long before scones. In fact,
snacks were studied by Ngair in 1991, see [121]. A few initial results on scones were obtained by
Jung and Puhlmann only in late 1992. The reason it happened (despite the fact that scones may
appear more natural as a model of approximation, as we have seen) is that the development of
models for approximating partial data has been done in a rather ad-hoc manner: new consistency
conditions were introduced and studied. Since snacks appear simpler than scones, they were
invented first.

Later in the thesis we shall present a systematic approach that lists all possible consistency
conditions in conjunction with various data structures, thus giving us all possible approximation
constructs. We shall characterize each of them mathematically, and then develop a unifying
approach that encompasses all of them.

1.4 Toward a general theory of partial information

As we have seen, there are a number of models for partial information in the database literature.
Some of them are quite ad-hoc, based on specific needs arising in particular applications. We have
covered three main sources of partiality: null values, disjunctive information and approximations.
There are no solid theoretical foundations for any of these, nor are there any results that show
how they are connected. Moreover, most models of partiality are developed only for the flat
relational model, and virtually nothing is known for more complicated database models. This
situation in the field of partial information was summarized by Kanellakis in his recent survey

[89]:

“...for the representation and querying of incomplete information databases, there
are many partial solutions but no satisfactory full answer. It seems that the further
away we move from the relational data model, the fewer analytical and algebraic

1.4. TOWARD A GENERAL THEORY OF PARTIAL INFORMATION 27

tools are available.”

Thus, to address the problem of partial information in databases and to move closer to satisfac-
tory solutions that work for a large class of data models, one has to come up with new analytical
tools and show their applicability not only in the study of the extended data models but also
in the development of new query languages for databases with partial information. Making
progress in achieving these goals is the major motivation for this work. The main contribution
of the thesis is the following:

In this thesis we make a step toward a general theory of partial information in
databases. We do it by developing a new approach to partial information that in-
tegrates all kinds of partiality within the same semantic framework. In addition to
giving us necessary analytical and algebraic tools to study various kinds of partial in-
formation, this framework also naturally suggests operations that should be included
into the language that works with partial information. Techniques that are developed
for analyzing the structure of partial information can be applied to the study of the
languages that deal with it.

This general statement can be decomposed into the two key ideas upon which our approach to
partial information is based.

I. Partiality of data is represented via orderings on values.

As we saw, this idea in its rudimentary form was already present in Biskup [23], Zanilo [181]
and several other papers. However, they all had two major limitations. First, they dealt with
the relational model or very limited complex object model (such as Roth, Korthand Silberschatz
[151]). Second, the class of null values was always given a priori, hence all the models lacked
generality that we seek.

A few recent results provided a basis for overcoming these limitations. Buneman, Jung and
Ohori [33] started developing a general framework for representing partial objects as elements of
certain ordered sets that have been used extensively in the semantics of programming languages
[67]. Their results were further extended by Ohori [124, 125], Levene and Loizou [95], Libkin
[99] and Jung, Libkin and Puhlmann [88], which resulted in the theoretical foundation for the
studying of the problem of partial information.

It was shown in Buneman, Jung and Ohori [33] that the existing models of null values and
many data models fit very nicely with their approach. They were successful in defining some
notions of the relational database theory such as scheme and functional dependencies. However,
they encountered certain difficulties. For example, there is no “universal” way to order subsets

28 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

of ordered sets. They suggested using the Smyth ordering [157] known in the semantics of
concurrency, mainly because it gives the natural join for free. But using the Smyth ordering
often leads to counterintuitive results. Other papers mentioned above used the Hoare ordering
[68], but also without any justification. Thus, the problem of choosing the way of extending the
orderings to various collections is a central one and should be addressed.

Once the problem of ordering various database objects has been resolved, one should look at
the fundamental properties of the semantic domains they give rise to. The reason why this is so
important is the second central idea of this thesis.

II. Semantics suggests programming constructs.

How does one choose primitive operations upon which database query languages are constructed?
An approach that has been increasingly popular in the past few years is to look at the operations
that are naturally defined by the data types involved. This is an example of data-oriented
programming of Cardelli [35].

To answer the question about operations naturally associated with a data type, one has to
understand first what the values of that data type are semantically and what is the structure
of the semantic domain of the data type. In particular, one often tries to find wuniversality
properties of those semantic domains which guarantee existence and uniqueness of operations
on data that can be turned into programming language syntax. This approach has been applied
to a number of data types and has proved extremely useful, see Buneman et al. [26, 34], Libkin
and Wong [104, 105, 106], Suciu [161].

Therefore, in this thesis we shall be looking for the universality properties of various kinds of
partial data as a main tool for the language design. In other words, the mathematical properties
of semantics of partial data will naturally suggest the programming primitives to be included
in the languages. Thus, the purpose of developing the semantics of partiality is twofold. First,
we use it to integrate all kinds of partial information. Second, we use it to design languages for
incomplete databases.

Let us summarize the main contributions of the thesis.

1. We define a general model of representation of database objects in certain partially ordered
sets to capture the notion of being less partial.

2. We define the semantics for sets and or-sets and use it to show how they must be ordered;

3. We propose the “update” semantics, which explains being less partial as obtained via a
sequence of elementary updates that add information, and show that it leads to the same
orderings.

1.4. TOWARD A GENERAL THEORY OF PARTIAL INFORMATION 29

4. We analyze semantics and orderings on approximations and show how they can be encoded
with sets and or-sets.

5. We exhibit universality properties for semantic domains of all kinds of partial information.

6. We study the interaction of sets and or-sets and demonstrate a computable isomorphism
between iterated semantic domains of those.

7. We use the universality properties together with the above computable isomorphism to
design a language for sets and or-sets.

8. We show how the meaning of or-objects can be incorporated into the language by means
of a process called normalization, and investigate structural and computational aspects of
that process.

9. We demonstrate that the universality properties for approximations do not lead to a rea-
sonable programming language because of the complexity of the operations involved, and
show how to use the language for sets and or-sets to program with approximations.

10. We describe implementation of the language for sets and or-sets and show how it can be
used to query incomplete and independent databases.

The structure of the thesis

In chapter 2 we present the mathematical background which is necessary to understand this
thesis. In chapter 3 we lay the foundation for our study of semantics of partiality and languages
to work with partial information. The notion of partial information in databases is re-examined
and connected with certain partially ordered spaces of descriptions used in the semantics of
programming languages. Several main concepts of the relational database theory are redefined
in such a setting. Also in chapter 3 we explain the new approach to the design of query languages
whose gist is turning universality properties of collections into syntax.

In chapter 4 we study the semantics of partial data. Orderings on collections and approxima-
tions are defined via the semantics and updates and are shown to be the same. These results
explain how sets an or-sets of partial descriptions arise as free constructions. They also demon-
strate a natural way of combining sets and or-sets to encode approximations. We show that all
approximations arise as free constructions as well. We also construct an isomorphism between
iterations of semantic domains for sets and or-sets.

In chapter 5 we apply the approach that makes programming syntax out of universality prop-
erties to study languages for databases with partial information. We add order on objects as a
primitive and study the resulting languages. We then introduce the language for sets and or-
sets and show how to normalize objects and explain why normalization provides us with passage
from the structural to the conceptual level. Finally, we discuss two approaches to programming

30 CHAPTER 1. THE PROBLEM OF PARTIAL INFORMATION IN DATABASES

with approximations. One is the structural recursion and the other is encoding approximations
with sets and or-sets.

In chapter 6 we describe an implementation of the language for sets and or-sets on top of
Standard ML (hence called OR-SML). We give examples of queries which require disjunctive
information and demonstrate how to use the language to answer those queries. The language is
extended in a way that allows dealing with bags and aggregate functions. It is also extensible
by user-defined base types. The language has been implemented as a library of modules in
Standard ML. This allows the user to build just the database language as an independent
system, or to interface it to other systems built in Standard ML. Since the system is running on
top of Standard ML and all database objects are values in the latter, the system benefits from
combining a sophisticated query language with the full power of a programming language.

Finally, in chapter 7 we summarize the main contributions of this thesis and outline prospects
for further research.

Relationship with work of others

Most of the results in the thesis are my own. However, on several occasions I did include some
of the results that are due to my colleagues or that have been obtained jointly.

In the first part of chapter 3 I mix my own results from Libkin [99] and Jung, Libkin and
Puhlmann [88] with the results from Buneman, Jung and Ohori [33]. In the second part of that
chapter I present the approach which was originally developed by Buneman, Breazu-Tannen,
Naqvi and Wong [25, 26]. Many properties of the languages it gives rise to have been studied
in my joint papers with Wong [105, 106, 107, 108] and I include some of the results that have
been proven jointly by us.

Or-sets are the main topic of my paper with Wong [104]. The normalization theorem for set
semantics was proved by us independently; the proof in the thesis as well as other variations of
the normalization theorem are my own. The losslessness theorem that I prove is mine, although
there is a related losslessness result by Wong that appeared in [104].

E. Gunter influenced the implementation of OR-SML in many ways and some of the examples
in our paper [69] that I use here are due to her.

Chapter 2

Mathematical Background

In this chapter we give mathematical background which is necessary to understand the results of
this thesis. We present basic definitions and some results about ordered sets, universal algebras
(paying particular attention to ordered algebras freely generated by posets), categories, adjoint
functors and associated monads, abstract rewrite systems and term rewrite systems. Covering
basic domain theory, we give a somewhat unusual presentation of powerdomains. In view of
this, we sketch a few proofs.

2.1 Ordered sets and domains

A preorder on a set A is a reflexive transitive relation. A preorder is called a (partial) order if it
is antisymmetric. A set with a partial order on it is called a poset. We shall use symbols <, =
and the likes to denote orders.

Let (A, <) be a poset, and z,y € A. We say that @ and y are consistent (denoted by aly) if
there exists z € A such that z,y < z. A subset X C A is downward closed, or an order-ideal,
if z € X and 2’ < o imply 2’ € X. The order ideal generated by a set X is denoted by | X;
X ={y<a|a2e X} If X ={z}, then | X, also denoted by |z, is called principal. The
concept of an upward closed set or a filter is defined dually; for a filter generated by X we use
the notation TX.

A subset X C A is called directed if a common upper bound exists for any two elements of X,
that is, given 21,29 € X, there exists € X such that x > xy,25. A poset is called complete
(abbreviated — cpo) if every directed subset X C A has a least upper bound LUX. An element of
a cpo is called compact if it can not be below a least upper bound of a directed set X without
being below an element of X. That is, z is compact if # < UX for a directed X implies z < 2’

31

32 CHAPTER 2. MATHEMATICAL BACKGROUND

for some 2’ € X. A cpo is called algebraic if every element is the least upper bound of compact
elements below it, see C. Gunter [67]!.

A domain is an algebraic cpo with bottom. Given a domain D, < denotes its order and KD is
the set of its compact elements.

A cpo D is bounded complete if supremum of X C D, denoted by LX), exists whenever X is
bounded above in D, i.e. there is @ € D such that ¢ > x for all x € X. We shall use a more
convenient notation ay V...V a, instead of U{ay,...,a,}. An element 2 of a bounded complete
cpo D is compact if, whenever LIX exists and z < UX, z < UX’ where X’ C X is finite.

In a bounded complete cpo the set of compact elements below any element is always directed;
therefore, a bounded complete cpo is algebraic if any element is the supremum of all compact
elements below it. Algebraic bounded complete cpos are also called Scott-domains. Equivalently,
a Scott-domain is a domain which happens to be a complete meet-semilattice.

A Scott-domain is called distributive if every principal ideal |z is a distributive lattice. It is
called qualitative if all |2 are Boolean lattices, cf. Girard [57].

Given X, Y C D, the lower, the upper and the convex powerdomain orderings are given by
XC'BevVreXdyeY : z<y
XC'YeVweYIzeY :a2<y
XC'Y e XCYand X' Y
Sometimes they are called the Hoare, the Smyth and the Plotkin orderings respectively.
A subset of an ordered set is called a chain if every two elements in it are comparable, and an
antichain if no two elements in it are comparable. If (X, <) is an ordered set and Y C X, then

max< Y and minc Y are sets of maximal and minimal elements of ¥. We will use just maxy
and min Y if the ordering is understood. Ag,(X) stands for the set of all finite antichains of X.

For an arbitrary poset A, we denote (Az.(A),C°) by P°(A) and (Ag.(A),CH by PH(A). Note
that we can canonically embed A into both P"(A) and PHA):

Vae A: nla)={a} € As(A4)

At this point, let us make a number of observations about the two constructs we have just
introduced. First of all, P°(A) is always a join-semilattice with bottom element and P A) is
always a meet-semilattice with top element. Indeed, the join and meet operations are given by

XY =max(X UY)

'The name “algebraic” comes from lattice theory where it was motivated by the fact that algebraic lattices are
exactly the lattices of subalgebras/congruences of algebras. Analog of the first result for certain cpos was given
in Libkin [102].

2.1. ORDERED SETS AND DOMAINS 33

XY =min(X UY)
and empty set is the bottom (top) element with respect to C° (CF).
Furthermore, if A is a meet-semilattice, then the meet operation with respect to C° exists:
XY =max{zAy|ze X,yeY}
and, if A is bounded complete, then the join with respect to CF exists:

XY =min{zVy|zeX,yeY,zVy exists}
Another observation is almost obvious but it will be used numerous times in this thesis:

Lemma 2.1 a) X C’ Y iff max X C” maxY;
b) X CF Y iff min X Cf minY;
c) X C!'Yy iff max X C’ maxY and min X Cf min Y. O

Another observation that will be used later as a very important tool for the language design, is
the following simple fact stating the universality properties of P°(-) and P(-).

Lemma 2.2 a) Let A be a poset. Then for every join-semilattice with bottom element (S,V, L)
and every monotone map f : A — S, there exists a unique semilattice homomorphism fT :
Pb(A) — 5 that makes the following diagram commute:

A Ui

JiF+

4
S

Ph(A)
f |

b) Let A be a poset. Then for every meet-semilattice with top element (S,A\,T) and every
monotone map f : A — S, there exists a unique semilattice homomorphism f+ : P A) — §
that makes the following diagram commute:

34 CHAPTER 2. MATHEMATICAL BACKGROUND

Proof. We prove a) only. Consider a finite antichain X = {#1,...,2,} in A and define

L ifn=0
f"‘(X) = { flz1)V ...V f(z,) otherwise

That f* is a homomorphism follows from monotonicity of f and X = n(z1) " ... U" 5(z,) and
its uniqueness follows from the definition. O

It is well-known that both P"(-) and P(-) preserve bounded-completeness, see Gunter [67].

We now turn our attention to the Plotkin construction, for which we also give a somewhat
unusual description. Define conu(A) as a subset of Ag,(A) X Ag,(A) that consists of pairs (X,Y)
with X C" Y. These pairs are ordered by? (X1, Y1) C! (X2, Ys) iff Xy Cf X, and Yy C Vs,
Notice that (X,Y) is in conv(A) iff there exists a finite set Z(x y) C A such that X = min Zx y
and Y = max Zx,y); moreover, in this case (Xy, Y1) C! (Xy,Ys) iff Z(x, 1) " Z(x, v1)-

We define P(A) as {conu(A) L {(#,0)},C". The universality property for this construction is
given by the following lemma which uses C-ordered semilattices, i.e. semilattices (9,#,C) in
which - is monotone with respect to the partial order C. That P A) is a C-ordered semilattice
follows from the observation that (X1, Y1) " (X2, Y2) = (X1 MF Xy,) P Y,) is a semilattice
operation monotone with respect to CP.

Lemma 2.3 Let A be a poset. Then for C-monotone semilattice (S,*,C) and every monotone
map f: A — S, there exists a unique C-monotone semilattice homomorphism f¥ : Ph(A))
that makes the following diagram commute (where n(a) = ({a},{a})):

Proof. Define fT by

Tz, b AU e Un}) = f(m) ook f(@) * f(yn) * oo ox f(yn)

?Note abuse of notation, but it will not lead to ambiguities.

2.2. ALGEBRAS 35

It is easy to see that fT is monotone with repsect to the additional order. It can also be
seen that the above representation does not change if non-minimal (non-maximal) elements are
added to the first (second) component. Hence, f+((X1,Y1) *! (X5,¥3)) = (kwex,ux, f(2)) *
Craersons F () = Coacmingr050) (2)) # Crymsgriona £(9)) = £((X1,2) # FH((X2073)). That
the diagram commutes follows from the definition of f¥. Its uniqueness follows from
({1, m s (Y1, un) =) 0k () #n(yn) +0 .+ n(y,). O

In the semantics of programming languages, usually the ideal completion is applied to Pb(A),
PH(A) and PU(A), where A is taken to be KD for some domain D. Tt is easy to see that
in this case we obtain the standard constructions of the Hoare powerdomain [67], the Smyth
powerdomain [157] and the Plotkin powerdomain [137]. However, for the purpose of this thesis
we shall not need use the ideal completion.

For more information on domain theory, the reader is referred to Gunter [67], Gunter and Scott
[68] and Abramsky and Jung [12].

2.2 Algebras

In this section we recall a few definitions from universal algebra. A signature is just a collection
Q2 of symbols, or operation names, with associated arities. An algebra is a pair (A, Q) where A is
a set, called carrier, and each operation w in § of arity n is interpreted as a function from A" to
A. We refer the reader to standard textbooks (Grétzer [64], Wechler [177]) for definitions of the
concepts of homomorphism, subalgebra etc. If it does not give rise to ambiguity, we occasionally
confuse an algebra with its carrier.

Let (A, Q) be an algebra and X C A. Then [X] denotes the subalgebra of (4, Q) generated by
X. Let K be a class of algebras of the same signature. We say that (A, Q) is freely generated by
X in K if two conditions hold:

(i) (A, Q) is generated by X in , that is, [X] = A, and

(ii) for any algebra (B,Q) € K and any map f: X — B there exists a unique homomorphism
St (A, Q) — (B,Q) such that the following diagram commutes, where 7 is the embedding
of X into A:

36 CHAPTER 2. MATHEMATICAL BACKGROUND

x—T.a0)
e

"N

(B,)

Freely generated algebras need not exist for an arbitrary K and generally it is a hard result to
prove their existence, see Gratzer [64]. One important case in which a positive result is well
known is when K is a variety, or an equational class.

In this thesis we shall mostly work with ordered algebras. In mathematical literature freely
generated ordered algebras are typically considered with respect to embeddings that disregard
order, see Gritzer [64] and Bloom [24]. This no longer satisfies our needs in the denotational
semantics which will be used throughout this thesis. The need for the theory of freely generated
ordered algebras was recognized, for example, by Stoughton in his work on full abstraction [160].
Although there are still no general results about existence of ordered algebras freely generated by
posets, most classes of algebras we shall consider do possess them, and we shall not be concerned
with the lack of underlying mathematical theory, at least for the purpose of this work.

An ordered algebra (A,) has a predicate < as one of the symbols in the signature; its inter-
pretation is a partial order on the carrier. A monotone homomorphism f: (A4,Q) — (B, Q) is
a homomrphism which is monotone with respect to <. We say that (A, Q) is freely generated
by X C Ain a class K if the condition (i) above holds, and for every other (B,Q) € K and
a monotone f : X — B there exists a unique monotone fT that makes the diagram above
commute.

Occasionally, we shall also be slightly imprecise saying that an algebra (A4, Q) is freely generated
by a set X which is not a subset of A if the emdedding

xo T .4

is understood. Of course by that we mean that (A, Q) is freely generated by n(X).

Thus, we can reformulate lemma 2.2 as follows: For any poset A, Pb(A) is the free join-semilattice
with bottom generated by A, and P¥(A) is the free meet-semilattice with top generated by A.

2.3 Adjunctions and monads

The reader may skip this section and still be able to understand the rest of the thesis. However,
certain concepts defined here are very useful for understanding the mathematical structure

2.3. ADJUNCTIONS AND MONADS 37

underlying the main principles of the language design. We refer the reader to Barr and Wells
[21] or MacLane [112] for the definition of categories, functors and natural transformations.

First of all, let us define a number of categories that will be useful later.

Set, the category of sets;
FSet, the category of finite sets;
Poset, the category of posets and monotone maps;

FSL, the category of finite semilattices and semilattice homomorphisms. Two important
subcategories are FSLy and FSL; that contain join (or meet) semilattices with bottom
(top); the morphisms are required to preserve the special elements. If semilattices of
arbitrary cardinality are considered, the corresponding categories are denoted by SLg and
SL;.

Q-Alg, the category of Q Lalgebras and homomorphism between them.

Let A and B be categories and F : A — B and G : B — A be two functors. Then F is left
adjoint to G and G is right adjoint to F, written F 4 G, if the following two conditions hold:

(i) There exists a natural transformation 7 : id — GF, and

(ii) For any object A of A, any object B of B and any arrow A JEN G(B) in A there exists a

unique F(A) 12+ B in B such that the following diagram (in A) commutes (where 74 is
the A-component of 7):

The property expressed by the diagram is called the universal mapping property or just univer-
sality property. It is closely related to the freeness conditions considered in the previous sections,
as a few examples below show. In all of them, the right adjoint is the forgetful functor U that
“forgets” the additional structure.

1. Powerset can be considered as a functor P : Set — SLg that takes a set and returns its
powerset considered as a semilattice under the inclusion ordering. Its action on morphisms

38 CHAPTER 2. MATHEMATICAL BACKGROUND

is defined by “mapping” a function f from a set X to a set Y over subsets of X, i.e.
P(f)(A)={f(a)| a € A}. Then P is left adjoint to U: SLy — Set. In other words, P(X)
is the free join-semilattice with bottom generated by X.

Restricting to finite sets, we obtain an adjunction Pg, 4 U.

2. P*(-) can be considered as a functor from Poset to SLg. Its action on a monotone map
f X — Y is given by P’(f) : P(X) — P*(Y) where P*(f)(A) = max{f(a) | a € A}.
According ot the lemmas proved above, Pb(-) is left adjoint to U : SLy — Poset. Similarly
for PA(-) : Poset — SLj, we have PH(-) 4 U. Note that the action of P¥(-) on morphisms
is given by P4 f)(A) = min{f(a) | a € A}.

3. More generally, let K be a full subcategory of Q-Alg. Assume that for each set X, a free
algebra Fi(X) generated by X in K exists. Then Fi can be considered as a functor from
Set to -Alg whose action on morphisms is given by the universality property. Then
Fe 4 U.

Associated with every adjunction F - G there is another natural transformation, € : FG — idg.
The details of its construction can be found in Barr and Wells [21] and MacLane [112].

The next construct to be introduced is closely associated with adjunctions. Given a category
A, a monad on it is a triple (T,n, u) where T is an endofunctor (i.e. a functor T : A — A)
and 7 :id — T and px : T? — T are natural transformations such that the following diagrams
commute:

T T T
g g) PN | T’ .
B p ~ il p
T T? T
v

Every adjunction F 4 G where F : A — B and G : B — A gives rise to a monad (GF,n, GeF) on
A.

Consider three examples of this construction that will be used throughout the thesis.

1. Consider Py, 4 U as an adjunction between finite sets and semilattices. Then it gives rise
to the monad (Ps, 7, 1) where P is the powerset functor from FSet to itself, and for each
finite set X we have:

nx : X — Ps(X) a5)

px : Ps(Po(X)) — Py(X) {(X1,... X3 d5 Xxu...uX,

2.3. ADJUNCTIONS AND MONADS 39

2. Consider P’ 4 U as an adjunction between posets and semilattices. It gives rise to the
monad <77b,77,,u> where P” is now considered as a functor from Poset to itself, and for
each poset A we have:

na:A— P(X) a f2 {a}
fa t PP (X)) = P(X) (X1, X2 X0 0P X, = max(X, U...UX,)

3. The construction for P! 4 U is similar except that M is used instead of LI’.

It is also known that the converse is true as well, that is, every adjunction comes from a monad,
The construction is due to Eilenberg and Moore and it is out of the scope of this thesis. In the
rest of this section we define another construction giving an alternative description of monads
that inspired some of the programming primitives we will be working with.

Let 7 = (T,n, 1) be a monad on A. Then the Kleisli category for 7, denoted by KI(7), has the
same objects as A, and its arrows are arrows A 1— T(B) in A. The composition is obtained

by using the properties of the monad. To compose A JE T(B) and B 1% T(C) in KI(T), we
obtain an arrow from A to T(C') by

The identity is simply 14 : A — T(A).

There are two functors associated with the Kleisli category. One of them, 6 : KI(7) — A

coincides with T on objects and, given a morphism A JER T(B), produces a morphism T(A) 1—
T(B) in A as follows:

T(/f) 1B

T(A) T*(B) T(B)

The other one, F : A — KI(7), is the identity on objects, and for A 1% B in A it produces a
morphism A 1— T(B) is KI{(7) as follows:

T(g)

A T T(B)

The reason KI(7) can be called an alternative representation of a monad is the following. For
F and G just constructed, F 4 G, GF = T and the monad associated with F 4G is 7.

40 CHAPTER 2. MATHEMATICAL BACKGROUND

Let us apply the Kleisli constructions to the three main examples of this section. In those
examples, for the reasons that should emerge shortly, we shall use the notation ezt for the
action of G on morphisms.

1. Consider (P, n, 1) associated with the adjunction P 4 U. Given a function f: X — Pg,(Y),
ext(f)is a function Pg,(X) — Ps.(Y) given by ext(f) = p o Ps(f) or equivalently

eat(f)(Z) = | f(2)

2€EZ

2. Consider < ,u> glven by P’(-) 4 U. For a monotone map f : A — P°(B), we have

(),
ext(f) = poP

()
ext(f)(C) = Ulee fle) = max(| f(c))

ceC
3. Similarly, for (P4(-), 7, i) arising from P#(-) 4 U and a monotone f: A — P"(B), we have

ext(F)(C) = Mee fle) = min(|J f(c

ceC

This justifies calling G on morphisms ezt: it extends the action of f : A — T(B) to T(A).
If ext is given, it is also possible to reconstruct the functor T and the natural transformation
p: T2 — T for a given 5. If A 12~ Bin A, then T(g) is given by ext(A 1L B 2 T(B)). For

any object A, uy is obtained as ext(T%(A) L 11 — T%(A)). The reader can easily check that in all
three examples above, if we start with exzt, we obtain the corresponding functor and the natural
transformation p.

There have been two primary motivations for using monads in computer science. One is ap-
plication in the language design, which will be considered in detail later. Another one is using
monads to define a general notion of computation. This idea is due to Moggi [118] who defined
T(A) as “computations of type A”, where A could be a set or a domain or any other semantic
object representing a type. In fact, Moggi used a slightly more general construction that also
accommodates terminal objects and binary products. The use of monads to structure functional
programs was discussed in Wadler [176]. A dual construction — comonad — was used by Brookes
and Van Stone [29] in their work on intensional semantics of programming languages.

2.4 Rewrite systems

We shall need some basic facts about abstract and term rewrite systems, namely Newman’s
lemma and the critical pair lemma. For more information on rewrite systems, see Dershowitz
and Jouannand [49] and Wechler [177].

24. REWRITE SYSTEMS 41

An asbtract rewrite system (or reduction system) is a pair (A, —) where A is a set and — is a
binary relation. The transitive-reflexive closure of — will be denoted by either I— or —. The

symmetric closure of —, that is, — U —~! is denoted by «—, and we occasionally use — for
-1
—h

An element a € A is said to be a normal form if there is no b € A such that a — b. An element
a € A admits a normal form if there exists a normal form a’ such that ¢ 1— o’. We will mostly
be interested in systems in which every element admits a unique normal form.

A rewrite system is called terminating or strongly normalizing if there is no infinite sequence of
rewritings @y — a3 — ...a, — It is called confluent or Church-Rosser if for any a 1— a4
and @ I— ay there exists @’ € A such that @y I— ' and ay 1— «’. Diagramically,

a

SN

In a terminating Church-Rosser rewrite system every element admits a unique normal form.
However, the property of being Church-Rosser is usually hard to verify, and this is due to the
fact that the condition ay «—IL a l— ay is rather complicated. Replacing it by a; «—L a 1— ay
we obtain weak Church-Rosser systems. Precisely, a rewrite system is called weakly Church-
Rosser if for any a; <L a 1— ay there exists a’ € A such that ¢y I— & and ay 1— d'.
Diagramically,

a/a\a
N

Fortunately, in many cases verifying this suffices, because

Lemma 2.4 (Newman) A terminating rewrite system is Church-Rosser iff it is weakly Church-
Rosser. |

42 CHAPTER 2. MATHEMATICAL BACKGROUND

Term rewrite systems constitute the most important example of abstract rewrite systems. Let
Q2 be a signature and X a set of variables. Then Tq(.X) denotes the set of all terms that can
be constructed from X by using operations from . A (term) rewrite rule is an expression
11 — tp where t1,t3 € Tq(X). A (term) rewrite system is a finite collection R of term rewrite
rules. Associated with R, there is a binary relation 1—p on To(X) defined as follows. Assume
s —t€ R, wis aterm and o is a substitution. Then w[so] L—p w[to] where so and to are
substituted at the same position in w, and no other terms are related by L—g.

We shall need two results that establish when a term rewrite system is terminating and Church-
Rosser.

Lemma 2.5 Assume that there exists a function ¢ : To(X) — N such that w L—pg v implies
p(u) > @(v). Then L—pg is terminating. O

Let s 1— t and v 1— v be two rewrite rules in R, with no variable in common (this can be
done by renaming variables appropriately). Suppose that a subterm of s at position p is not a
variable and is unifiable with u, and let o be the most general unifier. Then ({0, so[vo]) (where
vo is substituted at the position p) is called a critical pair. CP(R) stands for the set of all
critical pairs between the rules of R.

Lemma 2.6 (Critical pair lemma) Let R be a term rewrite system. If s —Lp u l—pg t,
then either there exists a term v such that s l—p v <=L t, or else s —cp(p) 1. O

Applying the Newman lemma, we get

Corollary 2.7 A terminating rewrite system R is Church-Rosser iff C P(R) Cl—p o «Lp.
In other words, for every critical pair (s,t) there exists a term v such that s l—p v «=lLpt. O

Chapter 3

Preliminaries

This chapter covers the foundation for the study of the semantics of partiality and languages
to work with partial information. As we have observed earlier, the unifying theme for various
kinds of partial information is using ordered sets as their semantics, where meaning of the order
is “being more informative”. There exist standard mathematical models for flat and nested
relations without partial information. Once orderings on values come into play, there is a need
in new basic models for incomplete databases. The first attempt to come up with such a model
was done by Buneman, Jung and Ohori [33] and it was further developed in Libkin [99], Jung,
Libkin and Puhlmann [88] and Levene and Loizou [95]. We present the model in the first section
and study some of its properties. In particular, we show how to redefine the notions of scheme,
functional and multivalued dependencies and operations of the relational algebra. Ordered sets
that we use for modeling partiality are domains typically used in the programming semantics.

Secondly, we must develop a framework for the query language design. In the second section, we
explain Cardelli’s data-oriented programming [35], in particular, the idea of using introduction
and elimination operations for programming with data. We then go on and explain the approach
of Buneman, Breazu-Tannen and Naqvi [25] that suggests to derive data-oriented languages from
operations naturally associated with the data. Those operations come from the universality
properties. Their approach was further developed in Breazu-Tannen, Buneman and Wong [26]
where a simple reformulation of the nested relational algebra was found. Even more importantly,
[26] suggested a uniform way of getting rid of non-well-definedness of programs. This way, in
categorical terms, is going from an adjunctions to the associated monad. Before applying this
approach to partial data in chapter 5, we demonstrate its usefulness by showing how it can be
used with bags (multisets). Some of the results are taken from Libkin and Wong [105, 106, 107,
108].

43

44 CHAPTER 3. PRELIMINARIES
3.1 Databases with partial information and domain theory

As we have said many times in the introduction, most models of partiality of data can be
represented via orderings on values. In this section we study a new approach to databases which
treats relations not as subsets of a Cartesian product but as subsets of some domain — a partially
ordered space of descriptions. This approach permits generalizations of relations that admit null
values and variants. We show how to define the notion of a relation schemein such a setting. We
study properties of schemes. Then we show that operations analogous to projection, selection
and join retain the desired properties. Schemes also allow us to develop dependency theory
for such generalized relations. They play an essential role in an extension of this model which
admits a set constructor and is therefore useful for the study of higher-order relations and their
generalizations.

Throughout this section, we consider only Scott domains.

3.1.1 Order on objects and partiality

It has recently been discovered by Buneman et al. [33] that a representation of the underlying
principles of relational database theory can be found in the theory of domains which has been
developed as the basis of the denotational semantics of programming languages. This represen-
tation does not take into account the details of the data structure and, therefore, allows us to
extend the main principles of relational databases to much more general constructions. Use of
domain theory in the generalization of relational databases may also help to establish the con-
nection between data models and types, that is, to represent database objects (not necessarily
relational databases) as typed objects in programming languages.

In denotational semantics of programming languages expressions denote values, and the domains
of values are partially ordered. A database is a collection of objects having descriptions and
meanings. The meaning is the set of all possible objects described by a description. The meaning
having been defined as a set, we can order descriptions by saying that a description d; is better
than a description d5 if it describes fewer objects, i.e. if it is a more precise description.

Let [d] stand for the meaning of d. Suppose that dy and dy are the records in a relational
database and

dy = [Dept: CIS, Office: 176],
dy = [Name: John, Dept: CIS, Office: 176]

Assume that name, department and office are the only attributes. Then the meaning of dy is
the set of all possible records that refer to CIS people in office 176, in particular, dy. Therefore,

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 45

dy is better than dy because [d], C [d];.

If all descriptions of objects come from the same domain D which is partially ordered by <,
then we can give the following definition of [d]:

[d] (¢ eD|d>d}=1d

Now the following is immediate:
Lemma 3.1 d; < d, iff [[dg]] - [[dl]] O

The above ordering corresponds to the usual one in the theory of databases with incomplete
information. For relations, it was used by Biskup [23], Imielinski and Lipski [78] and others.
The same idea of ordering was used for complex objects in Bancilhon and Khoshafian [20].

Before we go any further, let us fix the notation for records. A record with field names [y,..., [
and corresponding values vy, ..., v; will be denoted by [ly: vy,...,{;: vi]. We use the [] brackets
as others will be used for various collections later on. Fortunately, until chapter 6 when we
switch to the ML notation, lists are not used, and we are able to avoid confusion. We shall
denote the [;th field of a record r by r(l;) or r.l;.

Let V_ = YU{L} where V is a set of non-partial values, L corresponds to incomplete information
(it is a generic null) and Yo € V : L < v while all elements of V are incomparable. In other words,
V_is aflat domain. Let £ be a set of attributes (in the above example £ = {Name, Dept, Office}).
Then the set of functions from £ to V_, denoted by £ — V_, is ordered by dy < dy iff d1(1) < d3()
for all [€ £ where dy,dy : L — V_. For example, if dy and d; are as in the above example, £ =
{Name, Dept, Office} and V contains names of departments, people and numbers of offices, then
dy,dy € L — V_ since dy = [Name: L, Dept: CIS, Office: 176]. Obviously dy < ds.

There is an alternative way of giving semantics of partial description by using mazimal elements
of D. Recall that for every Scott domain D there exists a set D™a% C D such that for every
d € D there is d,, € D™ such that d < d,,. In other words, D™?* is the antichain of maximal
elements. For example, in the case of L — V_, maximal elements are precisely records without
nulls, that is, records without incomplete information. Therefore, it was proposed by some
[31, 33, 78] to redefine semantics as

[l & {d' € D™ | d' > d} = |d) D™

Let us briefly outline some problems with this approach (we shall see more when we study
approximations). First, consider (just informally) recursive values with nulls. For instance, if
we have a type declaration person = [name:string, father:person], then elements of this
type are potentially infinite sequences of names. In fact, if C' is a domain of strings, then the
semantics of type person is given by a solution to the recursive domain equation D = C' x D.

46 CHAPTER 3. PRELIMINARIES

Maximal elements of D are then infinite sequences of maximal elements of C' and it is unlikely
we would be interested in approximating those. In fact, we are interested in descriptions of finite
length ending with infinitely many bottom elements, i.e. generic nulls.

Unfinished experiments are another example. They are just sequences of observations made,
say, every day. Formally, such experiments are partial functions from N to some domain ', and
these are ordered by f1 < fo < Vn : fi(n) is defined = f3(n) is defined and fi(n) < fa(n).
In this example maximal elements are totally defined functions f with im(f) C C™**. Again,
we see that partiality of information does not necessarily mean trying to approximate maximal
elements, which are never reached.

Finally, using [], .. we lose the nice connection between the ordering and semantics. It is no
longer the case that [di], . 2 [do],ux < @1 < do. A simple counterexample is a finite chain:
for all elements their [] . is the top element.

Looking at these examples gives us another important observation. Elements of type person
that can be stored in a database are precisely finite sequences of names. Unfinished experiments
that can be stored are precisely partial functions with finite domains whose values can be stored.
Mathematically speaking, these are compact elements. This fits very well with the semantics of
compact elements proposed by Dana Scott: in his approach they are “computable” functions;
in our approach they are objects that can be stored in a database.

We are now in the position to explain the main idea of Buneman et al. [33]. Consider the domain
L — V_. Its elements are records whose attributes are elements of £ and values are taken from
V_. The relations are finite sets of records, that is, finite subsets of £ — V_. However, not
every finite subset of L — V_ corresponds to a relation. If we have a subset containing both
dy and dy from our example, d; is less informative than dy and should be removed (notice that
we can not argue this way for bags. Indeed, as we will show later, the ordering on bags of
partial descriptions is quite different from the ordering on sets). Less informative here means
that di < dy. Therefore, relations correspond to finite subsets of domains that do not contain
comparable elements, that is, to antichains. Combining this with the idea of the previous
paragraph that elements that can be stored correspond to compact elements of domains, we
arrive at the (slightly changed) principle proposed by Buneman, Jung and Ohori [33]:

Generalized relations are finite antichains of compact elements

Example 3.1 Let £ and V be as in the above examples. Let

ds = [Name: Ann, Dept: Math, Office: 628],
d4y = [Name: Ann, Dept: Math, Office: 1]

(d4 shows that the person has not been assigned an office yet). Then {d3,ds} is a generalized
relation but neither {dy,ds} nor {ds,d4} is because d; < dy and dy < d3. O

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 47

In the examples above we considered only one generic null value. We have seen already other
kinds of null values and orders on them. To order more complex structures, it is necessary to
lift orders. To lift order to records is easy: it is just done componentwise. To lift order to sets
is more problematic as domain theory does not provide us with a universal way to do so. We
shall briefly discuss lower and upper orderings in this chapter, and later in chapter 4 we justify
using the lower ordering for lifting to relations.

3.1.2 Schemes

In the subsequent sections we shall develop dependency theory and a simple query language
for the model presented above. To do so, we need to find an analog of the concept of scheme.
Recall that in the relational database theory, a scheme is just a subset of attributes. We need
this concept to formulate the definitions of functional and multivalued dependencies and later
to define analogs of the relational algebra operations such as projection and selection. In this
subsection we consider two definitions: one due to Bunemanet al. [33] and the other due to

Libkin [99].

Consider the usual relational algebra projection, where relations are allowed to have nulls. Let £’
be a subset of the set of attributes £. If y < pg/(), then y has nulls in the positions corresponding
to attributes in £ L £'. Hence, pi(y) = y, and this shows that Zp = {pp(2) |2 € L — V_} is
an ideal. Furthermore, if pe/(z) V pe(y) exists, it still has nulls in all positions corresponding
to L L L', and hence it belongs to Z..

Ideals which are closed under existing suprema are called strong ideals. The observation we have
just made shows that as the first approximation to the definition of scheme we can take strong
ideals. However, this is not good enough as the following example shows:

Example 3.2 Let £ and V be as in the examples of the previous subsection. Let
7; = {[Name: v, Dept: L, Office: L]|v e V_}.

Then Z; is a strong ideal and for any d = [Name: vy, Dept: vy, Office: v3] its projection onto
7y is pz,(d) = [Name: vy, Dept: L, Office: L]. The set of maximal elements of Z; is {[Name: v,
Dept: L, Office: L]|v € V}.

Let Zo = |d where d € £L — V_. Then 75 is a strong ideal with unique maximal element d and
forany d' € L —=V_: pr,(d)=dnNd. 0

Therefore, we need more for the analogy of projection in relational algebra than being a projec-
tion onto a strong ideal. In fact, that ideal must satisfy some additional properties. In £ — V_
schemes correspond to subsets of £. That is, a projection onto the scheme corresponding to

48 CHAPTER 3. PRELIMINARIES

S C L is given by
ps(z) = 2’ where 2'(1) = z(I) if [€ S and 2'({) = L otherwise.

These projections will be called canonical. It is a natural requirement for the definition of
scheme and projection in an arbitrary domain that the projections be canonical when restricted
to L — V_. One can easily see that for every x € L — V_ the ideal |z is strong while the
projection p|, is not canonical.

In £ — V_ schemes correspond to the subsets of £ and projections to the canonical projections.
It is natural to define the concept of scheme such that, being applied to £ — V_, it will give
rise exactly to canonical projections. Also, schemes should be significant parts of a domain that
reflect the structure of the whole domain. This means that if the elements of a domain are
treated as database objects (for example, records in relations), then projection into an ideal
generated by a scheme should correspond to losing some piece of information and the same
pieces of information are lost for all the elements of the domain. This means that projections
generated by schemes are in a way homogeneous.

If we have two maximal elements of a domain (complete descriptions) and they are projected
into a scheme (i.e. the same pieces of information are ignored) then the projections can not be
comparable. This observation leads us to the following definition.

Definition 3.1 Let D be a domain and S an antichain in D such that |5 is a strong ideal.
Then S is called a scheme in D if projection p|s(z) of any element of x € D™ is a maximal
element in |S.

If § C Dis ascheme, then |5 is called a scheme-ideal and p|s is called a scheme-projection.
We shall write pg instead of ps.

The picture below illustrates these concepts.

- T 7 Dmax

D\

In the reasonings that led us to the above definition we took into account only how we lose
information by projecting into a scheme. In Buneman et al. [33] another aspect of the problem

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 49

was considered : what can be said about the lost information? Can we consider it independently
and “add” to another object (element of a domain)?

The idea of [33] was that, given a scheme 9, there is its complement (as there is a complement
L1.5 for every S C L for the domain £ — V_), and projecting into S is simply losing information
corresponding to the complement of 5. Assuming that the pieces of information contained in
projections into the scheme and its complement are independent, we can combine them. To be
more precise, if we have an object and its projection into a scheme is less than an element of this
scheme, we can add lost information to the latter element. This corresponds precisely to the
slide condition of Buneman et al. [33]. We say that a strong ideal 7 satisfies the slide condition
if for any z € D and y € 7, pr(x) < y implies that 2 V y exists. This property obviously holds
for canonical projections in £ — V_. The following picture illustrates the slide condition (z7
stands for pz(2)):

rVy

Definition 3.2 ([33, 88]) Let D be a domain and S an antichain such that |S is a strong ideal.
Then S is called a semi-factor if |5 satisfies the slide condition, that is, if x € D and y € |5
are such that ps(z) <y, then x V y exists. |S is called a semi-factor ideal, and pg is called a
semi-factor projection.

Every semi-factor is a scheme; the converse is not true in general. If it were true, it would mean
(informally) that for all the schemes their complements exist, because we could consider the
paragraph before the definition of semi-factor as an informal proof. In a certain class of domains
this can be formally proved, and we will finish this section with such a result.

Example 3.3 Let d3,ds be as in the examples 1 and 2. Let
r1 = [Name: John, Dept: L, Office: 1],

ro = [Name: L, Dept: CIS, Office: 176],
r3 = [Name: Ann, Dept: Math, Office: 1],

50 CHAPTER 3. PRELIMINARIES

ra = [Name: L, Dept: L Office: 628].

Let D = {dy,ds,r1,79,73,74, L} where L is the tuple with all null values. The diagram of D
is shown below:

dy ds

1 T2 T3 T4

This domain has no semi-factors except {L} and D™2¥ while it has eight proper schemes:

{r1,m3}, {re, 3}, {r1,ra), {ro, ra}, {da, r3}, {da, v}, {ds, 71}, {d3, r2}. 0

In order to justify both definitions we must prove that they describe exactly canonical projections
when applied to the domain £ — V_.

Proposition 3.2 S is a scheme (or a semi-factor) of L — V_ iff ps is a canonical projection.

Proof. We prove the proposition for schemes only. (See [33] for semi-factors). The 7f’ part is
immediate. To prove the ‘only if part, consider a scheme 5. Define L C L as L = {l € L :
r(l) # L, where r = pg(r”) for some 7’ € (£ — V_)™2*}, Now we are to show that pg is the
canonical projection onto L. That is, we are to show that »({) = »/(I) for all [€ L and »'(I) = L
for [¢ L provided that »' = pg(r).

If I ¢ L, consider any v’ > r, " € (L — V_)"**. Then ps(+")(I) = L > ps(r)(1) = r().
Thus r({) = L. If [€ L, consider two cases. If r(I) = L, then ' < r and 7/(I) = oo. If
r(l) = v, by definition of L there is a maximal element r” such that ps(r”)(1) = v" # L. If
v’ # v, consider another maximal element r, that differs from " only in its /th component which
is v. If pg(r,)(l) = L, then r” V r, exists, which contradicts the definition of scheme. Thus,
ps(ry)(l) = v, and a record r¥ whose only nonbottom component is r¥({) = v is in |.S. Since
¥ < r, r¥ is also below 1/, which proves /(1) = v = r().]

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 51

If £ is finite, £L — V_ is isomorphic to V", where n = |L|. Therefore, in direct products of flat
domains all schemes are semi-factors. Theorem 3.10 below will generalize this fact.

We shall mostly use schemes rather than semi-factors because the definition of schemes is more
general and does not make use of any additional assumptions and, as we are going to show,
schemes satisfy almost all properties that were proved in order to justify the definition of semi-
factor in Buneman et al. [33]. In the rest of the subsection we prove some properties of schemes
and state a result characterizing qualitative domains in which the concepts of scheme and semi-
factor coincide.

Let A, B C D be two sets. We define AV B as the pointwise supremum, i.e. AV B ={aVb:
a€ A,b€e B, aVb exists}.

Proposition 3.3 Let D be a distributive domain. Then
1) If A, B are scheme-ideals, then so is AV B.
2) The set of scheme-ideals over D is a complete lattice.

Proof. We are going to prove a more general fact, namely that for any indexed set of scheme-
ideals A;,i € I, A=\ A; is a scheme-ideal (the supremum is defined pointwise). Then both 1)
and 2) will easily follow.

Prove that A is a strong ideal. Of course, it is closed under all existing joins since so are all A;s.
To show that it is an ideal, consider & = Vz;, where a; € A;, and y < x. Since D is a domain,
y is the join of all compact elements below it. Let @ <y be compact. Then a < z;, V...V z;,
and by distributivity there are ng <, j=1,..ksuch that a = 2 V...Va; . Thus,a € A,
and since A is closed under existing joins, y € A. Therefore, A is a strong ideal.

Our next step is to show that pa(z) = \/ pa,(x). Let pa(x) = Va;, where a; € A;. Then each
a; < pa(z) < . Since a; € A, a; < pa,(z). Thus, pa(z) < Vpa,(x). The equality now follows
from pa;(z) < pa(z).

To finish the proof, show that A is a scheme-ideal. Let 2,y € D™ and p4(x) < pa(y). Then
for each index it py,(2) < pa(y) < y. Since A; is a scheme-ideal, p4,(2) = pa,(y), hence

pa(z) = pa(y). Thus, A is a scheme-ideal. O

The same results have been proved for semi-factors in [33]. Notice that scheme-ideals may not
be closed under intersection in contrast to the case of semi-factor ideals. For example, in the
domain shown below, both {22, yo, L} and {1, y1, yo, L} are scheme-ideals, but their intersection
{yo, L} is not.

52 CHAPTER 3. PRELIMINARIES

1, Y1 Y2

Yo

Proposition 3.3(2) says that schemes ordered by C” form a lattice if D is distributive. A question
arises : what can be said about other powerdomain orderings Cf and C!? The following result
shows that these orderings coincide for schemes in any domain. The same result for semi-factors
was proved in [33].

Theorem 3.4 Let D be an arbitrary domain and S, 52 two schemes. Then Sq Eb SS9 iff S Ct
Sy iff 51 T S,.

Proof. According to the definition of Eh, it is enough to prove that 5y P Sy iff Sy CF S5, Let
Sy C" $5. Consider any « € S5. We have to show the existence of an element z € 57 such that
z < x. Let 2/ € D™ g/ > 2. Since §; T’ 5, there exists y € S5 such that z = ps, (2') <y If
y = x, we are done. Otherwise, z and x are incomparable, and since z € |53 (because z < y),
zV x exists. Thus, 2V > 2 and 2V 2 € |93 (because S; is a scheme), a contradiction.

Let, conversely, S; C! S,. We are to prove that for every z € S, there exists z € 5 such that
<z Let ' € D™ 2! > z. Let 2 = ps,(2'). Since S; CF 9y, there exists y € 57 such that
y < z. If y =z, we are done. Otherwise, y V = exists, since y and = are bounded by z’, which
contradicts the fact that 57 is a scheme. Theorem is proved. O

Proposition 3.5 Let D = Dy x Dy (or D = D1+ D3). Then S is a scheme in D iff S = 51X 9
(or S = 51+ 52) for some schemes Sy and Sy in Dy and D, respectively. |

At this point, let us consider restrictions of our main definitions to the compact elements. First,
to be able to speak of projections of compact elements onto compact elements of strong ideals,
one must restrict the class of domain as the following lemma shows. Recall that ACC stands
for the “ascending chain condition” which states that there are no infinite ascending chains
$1§$2§$3§....

Lemma 3.6 If D is a domain, then the following are equivalent:

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 53

(i) For any strong ideal T and x € KD, pr(z) € KD.
(i) KD is downward closed, i.e. |KD =KD.
(iii) |a satisfies ACC for any x € KD.

Proof. (i) = (ii). Let 2 € KD and y < z. Then by (i) y = pjy(z) is in KD.

(ii) = (iii). Assume KD = |KD. If + € KD is such that |2 does not satisfy ACC, consider
a chain 71 € 29 € 23 < ... < z. Then 2z’ = L;z; is not a compact element, but ' < z. This

-

contradiction shows that |z satisfies ACC.

(iii) = (i). Let Z be a strong ideal and 2 € KD. Then pr(z) =V(y |y <z and y e KDNI).
Since | satisfies ACC, pr(2) is a join of only finitely many y’s and as such is compact. O

Therefore, if D satisfies any condition of the lemma, we can restrict our attention to compact
elements only. A projection is now defined as

pr(e) = \/ Yy for z € KD
y<zx and yel

That allows us to redefine semi-factors at the level of compact elements. We say that 7 C KD
is a compact semi-factor ideal if it is downward closed, closed under finite least upper bounds
and satisfies the slide condition for compact elements.

Proposition 3.7 Let D be a domain such that |KD = KD. Then T 1— TNKD establishes a
bijection between semi-factor ideals and compact semi-factor ideals.

Proof. It is easy to see that ZN KD is a compact semi-factor ideal whenever 7 is a semi-factor
ideal since compact elements are projected into compact elements. To see that the correspon-
dence is bijective, we must prove that 7 = {\/ X | X CZNKD, \/ X exists}. The D inclusion
is obvious. Conversely, let x € 7 and let X = |z NKD. Then X CZNKD and z = \/ X, which

proves the reverse inclusion and the proposition. |

Thus, one can reason about semi-factors entirely on the level of compact elements. In this aspect
semi-factors are better suited for developing the database concepts in the domain-theoretic
model. Another advantage of semi-factors will be seen when multivalued dependencies are
studies. However, schemes are more general than semi-factors and in most cases the desired
results can be stated for schemes.

We finish this section by two results of the same spirit. Both of them relate the properties of
schemes that one would expect in a domain like £ — V_ to the internal structure of the domain.

Observe that in £ — V_ no element of a scheme can be replaced by another element such that
the resulting set is still a scheme. To capture this property, we say that a scheme S5 in an

54 CHAPTER 3. PRELIMINARIES

arbitrary domain D is saturated if, for any @ € 5, there is no y € D,y # 2 such that (S Lz)Uy
is a scheme. We say that D is coatomic if every element is a meet of maximal elements. Notice
that £ — V_ is coatomic and all schemes in £ — V_ are saturated.

Proposition 3.8 If D is coatomic, then all schemes in D are saturated.

Proof. Let D be a coatomic domain. Assume that 5 a non-saturated scheme in D, i.e.
(S La)Uy is a scheme for some z € S and y # x. If § = {2}, then ps(z) = x for any z € D™ma*
and © < A,cpmax 2 = L since D is coatomic. Hence, if (5 L 2) U y were a scheme, y would
equal bottom yielding y = x. This contradiction shows that 5 has at least two elements. Now
consider three cases.

Case 1: y < x. Since D is coatomic, there exists y,, € D™** such that y,, > y but y,,, 2 x. Let
z = ps(Ym). Since y,, # @, z # x. Therefore, z,y € (5 L 2) Uy and zly which contradicts the
definition of scheme.

Case 2: y > z. Now we can find z,, € D™ such that z,, > 2 and z,, #? y. Let z =
P(s_x)uy(ﬂﬁm)- Since z,, 2 y, ¢ € S Lz and 2]z which again contradicts the definition of scheme.

Case 3: y and z are not comparable. Similarly, we can find z,, € D™ such that z,, > z and
Z,, 7y and the proof proceeds as in the second case. Thus, all three cases lead to contradiction
which proves the proposition. O

Corollary 3.9 Let D be a coatomic domain and S a scheme. If S’ C 9, then S is not a scheme.
O

The reader can easily establish a number of properties of saturated schemes. For instance,
even in distributive domains it is possible to find examples of saturated schemes which are not
semi-factors and examples of semi-factors which are not saturated. Saturated scheme-ideals may
fail to be closed under intersection. The converse of proposition 3.8 is not true: there exists a
domain in which all schemes are saturated but which is not coatomic.

Our next result is a precise characterization of those qualitative domains in which the concepts
of scheme and semi-factor coincide. Informally, this results states that in a certain class of
domains the concepts of scheme and semi-factor coincide iff the domain looks like £ — V_. The
proof is not given here. It relies on the theory of decomposition of domains developed by Jung,
Libkin and Puhlmann [88].

Theorem 3.10 Let D be a qualitative domain. Every scheme of D is a semi-factor iff

D ~]]Di

1€l

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 55

where each D; has no proper scheme; the schemes of D are in 1-1 correspondence with subsets
of I. O

3.1.3 Dependency theory

The purpose of this section is to develop some basic dependency theory for our domain model
of databases. Functional dependencies were introduced in Buneman et al. [33] for semi-factors;
here we show that all the results remain true for schemes. The major contribution of this
section is introduction of multivalued dependencies for generalized relations and proving the
decomposition theorem. However, some work must be done before we can define multivalued
dependencies. In the relational theory these dependencies establish relationship not only between
projections into two schemes, but also between projections into a complement of one of them,
i.e. all the operations of Boolean algebra — intersection, union and complement — are involved.
From proposition 3.3 we know that analogs of only two operations — intersection and union —
have been defined for the schemes so far. Therefore, we need to define complements for schemes.
In order to do that, it is necessary to restrict the class of domains. It will turn out that this
class consists of the qualitative domains.

Functional dependencies

Having introduced the notion of scheme, we can define functional dependencies. If 57,55 are
schemes in a domain D, then a functional dependency is an expression of the form 57 — 95.
Usually in the theory of databases with incomplete information dependencies are defined only
on the schemes projections into which do not contain tuples with null values. This condition
can be equivalently expressed as: for any record in a relation there is a record in a scheme which
is less informative than the relation record. In other words, if R is a relation and S is a scheme,

then S C! R.

Now we can define satisfiability for functional dependencies. Let R C D be a relation. We say
that R satisfies a functional dependency S; — So if 51,52 Cf R and ps,(z) = ps,(y) whenever

psi(¢) = ps, (y) for every z,y € R.

Functional dependencies in distributive domains have been investigated in [33] for the particular
case of semi-factors, and the following analogs of the Armstrong axioms are due to [33], where
F'is a set of functional dependencies and (Schemes(D), <) is the complete lattice of schemes
over distributive domain D (cf. proposition 3.3).

(a) If S1,5% € Schemes(D), 51 < 53 and Sy — 9 € F, then 9 — 51 € F.

(b) If forany i € [: S — 5; € F where 5,5; € Schemes(D), then S — \/;c; 5; € F.

56 CHAPTER 3. PRELIMINARIES

(c) If 59 — S3 € F and 53 — S3 € F, where 51,53, 55 € Schemes(D), then 51 — S5 € F.

We need the additional condition S — 55 € F to guarantee consistency since generally it may
not be the case that S C* R. The result of [33] proved for semi-factors is also true for schemes:

Proposition 3.11 The Armstrong Azioms (a)-(c) are consistent and complete for relations in
distributive domains.

Proof. Prove consistency first. (a) Let Sy — S3 € F. Then 53 C# R. Since 57 < S5 in
Schemes(D), |51 C |53 and Sy C” Sy. According to theorem 3.4, S; CF S5, hence Sy C! R.
Thus, 53 — 51 € F.

(b) Let S; C! R, i € I. Prove that S = Vier 5 C! R. Let r € R. Then for any i € I there
is such s; € 5; that s; < r. Therefore, s; = Viers; < r. Since D is distributive, s; € 5 (cf.
proposition 3.3), and S; C% R. Now let ps(z) = ps(y) for z,y € R. Then

psi(x) =\ ps.(2) =\ ps.(y) = ps,(y).

1€l el
Thus, S — Sy € F.

(c) is obvious. Completeness follows from the fact that our model is a generalization of the
standard relational model. Therefore, we have more relations available. |

Complements of schemes

Our goal is to introduce multivalued dependencies for generalized relations. A multivalued
dependency X —— Y, where X, Y are sets, uses the projection onto X UY. While U corresponds
to V in the domain model, there is no analog for the complement. More precisely, the poset
of schemes is a lattice if the domain is distributive, but schemes may fail to have complements
in contrast to the case of £L — V_. Thus, our goal is twofold. First, we define complements of
schemes and the proceed to introduce multivalued dependencies and prove the decomposition
theorem.

Consider the domain £ — V_. Its schemes correspond to subsets of £, with scheme-projections
being canonical projections. The complement of a scheme corresponds to projecting onto the
complementary subset of £. Suppose that we have defined the concept of a complement. Let p
be a scheme-projection and p the projection corresponding to the scheme’s complement. What
should the properties of p be? First, if we have any element @ € D, then p(z) A p(z) = L.
Suppose that z € D. Then p(z) “forgets” about information contained in p(z). The fact that
P is the complement of p means that all information contained in # can be reconstructed from
p(z) and p(x), i.e. z = p(z)V p(z). That means that in order to introduce complements, we

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 57

have to require that all principal ideals |z in D be complemented lattices. Moreover, they
must be uniquely complemented since we want to speak about the complement. The following
proposition shows why we restrict our attention only to qualitative domains.

Proposition 3.12 Any principal ideal of a domain D is a uniquely complemented lattice iff D
is a qualitative domain.

Proof follows immediately from the definition of qualitative domains and the fact that any
uniquely complemented algebraic lattice is Boolean, see Salii [154]. O

There is another elegant way to define complements due to Jung [87]. Let S C D be a scheme
in any domain D . We define 75 as the set of maximal elements of {2 € D : ps(z) = L}. It can
be shown that 7z is not generally a scheme. In order to be able to operate with complements,
we have to make two observations.

Proposition 3.13 Let D be a qualitative domain and S any scheme. Then |Ig = 1Z5. That
is, Iz is the set of mavimal elements of TIs. Moreover, 125 is a strong ideal.

Proof. |Zg C |Zz easily follows from the observation that y < pg(z) implies ps(y) = L. To
prove the renverse inclusion, consider an element z € |75, i.e. ps(z) = L. Let 2’ > z be a
maximal element. We finish the proof by showing that @ < pg(a’). If « is not under pg(a’),
then z = 2 A ps(2’) # L since |2’ is Boolean. Then z € | S and z < z, hence L = pg(z) > z, a
contradiction. Thus, 2 < pg(a’).

To show that |75 (and therefore 1Zs) is a strong ideal, consider an indexed family z; € D,i € I
such that ps(z;) = L for all ¢ and @ = \/;¢y2; exists. By [33] ps(z) = Ve ps(2;). Therefore,
ps(z) = L and @ € |Z5, which proves strongness. O

The following example shows why 7z may fail to be a scheme even in a qualitative domain:
S = {x1,y} is a scheme, but Zg = {z3} is not.

1, T2 Y

Given a scheme $ in a qualitative domain, we can correctly define its complement as 7. As we
mentioned above, the complement of a scheme may fail to be a scheme. However, complements
of semi-factors are schemes, as the following result shows.

58 CHAPTER 3. PRELIMINARIES

Proposition 3.14 The complement of a semi-factor is a scheme in any qualitative domain.

Proof. Let 5 be a semi-factor in a qualitative domain D). Denote the projection onto |7z as
P- (This projection is correctly defined since |Zg is a strong ideal.) Suppose that there are
x1, 2 € D™ such that p(q) > P(w2). Then ps(p(z1)) = L < ps(a2), and y = p(a1) V ps(a2)
exists since 9 is a semi-factor. Since pg(z3) < y and p(z2) < p(21) < y, 22 < y. Thus, y = 2,
since xo € D™, The lattice |z is Boolean, therefore z = pg(x2) A P(21) # L since p(zq)
is greater than pg(x2)’s complement in |z3. However, z < p(x1), thus ps(z) = L, which is
impossible since z < pg(z3) and hence is in |.S. This contradiction shows that projections of
maximal elements can not be comparable; thus the complement of 5 is a scheme. O

If 75 is a scheme, we say that S has the complement (which is 7<) and denote it by S. Of
course, any semi-factor is complemented by proposition 3.14.

Multivalued dependencies

Now that the complements have been defined, the definition of multivalued dependencies in
qualitative domains can be given.

Definition 3.3 Let D be a qualitative domain and S a scheme having the complement S. Let
S’ be a scheme. We say that a relation R C D satisfies multivalued dependency S’ —— S if for
every x,y € R with psi(xz) = ps(y) there exists z € R such that ps/(z)V ps(z) = ps(z) V ps(z)
and psi(2) V ps(z) = psi(y) V ps(y)-

If Dis £ — V_, this is the usual definition of multivalued dependency in a relational database.
Notice that multivalued dependencies, like functional dependencies, should be considered only
on schemes the projections into which do not contain null values. As it was shown above, it
means that a scheme is less than a relation in the Smyth ordering C¥. Therefore, in the above
definition the following should hold: S’V § C# R and VS Cf R. It can be easily concluded from
these inclusions that B C D™#*. Therefore we will consider only relations without incomplete
information when speaking of multivalued dependencies.

The above introduced functional and multivalued dependencies satisfy two standard properties.
The proof is immediate from the definitions.

Proposition 3.15 Let D be a qualitative domain, and S a scheme having complement S. Let
S’ be a scheme, and R a relation without incomplete information, i.e. a finite subset of D™,
Then

1) If R satisfies S" — S then R satisfies 5" — 5

2) If R satisfies 5" —— S, then R satisfies 5" —— S. O

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 59

It was shown in Buneman et al. [33] that the natural join operation in the relational algebra
corresponds to the join U' in the Smyth ordering. We have shown that the complement of a
semi-factor in a qualitative domain is a scheme and defined multivalued dependencies. Now we
are in the position to formulate the decomposition theorem.

Theorem 3.16 Let D be a qualitative domain, and R a relation without incomplete information
(that is, a finite subset of D™). Let S and 5" be semi-factors of D. Then R satisfies multivalued
dependency S —— S iff R = [ps V ps(R)] X [ps: V pg(R)], where join X is Lt

Proof. To simplify the notation, we will write ©g and Rg instead of pg(z) and ps(R). SV 5
will be denoted by $; and S’V S by Sy; the corresponding projections are z; and z.

Since S is the complement of rsVag = r1Vay = x for any x. By proposition 3.3, z1 = xsVag
and 23 = 2g V xs. We will also need the following fact: zs/ = 21 A 23. Indeed, since |z is a
Boolean lattice and 25 and 5 complement each other in |z, z1Az = (2sVag)A(2gVrge) = T
The following picture illustrates the relationship between different projections of z.

1 =2zsVag Ty =agVag

According to the definitions introduced above, R obeys S’ —— S iff 25 = yg implies the
existence of such z that z; = 1 and 2z = ¥5.

Recall the definition of the join: R’ X R” = min{z € D|3»' € R',+" € R" : ' v¢" < z}. For
example, if = 2’ V 2”, then z = 2’ X 2. In particular, # = z1 X x5 for any z. Having done
the preliminary work, we can now proceed to prove the theorem.

e Let R obey the dependency S/ —— 5. We must show that R = Ry X Ry. Suppose x € R.
Then © = 21 V 25, and x is not in Ry X Ry iff there exist ¢,¢" € R such that @ > t; V).
Assume such t,t" exist. Let v = tg V t’§ (it exists since it is bounded by x). Suppose

v @ D™, Then there is v € D™ ¢’ > v. Since both S and S are schemes, v = t5 and
v’§ = t’g. Therefore, v/ = tg V t’§ = v. This shows v € D™* Since v < #, v = . But then
z=v <t Vit <z This contradiction shows that 2 € Ry X Ry, i.e. R C Ry X Rs.

Let, conversely, © € Ry M Ry, i.e. for somet,t’' € R: x = t; Vt,. As we have shown above,
x € D™ Since 57 is a scheme, x1 = t1; projecting both parts into 5" we get zg/ = tg.
Analogously, xg = t%y,. Thus tg = t%,. Since R obeys 5" —— 5, there is such v € R that
vy =ty and vy = t,. Hence v = vy Vvg =3 V), =z, i.e. € R. Thus, R = Ry X R,.

60 CHAPTER 3. PRELIMINARIES

o Let, conversely, R = Ry X R;. We have shown above that for any z and y the element
21 V Yo is maximal if it exists; therefore, if 21 V yo exists for some z,y € R, it must belong
to R according to the definition of join.

Consider z,y € R such that s = ygr. Then psvs(y2) = psi(y2) Vps(y2) = ys Vps(ys)V
ps(ys) = ysr = xs < xq. Since both S and 57 are semi-factors, so is 5V §” [33]. Hence
z = Yy V 1 exists and is an element of R.

We will finish the proof that R obeys S/ —— S by showing that z; = a1 and z3 = ¥».
Calculate 211 21 = psivs(y2 V 21) = psi(y2) V ps(y2) V psi(z1) V ps(z1) = psi(ys: V yg) V
ps(ys'Vyg)Vpsi(zsVas)Vps(esVes) = ysiVps(ys) Vps(yg)VesVas = ysVas Vs =
xg' V xgs = x1. Similarly z9 = y3. Theorem is proved. O

Let us finish this section by an observation that supports the reasonings that led us to two
alternative definitions of scheme. It was said before that only a very natural assumption that
complete descriptions are projected into complete descriptions is behind the definition of scheme,
while in the definition of semi-factors it is implicitly assumed that each scheme is complemented
and projecting is just throwing away those pieces of information which belong to this comple-
ment. So it did not appear as a complete surprise that a scheme may fail to have a complement
even in a qualitative domain while a semi-factor is always complemented in such a domain.
The above theorem that relates multivalued dependencies and decompositions of relations in a
qualitative domain holds for semi-factors but not for schemes because we do need complements
and the possibility to work with the information “thrown away”. Notice, however, that the ’only
if” part remains true if S’ is an arbitrary scheme and $ is a scheme having complement 5.

3.1.4 Queries

In this section we shall find analogs of the main operations of relational algebra for generalized
relations. Schemes introduced before will be used to define projections. Generalized relations
will be considered as finite antichains in database domains. Let us describe the operations of
the algebra as in Libkin [99].

1. Union. Let D be a domain and Ry, Ry two relations. Then their union is defined as R{URy =
max(Ry U Ry). Observe that this is the join in the Hoare powerdomain. That is,

RiURy = Ry U’ Ry
We need the max operation because Ry U Ry may fail to be an antichain, but RjUR, always is.
R{UR, can be interpreted as the set of the most informative elements from R; and R,.

2. Difference. Let D be a domain and R, Ry two relations. Then Ry L Ry is the usual set
difference. Since R4 L Ry C Ry, it is a relation.

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 61

Intersection can be expressed as Ry N Ry = Ry L (R L Ry).

3. Cartesian (direct) product. Let Dy, Dy be two domains and Ry, R, relations in Dy, Dy respec-
tively. Then Ry X Ry is a relation in Dy X Dy defined as Ry X Ry = {(r1,7r2) | r1 € R1,72 € Ra}.

4. Projection. Given a (database) domain D, we define projection as projection into a scheme-
ideal |S"in D. If D is £ — V_, then projections thus defined coincide with projections in the
relational algebra.

If R C D is arelation and S is a scheme, pg(R) may fail to be an antichain. Therefore, we need
two operations of projection:

pg”m(R) = minps(R), pd*“(R) = maxpgs(R).

If R is a one-element relation, these two projections coincide and we will write simply ps(R).
The above defined operations also coincide for relations without incomplete information, i.e.
subsets of D™Ma%,

5. Selection. We can also define selection using the concept of scheme. First we have to define
conditions. As usually, if ¢1, ¢3 are conditions, then so are ¢q V ¢g, ¢c1&cy and —e¢q. Schemes are
necessary to define conditions we start with. Let 5,5’ C D be schemes, a € |5, z € D. Then
the elementary conditions are ps(a)fa, ps(z)fps/(z), where § € {<, <, =,#,>,>1}.

Let R C D be a relation. that is, an antichain in D. If ¢ : D — {true, false} is a condition, then
the selection is defined as

o(R)={z € R:c(z) = true}.

If we do not know what the class B of basic domains is and how D was constructed from the basic
domains, the above defined selection is all we can get. However, if we know a concrete procedure
of construction of D (for example, a term in the signature (x,4) with variables from B), then
we can define more complex conditions. For example, if the database domain is D x D x D,
then we are able to select those elements whose first and third projections coincide.

We can give the selection more power if we introduce binary relations on domains from 5. For
example, if P is a binary relation on Dy € B and |.5 = Dy, then we can introduce conditions like
(ps(x),a) € P. This is necessary because, for example, domain of natural numbers is represented
in domain theory as a flat domain N_ = {1, ng, ny, ng,...} where n; corresponds to the natural
number 7, and the ordering of N_ is given by letting L be less than all n;’s. We can not conclude
that 1 < 2 from this information. Therefore, we need a binary relation P on N_ describing the
ordering of natural numbers as comparing values stored in a database is one of the most typical
operations used in queries over relational databases. Therefore, it is essential that the selection
on database domains be powerful enough to be able to carry out various comparisons.

To define such powerful selection we first need the definition of similar schemes and a 1-1
correspondence between their scheme-ideals. In the above example of D x D X D schemes

62 CHAPTER 3. PRELIMINARIES

Dx{L}x{L}and {L}x{L}x D should be similar and 1-1 correspondence between their scheme-
ideals associates the first and the third projections of any record. This gives us a possibility to
compare projections on different schemes. As it was said earlier, we may want, for example, to
select records with coinciding first and third projections.

In what follows, assume that only record and variant constructors are allowed. That is, D can
be represented as ¢(Dq,..., D,) where t is a term in the signature (x,+) and D1,...,D, € B
(for example, N_ x N_ x (N_ 4 (Bool x N_))). We now define similarity of two schemes 5,9’
and mapping ¢s_s : |5 — |.9.

o If S is a scheme in D € B, then 5 is similar to itself and ¢g_, g is the identity mapping on
15.

e Let D = t(Dy,...,D,), where D; € B, i = 1,...,n. Suppose 9,5 are two schemes in
D. Assume that the last operation of ¢ is X, i.e. #(+) = #1(+) X ... X tx(-) and the last
operation of each t; is not x. Then § = Sy X ... x S and 5" = 57 x ... X S}, where
Si, S!are schemes in t;(D1,...,D,). Then S is similar to 5" iff there are ¢ and j such that
t; = t;, S; is similar to ST in t;(Dy,..., D) = t;(D1,..., Dy) and S; = {Ly(p,...p0)}>
Sy = AL, (D1,.D) s L # 40 # J. ¢ps_.s maps a record x € |.§ with only nonbottom ith
component x; € |.5; to the record whose only nonbottom jth component is c,osiﬁsjl(aci).

o If the last operation of the term is 4, then S = 57 + ... 4+ 5% and 5" = 5] + ... + 5] where
Si, S!are schemes in t;(Dq,...,D,). Then S is similar to S” iff each 5; is similar to 57 in
ti(D1,...,D,), and for any o € |5 : ps_gs(x) = c,osi_hglg(x) if x € 5;.

Example 3.4 Tet 5 = {L} x {L} x D and " = D x {L} x {L} be two scheme-ideals in
D x D x D. Then S and S5’ are similar and ¢s_g({L,L,2}) = {z, L, L}. Scheme-ideals
D+ ({L} xD)and D+ (D x {L}) are similar in D + (D x D).]

Now we can extend the list of possible elementary conditions by adding the conditions of form
vs—s'(ps(x))fps/(z) where 5,5 are two similar schemes in a database domain D.

As we said before, one may also want to define some binary relations on basic domains. Let
Pf, k € I; be a family of binary relations on D; € B, where [; is (possibly empty) set of indices.
We say that a scheme S of a database domain D = #(Dq,...,D,) is also a scheme in a basic
domain D; if S = ¢t({L},..., 5, ...,{L}) where S; C D, is a scheme. In this case we can identify
elements of |5 and |.5;.

The third type of elementary conditions includes the conditions (ps(z),a) € PF and (ps(2),ps/(x))
€ Pf where S, 5" are schemes in D; identified with S;, a € S; and k € I.

With such extensions being added, selection covers the usual selection in the relational algebra.

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 63

Example 3.5 Consider a relation with variants describing companies. FEach record contains
the following information: name, total donations for non-profit companies, gross revenue and
costs for profit companies. Below are examples of records with variants:

r1 = [Name: X, Status: (Non L profit: [Donations: 1,000, 000]}],

re = [Name: Y, Status: (Profit: [Revenue: 2,000, 000, Costs: 1,000, 000]}].

Let D be a domain of names. Then the above records are elements of a database domain
D x (N_ 4 (N_ x N_)). Consider the following schemes:

S1=A{Lp} x (N + ({In_} x{LNn_1})),

S ={lp} x ({in_}+(Nox{ln_}))
S3 = {Llp} X ({IN_} + ({LN_} x N-)).

Then 57, 59,55 are also schemes in N_ and 55 is similar to .55.

Let P be a binary relation on N_ such that (n;,n;) € P iff ¢ <j, (L,2) € P forall z € N_.
Consider the following conditions: ¢; = (ps,(2) # Ly_) (to be more precise, we should compare
ps,(x) with an element of |97, that is, with {Lp, Ly X {1}}), 2 = ((ps.(2),ps,(x)) € P).
Let R be a relation in the above database domain. Then o, (R) selects non-profit companies

from R while o.,(R) selects companies working well, that is, whose gross revenue exceeds costs.
|

6. Natural join. Join was introduced in [33] as the supremum in the Smyth ordering. That is,
given two relations (antichains) Ry, Ry C D, their join is By Uf Ry, Tt was proved that for domain
L — V_ the above defined operation coincides with the natural join in relational algebra. We
use more convenient and customary symbol X instead of L.

There is another way to think of the join operation. Given two generalized relations Ry, Ry C D,
their join Ry X Ry is the set of minimal (in D) elements which are greater than some element
of R and some element of Ry :

Ry X Ry=min{z € D|3Iry € Ry,73 € Ry : 1y < a,79 <z}

This formula follows from the definition of Ry U Ry and basic properties of the Smyth power-
domain ordering C¥ [33, 157].

Several conditions were given in Tanaka and Chang [164] that the analog of the natural join in
object-oriented model should satisfy. Informally, they are: 1) if there are no common attributes
of two relations, the result of the join is isomorphic to their direct (Cartesian) product; 2) if two
relations are defined over the same sets of attributes, the result of the join is their intersection;

64 CHAPTER 3. PRELIMINARIES

3) the join of two relations can be obtained as union of pairwise joins of their elements (if these
exist). Join is also known to be associative in relational algebra, see Ullman [168].

Let us formalize these properties.

1) Let Ry C Dy,Ry C Dy be two relations, and Dy N Dy = §. Let Ry = Ry x {L2} and
R, = Ry X {11} be two relations in Dy X Dy. Then R} X Ry = Ry x Rs.

2) Let Ry, Ry C D™** be two relations. Then Ry X Ry = R1 N Ry,

Formalizing property 3) we must keep in mind that the union of pairwise joins may contain
comparable elements while relations are antichains. Therefore, after finding union of individual
joins we have to eliminate some elements in order to obtain an antichain. According to Imielinski
and Lipski [78], there is no “semantically correct” way to do it. Since joining relations with null
values may often yield counter-intuitive results (cf. [78, 123]) we think that formalizing the third
property we have to eliminate nonminimal elements, i.e. to leave the least informative elements
among pairwise joins.

Let us illustrate it by the following example. Consider two relations:

‘ Name ‘ Room ‘ Phone ‘

Ry John 076 1 Ry
John 4 1595

‘ Name ‘ Room ‘ Salary ‘
| John | 076 | 12K |

Taking element-wise joins gives us two records over attributes Name, Room, Phone, Salary.
One is ¢ :‘ John ‘ 076 ‘ 1 ‘ 12K ‘and the other is ry :‘ John ‘ 076 ‘ 1595 ‘ 12K ‘ Clearly,
r1 < r9. Hence, taking maximal records into the result of the join operation tells us that John
is in the room 076, makes 12K and has the telephone number 1595, even though there is no
indication in Ry and R, that this should be the case. Taking the minimal record ry as the result
is indeed consistent with the information stored in Ry and Ry. Summing up, the third property
of the join operation is the following.

3) Let R,R' C D be two relations, and R = {ry,...,r.}, R = {r},...,7,}. Then R X R' =
min(U({r:} X {ri} i =1,...,n,5=1,...,m)).

4) If R1, Ry, Rs C D are three relations, then Ry M (R X R3) = (Rq X Ry) X Rs.

Proposition 3.17 The join operation L' satisfies 1) - 4).

Proof. Let us first rewrite the definition of the join operation as Ry X Ry = min{ry V ra|ry €
Ryi,7m9 € Ry, 71 V 1y exists }.

1) If { € R}, then r{ is of form (ry, 1) for some ry € Ry. Similarly each r; € Ry is of

3.1. DATABASES WITH PARTIAL INFORMATION AND DOMAIN THEORY 65

form {L,ry) for some ro € Ry. Thus for any r; € R} and r, € R} their join exists; in fact
) yr 1 2 2 J ;)

1, LYV {L,r) = {rq,r2). Notice that {{rq,r2}|r1 € R1,79 € Ro} is an antichain provided that
b b b b b p

so are Ry and Ry. Thus R} X R, = Ry X Rs.

2) If both Ry and R; are subsets of D™ then rqVry exists iff 11 = ro. Hence Ry X Ry = R1NR,.

3) follows immediately from the formula for the join operation given above and an observation
that {r'} X {r"} is 7/ vV r" if this join exists and empty otherwise.

4) follows from the basic properties of the powerdomain ordering CF, see [33, 67, 157]. O

Recall that the join operation in the algebra of Zaniolo [181] is defined only if there are no
occurrences of null values for attributes which are common for both relations. In this case,
starting with antichains, we always obtain an antichain as the result. Therefore, even though
Zaniolo suggests taking maximal elements among individual joins of records and the Smyth join
operation takes minimal elements, they coincide in the limited setting where Zaniolo’s operation

is defined.

It is known that in relational algebra join can be expressed via projection, selection and Cartesian
product. This is not true for generalized relations. However, if the underlying domain is the
direct product of domains, then such a representation for join exists. Let D = Dy X ... x D,
and Ry, Ry be two relations in D. For any € D by x; we mean its ith component, i.e.
projection to D;. Let R C D be a relation, and I(R) = {i|3r € R : r, # Lp,}. Let
Si={L} X ... X Dy x ... x {L} where k(i) = i if ¢ < n and n L i otherwise and Dy, is the
1th factor among 2n factors. Then S; is a scheme in D x D. Let S be the direct product of such
Sis that 7 € I(Rq) for i <n and ¢ L n & I(Ry) for i > n. Let ¢ be the conjunction of conditions
Ps; (%) = ps,yi(x) for all ¢ € I(Ry) N I(Ry). Then

Rl X R2 = pgmn(O'C(Rl X Rz))

We finish this section by observation that the above defined operations indeed form an algebra,
that is, generalized relations are closed under union U, difference, Cartesian product, projections,
selection and join. The proof is immediate from the definitions.

Theorem 3.18 Generalized relations are closed under the operations U, L, X, p™", p™*® o, X.
O

Summing up, we have seen how relational algebra can be reconstructed in the domain model.
However, we shall not use this algebra as the basis for our languages. In section 3.2 we describe a
new formalism for design of relational query languages which will generalize smoothly to many
kinds of collections, ordered or not. We shall use that formalism as a foundation for query
languages for partial information.

66 CHAPTER 3. PRELIMINARIES

3.2 Languages for programming with collections

3.2.1 Data-oriented programming

In this section we give an overview of the data-orientation as a new programming language
paradigm (cf. Cardelli [35]) and demonstrate some important instances such as languages for
sets and bags. In particular, we cover a new approach that uses universality properties of
collections as a source of operations that are to be included in a language.

It was observed by Cardelli [35] that while traditional programming languages are mostly al-
gorithmic and procedure-oriented and pay little attention to handling of data, dealing with
information systems in general and databases in particular requires more emphasis on the data.
Databases are designed using some data models, e.g. relational, complex object, etc. To make
it possible to program with data, it is necessary to represent the concept of a data model in a
programming language. The best way to do it is to use type systems as a representation of data
models.

Representing data models via type systems often allows static type-checking of programs which
is particularly important in handling large data as run-time errors are very costly. To make sure
that the type system is not too restrictive and does not limit the programmer’s freedom, some
form of polymorphism must be allowed. We allow all type constructs to be polymorphic, e.g. a
set type constructor can be applied to any type, a product type constructor can be applied to
any pair of types etc.

It was suggested by Cardelli [35] that one use introduction and elimination operations associated
with a type constructor as primitives of a programming language. The introduction operations
are needed to construct objects of a given type whereas the elimination operations are used to
deconstruct them, or rather to do some computation with them. For example, for records, the
introduction operation is forming a record with given fields, and the elimination operations are
projections.

Since databases work with various kinds of collections, it is important to look at the introduc-
tion and elimination operations associated with those collections. One way to do it is to find
operations that are naturally associated with collections. To do so, we define semantics of a
collection type and try to characterize it by finding out if it has a universality property.

Universality properties immediately tell us what are the introduction and the elimination op-
erations. Assume we have a collection type constructor that we denote by C(-) and a type t.
Recall that by universality property we mean that it is possible to find a set € of operations on
the semantic domain of C(¢), which we denote by [C(?)], and a map n : [t] — [C(¢)] such that
for any other Q-algebra (X, Q) and a map f : [t] — X there exists a unique Q-homomorphism
T such that

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 67

Hence, the introduction operations are 1 and those in € as we can use them to construct
any object of type C(¢) from objects of type t. The elimination operations are given by the
universality property. In fact, the general elimination operation is the one that takes f into fT.
It is often called the structural recursion.

Notice, however, that the structural recursion has as its parameters the interpretation of the
operations of £ on X. Should it happen that in a particular application those do not satisfy
the intended axioms (usually equations), the resulting program f* may not be well-defined.
(We shall see some examples shortly). Therefore, it is particularly important to ensure well-
definedness. One way to do it is to require that (X, Q) be ([C(s)],) for some type s. Then for
any function f of type ¢t — C(s), the unique completing homomorphism of the diagram below,
fT, is of type C(t) — C(s) and it is always well-defined.

[1] —— ([C(1)],)
f* = eat(f)
(IC(s)],2)

The reader who chose not to skip the optional section on adjunctions and monads can now be
rewarded. He can see now that there is no mysticism in what we have been doing. In fact, the
general form of the structural recursion corresponds to the adjunction given by the universality
property while the restricted form is precisely the Kleisli category of the corresponding monad!
Indeed, fT in that case is what we called ext(f).

More precisely, assume that semantic domains of all types are objects in some category A and
that C is a functor from A to Q-Alg. Since every [t] is an object of A, there exists a forgetful
functor U : Q-Alg — A. In fact, U simply “forgets” the additional structure given by €, that is,
U(([C(H)],) = [C(¢)]. Further assume that 7 is a natural transformation between id and CU
(this will be the case on all applications). Then the universality property stated above means
that C is left adjoint to U, that is, C 4 U.

68 CHAPTER 3. PRELIMINARIES

Let (T,n, 1) be the monad associated with the adjunction C 4 U, where T = UC. Then, for any
type t,] is an arrow from [¢] to [C(¢)]. In other words, we can regard n as a polymorphic

function of type t — C(¢). Similarly, 20 is an arrow from [C(C(¢))] to [C(¢)]. Thus, p can be
understood as a polymorphic function of type C(C(?)) to C(t).

Finally, T = UC is a functor on A. Given a function f:s — ¢ and its semantic interpretation
[f] which a function from [s] to [¢] in A, T([f]) is a function from [C(s)] — [C(?)]. That is, T
can be regarded as a polymorphic constructor that takes a function of type s — ¢ and returns
a function of type C(s) — C().

Associated with a monad, there is its Kleisli category. In particular, there is a functor from the
Kleisli category of a monad to the original category A whose action on an arrow A — T(B) in
the Kleisli category is an arrow T(A) — T(B) in A. In our terminology, this can be represented
as a polymorphic constructor that takes a function of type ¢t — C(s) and produces a function of
type C(¢) — C(s). This constructor corresponds to taking f into fT in the universality diagram
when the target is ([C(s)], Q). In our terminology, this constructor is called ext. Its examples
for various adjunctions have been given in section 2.3.

The fact that the Kleisli category describes a monad can be translated into certain equations on
the polymorphic functions and constructs defined above. It is a simple exercise to go through
the constructions of section 2.3 and see that the following hold:

ext(f) = poT(f) p = ext(id) T(f)=ext(no f)

Therefore, there are two equivalent presentations of the restricted form of structural recursion:
one is (n, ext) and the other is (T, n, p).

In two subsequent sections we apply this approach to sets and bags. Before we proceed with
the technical development, let us offer some remarks on the origins of this approach and some
of its features that are out of the scope of this thesis.

This approach finds its origins in functional languages like Machiavelli [127] which use special
constructs to work with sets. It was first proposed in Breazu-Tannen, Buneman and Nagqvi
[25] (a related language was studied almost simultaneously by Immerman, Stemple and Patnaik
[86]). Its various restrictions, properties and generalizations to other collections were studied in
Breazu-Tannen, Buneman and Wong [26], Wong [179], Libkin and Wong [104, 105, 106, 107, 108]
and Suciu [161].

There are a few logical languages for complex objects, e.g. COL of [6] and f-logic of [90].
However, recently the idea of using functional languages rather than logical ones for database
programming has been advocated by many researchers. A survey of functional languages for

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 69

databases can be found in Buneman [30]. Mathematical foundations for development of such
languages for relational databases have been studied in Hillebrand, Kanellakis and Mairson [72]
and Hillebrand and Kanellakis [73]. Atkinson et al. [16] point out that one of the advantages of
using functional languages is having a simple comprehension syntax associated with them that
closely resembles conventional query languages like SQL. It is important to note that for the
languages studied here there is an associated comprehension syntax that gives us the languages
of exactly the same expressive power, see Buneman et al. [34]. Initially, the idea of using
comprehensions in functional programming appeared in Wadler [175]. Immerman, Patnaik and
Stemple [86] and Stemple and Sheard [159] studied languages closely related to those to be
presented shortly. There is an important distinction between their approach and the one that
we are using here: the main computing engine of their language, the set-reduce operation, is
based on nondeterministic choice of elements from a set, whereas there is no nondeterminism in
any of the languages we study. A functional language for sets based on the operations coming
from the consideration of the Plotkin powerdomain was studied in Poulovassilis and Small [140].

In the next section we describe two forms of structural recursion on sets. We discuss problems
with them such as non-well-definedness, and show how to overcome these problems by imposing
simple syntactic restrictions which correspond to the ext constructor. The language thus ob-
tained turns out to be equivalent to what is known in database theory as the nested relational
algebra. Strictly speaking, there are several nested relational algebras and calculi: of Thomas
and Fischer [167], of Schek and Scholl [156], of Colby [41] and of Abiteboul et al. [2]. But since

all of them are known to be equivalent, we speak of the nested relational algebra.

The methodology of using structural recursion and monads has the advantage of being easily
applied to any kind of collections for which a universality property is known. We show how to
use the approach to design the language for nested bags. We shall also discuss some properties
of query language for bags and its representation in a set language. These results will play
an important role when it comes to choosing primitives to be used in the implementation of a
language for sets and or-sets.

3.2.2 Sets

The language being described is designed to work with nested sets and records. For simplicity of
exposition, we assume only products (these are sufficient to simulate records). Types of objects
(object types) are given by the following grammar:

tu=0b| unit | bool | txt |{t}

Here b ranges over an unspecified collection of base types (like int, string etc.) and wunit is a
type whose domain consists of a unique element denoted by ().

70 CHAPTER 3. PRELIMINARIES

Semantics of the product type is as usual: [t X s] = {(z,y) | € [t],y € [s]}. Semantics of the
set type is the finite powerset. That is, [{t}] = {X | X Caa [t]}-

Expressions of the language have type s — t where s and ¢ are object types. Let us consider the
question of what should be included into such language. For each type constructor there must
the introduction and the elimination operations. For products these are pair formation and two
projections. Since all expressions are functions, we include (f,g):sxt — rif f:s — r and
g:t—randm :sXt— s,my: 58Xt — t. For type unit there is only one introduction operation
!':t — wunit which always returns the unique element () of type unit.

To see what must be included for sets, recall that the semantic constructor of the set type, the
finite powerset Pg,, can be regarded as a functor from Set, the category of sets, to SLg, the
category of join-semilattices with zero. Moreover, Py, is left adjoint to the forgetful functor U :
SLo — Set and 7 defined by nx : X — Pg,(X) where nx(2) = {2z} is a natural transformation
from id to UPg,. This tell us that for any join-semilattice with zero (A,V,0) and a function
f: X — A there is a unique homomorphism f* such that the following diagram commutes:

Therefore, the introduction operations for the set type constructor are (J, the singleton formation
n and union U. To represent any constant ¢ of type t as a function, we make it a function
Kec:unit — t. Thus, §) is represented in the language as a function empty : unit — {t}.

The universality property also tells us what the decomposition operation is. The following
function is uniquely defined, provided e and u supply its range with the structure of a semilattice

with zero:
fun s_srule, h,u](0) = ¢
| ssrule hyu]({z)) = A(2)
| s_srule, h,ul(AUB) = u(s_srule, h, u|(A), s_srule, b, u|(B))

Here s_sru stands for the “structural recursion on the union presentation of sets”. So, one
possibility to deal with sets is to add the empty set, singleton formation, union and s_sru as
operations on sets.

However, if e and u do not supply the range of s_sru with the structure of a semilattice with
zero, then s_sru may not be well-defined. For example, if e is 0 of type int, h always returns

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 71

1, and w is +, one may think that s_sru[0, Az.1,+] is the cardinality of a set. But this is
false as the following example shows: 1 = s_sru0.Az.1, +]({1}) = s_sru[0.Az.1, +]({1,1}) = 2.
Unfortunately, Breazu-Tannen and Subrahmanyam [27] showed that checking if s_srule, h,u] is

well-defined is undecidable.

To ensure well-definedness, we have to go to the monad or its Kleisli category as it was explained
in section 3.2.1. Going back to the examples from section 2.3, we can see what the operations
T, p and ext are. T simply maps a function of type s — ¢ over a set of type {s} returning a set
of type {t}. For example, T(Az.z 4+ 1){1,2,3} = {2,3,4}. From now on, we shall call it map. p
takes a set of sets of type s and returns their union. For example, u({{1,3,5},{2,4,6},{1,5}}) =
{1,2,3,4,5,6}. And ext(f) is defined as p o map(f).

Thus, at this time we can add map(-) and p as the elimination operations to the language.
Note that there is still no way to interact between sets and products and to compare ob-
jects. So, we add an operator py : s X {t} — {s x t} whose semantics is pa(z,{y1,...,¥n}) =
{(z,y1),...,(z,y,)} and the equality test. The operator py comes from the notion of a strong
monad, see Moggi [118]. Finally, to make the language compositional, we allow composition of
functions.

The language we have obtained is shown in the figure 3.1 below. It is denoted by NRL (nested
relational language). We have added the type of booleans and the if-then-else construct. For
all expressions in the figure 3.1 we showed their most general types in the superscripts. In the
future, those superscripts will be usually omitted as the most general type of any expression can
be inferred.

Writing NRL expressions we shall occasionally use one level of A-abstraction (no higher order
functions) and application of a ALterm to an object. This is possible because there is a calculus
equivalent to A’RA which allows such operations, see Breazu-Tannen, Buneman and Wong [26]

and Libkin and Wong [105].

The following was proved in Breazu-Tannen, Buneman and Wong [26], Paredaens and Van Gucht

[132] and Wong [179].

Theorem 3.19 1) NRL has precisely the expressive power of the nested relational algebra.
Moreover, if eq is replaced by either of membership test, subset test, intersection or difference
together with an emptiness test, the expressive power remains the same.

2) NRA is conservative over relational algebra. That is, the expressive power of the sublanguage
of NRA obtained by restricting input and output types to flat types (that is, sets of products of
base types) is precisely that of the relational algebra. |

This theorem tells us about limitations of the language. Since it has essentially the power of the
first order logic, it can not express recursive queries or parity of cardinality. There are various
tools for analyzing the expressiveness of the first order logic, such as Ehrenfaucht-Fraissé games,

72

CHAPTER 3. PRELIMINARIES

Category with products

g:u—s f:s—1 c:bool f:s—t g:s—1 fiu—s g:u—t
fog:u—t if c¢then felseg:s—t (f,9):u—sxt
st — s ot isxt —t et — unit
Ke:unit — Type(c) idt it —t eq® : s X s — bool

Set monad

Pt s x {t} — {sx 1}

n' it — {t} Ut

A x {1y = A1)

f:s—1t

pt {13} — {1}

empty’ : unit — {t}

map f:{s} — {1}

Figure 3.1: Expressions of NRL

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 73

0/1 laws (see Fagin [51]), Hanf’s lemma (see Fagin et al. [52]). Here we demonstrate another
tool, the bounded degree, which was proposed by Libkin and Wong [108]. It has an advantage of
being more uniform than other techniques.

Let G = (V,E) be a graph. Define in-deg(v) = card({v’' | (v',v) € E}) and out-deg(v) =
card({v' | (v,v") € E}). The degree set of G, deg((), is defined as {in-deg(v) | v € V} U
{out-deg(v) | v € V} C N. One of the reasons why most recursive queries are not first-order
definable is that they may take in a graph! whose degree set contains only small integers and
may return a graph whose degree set is large. The definition below captures this intuition.

Definition 3.4 Let L be a language. It is said to have the bounded degree property (at type
s)if, for any f : {s x s} — {s x s} that is definable in L and for any number k there exists a
number ¢, depending on f and k only, such that card(deg(f(G))) < ¢ for any graph G satisfying
deg(G) C {0,1,...,k}.

First, let us show how the bounded degree property can be used to prove various inexpressibility
results. We consider the following queries:

e chain : {s x s} — bool is a query that takes a graph and returns true iff the graph is a
chain, that is, a tree such that the out-degree of each node is at most 1.

o bbtree : {s x s} — bool is a query that takes a graph and returns true iff the graph is a
balanced binary tree, that is, a binary tree in which all paths from the root to the leaves
have the same length.

o dic : {s X s} — {s x s} is the deterministic transitive closure. That is, if G = (V, F)
is a digraph, then dtc(G) = (V, E’) where (vy,v;) € E’ iff there is a path (vy,v2) €
E, ... (vk_1,v;) € F such that v;41 is a unique descendant of v;, ¢ = 1,...,k L 1. See
Immerman [84].

The deterministic transitive closure is a first-order complete problem for DLOGSPACE [84]. It
is not hard to show that chain and bbtree are at most as hard as déc. That is, if £ is a language
that has at least the power of the first order logic (relational algebra), then both chain and
bbtree are expressible in £ augmented with dtc, see Libkin and Wong [108].

Proposition 3.20 lLet L be a language that has at least the power of the relational algebra.
Then, if L has the bounded degree property at type s, then neither chain : {s X s} — bool nor
bbtree : {s x s} — bool is expressible in L.

!We use graphs for the simplicity of exposition. Relational structures of arbitrary finite arity can be used.

74 CHAPTER 3. PRELIMINARIES

Proof. We offer a proof by picture. Assume chain is definable; then it is possible to define an
expression that, when given a chain as an input, returns its transitive closure. As shown below,
using chain it is possible to determine if a precedes b by re-arranging two edges and checking if
the resulting graph is a chain. First, edges from a and b to their successors a’ and b’ are removed
and then two edges are added: one from a to b' and the other from the node with no outcoming
edges to a':

a % b J
b...b/ a/....a//

But this contradicts the bounded degree property as we started with an nlnode graph whose
degree set is {0, 1} and ended up with {0,1,...,n}.

If bbtree is definable, it is possible to determine if two nodes in a balanced binary tree are at
the same level by re-arranging two edges as follows and checking if the result is still a balanced
binary tree:

Again, we start with an nlnode graph whose degree set is {0, 1,2} and, making cliques of the
nodes at the same level, end up with a graph whose degree set has cardinality logy(n 4 1). O

The main reason we study this property is that it holds in NRL.

Theorem 3.21 NRL has the bounded degree property at base types.

Proof sketch. Let f: {bx b} — {b x b} be an NRC expression where b is a base type. Then,
by conservativity, f is equivalent to a relational algebra expression. Let E be an input to f and
E' = f(F); both E and E’ are sets of pairs of elements of type . Then for some first-order

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 75

expression F' we have YaVb : (a,b) € E' — F(a,b, F') where FE appears in F as a predicate of
form E(z,y).

By a neighborhood of radius 7 of z in £ we mean the set of all nodes whose distance from 2 (that
is, the length of a minimal path in £') does not exceed r. We denote the r-neighborhood of z by
N.(z). By N,(X)wemean |J,cx N,(2). According to Gaifman [55], F' is a Boolean combination
of certain sentences and formulae with a, b as free variables in which all quantifiers are bounded
to some neighborhoods of @ and b. Moreover, the maximal radius of those neighborhoods, r,
is determined by F. If deg(G) C {0,...,k}, then it is possible to find the number ¢, of all
nonisomorphic neighborhoods of radius up to r. In fact, ¢, < pﬂpa where p, = (2k 4+ 1)" is an
upper bound on the size of N,(z). (Whenever we speak of a neighborhood, we assume we also
know its “center”. This is the reason for multiplying by p., which represents a choice of the
center element).

Now consider a partition Xy,..., Xy, ., of the set of nodes into subsets of nodes having iso-
morphic neighborhoods of radius 2r + 1. Let aj,a; belong to the same class X;. If b &
Nory1(a1) U Nopyq(az), then N.(aq,b) and N,(az,b) are isomorphic. In particular, (ay,b) € E’
iff (ag, b) € El.

Let Y, = {b | (a,b) € E'}. Then there exists a constant d; that depends on r and k only
such that | card(Y,,) L card(Y,,) |< d; whenever a1, a; € X;. Indeed, for elements b outside of
Nypy1(a1)UNg,11(az), (a1, b)iff (az,b), and hence the only difference is in the edges either inside
or between those neighborhoods. But the upper bound on the number of those is determined
by k£ and r. In fact, it is at most Qp%T_H + 2pg,41. Now assume that a; and ag are such elements
in the class in the partition that the cardinality of Y,, is minimal and the cardinality of Y,, is
maximal. Then we derive that the number of different outdegrees restricted to targets outside
of respective 2r + 1 neighborhoods is at most d;. Since the number of possible outdegrees
inside 2r 4+ 1 neighborhoods is bounded above by p3,41, we obtain that the number of different
outdegrees in a given partition class X; is at most pa,41 + d;. Since the number of elements in
the partition is at most ¢g,41, this tells us that the number of distinct outdegrees in F’ depends
only on k and r. In fact, it is bounded above by g2, 11 > 12" (par+1+d;). The proof for indegrees
is similar. |

Corollary 3.22 None of the following are expressible in NRL: dtc, transitive closure, tests
for connectivity of directed and undirected graphs, testing whether a graph is a tree, testing for
acyclicity. O

Therefore, there is a need in primitives that enrich the expressive power of the language. We
have seen one of them - the structural recursion on the union presentation. Alternatively, one
can construct sets using “insert presentation”, and define s_sri, structural recursion on the insert
presentation, as follows:

76 CHAPTER 3. PRELIMINARIES

fun s_srife,](0) e
| s_srile,i|(insert(z, X)) = i(x,ssrile, (X))

The typing rules for both structural recursion constructs are as follows:

e:t h:s—t1 witXt—1 e:t tisXt—1
s_srule, hyul 1 {s} — ¢ s_srife,i] 1 {s} — ¢
The semantics of s_sri is given by s_srife,1]({z1,...,2,}) = i(21,i(22,...i(2p,€)...)). Unfortu-

nately, s_sri retains the major of problem of s_sru. It is well-defined iff i(z,i(z,a)) = i(z,a) and
i(z,i(y,a)) =1i(y,i(z,a)). That is, it must be irrelevant in which order elements of a set are pro-
cessed and how many duplicates are found. It was shown by Breazu-Tannen and Subrahmanyam
[27] that these conditions are generally undecidable.

So, both forms of the structural recursion can express recursive queries like transitive closure,
but they are not necessarily well-defined. The question arises: is there a well-defined construct
that adds sufficient power to the language?

One solution proposed by Abiteboul and Beeri [1] and Gyssens and Van Gucht [70] was to
include powerset as a primitive. The type of powerset is {t} — {{t}} and it returns the set of
all subsets of a given set. It was shown by Abiteboul and Beeri that many recursive queries,
such as the transitive closure, can be expressed in NRL(powerset). Moreover, Breazu-Tannen,
Buneman and Wong [26] and independently Gyssens and Van Gucht [70] showed that

Theorem 3.23 NRL(s_sri) ~ NRL(powerset). O

However, using powerset has a big disadvantage: it has exponential complexity. For example,
to compute transitive closure of a relation, it is necessary to take the powerset of the total
relation of the domain. Moreover, it was shown recently by Suciu and Paredaens [162] that
any expression for transitive closure in NRA(powerset) needs exponential space to be evaluated.
Thus, using powerset as an alternative to the structural recursion is unsatisfactory.

Another alternative was proposed by Libkin and Wong [105]%. It is the loop construct given by

fi:s—s

loop(f): {t} xs—s

2] was informed recently that Saraiya [155] studied the same construct and proved one direction of theorem
3.24.

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 77

with the following semantics: given an n-element set X and an object z : s, then loop(f)(X,z) =

f™@). Then the following holds:
Theorem 3.24 NRL(s_sri) ~ NRL(loop). O

We shall prove a similar theorem for bags later. The proof of theorem 3.24 is essentially the
same. Note that simulation of loop with s_sri is efficient, while the reverse simulation requires
exponential time. In the subsection dealing with bags we shall demonstrate an efficient simula-
tion.

3.2.3 Bags

Sets and bags are closely related structures. While sets have been studied intensively by the
theoretical database community, bags have not received the same amount of attention. However,
real implementations frequently use bags as the underlying data model. For example, the “select
distinct” construct and the “select average of column” construct of SQL can be better explained
if bags instead of sets are used.

To use our approach, we first change the type system to

tu=0b| unit | bool | txt |{t}

where the {||} brackets are used for bags. To see what the bag constructs are, we must exhibit
a universality property for bags.

Let X be a set and Py(X) the set of all finite bags of elements of X. Define ¥ as the additive
union on bags. For example, {|a,a,b} W {a,b,b,b]} = {a,a,a,b,b,b,b[}. Then (P,(X),w,{[})
is the free commutative monoid generated by X. That is, for any other commutative monoid
(A, %, €), any map [from X to A and n : X — Py(X) defined by n(z) = {af}, there exists a
unique monoid homomorphism fT such that the following diagram commutes:

X — 1 (py(X), 8,)

f—l—

(A, *,€)

78 CHAPTER 3. PRELIMINARIES

Therefore, the introduction operations for the bag type constructor are the empty bag {[},
the singleton formation which we denote by b_n to distinguish it from the corresponding set
construct, and the additive union .

The universality property also tells us what the elimination operation is. The following function
is uniquely defined, provided e and u supply its range with the structure of a commutative
monoid:

fun b_srule, h,u](0) = e
| b_srule, h,u]({z}) = h(x)
| b_srule,h,u](AUB) = u(bsrule, h,u](A), bsrule, h,u](B))

Note that calculation of cardinality of bag as b_sru[0, Az.1,4] is now correct as 0 and 4 do
supply N with the structure of a commutative monoid. However, b_sru[0,id, L] is not well-
defined because L1 = b_srul0,id, L|({|1,2[}) = b_sru[0,id, L]({2,1[}) = 1. The reason of course
is that 1 is not commutative. Moreover, it was shown by Breazu-Tannen and Subrahmanyam
[27] that checking preconditions for b_sru to be well-defined is generally undecidable.

There is an insert presentation of the bag structural recursion given by the construct

et 1:8Xt—1
bosri(i,e): {s[} — ¢

Its semantics is similar to the semantics of s_sri. Moreover, it has the same expressive power
as b_sru. However, it is required that 7 satisfy the commutativity precondition: i(a,i(b, X)) =
i(b,1(a, X)), which again can not be automatically verified [27].

Therefore, we need to impose syntactic restriction to ensure well-definedness, that is, we must
go from the adjunction to the monad. In this case it means adding mapping of a function over
bags, b_map, and flattening bag of bags, b_u. For example,

bomap(Az.x + 1)({1,1,2,3,3}) = {2,2,3,4,4|}
bop I, 10, {1, 1 {11, 2, 20 = {11, 1,1, 1,1, 2,2}

Note that unlike mapping over sets, b_map always preserves the cardinality of a bag.

Now we can add the bag monad constructs shown in the table below to the general categorical
constructs (composition, pairing etc) to obtain the language that we call NBL — the nested bag
language.

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 79

Bag monad

bpy s x Qb — fsxtf bt =iy W el < i — {ib

f:s—1t
b QY — G bempty” s unit — Qi bomap 7= s} — 170

Recall that the equality test was included in ANRL, and we showed that it was enough to define
various other tests (membership, subset), difference, intersection etc. However, this is not the
case with bags. Moreover, with bags we have a new important construct: duplicate elimination.
Our first goal is to study the relative expressive power of the following operations (see Grumbach
and Milo [60] and Libkin and Wong [105]) with respect to MBL. In what follows, count(d, B) is
the number of occurrences of an element d in a bag B.

e monus : {s[} x {s} — {s|}. monus(Bq, Bz) evaluates to a B such that for every
d : s, count(d,B) = count(d, B1) L count(d, By) if count(d, By) > count(d, By); and
count(d, B) = 0 otherwise.

o maz : {sf} x {s|} — {s[}. maxz(Bq, Bz) evaluates to a B such that for every d : s,
count(d, B) = max(count(d, By), count(d, By)).

o min : {s]} x {s]} — {s[}. min(By1, Bz) evaluates to a B such that for every d : s,
count(d, B) = min(count(d, By), count(d, By)).

® eq:5 X s — bool — equality test.

e member : s X {s[} — bool — membership test.

o subbag : {s[} x {s[} — bool — subbag test.

o unique : s} — {s|}. unique(B) eliminates duplicates from B. That is, for every d : s,

count(d, B) > 0 if and only if count(d, unique(B)) = 1.

The following result of Wong (see Libkin and Wong [105]) gives a precise characterization of
expressive power of these constructs relative to NBL.

Theorem 3.25 monus can express all primitives other than unique. unique is independent of
the rest of the primitives. min is equivalent to subbag and can express both max and eq. member
and eq are interdefinable and both are independent of mazx. |

80 CHAPTER 3. PRELIMINARIES

The results of theorem 3.25 can be visualized in the following diagram.

monus

min ——— subbag unique

/

maz eq

member

We therefore work with the strongest combination of those primitives: monus and unique. The
language NBL(monus, unique) will be denoted by BOL (Bag Query Language).

How can we study the expressiveness of BOL? One idea is to find a set language equivalent to
BAL in terms of expressive power. Here we exhibit such a language. Add natural numbers, N,
as a base type equipped with the following: addition +, multiplication -, modified subtraction
(monus) = and summation) :
f:s—N
> f:{s} =N

with semantics - f({z1,...,2,}) = f(21)+ ...+ f(2,,). Observe that 4+ can be expressed with
>

Theorem 3.26 BOL ~ NRL(N, X, -, =). 0

Of course, in order to speak of the equivalence of the languages with different type systems, one
has to give a translation between those type systems. For theorem 3.26, sets are translated into
bags in a straightforward manner and bags are represented as sets of pairs “element-number of
occurrences”.

One of the reasons this equivalence is useful is that the set language equivalent to BQL possesses
what is called the conservative extension property. That is, its expressive power is independent
from the set height of the intermediate data, see Libkin and Wong [105]. As a consequence,

Theorem 3.27 Let U be a property of natural numbers. That is, U C N. Then membership in
U can be expressed in BQL iff either U or N LU 1is finite.

Proof sketch. Assume that {/ and N_LIU/ are both infinite and that membership in ¢/ is definable.
Then the following function p : N — N is definable in NRL(N, X, -,=): p(n) = 1if n € U and
p(n) = 0if n ¢ U. By conservativity, p can be defined without using any set constructs, i.e. it
is constructed from the arithmetic functions, constants and if-then-else. It is not hard to show

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 81

that in this case p coincides with a polynomial almost everywhere. Since it has infinitely many
roots, it must then be zero almost everywhere, contradiction. |

Corollary 3.28 None of the following functions is expressible in BOL:
e parity test;
e division by a constant;
e bounded summation;
e bounded product;
e gen : N — {NJ[} given by gen(n) ={0,1,...,n[}. O

We still would like to know if the queries of corollary 3.22 are definable in BOQL or equivalently
in NRL(N, X, -,~). One way to show they are not definable is to prove that BOL possesses the
bounded degree property. This approach is very problematic as, to the best of our knowledge,
there is no known logic capturing the language NRL(N, X, -, =) nor its flat fragment. The proof
of the bounded degree property for A/RL is based on Gaifman’s result about local formulae [55].
That result was proved by the quantifier elimination. This poses a problem if we try to prove
the bounded degree property for flat types in NRL(N, X, -, =) or BOL.

It was shown by Libkin and Wong [106] that adding operations to ARL that capture the expres-
sive power of BOL amounts essentially to adding aggregate functions. Inexpressibility of recursive
queries in languages with aggregates was studied by Consens and Mendelzon [42]. They showed
that the transitive closure is not expressible in a first-order language with aggregate functions,

provided DLOGSPACE is strictly included in NLOGSPACE.

However, there is no simple proof of inexpressibility results we want to show based on this kind
of complexity arguments. For example, the deterministic transitive closure is a DLOGSPACE-
complexity query. If it can be shown that the complexity of BQL queries is in a class that is
strictly lower than DLOGSPACE, then we would have shown that the deterministic transitive
closure is not definable in BQL. Tt is known that AC° C DLOGSPACE [54]. Queries written
in MRL have AC? data complexity [163]. This inclusion implies that the parity test (is the
cardinality of a set even?) and the transitive closure cannot be expressed in NRC because they
can not be done within AC? [54].

If BOC had ACY data complexity, the same argument would work for it. However, it is not
hard to see that there are non-AC® queries that one can write in BOL since multiplication is
not in AC® [54]. As a more interesting example of a non-AC® query, consider the restriction
of NRL(N, X, -, =) with just two base types: N and unit. We are going to show that in such a
restriction parity of the cardinality of a set is definable. First, we need

Theorem 3.29 If a linear order <, is given at each base type b, then a linear order <, at each
type s can be expressed in NRL(N, X, -,). O

82 CHAPTER 3. PRELIMINARIES

The proof of this result is based on the following lemma (see Libkin and Wong [107] for details):

Lemma 3.30 Given a partially ordered set (A, <), define an ordering =X on its finite powerset
Pan(A) as follows: X Y iff max((X LY)U(Y L X)) CY, or, equivalently, if Ve € X LYy €
Y L X :x<wy. Then X is a partial order. Moreover, if < is linear, then so is 3. O

Since the usual ordering on naturals is definable (n < m iff n = m = 0), by theorem 3.29 the
linear ordering < is available at any type. Then the cardinality of a set X : {s} is odd iff there
is # € X such that {y € X |y <; 2} and {y € X | 2 <, y} have equal cardinality. Since testing
for equal cardinality can be done in NRL(N, X, -, =), one can test whether a set has odd number
of elements. Thus, we exhibited another non-AC® query that can be defined in NRL(N, X, -, +).
Note that this does not mean that parity of cardinality can be defined at any unordered type.

Therefore, one needs new techniques to study expressiveness of bag languages. Such techniques
were proposed recently in Libkin and Wong [108] where the following was proved:

Theorem 3.31 None of the following are expressible in BOL (or equivalently NRL(N, X, -, =)):
dtc, chain, bbtree, transitive closure, tests for connectivity of directed and undirected graphs,
testing whether a graph is a tree, testing for acyclicity. |

However, it remains open whether BQL has the bounded degree property.

Summing up, going from sets to bags buys us aggregate functions, but we still can not express
recursive queries. Of course they can be expressed with structural recursion, but then verification
of preconditions becomes undecidable. Hence, one needs other ways to enhance the expressive
power.

Following Abiteboul and Beeri [1], Grumbach and Milo [60] introduced the powerbag operator
into their nested bag language. The semantics of powerbag is the function that produces a bag
of all subbags of the input bag. For example,

powerbag{|1, 1,2} = {{[}, {15, {10 420, {1, 15, {1, 20 {1, 20 {1, 1, 203

They also defined the powerset operator on bags as unique o powerbag. For example,

powersel{|1, 1, 2]t = {{[}, {10, {120, {1, 11 {11, 201 {1, 1, 2B}
We do not consider powerset on bags further because of the following result.
Proposition 3.32 BOL(powerbag) ~ BAL(powerset).

Proof sketch. Suppose a bag B is given; then another bag B’ can be constructed such that
for any a € B, B’ contains a pair (a, {a, ..., a[}) where the cardinality of the second component

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 83

is count(a, B). Let B” = unique(B’); then B” can be computed by BAOL. Now observe that
changing the second component of every pair to its powerset and then b_map(b_p3) followed
by flattening will give us a bag where each element @ € B will be given a unique label. Now
applying powerset to this bag followed by elimination of labels produces powerbag(B). O

In contrast to the set languages, the structural recursion for bags is strictly stronger than
powerbag.

Theorem 3.33 BAL(powerbag) G BAL(b_sri).

Proof sketch. First, powerbag can be expressed using b_sri, cf. [25]. Then it can be shown
that any function in BOL(powerbag) produces outputs whose sizes are bounded by an elementary
function on the size of the input, but in BOL(b_sri) it is possible to define a function that on the
input of size n produces the output of the hyperexponential size (where the height of the stack
of powers depends on n) and hence can not be bounded by an elementary function. O

As an illustration of theorem 3.33, we characterize precisely the classes of arithmetic functions
that both languages express. It also gives an alternative proof of theorem 3.33.

Theorem 3.34 a) The class of functions f :Nx...XN — N definable in BOL(b_sri) coincides
with the class of primitive recursive functions.

b) The class of functions f : N x ... x N — N definable in BOL(powerbag) coincides with the
class of Kalmar-elementary functions. O

Similar results for other languages for bags or sets with built-in natural numbers were proved
in Grumbach and Milo [60] and Immerman et al. [86].

The bounded loop construct for bags is given by

fi:s—s

loop () < 1} X s — s

Its semantics is as follows: loop(f)({lo1,...,0.[},0) = f(... f(0)...) where f is applied n times
to o.

Similarly to the set case, we have

Theorem 3.35 BOL(loop) ~ BAL(b_sri).

84 CHAPTER 3. PRELIMINARIES

Proof. For the BOL(loop) C BAL(b_sri) part, it suffices to observe that loop(f)(n,e) = b_sri(fo

T2, €)(n), where n is a shorthand for the bag of n units.

To prove BOL(b_sri) C BOL(loop), we first define a function ¢ : {¢[} — {{¢ x N}[} where
N, as usual, is an abbreviation for {junit[}. This function g, when applied to a bag B, pro-
duces the bag whose elements are bags of pairs, such that mapping 7 over such a bag gives
B and mapping 7, gives a bag of numbers from 1 to n where n is the cardinality of B. More-
over, g(B) contains all possible labeling of elements by numbers. For example, g{|a,b} =

{{(a, 1), (6, 2)[}, {l(a, 2), (b,)]}

To show that such g is definable, first notice that powerbag is definable in BQL(loop). Indeed,
it is easy to define an expression that, given a bag, produces all subbags of cardinality one less
than the cardinality of the bag. Now using the loop construct with such an expression gives us
powerset and therefore powerbag. If n is the cardinality of B (which is obtained by applying
b_map(!) to B), then powerset applied to it produces the bag of all numbers from 0 to n. Hence,
we can construct a bag of all numbers from 1 to n. Now take the cartesian product of this
bag and B and denote it by B’. Then powerbag(B’) contains all bags whose elements are pairs,
the first component being an element of B and the second component being a number from
1 to n. Such a bag B” makes it to the output of ¢ iff the two conditions are satisfied: first,
b_map(m1)(B") = B and second, b_map(w2)(B”) ={1,...,n[}. Since equality test and selection
are available, g can be defined in BOL(loop).

Now we must define b_sri(i,e) : {s[} — ¢ in BAL(loop). Given a bag B : {s[}, to determine
the value of b_sri(i,e) on B first apply g to B to obtain By. Define h : {{s x N} x t —
{s x N[} x t as follows. h(B’, a) selects the pair (b, k) from B’ with the maximal k£ and returns
(B"monus{(b, k)[},i(b,a)). Now loop(h) applied to (B,(B’,¢)), where B’ is an element of By,
returns a pair whose second component is the value of sri(i,e) on B if elements of B are
enumerated for applying the structural recursion as they are labeled in B’. Threfore, mapping
this loop over By we obtain all possible outcomes of b_sri(i,e)(B) depending on in which order
i was applied. If b_sri(i, e) is well-defined, then the order does not matter and applying unique
gives us a singleton bag that contains b_sri(i.e)(B). This shows that b_sri is expressible in

BAL(loop). O

Note that as in the set case, the simulation of loop with b_sri is efficient, while the reverse
simulation requires exponential time. However, if linear orderings are given at base types, one
can efficiently lift them to arbitrary types (cf. theorem 3.29) and define a function sort : {s} —
{s x N} such that sort(X) = {(21,1),...,(@n,n)} whenever z; <, ... <, x, by counting the
numebr of elements in a set which are less than a given element. Using sort we can make both
translations efficient: going from loop to b_sri we use sort to pick an order in which elements
are given to b_sri for processing.

Theorem 3.35 also sheds some light on theorem 3.34 by showing that its statement is very
intuitive and well expected. There are two classical results in recursion theory [122]. One, due

3.2. LANGUAGES FOR PROGRAMMING WITH COLLECTIONS 85

to Meyer and Ritchie, states that the functions computable by the language that has assignment
statement and forndo S, are precisely the primitive recursive functions. The semantics of
forndo S is to repeat S n times. A similar result by Robinson, later improved by Gladstone,
says that the primitive recursive functions are functions built from the initial functions by
composition and iteration. That is, f(n,7) = g(”)(f), see [122]. The structural recursion for
bags is essentially the for-do construct and, not surprisingly, it expresses precisely the primitive

recursive functions.

We have seen the equivalence BOL ~ ANRL(N, Y, =). Now it is natural to ask whether it
continues to hold (under the translations of theorem 3.26) when set and bag languages are
augmented with powerset and powerbag or structural recursion. Consider the following primitive
in the set language (cf. corollary 3.28):

gen : N — {N}, gen(n)=40,1,...,n}

Under translations of theorem 3.26, it corresponds to the bag language primitive that takes a

bag of n units and returns bag of bags containing ¢ units for each ¢ = 0,1,..., n. In other words,
it is powerset'™ = unique o powerbag"™".

Having made this observation, we can show the separation result.

Theorem 3.36 a) NRL(N, X, -, =, powerset) G BOL(powerbag);
b) NRL(N, X, -, =, s_sri) G BQL(b_sri). 0

Now we have a problem of filling the gap between set and bag languages with power operators
or structural recursion. It turns out that the gen primitive is sufficiently powerful to do the job.

Theorem 3.37 a) NRL(N, X, -, =, powerset, gen) ~ BAL(powerbag);
b) NRL(N, X, -, =, s_sri, gen) ~ BQL(b_sri). 0

We shall use these equivalences later for making decision about adding power to the implemen-
tation of the language for sets and or-sets.

This concludes our discussion of the background we need in order to develop the semantics of
partiality and to design query languages for partial data.

WHERE ARE WE NOW AND WHERE ARE WE GOING?

86 CHAPTER 3. PRELIMINARIES

It is time to pause for a moment and see where we have arrived to and where we should go from
here. In the introduction. we formulated two main themes of this thesis: partiality of data is
represented via orderings on values and semantics suggests programming constructs.

In this chapter, we have developed the background necessary to put these ideas to work. First,
we have studied the domain-theoretic model that accommodates various collections of partial
values. Then we have seen how universality properties of semantics of datatypes can be turned
into the programming language syntax.

Our first task is to specialize the general theory of section 3.1 to various collections of partial data.
These include sets under both closed and open world assumptions, or-sets and the approximation
constructs. Keeping our second goal of developing query languages in mind, not only do we have
to come up with semantic models for those, but we also must find their universality properties.
Having developed the semantics of collections and proved their universality properties, we can
use the general techniques of section 3.2 to design languages to work with partial information.

Semantics of partial data is studied in the next chapter. We exhibit orderings and semantic do-
mains for all kinds of collections we have seen and, furthermore, prove the universality properties
for those semantic domains.

We then proceed in chapter 5 to design languages for sets and or-sets (possibly with null values)
and approximation constructs. We shall show that the language for sets and or-sets possesses
many intersting properties. Two are of special importance. First, semantics of objects can be
incorporated into the language by means of normalization of objects. The process of normal-
ization will be studied in details. Second, we show that the language has adequate expressive
power to encode approximation constructs and program with them.

Finally, in chapter 6 we describe a practical system based on the language for sets and or-sets
and show how it can be used for querying incomplete databases and producing approximate
answers to queries.

Chapter 4

Semantics of Partial Information

The purpose of this chapter is to study the semantics of partial data. Our first goal is to
choose orderings on various kinds of collections. To do so, we formalize elementary updates
on collections which improve our knowledge about the real world situation represented by that
data, that is, add information. Then we characterize transitive closures of those updates, thus
obtaining the orderings. We carry out this program for OWA and CWA sets and bags, or-sets
and all approximations.

We use the orderings to define the semantics of collections of partial objects. It will be shown
that the semantics and the orderings agree naturally. Furthermore, we establish an intimate
connection between approximation constructs and certain objects obtained by combination of
OWA sets and or-sets. This semantic connection will be used extensively in chapter 5 to design
languages for giving approximate answers to queries.

Our approach to the programming language design is based on turning universality property of
semantics of types into syntax. In the second half of this chapter we describe various collections
as free ordered algebras. These include OWA and CWA sets, or-sets and two iteration constructs,
that correspond to sets of or-sets and or-sets of sets.

Furthermore, we show that most approximations arise as free constructions. To do so, we first
define formal models of approximations and propose a classification of those. The proposed
classification gives rise to ten possible approximation constructs. We study them thoroughly
and prove that some of them possess universality properties. Some of them are shown not to
be free ordered algebras generated by posets in a “naive” way, but we find a way to repair
it by showing that they do possess universality properties with respect to different generating
posets and restricted classes of maps. It will be seen in chapter 5 that such characterizations are
sufficient for defining the general structural recursion based language and certain sublanguages
thereof.

87

88 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

4.1 Order and Semantics

There are several goals we want to pursue in this section. First, we show how sets under both
OWA and CWA, or-sets and bags should be ordered. We then use the orderings to give the
semantics of collections of partial data. Second, we analyze the approximation constructs and
propose a classification of those. Having done this, we define and study orderings and semantics
of the approximation constructs in the same way as we did it for the other collections. Finally,
we show how to represent the approximation constructs using sets and or-sets.

4.1.1 Orderings on collections

In this section we study the following general problem. Given a poset (A, <) and the family of all
collections (sets, bags, or-sets etc.) over A, how do we order those? As usual, our interpretation
of the partial order is “being more informative”. What does it mean to say that one collection
of partial descriptions is more informative than another?

The technique we use to answer this question is the following. We try to define “elementary
updates” that add information. For example, for CWA databases such updates should add
information to individual records. For OWA we may have additional updates that add records
to a database. For or-sets, reducing the number of possibilities adds information as an or-sets
denotes one of its elements. We formalize those updates and then look at their transitive closure.
That is, a collection ' is more informative than C'y if C'; can be reached from Cy by a sequence
of elementary updates that add information. We characterize five orderings that arise this way:

for OWA sets, CWA sets, or-sets and bags under both CWA and OWA.

As we mentioned in section 3.1, redundancies represented by comparable elements can usually
be removed. That is, we often represent database objects as antichains. Therefore, there are
two ways to perform updates that add information. One way is to keep all elements, even those
that are comparable. The other way is to remove redundancies, that is, to make sure that the
result of each elementary update is an antichain again. These two ways lead to some orderings
on either antichains of ordered sets or arbitrary subsets thereof. We shall consider both and
show that they coincide.

Ordering CWA databases

In a closed world database, it is possible to update individual records but it is impossible to add
new records. To understand what the elementary updates are, let us consider again the example
we used in chapter 1.

4.1. ORDER AND SEMANTICS 89

‘ Name ‘ Salary ‘ Room ‘

CWA John | 15K 076
1 1 076 —
Ann 1 076

Mary | 17K = Mary | 17K | 561

‘ Name ‘ Salary ‘ Room ‘

In these relations, we use generic nulls. The first relation says that there exists room 076, and
that Mary makes 17K. Note that there could be more than one person in 076. To see why, it might
be easier to consider the first relation as obtained from the second one by losing information.
Assume we had information about two people in 076 and then lost information about their names
and salaries. As the result, there are two copies of the record . However, we are
dealing with sets and duplicates are always removed. Therefore, losing information contained
in two records would result in getting just one record in the new database. In other words, an
incomplete record can be updated in various ways that give rise to a number of new records,
and this is consistent with the closed world assumption.

The third record in the updated database is obtained from the second record in the initial
database by adding the salary value. Thus, we see that the way the closed world databases are
made more informative is via getting more information about individual records. The following
picture illustrates those updates. We simply remove an element (record) from a database and
replace it by a number of more informative elements (records).

There are two ways to formalize those updates, depending on whether arbitrary sets or only
antichains are allowed. Let X C A be a finite subset of the poset A. Let z € X and X' C A
be a finite nonempty subset of A such that # < 2’ for all 2’ € X’. Then we allow the following
update:

X2 (X La)u X’

For antichains, we need to impose two additional restrictions. First, X’ must be an antichain,
and second, the result must be an antichain. To ensure that the second requirement is satisfied,
we keep only maximal elements. That is, in the case of antichains the legitimate updates are

X 1%, max((X Lz)u X')

90 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

We now say that X CV* YV if X, C A and Y can be obtained from X by a sequence of
updates 12, that is, W4 is the transitive closure of 1™ on Psn(A). Similarly, X CS™4 Y if

X,Y are finite antichains of A and ¥ can be obtained from X by a sequence of updates 1=,
that is, CSWA is the transitive closure of 1™ on A (A).

Our claim is the following.
The closed world databases must be ordered by the Plotkin ordering.

We justify it by proving

Theorem 4.1 a) Let X,Y € Pg,(A). Then X TV Y iff X Chy.
b) Let X,V € Ag,(A). Then X CS™ Y jff X CVY.

Proof. The proof of part a) is easy. First, X 0™ YV implies X C!' YV and hence X COWA Y
implies X C! Y. Conversely, if X C" Y, let ¥, = {y € Y | y > 2}. Then updates X {7
(X Lz)UY, give a way from X to Y.

To prove part b) first observe that X 1™V implies X C! YV and hence X CoWA Y implies
XChy.

Assume X,Y € Ag,(A) and X C" Y. We prove by induction on the cardinality of XUY that there
exists a family {Xy,..., X;} of subsets of X UY such that X TR ST RETRN Me SR HE,
In the case when either X or Y is a singleton, we need just one {2, arrow. Assume that
card(X) = m, card(Y) = k, m,k > 1 and for any sets of cardinalities less than m and k the
statement above is true.

Let X° be a minimal (with respect to inclusion) subset of X such that X £ Y. We first show
that X and Y are 1=, related by a sequence of subsets of XOUY. If X0 is a singleton, this is
immediate. If X° has more than one element, consider z € X°. Then X° L 2 Zh Y. Therefore,
there exists an element y € Y such that y # 2 for any z € X° 1 & (otherwise we would have
X0 1 2t Y). Let Y° be the set of all y € Y with this property; we know Y° # (). Then
X012 C"Y 1L YC Indeed, if 2’ € X° L x, then there exists y € Y such that 2’ < y. Moreover,
y ¢ YO by the definition of Y°. Hence, X0 L 2z C* Y L Y% Ify € Y L Y, then there exists
2" € XY such that 2’ < y. If 2 is the only element in X" that is under y, then y € Y°. Hence,
we can pick 2’ € X° L 2. This shows X° 1L 2 Cf Y 1 Y9 and hence X° 1 C!Y 1 YO.

Now by induction hypothesis we can find a sequence Z1, ..., Z, of subsets of (X% Lz)U(Y LY?)
such that X0 1 2 %2, 7, 122, .. 1%, Zyt P2, Y LYY, Since for any Z C (X La)u(y LY?),
ZUY"is an antichain, we obtain XY ﬁ_%a (XOJ_QC)UYO ﬁ_@a ZyuYy?o ﬁ_@a el VEG ZpUY0 ﬁ_@a
(Y LY®)UY? = Y. To see that X CSW* YV, we apply exactly the same updates to X. The only

4.1. ORDER AND SEMANTICS 91

difference with the sequence of updates above is that now at any stage there are possibly some
elements of X 1L X© added. However, they disappear at the last stage as X C! Y and we always
apply max. This shows X CJ"* Y. Theorem is proved. O

Corollary 4.2 Let X and Y be finite antichains in A such that X CT'Y . Then it is possible to

find a sequence of antichains Xq,..., X, such that X1,..., X, C X UY and X ﬁ_@a X1 &VE@
WA WA

=, X, ﬁ_—>a Y. O

Ordering OWA databases

In an open world database, it is possible to update individual records and add new records. As
in the case of the CWA databases, consider a simple example to understand what the elementary
updates are.

‘ Name ‘ Salary ‘ Room ‘

OWA John | 15K 076
L L 076 Ann 1 325

Mary | 17K = Mary | 17K | 561

‘ Name ‘ Salary ‘ Room ‘

Some of the records in the second relation, that we view as a more informative one, are obtained
by modifying records of the original relation. However, one record, ‘ Ann ‘ 1 ‘ 325 ‘ can not
be obtained by modifying any record in the original database. The reason it was put there is
that the database is open for new records. Under this interpretation, we view adding records
as an update that adds information. In the above example, adding that record improves our
knowledge about what can be a university or a company database of employees.

The following picture illustrates updates that are used to improve information stored in an
open world database. Not only do we allow replacing an element (record) by a number of more
informative elements (records), but we also allow adding new records.

\/

Y

92 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Similarly to the CWA case, there are two ways to formalize these updates, depending on whether
arbitrary sets or only antichains are allowed. Let X C A be a finite nonempty subset of the
poset A. Let 2 € X and X' C A be a finite subset of A such that 2 < 2’ for all 2’ € X'. Let X"
be an arbitrary finite subset of A. Then we allow the following updates:

Xd® (X L2)uXx’ and X128 xuXx”

For antichains, we impose an additional restriction that the result always be an antichain. We do
it by keeping only maximal elements in the results, see section 3.1. Another reason for keeping
only maximal elements will be seen shortly. Therefore, in the case of antichains the legitimate

updates are
X v, max((X Lz)UX') and X g max(X U X")

We say that X C°%"* Y if X,Y C A and Y can be obtained from X by a sequence of updates
1™ that is, C°% is the transitive closure of 1°= on Pan(A). Similarly, X T YV if XY are
finite antichains of A and Y can be obtained from X by a sequence of updates H=,, that is,
CoWA is the transitive closure of 12, on A (A).

Our main claim about ordering of OWA databases is the following.
The open world databases must be ordered by the Hoare ordering.

We justify it by proving

Theorem 4.3 a) Let X,Y € Ps,(A). Then X COW4 Y 4ff X C'Y.
b) Let X,V € Ag,(A). Then X COV Y iff X C' V.

Proof. The proof of part a) is very similar to the proof of a) in theorem 4.1. To prove b),
first observe that the inclusion COWACLC' is immediate. Let X,Y € Ag,(A) and X C’ Y. Let
Yy ={yeY |3z € X: z <y} Then X C" Yy and by theorem 4.1 we can find a family
Xi,..., X, of subsets of X U Yx such that X ﬁ_@a X4 ﬁ_@a ﬁ_@a X, IVEG Yyx. Since g
updates are a particular case of g updates, we obtain X ﬁ_@a X1 &@a &@a Xn &VEG
Yy 128, max(Yx U (Y L Yx)) =Y which proves X C{"* V. O

Corollary 4.4 Let X and Y be finite antichains in A such that X C" Y. Then it is possible to

find a sequence of antichains Xq,..., X, such that X1,..., X, C X UY and X &@a X1 &VEG
WA WA

..|—>aXnﬁ_—>aY. O

Ordering or-sets

We now define update rules for or-sets. We start with a simple example.

4.1. ORDER AND SEMANTICS 93

‘ Name ‘ Salary ‘ Room ‘

- ‘ Name ‘ Salary ‘ Room ‘
t
Xi: John = 076 ot L se Xy John 1 076
Ann L L Ann 13K 1
Mary 17K L

There are two reasons why we view X9 as a more informative or-set than X;. First, additional
information about Ann was obtained. It is now known that her salary is 13K. Second, one of the
records was removed. Note that removing an element from an or-set makes it more informative.
Indeed, while (1,2,3) is an integer which is either 1 or 2 or 3, (1,2) is an integer which is 1 or
2, so we have additional information that it can not be 3. Finally, (1) is an example of perfect
knowledge as it stands for the integer 1.

Therefore, we consider two types of updates on or-sets: improving information about individual
records and removing elements:

Xd= (X Lz)u X’ if v € X and 2 < 2’ for all 2’ € X' and X' #£ ()
XU X1la ifeeXand X Lla#(
To redefine these updates for antichains, we must decide how redundancies in or-sets are removed.

We suggest that only minimal elements be kept in the results. To see why, consider the following
or-set with two comparable records:

‘ Name ‘ Room ‘
< John 076 >

John un

This or-set denotes a person whose name is John and who is either in room 076 or in an unknown
room. The semantics of this is exactly as having one record for John in an unknown room. (This
will be made precise in the next section.) Hence, we prefer to retain the minimal elements. Then
the updates for antichains become

X % min((X Lz)U X') ifz e X and 2 <a'forall 2’ € X' and X' £

X=X 1z ifeeXand X La#0

Our next claim about orderings on collections is the following.

94 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

The or-sets must be ordered by the Smyth ordering.

To make it formal, we define C°" and C9" as the transitive closure of U~ and U™, respectively.

Theorem 4.5 a) Let X,Y € Pe,(A), X,Y £0. Then X T Y iff X C! Y.
b) Let X,Y € Ag(A), X,Y £ 0. Then X CI Y iff X CHY.

Proof. The proof of a) is similar to proofs of a) in theorems 4.1 and 4.3. To prove b), first
observe that X 1%, Y implies X Cf Y, and hence X Co' Y implies X Cfy.

Now we prove the following claim. If X C' Y, X NY = §§ and X’ C' Y for no proper
subset X’ C X, then X C% Y and moreover only elements of X UY are used in the U™,
transformations. We prove it by induction on card(X UY). When one set is a singleton,
the statement is immediate. Assume cardinalities of both X and Y are bigger than one. Let
Y. ={y €Y |y>a}. Weclaim that there exists € X such that X L « C/Y 1 Y,. Assume
that this is not the case. Then for any z, X L 2 Z' Y L Y,. That is, there exists z; € X such
that z; is not under any element of ¥ L V. In other words, ¥, C Y,. Continuing, we obtain
Y. DY, DY, D... Since X and Y are finite, we have Y, = Yz, for some distinct x; and z;.
But in this case X L 2; C" Y which contradicts the minimality of X. Hence, X L& C'Y 1Y, for
some z. By the induction hypothesis, X Lz C Y LY. Since only elements of (X Lz)U(Y LY;)
were used in the transformations, X Co (Y L Y,)Uz U™, Y which finishes the proof of the
claim.

Now it is easy to see that the condition X N'Y = @ can be dropped as adding X NY to any
transformation does not interfere with its result. Hence, X C! Y implies X Cor Y if X is
minimal such with respect to inclusion.

Let X C!'Y. Define Xy = {z € X |y €Y : 2 <y}. Then Xy C!' Y. Let X3 be a minimal
with respect to inclusion subset of Xy such that X3 CYY. Then X Cor Xy C YV finishes the
proof. O

Corollary 4.6 Let X and Y be finite antichains in A such that X C'Y. Then it is possible to
find a sequence of antichains X1,..., X, such that X;,..., X, C XUY and X U, X; 1%,
T D T O

Ordering bags

We now use similar techniques to define orderings for bags. Even though the orderings appear
somewhat awkward, we demonstrate effective algorithms to test whether two bags are compa-
rable.

4.1. ORDER AND SEMANTICS 95

First of all, let us see why the naive approach would not work. Bags over a poset A are often
represented as sets of pairs (a,n) where a is an element of A and n is the number of occurrences.
Pairs could be ordered in the usual way: (a,n) < (b, m)iff ¢ < band n < m. While this ordering
has many nice properties, it is counterintuitive from the practical point of view. Having a bag
rather than a set means that each element of a bag represents an object and if there are many
occurrences of some element, then at the moment certain objects are indistinguishable. For
example, initially we might have a bag of three null values, representing our knowledge about
three objects. Suppose this bag {L, L, L[} is later updated to {a,b,c[}. We want to say that
the latter is more informative than the former. But that is not in the above ordering because it
requires that the three nulls be replaced by three identical objects; that is, {la,a,al}, {|b,0,b]},
or {lc, ¢, cl}. Each of them is more informative than {|L, L, L[} but {|a, b, ¢[} is unfortunately not!

Mathematical aspects of partial information represented by bags were studied by Vickers [174].
He defined the concept of refinements which, among other instances, includes both the ordering
that we shall propose shortly and the ordering that we have just seen. Therefore, his approach
is too general to be adopted here.

To extend the update idea to bags, recall again that each element of a bag represents an object
and if there are many occurrences of some element, then at the moment certain objects are in-
distinguishable. This justifies the following definition. We say that a bag B is more informative
than a bag By if By can be obtained from By by a sequence of updates of the following form: (1)
an element a is removed from By and is replaced by an element & such that b is more informative
than a, and under OWA in addition (2) an element b is added to By.

Formally, let (A, <) be a partially ordered set. Let Py(A) be the set of all finite bags whose
elements are in A. Then we define the following updates for elements of P(A). Under both
CWA and OWA we have

CWA

B S (Bmonus{al}) @ {|b]} and B “% (Bmonus{al})w {b} where a € B.
In addition, under OWA we add a new update
B %% By {b]}

<]CWA <]OWA

As usual, by and we denote the transitive closure of ~» and % respectively. To
describe these relations, let N" denote the totally unordered poset whose elements are natural
numbers (the superscript is used to distinguish it from N which typically denotes natural numbers
with the usual ordering). For a finite bag B and an injective map ¢ : B — N', which is sometimes
called labeling, by ¢(B) we denote the set {(b, (b)) | b € B}. In other words, ¢ assigns a unique
label to each element of a bag. If B € Py(A), the ordering on pairs (b,n) where b € B and

n € N' is the usual pair ordering; that is, (b,n) < (b/,n) iff b < b and n = n'.

Proposition 4.7 The binary relations <°V* and <°™* on bags are partial orders. Given two
bags By and By, By <°VA By (By <°V% By) iff there exist labelings ¢ and 1p on By and B,
respectively such that ¢(By) T ¥(By) (respectively ¢(By) T° 1(Ba)).

96 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Proof. We prove the statement about <°"#; the statement about <“"* is proved similarly. We
write By <” By if there exist ¢ and 1 such that ¢(By) C” o(By). First demonstrate that < is
a partial order. It is obviously reflexive.

To prove transitivity, let By <” By and By <” Bs. That is, a(B1) P B(Bz) and ¢(Bs) P P(Bs).
Let v be a bijection on N such that v o 3 = ¢. Define 4 as v o . Then for every b € By there is
b € By such that b < b and a(b) = B(b'). Therefore, §(b) = ¢(b') and there exists b € Bs such
that ¢(b") = ¢(b') and b > b'. This shows §(B1) C° 1(Bs3) and hence By <° Bs.

To show that < is anti-symmetric, let By <° By and By <’ B;. As was shown above, there exist
a, ¢ and ¢ such that a(By) C" ¢(By) C° «(By). In particular, if we define g : a(By) — ¥(By) by
g(b,n) = (b',n) where (b') = n, it is easy to see that ¢ is one-to-one, monotone and inflationary.
Since By is finite, it is the identity map. If b” € By and ¢(b”) = n, then b < 8" < b = b, so
b = 0" where a(b) = (b') = n. Therefore, every element of B; is in By and vice versa, i.e.
By = B,. This shows that <’ is a partial order.

. OWA
Since By ~» B, implies By =<’ B, we conclude <" C <’. Conversely, if B; <* By, i.e.

$(B1) C" 1(By), then, according to 4.3, ¥)(By) can be obtained from ¢(B;) by a sequence of
1™ updates which, if we drop indices, are translated into o updates on bags. Therefore,
By <°%4 B, which proves <°V4 = <. O

The Hoare ordering C” of sets can be effectively verified. Indeed, if two sets are given, there is
an O(n?) time complexity algorithm to check if they are comparable. The description of <%
given above seems to be somewhat awkward algorithmically. However, it is not much harder to
test for.

Proposition 4.8 There exists an O(n5/2) time complexity algorithm that, given two bags By
and By in Py(A), returns true if By <°V* By (By <°V* By) and false otherwise.

<]OWA <]OWA

Proof. The proof is almost the same for both and Given By and B, consider

two labelings ¢ and ¢ on By and B;. Assume without loss of generality that the codomains
of ¢ and 7 are disjoint. Define a bipartite graph G = (V, E) by V := ¢(B;1) U 1(Bz) and
E = {((b,n),(t',n)) | (b,n) € ¢(B1),(b,n') € ¥(By),b < b'}. It can be easily concluded
from proposition 4.7 that By <°%* B, iff there is a matching in G that contains all ¢(By). In
other words, By <°"* By iff the cardinality of the maximal matching in G is that of By. The
proposition now follows from the facts that all maximal matching in G have the same cardinality
(as bases of a matroid) and that the Hopcroft-Karp algorithm finds a maximal matching in
O(n5/?) where n is the cardinality of V (see [75]). O

There is a big difference between orders on sets and bags. While X C” ¥ does not say anything
about cardinality of X and Y, By <°%* B, implies that the cardinality of B; is less than or
equal to the cardinality of By. This reflects our point of view that having a bag rather than

4.1. ORDER AND SEMANTICS 97

a set means that each element of a bag represents a distinct object. Therefore, the cardinality
can not be reduced in the process of obtaining more information. In particular, in the set case
the Hoare ordering can be obtained as the transitive closure of the following binary relation:
X — (X LX)U{a} where 2 > 2’ for all 2’ € X’ and X — X U {z}. However, applying
the same idea to bags amounts to the loss of information about the number of occurrences
of each element in a bag. Precisely, let 4 be defined as the transitive closure of —, where
By - (BymonusBy) W {b[}, b > b for any b’ € By, and By - By W {b[}. It can be easily shown
that By <« By iff unique(B;) C° unique(By). And, in our opinion, this is not the right ordering
on bags as it loses information about duplicates.

It can also be shown easily that, unlike C” and CF, the orderings <°"4 and <" may not have
least upper or greatest lower bounds and may fail to take bounded complete posets into bounded
complete posets. The reader is invited to find simple counterexamples.

4.1.2 Semantics of collections

Recall that in section 3.1 the semantics of a database object d which is an element of an ordered
set A was defined as the set of all elements of A that it can possibly denote, that is, the set of
all elements in A that are greater than or equal to d:

[dl=1d={d € A|d >d}

Following this definition and the results of the previous section, we can define the semantics of
sets under OWA and CWA. Assume that elements of sets are taken from a partially ordered set
A. Then we define the semantic functions [-Jor ™, [-1°™*, [-15t ™, [[1°"* where index set stands
for the set semantics (as opposed to the antichain semantics for which we do not use an index),
as follows:

[X]OV* = {Y € P (A)| X C" Y} [X]" = {Y € A (4) | X C' Y}

set

[X]EW = {Y € P (A) | X C' Y} [X]°™ = {Y € A (A) | X CT Y}

set

As we mentioned in section 3.1, sometimes only subsets of maximal elements of A (if such
elements exist) are taken into account. In this case we use index maxz instead of set in the
semantic function.

In what follows, we shall mostly consider the open world assumption. Hence, if no superscript
is used, it is assumed that we deal with the OWA sets or bags. That is, [] is the same as [J°"*

and [Jset is the same as [Jor™*

There are a number of useful properties of these semantic functions which we summarize in the
following proposition. An easy proof is left to the reader.

98 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Proposition 4.9 1. If X,Y Cgn A, then [Y]OV C[X]SW* if X COV Y iff X T Y.

set set
2. If X,Y € Agu(A), then [Y]C[X]iff X COV Y iff X C" Y.

3. If X Cn A, then [X] = [max X] and [X]o* = [max XJo5*.

set set

4. If X,Y Can A, then [Y]O™ C XIS if X TV Y if X C1 Y.

set set

5. If X Con A, then [X]00* = [max X Umin X]O* and [X]°™ = [max X Umin X]°". O

In chapter 1 we discussed Reiter’s work [142] on the CWA databases. He defined a CWA answer
to a query as a certain set of complete tuples. In our terminology, this corresponds to finding
an answer to a query with respect to the [[%% semantic function. Reiter [142] proved that
CWA query evaluation distributes over union and intersection, and that whenever a database is
consistent with the negations of the facts stored in it, the OWA and the CWA query evaluation
algorithms produce the same result. He also proved that the minimal CWA answers contain

exactly one tuple.

The following proposition shows that analogs of these results hold in our setting. Note that to
say that a database X is consistent with negation of any fact stored in it, is the same as to say
that any y ¢ X is consistent with some z € X. In other words, if every z € A lies under some
2 € A™3 then X C! A™2% Finally, a domain of n-ary relations with one kind of null is the
product of n copies of an infinite flat domain. In view of this, the proposition below says that
the results of [142] are preserved, at least in the spirit.

Proposition 4.10 Let A be a poset such that each element is under an element of A™**, Then
1) If A is a product of n copies of infinite flat domains and Y € [X1 N XQ]]SH\Z}I?, thenY =Y NY,
where Yy € [Xq]o0s and Yy € [Xo]o 0%

2) For any poset A, [X1 U Xo]i 02 = {Y1U Y, | V1 € [Xq] 00, Yo € [Xo]o2).
3) If X CF A™ then [X]00 = [XTnhe-
4) If X is bounded above in A, then a minimal nonempty Y € [X].0% is a singleton. O

For or-sets the situation is different. Recall that or-sets can be treated at both structural and
conceptual levels. At the structural level we just define [X]" = {V € Pa,(A4) | X CF Y} (or
using Ag,(A) if we need an antichain semantics.) The following proposition is immediate from
the definitions.

Proposition 4.11 1. If X,Y Cgn A, then [Y]* C[X]" if X C=Y iff X CH Y.
2. If X,Y € Ag,(A), then [Y]" C[X]™ if X Co Y iff X CHY.

3. If X Can A, then [X]” = [min X]*". O

4.1. ORDER AND SEMANTICS 99

Similar semantic functions can be defined for bags, depending on whether OWA or CWA is used.
Unlike sets, bags are not subject to removal of redundancies as every entry in a bag represents
a distinct object and nothing can be deleted.

Note that propositions 4.9 and 4.11 justify using maximal elements to remove redundancies
from sets under OWA and using minimal elements to remove redundancies from or-sets. For
sets under CWA, it is necessary to retain both minimal and maximal elements; the elements
which are strictly in between can be removed as the fifth item in proposition 4.9 suggests.

The semantic functions above could also be used to define the semantic domains of types. For
example, assume that we have the following type system

tu=b | Xt | {t}OWA | {t}CWA | <t>

We now define the structural semantics []s that corresponds to the structural interpretation of
or-sets.

Suppose that for each base type b its semantic domain [b]; is given. We define the semantic
domains of all types inductively. Suppose we want to deal with antichains. Then

[t x s]s = [t]s x [s]..

[t} owals = (Aaa([1]s). E°) = P*([1])-
{3 cwals = (Aaa([t]5), C).

[0)1s = (Aa(t]:), ©F) = PH([1)s)-

The structural semantics of objects is defined inductively.

For each base type b and an element z of this type, [z], = [z = {2’ € [b], | 2" > «}.
o If 2 = (21,22), then [2]s = [#1]s X [z2]s-

Let X be a CWA set of type {t}.y,, then [X]s = [X]°™. Similarly, for OWA sets,
[XTDs = [X]™.

e Let X = (x1,...,2,) be an or-set of type (t). Then [X],; = [X].

Note that the last clauses in the definitions of type and object semantics say that we have defined
the structural semantics of or-sets. That is, we viewed or-sets as collections and not as single
elements they could represent. Our next goal is to define the conceptual semantics of or-sets.

100 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Semantics of sets and or-sets

Our purpose here is to define a semantics to be used when or-sets are dealt with at the conceptual
level. This semantic function takes database objects into finitely generated filters of ordered sets.
For simplicity, assume that we have the following type system:

tu=b| txt | {t} | (¥
and that we are dealing with the open world assumption.

We shall denote the semantic function that deals with the conceptual representation of or-sets
by [J.. We know that conceptually an or-set is one of its elements. That is, conceptually
X = (dq,...,d,) is one of d;’s. If d;’s themselves are partial descriptions, they may denote
other elements. Hence, whatever the semantic function [] for the elements of X is, we have

[XTe = Usex [=]-

If the semantic function [] satisfies the property that [2] C [y] iff y < z, then [2] = T2 and we
obtain

[[X]]c: U TszX

reX

Hence, from the results of the previous section and the properties of the Smyth order, we
conclude that in this particular case []. for or-sets satisfies all properties listed in proposition
4.11.

To define the conceptual semantics of types, we assume that a semantic domain [b]. is given
for each base type b. We now define semantic domains of arbitrary types as follows. Note that
there are two possibilities for the semantics of the set type constructor, but the definition of the
semantics of objects will work with both of them.

o [t x s]. = [1]. % [5]..
. [[{t}]]c = <Aﬁn([[t]])v Eb> = Pb([[t]]c) or [[{t}]]c = <Pﬁn([[t]]c)v Eb>
o [(D)]. = [t]..

The last clause corresponds to the fact that conceptually an or-set is just one of its elements.
Semantics of each object is now going to be a finitely generated filter F' = 1{fi,...,f.} =
TAAU...UTf .. Again, we define it inductively.

e lor each base type b and an element z of this type, [z]. = Ta = {2’ € [b]. |2’ > z}.

o If 2 = (21,22), then [2]. = [21]. X [@2]..

4.1. ORDER AND SEMANTICS 101

o Let X ={zy,...,2,} beasetoftype {t}. Then [X]. ={Y |Vi=1,....,n: YN[z;]. # 0}.
Here Y is taken from Py, ([t].) or As.([¢].) depending on the definition of the semantics of
types.

e Let X = (z1,...,2,) be an or-set of type (). Then [X]. = [21]. U ... U [z,]..

Before we prove that this semantic function possesses the desired properties, let us make a few
observation. First, the definition of the semantics of or-sets agrees with the definition of []** given
above. Second, to understand the semantics of pairs and sets, consider tow simple examples. Let
z1 = (1,2), 9 = (3,4). Assume that there is no ordering involved. The semantics of z; is then
aset {1,2} and the semantics of @5 is {3,4}. Therefore, [(z1,22)]. = {(1,3),(1,4),(2,3),(2,4)}.
Now consider (21, x32). It is a pair whose first component is 1 or 2 and whose second component
is 3 or 4. Hence, it is one of the following pairs: (1,3),(1,4),(2,3),(2,4). And this is exactly
what the semantic function []. tells us.

For semantics of sets, consider X = {x1, 22} = {(1,2),(3,4)}. It is is a set that has at least two
elements: one is 1 or 2, and the other is 3 or 4. Hence, it must contain one of the following
sets (since we believe in OWA): {1,3},{1,4},{2,4},{3,4}. Now look at [X].. A set Y belongs
to [X]. f Y Nn[{1,2)]. = Y Nn{1,2} # 0 and Y N [(3,4)]. = Y N {3,4} # 0 which happens if
and only if Y contains one of the four sets above. This justifies our definition of the conceptual
semantics of sets.

Now we can prove the following.

Proposition 4.12 For every object © of type t, [x]. is a finitely generated filter in [t].. Fur-
thermore, if x and y are of type t and x < y in [t]s, then [y]. C [z]..

Proof. Prove the first statement by induction. For objects of base types it is given by the
definition. For pairs, it is easy to show that if 2; and z are finitely generated filters in [t1].
and [tz]. respectively, then [z]. is a finitely generated filter in [t; X #3].. For sets, let X =
{x1,...,2,} be a set of type {t}. Let [z;]. = T{f{,,fﬁ”} Let G be the set of maps ¢ :
{1,...,n} — N such that 1 < ¢g(i) < n; for all i. Define G(X) = mingb{{f;(i) |i=1,...,n}]|
g €G}. ThenY € [X]. iff there exists Y/ € G(X) such that Y’ £" Y. Therefore, [X]. = [G(X).
This shows that [X]. is a finitely generated filter. For arbitrary sets, the proof proceeds similarly
but we do not have to take min. The second result will be proved later (see theorem 5.17 in
chapter 5.) O

From the properties of the structural and conceptual semantics, we obtain

Corollary 4.13 If and y are objects of the same type, then [z]s = [y]s implies [z]. = [y]e-
O

102 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

The converse is not true: ((1,2),(3)) and ((1),(2), (3)) are structurally different objects of type

(Gint), but [(1.2), (3)]. = [{(1). (2). (3)]. = {1.2.3).

The importance of the conceptual semantics will be seen in the next chapter when we show that
normalization of or-objects does not change the meaning.

Relationship between CWA sets, OWA sets and or-sets

There is a naturally arising question: do we really need all three kinds of collections — OWA sets,
CWA sets and or-sets? Can not we just represent some of them using the others? The answer to
this question is that we do need all three kinds of collections and no such representations exist.
First, let us see what could be a representation of, say, OWA sets with or-sets. It could be a
procedure that, given a poset A and X € Ag,(A), calculates Y € Ag,(A) such that Z € [X] iff
Z € [Y]”. The following proposition tells us that it is impossible to do so.

Proposition 4.14 For every poset A which is not a chain, there exists X € Rg,(A) such that
for noY € Rg,(A) the following holds: 1) [X] = [Y]; 2) [X]* = [Y]; 8) [X] = [YI": 4)
[XTet" = IVT: 5) IXT” = VI ™s 6) [X D™ = IVT™

set set set

Proof. 1) Assume A has two incomparable elements 2 and y and let X = {z}. Assume Y is such
that [{z}] = [Y]*". Then {z} C" {z,y} C¥ {y} and hence {y} € [{z}], contradiction. For 2),
consider the same poset by take X to be {x,y}. For 3), take the same poset and take X = {z}.
Assume there is Y such that [{z}] = [Y]*". Then {z,y} € [{z}] and hence Y C* {z,y}. We
have {z} C” Y, so there is an element z < y such that z < z, contradiction. The proof of 4) is
similar. We invite the reader to find similar easy proofs for 5) and 6). O

4.1.3 Formal models of approximations

In this section we re-examine the approximation constructs such as sandwiches, mixes and
snacks introduced in chapter 1. We do it by applying the idea of representing database objects
with partial information as elements of certain ordered sets, and then getting all approximation
constructs as families of antichains in those posets.

Recall the definition of a sandwich. It is given by an upper approximation U and a lower
approximation L which satisfy the following consistency condition: for every w € U there is
[€ L such that w and [are consistent. The notion of consistency here is the same as consistency
in posets. If there are two records, then they are consistent if there is a record that is above
both of them in the ordering. For example, ‘ 1 ‘ 2 ‘ 1 ‘and‘ 1 ‘ 2 ‘ 3 ‘are consistent as they

have a common upper bound‘ 1 ‘ 2 ‘ 3 ‘, but‘ 1 ‘ 2 ‘ 1 ‘and‘ 1 ‘ 4 ‘ 3 ‘are not consistent as

4.1. ORDER AND SEMANTICS 103

there are no common upper bounds. Recall that we use the notation 2Jy to denote the fact that
x and y are consistent. Now we can give a formal definition of sandwiches.

Definition 4.1 Given a poset (A, <), a sandwich over A is a pair of finite antichains (U, L)
satisfying the following consistency condition:

Yie LIuelU: ull

U is usually referred to as the upper approximation and L as the lower approximation. The
family of all sandwiches over A is denoted by P™(A) (the reason for this notation will be seen
shortly).

For example,

‘ Name ‘ Salary ‘ Room ‘

John 15K L ‘ Name ‘ Salary ‘ Room ‘
Ann 17K 1 and John 1 076
Mary 12K 1 Michael 1 320
Michael | 14K 1

form a sandwich. First, each relation can be considered as a subset of V_ x V_ x V_ as explained
in section 3.1. Moreover, since

‘ John ‘ 1 ‘ 076 m John ‘ 15K ‘ 1 ‘ and Michael ‘ 1 ‘ 320 m Michael ‘ 14K ‘ 1 ‘

the pair satisfies the consistency condition and hence forms a sandwich in V_ x V_ X V_, where
the first relation is the upper approximation and the second relation is the lower approximation.

The consistency condition for sandwiches can be equivalently stated in the following way. A pair
of finite antichains (U, L) is a sandwich if there exists a set W such that U T W and L C° W.
Observe that U = () implies I = 0.

Recall that in chapter 1 we used the assumption that the Name field is a key to infer additional
information about the relations shown above. It led us to the following relations:

Name ‘ Salary ‘ Room ‘

John 15K 076 ‘ Name ‘ Salary ‘ Room ‘
Ann 17K 1 and John 15K 076
Mary 12K 1 Michael | 14K 320
Michael | 14K 320

The difference is that now for each record in the second relation there is a record in the first
relation that is less or equally informative. This is the definition of mixes.

104 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION
Definition 4.2 Given a poset (A, <), a mix over A is a pair of finite antichains (U, L) satisfying
the following consistency condition:

VieLduelU: u<l
U is usually referred to as the upper approzimation and L as the lower approximation. The family

of all mizes over A is denoted by PY(A) (the reason for this notation will be seen shortly).

Observe that the consistency condition for mixes can be also stated as U CF L. Again, U = ()
implies L = (.

Now recall the definition of scones. In a scone, the lower approximation is a family of sets
(relations), as shown below.

‘ Name ‘ Salary ‘ Room ‘

‘ Name ‘ Salary ‘ Room ‘ J(?hn 1 076
Jim 1 T
John 15K 1
Ann 17K 1
Michael 14K 1 ‘ Name ‘ Salary ‘ Room ‘
| Michael | L [320 |

The consistency condition that relates the upper and the lower approximations now says that
for every set in the lower approximation, there exists an element in that set that is consistent
with an element of the upper approximation. Therefore, we can formalize the notion of a scone
as follows.

Definition 4.3 Given a poset (A, <), a scone over A is a pair (U, L) where U is a finite an-
tichain, and L = {Ly,..., L} is a family of finite nonempty antichains which is itself an
antichain with respect to C'. That is, L; [Z* L; if © # j. In addition, a scone is required to
satisfy the consistency condition:

YELelLAlelLdueu: ul

We refer to U as the upper approzimation and to L as the lower approximation. The family of
all scones over A is denoted by PH(A).

Note that the consistency condition for scones can be reformulated as 1L N U # @ for any

LecL.

The last construction that we have seen in chapter 1 was a snack. Snacks are obtained from
scones in the same way as mixes are obtained from sandwiches: by using the assumption about

4.1. ORDER AND SEMANTICS 105

keys, additional information is inferred. Moreover, the record for Jim disappears as it is now
inferred that Jim is not a TA. In our example, assuming that Name is a key, this yields:

‘ Name ‘ Salary ‘ Room ‘

| John | 15K [076 |

‘ Name ‘ Salary ‘ Room ‘
John 15K 076
Ann 17K 1

Michael | 14K 320 ‘ Name ‘ Salary ‘ Room ‘

| Michael | 14K | 320 |

Thus, now we know that every record in every relation in the lower approximation is at least as
informative as some record in the upper approximation. This leads us to the following definition.

Definition 4.4 Given a poset (A, <), a snack over A is a pair (U,L) where U is a finite
antichain, and L = {Ly,..., Ly} is a family of finite nonempty antichains which is itself an
antichain with respect to C'. That is, L; Z* L; if © # j. In addition, a snack is required to
satisfy the consistency condition:

VLeLlVielL3duecu: u<l
We refer to U as the upper approzimation and to L as the lower approximation. The family of

all snacks over A is denoted by PY(A).

The consistency condition for snacks can be equivalently stated as U CF L for any L € L.

Now let us look at these constructs again. There are three main parameters that may vary and
give rise to new constructs.

1. The lower approximation is either a set or a set of sets.

2. The consistency condition is of form
Qlel JuelU C(u,l) for simple lower approximations and
Vel Qlel Juel C(u,l) for multi-set lower approximations,

where Q is a quantifier (either V or 3) and C'(u,!) is a condition that relates u and .

3. The condition C'(u,!) is either u <1 or w|l.

Therefore, we have eight constructions since each of the parameters that may vary — the struc-
ture of the lower approximation, the quantifier Q and the condition C(w,!) — has two possible
values. For constructs that have a single set lower approximation we use notation P and for the

106 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

constructs with multi-set lower approximation we use P. The rest is indicated in the superscript
which consists of one or two symbols. The first is always a quantifier and indicates whether V
or 1 is used as Q. The second is omitted if the condition is u < [, and it is A if the condition
is |l (to indicate that there is an element above u and). Moreover, we have seen a need for
constructs with no consistency condition, in order to deal with inconsistencies in independent
databases. For such constructs we shall use just one superscript (.

Summing up, we have ten possible constructs: PY, P¥, P, P% p3 p3 p> pi pb P’ Some
of them we have seen already: PY(A) is the family of mixes over A, P™(A) is the family of
sandwiches over A, PY(A) is the family of snacks over A and P2 (A) is the family of scones over
A. This is summarized in the table below.

type of consistency condition (quantifier—condition)
L-part YV u<l Yool 1 u<l 3 afl no condition
one set PY (mix) | P™ (sandwich) P3 P Y
family of sets | P (snack) P P P (scone) P’

Our next goal is to define orders on all approximation constructs and their semantics.

Ordering approximations

Our approach to ordering approximations is the same as the one we used for ordering collections.
We define elementary updates that add information and then define orderings as transitive
closure of those updates. It is important to mention that we use the open world assumption for
the lower approximation as it describes the approximated collection only partially.

Let us first introduce the rules for constructions with one-set lower approximation (like mixes
and sandwiches). The idea behind these rules is that there are three ways to make a pair more
informative: to obtain additional information about elements already in one of the sets; to
make the lower approximation more informative by adding new elements and to make the upper
approximation more informative by reducing the number of possibilities, i.e. by removing some
elements. This is formalized as follows:

1. (U, L)~ (U Lu,L).
2. (U,L)— (min((U Lu)UV), L) where v > u for all v € V.
3. (U,L)— (Umax((L L1)U L") where [<!’ for all I’ € L'.

4. (U, L) — (U,max(L Ul)).

4.1. ORDER AND SEMANTICS 107

Similarly, updates 1 and 2 will work for approximation constructs with the multi-set lower
approximation. However, we need new rules for the lower approximation. Recall that in a multi-
set lower approximation each set contributes at least one element into the result (an element of
the semantics) and elements of that set list possible choices of elements to be included in the
results. Hence, adding new sets into £ as well as deleting elements from L € £ add information.
Now we can formalize updates as follows. We use symbol max® to denote maximum with respect
to C¥.

(U L)~ (U Lu, L).
(U, L)~ (min((U Lu)U V), L) where v > u for all v € V.
3. (U,L)~ (U,max!(L U L)).
(U, L)~ (Uymaxf((L L LYU (L LD))if L LI#.
(U, L)~ (U;max*((L£L L L)Umin((L L1)U L)) where [< ' for all ' € L.
We now define two orderings, called the Buneman orderings, see [33, 66]. For pairs (U, L) and

(U', L"), let
(U,L)C® (U, L) iff UCU and LTI

In other words, C®=C* x C’. For pairs (U, £) and (U, L), let
(U,£)C2 (U, L) iff UCU' andVLel3L el : LCHL/

In other words, E?:Eﬁ X(Eﬁ)b. The index f isised in E? toindicate that the ordering deals with
families of sets in the lower approximations, whereas C® deals with simple lower approximations.

Our main claim about orderings on approximations is the following.
The approximations must be ordered by the Buneman orderings.

We justify it by proving the following theorem. Recall that * over an arrow is used as a notation
for the transitive-reflexive closure.

Theorem 4.15 a) Let (U, L) and (V, M) be two approzimations with one-set lower approrima-
tion (e.g. mizes, sandwiches etc.) Then (U, L) (V, M) iff (U, L) C® (V, M).

b) Let (U, L) and and (V, M) be two approximations with multi-set lower approximation (e.g.
snacks, scones etc.) Then (U, L)~ (V, M) iff (U, L) C% (V,M).

Proof. We prove part b) here; the proof of part a) is similar (and in fact easier). First, observe
that whenever &1 ~» Sy and both & and S, are approximation constructs with the multi-set

108 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

lower approximation, then & E? S3. Hence, the transitive closure of ~+ is included in E?. To
prove the converse, let (U, £) C% (V, M). Since L(EF’ M, by theorem 4.3 there is a sequence
cd®, £, I, 0%, £p A%, M such that £; € £ U M. In particular, each (U,L;) is a

snack (scone) if (U, £) and (V, M) are snacks (scones). For tranformation £; 1=, L4 there
are two cases.

Case 1. L£;11 = max*(L£ U L'). In this case (U, L;) ~ (U, L;y1) follows from the definitions.

Case 2. L;y1 = max*((£; L L)U L') where L C* L'. Then, by theorem 4.5, there is a sequence
LU=, Ly %, Ly, ... U5, L, 1™, L' such that each L; is a subset of LUL’. In particular,
this shows that (U, max*((£; L L;)U L;11)) is a snack or a scone respectively. Now there are
two subcases. In the first subcase, L;1q = min(L; 1) and then (U,max*((£; L L)U L;)) ~
(U,max*((£; L L)U L;11)) follows from the definition. Similarly, it holds for the second subcase
when L;41 = min((L; LI)U L').

Therefore, (U, L;) ~ (U, L;y1) which implies (U,L£) ~ (U, M). Now from theorem 4.5 we
have U U, Uy U, Uy U, ... 0%, U, 1%, V such that each U; is a subset of U U V.
Since TV C U, this implies consistency condition for each (U;, M). Fach U; ~ U;4q is either
U ~ U; Luor Uy — min((U; L u)UU') where v/ > u for all v/ € U’. In both cases,
(U;, M)~ (Uiy1, M). Therefore, (U, M)~ (V, M) which finishes the proof of (U, £) ~> (V, M).

The result for mixes and sandwiches is easily proved along the same lines. |

Thus, when we consider approximation constructs P'(A) and P(A), where i € {V,3,VA, 3,0},
we assume that they are ordered by C® and E? respectively.

Semantics of approximations

To understand the semantics of the approximation constructs, recall the example of querying
independent databases from chapter 1. We used two relations, Employees and CS1, to approxi-
mate the set of teaching assistants. We assumed that a set TA is approximated by Employees
and CS1 if every record in CS1 represents (is less than) a record in TA and every record in TA
is represented (is greater than) by a record in Employees. In other words, CS1 C” TA and TA
C# Employees.

For scones and snacks, where CS1 was subdivided into a family of relations CS1;, we assumed
that at least one element from each CS1; represents an element in TA. That is, TA CF Employees,
and for all ¢, there exists an element in CS1; that represents an element of TA. In other words,

1CSL; N | TA # 0.

To formalize it, we introduce two semantic functions. For constructions with one-element lower
approximations (like mixes and sandwiches) we have

4.1. ORDER AND SEMANTICS 109

[(U,L)] = {X €Ps,(A) | UC! X and LC" X}
(U, D), = {X € P (A™) | UC* X and L C" X}

For constructions with multi-element lower approximations (like snacks and scones) we have
[(U,L)]=1{X €Pu(A)|UC X and Vi:|L;NX #0}

[(U, £)] o = {X € Pen(A™™) [UC? X and Vi:[L;NX # 0}

Note that for both mixes and sandwiches, it is guaranteed that there semantics is not empty.
(Of course for [] .. we have to require that every 2 € A be bounded above by z,, € A™**.)
The same is true for any § € PP(A). However, it is easy to see that for 5 € PY(A), [S] # 0 iff
5 € PH(A).

The semantics of mixes and sandwiches has been studied in Buneman et al. [33] and Gunter
[66]. Here we concentrate on the constructs with the multi-element L-part.

Let A be a three element chain ¢ < b < ¢ and & = (a,b) and Sy = (a,c) two snacks over A.
Then [S1],.« = [S2],,.c but Si is strictly below Sy in the snack order. A more complicated
example of incomparable §; and Sy such that [S1],,,. C [S2l,.c can also be found. Thus, the
semantics in terms of maximal elements does not agree very well with the ordering of snacks
which is supposed to mean being more partial. However, we can show (cf. Ngair [121]) that

Proposition 4.16 IfS; and Sy are two snacks, then Sq E? Sy iff [S2] C [S4]-

Proof. Let & = (U,L£) and S; = (V, M). Prove the ’if part first. Assume [S2] C [S1]. Pick
arbitrarily an element mps from each M € M. Then V' = VU {my|M € M} € [S2] and
therefore V' € [S1] which means U Cf V/ C# V. Hence, U Cf V.

Let M = (. Then £ = 0 because if £ # §, then §§ € [Sz] but @ ¢ [S1]. Hence, in this case
S1 E% 8.

Assume M # § and Sy £} Sy; then ILYM 3Im € MVl € L: 1 £ m. Let L € L be a set for
which the statement above is true; then, selecting appropriate m for each M € M we obtain a
set) such that QNM # @ forall M € Mand VI € IVq € Q : | £ ¢q. In other words, [LNQ = 0.
On the other hand, @ € [S2] C [S1] and therefore LN Q # O for all L € L. This contradiction
shows & E? Ss.

To show the ‘only if’ part, assume & E? Sy and Q € [Sy]. Then U C* V CF Q and, given
L € L, there exist M € M such that M C 7L and therefore @ N L # @. This shows Q € [S1].

Proposition is proved. O

Unfortunately, this is no longer true for scones because, given the following A:

110 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

T

1

let S1 = (a,b) and S = (a,c) be two scones over A. Then {{T},{a, T}} = [S1] = [S2] but &1

and &3 are incomparable.

However, there is a very close connection between semantics of scones and snacks and the
ordering. In some sense, the family of snacks over A is the maximal subclass of scones over A
on which the semantics and the orderings agree. To formulate this rigorously, let &1 < Sy iff
[S2] C [Si]. Then < is a preorder and the induced equivalence relation is denoted by e.

Proposition 4.17 For a bounded complete poset A, (P*(A),x)fe< = PY(A).

Proof. If A is bounded complete, then for two finite sets U and L the set min(1U N L) is
also finite. Hence, we define ¢ : PP A) — PY(A) by (U, L)) = (U,{min(1U N L)} L € L).
Clearly, [S8] = [#(S)] and ¥ (¥(S)) = ¥(S). According to proposition 4.16, 1»(S) is the only
snack in the e ¢-equivalence class of §. Moreover, ¢ is monotone because, if U C!Vand L C' M,
then min(1Z N 1U) CF min(1M N 1V). This finishes the proof of the proposition. O

The following result follows directly from the definitions.
Proposition 4.18 Given S € PY(A), [S] £ 0 iff S € PH(A). 0

Summing up, scones are the maximal class of approximation constructs with multi-set L-part
that has well-defined semantics, and snacks are the maximal subclass of scones over on which
the semantics and the orderings agree.

Using or-sets to encode approximations

We have seen already that orderings on approximations are obtained by combining orderings that
were suggested for OWA sets and or-sets. This brings up the idea of using or-sets in encoding
approximations. We show an intimate connection between the semantics of sets, or-sets and
approximations that suggests a clean way of encoding approximations with sets and or-sets.

First, consider the semantics of a mix (or a sandwich) (U, L). Let X € [(U,L)]. Then L " X
which means X € [L], where L is considered as an ordinary set. Furthermore U/ C# X means
X € [U]s where U is considered as an or-set. Thus, we have

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 111

Proposition 4.19 For any miz (sandwich) (U, L) where U = {uy,...,u,} and L = {l1,..., 1},
Xe(U,D] iff X € [{ls,---,lx}]s and X € [{u1, ..., un)]s. 0

Furthermore, assume that all elements of U and L come from a poset A. Then X € [(U, L)]
means that X € [{l,...,lx}]. and X C [{uq,...,u,)].. This suggests that the lower approxi-
mation be encoded as a set and the upper as an or-set.

Now consider constructions like snacks and scones. Then the following is immediate from the
definitions.

Proposition 4.20 Assume that U € A (A) and L is an antichain (with respect to C!) of
finite antichains of A. Let (U,L) be an element of PZ(A), where i € {V,3, YA, I, 0}, where
U=A{u1,...;u,} and L ={Ly,..., Ly}, Ly ={li,...,1},.}. Then X € [(U,L)] iff

X C [uty-eyun)]e and X € [{{13,.. .,l}m>, oIk .,l}nk>}]]c
This proposition suggests that the lower approximation be encoded as a set of or-sets and

the upper as an or-set. Summing up, we have the following correspondence between types of
approximations over type t and sets and or-sets:

‘ Approximations ‘ Encoding ‘
PN, ¢ € {V, 3,90, A, 0} | (&) x {¢t}
P[], 7 € {V, 3, VA, N, 0} | (&) x {{t)}

It will be seen in chapter 5 that these encodings provide a convenient way of programming
with approximations, which has a number of advantages over the approach based on structural
recursion and monads.

4.2 Universality properties of partial data

The goal of this section is to demonstrate the universality properties of various collections that
later will be used as a basis for the programming syntax design. We have seen examples of
turning universality properties into syntax in section 3.2.

The collections we study include sets and or-sets. We concentrate on sets under the open world
assumption. We also look at the iterated constructions which correspond to the objects of types
({t}) and {(t)}. These will be of special importance when we study normalization of or-objects.
Finally, we characterize approximation constructs as free algebras.

112 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

To explain the setting before we embark on a lengthy technical development (and thus save time
for the reader who does not want to read the proofs and just want to look at the theorems), we
always start with a partially ordered set A and characterize various constructions as free ordered
algebras generated by A. That is, the general form of the results is finding the signature © of an
ordered algebra on each construction C'(A) and an embedding 7 : A — C'(A) such that for each
ordered Q-algebra (X, Q) and each monotone map f: A — X, there exists a unique monotone
Q-homomorphism that makes the following diagram commute:

A1 (cA),9)
i+
"\
(X, 0)

Constructions C' that we consider are the following. For sets (under OWA) we use P°(A); for
or-sets we use P¥(A). We consider two iterated constructions PP(PH(A)) and PHP"(A)). And
we study approximations P(A) and P*(A) where 7 € {V,3, VA,], 0}.

4.2.1 Universality properties of collections

Universality properties of P”(A) and P¥ A) have been demonstrated already. In lemma 2.2 it
was proved that Pb(A) is the join-semilattice with bottom element freely generated by A and
PH(A) is the meet-semilattice with top element freely generated by A. In other words, if we
consider P° as a functor from Poset to SL, and P! as a functor from Poset to SLq, then we
have the following adjunctions:
b i
[USLoﬁPoset [USLlﬁPoset

where Us are forgetful functors. This adjunction cuts down to an adjunction of categories in

which all objects are finite. The monads corresponding to these adjunctions have been shown
in section 2.3. We shall return to them again in chapter 5.

4.2.2 The iterated construction

We have seen that or-sets correspond to the Smyth powerdomain and sets correspond to the
Hoare powerdomain. If we would like to see how sets and or-sets can interact, we should look at
a combination of these two constructions. (This is similar to the way the definition of a strong

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 113

monad was introduced. One needed an interaction of a functor T with products. In the case
of the languages from section 3.2, this resulted in adding py which provides interaction between
sets or bags and products.)

We have two ways of combining the the semantic constructions corresponding to sets and or-
sets: P(A) = P°(PY(A)) and PP(A) = PHP(A)). The question that arises is which one to
consider. The answer is: either one. This is possible because Flannery and Martin [53] proved
that P*#(A) and P¥(A) are isomorphic. However, from their proof it is impossible to derive the
isomorphism we would be able to use, as they proved the isomorphism at the level of information
systems, cf. C. Gunter [67].

Later Heckmann [71] tried to simplify the proof. His proof, however, was based on a number
of universality properties which postulated existence and uniqueness of certain mappings, and
a combination of some of those was shown to be the desired isomorphism. This again is not
satisfactory. Finally, in Libkin [100], an elementary proof was given in which the isomorphism
was explicitly constructed. We state the result here, and later use the isomorphism to add a
primitive providing interaction between sets and or-sets to the language for those collections.

An element of Pﬁb(A) is a finite antichain, with respect to TP, of finite antichains of elements
of A, and a element of Pbﬁ(A) is a finite antichain, with respect to CF, of finite antichains of
elements of A. Given a finite set of finite sets X = {X1,..., X,,} where X; = {z,.. .,x};i}, let
Fy be the set of functions f : {1,...,n} — N such that for any i: 1 < f(¢) < k;. For f € Fy, let
fx) = {xlj}(i) |t =1,...,n}. If all X;’s are subsets of A, define two maps a and (3 as follows:

a(X) = min ¢ (max f())

AA) = maxpy(min f(X))

Theorem 4.21 o : PH(A) — P¥(A) and § : PP(A) — P*(A) are mutually inverse isomor-
phisms between P A) and PP(A).

Proof. We have to show that a maps P"(A4) to P#(A), B maps PP(A) to P*#(A) and o and
are mutually inverse and monotone. The first two claims follow immediately from the definitions
of @ and 3. To complete the proof, show that a is monotone and 3 o a = id. By duality the
proof of monotonicity of § and a o 3 = id can be obtained.

Recall that if V' and W are finite subsets of an arbitrary poset, then 1) V/ C” W iff maxV
max W and 2) V C! W iff min V Cf min W. Notice that both P#(A4) and P**(A) have bottom
and top elements. These are) and {(}, and they are mapped to each other by « and . Hence,
in the rest of the proof we do not consider empty sets.

Throughout this proof, X" is defined as above, i.e. X' = {Xy,..., X,,} and each X; consists of
elements @5, 7 = 1,..., k.

114 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Claim 1: o is monotone.

Proof of claim 1: Tet XY = {Y1,...,Y;,} € P*!(A) and X C" Y. We must prove a(X) C! a(Y).
In view of the above observations, it is enough to show that for any f € Fy there exists g € Fy
such that g(X) C” f()). Since for each ¢ = 1,...,n there exists j; such that X; Cf Y., there
is an element x;i € X; such that x;i < yff(ji). Let g(i) = p;. Then for this function g one has

{wé(i) li=1,...,n} {yjf(i) |i=1,...,m},ie. g(X) g f(Y). Claim 1 is proved.

Let X € P(A) and Y = {Y},....Y,,} = a(X) € PP(A4). By 1) and 2) above, to show that
foa=id,ie. that 5(Y) = A, it suffices to prove

Claim 2: For any f € Fy there exists X; € X such that f(Y) C* X;.

Claim 3: Every X, is in B()).

Proof of claim 2: Let Z be the collection of all sets f(X') where f € Fy; 2 = {Z1,...,Zs}.
Then for any g € Fz, there exists X; € X such that X; is contained in ¢(Z) because, if this is
not the case, for any X; € X there exists j; < k; such that wzl € X; and, for any f € Fy, g on
f(X) picks an element different from wzl If we define fy such that fy(¢) = j;, ¢ may pick only

elements of form 2% on fo(X), a contradiction. Therefore, g(Z)C¥* X; for some 4.

Let f € Fy. Let H be the set of functions in Fy that correspond to elements of Y = a(X’) or,
in other words, maxh(X') € Y for h € H. Then, for any b/ € Fy L H, there exists a function
h € H such that max h(X') C* max h'(X), i.e. h(X) E" 1'(X). Since h € H, maxh(X) € Y, i.e.
max h(X) = Y;. If f(z) = j, then there is an element in £’(X') that is greater than yi. Define a
function g € Fz to coincide with f on those Z;’s that are given by functions in H. On Z; that
corresponds to f € Fy L H,let g pick an element which is greater than some y} where f(i)=j
(we have just shown it can be done). Then f()) C* {zé(i) |i=1,...,k} = g(2). We know that

there exists X; € A’ such that g(Z) C* X;. Thus, f(¥) C! X;. Claim 2 is proved.

Proof of claim 3: Prove that for any 96; € X; there exists Y; € Y such that wé € V). Consider the
set Ffvj of functions f € Fy such that f(i) = j. If for no f € Ffvj wz € max f(X'), then there
exists X, € X" such that all elements of X, are greater than xé, ie. X; ! X, which contradicts
our assumption that A is an antichain with respect to Cf. Hence, 96; € max f(X') for at least
one function in Ffvj Since A" is an antichain, for any p # ¢ there exists 2l € X, which is not
greater than any element of X;. Change f to pick such an element for any p # i. Then a
is still in max f(X'). There exists a function f' € Fy such that max f/(X') C” max f(X') and
max f'(X) € a(X). If f/(i) = j' # j, then, since f/(X)C" f(X) and X, is an antichain, x;, < b
for some p and ¢, where p # i. But this contradicts the definition of f. Hence, f/(i) = j and
2} € max f/(X) because @} € max f(X'). Since max f'(X') =V, for some index [, 2} € ¥, €).

Let)’ be the collection of elements of V that contain elements of X;. Then we can define a
function f € Fy on elements of)’ to pick all elements of X;. Each Y; € Y 1L)’ either contains
an element of X; or contains an element which is greater than some x; € X;. Let f pick any
such element. Then min f(}) = X;. Suppose X; ¢ B(Y). Then X; CF min g(}) for some

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 115

function g € Fy such that ming(Y) € B(Y). By claim 2, g(¥) C* X; for some X;. Hence,
min g(Y) Cf X; and since X' is an antichain with respect to Cf, X; = X; = min g(Y) € ().
This finishes the proof of claim 3 and the theorem. O

Now, let us see what « does if there is no order involved. In this case an input to a can be
considered as a set of or-sets:

P — {<x%,,wi1>,,<w?,,wzn>}

Then a(X') is the or-set of sets

That is, all possible choices encoded by or-sets are explicitly listed. Notice that we used a very
similar construction in the proof of proposition 4.12 to show that the conceptual semantics of
any object is a finitely generated filter. We shall use a as a programming primitive extensively
in chapter 5.

The iterated construction does possess a universality property.

Theorem 4.22 For any poset A, Pbﬁ(A) 15 the free distributive lattice with top and bottom
generated by A.

Proof. First, P"#(A) is a distributive lattice with top and bottom since P’(A) is a distributive
lattice for any A, and Pbﬁ(A) has top element {(}} and bottom element). Now we must prove
the following: for any distributive lattice with bottom and top (D, LT), and any monotone map
f: A — D, there exists a unique homomorphism of distributive lattices with top and bottom
J* that makes the following diagram commute (where n(z) = {{z}}):

A (pa), LT, {0),0)

3+
; .
L

(D,V,\, L, T)

To define f+, first notice that f¥(#) = L and fH({#}) = T. Other elements of P"(A) are
antichains X', with respect to C!, of antichains of A. Let X = {X;,...,X,} where X; =
{zi,.. ,x}ﬂ} Then define

FANC O f(a5)

K3

n ki
=1]:1

116 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Clearly, f*(n(z)) = f(z). Let us show that f* is a homomorphism. Given X and Y =
{Y1,..., Y.}, then Y 'Y = max¥ (X UY)and ¥ Y = max{XNfY | X € X,V € Y} =
max*{min(X UY) | X € X,Y € Y}. Notice that V C! W implies A,y f(v) < Awew f(w).
Moreover, X(C!)*Y implies ft(X) < fH(Y). Hence, writing expressions for f+ we may leave
nonminimal elements in individual antichains and nonmaximal elements in families of antichains.
With this in mind, we calculate

frady)y =\ A S =RV YY) and

ZeXUY zzeZ

famry=V N flz) =

XeX Yey zeXuY

(VA J@)y A N T = TR AR

XeX reX Yey yey

Thus, f* is a homomorphism. Its uniqueness follows from X = I_IE I_Ig 77($Z) Theorem is proved.
O

This result can be generalized for slightly changed iterated constructions. Let P;Q(A) and 77;2@

be defined as P’ and P! except that the empty antichain is not allowed. Let P;ﬁq) and P;ébQ) be

respective compositions of P’ 0 and P* 0 Then analyzing the proofs of theorems 4.21 and 4.22,
it is easy to see that the following holds.

Corollary 4.23 For an arbitrary poset A, P;%(A) and P;éb@(A) are isomorphic. Moreover,
P;%(A) is the free distributive lattice generated by A. O

In particular, Pbﬁq) 4 U form an adjoint pair of functors between categories Poset and DL,

where DL is the category of distributive lattices and U is the forgetful functor DL — Poset.

4.2.3 Universality properties of approximations

The main purpose of this section is to describe all approximation constructions, that is, Pi(A)
and 7Pi(A), as free ordered algebras generated by A. Of course we have to explain how A is
viewed as a subset of those. This is achieved by defining two functions (for which we use the
same notation)

APy pe)=(eoe) and A—ToPia) . pz) = (2, {z})

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 117

Notice that we often omit the set brackets {} when we deal with singletons. In particular, by
{2} we meant a family of sets that consists of one singleton. In proofs, we shall also occasionally
omit commas separating elements of sets, writing zyz for {z,y, z}.

It would be ideal if could obtain freeness results for all constructions, but there is one obstacle.
Consider a poset A and z,y € A such that 2ly. Then (z,y) is a sandwich and (z,{y}) is a
scone. Thus, if P¥(A) or P (A) were free algebras generated by A, there would be a way to
construct (z,y) or (z,{y}) from the singletons like (z,2) or (z,{z}). But this way must use the
information about consistency in A and therefore can not be “universal”!

We shall make this precise by proving that the approximation constructs with [l used in the
consistency condition do not arise as free ordered algebras generated by A. But we give a method
to repair the failure of certain approximations to be free algebras. The idea is that information
about consistency in A must be conveyed by the generating poset. We define the consistent
closure of A as

AlA = {(avb) |a€ Abe A db}

The consistent closure of A can be embedded into Pi(A) and P*(A) (where i € {3\, WA}) by
means of the following functions:

AL i))=y ad AL P yley) = (o))

When the structure of an arbitrary free algebra is described, it is assumed that n is an arbitrary
map of generators into an algebra of the given signature. This is no longer enough for ordered
constructions like P°(A) and P¥(A) because those are free ordered algebras generated by ordered
sets. In particular, we always start with a monotone map that is to be extended to a monotone
homomorphism. In the case of sandwiches or scones, we go even further and impose additional
structure on the generating poset. This structure must be consistent with the resulting algebra.
To guarantee it, we put additional restriction on the map f saying that the structure of AJA
should not be destroyed by f. We call such maps admissible. Of course there will be different
definitions of admissibility for different kinds of approximations. When we say that an algebra
is freely generated by a poset with respect to a class C' of maps, we mean that any map f in C
can be extended to a monotone homomorphism.

In the rest of this section we prove three kinds of results. The constructs not using ull,u,l € A
in the consistency condition are found to be certain ordered algebras freely generated by A.
Those that do use such consistency conditions can not be obtained as free algebras generated
by A. However, some of them can be obtained as algebras freely generated by AlA with respect
to properly restricted (admissible) maps.

Operations used in the free algebra characterizations are either operations similar to the “formal
union” such as in the characterization of the Plotkin powerdomain [137], or modal operations

118 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

in the spirit of Winskel [178] or operations associated with the orderings (such as infimum) or
other binary operations that can be viewed as combinations of the above.

Universality of P¥(A) (mixes)

The characterization of the mixes as free ordered algebras was given by C. Gunter [66]. For the
sake of completeness, we recall it here. We shall also need the same algebras for dealing with
sandwiches.

Definition 4.5 A mix algebra (M,+,0,€) has partially ordered carrier M, one monotone bi-
nary operation + and one monotone unary operation 0. (M, 4+, €) is a semilattice with identity
e, and in addition the following equations must hold:

1) B(x +y) = Ox + Oy,

2) 00z = Oz,

3) 0z < z,
Dr4oe=a,
5)x+ Oy < z.

A miz homomorphism of two mix algebras (My, 41,01, e1) and (Mz, +2, 0, €2) is a monotone

map f : My — M, such that f(z +1y) = f(z) +2 f(y), f(O12) = Oz f(x) and f(e1) = f(ez).

That is, in addition to being homomorphism in the usual sense, f must be monotone as well.
PY(A) can be given the structure of a mix algebra by taking the ordering C® and defining

(U, L)+ (V,M)=(min(U U V), max(L U M)) o(U, L) =(U,0) e=(0,0)
Theorem 4.24 (C. Gunter [66]) PY(A) is the free miz algebra generated by A. That is, for

any miz algebra M and a monotone map f: A — M there exvists a unique miz homomorphism
fr: PV(A) — M that makes the following diagram commute:

AT (pY(4),+,0,¢)

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 119

Universality of P% (sandwiches)

We would like to characterize sandwiches as a free construction over A. Suppose we start with
the same function 5 : A — P™(A) given by n(z) = (z,z). For any pair z,y € A such that
ly, there is a sandwich (x,y) over A. Thus, if we view P™(A) as a free algebra in a certain
signature, there must be a way to construct (z,y) out of pairs with identical components. But
this way must use information that zly and therefore can not be “universal”. To be precise, the

following holds.

Theorem 4.25 [t is impossible to find a family Q of operations on sandwiches such that P¥(-)
would be left adjoint to the forgetful functor from the category of ordered Q-algebras to Poset.
In other words, for no Q is P™(A) the free ordered Q-algebra generated by A.

Proof. Assume that there exists a set of operation © such that P¥(A) the free ordered Q-
algebra generated by A for any poset A. Let A = {x,y, 2} be an antichain and A’ = {2/, ¢, 2’}
be a poset such that a',y’ = 2/ and 2’ Z ¢/, v/ Z 2'. Let f: A — P™A") be defined by
fla) = (d’,d'),a € A. Now the assumed universality property tells us that f can be extended
to a monotone Q-homomorphism f : P™(A) — PN(A"). Let & € P™(A"). Since P™(A')
is the free Q-algebra generated by A’, we can find a term ¢ in the signature Q such that & =
t(n(z"),n(y"),n(z")). Since n(z') = f(z) = fH(n(z)) and similarly for y’ and 2/, we obtain
S = fH(t(n(x),n(y),n(2))) = fH(So) for some Sy € P (A). Therefore, f* is onto.

Define PY, (A) as the set of elements of P™(A) which are not under (z,z) or (y,y). It
is easy to check that P¥, (A) includes the following: (z,z), (2z,2), (y2,2), (2,0), (zz,22),
(yz,y2), (zy,zy), (zyz,zz2), (zyz,yz), (xyz,2y), (zyz,z). Similarly, define Pf’;,y,(A’) as the
set of elements of PY(A’) which are not under (2/,2') or (y/,y’). These are: (2',), (v',2'),
(2'y', 2", (2, 2'y), (a/,2)), (Z,2"), (v',2"), (Z,y), (2/,0), (2/,2'). Since f* is monotone, we
derive that its restriction on P¥, (A) must be an onto map from a subset of P¥ (A) to
P (A). Observe that in PY, (A) the only element that is not above (xyz, 2)is (z,0). Hence,

-z y/

if fT((zyz,2)) =38 € P%,,(A'), then fH(P% (A) L{(2,0)})is a subset of the principal filter

Yy

of S in P, (A"). However, P¥, (A’) has four minimal elements: (2’,y"), (y',2'), (2'y’,2') and

-y ﬁxly/

(z/,0) which shows that f* can not be an onto monotone map between Pz’g\gy(A) and Pf’;,y,(A’).

This contradiction shows that P¥(A) can not be obtained as the free Q-algebra generated by
A. O

Therefore, as we suggested in the introduction to this section, the information about consistency
in A must be conveyed by the generating poset. That is, we use AJA instead of A. The surprising
result now says that sandwiches over A are the free mix algebra generated by the consistent
closure of A under the same interpretation of the operations of mix algebras! Of course, we need
an admissibility condition.

120 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Definition 4.6 Let M be a miz algebra. A monotone map f : A|JA — M is called admissible
(or sandwich-admissible) if f(z,y)+ f(z,y) < f(z,y) and Of(x,y) = Of(z,2).

Theorem 4.26 Given a posel A, PV’\(A) s the free miz algebra generated by AlA with respect
to the admissible maps. That is, given a mix algebra M and an admissible map f : AJA — M,
there exists a unique miz homomorphism f1 : PV’\(A) — M such that the following diagram
commutes:

T
A e (P™(A), 4,0, ¢)

i+
f :
v
<M7 —I_? D? €>

Proof. We omit an easy verification that P¥(A) is a mix algebra.

Let us first establish a number of useful properties of admissible maps. In what follows, f is
always an admissible map from AJA to M.

1) Assume v 3w and w|l. Then f(u,l)+ f(v,l)= f(v,1).

First, f(u,l) > f(v,l). By monotonicity of +, f(v,l) = f(v,l)+ f(v,1) < f(v,1)+ f(u,l). But
since f is admissible, f(u,l)+ f(v,l) < f(v,l). Hence, 1) holds.

2) Assume p z I, vll and glp. Then f(v,l)+ f(q,p) = Of(v,v)+ f(q,p).

First show f(q,p) + f(q,1) = f(g,p). By monotonicity, f(q,p)+ f(q,1) < f(q,p)+ flq,p) =

f(q,p). On the other hand, f(q,p)+ f(¢.1) = f(q,p) + Of(q,1) = f(q,p) + Of(q,p) = flq,p),
which proves the equation. Since Of(v,v) = Of(v,l) < f(v,1), the > inequation for 2) holds.

Conversely, f(v,1) + f(q,p) = f(v. 1)+ f(q,) + f(q,p) = Of (v, 1) + f(0, 1) + f(q,) + (g, p) <
Of(v,0)+ flq, 1)+ f(q,p) < Of(v,v)+ f(q,p) which shows the reverse inequation. 2) is proved.

3) If I 2 m, then f(v,0)+ f(qg,m)=0Of(v,v)+ f(q,m).

The > inequation is obvious. As in the proof of 2), we obtain f(v,{)+ f(¢,m)= f(v
flgm) =0 f(v, O+ f(v,)+ f(g.)+ f(g,m) < Bf (0, 1)+ f(q, 1)+ f(g,m) < T f (v,
Of(v,v)+ f(g,m).

4) Assume v 2 u. Then f(v,1) = f(u,l)+ Of(v,v).

SO+ flg, D)+
D+f(g,m)=

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 121

First, f(u,)+ f(v,1) < f(v,): f(o, D+ f(v, 1) < f(u, D)+ f(v, 1) hence f(u, 1)+ f(v,1) = f(v,1).
Now we have: f(v,l) = f(v,l)+ f(2> flu,)+ 0f(v,l) = f(u,l)+ Of(v,v). On the other
hand, f(v,l)= f(v,l)+ Df(1)< f(u,l)+ Of(v,v), proving 4).

5) If vz u, then Of(u,u)+ Of(v,v) = 0Of(v,v).
According to the proof of 4), f(u,v)+ f(v,v) = f(v,v) and from this 5) follows immediately.
6) Assume ull and v|l. Then f(v,l)+ Of(u,u)= f(v,)+ Of(u,u)+ f(u,l).

Since Of(u,u) = Of(u,l) < f(u,l), the < inequality holds. Since f(v,l)+ f(u,l) < f(v,l), we

obtain the reverse inequality.

Now let us come back to the statement of the theorem. Let § = (U, L) be a sandwich over A
with U = {uy,...,u,} and L = {l1,...,{x}. Since § is a sandwich, for every [; € L there exists
u;, € U such that [jju;,. Let T C [n]x [k] be the set of pairs of indices such that (i,7) € Z < ull;.
Then

(1) S = Z u“ ‘|‘DZ u“uz
(

4,5)€T

From now on we assume that summation over an empty set is the identity for the 4+ operation.
It shows that (1) holds even if one of the components of a sandwich is empty.

Using representation (1), define f* for an admissible f: AJA — M as follows:

(2) A= > f(uialj)+DZn:f(uiaui)

Let us show that f* is a homomorphism. Prove that f* is monotone first. Let S§; = (U, L)
and S; = (V, M) be two sandwiches such that & C® S,, that is, U C'Voand L C° M. Let
S = (U, M). Observe that S is a sandwich. Therefore, the proof of f*(Sy) < f+(S;) is contained

in the following two claims.
Claim 1: f*(81) < fT(S).

Proof of claim 1: If L = (), then claim follows easily from (1), admissibility and equation 4 of
mix algebras. For L # (), since L C" M, there is a sequence of sets Lo = L,Ly,...,L, = M
such that each L; C L U M and either L;;y = max(L; Ul) or L;y1 = max((L; L L) U)
where I” < [for all I’ € L', see theorem 4.3. Then each (U, L;) is a sandwich. We must
show fT(U,L;) < fH(U,Liz1). Consider the first case, i.e. L, 11 = max(L; Ul). To verify
JH(U, L;) < fY(U, Liz1) in this case, it is enough to show O f(u, u)+ f(u,!) > O f(u, u) if u|l and,
if there is an element I’ € L such that I’ <1, then f(u',I")+ f(u,)+0f(u,u) > f(u',0")+0f(u,u)

122 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

if w'll!. The first one is easy: Of(u,u)+ f(u,l) = Of(u,l)+ f(u,l) = f(u,l) > Of(u,u). The
second one follows from monotonicity of +: f(u,{)4+ Of(u,u) > Of(u,l) = Of(u,u).

Consider the second case, i.e. L;yq = max((L; L L')U). Assume ufl. Then ull’ for any I’ € L'.
Therefore, any summand f(u,!)in (2) for (U, L;41) is bigger than f(u,!’) in (2) for (U, L;). Now
suppose there is I’ € L’ such that «/|l’ but «’ is not consistent with [. If [is consistent with some
w € U, then ull’. Therefore, to finish the proof of claim 1, we must show that f(u',!")+ f(u,l) <
f(u,1). But this follows from admissibility of f: f(u',U') + f(u,l) < f(u,l') < f(u,l). Claim 1

is proved.
Claim 2: fT(S) < fH(Ss).

Proof of claim 2: Again, we assume non-emptiness, since for empty sets the proof of claim 2
readily follows from (1). We start with proving the following. Given a sandwich (W, N) and
n € N, let w, be arbitrarily chosen element of W such that w,|n. Then, given an admissible
function f, fH(W, N) defined by (2) equals 3, cn f(wn,n) + O3 ew f(w,w). To prove this,
assume that there are two elements wy and wy in W consistent with n € N. Then we must
show f(wi,n) + f(wz,n) + Of(wy,wi) + Gf(wa,w2) = flwr,n) + Gf(wr, wi) + Of(wg, wa).
That the left hand side is less than the right hand side follows from admissibility. On the other
hand, f(wi,n)+0f(wr, wr)+0f(w2, w2) = f(wi,n) +0f(we,n)+0f(wr,w1) +0f(ws, wz) <
flwy,n)+ f(wz,n)+ Of(wy,wy) 4+ Of(wq, wy) which proves our claim.

Now, to prove claim 2, consider S = (V, M) and let v, be an element of V' consistent with
m € M. Since U LC* V, let u,, be an element of U under v,,. Then wu,|m. Also, let u* be
an element of U/ under v € V. Then O3 oy f(u,u) = O3 ey f(u’,u”) + O3, 4w f(u,u) <
OY ey flu?,u?) <O oy f(v,v). Now, by the claim proved above, f+(8) =3 s f(tm, m)+
O wer flu,u) <3 cnr f(0m, m)+ 03 ey f(v,v) = fT(S;) which finishes the proof of claim

2 and monotonicity of f¥.

Now we demonstrate that fT preserves the operations of the signature of the mix algebras.
Since O distributes over +, Of*(S) = > (i)eT Of(u;, 1) + >, Of(u,u;). Since Of(uy, L) +
Of(us,w;) = Of(u;,u;), we obtain OfH(S) = S0, Of(us,w;) = fH(OS). Moreover, since
Oe = e, this also holds when one of components is empty. In addition, f(0,0) = e.

That fT is a +-homomorphism easily follows from (2) when one of the components is empty. So
in the rest of the proof we assume that the second components of all sandwiches are not empty.

Let S = (U, L), Sy = (V,M). Let S = §; +S3 = (W, N). Consider a pair (u;,{;) with (¢,7) € Z.
There are three cases: this pair is either present in the representation (1) of S or u; = vy for
some vy € VNmin(UUV)orl; 3my € M Nmax(LUM).

Consider the second case. We have vi]l;. Assume /; < p and p € N. We know that plq for some
q € W. Since f(vg, 1)+ f(¢,p) + Of(vk,v5) = f(g,p) + Of(v,v) by 2), we obtain f*(S) =
IT(S) + f(vg,1j). Furthermore, since Of(vg, vg) + f(us,) + f(vg, 1) = Of (vk, ve) + f(vk, ;)

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 123

by 1), we have f+(8) = fH(S) + f(or, ;) + f(ui, ;).

Consider the third case. Assume u; is greater or equal than some v € W and mylg for ¢ € W.
Then f(v,1;)+ f(q, mi) = Of(v,v)+ f(g,mg) by 3), and hence f+(S) = fH(S)+ f(v,l;). Since
f(v, ;) = f(u,lj) + Of(v,v) by 4), we obtain fT(S) = fH(S)+ f(us, ;).

Assume that « > v. Since Of(u,u)+ Of(v,v) = Of(v,v) by 5), we obtain fH(S) = fH(S) +
O f(u;, u;) for any u;.

All this shows that f*(S§) can be rewritten as f¥(S;) 4 f1(S2) + X where X is a sum of some
elements of form f(u;, m;) or f(v;,[;). Consider a pair (u;,m;) such that u]m;. There exists
vy such that vglm;. Since f(vg, m;) + Of(ui, w) = f(vg, m;) + O f(ui, w;) + f(ui, m;) by 6), the
summand f(u;, m;) can be safely removed from X. Thus, any summand can be removed from

X and f*(S) = ft(S1)+ fT(S2). Therefore, fT is a homomorphism.

The uniqueness of f* follows from (1). Since fT(n'(z,2)) = f(z,z)+ Of(z,z) = f(z,z), we
have fT on' = f. The theorem is proved. O

Universality of P3

For PE(A), the situation is analogous to mixes. That is, there exists a family of operations {2

such that P3(A) is the free ordered Q-algebra generated by A.

Recall that a left normal band is an algebra (B, #) such that x is associative, idempotent and
Txy*z=1x*z*y, see Romanowska and Smith [149].

Definition 4.7 An algebra (B, &, *) is called a distributive bi-LNB algebra if:
1) @ and * are left normal band operations.

2) All distributive laws between * and & hold.

3)a®(bxec)=adb.

4) (axb)Pb=(bxa)Pa.

Some useful equalities can be derived from 1) - 4). For example, a x (b & ¢c) = axbBaxc =
axbPa=axbPa+xb=axband axbPDaxc=a*xbPa=axbDaxb=axb. It follows
immediately from 3) and 4) that (a*b) & (b*a) = (bxa) ® (a *b).

We need not include the order in the signature as it is definable.

Lemma 4.27 In a distributive bi-LNB algebra, a < b := b@® a = a x b defines a partial order.
Moreover, @ and * are monotone with respect to <.

124 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Proof. First, let us show that b a = axbimplies a®b=aand bxa=0b. If axb =bD a, then
bxa = bxaxb =bx(bPa) = bFbxa = bbb = b. Moreover,a = ada = aGaxb = adBbHGa = aPb.

Because of idempotency, < is reflexive. To prove transitivity, let ¢ < b and b < ¢. We must
show axc=c@a. Calculate cBa=cxbBaBb=(chBb)xbPa=brxcxbBa=bxcHa=
(bBa)x(cha)=axbkcHaxbra=axbxchHa=axbrcBaxbxc=ax*xb*c. On the other hand,
axc=(a®b)xcxb=a*xcxbBbrcxb=axcxbPb=(aBb)x(cBbb=axbrcxb=axbxc.
Hence, cha = axcand a < c. Finally, if a < b and b < a, then a b =a and bxa = b. Hence,
b=bxa=a®b=a, which finishes the proof that < is a partial order.

Assume that ¢ < b. To see that a® ¢ < b ¢, calculate (aPc)*(bPc)=axbFaxcHexbde=
axbBade=bbadc=(bbc)®d (adc). Similarly, & is monotone in its second argument.
To show a ¢ < b*¢, calculate ax c B bxc = (a@b)*xc=b*xa*xc=>bx*c*ax*c. Similarly,
cxa@cxb=cx(a®Bb)=cxbxa=c*ax*xcx*b. Hence, * is monotone. O

Thus, we treat distributive bi-LNB algebras as ordered algebras.

We interpret the operations * and @& on P3(A) as follows:
(U, L) (V,M)= (min(UUV), L) (U, L)+ (V,M)= (U,max(L U M))

Note that under this interpretation @ + y = (« * y) @ y where the + operation is the one used
for mixes and sandwiches. Hence, 4) is just commutativity of +.

Theorem 4.28 PI(A) is the free distributive bi-LND algebra algebra generated by A. That is,
for any distributive bi-LND algebra B and any monotone map f : A — B, there exists a unique
homomorphism which completes the following diagram:

A (pAA), 8, %)

31+
/
(8,4

Proof. First observe that if (U, L) € P3(A), then U, L # (. We leave it to the reader to find
an easy proof that P3(A) satisfies all equations of the distributive bi-LND algebras under the
given interpretation of @ and * and that S; C® Sy iff S} * Sy = So @ Sy. Given (U, L) € P3(A),
we can find v € U and [€ L such that uy 2 l;. Then, using ¥ for repeated applications of &,

~

and &) for repeated applications of *, we can see that

(U, L) = ®ycrm(u) * n(ur) * n(ly) * @ n(l)

leL

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 125

if in the summation over elements of U the first summand is below an element of L. Now, given
a monotone f from A into an algebra B, define ft : P3(A) — B as follows:

f+(U7L):EuEUf()* flur) * f(lh) ®f

leL

Our first goal is to show that in the above representation any number of expressions of form
fu')x f(I"), where v’ 21, can be added after f(uq)*f({1). This is indeed correct, as f(u') < f(I')
implies f(u')* f(I') = f(I') and f(I') is subsumed by @y, f(1).

Denote f(u1)®. . .6 f(u,) by Ufor U = {uy,.. .,Aun} and f(l1)*...xf(lx) by LforL = {ly,... g}

Then fH((U,L)) = U * f(ui,) * ... % f(us,)* L for any number of u;,’s which are under some
elements of L.

To show that fT is well-defined, we must prove that its value does not change if we pick a
different first summand in U as long as it is below an element of L. It suffices to prove the

following. Let u; < l;, i = 1,2. Then (f(uy) ® f(ug)) * L = (f(u2) ® f(uy)) * L. This can be
further reduced to proving (f(ur) @ f(u3)) ¢ [(1)+ f(12) = (f(uz)® f(ur))* F(11)* F(lz). Again,

we calculate

(fQur) @ fluz)) * f(l1) * f(l2) = flua) = f(la) * f(I2) @ f(uz) * f(l) * f(l2)
(f(L) @ flur)) * fl2) @ (f(l2) D flug)) * f(l1) =
F(L) * fl) @ f(l2) * f(l) @ flur) * f(l2) @ fluz) * f(l)

Similarly,

(fug) ® f(u1)) * (L) * f(l2) = f(la)* (1) © f(l1) * f(la) ® flur) * f(l2) D fuz) * f(l1)

Now the desired equality follows from the equality (a *b) @ (b+a) = (b*a)® (a * b) which is
true in all bi-LNB algebras.

Our next goal is to show that any number of nonminimal elements can be added to U and any
number of nonmaximal elements can be added to L and that it does not change the value of
ft. That is, writing expressions for f* we may disregard min and max operations.

Assume that v < v’ and v’ is added to U. There are two cases. If f(«') is not the first summand
in U U, then f(u) @ f(u') = f(u), so we may disregard f(u'). It is also possible that f(u')
can be used in the expression for f+ between U and L, in which case it can also be disregarded
as, if it is below some [, then f(u')* f(I) = f(I). Finally, consider the case when f(u’) is the
first summand. It is only possible if v < w' 3 [for some [€ L. To prove that f(u’) can be
dropped and replaced by f(u)in this case, we must show (f(u")® f(u))* f(1) = f(u)* f(I). Since
fu) < f(u) and f(u')D f(u) = flu)* f(u'), we obtain (f(u')® f(u))+ f(1) = fu)x f(u')x f(1) =
flu) () + f(u') = flu) % f(D).

126 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

If I x1is added to L, f(I') does not change the value of f* as f(I)* f(I') = f(I). Therefore, we

may disregard all max and min operations in expressions for fT.

At this point we are ready to show that fT is a homomorphism. Its uniqueness will follow
from the representation of elements of P3(A) from singletons and well-definedness of f*. Let
S = (U,L)and S; = (V,M). Let uy 31l and vy 3 my for uy € Uiy € Loy € V,my €
M. Then fH(81)* fH(S2) = Boer (fT(S1) * f(v) * f(v1) * M). For two v; and v;, consider
FH(S) * f(o) * f(o1) « M and fH(S;) * f(v;) * f(v1) * M. Since L #), they are the same,
because a+b@axc = axbis a derivable equality. Hence, f(Sy)* f1(S2) = fH(Sy)* f(vy)+ M.
Since vy 3 mq, we have f(mq) * f(v1) = f(m1) and hence @ * f(v1) * M = z % M for any =z.
Thus, fH(S1)* fH(Sy) = U+ fuy)* L« M = U+ f(uy) * LUM = f+(S; Sy). Therefore, f+

is a *—homomorphism.

Now consider f*(S;) & f+(82) From the equational theory, we immediately have fT(S;) &
fH(S2) = (U * f(u1) * L) ® V. Furthermore, since (abc)xb=axb®cxb=axb®c, we have
FHE)® FH(S2) = (06 V) f(un)+ L= UOV * fun) s b= fH(S0) & [H(S2). Thus, [+ is a

homomorphism. Theorem is proved. O

Universality of P?

Recall that P?(A) is the poset of pairs of finite antichains (U, L) ordered by CB. Hence, it is
isomorphic to the direct product of P’(A) and PF(A), each of them being a free construction.
A product of free algebras is not necessarily a free algebra. However, for the case of Pm(A) we

exhibit a simple way of combining mixes with their “dual” algebras to obtain the universality
property for P(A).

Definition 4.8 An algebra (B,+,0,<) is called a bi-mix algebra if (B, +,0) is a miz algebra
(see definition 4.5), x = Oz + Oz and (B, +,9) is a dual miz algebra. By this we mean that
& is a closure, that is, <& is monotone, Oz > z, OOx = Oz and O(x + y) = Ov + Oy, and in
addition x + Cx = x and x + Oy > .

We give 77@(%1) the structure of a bi-mix algebra by interpreting + and O in the same way as
for P¥(A) and by putting O(U, L) = (0, L).

Theorem 4.29 Pw(A) 15 the free bi-mix algebra generated by A. That is, for any bi-miz algebra
B and any monotone map f : A — B, there exists a unique homomorphism which completes the
following diagram:

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 127

AT oAy, +,0,0)

3+
f .
/
<B7 +7 Dv <>>

Proof. It is easy to check that P?(A) is a bi-mix algebra under the given interpretation of the
operations. To prove freeness, we first need a few facts about bi-mix algebras.

Let e = OOz, We have y+ <Oz > y and hence by monotonicity Oy+e > Oy. Adding Oy to both
sides, we get by monotonicity that Gy +Oy+e > Oy+ Oy and hence y > y+e > y which proves
that e is the identity of +. Similarly, if we define ¢/ = &GOz, then € is the identity of + and
therefore e = ¢’. This shows that the identity of + can be correctly defined as e = OOz = &0y
for arbitrary = and y. Since z > Oz, we have Oz > OOz = e. Similarly, Oz < e. It is also easy
to see that Oe = Ce = e.

Now, given (U, L) € P?(A), observe that

(U,L) = 8)+ O)

uel leL

As usual, summation over) is assumed to be e. Then, given f : A — B, define f* : Pm(A) — B
as follows:

JruLny) = my flu) + 0 50

uel lel

First, ft(n(z)) = fT((z,2)) = Of(z)+ Of(z) = f(z) and hence fton = f. Now we are going
to show that fT is a homomorphism. Its uniqueness will then follow from the representation of
elements of P?(A) given above.

Before we show that fT is monotone, let us check that the value of fT does not change if an
element !’ <1 € L is added to L or an element v’ >z v € U is added to U. Indeed, to prove the
former, observe that f(I') < f(I) and O f(I)+ O f(1) < Of() + O f(l) = O f(1). For the latter,
0f(u) > Of(u) + Of(«) > Of(u) and hence Of(u) + Of(u') = Of(u).

To show that f* is monotone, observe that if (U, L) E® (V, M), then U Co V and L C{™ M
and hence V can be obtained from U by a sequence of updates described in theorem 4.5 and
M can be obtained from L by a sequence of updates described in theorem 4.3. It is easy to see
that updates that replace an element by a number of bigger elements are monotone. Consider
removing an element u from U. If U = {u}, then }_ ,cOf(v') =e > Of(u). If v’ € U L {u},
then Of(v') > Of(w') 4+ Of(u) which proves monotonicity in this case. Finally, if L = @) and an

128 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

element is [added, then O f(1) > 3 peg Of(I') = e. If | € L and !" is added, we have monotonicity
because O f(1)+ O f(1) > O f(D).

Now we are ready to prove that f+ is preserves +, O and <. First, Oft((U, L)) = 00 Y oy f(u)+
00 Yier f(1) = O uer f(u) + ¢ = [H(O(U, 1)). Similarly, Sf*((U, L)) = f+(O(U,L)). The
fact that + is preserved follows immediately from the definition of f* and the observation that
nonminimal elements in U/ and nonmaximal elements in L do not affect the value of f¥. O

Universality of P (snacks)

Snacks were first introduced by Buneman and then studied by Ngair in his dissertation [121].
Later they were characterized by Puhlmann [141] as free distributive bisemilattices [61, 134].
Since Pulhmann’s proof is not very complicated and since it exploits an unusual presentation
of the equational theory, for the sake of completeness we prove the characterization theorem
here. We then shall demonstrate the connection between snacks and theory of Plonka’s sums of
algebras [149, 135].

First observe that the ordering C% gives PY(A) the structure of a meet-semilattice [141] where

(U, L)A (V,M) = (min(U UV),max*{min(LUM) | L € L, M € M})

Definition 4.9 (see [61, 134]). A bisemilattice is an algebra (B,+,-) such that + and - are
semilattice operations. A bisemilattice B is called distributive if both distributive laws hold, that
is: x(y+z)=zytaz and x+yz = (x+y)(x+z). (For convenience, we often omit - in formulas
and equations.)

When we speak of the ordering on a bisemilattice B, we mean the ordering associated with -,
that is, ¢ < y iff zy = =.

PY(A) can be given the structure of distributive bisemilattice by making - to be the greatest
lower bound operation above and by defining + as

(U, L)+ (V,M) = (min(U U V), max*(£ U M))

Observe that the empty snack e = (0,0) is the identity for +.
Definition 4.10 A snack algebra is a distributive bisemilattice in which + has identity e.

A homomorphism of snack algebras is a homomorphism in the usual algebraic sense. In other
words, there is no need to require monotonicity as we did for mixes, because it is implied: if

x <y, then h(z)-h(y) = h(z-y) = h(z) and h(z) < h(y).

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 129

Theorem 4.30 Ghiven a posel A, 7PV(A) s the free snack algebra generated by A. That is,
for any snack algebra Sn and a monotone map f : A — Sn, there exists a unique snack
homomorphism fT : 7PV(A) — Sn such that the following diagram commutes:

AT pYA), £, e

e
f I
v
(Sn,+,-,€)

Proof. We omit verification that PV(A) is a snack algebra (in fact, the distributivity laws will
be verified later in the greater generality).

Given a snack § = (U, L) where U = {uy,...,u,} and £ = {L1,..., Ly}, L; = {li,...,l};i}, we

have

n ko k;

(3) S = ([T e+ > L)

=1 =1 7=1
Then, if monotone f : A — Sn is given, define f+ : PY(A) — Sn by

kq

n k
(4) 78 = (I fwe+ 3 TT £

Clearly, ft(0,0) = e and f*(n(z)) = f(z)-e+ f(z) = f(z). We must show that f* is a

homomorphism.

We start with a few easy observations. First, notice that for a snack algebra 4 is monotone
with respect to <. Indeed, take b > ¢ and observe that (a + b)(a + ¢) = a + bc = a + ¢, hence
a+b> a4+ c. Let us now take three elements ¢ < b < ¢. We have: ae + ¢ < ae + ae + ¢ <
ae+b+c<ae+c+c=ea+ c. Hence, ae + b+ ¢ = ae + ¢. Furthermore, consider arbitrary a
and b. Since abe(a 4 b) = abe, we have abe < (a4 b)e. On the other hand, ae + be is below a, b
and e, and hence ae 4 be < abe. Thus, abe = (a 4 b)e.

Let 2 2 yin A. Then f(z) < f(y) and hence f(z)- f(y) = f(z). Therefore, if X and Y are two
finite subsets of A equivalent with respect to C!, then [Lex f(z) = [,ev f(y)

HxEX f($) < HyEY f(y) and therefore HuEU f(u) e+ HacEX f($) + HyEY f(y) = HuEU f(u) e+
[T,ey f(y). This observation shows that writing an expression for f*(S; + S;) and f*(S; - S2)

Furthermore, assume U C# X CF Y for U,X,Y € P, (A). Then we have [[¢ f(u) - e <

130 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

one may disregard all max and min operations. That is, for S = (U, L) and S = (V, M),

(5) FHS+8) =] fu)- [T Fo)-e+ D> T FO+ D> I fim

uwel veV Lellel MeMmeM

3]

(6) TS -Sa) =[] flw)- JT fFw)-e+ D2 LA I f(m

uelU veV LelL,MeMleL meM
That fH(S1 4+ 82) = fT(S1) + f1(S2) follows immediately from (5).

Let us denote [],cx by X. Then f(S;-8z) = UV@—I— Ue- ZMM—I—Ve SLL+Y LSy M

The last summand is easﬂy seen to be >y Ay L-M. Since Y5y M >V, the last summand is also
greater than Ve- Y1, L which can therefore be dropped. Similarly, Ue- YoM M can be dropped.
Thus, f1(S1-82) = fH(S1) - fT(S2) which shows that f* is a homomorphism. Its uniqueness
follows from (3) O

We now show that a particular case of this theorem (when A is a discrete order) is well known.
If A is discrete, then any subset of A is an antichain, and the consistency condition says that
L; C U for any snack (U,{L1,...,Li}). To redefine bisemilattice operations, simply remove all

min’s and replace max! with min€.

Fix U C A and consider Ly = {£ | (U,£) is a snack}. Then it is easy to see that (Ly, +,-) is
the free distributive lattice generated by U. It shows that P¥(A) is what is known in universal
algebra as the Plonka sum of free distributive lattices over the semilattice (Pg,(A),U) which
itself is the free semilattice generated by A. Now, the result of Plonka [134] tells us that such
construction is isomorphic to a free distributive bisemilattice. Thus, we have shown how to
extend the result of [134] to arbitrary generated posets and how to include the identity constant
into the signature.

Universality of P™

The difference between elements of PY(A) and P™(A) is that in the latter the consistency
condition is similar to that in sandwiches: for any (U, £) in P (A), and any L € L, there exists
W such that L = W and U Cf W. Our goal is to show that ¥ (A) can not be described as
a free ordered algebra generated by A. Recall that we defined + as an operation on snacks by
(U, L)+ (V,M) = (min(U U V), max*(L U M)). Tt is easy to see that elements of P™(A) are

closed under this operation as well.

Theorem 4.31 Let Q. be a set of operations on elements of P™(A) such that + is a derived
operation. Then 7PV’\(-) s not left adjoint to the forgetful functor from the category of ordered

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 131

Q4 -algebras to Poset. In other words, for no §}, is 7PV’\(A) the free ordered Q4 -algebra generated
by A.

Proof. Assume that there exists a set of operation Qy such that P¥(A) the free ordered
Q-algebra generated by A for any poset A and 4+ is a derived operation. Let A = {z,y, 2z} be
an antichain and A’ = {2',y',2'} be a poset such that 2’y < 2" and 2’ Z ¢/, v Z 2'. Let
f: A — P™A') be defined by f(a) = (a/,a’),a € A. Now the assumed universality property
tells us that f can be extended to a monotone Q -homomorphism f* : P™(A) — P (A"). Let
S € PM(A"). Since P™(A') is the free Q,-algebra generated by A’, we can find a term ¢ in the
signature 4 such that S = t(n(z’), n(y’), n(z")). Since n(z’) = f(x) = fT(n(z)) and similarly
for y' and 2/, we obtain S = f+(t(n(z), n(y),1(2))) = f+(So) for some Sy € P™(A). Therefore,

T is an onto +-homomorphism.

Using the fact that f* is a +-homomorphism, we find f*((zy,{z,y})) = fH((z,2) + (v,9))
(', 2") + (v, y) = (2'y', {2",y}) and f+(($27 {w,2}) = f+(($v z)+(2,2)) = (2',2") + (¢,)
(). Similarly, [+((52.{y.2))) = (4'.). Define
Por(A) = PNA) L {(e,2), (5,9). (g, {o,9}), (22, {2, 2}). (y2. {y, 2})} and
Pe(A) = PRA) L (e, (0), @y A), (), (v,)
Since f* maps P (A) L PP(A) into P™(A") L PP(A"), there must be an onto map from a
subset of PP A) onto P (A"). Now we can find that PJN(A) = {(zyz, {z,y,2}),(2,2),(2,0)}

and PAY) = {(2,), (7, {2, y')), (£, 2"), (2, ¢'), (Z, 2"y'), (2, 0), (z"y, 2")}. Therefore, there
is no map from a subset of P (A) onto PP (A’). This contradiction proves the theorem. O

Universality of P

The consistency condition for (U, £) € P3(A) says that {U N L # § for every L € L. Therefore,
P3(A) is closed under 4 defined, as usual, by (U, £) 4+ (V, M) = (min(U U V), max!(L U M)).
Our goal is to show that 7P3(A) can not be described as a free ordered algebra generated by
A. This is more surprising than similar results for approximation constructs using «|l in the
consistency condition. Here no information about consistency is needed, but we still can not
find a free algebra characterization.

Theorem 4.32 Let Q1 be a set of operations on elements of 7P3(A) such that + is a derived
operation. Then 7P3() s not left adjoint to the forgetful functor from the category of ordered

Q. -algebras to Poset. In other words, for no . is 7P3(A) the free ordered Q4 -algebra generated
by A.

Proof. Consider two posets: A = {z,y,z} and A" = {2’,¢',2'}. In A, 2,y 3 z and z and y
are incomparable. A’ is a chain: 2’ X y" < 2. Define f: A — A" by f(z) =2/, f(y) = ¥ and
f(z) = 2. Clearly, f is monotone.

132 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Assume that there exists a signature € such that for any poset B, (P3(B),Q,) is the free Q
algebra generated by B. Then we would have a monotone +-homomorphism f* : 7P3(A) —
PA(A) such that f+((2,2)) = (,2), FH((5,9) = (4»9') and f*((2,2)) = (). Then
we have f*((zy.{z,y})) = fT((x,2) + (y,9)) = (2",2") + (v/,y) = (2,y') and [fF((y,2)) =
Ty 9+ (z20) = (. y) + (2,2 = (v, 2).

Since f* is monotone and (z,2y) < (z,z), we obtain f*((z,2y)) = (2/,2'). Similarly, fT((zy,
o)) = (&), Then (,2) = [*((egray)) = F*((229) + (29) = (&a') + [+ ((3o9)).
Since (y,zy) < (y,y), fT((y,zy)) can be either (y',y") or (2',y’) or (2/,2"). The equality above
then tells us that f*((y,zy)) = (2',2).

Now we use these values of fT to calculate (v/,2') = fT((y,2)) = fT((y,zy) + (y,2)) =
I ((y,2y) + fH((y,2)) = (2',2") + (¢, 2') = (a/, 2’). This contradiction shows that f: A — A’
can not be extended to a monotone +-homomorphism between P3(A) and PF(A’) and hence
P3(A) is not a free O -algebra generated by A.]

Universality of P (scones)

Scones were introduced recently by Jung and a few initial results were proved by Puhlmann
[141]. For example, it was shown that scones preserve bounded completeness and distributivity,
while snacks preserve the former but not the latter.

If 2,y € A and 2]y, then (z,{y}) is a scone. Thus, we have the same problem as we had with
sandwiches: it is no longer enough to start with A itself as a generating poset if we want to
represent scones as a free construction. That is, some information about consistency must be
incorporated into the generating poset. As we did in the case of sandwiches, we use AlA as the
generating poset.

Let us now describe the algebra. Recall that a left normal band is an algebra (B, *) where * is
idempotent, associative and @ % y x 2 = x * z * y, see Romanowska and Smith [61, 149].

Definition 4.11 A scone algebra is an algebra (Sc,+,*,€) where 4+ is a semilattice operation
with identity e, * is a left normal band operation, + and * distribute over each other, the
absorption laws hold and e x v = e. Formally, in addition to * being left normal band and +
being semilattice operation, the following hold:

Dae+yxz=(z+y)*(z+ 2);

2)(x+y)xz=a*z+yx*z;

3)zx(x4y)=z*xx+ z*y;

j)r+axy=ua;

S)etr=x+e=u;

6) exz=e.

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 133

In other words, a scone algebra is “almost distributive lattice” — commutativity of one of the
operations is replaced by the law of the left normal bands. Scone algebras are known as idem-
potent distributive semirings with semilattice and left zero bands reducts. There is no known
characterization of such algebras we could benefit from (though the characterization of free
idempotent distributive semirings with semilattice reducts is known, see [147]).

If Scis a scone algebra, define z -y = z*y+y+x. It is an easy observation that - is a semilattice
operation. An ordering on Sc is defined according to this operation, that is, z < y < a2y = z.
Similarly to the case of snacks, this implies monotonicity of any homomorphism.

To give 7P3’\(A) the structure of a scone algebra we must show how to define + and *. The 4+
operation is defined as for snacks, and

(U, L)* (V,M) = (U,max*{min(LUM) | L € L, M € M})

It is easy to check that (U, L) * (V, M) satisfies the consistency condition. e is the empty scone
(0,0). Similarly to the case of sandwiches, a definition of admissibility is needed to preserve the
additional structure given by the consistent closure of A.

Definition. Let (S¢,+,*,€) be a scone algebra. A monotone map f : AJ[A — Sc is called
admissible if f(u,l)* f(v,m)= f(u,m)* f(w,l) and f(u,l)xe = f(u,m)*e.

Theorem 4.33 Given a poset A, 7P3’\(A) 15 the free scone algebra generated by ATA with respect
to admissible maps. That is, for any scone algebra Sc and an admissible map f : AJA — Se,
there exists a unique scone homomorphism fT : 7P3’\(A) — S which completes the following
diagram:

AA T PRA) 4w e)
e
f 1
%
(Sc,+,%,€)

Proof. We shall verify the distributivity laws in the proof of algebraic characterization of the
salads in the next subsection. Distributivity laws for scones then follow from the observation
that the second components of (U, L) - (V, M) and (U, L) * (V, M) coincide. Equation 4) is
immediate. Thus, P (A) is a scone algebra.

We now need some observations about the scone algebras. In what follows, f is an admissible
map from AJA to a scone algebra Sec. The definition of admissibility can be rewritten to f(u,!)*

flo,m) = fu,l)* f(w,m) = f(u,m)* f(v,1).

134 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

1) 4+ is monotone with respect to the ordering given by -.

Let b < a. Then (a+¢)(b+c)=(a+c)*x(b+c)+(b+c)*(atc)=ctaxb+bta=c+ab=0b+c,
le.b+e<a+e

2) - distributes over +.
(yt+z)=ax(y+2)+(y+2)xax=c*xyt+yrxat+ar*rz+zxz=ay+az.
3)If a <b, then axe <bxe.
(axe)-(bxe)=axbxet+braxe=(axbt+bxa)xe=(ab)xe=axe.

4) flz,y) + f(z.y) < flz,y).

fey)+ f(zy) - fla,y) = (fla,y) + f(29) « fle,y)+ fa,9)« (f(2,)+ f(29) = (f(z,9) +
f(w,y)*f(Z,y))-l—f(Z,y)*f(w,y):f(w,y)—l—f(z,y)*f(z,y):f(ac,y)—l-f(z,y).

5)If @ 2 b, then f(a,a)+xe+ f(b,b)xe= f(a,a)x*e.
First of all, f(a,a)*xe+ f(b,b)xe= f(a,a)xe+ f(b,a)xe=(f(a,a)+ f(b,a))*xe < fla,a)*e
by 3) and 4). Furthermore, f(a,a) = f(a,a)+ f(a,a) < f(a,a) + f(b,b) by 1) and therefore
fla,a)xe < (f(a,a)+ f(b,b))+ e which finishes the proof.
6) If @ 2 b and blz, then f(z,a)* f(b,b) = f(z,a).

We have f(z,a)* f(b,b) = f(z,a)* f(x,b) = f(x,b)* f(z,a). Hence f(z,a)* f(b,b) = f(z,a)x*
flz,0)+ f(z,b)* f(z,a) = f(z,a)- f(x,b) = f(x,a) because f(z,a)< f(x,b).

7) For any b, f(a,) (b,) < f(ab).
It is easy to see that (f(a,b)* f(b,a))- f(a,b) = f(a,b)* f(b,a).

8) If @ = b, then f(b,b)* f(a,a) = f(b,a).

By admissibility and 7), f(b,0) * f(a,a) = f(b,a) * f(a,b) < f(b,a). On the other hand,
J(ba)-(f(b,b)* fla,a)) = f(b,a)x f(b,b)* fla,a)+ f(b,b)+ f(a,a)x f(b,a) = f(b,a)x f(b,b)*

F(b.a)+ (5,55 F(b.a) s F(b,a) = F(ba)s F(b.5)+ 1(b.b)+ F(bra) = F(b,a)- F(b.b) = F(b,a).
Hence, f(b,a) < f(b,b)* f(a,a) which proves 8).

Since [] is already used to denote repeated applications of -, for many applications of * we shall
use .

Let § = (U, L) be a scone over A. Since (U N L # @ for all L € L, there exists a pair (u“l‘;ﬂ)
for every j such that uiTl] Let i(j) and k(j) be some indices such that Ui(j)Tl}i(j)- Then § can

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 135

be represented as

(7) S=3 0 (wu)ret 3 (' (wigy)+ @ a'(LD)

well Lec leL;

Recall that summation over (} is the identity. We will never need product over the empty index
set for all antichains in the second component are nonempty. Moreover, observe that in (7) it
does not matter how pairs (i(j), k(7)) are chosen.

Using (7), define

(8) FHS) =Y fluwyve+ Y (FluigyHy) + @ FULD)

well LyeL leL;

Our first goal is to verify that fT is well-defined, that is, it does not depend on how pairs
i(j).k(j) are chosen. To save space, denote @,y f(I,1) by L. First observe that any number
of applications of f to a consistent pair (u,!) for [€ L; can be put after f(ui(j),li(j)) because,
by admissibility, f(u;;), l‘,i(j)) * fu, 1) = fuigg), l‘,i(j)) « f(1,1) and * is idempotent. To finish the
proof of well-definedness, it is enough to show that the following equation holds: f(u,u)* e +
fu' u'y s e+ flu,)* L= f(u,u)se+ f(u',u')* e+ f(u',1') + L where u, ' € U and [,I' € L.
By distributivity, this reduces to showing that f(u,u)* e+ f(u',u') e+ f(u,l)* f(I',l') =
flu,u)xe+ f(u',u')yxe4 f(u', ')+ f(I,1). Because of the symmetry in this equation, it is enough
to prove

Fluwy e+ f(ul)y e+ flud)x f(UL0) < flugu) v+ f(l Vo et f() % f(LL1D)

Denote f(u,u)*e+ f(u',u')xe by p, f(u,)* f(I',I') by g and f(u',I")* f(I,1) by r. We must show
g+p<r+p. By2),(¢g+p)(r+p)=rqg+rp+qp+p. By monotonicity of + (see 1)), it enough
to prove gp < r. We prove more. In fact, p < r. First observe that if ¢ < b, then axe < b *c.
Indeed, (a*e€)-(b*c) =axe+bxe = axe by the same argument as in 5). Thus, we must show
p < Flu,). Caleulate p-f(u,1) = (Fluy)+ F(us ') we- Fud) = (Fu u)+ F, ')y wer Flu, 1)+
flu, D« (flu,u)+ f(u/,u'))xe = (flu,u)+ f(u/,u')) e+ f(u, D) xe= flu,u)xe+ f(u',u')xe = p.
Thus, p < r and this finishes the proof of well-definedness.

Our next goal is to show, as we did for snacks, that if we drop max and min in defining operations
on scones, formula (7) will remain true. That will make it much easier to prove that f* is a
homomorphism.

First observe that if u € U and v x u, then Use = U Uv*e (we use notation U as a shorthand
for 3~ e f(u,u)). This follows immediately from 5).

Consider the L-part. In order to show that for I’ 2 [€ L, the corresponding summand of (8)
remains the same if f({’,1’) is added, we must show f(u,lo)* f(I,1)* f(I',l") = f(u,lo) * f(1,1).
The left hand side is equal to f(u,lo)* f(I,1)* f(I,I") and by 6) f(I,1)* f(I,I") = f(I,1). Therefore,
the left hand side is equal to f(u,lo) * f(I,1).

136 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Finally, it must be shown that adding M C! L € £ does not change the value of the right
hand side of (8). Assume v € U, m € M and [€ L are such that m <! and ull (we can find
such because of the consistency condition and M C! L). Let a = L and b = M. We must
show f(u,l)*a+ f(u,m)*b= f(u,l)*a (it was already shown that it does not matter which
consistent pair is chosen in representation (8)). Let o' = f(u,l)*a and ¥’ = f(u, m)*b. First,
a b= (flu,)x flu,m)+ flu,m)* f(u,l))*xa*xb=(f(u,l)- flu,m))*axb= f(u,m)*axb.
Since L Cf M and f(c,¢)* f(d,d) = f(d,c) for d = ¢ by 8), we obtain a’ -0’ = f(u,m)*b =¥
Hence ' < @’ and o’ + " < @’ by 1). To prove the reverse inequality, o’ < o’ + b’, calculate
a-(a'40) = d'+(a'- V) = d'+a'xb'+b xa’ = fu,Dxa+ fu, D) f(u, m)xaxb+ f(w, m)* f(u,l)xaxb.
By admissibility, f(u,l)* f(u,m)= f(u,m)* f(u,l). Therefore, a’-(a'+b") = f(u,)*xa+ f(u,l)*
a* f(u,m)+xb=a +a *xb =da’. Thus, @’ < a' +b and this finishes the proof that the summand
corresponding to M CF I can be added to (8).

e~ T

Now we are ready to prove that f1 is a homomorphism. First, f*(0,0) = e*e+e = e.

Let 81 = (U, £1) and Sy = (V, M). Writing expression (8) for f¥(S1 + S3) we can use U UV as
the first component and £ UM as the second. We know that it does not matter how we pick an
element from U UV to be consistent with some element of a set from £ U M. For every L € L
choose uy, € U which is consistent with some l;, € L and similarly for every M € M choose
vy € V which is consistent with some mps € M. Then we have

FHS1+8) = D fluswyxet+ Y (flup,lp)x D)+ D (floar, mar)« M) = fH(S1)+ f(Ss)
WEUOV Let Mem

Clearly, this also holds if either £ or M or both are empty.

Let ar, = f(u, l)*L e = f(o, m)*MWhereuTl vim,veV,uelU,le L € Landme M € M.

Let b=Usxeand d =V xe. Then fH(S)* fH(Sy) = (Creclar +0) * (Crremlenr + d)) =
ZLEQMeM(aL*cM—I—aL*d—l—b*cM—l—b*d). Since d = Ve, ap+d = ap, e and ap xcpyy+ap *d =
ap, % cpp + ap k€ = ag, * cpy. Similarly, b d = b*e. Since b = U * e, b = b*e. Therefore,
bxeyy =bxe=0band bxd =bxe=>b. Therefore, f¥(S1)* fT(S2) = Y resmemlar * enr) + 0.
Consider ay, * cpr. Since f(v,m) occurs inside the expression, by admissibility it can be changed
to f(m,m). Therefore, ar, * cpr = f(u,) * L« M. Thus,

f+(51)*f+(52) = b+ Z f(u,l)*ﬁ*]\}[=

Lel,MeM

7 Flu,u)re+ > flu,)« N = fH(S1+8y)

wel Ne{LUM|LeL,MeM}

Now, to finish that proof that f* is a homomorphism, it is enough to show that f(S1)*f1(Ss) =
J1(S1 % Sy) if one of the components is empty. Assume £ = @. Then the equation follows
from z x e x y = z * e and the fact that S * S = &;. If M = @, then fT(S;) * f1(Ss) =
(Uset+Yrer flu,)« D)« Ve =Usxe+ Y1 op flup,lp)re=Uxe = fH(U,0) = fH(S1+Sy).

Thus, fT is a homomorphism.

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 137

The uniqueness of f* follows from (7) and well-definedness of (8). Finally, f*(n'(z,y)) =
flz,z)xe+ fz,y)* f(y,y) = f(z,y)*e+ f(z,y) = f(z,y). This shows fT on' = f. Theorem

is proved. O

Now we prove that it is impossible to characterize 7P3’\(A) as a free ordered algebra generated by
A, such that all operations of the scone algebras are present. That is, they are derived operations
of the signature.

Theorem 4.34 Let Qg. be a set of operations on scones such that +,* and e are derived op-
erations. Then 7P3’\() s not left adjoint to the forgetful functor from the category of ordered
Qs.-algebras to Poset. In other words, for no g, is 7P3’\(A) the free ordered Qg.-algebra gen-
erated by A.

Proof. Let z,y < z in A. Then ((z,2)* (0,0)+ (z,2)) * (y,y) = («,y). Now consider the
following poset A = {z,y,z,v}. In this poset z,y % z, z,y X v and {z,y} and {z,v} are
antichains. Now consider the following scone algebra Sc¢; = (B, 4, *,¢€). Its carrier is a four-
element chain p; > pg > p3 > ps. We interpret + as minimum of two elements, * as maximum,
and e = py. It is easy to see that Se¢q is a scone algebra as it is a distributive lattice.

Define f: A — B as follows: f(z) = p1, f(v) = pa, f(z) = ps and f(y) = ps. Now suppose that
f can be extended to a homomorphism f* : 7P3’\(A) — Sec. Then
Fr(e,y)) = Fr(m(z) x e+ f(2) xn(y) =
(f(z)x e+ f(2) * f(y) = max{min{max{py, ps}, p1}, pa} = p1
On the other hand,

FH(@,9) = fH((n(x) s e + f(0) *0(y) =
(f(z)x e+ f(v))* f(y) = max{min{max{pi, pa}, p2}, P4} = P2

Hence, p; = po, which contradicts the definition of B. This shows that f can not be extended
to a homomorphism of scone algebras. |

The main observation we used in the proof of theorem 4.34 was the following. If 2]y, then the
scone (x,y) can be obtained as follows: (z,y) = (n'(z)* e+ n'(z)) * n'(y), provided z,y 3 =.
Therefore, the question arises: is it possible to restrict the class of maps from A to scone algebras
in such a way that the universality diagram will be obtained for such maps. The next theorem
we are going to prove gives us a way to do so. But first we need a new definition of admissibility.

Definition 4.12 A monotone function f : A — Se¢ from a poset A to a scone algebra Sc is
called scone-admissible if, for any two consistent pairs x|y, and zlyy such that z,y; < z;,1 = 1,2,
the following holds:

(f(x)x et f(z0))* flyn) * fly2) = (f(2) x e + f(z2)) * fyn) * f(y2)

138 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Theorem 4.35 For any poset A, 7P3’\(A) s the free scone algebra generated by A with respect
to scone-admissible maps. That is, for any scone algebra Sc and a scone-admissible map f :
A — Sec, there exists a unique scone homomorphism which completes the following diagram:

AT (PHA), +,x,6)
el
f 1
%
(Sc,+,%,€)

Proof. Let f: A — Sc be a scone-admissible map. Define ¢, : AJA — Sc¢ by

er((z,y)) = (fle)xe+ f(2)* fly) ifz,yz2

It follows from the definition of scone-admissible maps that ¢, is well-defined. That is, if

T,y 3 21,22, then (fa) e+ f(21))* f(y) = (fl@)xe+ f(z1))x f(y)* fy) = (f(z)x e+ f(z2)) *
Fy)* f(y) = (f(z)*xe+ f(21))* f(y) and hence the value of ¢¢((z,y)) does not depend on the

choice of z above z and .
Let A: A — AJA be given by A(a) = (a,a). Our next goal is to prove two claims.

Claim 1. ¢y is admissible (according to definition before theorem 4.33).
Claim 2. ¢yo A = f.

Before we prove these two claims, let us show how the theorem follows from them. Consider the
following diagram.

:EI!f"'
Pr I

e

Sc
Since ¢y is admissible and 7' o A = 7, we can find a homomorphism f* such that f*on =
ftonoA = ¢;0A = f. Assume f~ is another homomorphism P¥(A) — Se¢ such that
f-on = f. Consider (z,y) € AlA, z,y < z. Then n'(z,y) = (n(z) * e + n(z)) * n(y). Hence,
=z, y)) = (f(z) x e + f(2)) * fy) = ¢¢((z, y)) which shows that f~ on' = ¢s. Then, by

claim 2 and theorem 4.33, we obtain f~ = f* and thus there is a unique homomorphic extension

of f.

Proof of claim 1. First, we must show ¢f((2,y1))%e = @¢((z,y2))*eif 2,y; Z 2 and z,y; 3 2.
From the properties of scone algebras, it follows that axe+bxe = axeif a < b. Since f(z) < f(=1),

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 139

we obtain @s((z,y1))xe = (f(z)*e+ f(21))* f(y1)*e = f(x)*e+ f(z1)xe = f(x)*e. Similarly,
pr((@ y2)) ke = fla)xe=pi((z,).

For the second condition in the definition of admissibility, assume u,l = z and v, m < Zyp.
Moreover, let w,m = &y, and w,l 3 2. We must show p¢((u, 1)) * @s((v,m)) = @s((u,m)) *
¢f((w,1)). Observe that b > ¢ implies a*b*c = axc in a scone algebra. Hence, f(zy1)* f(2ym) *
f(m) = f(xw)* f(m). Moreover, as we saw already, f(u)* e+ f(ay)*e = f(u)+*e. Now we
calculate:

ps((w, D) x p((v,m)) = (flu)x e+ flzu)) « f() + (f(0) x e+ f2om)) * f(m) =
(f(w)* e+ flaw) e+ flww) * f(wom)) * f(1)* f(m) =
(flu)x e+ flaww) * f(2om)) * f(1) * f(m) = (f(u) e + f(zu)) * f(1) + f(m)

Similarly,
er((u,m))xop((w,) = (f(u)+ f(@um)) * f(1)* f(m)

Now the desired equality follows from scone-admissibility of f. Claim 1 is proved.

Proof of claim 2. ¢s((z,2)) = (f(z)*xe+ f(z))* f(z) = f(z)*xe+ f(z) = f(z). Claim 2 and

the theorem are proved. O

Universality of P’

In this section we describe P?(A) — a construction which can be seen as “all others put together
with no restrictions”. This justifies the name of the salad. Salads can be viewed as snacks or
scones without the consistency condition.

Similarly to the case of P?(A), P?(A) is isomorphic to the direct product of P¥(A) and the iter-
ated construction from section 4.2.2. Both possess universality property, but, as we mentioned
already, a product of two free algebras need not be a free algebra. However, similarly to the
case of Pw(A), we find a way to combine the two in a way that gives us a characterization of

PY(A) as a free ordered algebra.

Definition 4.13 A salad algebra (Sd,+,-,0,0) is an algebra with two semilattice operations
+ and - and two unary operation O and < such that the following equations hold:
De-(y+z2)=z-y+a-z

2)x =0z + Ou.

3)0(zx+y)=0x+0y=0z -0y=0(z-y).

4) Ol +y) =Ca+ Oy

5)O(x-y) =Ca -y

6) Oz - Oy = Oz,

7) - Oy + Oz = Cu.

140 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

8) OCx = Ou.
9) OOz = Oz.

Define an ordering < on a salad algebra according to the - operation: o < y iff 2y = z. Then
every homomorphism of salad algebras is monotone with respect to the ordering.

Define 0S5d = {0z | € Sd} and ©5d = {Oa | ¢ € Sd}. Some useful properties of salads are
summarized in the following proposition.

Proposition 4.36 Given a salad algebra Sd, the distributivity law x4+ yz = (x+y)(2+2) holds.
Consequently, +, O and & are monotone. In addition, the following holds:

(i) Oz <2z < Ou.

(ii) ©Sd is a distributive lattice.

(iii) + and - coincide on OS5d.

(i

i
iiii) Oz = &0y,

Proof. Using 2) and distributivity law 1) calculate (z 4 y)(z+2) = (Oz + Oy + Gz + Oy)(Oz +
Oz+Ce+Cz)=(byl)and 6)) = Oa+ Oy + Oz 4+ Ca + O - Oy + O - Oz + Oy - Oz = (by
7)) =0z + 0y + 0z 4 Oz + Oy - Oz Similarly, 2 + yz = Oz + Oz + (Oy 4+ Oy)(Oz + Oz) =
Oz + Oz 4+ Oy + Oz + Oy - Oz Hence, (2 + y)(z + 2) = @ + yz. Now monotonicity of +
follows from the distributivity laws. That O and < are monotone, follows from 4) and 6). To
prove (i), calculate 2 - Oz = (Oz 4+ Oz)0z = Oz 4+ O - O = Oz + Oz = Oz. Moreover,
z-Or = (024 02)0r =0 -Oz 4+ Oz =0 + Oz = z.

(ii) and (iii) follow immediately from the definitions.

(iiii) By 7), Oz < <&0Oy; hence OOz < Oy and by symmetry GOz = OOy, Similarly, OOz =
OOy, Define e = OOz and eg = OOz, The equations above show that e and en are well-
defined. Now calculate eo + 2 =<0z + 2 =C0e+Cr 4+ =0zt 2)+a =+ 2 = .
Similarly, eg + 2 = 002+ 2 =002+ Oz + 2 = O(OCz 4+ 2) + ¢ = Oz + & = . Thus, both eo
and eg are identities for +. Therefore, e = e¢ + €0 = en. O

This proposition tells us that we can give the following equivalent definition of a salad algebra: A
salad algebra is a distributive bisemilattice (Sd, +,-) on which a projection O and a closure & are
defined such that O5d is a semilattice, CSd is a lattice, x = Oz + Oa and Vo € O5d Yy € OSd:
z <.

There is also one property of salad algebras that is worth mentioning and that follows directly
from the definitions. Given a semilattice (9, V) with bottom, a pair of ideals 7; and Z; is called
a general decomposition of S if bottom is the only common element of 71 and Z; and every s in
S has a unique representation as s = s1V 89 where sy € 77 and sy € Z5. If S is a bounded lattice,
general decompositions become direct decompositions. For a large class of posets with partially

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 141

defined lubs general decompositions are in 1-1 correspondence with neutral complemented ideals,
see Jung, Libkin and Puhlmann [88].

Proposition 4.37 Given a salad algebra Sd, OSd and $Sd form a general decomposition of
Sd.

Proof. Let <, denote the ordering given by 4+, that is, « <, yiff x + y = y. Let <, Oy.
Then Cx 4+ GOy = OOy, le. Oz + e = e and Cx = e. Now ¢ = O+ Ox = eo + Oz = Oz,
Hence z € O5d, which shows that 05d is an ideal. Similarly, $Sd is an ideal. It follows from
(iiii) of the lemma that 0.5d N &Sd = {e} where e = eg = e¢. Finally, let 2 = Oy 4+ &z, Then
Oz = Oy4+ 002 = Oy and similarly Oz = Oz, Hence, 2 = Oz 4+ Ox is a unique representation of

x as a sum of elements from O5d and $Sd. Thus, O5d and $Sd form a general decomposition.
O

Let us now show how the salad algebra operations are interpreted on 7P®(A). Operations + and
- are defined precisely as for snacks. For O and <,

o(U, £) = (U, 0) (U, L) = (0, L)

Theorem 4.38 Given a poset A, 7P®(A) s the free salad algebra generated by A. That is, for
every monotone map [from A to a salad algebra Sd there exists a unique salad homomorphism
ft: 7P®(A) — Sd such that the following diagram commutes:

A d’ <7P®(A)v +,s D7<>>

31+
f I
v
<Sd7 +. D7<>>

Proof. First verify that P?(A) is a salad algebra. We need to check the distributivity law and
7); all others are straightforward. Let S; = (U, £),S2 = (V, M) and S5 = (W, N'). Our goal is
to show &1 - (83 + S3) = &1 - S2 + 81 - S3. The first components of the left hand and the right
hand sides coincide. It this case it is easier to work with filters rather than antichains — it allows
us to drop max and min operations. In particular, it is enough to show that

{IMLUK)|Le L,K e MUN} =
{1Ly|Lyr e {LUMI|L € £, M € M}}| {1Ln|Ly € {LUNI|L € L,N € N'}}

142 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Let C be an element of the left hand side, i.e. C'= [(LUK). Without loss of generality, K € M.
Then C' is in the right hand side. Conversely, if (' is in the right hand side, say C' = Ly for
Ly = LUM, then C = 1(LUM) and therefore is in the left hand side. This shows the equality
above. Now, taking minimal elements for each filter and applying max¥ to both collections would
give us second components of the lhs and the rhs of the distributivity equation, which therefore
are equal.

Now prove 7), that is, O(U, L) - O(V, M)+ O(U, L) = O(U, L). The first components of both
sides are (). The second component of the left hand side is max*(£ U max*{min(L U M)|L €
L, M € M}). Since min(L U M) C* I, this expression is equal to max*£ = £. Hence, 7) holds.
Thus, P?(A) is a salad algebra.

Now show that PP(A) is a free salad algebra. Given a salad S = (U, £),

(9) §=0% n(u)+ <o [T n)

uel Lellel

To see that this also works for empty components, observe that Oe = $e = e.

Now, given monotone f : A — Sd, define

(10) A& =0% flwy+od 110

uel Lellel

We have: fH(n(z)) = fr((x,{x})) = Of(z) + Of(x) = 2. Now we must show that f+ is a
homomorphism. First, it follows immediately from the properties of O and < and the fact that
e = OOz = OOy is the identity for + (see lemma) that fT(0S) = Of*(S) and fT(OS) =
OFHS).

Assume X CF Y, YV # (), and let @, be an element in X below y € Y. Then

O fl2)-0) fly) =03 fla)+ > fly) =0 fla)+ DY (f(y)+ flzy) =

zeX yeyYy reX yeYy reX yeyYy
O fl@)+8) (fly)- fle,) =0 fla)+0 Y flz,) =03 f(z)
reX y€eY reX y€eY veX

Therefore, if X and Y are equivalent with respect to CF, O3 v f(z) = O3 ¢y f(y). Our

next goal is to show that O [[.ex f(2) + OTley f(¥) = Ollyey f(y) if Y # 0. Since X CF Y,
we have [[.cx f(7) < [l,ey f(y) and then the equation above follows from 7). Finally, let

'z ax € X. Then f(a') > f(2) and [[,ex f(z) = f(2') - [loex f(2).

These three observations show that max and min operations can be disregarded when one writes

an expression for fT on 8; + 83 or &; - Sy. Therefore, for §; = (U, L) and Sy = (V, M),

JHSi+8)=0 > fa)+ O T r0+ > II fim)) = [H(S)+ [(S2)

zeUuVv LeLllel MeMmeM

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA

143

To calculate f*(Sy-S3), observe that Y e Ozi Y e QU = Yieries Bxi - Oyj = Yoy Ouy and
this is also true if I =) because e - Oy = e. Therefore,

JHS1-8) = (@) flw)+ O XTI /@) - (@) fly+o > T fim)

wel Lellel veV MeMmeM
(O fw)-0 flo)+@d] flo)-> > II fom) +
uel veV veV MeMmeM
HOY f)- O T+ XTI -0 > 11 fim) =
veV Lellel Lellel MeMmeM
oY fw)+0 > fo)+0 S (I r0- II fom)) =
uel veV LeL el meM
MeM
o Z f@)+< Z H fly) = fH(S1) - fH(S2)
reUuUV]\géﬁ\/{ yeLUM

Thus, f* is a homomorphism. Its uniqueness follows from (9). Theorem is proved.

Let us summarize the results on the universality properties of approximations in the following
table. For each construction with v < used in the consistency condition (with one exception)
we found a free algebra characterization. For constructions with «|l used in the consistency
condition, we showed that they do not arize as free algebras generated by the poset itself, but
do arize as free constructions generated by AJA (with respect to a restricted class of map). We
use dna (does not apply) for constructions based on the u <[consistency condition with AlA
as the generating poset. Notice that there are still three ni null values — these questions remain

open.

type of consistency condition (quantifier—condition)

L-part; generator vV u<l v ool I u<l 3wl no condition
one set; A mix algebra ne bi-LNB algebra ni bi-mix algebra
one set; AJA dna mix dna ni dna
family of sets; A | snack algebra ne ne ne salad algebra
family of sets; AJA dna ni dna scone algebra dna

Relationship between the approximations

In this subsection we study the relationship between the four best-known approximations: mixes,
sandwiches, scones, and snacks. We also show that we can view them as instances of the most
general construction: salads, that is, 7P®(A). We will substantiate the assertion that by their

“complexity” the approximation constructs should be places as

Salads

— Scones

— Snacks

— Sandwiches

— Mixes

144 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

and algebras as
Salads — Scones — Snacks — Mixes

The reader is invited to see how other constructions studied in this chapter will fit into the general
picture. We consider only five approximation constructions to keep the diagrams reasonably
small.

Relationship between algebras. The general technique we use is the following. Given an
algebra (A, Q), let ' be a subset of and " a set of derived operations. Let @ = (2 LQ)UQ".
Then A can be considered as a O-algebra which is called O-reduct of (A,Q), see Grétzer [64].
We denote a map that takes an Q-algebra (A, Q) and returns the @-algebra (A, ©) by ¢—©.

We now define reductions for the algebras from the previous section. The superscripts of these
reductions contain the information about its argument. They are the same as superscipts for
the approximations themselves, except that we use index f (family) for PP’s. For example, a
snack reduct of a scone will be denoted by ¥V,

Definition. a) Given a salad algebra Sd = (A, +,-,0,0), define its reducts as follows:

Scomne reduct c,ow_*a’\(Sd) = (A, +,*,€) where z xy = z - Oy and e = OOz,
Snack reduct P~V (Sd) = (A, +, -, €) where e = OOz.
Mix reduct p?=V(9d) = (A, +,0,¢) where e = OOz

b) Given a scone algebra Sc = (A, +, *, €), define its reducts as follows:

Snack reduct c,oE'A_*Vf(Sc) = (A, +,-,e) wherez -y = xy+ y*x.

Mix reduct o ~Y(S¢) = (A, +,0, €) where Oz = z * e.

¢) Given a snack algebra Sn = (A, +, -, €), define its mix reduct ¢/ ~Y(5n) as (A, +, 0, €) where
Or =ux-e.

Our first goal is to show that the concepts above are well-defined, i.e. that a mix reduct is a mix
algebra, scone reduct is a scone algebra etc. We then proceed to show that it does not matter
which path we choose, i.e. a mix reduct of a scone reduct of a salad is a mix reduct of a salad
etc.

Proposition 4.39 The reducts above are well-defined.

Proof. We start with reducts of salads. First demonstrate that ¢?=3(9d) is a scone algebra.
That e is the identity for + was already proved. Distributivity of * over + is obvious. We

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 145

must show the other distributivity law: a + * y = (a + @) * (a + y). To prove this, calculate
at+za=a+ (O0z+Cz)(0a+Ca)=a+0z-0a+ 0+ 0a+Cx-Ca=a+ Oz 4 Oz -Oa =
a+(0z+<C2)0a = a+a-Ca. Now, a+zxy = at2-Oy = (a+2)(a+y) = atzata-Oy+a-Oy =
atz-Oata-Oy+z-Oy=(a+2)(Cat+<y) = (a+2)*(a+y). This proves distributivity. That
* is a left normal band operation is obvious. We have exz = OO0z - Oz = O(Oz-2) = OOz = e.
Finally, z4z+y = 24+ (02 +02)-Oy = e+ 024+C2-Oy = 2400 +024+O2-Oy = o+ 024+ = 2.
Therefore, p?=3(Sd) is a scone algebra.

We have already shown in the previous section that 4+ and - distribute over each other; hence,
@P=V5(8d) is a snack algebra. To check that ¢?~Y(Sd) is a mix algebra, verify the equations
of the mix algebra. The first two are also equations of the salad algebras, and we have shown
already that + Oz = 2 and Oz < z. Thus, we must show z + Oy < z. Calculate (2 + Oy)z =
x4+ 0y-z=z+0y -0+ 0y-x=x + Or 4+ Oy = z + Oy. Hence, z + Oy < z.

Now consider reducts of scones. To show that ¥ ~(S¢) is a scone algebra, we must verify the
distributivity laws. One of them was verified in the proof of the characterization of scones. The
other one is also easy: x4+y-2 = a+yxz+zxy = (e+y)x(z+2)+(z+2)*x(a+y) = (e+y)(z+2).
The next step is to verify that Oz = a * e satisfies the equations of the mix algebras. We have
r+0z=z+axe=(z+a)x(z+e)=zanda-Oz=z*r*eta+exx =z+e =0z, hence
Oz < z. Finally, (e +y*xe)z = (e +yrxe)saxta*x(ztyre)=ax+ytetarrxe=a+y*e.
Therefore, z + Oy < z and e ~Y(5¢) is a mix algebra.

Finally, if in a snack algebra Oz is defined as ze, then z + ze = (z + 2)(2 + €) = z, zve = xe
and (z 4+ ye)r = 2 + yex < v + 2 = z. Thus, "/ ~Y(Sn) is a mix algebra and this finishes the
proof of the proposition. O

Our next goal is to show path independence, that is, it does not matter if we perform reduction
from one algebra to another directly or via a number of steps. This can be formalized as follows.

Theorem 4.40 The following diagram commutes (where the arrow from Sd to Sn is c,ow_*vf

and the arrow from Sc to Mix is o7~):

—3In
§d —7 Se
Miz Sn

146 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

Proof. We have already shown that reductions are well-defined. Consider o~ o /= .
Sd — Mix. The identity for + is e = OOx and the box operation of the result, Oz, is defined
as D'z = a*xe =2 -O0COr = (Ox + Ox) - 00y = Oz - OCz 4+ O - OCx = Oa + OO0z + 00z =
Oz 4+ e = Oz. Hence, o~V 0 G?=3 = 3" =Y Now consider ¢~V 0 o?=Vs : §d — Miz. The
box operation of the result is O’z = e = (Oz 4 <O)O0x = Oz +e = Oz, hence c,ovf_*vocpw_*vf =
©?=Y. Then consider ©"7=¥ 0 @~V 0 P~ : §d — Miz. The box operation of the result is
Oz =a2-gpe=a*etexr = 2-OC0r+O0x - Oz = ¢-00Cx + 00z - Oz = Oz +e = Ox. Thus,
OV 0 @I TVr o Q=N = GV To show Y5 = P =Yr 0 WP it is enough to show that
-y = x-Oy+y-Ox. But thisis easy: -y = (O +Cz)-(Oy+<Oy) = Oz-Oy+ 0z +0y+Oa-Oy =
Or+4+0y4+<Cz-Oyand 2-Oy+y-Oa = (Oz+Cx)- Oy + (Oy 4+ Cy) - Oz = O + Oy + Sz - Oy
Finally, to show that o=V = Y=Y 0 o =Vs observe that z ¥e+e*xx =2 *e+e =z +e and

therefore Oz is the same for both reductions. Theorem is proved. |

Embeddings. We show that the reductions introduced above correspond to the embeddings
of the approximation constructions. The general idea is as follows. Assume that a poset A is
given and P’ and P” are two approximation constructions such that P’ is “higher” than P”
in the hierarchy shown in the beginning of the section. That is, there is a reduction ¢ that
takes P’(A) and makes it an algebra in the signature corresponding to P”. Depending on the
generating poset for P”(A), consider either n(A) or n'(A) which is a subset of P/(A). Then the
subalgebra of ¢(P’(A)) generated by this subset is P”(A). Moreover, this construction is “path
independent” in the sense of theorem 4.40. To formalize it, we use the notation

The meaning of these arrows is: Take P/(A) and consider it as an algebra corresponding to P”

(by means of ¢). Then its subalgebra generated by n(A) (or n'(A)) is P"(A).

Theorem 4.41 In the following diagram all arrows are well-defined and the diagram commutes:

4.2. UNIVERSALITY PROPERTIES OF PARTIAL DATA 147

[n'(A)] 0 o~

PoA PR (A)

[71(A)] o p¥r =Y

[

°®

PVA(A)

The arrows not shown on the diagram are:
[n(A)] o "= - PI(A) — PY(A) [n'(A)] o "7 PI(A) — P™(4A)
[n(A)]o ™7 : PP (A) — PY(4A) [7'(A)] 0 77 PP(A) — PH(A)
[n(A)]o ™77 : PM(A) — PY(A)

Proof. Full proof requires a lot of easy calculations so we only sketch it here. First observe
that all definitions of new operations for reductions agree with their interpretation. For example,
given two scones (U, £) and (V, M) in P*(A), the value of (U, L) - (V, M) in oP =V (PH(A))
is (U, L) (V, M)+ (V, M)+ (U,£) = (min(U UV),max*{L U M|L € L,M € M}) which is
indeed the infimum operation in PY(A). The verification that other reductions agree with the
operations on approximations is also straightforward. Now representations of sandwiches (1),
snacks (3), scones (7) and mixes as

(11) (U,L)y=0% nlu)+ Y _n(l)

uel leL

tell us that all arrows are well-defined. Commutativity follows in a straightforward way from
the representations (1), (3), (7), (11) and theorem 4.40. O

This completes our discussion of the semantics of partial data. We have defined orderings on
various kinds of collections and used them to define the formal semantics of those. The semantic

148 CHAPTER 4. SEMANTICS OF PARTIAL INFORMATION

domains of the collection type constructors have been shown to possess universality properties.
We shall use the universality properties in the next chapter to design programming languages

for partial information, as described in section 3.2.

Chapter 5

Languages for partial information

In previous chapters we have developed the semantics of partial information that was based on
one of the two main principles of this thesis: partiality of data is represented via orderings on
objects. In this chapter we use the semantic results to build languages for databases with partial
information, following the second principle which says that semantics suggests programming
constructs.

We start with languages for sets under the open world assumption. Since the universality
properties for arbitrary sets and antichains are essentially the same, we obtain two very close
languages, and show that one of them, dealing with antichains, can naturally be viewed as a
sublanguage of the other. We give several reasons why it is better to view the language dealing
with the ordered semantics as a sublanguage of the language for the set-theoretic semantics.
One of them is that in the former it is important to be able to identify the monotone fragment
of the language, but this is undecidable. We show that two languages considered so far — the
language of Zaniolo and the domain theoretic algebra from section 3.1 — are sublanguages of the

language for OWA sets.

We also consider languages for or-sets, viewed structurally, and prove similar results. Having
defined languages for sets and or-sets, we combine them to obtain a new language called or-NRL.
Since it is necessary to distinguish between sets and or-sets, we enhance the language with a
primitive that provides interaction between sets and or-sets. This primitive is precisely the
isomorphism « from section 4.2.2.

The language or-A’RL has a number of very important properties. First, it is possible to define a
function that lists all possibilities encoded by an or-object. This enables the language to answer
conceptual queries such as: is there a complete design of a given cost? Moreover, we show that
under both set-theoretic and antichain semantics the process of listing all possibilities encoded
by an object always yields the same result, no matter what strategy is used. We call this result

149

150 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

normalization theorem. The process of listing all possibilities is also called normalization.

We show that normalization can be quite expensive. In fact, we determine tight upper bounds
on the size of normalized objects and the number of possibilities that arbitrary or-objects can
encode. Then we observe that it is not always necessary to complete the process of normalization
to answer a conceptual query. However, it is not always the case that partial normalization is
unambiguous. That is, the analog of the normalization theorem need not hold. Nevertheless, we
are able to identify very strong sufficient conditions for such an analog to hold, and then prove
the partial normalization theorem that unambiguously determines a representation of object of
one type at another type. This allows us to answer certain conceptual queries faster.

We also demonstrate a losslessness result, which says that the loss of structural information in
the process of normalization does not have any effect with respect to the large class of queries.

Finally, we discuss two approaches to programming with approximations. One is based on struc-
tural recursion and monads. It is now applicable due to the characterization of approximations
as free constructions. However, we show that there are certain problems with using this ap-
proach. The other is encoding approximations with sets and or-sets and using the language for
sets and or-sets. We show how all monad primitives for approximations can then be encoded in
that language and argue that this makes it a better candidate for a programming language for
approximations.

5.1 Languages for collections of partial data

5.1.1 Language for sets

In this section we consider a language for sets under the open world assumption. This language is
based on the universality property. Since the universality properties of the semantic domains of
sets with no partial information involved and of sets under OWA are essentially the same — both
are free semilattices, but one is generated by a set and the other by a poset — the languages are
essentially similar and the only syntactic difference is replacing equality test by comparability
test. The only semantic difference is that in the language for partial information we operate
with antichains rather than arbitrary sets, as is suggested by the semantic domain for OWA
sets. We shall see that the language we define can be viewed as a sublanguage of A'RL with
orders on base types. We study some of its properties and explain how two languages that we
have seen (Zaniolo’s algebra [181] and the domain algebra of section 3.1) can be viewed as its
sublanguages.

The language we are about to describe is based on the universality properties for OWA sets.
Recall that for a given set X, (P, (X)), U, D) is the free semilattice with bottom generated by X.
For posets, the result is similar: given a poset A, <77b(A), I_Ib,@> is the free ordered semilattice

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 151

with bottom generated by A. Therefore, following section 3.2, we define two variations of the
structural recursion, the one dealing with antichains using index a. Since we do not consider
structural recursion on bags in this chapter, we use sru and sr¢ instead of s_sru and s_sri.

fun srule, h,u)(0) €

| smle (e = A(x)

| srule, b, u](A LpP B) = u(srule, h,u](A),srule, h,u](B))
fun srugle, h,u](0) = e

| srwleh(fel) = h(e)

| srugle, h,ul(A LpP B) = u(srugle, h,u](A),srugle, h,u](B))

As we discussed in section 3.2, the general structural recursion need not be well-defined. Hence,
we used the operation of the Kleisli category of the corresponding adjunction as primitives of
the programming language. For sets, we used

map(f){z1, ..., 20} ={f(21),..., f(2,)} p({X1,..., X)) =X1U...UX, n(z)={z}

Similarly, for antichains we would have (cf. section 2.3)

map,(F){zs, o wn} = max{f(z1), ..., f(zn)} () ={z}

fa({X1,..., X, }) = Xy ° X, = max(X;U...UX,)
In addition to the equality test, which was chosen as a primitive in NRL, we include a new
primitive which tests whether two objects of type ¢ are comparable as elements of the semantic
domains [t]'. That is, we assume that the ordering on base types is given, and it is lifted to
pairs component-wise and to sets by using the Hoare ordering;:

o (2,y) <ot (2,y) &2 <;2" and y <; ¥,

. ycg{s}y@xgiy(i.e. Voeax 3o €y: o<, 0).

Now we give the expressions of the language which we call NRL,; see figure 5.1.

Let us make a few observations about this language.

Proposition 5.1 Assume that <, is given for any base type b. Then <, is definable in NRL,
without using <s as a primitive.

!Since we do not use or-sets, the structural semantics [Js and the conceptual semantics [J. coincide. This
Jjustifies using just [in this section.

152 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Category with products

g:u—s f:s—1 c:bool f:s—t g:s—1 fiu—s g:u—t
fog:u—t if c¢then felseg:s—t (f,9):u—sxt
mlisxt—s ol isxt—t "t — unit
Ke:unit — Type(c) id it —t <s:8 X s — bool

OWA sets monad (given by P”)

s x = {sx 1] mii—{0 W x{0— {1

f:s—1t
wl) — {t} empty® : unit — {t} map, f:{s} — {t}

Figure 5.1: Expressions of NRL,

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 153

Proof. We only have to check that <y, is definable if <, is. Assume X,Y" are sets of type {s}.
Then we create an object {(z,Y) |2 € X} of type {s x {s}} and check for every (z,Y) if there
exists y in Y such that @ <, y. This is achieved by first applying ps to (z,Y) and then mapping
<;s over the result and testing whether true occurs in the output. O

Proposition 5.2 Under the assumption that <, can be tested in O(1) time, the time complezity
of verifying x <, y is O(n?), where n is the total size of x and y.

Proof. Define the size of a base type object to be 1 and the size of a set or a pair to be the sum
of the sizes of its elements (components). We prove by induction on the structure of objects that
testing <; of two objects 01, 03 of type ¢ can be done in O(size (01)-size (02)). Then the proposition
will follow. Let X = {ay,...,2x} and Y = {y1,...,y;} be sets of type {s}. According to the
proof of proposition 5.1, checking whether X </} Y requires some preprocessing that costs at
most O(size (X) - size (Y)) and, by the induction hypothesis, O(3%, Z;Zl(size (z;) - size (y;)))
for actual comparisons. We have 2% Z;Zl(size (z;) - size (y;))) < size (V)5 size(z;) <
size (X) - size (Y'), which finishes the proof. O

Now we can show that using ARL is sufficient because

Theorem 5.3 NRL, is a sublanguage of NRL(<y).

Proof. We have already shown in proposition 5.1 how to define <; for any s if <; is given.
The rest is to observe that map,(f)(X) = max map(f)(X) and pq(X) = max(p(X)). Hence,
definability of max would imply that NRL, is a sublanguage of NRL(<;). It is easy to see that
max X is implementable by deleting such elements # € X for which there exists 2/ € X with
z < 2’ and x # 2'. Indeed, if < is present, there is a first order formula that is true iff € max X
and hence even operations of the relational algebra suffice. O

However, there is one subtle point. Assume that we have two sets Xy and X5 of type {t} such
that max Xy = max X5. That is, Xy and X, represent the same object in [{t}]. Let f: {t} — s
be a function definable in MRL. Is it true that f(X;) and f(X3) represent the same object
in [s]? Unfortunately, the answer to this question is negative. To see why, consider and y
of type t such that # <, y and @ # y. Assume that g : ¢ — s is such that g(z) and g(y) are
not comparable by <;. Then map(g)({y}) = {9(y)} and map(¢){z,y}) = {9(x),9(y)}. Even
though max{y} = max{ez, y}, we have max(map(g)({y})) £ max(map(g)({z, y})).

The reason this happens is that g is not a monotone function. Requiring monotonicity is
sufficient to repair this problem. Define the following translation function (-)° on objects that
forces objects in the set-theoretic semantics into the objects in the antichain semantics:

e For z of base type b, 2° = x.

154 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

o lor o = (21,22), 2° = (29, 29).

e lor X ={z1,...,2,}, X° = max{ay,...,22}.

o

We say that a function f : s — t definable in N'RL agrees with the antichain semanticsif z° =y
implies f(z)° = f(y)°. We say that it is monotone iff x <, y implies f(z) <; f(y).

Proposition 5.4 A monotone function f definable in NRL agrees with the antichain semantics.
If f is not monotone, then map(f) does not agree with the antichain semantics.

Proof. First prove that z <, y iff 2° <, y° for any =,y of type s and vice versa. Prove it
by induction. The only interesting case is the set type constructor. Let X = {xy,...,2,} and
Y ={y1,-..,¥m} be two sets of type {s}. Assume X <, V. Then Vz; € X Jy; € Y : 2; <, y;
and by induction hypothesis Vz; € X Jy; € Y : 2f <, 7. Hence, {27,..., 20} < o7, -, un}
and then X° <(,, Y°. Conversely, if X° </ Y°, then {z7,...,23} <(sy {91,-.., 95} and by
induction hypothesis Vz; € X dy; € ¥V @ x; <, gy, that is, X < V.

Since z° is an antichain for any =z, this observation implies that z° = y° for z,y of type s iff
v <syand y <, .

Now assume f : s — ¢ is monotone and 2° = y°. Then 2 <, y and y <, z and hence f(z) <; f(y)
and f(y) <; f(z) which proves f(z)° = f(y)°. That is, f agrees with antichain semantics.

Assume f : s — t is not monotone, i.e. f(z) £ f(y) for some 2 <y y. We have 2° <;
y° and hence {z,y}° = {y}°. Moreover, 2° # y° for otherwise we would have y <, =z.
Now, map(/)({r.9)) = Lf(z), F()} and map(F)({y}) = {f(y)} and it is casy to see that

{f(x), f(y)}° # {f(y)}° if f(y) <¢ f(x) or f(y) and f(z) are incomparable. Proposition is
proved. O

Therefore, we would like to identify the subclass of monotone functions definable in NRL.
Unfortunately, it is not possible to do it algorithmically. Not being able to decide monotonicity
is another reason why we prefer to view A'RL, as a sublanguage of NRL in which the antichain
semantics can be modeled, rather than a separate language.

Theorem 5.5 It is undecidable whether a function f definable in NRL is monotone.

Proof. Assume monotonicity is decidable. Now, given two NRL functions f, g : {s} — ¢, define
a new function ¢ : {s} — {bool} as follows:

() = if @ =0 then {true} else if f(x) = g(x) then {true} else {false}

Here {2} is syntactic sugar for n(z). Now, if want to check whether f(z) = g(2) for all z, check if
f(0) and ¢g(0) are the same and then check if ¢ is monotone. Thus having a test for monotonicity

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 155

would give us equality test for functions of type {s} — t. Such functions include all functions
definable in the relational algebra, and it is known that equality of those is undecidable, see
Imielinski and Lipski [79]. This shows that monotonicity of NRL expressions is undecidable. O

There are some intersting anomalies of the antichain semantics. The most surprising of all is
that [n] = [powerset] or, in other words, NRL,(powerset) = NRL,. Indeed, since for any
Y € Py (X) we have Y C X and hence Y C” X, then under the antichain semantics [Pan(X)] =
[maxPg,(X)] = [{X}] = [7(X)]. There are two lessons we learn from this interesting collapse.
First, as we have said already, it is better to view NRL, as a sublanguage of A'RL rather than
a separate language. Second, powerset is not a good candidate to enrich expressiveness of the
language. (Of course, the theorem of Paredaens and Suciu [162] is a much stronger argument
against powerset!)

The next question we are going to address is that of conservativity of ARL over ANRL,. Given
a family of primitives p interpreted for both set theoretic and antichain semantics, we say that
NRL(<p, P) is conservative over NRL,(p) if for any function f definable in NRL(<;,p) and
satisfying the condition that f(z) = f(x)° for any & = 2°, such f is definable in NRL,(p). We
do not know if NRL(<;) is conservative over NRL,. However, we can show that it is conservative
when augmented with aggregate functions as in section 3.2.

Proposition 5.6 NRL(N, Y, -, =, <;) is conservative over NRL,(N, Y, -, =).

Proof sketch. The key observation is that in the language with arithmetic functions it is
possible to assign unique numerical ranks to elements in a set if linear orders at base types are
given. Indeed, this follows from theorem 3.29 since we can lift the linear order to all types, and
then for each element of a set use > to count the number of elements not greater than it in the
linear order. A careful analysis of the lifting procedure and rank assignment shows that they

can be done in NRL,(N, >, -, =) as well.

Now consider z = z°. Since all its subobjects of set type are antichains, we can do the following
in NRL,(N,Y",+,=). For each set subobject of 2°, assign unique ranks to its elements. Now
we have a new object z; such that z; = 27 and all elements in all sets in = have their ranks
attached to them. Then we can define the action of f on this object. The only two cases that
require special care to make sure information is not lost are union and flattening. For X UY,
we first create {(2,1)]z € X} and {(y,2) |y € Y} and then union those. For p({X1,..., X,.}),
assume that the rank of X; is ¢. Then create {{(z,1) | 2 € X1},....{(2,n) | 2 € X, }} and
apply p to it. The equality test also requires some care as it needs to be defined in such a way
that it disregards all attached indices, but it also can be done.

At the end, we have essentially f(z) except that many integers are attached to its subobjects.
We simply remove those using projections. Since f(x) = f(z)°, it is guaranteed that no loss of
information occurs while those ranks are projected out, and hence the result is f(z). O

156 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Now we give two examples of using NRL(<;), based on the fact that NRL, is it sublanguage
(see theorem 5.3). First, we explain how Zaniolo’s language described in section 1.1 can be
viewed as a sublanguage of NRL(<p). Second, we do it with the language of section 3.1 which
is based on the domain model.

Example: Zaniolo’s language

Recall that in the language of Zaniolo [181] there is only one kind of nulls — ni. The ordering on
records was defined component-wise and it was lifted to relations by using the Hoare ordering.
Zaniolo’s language was initially designed for flat relations only but here we show how to extend
it to the nested relations.

The main notion was that of z-relation which was an equivalence class with respect to the Hoare
ordering. That is, Ry and R, are equivalent if Ry Eb Ry and Ry Eb Ry. In our terminology this
means that | Ry = | Ry. Therefore, we can pick a canonical representative of each equivalence
class which is given by the max operation. That is, the canonical representative of the equivalence
class of R is max R. Clearly, | Ry = | Ry implies max Ry = max Rs.

The next notion used for defining the operations was that of generalized membership: t€R iff
t <t for some ¢/ € R. In other words, t€R iff t € |R. Using this notion, Zaniolo defined the
following main operations:

Ri{URy = max{t | tER, or tER,}
RlﬁRQ = max{t | téRl and téRQ}
Ri1 Ry = max{t | tERy and ~(tERy)}

We assume that all base types are Scott domains. This is certainly true in the original Zaniolo’s
model as he only considered flat domains. If we use nested relations, it is still guaranteed that
we only deal with bounded complete posets, that is, gratest lower bounds of consistent pairs are
defined at all types. With this in mind, we see how the above operations are translated into the
standard order-theoretic language we advocate in this thesis:

RlURQ = max{t | te |Riorte RQ} = max |[R{U|Ry = Ry |_|b Ry

RlﬁRQ = max | RiN]Ry = max{rl A To | € Ry,r5 € RQ} = R |_|b Ry
RliRQ = max{t | téRl and ﬁ(téRz)} = Rl 1 lRQ

Thus, Zaniolo’s union, intersection and difference are order-theoretic analogs of the usual set-
theoretic union, intersection and difference. Next we notice that these operations are definable
in NRL, and hence in NRL(<,). We have seen already that max is definable, so we only need
the following lemma which is proved by an easy induction and definitions of LP and 1°.

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 157

Lemma 5.7 If the least upper bound Vy : b X b — b and the greatest lower bound Ay : b X b — b
are given for any base type b, then the least upper bound V; : s X s — s and the greatest lower
bound A, : s X s — s are definable in NRL, for every type s. O

The last operation of Zaniolo’s language is the join (we omit projection and selection as these
are standard and of course definable in NRL,). The join with respect to a set X of attributes
was defined as

Ry Xy Ry = max{t; Viy|t1ERy, 2ERy, 1 and ty are total on X}

Without the condition that ¢; and t; must be total on X that translates into max{t, V t5 |
t1 € Ri,ty € Ry} and hence is definable in NRL, by taking cartesian product of Ry and R,
and mapping V over it. In the case of flat relations, it is also possible to check if the value
of a projection is ni since nli is available as a constant of base types now. Hence, the totality
condition can be checked, and since selection is definable, so is Xx. Summing up, we have

Theorem 5.8 The language of Zaniolo is a sublanguage of NRL,, and hence NRL. O

Notice that in the case of model with one null ni we do not have to require orderings on base
types as these are definable using just equality test.

Example: Domain-theoretic language

A simple language based on the domain model was introduced in section 3.1. It had six opera-
tions: union, difference, selection, projection, cartesian product and join. The reason for having
six operations rather than the usual five was that the join was not definable via the rest of the
operations for all domains, but only for domains of a special structure. The union operation
was L” which is, as we have just seen, definable in A'RL,. Difference was the usual set difference
(which was sufficient to define the difference as in Zaniolo’s language). Projection and selection
were based on the concept of scheme (see section 3.1). Here we assume that there are only
trivial schemes, that is, those given by the fileds of records or components of pairs. Therefore,
projection and selection are definable in NRL,.

The join operation was defined as the Smyth join U, that is,

RILFR, = min{z | 3ry € Ry Irg € Ry : 7y <z and ry <z} =
= min{ry Vry |7 € Ry and 79 € Ry}

Therefore, by lemma 5.7, Ry U* R, is definable in ARL,. Summing up, we obtain

158 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Proposition 5.9 The domain-theoretic algebra of section 3.1 is a sublanguage of NRL, and
hence of NRL(<y). O

Notice that here we do have to include <; as the domains of base types could be arbitrary.

5.1.2 Language for or-sets

In this section we follow the method developed in the previous section. The language we are
going to describe is based on the universality properties for or-sets. One of the languages, N'RL",
disregards order, and views or-sets structurally, that is, just as subsets of a given set. The other,
NRLEY also views or-sets structurally, but takes into account the ordering and regards or-sets
as antichains.

Given a poset A, (PH(A),M", §) is the free ordered semilattice with top generated by A. Recall
that X; N X, = min(Xy U X3). Hence, the syntax of two languages NRL and NRLY" is very
similar to the syntax of NRL and NRL,. In particular, the category with products part is just
inherited from those languages. So here we only give the monad constructs. Types are given by
the following grammar for both NRL and NRLS".

tu=0b| unit | bool | txt |(t)
The monad primitives are shown in figure 5.2

The only difference between the semantics of two languages is the interpretation of or_u, and
or_map, which was shown already in section 2.3:

or-map,(f)({z1.. .., 2n)) = min{f(z1), ..., f(zn))
or i (X1, X)) =X, ..nf X, =min(X;U...UX,)

Since or-sets are ordered by the Smyth ordering and redundancies are removed by taking minimal
elements, we augment the definitions of orderings on complex objects and forcing sets into
antichains from the previous section as follows:

o

ox§<5>y<:>x§§y(i.e. Voeydoca: 0<,0) o (21,...,2,)° = min(a},...,22)

Now one can repeat the proofs of the previous section verbatim and arrive at the following
theorem.

Theorem 5.10 1. If <y is given at any base type b, then <; is definable in NRLS" without
using <, as a prumitive.

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 159

Or-Set monad of NRL®

or_py®t s X (t) — (s x t) orn' it — (1) or Ut : (t) x (t) — (1)
fis—1
or_pt (1)) — (¢) or_empty® : unit — (t) or_map f:(s) — ()

Or-Set monad of ARLS (given by PF)

or_py®t s s X (t) — (s x t) or-nt it — (1) me s (t) x (1) — (1)
fis—1
or_ul () — (t) or_empty® : unit — (t) or_map, [:{s) — (t)

Figure 5.2: Expressions of NRL and NRLS"

160 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

2. Under the assumption that <, can be tested in O(1) time, the time complezity of verifying
x <,y is O(n?), where n is the total size of © and y.

3. NRL is a sublanguage of NRL"(<y).

4. Any monotone function f definable in NRL" agrees with the antichain semantics. If [is
not monotone, then or_map(f) does not agree with the antichain semantics.

5. It is undecidable whether a function [definable in NRL®" is monotone. |

These languages per se are not of great practical interest. In the next section we combine NRL
with NRL®" and add a new operation that provides a meaningful interaction between sets and
or-sets. Then we show that a great deal of structural and conceptual queries can be expressed
in the resulting language.

5.1.3 Language for bags

As we explained in sections 3.2 and 4.1.1, the main difference between having bags and sets as
the underlying data model is that in a bag every entry represents a distinct object. Therefore,
having equal entries means that at the present time we have only partial information about
two objects and they can not be distinguished. Having two objects and y such that z is less
informative than y still means that x and y are distinct and now we know less about x than we
know about y. In particular, in bags there are no redundancies arising from having comparable
elements, and bags need not be represented as antichains.

This interpretation of bags led us to two orderings <°V* and <°V* depending on whether we
believe in OWA or CWA. These orderings are quite different from Cf and C° used for CWA
sets and OWA sets respectively. We have seen that T and C° are definable in the standard
language for sets NRL or standard language for antichains A’RL, which is a sublanguage of NRL
if orderings on base types are provided. However, the situation with bags is quite different. In
the standard bag language BOL, which is the bag counterpart of A'RL, it is impossible to define

S‘CWA a‘nd S‘OWA .

Theorem 5.11 The orderings <V and <°V* are not definable in BOL.

Proof. We prove this in two stages. First, consider the following problem called SDR. Given
an object o of type {|{|t[}[} such that all bags are in fact sets, that is, all elements occur at most
once. Does o have a system of distinct representatives? We also need a slight modification of
this problem SDR™ asking whether there exists a system of distinct representatives having the
same cardinality as the number of bags in o.

We prove the following.

5.1. LANGUAGES FOR COLLECTIONS OF PARTIAL DATA 161

Claim 1. If <°%* is definable in BQL, then SDR is definable in BOL.
Claim 2. If <°W ig definable in BQL, then SDR~ is definable in BOL.
Claim 3. Neither SDR nor SDR™ is definable in BOL.

In proving these claims, we use theorem 3.26 from section 3.2 which says that instead of BQL
we can consider ARL with natural numbers and simple arithmetic which we denote by NRL .

Proof of claim 1. If <4°V4 or <“V* is definable in BQL, then we can write a function that lifts
an order on elements of type ¢ to the order on elements of type {|t[}. It is enough to restrict our
attention to bags without duplicates.

Assume that a family & = {51,...,5,} of sets of type {t} is given. Then we do the following.
First, by using p we find dom(S) = 51 U ...U S, and then assign unique ranks to elements
of dom(5) (see the remark after theorem 3.35 which explains how to do it in NRLya.) Also
assign unique ranks to the sets in §. From now on, assume the indices of the sets are their
ranks. Then attach the ranks of elements of dom(S) to elements of 5;’s. It is easy to see that
this can be done in NRLya. Thus, we have an object S’ of type {{t x N}}. Now define a
new set V' which consists of pairs (s, m) such that s is the element of dom(S) with rank 1 and
m = card(dom(S))+1,...,card(dom(S))+ 1 + n. Again, this can be done in NRL, . Notice
that V' N dom(S’) = 0.

Now define a binary relation on V' U dom(S’) by letting (s,m) < (s',7) iff 5" € 57, _card(dom(s))-
Then, according to proposition 4.8, V' <°%* dom(S’) (when these are considered as bags) iff S
has a system of distinct representatives. Hence, runing SDR on § is reduced to testing <°W#
between two bags. This completes the proof of claim 1.

Proof of claim 2. We just repeat all the steps of proof of claim 1 and observe V' <V dom(S’)
iff SDR™ has a solution on S.

To prove claim 3, we define a new query called chain_even. It takes an input of type {t x t} and
returns a boolean. If the input is a chain (i.e. a tree with out-degree at most 1), then it returns
true if the length of the chain is even and false if it is odd. If the input is not chain, the output
is arbitrary.

Claim 4. chain_even is not definable in NRL q¢.

Proof. It was shown in Libkin and Wong [108] that in BQL, for every boolean query ¢ on simple
circuits there exists a number [such that either ¢(c¢) = true for all circuits ¢ of length > I
or ¢(c¢) = false for all circuits ¢ of length > [. Now consider the following query ¢ which is
definable with chain_even. Take in a simple a circuits and consider all chains that are obtained
by removing one edge from a circuit, and map chain_even over all such chains. It is easy to see
that ¢/(¢) = {true} if the length of ¢ is odd and ¢'(¢) = {false} if the length of ¢ is even. This
contradicts the result of [108]. The claim is proved.

Now we need the following lemma which reduces SDR and SDR™ to chain_even. In fact, this is

162 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

a first order reduction.

Let X,, = {21,...,2n},m > 2, be a chain such that z;1; is immediate successor of z;, i =
1,...,m L 1. Define S, as {{z1}, {zmn}} U{{zic1, 241} |1 =2,...,m L 1}.

Lemma. S, has a system of distinct representatives iff m is even.

Proof of lemma. First, fix some notation. Given X,,, let Y. be {21} fori =1, {z,,} for i =m
and {z;_1, 2,41} for 1 < i < m. If a family {Y,”*} of sets has a system of distinct representatives,
then we use ¢(Y™) to denote the representative of Y.

We prove this lemma by induction on m. For m = 3,4 it is easy to see that lemma is true. Now,
assume that m > 4 and m is even. By induction hypothesis, we know &,,_2 has a system of
distinct representatives. For any i < m 1 2, Y/ = Y/~ 2. Furthermore, Y, = {z,,_»} (and
hence C(YTZL__QQ) = Tm—2), Y, o = {xm-s,@m-1}, Y.y = {xm-2,2n}, Y, ={2z,}. Then &,
has a system of distinct representatives defined as follows. For k < m L 2, ¢(Y"*) = (V" 2).
Form 12, ¢(Y" ;) = 21, and e(Y,"" ;) = p—2 and ¢(Y,”") = z,,. Hence, &, has a system of
distinct representatives.

Now let m > 4 be odd. We know §,,_2 does not have a system of distinct representatives.
Assume S, does have it. Then ¢(Y,") = {z,,} and ¢(Y,”" ;) = 2,2 are forced. For ¢(Y," ,)
there are two choices: @,,_3 and @,,—1. If ¢(Y™ ;) = 2,,_3, then note that x,,_1 is not present
in any other ¥, and hence will never get selected. But since the cardinalities of X, and S,
coincide, this means &, does not have a system of distinct representatives. This contradiction
shows that ¢(Y,7" o) = z,,,—1. Therefore, for any ¢ < m L 2, ¢(Y;) = 2; where j < m L 2. Since
Y™ = Y™ % for i < m 12, then by taking ¢(Y;""%) = ¢(Y/") fori < m L2 and ¢(Y"""7) = 2,
we obtain a system of distinct representatives for §,,_2, contradiction. Hence, §,, does not have
a system of distinct representatives. This finishes the proof of the lemma.

Now claim 3 follows from the lemma and claim 4. Indeed, if SDR (or even SDR™ since cardi-
nalities of X, and §,,, coincide) were definable, by the lemma we would be able to test whether
a chain has even or odd length. This finishes the proof of the theorem. O

Therefore, any implementation of BQL that is supposed to deal with the problem of partial
information must provide <%* and <°%* ag additional primitives.

Corollary 5.12 Neither NRL nor NRL with arithmetic functions can define a function of type
{{s}} — bool that tests whether a family of sets has a system of distinct representatives. O

Unlike most queries whose inexpressibility has been proved earlier, this one is a truly nested
query: it has no first order analog.

5.2. LANGUAGE FOR SETS AND OR-SETS 163
5.2 Language for sets and or-sets

In this section we introduce the main theoretical language of this thesis that combines sets and
or-sets. We study its properties and later show how it can be used to deal with approximations.
This language also serves as the core of the system called OR-SML which will be described in
the next chapter.

As we often said, or-sets have emerged from applications within the design and planning areas,
and in particular computer aided design. Now we give a simple example of an incomplete design
database and use it to illustrate the main problems that arise in querying such databases. We
then proceed to solve some of those problems.

Example: Querying incomplete database

Assume that we have a database containing an incomplete design. For example, a part may
consist of several subparts and each of them can be chosen from several possibilities with different
parameters like price and reliability. To give an example, assume that we have a design which
requires two subparts, A and B. An A is either Al or A2. The part Al consists of two subparts:
Al.l and A1.2. An Al.1is either x or y and an A1.2 is either z or v. The part A1.2 consists of
three subparts: A2.1, A2.2 and A2.3. An A2.1 is either p or ¢, an A2.2 is either r or s and an
A2.3 is either t or u. A B consists of Bl and B2. A Bl is either w or k and a B2 is either [
or m. This incomplete design is shown in figure 5.3. We use dashed lines to represent possible
choices.

Now assume that for every subpart that can make it into the completed design (those are
denoted by lower case letters) we have two parameters: its cost ¢(-) and reliability r(-). Below
we give examples of structural queries, that is, queries asking questions about the structural
representation of an incomplete design, and conceptual queries, that is, queries asking questions
about completed designs which are not stored in a database and thus are purely conceptual.

Structural Queries

— List all possible subparts of Al.
What is the cost of w?

— How many possible choices are there for A42.37

Which choice for 42.3 has the minimal cost?

Conceptual Queries

— Is there a complete design that costs less than $507

164 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

DESIGN

/ A\ / A\

[\
EXIBN AN

/ A\

Figure 5.3: An incomplete design

5.2. LANGUAGE FOR SETS AND OR-SETS 165

Is there a complete design that costs less than $65 and whose reliability is at least

93%"

What is the least expensive complete design?

What is the most reliable complete design?

— How many complete designs are there?

We would like to design a language that is capable of supporting both kinds of queries. To do
it, we need a way to ask conceptual queries like the ones above. Let us explain, at this point
just informally, how this can be done.

First, we must represent DESIGN as an object in the language. We assume that types are built
from base types by using the product, set {} and or-set () type constructors. We build the
design bottom-up. First, we obtain

Now B = (B1, B2). The A part requires more care. We see from the diagram that A = (A1, A2).
Hence, A1 and A2 must be of the same type. This means that it is impossible to represent Al
as (Al.1,A1.2) and A2 as (A2.1,(A2.2,A42.2)) for then A = (Al, A2) would not typecheck.
Therefore, we represent A1l and A2 as sets. That is, we build

Al = {A1.1, A1.2}
A2 = {A2.1, A2.2, A2.3}
A = (A1, A2)

and finally DESIGN = (A, B). Assuming that all descriptions of the smallest subparts (those
that are denoted by the lower case letters) have type ¢, the type of DESIGN is

{01 x ((8) x (1))

166 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Now consider A1 = {(z,y),(z,v)} which is of type {(t)}. It is a set which has four possible
values: {z,z},{x,v},{y,z},{y,v}. To obtain or-sets containing these sets from Al one needs
essentially the isomorphism between the iterated constructions « described in section 4.2.2. If
we apply it to both Al and A2, we obtain two objects of type ({t}). Now A becomes an object
of type ({({t})) and we make it an object of type ({t}) by applying or_u which, as we remarked
earlier, does not change the meaning.

Similarly, B is an object of type (¢) X (¢) and one can list all possibilities encoded by B by taking
the cartesian product of B1 and B2. Hence, B becomes an object of type (¢ xt). Now the whole
DESIGN becomes an object of type ({¢}) X (¢ x t). Again, we take the cartesian product and
obtain an object of type ({t} x (¢ x t)).

Intuitively, elements of this object are the complete designs. Therefore, we can write conceptual
queries by simply selecting certain elements from this or-set. So, in order to find out if we can
ask those conceptual queries, we must answer the following questions:

e Given any object o involving or-sets, is it possible to construct an object o’ which is an or-
set containing objects not involving or-sets such that o’ represents all possibilities encoded
by o?

e Does o depend on the order in which operations like cartesian product and a in our
example are performed?

In this section we introduce a language for sets and or-sets and show that using that language
we can construct ¢ from o in a way that is “path independent”, that is, does not depend on
the order in which operations are applied. That object o' will be called the normal form of o,
and the language will be capable of expressing a function normalize that takes o into o’. Then
conceptual queries simply become queries asked against normal forms.

5.2.1 Syntax and semantics

The language we present deals with sets and or-sets. Its type system is given by

tu=0b | unit | bool | txt | {t} | (¥)

Its expressions simply combine expressions of NRL and NRL"

. However, if we do just that,
there is no way to distinguish between sets and or-set, because all arrows coming out of sets (or-
sets) go to sets (or-sets). The way to distinguish between the two is to look at their interaction.

That is, we want to know what is the connection between {(¢)} and ({t}).

Since ordering on sets corresponds to the Hoare ordering, and ordering on or-sets is the Smyth
ordering, we would like to see if there is a natural correspondence between the operators P and

5.2. LANGUAGE FOR SETS AND OR-SETS 167

P As we saw in section 4.2.2, these two operators always produce isomorphic domains, so we
take one of the isomorphisms as a primitive in the language. Summing up, we have the language
for writing structural queries over sets and or-sets, which we call or-A'RL. Its expressions are
shown in figure 5.4.

Syntax of or-A'RL, is the same except that < is used instead of eq and the following operations
have index a; map, or_map, p, or_p and a.

Semantics. The semantics of all constructs other than a has been given already. Now define
the semantics of @ and «y.

Let X = {Xy,...,X,} be a set of or-sets where X; = (a},...,2%). Let Fy be the set of all
choice functions on X', that is, the set of all functions f: {1,...,n} — Nsuch that 1 < f(i) <n;
forallt=1,...,n. Then

a(X) = ({ehy | i=1....n} | [€ Fu)

a.(X) = ming(max{w}(i) li=1....,n}| f € Fx)

Therefore, according to theorem 4.21, o is an isomorphism between [{(¢)}]s and [{{¢}}]s and
in addition a,(X) = a(X)°.

Recall that objects involving or-sets have two different semantics: the structural semantics []s
and the conceptual semantics [].. Therefore, every expression of or-ANRL or or-NRL, has inter-
pretation with respect to both []s and [].. The remark about a used the structural semantics;
the conceptual semantics will be studied in the next section.

Combining techniques from the previous section, we can easily show the following properties of

or-NRL and or-NRL, (see theorem 5.10.)

Theorem 5.13 1. If <y is given at any base type b, then <, is definable in or-N'RL, without
using <, as a prumitive.

2. Under the assumption that <, can be tested in O(1) time, the time complezity of verifying
x <,y is O(n?), where n is the total size of © and y.

3. or-NRL, is a sublanguage of or-NRL(<p).
4. For any two objects x,y of type s, x <s vy iff ° <; ¢°.

5. Any monotone function f definable in or-N'RL agrees with the antichain semantics. If f
is not monotone, then map(f) and or_map(f) do not agree with the antichain semantics.

6. It is undecidable whether a function [definable in or-N'RL is monotone. O

168

CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Operators shared by NVRL and NRL"

g:u—s f:s—1 c:bool f:s—t g:s—1 fiu—s g:u—t
fog:u—t if c¢then felseg:s—t (f,9):u—sxt
s xt — s ot isxt —t "t — unit
Ke :unit — Type(c) idt it —t eq' 1t X t — bool

Operators from set monad of NRL

s x Uy — Lsx 1) wii— {0 U {0x {0 -0

f:s—1t

pt {13}

— {t} empty’ : unit — {t} map f:{s} — {t}

Operators from or-set monad of NRL"

or_py®t s X (t) — (s x t) ornt it — (1) or Ut : (t) x (t) — (1)
fis—1
or_pt (1)) — (¢) or_empty® : unit — (t) or_map f:(s) — ()

Interaction of sets and or-sets

o ()} — {1})

Figure 5.4: Syntax of or-NRL

5.2. LANGUAGE FOR SETS AND OR-SETS 169

One of or-ARL primitives, a, is essentially a translation of conjunctive normal form into dis-
junctive normal form. This operation may be very expensive. Indeed, if its argument is a
collection of n two-element or-sets, all 2n elements being distinct, then a produces an or-set
containing 2" n-element sets. The result that we are going to formulate can be intuitively un-
derstood as follows: the expressive power of a is that of powerset. However, powerset does
not use the () type constructor. To be able to speak of the equivalence of expressive power of
languages one of which uses or-sets and the other does not, for technical purposes only, we in-
troduce the functions or_to_set : (t) — {t} and set_to_or : {t} — (t) with the obvious semantics:
or_to_set({x1,...,2,)) = {21,...,2,} and set_to_or({zy,...,2,}) = (21,...,2,). We remark
here that, if or to_set and set_to_or are given, then NRL and NRL®" are interdefinable.

Proposition 5.14 or-NRL(or _to_set, set_to_or, o) = or-NRL(or_to_set, set_to_or, powerset).
Proof. First, powerset can be expressed as follows:

powerset = or_to_set o o o map(or_-U o (or_n o emptyol, or-non))

Conversely, we must show that « is definable in or-NRL(or_to_set, set_to_or, powerset). It is

known that the test for equal cardinality can be implemented using powerset (see [26]). To
check whether card(X') < card(Y'), notice that

pomap(ANZ.if equal _card?(X, 7Z) then X else {})(powerset(Y))
returns X if card(X) < card(Y') and {} otherwise, thus giving us the test for lesser cardinality.

Now, given an input of type {(¢)}, first apply map(or_to_set) to it and then flatten the result,
thus obtaining the set of elements that occur in the input. Applying powerset now gives the set
of all sets of those elements. A set of elements of the input makes it to the output if and only
if two conditions hold: first, its cardinality does not exceed the cardinality of the input (i.e. the
number of or-sets) and it has a nonempty intersection with any element of the input, unless the
input is {}. Since selection, lesser cardinality test, intersection and test for nonemptiness are
definable in NRL selection over the powerset followed by an application of set_to_or yields the
desired result. |

Example: Membership problem for equality tables in or-ARL

As a simple example of applicability of or-ANRL to classical problems of incomplete information
in relational databases, we show how to use it to solve the membership problem for equality
tables. Recall that equality tables are relations where variables can be used as well as nonpartial
values, and each variable may occur more than once. The membership problem is to determine,
given an equality table and a relation without variables, if the relation is a possible world for

170 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

the table. That is, if it is possible to instantiate variables to values such that the table will be
instantiated into the given relation. It is known that this problem is AP-complete, so we can
not hope to give a solution that does not use the expensive a.

For simplicity of exposition, assume that we have a base type b having both variables z,...and
values v1,...and that it is possible to distinguish between variables and values. A relation R is
an object of type {b x b} such that no variable occurs in it. A table 7" is also an object of type
{b x b} but now variables may occur.

It is possible to find the set of all variables that occur in 7" using the fact that select is defiable
in NRL:

Vary = select(is_variable) o map(m)(T) U select(is_variable) o map(wy)(1)
All values that occur in R can be found as
VALr = map(m)(R) U map(m2)(R)

We saw in the proof of proposition 5.14 that powerset,, : {t} — ({t}) is definable in or-NRL.
So, the next step is to compute powerset .(cartprod(VART X VALR)) and select those sets in it
in which every variable from VAR7 occurs exactly once. We denote this resulting object of type

({b x b}) by AssIGN.

Each element of AssiGN can be viewed as an assignment of values to variables, so it can be
applied to T" in the following sense. For every @ in AssIGN (which is a set of pairs variable-value,
we can write a function that substitutes each variable in T by the corresponding value, and then
map this function over AssiGN. The reader is invited to see how such a function can be written

in or-NRL.

The resulting object is now X of type ({bxb}) which is the or-set of all possible relations that can
be obtained from T’ by using valuation maps whose values are in VALp. Therefore, R is a possible
world for 7" if and only if R is a member of X. To verify this, we write or_map(Az.eq(z, R))(X)
and then check if true is in the result. This gives us the membership test.

It is interesting to note that the membership problem for Codd tables, while being of polynomial
time complexity, requires solving the bipartite matching problem which can be reformulated as
a problem of finding a system of distinct representatives, see Abiteboul et al. [8]. Therefore, the
power of N'RL is too limited to solve the membership problem even for Codd tables. However,
with the power of a, the language can solve a much more complicated membership for equality
tables.

5.2.2 Normalization and conceptual programming

The main goal of this section is to show that every object involving or-sets has a unique rep-
resentation of type (¢f) where ¢ does not involve or-sets. That is, all possibilities encoded by

5.2. LANGUAGE FOR SETS AND OR-SETS 171

or-objects can be listed and, moreover, in a way that is implementable in or-ARL.

We start with a few examples in which we use the set-theoretic semantics. If a pair (z,y) of
or-sets is given, say, ((1,2),(3,4)), on conceptual level we must deal with all possible objects it
can conceptually stand for, that is, with or-set of pairs ((1,3),(1,4),(2,3),(2,4)). In this case
the function that carries out transformation of structural representation to conceptual one can
be given as or_y o or_map(or_p;) o or_p,. Another example of the passage from structural to
conceptual level is given by the primitive a® : {(s)} — ({s}), provided that s is in the or-set free
fragment.

Let us consider a more sophisticated example. Given an object z = ({(1,2),(3)},(1,2)) of type
{(int)} x (int). Denote the first component by y. Applying or_p, to z first yields ((y, 1), (y,2))
which is an object of type ({(int)} x int). Applying or_map(a o w1, 72) yields an object

((({1,33,{2,3}), 1), ({{1, 3}, {2,3}),2))

of type ({({int}) x int). Finally, applying or_u o or_map(or_p;) yields

(11,33, 1), ({1,3},2),({2,3}, 1), ({2,3},2))

of type ({int} x int). This can be considered as a conceptual level object for all the possibilities
are listed.

However, one could have used another strategy to list all the possibilities. For example, to apply
(womy, mg) first to obtain an object of type ({int}) x (int) and then or_po or_map(or_p,)o or_p,
to obtain an object of type ({int} x int). It is easy to check that such a strategy results in
precisely the same object as the previous one.

In fact, there is a general result saying that each type has a unique representation at the
conceptual level —such that no or-set type occurs in the type expression except as the outermost
type constructor. For reasons that should emerge shortly we call such a type a normal form.
Furthermore, for each object of type t there exists its unique representation at the conceptual
level whose type is the normal form of ¢.

To state these results precisely, introduce the rewrite rules for type expressions:

t X (s) L— (t x s) (ty x s L— (t X s)

() L= (1) {0} 1= {{t})

Proposition 5.15 The above rewrite system is terminating and Church-Rosser. The normal
form nf(t) for type t can be found as follows: If t does not use (), then nf(t) = t. Otherwise,
remove all angle brackets from t. If the resulting type is t', then nf(t) = (t').

172 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Proof. To show that the rewrite system is terminating, define the following function on types.
Considering types as their derivation trees, let k; be the number of occurrences of () on the ith
level of the derivation tree of type ¢. If the height of the derivation tree is n, define ¢(t) as
Y7 k; - i It is easy to see that if ¢ 1— to, then ¢(t) > (o). Hence, any rewriting terminates.

To prove Church-Rosserness, one has to find the critical pairs, see section 2.4, which in essence
are pairs of terms that can give rise to ambiguity in rewriting, and show that for any critical
pair (7, 72) there exists a term 7 such that 7 1— 7 and 7 1— 7. A straightforward analysis
of our rewrite system reveals the following critical pairs: 1) (({(¢)}), {{)}); 2) ({t X (s)), ¢t X (s));
3) ({{s) x t), (s x (t))) and 4) ({(s) x t),{(s)) x t) and their symmetric analogs. The terms to
which both components of critical pairs rewrite are ({t}) for 1), (¢ x s) for 2) and (s x t) for 3)
and 4). Thus, the rewrite system is Church-Rosser and, therefore, has unique normal forms.

The proof of the last statement is by induction on the structure of a given type. We limit
ourselves only to types containing (). The base case is immediate. In general case, consider
three subcases: 1) t =¢1 X 13, 2) t ={t1}, 3) t = (t1). In subcase 1, ¢ = | X t}, hence, if both
t1 and t3 contain or-sets, nf(t1) = (t}), nf(t2) = (t) and t L— (t]) x (t}) L— (t] x th) = (t')
which is a normal form. Thus nf(t) = (t'). The simple proofs of other cases are omitted. O

Having defined rewrite rules for types, we must show how to apply these rules to instances.
First, associate a function in or-ANRL with each rule as follows:

or_py 1t X (s) L— (t X s) or_py 1 (t) X s L— (t X s)

orju: (1)) 1— (1) o {{1)} 1= ({1})

In the case of using antichain semantics, that is, or-NRL,, we replace or_u and « by or_u, and
a, respectively.

Let ¢ be a type and p a position in the derivation tree for ¢ such that applying a rewrite rule with
associated function f to ¢ at p yields type s. Our aim is to define a function app(t,p, f):t — s
showing the action of rewrite rules on objects. Define it by induction on the structure of ¢:

e if p is the root of the derivation of ¢, then app(¢,p, f) = f;
e if t =1 Xty and pisin ¢ , then app(t,p, f) = (app(t1,p, f) o 71, T2);

e if t =11 X t3 and pis in 3, then app(t,p, f) = (71,app(t2,p, f) o m2);

o if t = {t'} then app(t,p, f) = map(app(t’,p, f));

5.2. LANGUAGE FOR SETS AND OR-SETS 173

o if t = (') then app(t,p, f) = or-map(app(t',p, [)).

Notice that the definition of app relies on the fact that the functions associated with the rewrite
rules are polymorphic. Again, for or-A’RL, we use corresponding operations with index a from
or-N'RL,, and denote the corresponding application function by app,,.

Given a type t and a rewriting strategy r := ¢ JLN t N t, = nf(t) such that the
rewrite rule with associated function f; is applied at a position p;, we can extend the function

app to app(t,r):t — nf(t) by

app(t,7) := app(tn—1,Pn, fn) 0 ... 0 app(t1, p2, f2) 0 app(t, p1, f1)

We now formulate the main theorem which states that it is possible to compute all possibilities
a given or-object represents, and that computation is “path independent”. We discuss some
important consequences of this result before giving a (somewhat lengthy) proof.

Theorem 5.16 (Normalization) Given a type t, any two rewrite strategies r1,r2 : t 1— nf(t)
yield the same result on objects in or-N'RL and or-NRL,,. That is, for any object x of type t,

app(t,r1)(x) = app(t,r2)(x) and app,(t,m1)(z) = app,(t,m2)(2) O

Therefore, all objects with the same meaning at the conceptual level rewrite to the same normal
form. The intuitive notion of the conceptual meaning can now be rigorously defined as the
normal form. So now we can define the conceptual query language or-N'RLT by adding the new
construct

normalize’ : t — nf(t)

to or-AVRL. The conceptual query language for the antichain semantics or-A’RL} can be defined
by adding normalizel, : t — nf(t) to or-NRL,.

By the normalization theorem, normalize’ can be implemented as app(t,r) where 7 : ¢ 1— nf(t)
and normalize!, can be implemented as app,(¢,r). Notice that, for any given ¢, normalize’ and
normalize’, can be expressed in or-NRL and or-ARL, (maybe in more than one way) but it is
impossible to express them polymorphically.

As an illustration of using normalization, consider the example with the incomplete design
database. Assuming that the cost function ¢(-) is given for all pieces, it is possible to calculate
the cost function cost for the complete designs. Now, to find out if it is possible to complete
design using $50, one would write

select(Axz.x > 50)(or-map cost normalize(DESIGN))

174 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

(recall that select is definable in or-AVRL). To list the designs which cost exactly $70, one would
write

select(Az.cost(x) = 70)(normalize(DESIGN))

Moreover, it is possible to express all examples of conceptual queries listed in the beginning of
this section. We shall return to this example later in chapter 6 and show how those conceptual
queries can be implemented in a practical language OR-SML which is based on or-NRL.

Before we prove the normalization theorem, let us make one important observation. The nor-
malization theorem states that [app(t,r1)(2)]s = [app(t, 72)(2)]s, no matter what ry and ry. Of
course, this also implies that the conceptual semantics of the two is the same. However, there is
a much closer connection between normalization and the conceptual semantics. The slogan is:

Normalization preserves conceptual semantics.

In other words, the following holds.

Theorem 5.17 For any type t and any object x of type t,
[z]. = [normalize(x)]. and [z]. = [normalize,(2)].

That is, [normalize]. = [normalize,]. = [id]..

Proof. We prove this theorem for the antichain semantics; the proof for the set-theoretic
semantics is similar (and in fact easier). We must show that all four operations used in the
process of normalization do not change the conceptual semantics. We do it by cases. Recall that
[]. is a finitely generated filter in [¢]. for any « of type t. First, we need to prove the following.

Claim. If x and y are of type t and x <; y, then [y]. C []..

Prove this by cases. The base type case and the product type case are immediate. Let X =
(1, @0), Y = {y1,...,Ym) be of type (t) and let X <y V. Then Vy; € YIz; € X & 2; <y
and hence Vy; € Y3z, € X ¢ [y;]c C [#:]. and then [Y]. C [X]..

Let X = {21,...,2.}, Y = {y1,...,Ym} be of type {t} and let X <, V. Then Vo € X3y €
Y : z <; v, that is, [y]. € [z].. This also means min [2]. Cf min[y].. Now consider
X' = {min [21]c,...,min[z,].} and Y’ = {min [y]., ..., min [yx].}. Then X’ (gﬁ)b Y’'. Now
recall from the proof of proposition 4.12 that [X]. = Ta.(X’) where a,(X’) is considered as a
collection of sets, and similarly [Y]. = Jaq(Y’). From the proof of theorem 4.21 we know that
aa(X') (<), (Y") which means aq(X') §ﬁ{t} aq(Y") and hence T, (Y') C Taq(X'). Therefore,
[Y]. € [X]e This finishes the proof of the claim. Now we prove that all operations used in the
process of normalization preserve []..

Case 1: or_py. Let [z]. = Fy, and [y;]. = F; for e = 1,...,n. Then for Y = (y1,...,y,) we
have [Y]. = Uy F; = Fy and [(2,Y)]. = F» X Fy. On the other hand, [or_py(z,Y)]. =

5.2. LANGUAGE FOR SETS AND OR-SETS 175

[z, y1), - (2, yn))]e = Ueq(Fe X Fy) = Fy x Uy Fi = Fp x Fy. Hence, [(z,Y)]. =
[or_py(x,Y)].. The case of or_p, is similar.

Case 2: or_p,. Let X = (Xy,...,X,) and X; = <x21,,x§%> fori=1,...,n. Let [[ac;]]c = FJZ
Then [X]. = U; U, FJZ By monotonicity of []., we obtain

[[X]]c: U FJZ

x; €min(X 1 U..UXy)

and hence [X]. = [or_u,(X)]e.

Case 3: a,. Let X = {Xy,..., X,,} where X; = <x21,,x§%> fori=1,...,n. Let [[ac;]]c = FJZ
Then [X]. is the filter generated by such finite antichains Y that YN F' £ @ foralli =1,...,n
where 1" = Ui, Fj. Now, a,(X) = ming(max{f(xlf(i)) |t =1,....,n}| f € Fx). Therefore,
by monotonicity of []., [a.(X)]. is the filter generated by all finite antichains Y such that

for every ¢+ = 1,...,n, Y N F}(i) # @ for at least one f € Fy. Now it is easy to see that
[oa ()] = [A].-

Therefore, all operations used in normalization do not change the value of []. and hence [z]. =
[normalize,(z)]. for any x. O

Proof of the normalization theorem

We start with normalization for the set-theoretic semantics. Let us first explain the strategy for
proving the theorem. We define an abstract rewrite system on objects by letting & — y iff y can
be obtained from z by application of one of the rewrite rules for types to @ (by means of app).
For instance, (1, ({1),(2))) — (1,(1,2)) by applying ({(¢)) — (¢) in the second position. If z is of
type t and vy is of type s, then ¢ — s according to the rewrite system for types. Moreover, normal
forms with respect to our new rewrite system are precisely objects whose types are normal form.
Therefore, the rewrite system is terminating according to proposition 5.15.

Now our goal is to prove that the new rewrite system is weakly Church-Rosser. Then, by
Newman’s lemma (see section 2.4) it will follow that it is Church-Rosser and has unique normal
forms. Since for a rewriting r from ¢ to s, y = app(¢,7)(z) implies that 1— y, the uniqueness
of normal forms will imply the normalization theorem.

To prove weak Church-Rosserness, we have to show that for x — x; and @ — x5, there exists
x’ such that z{,zy 1— 2’. We shall often view types as trees. Assume that x — z; by means
of rule r{ in position py in t and * — x5 by means of rule ro in position py in . We denote the
functions that correspond to rules vy and ro by f; and f; respectively. Notice that if positions
p1 and p9 are in two different subtrees determined by a pair formation, then the existence of
z’ is immediate. Hence, we can assume that one position, say pi, is closer to the root than p,
because {} and () are unary type constructors.

176 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Now we prove weak Church-Rosserness by cases which are given by the rewrite rules applied in
position py. Subcases will be given by rewrite rules applied in position ps.

Case 1. The rule applied in py is s X (t) — (s x t). The object therefore is a pair (21, 22) and
the function applied is or_p,. Now we have three subcases.

Subcase 1.1. py occurs inside the tree for s. Assume that app(s, p2,72)(21) = 2. Then we
obtain

(w1, 25) | 2h € x3)

or_py or_map(fa o 71, m3)

A

—_~

(z1,22) (2], ah) | @b € x3)

(f20 Wlx\ or_pg
(

xllv $2)

Subcase 1.2. py occurs inside ¢t. That is, rewriting is apllied to elements of or-set z5. For
x9 = (Yi)i, assume that fo(y;) = z;. Then we obtain

((v1,9:) | yi € w2)

or_p, or_map(w, f, 0 72)

A

(z1,22) ((v1,2i) | yi € 22)

(71, or-map(f2) o 73) TPy

(21, (i)

N

Subcase 1.3. py coincides with the root of (¢). Since the root of (t) is the or-set type,
the only rule that can be applied is ((t')) — (¢'), that is, t = (t'). Now assume x5 =
(X1,...,X,) where each X; is an or-set of type (). Let V = Xy U...U X,. Then we
obtain

5.2. LANGUAGE FOR SETS AND OR-SETS 177

(en, X, 2TmPOP) 0 e Xy i = 1)

or_py or_ji

(z1,22) ((z1,9) [y e V)

(71, 01410 72)
or_py
id
($1,V) ($1,V)

Case 2. The rule applied in py is ((t)) — (). The object therefore is an or-set of or-sets
X =(Xq,...,X,) where X; = (21, .. ,x%) and the function applied is or_u. Now we have two
subcases.

Subcase 2.1. po occurs inside the tree for . Assume that for each element wé in X; we
have f2($;) = y; Let Y; = or_map(f2)(X;). Then we obtain

<$;|Z: L...,p,g=1,. 7ni>

/ yzap
T
Wap or_map(f

<y]|l: PR 7p7j:17"-7ni>
(Yili=1,.

Subcase 2.1. py is the root of (t), that is, py is the immediate successor of p;. Hence, the
only rule that can be applied at pq is ((s)) — (s). In other words, ¢t = (s) and A’ has type
({(s))). Rewriting at p, is then or_map(or_u). Therefore, two reducts of X" are or_pu(X') and
or_map(or_u(X')). The case now holds because or_g o or_map(or_p)(X) = or_p o or_u(X').

Case 3. The rule applied in py is {(1)} — ({t}). The object therefore is a set of or-sets
= {Xy,...,X,} where X; = (2%,...,2%)
subcases.

and the function applied is . Now we have two

un

178 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Subcase 3.1. py is inside t. Assume that applying f; to every wz yields y; The result of
applying f2 (in the sense of app) to X is {<y} |j=1,...,n;)i=1,...,p}. Now we can see
that the following diagram commutes and hence the case holds.

o or_map(map(fz))

X <{y2(2)|221,,p}|h6f3{>

map(or_map(fz))

{<y§«|j:1,...,ni>|i:1,...,p}

Subcase 3.2. py is the root of (¢). In this case the only rule that can be applied is
((t")) — (t') and hence t = (¢'). In particular, applying f, now is map(or_p). Now it can
be seen that the following diagram commutes which proves the case. In that diagram we
only give types of intermediate objects.

or_map(a)

o ({{))) ————: {({'}H)

A {5 o ({t'})

map(or_i) a

This finishes the proof that for the set-theoretic semantics the rewrite system is weak Church-
Rosser and therefore the normalization theorem holds.

To prove normalization for or-A'RL,, recall the translation from the set-theoretic semantics into
the antichain semantics: 2° = 2 for any z of base type, (z,%)° = (2°,¢°), {&1,...,2,}° =

max{z{,...,z0} and (z1,...,2,)° = min(z3,...,z,). Now we need two lemmas.

Lemma 5.18 Any function f in the fragment of or-N'RL that does not contain U, or U and eq,
1s monotone.

5.2. LANGUAGE FOR SETS AND OR-SETS 179

Proof is by induction. We consider only a few cases. Most cases, such as projections, pairing,
composition, singleton and pair-with are immediate. That a is monotone follows from theorem
4.21. Let X', Y be of type {{t}} and &' <(3y V. Then consider » € pu(X’). Since z € X for
some X € X, there exists ¥ € Y such that X <3 YV and then there exists y € V" such that
z <t y. This shows p(X') <4y p(Y). The proof for or_u is similar.

Assume that g : t — s is monotone and consider X,Y : {t} such that X <y Y. Let g(z) €
map(g)(X). Then there exists y € Y such that 2 <; y and hence g(z) <, ¢(y) which shows
map(g)(X) <5 map,(g)(Y). The proof for or_map is similar.]

Let f be afunction definable in or-A’RL. By f, we denote the corresponding function in or-N'RL,,,
that is, the function obtained from f by replacing set-theoretic operations with their antichain
counterparts, e.g. by replacing or_map with or_map, and so on.

Lemma 5.19 Let [be a function in the fragment of or-N'RL that does not contain U, or U,
equality and comparability tests. Then for any object x, fo(z°) = f(a°)°.

The proofis again by induction on f. We show a few cases here. The proof for « is easily derived
from theorem 4.21. Given X of type {{t}}, consider p,(X°). It is easy to see that u,(X°) =
max(pu(max{X° | X € X'})) = pu(X°)° and so the case holds. The case for map, observe that
map,(92)(X°) = max(map(ga)(X)) = max{ga(z°) | 2° € X°} = max{g(z°)° | +° € X°} =
map(g)(X°)°. Similarly, the case for or_map holds. Finally, consider h = fog where g:s — ¢
and f : ¢t — u. Then by induction hypothesis h,(z°) = f(g(2°)°)° and h(z°)° = f(g(z°))°.
Since g and f come from a monotone fragment of or-AVRL, we obtain g(2°) <; g(2°)° <; g(2°)
and therefore f(g(2°)) <, f(g(z°)°) <, f(g(z°)) which shows f(g(2°)°)° = f(g(2°))° and hence
ha(2°) = h(z°)°. This finishes the proof. O

To prove normalization for the antichain semantics, we define the rewrite system on objects in
exactly the same way we did it for the set-theoretic semantics. Now our goal is to show that the
system is weakly Church-Rosser.

Assume that we have an object z in the antichain semantics, that is, x = z°, and assume
that it can be rewritten to two objects zy and x,. That is, there exist two functions f and
¢ which are in fact instances of app, such that z1 = f,(2) and z3 = g.(x). Let 11 = f(z)
and y; = g(z). By the proof of normalization theorem for set-theoretic semantics we know
that there exists an object z (in set-theoretic semantics) such that both y; and y; rewrite to
z. That is, for some function f’ and ¢’, which are compositions of instances of app, we have
f(y1) = ¢'(y2) = z. Now using the fact that U, or_U and eq are not present in functions that
arise as instances of app and hence these functions are monotone, we apply the previous lemma
to obtain fi(z1) = [1(fu(a)) = F(f@)° = 2 = ¢/(9(2))° = ghlga(2)) = g)(w2). Since f!
and ¢/ are compositions of instances of app,, this means that the rewrite system is weakly
Church-Rosser and normalization for the antichain semantics follows.

180 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

5.2.3 Partial normalization

We have seen that the normalization process can be quite expensive. Indeed, since a has
essentially the expressive power of powerset and can be applied several times in the course of
normalization, the resulting object may be of at least exponential size. In section 5.2.5 we shall
give tight upper bounds for the costs of normalization. Meanwhile, we would like to ask another
question. Is it possible to answer conceptual queries faster?

First, we are going to show that even simple existential queries like “is there a complete design
that costs less than $507” can be very expensive. Then we proceed to suggest a method that
occasionally allows to answer queries without completing the normalization process.

The importance of existential queries was emphasized in Imielinski et al. [80, 81]. Essentially, an
existential query asks whether there exists a possibility — in the normal form — satisfying a given
property. In terms of or-NRLY, if nf(s) = (t) and p : t — bool is a predicate, I(p) : (t) — bool
is a predicate which is true of y : (t) if or_map(p)(y) : (bool) is an or-set containing the true
value. Given an object y of type s, one may ask a query 3(p)(normalize(y)). Clearly, this query
can be answered in time polynomial in the size of normalize(y), but can it be answered in time
polynomial in the size of y?

The following example gives a negative answer to this question, provided P # AP. Assume
pr ¢ {t} — bool evaluates to true if and only if cardinality of the set is at most k. Let b a
base type. For an object z of type {(b)}, one may ask a query Q(k,z) = I(px)(normalize(z)).
It is immediately seen that this query evaluates to true iff there exists a system of distinct
representatives of elements of z (which are or-sets) whose size is at most k. The problem of
finding a system of distinct representatives of size < k is known to be AP-complete, see [56].
Therefore, the problem whether Q(k,z) evaluates to true is A/P-complete.

Thus, there is no hope that even simple existential queries can be answered efficiently. Does
that mean we always have to go through the whole process of normalization? Not necessarily so.
Consider the following query about the incomplete design in figure 5.3. Is it possible to build
part A using $457 Of course we do not have to normalize the whole DESIGN but only the A
component. In other words, instead of normalizing an object of type ({{t)}) X ({t) X (t)) and
getting an object of type ({t} X (¢ X t)), it is enough to get an object of type ({¢}) x ({t) X (t)),
leaving the B component intact.

The question that naturally arises is whether it is possible to do this unambiguously. That is,
if t 1— ¢', and 71 and ry are two strategies that perform this rewriting, is it true that app(¢, 1)
and app(t,rq) are the same as functions of type ¢ — ¢'?

It is not hard to see that the answer to this question is negative, as shown in example in figure
5.5.

5.2. LANGUAGE FOR SETS AND OR-SETS 181

({{1,2),(3)), ({4, (5))) + (((int)))

or_map(or_u) or-H

((1,2,3),(4,5)) = {{int)) ((1,2),(3),(4),(5)) : ({(int})

Figure 5.5: A counterexample to unambiguity of partial rewriting

However, the result that we are going to prove says that this is essentially the only possible
counterexample. We need a couple of definitions first.

Definition 5.1 A u-type is a type that does not contain a subtype ((t)). A p-rewrite strategy
7t I— s between two p-types t and s is a rewrite strategy such that, whenever a subtype ({t'))
appears as the result of application of a rewrite rule, the next rewrite rule is ({(t')) — (t').

For example, (t) X (t x {(t)}) is a p-type and

() X (& {{1)}) L= (1) x (. x {T1)) L= (1) x {{t x {t})) L= () x (¢t x {1})

is a p-rewrite strategy. Notice that it does not go all the way to the normal form.

Now the slogan is
The normalization theorem holds for p-rewrite strategies between p-types.

Before we formulate and prove the partial normalization theorem, we need a few results dealing
with the structure of types involving the or-set type constructor. Recall that by ¢ 1l— s we mean
that ¢ can be rewritten to s in zero or more steps using the four rules given before proposition
5.15. Now we write ¢t < s if s is obtained from ¢ by removing some of the or-set brackets. In
other words, s is obtained from t by applying the rules in figure 5.6.

Now define a binary relation < on types by means of four rules in figure 5.7.

Theorem 5.20 Rules in figure 5.7 are sound and complete for 1—. In other words, s 1— t iff
s <t.

Proof. First prove the following. Let s, be a type obtained from s by inserting a pair of
or-set brackets. In terms of trees, it just means inserting a new node marked by () somewhere.

182 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

1 <s 1 <s 1 <s

{t) <1 (1) < s {t) < (s) {1} < {s}

t<s t<s t<s t'<4d
txit <sxt Uxt=<t'xs txt <sxs

Figure 5.6: Rules for <

tat! s < s
t<at txt asx s
t<4ds t <t <« s

1 < {s) {<(s)

Figure 5.7: Rules for «

Then sop L~ (s). We prove this by cases. If s is a base type, then s, could only be (s). If
§ = 81 X Sg, then in the case when or-set brackets are put around s, we are done. Assume or-set
brackets are inserted inside s;. Then sop = s1or X S2 L= (s1) X 82 L— (51 X s2) = (s). Assume
s = {s'}. Again, if we put or-set brackets around s, we are done. Assume that a new pair of
or-set brackets is put in s’. Then s, = {s/.} 1— {(s}} 1— ({s'}) = (s). The proof for s = (')
is similar. Therefore, if t < s, then ¢ was obtained from s by inserting a number of pairs of
or-set brackets in s and hence ¢ 1— (s).

Now we prove soundness of the rules in figure 5.7. The first three rules are obvious, so only the
last one needs to proved. Assume that we know ¢’ 1— s and let ¢ < . We must show ¢ 1— (s).
By the remark made above we obtain ¢t 1— (t'). Therefore, ¢t 1— (¢} 1— (s), which proves
soundness.

To prove completeness, we must show how to derive all four rewrite rules for types from the
rules in figure 5.7. First, we obtain

(ty x s <t xs IXs<tXs LX(s)<txs IXs<tXs
(t) x s < (t X s) tX (s) < (txs)

5.2. LANGUAGE FOR SETS AND OR-SETS 183

For the rules for sets and or-sets, we have

{6} < {3 {t} < {t} ()<t Tt
{01 < {th) (1)) < (1)

Finally, we need to show that if a subtype s of a type ¢ rewrites to s’, then t rewrites to t[s'/s].
In other words, if s < &', then ¢t < {[s’/s]. We prove it by induction on the structure of ¢. If the
position of s is the immediate successor of a product or a set node, then this follows immediately
from the rules in figure 5.7. Now assume that the position of s is the immediate successor of the
or-set node. Then we obtain

(s) < s s <1 s
(s) <(s)

as required. This finishes the proof of the theorem. |

The last rule in figure 5.7 resembles the cut rule in the sequent calculus [58] as it introduces a
new variable #/. In the sequent calculus it is possible to eliminate the cut rules but the cost is
the hyperexponential blow-up in the length of the proof, see Girard [58]. The last rule in figure
5.7 does not suggest an immediate search strategy to prove that ¢ < (s) but rather a search for
the right ¢'. Thus, the following question arises. Given two types ¢ and s, how hard is it to
check if ¢ 1— 5?7 One may fear that it is at least exponential in the size of s and ¢, as suggested
by the rules for <. Fortunately, we can prove the following result.

Proposition 5.21 There exists a O(n?) time complexity algorithm that, given two types s and
t, returns true if s 1— t and false otherwise.

Proof. First, define a carcass of type t, denoted by #, as follows. If nf(t) = (¢}, then ¢ = ¢/,
otherwise ¢ = ¢. Now, according to proposition 5.15, s l— ¢ implies § = £. Therefore, we assume
that the first stage of the algorithm is to check that § = . This can be done in linear time in
the size of t and s.

Assume s and ¢ are given such that s lIl— t. The proof of theorem 5.20 gives us a translation
of any rewriting strategy into a proof using the rules for <. Analysing these rules, we see that
all of them are forced except the case when ¢ = (¢'). That is, if t = t; X {3, then we should have
$ =81 X s3 and s; < 1 and sy < {5 must be proved. If t = {t'}, then we should have s = {s'}
and s’ <t/ must be proved.

Assume that ¢ = (¢/). Analyzing the translation from I— into < given in the proof of theorem
5.20, we can see that there are only three instances of applying this rule to show s < (). In
three of them, the subproof for the < relation is a one-step proof (equality).

184 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Therefore, when we have to prove s < (t'), we do the following. First, we check if ¢ = ¢] x t5.
If this is so, we check if s = 51 X sy. If this is again so, we check if 51 = (#]) and s; = t. If this
is so, we stop since we succeeded in proving s < (¢'). If this is not so, the rule for product could
not have been used in the translation of 1— to <.

Next we check if ¢ = {t"}. If this is so, we check if s = {(t")} and if this is the case, we stop as
we succeeded in proving s < (). If this is not so, the rule for sets could not have been used in
the translation of 1— to <.

Then we check if s = ((¢”)). If this is so, we stop as s < (t') is proved. If this is not so, the rule
for or-sets of or-sets could not have been used in the translation of 1— to «.

If going through these steps the algorithm does not stop, the translation from l1— to < tells us
that the only way to prove s < (¢') is to check that s = (s’) and to prove s’ < t'. Hence, we
remove one or-set type constructor and then repeat all steps for the simpler types s’ and ¢'. The
goal is proved when all its subgoals are proved, that is, in proving each subgoal the algorithm
stops returning success.

Analyzing this algorithm, we see that after each step the goal is reduced to a simpler subgoal
(or two of them in the case of product) and that the only operations performed are a constant
number of equality tests which can be done in linear time. Since the number of equality tests
performed is linear in the size of the input, the time complexity of the algorithm is O(n?). O

Since sizes of types are typically small (as compared to sizes of objects), this O(n?) algorithm
will work very fast. Notice that we assumed that types are represented as trees. This is the case
in the implementation called OR-SML which we shall describe in the next chapter. Had types
been given as strings, due to the simple grammar for types, they can be parsed by an LR parser
to obtain the tree representation in linear time [13]. Hence, the algorithm for checking s < ¢ is
still of O(n?) time complexity.

Our main goal is to prove the normalization theorem for p-rewrite strategies between p-types.
The first question is how to obtain p-rewrite strategies and p-types. Let us see why the naive
approach would not work. Given a type ¢, define Mt as the type obtained by deleting multiple
or-set brackets from ¢. That is, Mb = b, Ms X t = Ms x M¢t, M{t} = {M¢}, M{{t)) = M(M¢) and
M(t) = (M¢) if ¢ is not of form (¢'). Obviously, for any ¢, Mt is a u-type. Now given two types ¢
and s such that ¢t < s, is it true that Mt < Ms.

The answer to this question is negative. Indeed, take t = b X ((b)) and s = (b x (b)), where b is
a base type. Then ¢t < s, but Mt = b x (b) 4 Ms = (b x (b)). However, we still can prove the
following result.

Proposition 5.22 [f s and t are two p-types such that s <1 t, then there exists a p-rewrite
strategy that rewrites s to t.

5.2. LANGUAGE FOR SETS AND OR-SETS 185

Proof. Let s < ¢. Then there is a rewrite strategy that rewrites s to ¢, i.e. s I— t. Consider
the first step at which the condition for u-rewrite strategy is violated. That is, in some reduct
¢ of s a subtype of form ((ty)) appeared, but the next rule is not the one that rewrites ({({o))
to (fp). Since t is a p-type and does not have double or-set brackets, this pair of or-set brackets
must disappear in the process of rewriting. There are three possible cases.

Case 1. The product rule is used to eliminate the double or-set brackets. That is, g may have
been rewritten to some ¢, and then the rule ((¢()) x t} — ((t{)) X t}) was used. According to
the rules for <, this means that in &', ({{y)) appeared in the context ({to)) x ¢; and that ¢; < ¢].
Since s is a u-type and s’ is the first reduct in which a pair of or-set brackets appeared that was
not canceled at the next step, there are two possible ways for it to appear.

Subcase 1.1. g = tg1 X to2 and a pair of or-set brackets around {y appeared by applying
the rule g1 X (to2) — (o1 X toz). Therefore, the type that was rewritten to ((tg)) X t; was
(to1 X (to2)) X t1. Now it can be rewritten to ((#) x t}) as follows:

(tor X (toz)) X 11 — ((to1 X (foz)) X t1) — {{for X toz) X t1) = ({to) X t1) L= (i) x 1})
Note that the first two rules satisfy the conditions for p-rewriting.

Subcase 1.2 when tg = tg1 X to2 and the ruled applied is (fg1) X fo2 — (to1 X toz) is similar
to the subcase 1.1.

Subcase 1.3. tog = {tp1} and a pair of or-set brackets around ¢y appeared by applying the
rule {{to1)} — ({to1}) = (to). Therefore, according to the rules for <, the type that was
rewritten to ({to)) X t1 was ({(fo1)}) X t1. Now it can be rewritten to ((t() X t}) as follows:

({{ton)}) x t1 — ({{tor)} x t1) — ({{tor}) X t1) = {{to) X t1) L= {{tp) X 1})

Again, note that the first two rules satisfy the conditions for p-rewriting.

Case 2. The set rule is used to eliminate the double or-set brackets. That is, {g may have been
rewritten to some t(, and then the rule {((t{))} — ({{t;)}) was used. According to the rules for
<, this means that in s/, ({to)) appeared in the context {{{{p))}. Since s is a p-type and s’ is
the first reduct in which a pair of or-set brackets appeared that was not canceled at the next
step, there are two possible ways for it to appear.

Subcase 2.1. g = tg1 X to2 and a pair of or-set brackets around {y appeared by applying
the rule 91 X (to2) — (fo1 X toz). Therefore, the type that was rewritten to {((to))} was
{(to1 X (to2))}. Now it can be rewritten to ({(#,)}) as follows:

{{tor X (to2))} — ({tor X {to2)}) — ({{to1 X to2)}) = ({{to)}) L~ {{{to)})

186 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Subcase 2.2. g = tg1 X to2 and a pair of or-set brackets around ty appeared by applying
the rule (fp1) X toz — (to1 X fo2). This case is similar to 2.1.

Subcase 2.3. ty = {to1} and a pair of or-set brackets around ty appeared by applying
the rule {{t01)} — ({fo1}) = (to). Therefore, the type that was rewritten to {({to))} was
{{{{to1)})}. Now it can be rewritten to ({(t,)}) as follows:

{1y — {{{to)}3) = {{tos N}) = {{t0)}) 1= ({{t5)})

Note that in all three subcases the new rules we introduce satisfy the conditions for pu-
rewriting.

Case 3. In ((to)), to could be rewritten to t{, = (to1) and then the pair of or-set brackets
around to #j, is canceled by applying the rule ({t01)) — (to1). That is, ((tg)) 1— ((tp1)). This
equivalently could be achieved by rewriting ((#o)) as follows:

({t0)) = (to) 1= (to) = ((to1))

Notice that the first rule is an instance of u-rewriting: double or-set brackets are canceled
immediately after they appeared.

Now we define a measure of a rewriting from s to ¢ as the total number of instances of (()) in
all intermediate results of rewritings such that those double or-set brackets are not canceled by
applying the p rule at the next step. If the measure of a rewriting is at least one, we can find
an instance of the first appearance of (()) that is not canceled immediately afterwards, and use
the above algorithm to decrease the measure by at least one. Hence, this algorithm eventually
produces a rewrite strategy of measure zero, and such is a p-strategy. Proposition is proved. O

Now that we know that there exist u-rewrite strategies between u-types t; and ¢y satisfying
t1 < ty, we can prove the following result.

Theorem 5.23 (Partial Normalization) Given two p-types t; and ty such that t; < ty, any
two u-rewrite strategies ri,79 : t; l— ty yield the same result on objects in or-NRL and
or-NRL,. That is, for any object x of type t1,

app(t1,71)(z) = app(t1,72)(x) and app,(t1,71)(x) = app,(t2,72)(2)

Proof. The proof is going to follow the proof of the normalization theorem, but here we need
to do most of the work with types rather than object. Again, we define a rewrite system on
objects by letting @ of type s; rewrite in one step to y of type s if {1 < 81 < 53 < {3 and one of
the following holds. Either s; is a p-type and y is obtained by applying one type rewrite rule
(in the sense of app) to @, or & has one subobject of type ((s')) and y is obtained from z by
applying the type rewrite rule ((s’)) — (s’). Then, in order to prove the theorem, similarly to

5.2. LANGUAGE FOR SETS AND OR-SETS 187

the case of the normalization theorem, we must show that thus defined abstract rewrite system
is weakly Church-Rosser.

To show this, we go through all the cases considered in the proof of theorem 5.16 and observe
that some of them (1.3, 2.1, 2.2, 3.2) can not happen with the new definition of rewriting.
Let us list all others, leaving only types in the diagrams. Notice that in all the diagrams, if
types we start with are p-types, and rewritings s l— s and ¢ I— ¢’ are y-rewritings, then all
intermediate types are pu-types and all rewritings are p-rewritings.

Case 1. Two different components of a pair are rewritten.
Case 2. This case corresponds to case 1.1 in the proof of normalization. These two cases are
shown in the diagrams below.

s’ xt (s x 1)

sX 1 s xt s X (t) (s' x 1)
sxt s' X (t)
Case 1 Case 2

Case 3. This case corresponds to case 1.2 in the proof of normalization, where t' # ().
Case 4. This case corresponds to case 1.2 in the proof of normalization, where ¢ = (). Tt is
not hard to see that the diagram below commutes.

(s x t) (s X 1) —— (s x (")) == (s x ("))

s X (1) (s x ') s X (1) ({s x t"})
s x (1" s XA —— s x (t") —— (s x t")
Case 3 Case 4

Case 5. This case corresponds to case 3.1 in the proof of normalization, where t' # ().

Case 6. This case corresponds to case 3.1 in the proof of normalization, where ¢’ = (¢"). That
the diagram commutes follows from commutativity of diagrams for cases 3.1 and 3.2 in the proof
of normalization (see theorem 5.16).

188 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

{t}) — (") == {0

{t})
/\
\/

HEN —) —— {")

Case 5 Case 6

/
{t'h) {(®) ({130
\

Notice that commutativity of these diagrams is not sufficient to conclude that the rewrite system
we defined is weakly Church-Rosser. There is one additional condition, namely that for all
intermediate types sg it must be the case that sy < t3. To show that this is so, we must prove
the following.

For case 1, we must show that if s’ X ¢ <t and s x ¢’ <15, then s’ x ¢ <1 t5. For case 2, we must
show that of (s x) < t; and s’ X (t) < 13, then (s’ X t) <ty if s < ¢'. For case 3 we must prove
that (s x t) <t and s x (') < ty imply that (s x t') <ty if ¢t < t'. For case 4 it is necessary to
show that ¢ < ("), (s X t) <tz and s x ((t")) < t; imply (s x t') < t5. For case 5, we must prove
that ({t}) <t and {(¢')} <ty together with ¢ < ¢/ imply ({t'}) < ¢2. Finally, in case 6 we must
prove that ({t"}) < t; whenever ({t}) < ta, {({t"))} < t3 and t < (t").

In the rest of the proof, whenever a type ¢ is given, {y will always denote a type which is obtained
from ¢t by removing some or-set brackets. That is, ¢ < {g.

Before we prove these cases, let us make the following observation. Assume (v) is a p-type. If
t and ¢/, such that t <t < v and t < (v), then ¢ < ((u)) for some type u. Indeed, the way the
rewriting works is that some pairs of or-set brackets move up in the carcass of a type, and some
multiple or-set brackets are canceled. Therefore, the only possibility for t < v and t < (v) to
hold simultaneously is that v = (v’). Again, looking at how rewriting works, we see that any
rewriting ¢ 1— ({(v')) must go through ¢’ and hence ¢’ < ({(v}).

Now consider case 1. If 5 is a product type, say w X u, we obtain that s’ < w and ¢ < u
and hence s’ X t' < t3. The other possibility is that t; = (w). In this case, for some types
up = 8 Xt and ug > s X ¢ is must be the case that u; <« w and uy < w from which we derive
that w is a product type since (w) is a p-type. Let w = wy X wy. Now uy < wy X wg can be
translated into three possible cases, depending on whether u; is s, x t or sj X tg or s’ Xty where
t < tp and s’ < s{. Similarly three cases arise for uy. Since t < (to) and s’ < (s(), we obtain
s x t' < (wy X wy) in all cases but the following one: ¢ < wy and s’ < wy. In this case we
have t < (wg) and s < (wy). Then, by the observation made above, w; = (w}), i = 1,2, and

K3

s xth < ((wy)) x ((wh)) < (w]) X (wh)) < (w) =ty as required. Case 1 is proved.

Consider case 2. Since (s X t) < t3, we obtain t3 = (w). Moreover, w is either a product or a set

5.2. LANGUAGE FOR SETS AND OR-SETS 189

type. Now for some types u; > (s x t) and uy > ¢ X (t) we have uy, ug < w. This shows that w
is a product type, say wy X wy. Moreover, uy > s X t. Again, there are three possibilities how 1y
and uy can be obtained by removing or-set brackets from components, and it is easy to see that
in all of them s’ Xt < w or s’ x t < (w), both proving (s’ x t) < t3. For example, if u; = so X ¢
and ug = &' X to, then & 9wy and t < we and 8’ Xt < w. If uy = s X tp and ug = s, X (t), then
s' < (wq) and t < (wy) and s’ x t < (wq) X (we) < (w). Case 2 is proved.

Consider case 3. We have (s x t) < t3 and hence t; = (w). Since s x (t') < (w) and t; is a
p-type, we obtain that w is a product type, i.e. w = wy; X wy. Now we have that for some
types uy > s X t and ug = s x (t'), this holds: uy,uz < w. If for some ¢, = t’ it is the case that
(t,) < we, then it is not hard to see that s X ¢ < wy X wy or s X ¢ < (w1) X wy depending on
whether s rewrites to wy or (w1). In both cases (s X t') < t5. Similarly, the case holds if ¢’ < ws.

The only remaining case is when (¢') < wy. Then we must have that uy = so x (t') and hence
5 < (sg) < (wy). Since (t') < wy, we have wy = (u) and u is not of form (u’) because ws is a
p-type. Therefore, (') < (u) leaves two possibilities: either ¢ < u or ¢ < (u). If ¢ < (u), then
sxt" < {wy) X wy < (w) and we are done. So consider the case when t' < u. From uy < wq X we
we also have that either ty < wqg and then ¢ < (wy) < (u) or t < wy = (u). Hence, t < ¢ < u and
t < {u). As we remarked earlier, this must imply that u is an or-set type, i.e. u = (u) but this
would contradict the assumption that wy is a p-type. Hence, this case leads to a contradiction
and in all other cases it was shown that (s x ¢') < ¢;. Hence, case 3 holds.

Notice that nowhere in the proof of case 3 did we use the assumption that ¢’ # (t’). Now
consider case 4. Since s X ((t")) < t3 is a part of a p-rewrite strategy and t2 is a p-type, we
obtain s X (t") < t;. Now the proof of case 3 tells us that (s x) < ¢, which proves case 4.

Now consider case 5. We have ({t}) < ¢, and hence ¢, = (w) for some w. Moreover, w can not
be of form (w’) since ty is a p-type. Now we have {(¢')} < (w) and hence for some u > {(t')}
we have u < w. Since w is not of form (w'), it must be {w'} for some w’.

Now we have three cases. First, u could be {t'} and in this case {t'} < {w'} implies ¢ < w’
and then ({t'}) < ({w'}) = t; and we are done. In the second case, for some t}, > t', we have
{{t{)} < w and hence (t{) < w’. Then we have ¢’ < (¢{) < w’. Then ({t'}) < {w'}) = (w) = t5.
Finally, in the third case we have {t(} < {w'} and ¢, < w'; hence t' <« (t{) < (w'). Now
{t'}) < {(w")}) < (({w'})) < ({w'}) = t5. This finishes the proof of case 4.

Since we have not used the assumption that ¢’ # (') anywhere, this also proves case 6. Indeed,
since {((t"))} < t; is a part of a p-rewrite strategy and 3 is a pu-type, we obtain {(¢")} < t3 and
then the proof of case 5 applies. Hence, all cases are proved, and this tells us that the rewrite
system is weakly Church-Rosser.

This finishes the proof of partial normalization for the set-theoretic semantics. The proof for
the antichain semantics is obtained by repeating the proof of normalization for the antichain
semantics verbatim, thus showing that weak Church-Rosserness of the corresponding rewrite

190 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

system for antichains follows from the result we have just proved. Theorem is completely proved
now. O

To add partial normalization to the language, one has to introduce a new function pnorm®-2 :

t; — ty which is defined if ¢; and ¢y are u-types and ¢y < t3. According to proposition 5.22,
there exists a p-rewrite strategy r : ¢; l— t5 and then by theorem 5.23 we can correctly define
the semantics of pnorm'% as app(¢1,7) and the semantics of pnorm’'2 as app,(t1,7). These
two functions are definable in or-A’RL and or-ARL,, but not polymorphically.

Repeating the proof of theorem 5.17 verbatim, we obtain the following result.

Corollary 5.24 For any two p-types t1 and ty such that t1 1— t5 and any object © of type 11,
[]. = [pnorm™2(2)]. and [2].= [prormit'2(x)].

In other words, [pnorm'2]. = [pnorm!'2]. = [id].. 0

There are many open questions about partial normalization. Even though we can test if s <t
efficiently and we know that there exists a p-rewriting from s to t if s and ¢ are p-types,
algorithmic aspects of finding a p-rewrite strategy between p-types need to be further explored.
Partial normalization must also be combined with a smart evaluation strategy to help answer
queries faster.

As another important consequence of partial normalization, notice that it allows us to compare
objects of different types in terms of their partiality. Previously we were able to compare
only objects of the same type. That is, the function < had type s X s — bool. Now partial
normalization gives us a canonical representation of an object of type s at type t where s < ¢
and s and t are pu-types. Therefore, we can say if z of type s is more informative than y of type
t by checking if pnorm®'(x) <; y. This appears to be a new phenomenon in the field of partial
information.

5.2.4 Losslessness of normalization

This section investigates whether the process of normalization loses anything “that can be re-
garded as critical.” If loss of information is inevitable in the general case, then one would
like to obtain a set of general sufficient (and, if possible, necessary) conditions that guarantee
losslessness of normalization.

In chapter 1 we discussed the concept of representation system for relational databases with
partial information. A representation system is in fact a semantic function that maps every
incomplete relation R into the set of possible worlds that R can represent. Of course the question

5.2. LANGUAGE FOR SETS AND OR-SETS 191

that immediately arises is whether any loss of information occurs as the result of replacing R
with the corresponding set of possible worlds. That is, if we evaluate a query on each of the
possible worlds, can the resulting family of relations be represented by one incomplete relation?

Observe that the normalization process is very closed in the spirit to the representation systems.
That is, we replace an incomplete object by the or-set of objects it can represent. So, again we
may ask if this representation is lossless, that is, if loss of the structural information has any
impact on the conceptual queries.

First, let us see how this problem can be formalized in a wrong way which is just a reformulation
of the concept of a strong representation system. Suppose an object z is given and we ask a
query against each possibility represented by z. That is, we apply a function f that does not use
or-sets to all objects in normalize(z). Let the result of this be an or-set (y1,...,¥,). That is,
or_map(f)(normalize(x)) = (y1,...,Yn). The question we ask is whether there exists an object
y such that normalize(y) = (y1,.. ., Yn)-

The answer to this question is positive because we can just take y to be or_map(f) o normalize!
Of course the reason we can do this is that we can use normalize in the language whereas the
concept of representation systems can not be expressed in the standard database languages.
Therefore, we should look for another formalization of losslessness of normalization.

Given an or-NVRL-definable function f: s — ¢ and an object x : s containing some or-sets. Then

x conceptually represents several values z1, ..., 2,. Suppose f(z) is an object containing or-sets;
then it conceptually represents several values #, ..., ¥,,. It is desirable to discover which one of
21, ..., &y leads to which one of 4, ..., ¥,,,. This is a question of searching for a conceptual analog

of f that associates each x; in normalize x to a subset of normalize(f z).

The idea of the conceptual analog of a query is illustrated in figure 5.8. One would like to
know which combination of the conceptual values of the input give rise to which subset of the
conceptual values of the output. However, the ideal situation can only be approximated. As
a first attempt, for each possible conceptual value z; of the input z, we aim only to account
for some of the conceptual values in the output that are due to it. This approximation to
conceptual analog is illustrated in figure 5.8. Some conceptual values y; in the output may be
left unaccounted for. For example, the last element of normalize y in the figure. Similarly, the
picture given for each input z; is only partial. For example, the second element of normalize x
in the figure might in reality contribute to three values in the output but the conceptual analog
discovers only two.

Now restrict types only to those containing or-sets. Define purely or-types by the following
grammar: ¢ == (b) | t x t | {t} | (¢). It is possible to force any type into a purely or-
type by putting or-set brackets around every occurrence of a base type. Its action on objects
is represented by taking each base type subobject z into or_n(z). We call such a function
preserve. It can be easily seen that any object z is conceptually equivalent to preserve(z),
i.e. normalize(x) = normalize(preserve(x)) provided x has or-sets. That is, without loss of

192 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

normalize

preserve(f)

Figure 5.8: Conceptual analog of function f

generality we can speak of objects preserve(x).

Given an or-AVRL-function f: s — ¢ and two objects z : s and y = f(2) : ¢, let normalize(z) =
(1,...,2,) and normalize(y) = (y1,...,ym), nf(s) = (s') and nf(t) = (t'). Our motivation
to study losslessness is to find a conceptual analog of f. What can such an analog be? As
the first approximation, it is given by a function f’ : s — (#') which associates with each
element z; in normalize(z) a subset of normalize(y), thus defining the action of f on elements
its input could possibly stand for. This is illustrated in figure 5.8. Note that the second element
of normalize(z) is mapped into a two-element subset of normalize(y) and the last element of
normalize(y) is not accounted for. The morphism preserve(f) : nf(s) — nf(t) can now be
defined as or_u o or_map(f').

How could one refine the action of f on elements of normalized object? There are two ways
to do so. First, to require that this action be defined unambiguously, that is, f’ maps every
element from normalize(z) into a unique element of normalize(y), thus having type s — t'.
preserve(f) can then be reconstructed as or_map(f’). Secondly, one may require that all the
elements of normalize(y) be accounted for, that is, preserve(f)o normalize(z) = normalize(y).
In other words, preserve(f) is onto.

Proposition 5.25 Let s and t be purely or-types and [: s — t a function definable in or-NRL
that does not use or_empty and any primitive p whose type has or-sets. Then there exists a
conceptual analog preserve(f) which is generally of form or_yoor_map(-) and of form or_map(-)
if [does not use or_U. If f does not use pairing, ps and or_p,, the conceptual analog is also
onto.

Proofis by induction on the structure of f. Most of its steps are quite straightforward, so we
just show a few cases as an example. Consider the case f = py : s X {t} — {s x t}. Since s

5.2. LANGUAGE FOR SETS AND OR-SETS 193

and ¢ are purely or-types, nf(s) = (s') and nf(t) = (t'). Then preserve(pz) must have type
(s' x {t'}) — ({s' x t'}). We take preserve(ps) to be or_map(p3™"). An easy application of the

normalization theorem shows that for any object & of type sx {t}, or_map(p;/’t/)o normalize(x) C
normalize o py*(z). Therefore, being onto can not be maintained for p,.

As another illustration, consider f = or_U : (t) x (t) — (t). To see why the translation can
not be of form or_map(-), let t be a base type, say int, and consider an object 2 = ({1,2),(3)).
Applying normalize o or_U gives (1,2, 3) while applying normalize yields ((1,3),(2,3)) and no
mapping over the latter object can produce the former. So in the general case the translation
of or_U is

preserve(orU) = or_y o or_map(or_U(or_n o w1, or_no mz)).

Induction hypothesis is applied for pairing, map, or_map and composition. The case of pairing
is similar to pg; the translation of map is a straightforward application of induction hypothesis.
In the case of composition one can easily show that, given a composition f o g such that either
preserve(f) or preserve(g) is of form or_p o or_map(-), preserve(f o g) is such and if both
preserve(f) and preserve(g) are of form or_map(-), then so is preserve(f o g). Moreover, the
translation maintains being onto, depending on f and g. As an illustration, consider f and g¢
such that preserve(f) = or_p o or_map(f') and preserve(g) = or_p o or_map(g’). Then

preserve(fog) = or_uo or_map(or_po or_map(g') o f')

In the case of f = or_map(f') : (s) — (t), if both (s) and (¢) are normalized, preserve(f) = f; if
both are unnormalized, then preserve(f) = preserve(f’). Since we are considering only purely
or-types, s (or t) is a normal form iff s’ (or ') is a base type. Therefore, the case when ¢ is a
normal form and s is not is impossible. If s is a normal form and ¢ is not, then preserve(f) =
or_yi o or_map(normalize o f'). Notice that if or_U is not used, f’ can produce only or-singletons
on elements of a base type. In this case f' = or-no f"” and preserve(f) = or_map(f"). O

5.2.5 Costs of normalization

We have seen before that the complexity of or-A’RLY queries can be exponential. In particular,
the cardinality of normalize(x) can be exponential in the size of z provided that o was used in
the course of normalization. In fact, we showed that powerset can be expressed using a. If one
tries to estimate the cost of normalization by “brute force,” a hyperexponential upper bound
can be immediately obtained: indeed, if n is the size of z, applying the costly @ O(n) times
seems to yield a hyperexponential bound.

In this section we show that the fear of hyperexponentiality is not justified. In fact, both
cardinality of normalize(z) and its size are in the worst case exponential in the size of z. The first
result in this section explains why consecutive applications of « still yield objects of exponential
size. Then we proceed to find upper bounds on the cardinality and the size of normalized objects.

194 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Let 2 be an object and y = normalize(z). Define m(y) as the number of elements in y if it is an
or-set and 1 otherwise. Uniformly, m(z) = |[normalize(or_n(x))|. The size of an object is defined
inductively: the size of an atomic object is 1, size (z,y) = size © + size y, size {21,...,2,} =
size (T1,...,%,) = size &1 + ...+ size x,.

To work with objects, it is convenient to associate rooted labeled trees with them. A tree
T associated with an atomic object z is defined as a one-node tree labeled by z. 7(z,y)
is a tree with the root labeled by x and two subtrees rooted at its children are 72 and 7Ty.
T{x1,...,2,} (or T(x1,...,2,)) is a tree whose root is labeled by {} (or ()) and n subtrees
rooted at its children are 7z1,...,7x,. In view of this definition, m(z) can be redefined as the
number of children of the root of 7 normalize(z) if the root is labeled by () and 1 otherwise.
size x is the number of leaves in 7 x.

Intuitively, the following proposition says that the “internal” structure of 72 does not contribute
to the creation of new possibilities in normalize(x), and the number of such possibilities m(x)
is determined by the or-sets which are closest to the leaves.

Proposition 5.26 Let @ be an object, and vy,...,v; the nodes in Tx labeled by (), such that
the subtrees rooted at v;’s do not have other nodes labeled by () (i.e. they are or-sets closest to
the leaves). Let m; be the number of children of v;, i = 1,...,k. Then, if k #0,

k

m(z) < H(mZ +1)

=1

Proofis by induction on the structure of the object. We consider only objects containing or-
sets. The base case (i.e. or-sets of objects of base types) is obvious. Let 2 = (21,22). Assume
that both 2y and z, contain or-sets and vy, ..., v, are nodes of 72 and vp41,..., v are nodes of
T ;. Then, by induction hypothesis, m(z1) < [Tf_;(m; + 1) and m(22) < [T_,41(m; + 1). By
coherence, normalize(x) = or_p((normalize(z1), normalize(x3))) where or_p pairs each item in
its first argument with each item in its second argument (it can be easily expressed in or-A'RL).
Therefore, m(z) < m(z1)m(zy) < [T5,(m; +1). Two other cases when either z; or x5 contains
or-sets are similar.

Let @ = {x1,...,2,}. Then all ;’s contain or-sets. Again, by coherence,
normalize(x) = a({normalize(zy), ..., normalize(z,)})
Therefore, m(z) < [y m(z;) and the result follows from the induction hypothesis.

Finally, if 2 = (21,...,2,), there are two cases. If #;’s do not contain or-sets, then m(z) =n <
n + 1. If they do contain or-sets, then by coherence

normalize(x) = or_u({(normalize(x1), . . ., normalize(z,,)))

5.2. LANGUAGE FOR SETS AND OR-SETS 195

ie. m(z) < X m(x;) < [[iey m(z;) because m(-) > 2. The case now follows from the
hypothesis. O

This proposition explains why there is an exponential upper bound for m(z) despite the fact
that a can be applied many times. The following three results find upper bounds on the number
of elements in the normal form and its size in terms of the size of object rather than the tree
structure. We first formulate the results and then give their proofs.

Theorem 5.27 Let x be an object with size x = n. Then
m(z) < V3"

Moreover, for any n divisible by 3 there exists an object & such that size x = n and m(x) = V3"
O

Theorem 5.28 Let © be an object with size () = n where n > 1. Then
size normalize(z) < %%n O
Corollary 5.29 Let @ = normalize(y) and size x = n. Then
O(logn) <sizey <n O

The upper bound of theorem 5.28 is not tight. The following result exhibits a tight upper
bound for a large class of objects. This shows that the previous theorem can not be significantly
improved.

Theorem 5.30 Let x be an object with size x = n containing or-sets. Assume that every
subobject of type {(t')} has size at least 21, every subobject of type t' X (") or (t") x t' has size
at least 6 and every subobject of type ({')) has size at least 3, where U and " do not use the
or-set type constructor. Then

size normalize(x) < g%n

Moreover, for any n diwisible by 3 there exists an object x such that sizex = n and
size normalize(x) = %%n O

Since the size of normalize,(z) can not exceed the size of normalize(z), and since all examples
demonstrating tightness of upper bounds do not use orderings, we obtain

Corollary 5.31 All results of theorems 5.27, 5.28 and 5.30 hold for the antichain semantics,
that is, for normalize,. O

196 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Proofs of theorems

Proof of theorem 5.27. As in the proof of proposition 5.26, consider only objects containing
or-sets. Proceed by induction on the number of steps of normalization. If the object is already
normalized, we are done. Assume normalize(x) is obtained by one step of normalization. Then
this step is one of the maps associated with the rewrite rules, so we have four cases. Notice that
in the base cases we may assume w.l.o.g that any element of a set or an or-set is of base type
since this will give us the maximal possible m(z) for a given size z.

Case 1. © = (z1,w3) where 71 = (z},...,2L_;). Then normalize(z) = or_p,(z) and it is an easy

arithmetic exercise to show that m(z) =n L1 < /3",
Case 2 when or_p, is applied to obtain the normal form is similar.

Case 3. Let 2 = {X1,..., X},} where each X, is an or-set (z,.. ,x}ﬂ> where all wz are elements
of base types. Since we are interested in upper bound, assume w.l.o.g. that all 2%’s are distinct
(if they are not, some of sets in normalize(x) could collapse). Let X = J; ; 2}. Define a graph
G = (X, E) where (2, 22) is in E iff iy # iy. Let normalize(z) = a(z) = (Y,...,Y,) (Yi’s

177 g2
are sets). Then it follows from the definition of o that Y7,..., Y, are precisely the cliques of G.
Since n = size = |X|, applying the upper bound on the number of cliques for a graph with n

vertices [119], we obtain p = m(z) < V/3".

Case 4. 2 = (Xy,..., X}) where X;’s are or-sets of a base type. Then normalize(z) = or_p(z)
and m(z) < n. Again, simple arithmetic shows that n < v/3". Hence, m(z) < V/3".

The proof of the general case is very similar to the proof of proposition 5.26 and we will show
only step. Let & = {x1,..., 2} where 2;’s are not normalized. Then normalize(x) is obtained by
applying a to {normalize(x1), ..., normalize(x,)}. Let size x; = n;. By induction hypothesis,

m(z;) < V3. We now have
k k e "
m(z) < [[m(z) <[V3" < V3
=1 =1

The other cases are similar. To show the tightness of the upper bound, let n = 3k, k > 0. Assume
that we have a base type whose domain is infinite (typical example is int). Let by,...,b, be n
distinct elements of such a type. Let

T = {<b17 b27 b3>7 <b47 b57 b6>7 R <bn—27 bn—h bn>}

Then size # = n and normalize(z) = a(x) contains 3* = /3" elements. The theorem is
completely proved.

Proof of theorem 5.28. Similarly to the proof of theorem 5.27, proceed by induction on the
steps of normalization. We start with base cases, i.e. consider application of or_p, or or_p; or
a or or_fi.

5.2. LANGUAGE FOR SETS AND OR-SETS 197

Case 1. @ = (21, 23) where z1 = (z],...,2}). Let size ¥y = sy, size 2! = 0;. Then sy +01+...+
o = n. Since normalize(x) = or_p,(x), size normalize(x) = ksy+o1+...40r = ksg+(nlsy) <
(nLsy)sy+nLls; <2n L 2. Since empty sets and or-sets are excluded, n > 2 in this case and

therefore 2n 1. 2 < %%n
Case 2 when or_p, is applied is similar.

Case 3. Let 2 = {Xy,..., X} Wherg each X; is an or-set (z,.. ,x}ﬂ> where all wz have types
containing no or-set. Let size 2% = s and

J J
ki [
E s; =0y E oi=n

Then an easy calculation shows that size normalize(z) = size a(z) is given by
o1 ko i ki toy-ky ks ki dop ke kg <liopeaiog

Therefore, we need to maximize [- oy - ... o7 under constraint oy + ...+ o; = n. A standard
argument shows that such a maximum is bounded above by

1 ifn=1
22" ifl<n<21
23" ifn>21

If it easy to see that for n» > 1, the upper bounds given above are less than %%n Ifn =1,
then the size of the normal form is also 1.

Case 4. = (X1,..., X)) where X;’s are or-sets of a type that does not contain or-sets. Then
normalize(x) = or_u(z). Since the or_u does not change size, size normalize(z) < %%n for all
n > 2. If n =1, then size normalize(z) = 1.

To complete the inductive proof, we show that after each step of normalization that produces
a normalized subobject 2", that is, 2" = normalize(a') for a subobject 2’ of x, either size 2" <
%%n is satisfied if n = size 2’ > 1, or size 2" = 1 if n = 1. This will complete the proof. Two
cases corresponding to application of or_p; or or_p, are similar to the case of a, so we show here
only the case of application of a.

Let @ = {x1,...,2;} where each z; is an unnormalized object. Let 2} = normalize(z;) and k;
)

be the cardinality of @/, i.e. k; = m(x;). Let n; = size ;. By theorem 5.27, k; < v/3"". First
consider the case when all n; > 1.

Let 2! = (yi,.. .,y}'ﬂ), 1=1,...,k. By sé we denote size y} By induction hypothesis,

kq
Yi=1,...,k: Zség

=1

3

b |

198 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

normalize(x) is obtained by applying a to {2},...,2}}, i.e. its elements are sets of represen-
tatives of zf,...,2}. Since we are interested in an upper bound, we may assume that all the
elements of #, ...,), are distinct. Then each element of 2 will be present in k() = (H§:1 k;)/ki
sets. Therefore, the upper bound for size normalize(z) can be calculated as the sum of the sizes
of all elements of 2f,..., 2} multiplied by the number of their occurrences in the normalized
object, i.e.
size normalize(z) < ZZ k(z)sé = Zk(l) Z s; <
=1 7=1 =1 7=1
k () g ni1+...4+n; k n; n n
2 1) 3 T 3 17T .. 7 K3 3
—k\vV3 < 3 —=—=vV3
SOV < Yty

If all n; = 1, then size normalize(z) = k = n. If n > 1, then n < %%n and if n = 1, that is,
size z = 1, then size normalize(z) = 1.

Now consider the general case, i.e. n1,...,n, > 1 and npy1,...,n, = 1. Normalization of z; for
¢ > p results in a size one object. Let 09 =ny +...4 n, and 0y = k L p. Clearly o9 + 01 = n.
Had we applied o only to {21, ..., %}, it would have resulted in an object whose size is bounded

above by % /3% according to the calculations for the case where all n; > 1. But taking into
account oy size one objects adds size oy to every element of the or-set normalize(x). Since there
are at most v/3°° such sets, we obtain

. . (9
size normalize(z) < 70%00 + oy %go
Since og > 1, g + 201 < (0¢ + 01)%01 which shows
. , o n
size normalize(z) < 70\7500 + 01%00 < 5%71
Finally, if or_p is applied in the process of normalization, it does not change size. Assume z =
(1,...,25) where each z; is an unnormalized object. Let ! = normalize(z;) and n; = size ;.

Assume nqy,...,n, > 1 and np41 = ... =n, = 1. Define ¢ and oy as in the case of applying a.
Then, by induction hypothesis,

P . .
size normalize(z) < Z%% Yoy < %% "4y < g%
=1

If all n; = 1, then two cases arise. If n > 1, then size normalize(z) = n < %%n, and if n = 1,
then size normalize(z) = n = 1. Theorem is proved.

Proof of theorem 5.30. We have to rework the base cases only. Since no subobject involving
or-sets can have size one, the induction step easily goes through, cf. the proof of theorem 5.28.

5.3. PROGRAMMING WITH APPROXIMATIONS 199

The case of applying a was already proved, see proof of theorem 5.28. For the case of applying
or_py O 0r_p,, we established an upper bound 2n L 2. It is easily seen that 2n L 2 < %%n for

n > 6. Finally, applying or_u does not affect size, and n < %%n for n > 3.

To show sharpness, consider example from the proof of theorem 5.28. Let

T = {<b17 b27 b3>7 <b47 b57 b6>7 ey <bn—27 bn—h bn>}

where all b;’s are distinct elements of a base type. Then a(z) contains /3" elements, each

having cardinality %. Thus, size normalize(z) = %%n Theorem is proved.

5.3 Programming with approximations

In this section we study programming with approximations. First, we use the approach that
turns universality properties of collections into programming syntax. Since most approximation
constructions possess universality properties, as we showed in section 4.2, this approach is ap-
plicable. However, it has a number of drawbacks. First, dealing with ordered collections, we
run into the problem of identifying monotone fragments of the language. As we have seen in
examples of NRL, and or-N'RL,, this leads to undecidable problems. Second, although thereis a
correspondence between different algebras used to characterize approximations, it is not always
the case that some of them can be expressed in terms of the others. Consequently, instead of
having a language with just one structural recursion construct, or one set of monad operations,
we need one for each approximation which makes the language very inconvenient to use.

In an attempt to overcome these problems, we look at the semantic connection between approxi-
mations and sets and or-sets established in propositions 4.19 and 4.20. This connection suggests
that approximation constructions can be encoded with sets and or-sets. We use these encodings
to show that all monads arising from the universality properties of approximations can be ex-
pressed in or-AV/RL,. In addition, if type ¢t encoded a certain approximation construction, then
the ordering <, definable in or-NRL, is precisely the Buneman ordering used for that kind of
approximations.

5.3.1 Structural recursion on approximations

We start with mixes. Mixes will be considered as a new type constructor. That is, for any type
t we now have a new type t miz such that [t miz] = PY([t]). Since mixes arise as free mix
algebras, we can define the structural recursion on mixes as follows:

200 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

fun sromizle, f,u, h](0,0) = e
| sr_mix[e,f,u,h](n()) = f($)
| sromizle, fyu, hl(My + Mz) = u(sromizle, f,u, h)(My), sr-miz[e, f,u, h](M3))
| sromizle, fyu, h](OM) h(sromizle, f,u, h](M))

Similarly to the case of sets and bags, sr_miz is well-defined iff e, u, ' supply its range with the
structure of a mix algebra. Now if we consider only those mixes whose second component is
empty, checking this precondition is the same as checking whether e and w supply its range with
the structure of a semilattice with identity, and this is undecidable according to Breazu-Tannen
and Subrahmanyam [27]. Therefore, well-definedness of sr_miz is undecidable.

Our approach is to impose syntactic restriction on the general form of structural recursion.
That is, to go from structural recursion to a monad. In the case of mixes it yields the following
construct:

miz_ext(f) def sromiz[(0,9), f,+,0]

provided f sends elements of type ¢ to s miz. In this case miz_ext(f) is a function of type
t miz — s mizx. However, this alone does not eliminate the need to verify preconditions in the
case when we use the ordered semantics. As we have just shown, restricting mixes to those
with the empty second component we obtain a sublanguage of the expressive power of the NRL
monad constructs. Therefore, monotonicity of f is needed for well-definedness of miz_ext. And
we know that even in AN'RL, monotonicity is undecidable.

Our second example is sandwiches. Again, we view them as a type constructor ¢t sand such that
[t sand] = P™([t]). Since sandwiches arise as free mix algebras generated by the consistent
closure, we can define the structural recursion on sandwiches as follows:

fun sr_sandle, f,u, h](0,0) = ¢
| srsandle, fou li(n(2,5) = f(z,9)
| srsandle, fyu, h](S14+ S2) = wu(sr_sandle, f,u, h](51), sr_sand[e, f,u, h](S2))
| sr_sandle, f,u, h](OS) = h(sr_sandle, f,u, h](5))

If we consider the subset of sandwiches generated by A, then it coincides with the family of mixes
over the same poset, see theorem 4.41. Therefore, well-definedness of sr_sand is undecidable.
The monad construct

ext_sand(f) dof sr_sand[(0,0), f,+,0]

is well-defined iff f is monotone which again is undecidable.

As our last example, we consider snacks which again are viewed as a type constructor: ¢ snack is
a type whose semantic domain is 7PV([[t]]). Since snacks are free algebras in the signature having
one nullary operation and two binary operations, we define the structural recursion on them as
follows:

5.3. PROGRAMMING WITH APPROXIMATIONS 201

fun sr_snackle, f,u, h](0,0) = e
| sr_snack[e, f,u, h](n(x)) = f(=)
| sr_snackle, fou, h](S1+ S2) = u(sr_snackle, f,u, h](S1), sr_snackle, f, u, h](S2))
| srsnackle, fyu, h](S1-52) = h(sr_snackle, f,u, h](S1), sr_snackle, f, u, h'](92))

Again, by restricting our attention only to snacks with empty second component, we see that the
well-definedness condition, which for snacks requires + and - to form a distributive semilattice
with e being the identity for 4, is now the same as well-definedness for the structural recursion
on sets and hence undecidable. The monad construct

ext_snack(f) ef sr_snack[(0,0), f,+,]

is similarly well-defined iff f is monotone, and monotonicity is undecidable even in the NRL
fragment.

The reader is invited to do similar exercises with other approximations and observe similar phe-
nomena. Now we can summarize the major problems of using the approach based on structural
recursion and monads for programming with approximations.

e Most operations used in the universality properties for approximations are not as intuitive
as union, intersection and so on. Therefore, the average programmer would have a very
hard time trying to write a program that uses constructs like sr_miz or ext_snack.

e All approximations have different equational characterizations, and therefore there are
ten forms of structural recursion and ten sets of the monad primitives. This means that
the language must contain all of them and therefore it is going to be too complicated
to comprehend even for a theoretician, let alone a programmer. Furthermore, in many
applications more than one approximation model is used, and therefore in addition to ten
approximations we also need a few dozen of operations that coerce one approximation into
another.

e Verification of preconditions remains a big problem and it can not be taken care of by the
compiler as the preconditions are undecidable — even for the monad operations when the
ordered model is used.

Therefore, we need a unifying framework for programming with approximations. And such a
framework is given by the language for sets and or-sets or-AVRL.

5.3.2 Using sets and or-sets to program with approximations

When we discussed semantics of sets, or-sets and approximations, we saw that approximations
can be encoded as objects in the type system of or-A’RL. In fact, the following encoding was
proposed:

202 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

‘ Approximations ‘ Encoding ‘

t miz, tsand and similar (t) x {t}
t snack, t scone and similar | () x {(t)}

Using these encodings, we can encode the monad operations on approximations. Consider mixes.
First we notice that the Buneman ordering for mixes over type ¢, which is Cf x C?, is precisely
<(oyx{ty- For f:t — s mix, where s miz is now abbreviation for (s) x {s}, we have

mir_cxt() = MU, 1)-(or-ty (or-map, (0 1)(U)), pa(map,(m 0 [)(1))
Mix singleton is defined as n_miz(x) = (or-n,n). Then, for g : s — ¢,
miz_map(g)(U, L) = (or-map,(g)(U), map,(g)(L)): s miz — t mizx and

pomiz = Ax.(oru,(oromap,(71)) (@), pa(map, (72)(x))) : s miz miz — s miz

Now we have the following standard monad equations for any monotone f and g:

- miz_ext(f) = p-miz(miz_map(f))
- pomiz = miz_ext(Az.x)

- miz_map(g) = miz_ext(Ax.n-miz(g(z)))

Our second example is snacks. We use t snack as an abbreviation for (t) x {(¢)}. First observe
that <; sueck 18 precisely the Buneman order used for snacks, and hence our encoding again
agrees with the ordering. But the important question is how to express ext_snack(f) : s snack —
t snack if f:s — t snack is given.

Assume that we have a snack § = (U, £) of type s snack. Then ext_snack(f)(S) can be found

catsnack(£)(S) = (X f(w)-e+ X T 1)

uelU LeLllel

Look at the first component. If f(u) = (Vy, Ny), then it is equal to min(|J,cry Vi) and therefore
can be expressed as Cp = or_p,(or_map, (710 f)(71 §)).

Now fix L € £. Assume that f(I) = (W;, M;) for each [€ L. Then

H f(l) = (min U Wl,maxﬁ(min(U M| My e Myp)))

leL el leL

To find the first component, compute or_u,(or-map, (710 f)(L). To find the second component,
observe that X = or_map, (720 f)(L)is (M; |l € L). Therefore, the second component is simply
map,(or_pt,(B.(X))). Here 3, is the inverse of a,, that is, isomorphism between the semantic

5.3. PROGRAMMING WITH APPROXIMATIONS 203

domains of types ({t}) and {(¢)}. It is not hard to see that in the presence of set_to_or and
or_to_set it is possible to express (3, in or-AN'RL. Hence, we can write a function

g = (or_u, oor_map,o(m o f), map, o or_, o, 0 or_map,o (w20 f))
which, when applied to L, produces [];cr, f(1) = (Z1,Np).

Now we need to calculate 3", (71, Nz) = (min Uy, Zr, max*(|J;, N7)). The second component
can be obtained as

Cz = pra(map,(m2 0 g)(L))

and it is of type {(¢)}. To compute the first component, we need a way out of sets to get an
or-set. This is achieved by writing Cy = or_u,(set_to_or(map,(m 0 ¢)))(L). Finally, we have

ext_snack(f)(S) = (or-Uy(Co, C1),C2)

Summing up, we obtain the following result.

Theorem 5.32 All monad constructs arising from the universality properties of approzimations
and all operations given by those universality properties can be expressed in or-NRL(<y), possibly
enhanced with set_to_or and or_to_set in the case of multi-element lower approximations. O

We do not give the proofs for other approximations, but it proceeds straightforwardly along the
same lines as the proofs for mixes and snacks, following representation of approximations from
singleton developed in the proofs of their universality properties.

Therefore, we believe that encoding approximations and using or-ARL with very little extra
power is a much better way to program with those than using just structural recursion and
monads based on the universality properties. In the next chapter we give examples of program-
ming with approximations in a practical language based on or-AVRL.

204 CHAPTER 5. LANGUAGES FOR PARTIAL INFORMATION

Chapter 6

OR-SML

In this chapter we describe a functional database language OR-SML for handling disjunctive
information in database queries, and its implementation on top of Standard ML [114]. The
core language of this implementation is or-ARL, hence the name OR-SML. We give examples
of queries which require disjunctive information (such as querying incomplete or independent
databases) and show how to use the language to answer the queries. The language is extended
in a way that allows dealing with bags and aggregate functions. It is also configurable by
user-defined base types.

Since the system runs on top of Standard ML and all database objects are values in the latter,
the system benefits from combining a sophisticated query language with the full power of a
programming language. The language has been implemented as a library of modules in Stan-
dard ML. This allows the user to build just the database language as an independent system,
or to interface it to other systems built in Standard ML. The ML module system makes the
implementation of different parts of the language virtually independent and thus easy to change
without touching the rest of the system.

We describe OR-SML in the first section. In the second section of this chapter, we show how it
can be applied to problems of querying independent and incomplete databases.

6.1 Overview of OR-SML

As we have just said, the core language of OR-SML is or-ARL. But the system OR-SML
includes much more than just or-ARL. First, normalization is present as a primitive. Some
limited arithmetic is added to elevate the language to the expressive power of the bag language
BOL. We show how bags and certain aggregate functions can be encoded. OR-SML also allows

205

206 CHAPTER 6. OR-SML

programming with structural recursion on sets and or-sets. The system is extensible with user-
defined base types. It provides a mechanism for converting any user-defined functions on base
types into functions that fit into the type system of OR-SML. It also gives a way “out of complex
objects” into SML values. This is necessary, for example, if OR-SML is a part of a larger system
and the OR-SML query is part of a larger computation that needs to analyze the result of the
query to proceed. OR-SML comes equipped with libraries of derived functions that are helpful
in writing programs or advanced applications such as querying independent databases.

We chose Standard ML (SML) as the basis for our implementation in order to combine the
simplicity of or-ARL queries with features of a functional programming language [114]. OR-
SML benefits from it in a number of ways:

1. OR-SML queries may involve and become involved in arbitrary SML procedures. The
usefulness of this is enhanced by the presence of higher-order functions in SML, allowing
SML functions to be arguments to queries and queries to be arguments to SML functions.

2. OR-SML is implemented as a library of modules in SML. This allows the user to build
just the database language as an independent system, or to interface it to other systems
built in SML.

3. The stand-alone version of OR-SML is implemented as a library loaded into the interactive
system of SML, and as such is an interactive system itself. One interacts with OR-SML by
entering declarations and expressions to be evaluated into the top-level read-evaluate-print
loop of SML. The results are then bound to SML identifiers for future use.

4. The SML module system makes the implementation of different parts of the language
virtually independent and easily modifiable.

As of now, the system is suitable for querying small and medium size databases (hundreds
of records), which are fairly common. To extend its capabilities to handle large databases,
certain changes need to be made; in particular, optimizations in the presence of disjunctive
information need to be added to OR-SML. As we have just mentioned, due to the modularity
of the implementation, such changes can often be made without affecting the way the system
looks to the end-user.

In what follows we shall need some of the SML syntax. The interested reader is referred to
Milner at al. [114] for the definition of Standard ML or to Paulson [133] for a more humane
introduction. But the following “primer” should be sufficient to understand the examples in this
chapter.

In SML, val binds an identifier and - is the SML prompt, so - val x = 2; binds x to 2 and
val x = 2 : int is the SML response saying that x is now bound to 2 which is of type int.
fun is used for function declaration. Functions in SML can also be created without being named
by using the construct (fn x => body(x)). For example

6.1. OVERVIEW OF OR-SML 207

-3+ (fnx => x + 1) 2;
val it = 6 : int
- fun makepair x = (fn y => (x,y));

val makepair = fn : ’a -> ’b -> ’a * ’b
- val makepairwithl = makepair 1;
val makepairwithl = fn : ’a -> int * ’a

- makepairwithl 2;
val it = (1,2) : int * int

Symbols like ’a are used to indicate polymorphic types. For example, makepairwithi takes a
value v of any type ’a and forms a pair (1,v) of type int * ’a.

If a function is applied to its argument and the result is not bound to any variable, then SML
assigns it a special identifier it which lives until it is overridden by the next such application.
We have seen two examples of this above. If one writes - factorial 4;, this will cause the
SML response val it = 24 : int. let ... in ... end is used for local binding. The [...]
brackets denote lists; """ is used for strings. The symbol @ is used for list append. For example:

- let val a = ["a","b"]
val b = [”b”,”C”]
in a @ b end;
val it = ["a","b","b","c"] : string list

6.1.1 Core language

The core language of OR-SML is or-ARL. In the table below we show the correspondence
between or-NRL primitives and their names in OR-SML.

H or-ARL name ‘ OR-SML name H or-ARL name ‘ OR-SML name H

fog comp(f,g) iof Lthen L else cond
Ty, To pl, p2 ! bang
(f,9) pair(f,g) id id
] sng empty empty
U union I flat
P2 pairwith map smap
or_n orsng or_empty orempty
or U orunion or_ji orflat
or_py orpairwith or_map orsmap
« alpha normalize normal

Let us describe how these constructs are represented over SML. Every complex object has type
co. We shall refer to the type of an object or a function in or-NRL as its true type. Types of

208 CHAPTER 6. OR-SML

complex objects can be inferred; they are SML values having type co_type. When OR-SML
prints a complex object together with its type, it uses :: for the true type, as : co is used to show
that the SML type of the object is co. Values are created by functions create : string -> co
ormake : unit -> co (interactive creation). The function make is terminated by typing “.”.
For example:

- val a = make();
{ «1,2,3>, <4,5,6>,
<7,8> }.

val a = {1, 2, 3>, <7, 8>, <4, 5, 6>} :: {<int>} : co
- val b = create "(2,’abc’)";
val b = (2, ’abc’) :: int * string : co

Notice that the order of elements in the set was changed. This is the result of the duplicate
elimination algorithm which will be discussed later.

Typechecking is done in two steps. Static typechecking is simply SML typechecking; for example,
trying to call union(a,a,a) will cause an ML type error. However, since all objects have type
co, the SML typechecking algorithm can not detect all type errors statically. For example, ML
will see nothing wrong with union(a,b) even though the true types of a and b are {(int)} and
int X string. Hence, the remaining type errors are detected dynamically by OR-SML and an
appropriate exception is raised. For instance,

- union(a,b);
uncaught exception Badtypeunion

The language we presented can express many functions commonly found in query languages,
for example, Boolean and, or and negation, membership test, subset test, difference, selection,
cartesian product and their counterparts for or-sets, see section 3.2 and [26, 104]. These functions
are included in OR-SML in the form of a structure called Set. Some examples of programming
using the core language and functions from Set are given below. Notice that we use *>...? for
strings to distinguish them from SML strings.

- alpha (create "{<1,2>,<2,3>}");

val it = <{2}, {1, 2}, {1, 3}, {2, 3}> :: <{int}> : co
- val x1 = create "{1,2}";

val x1 = {1, 2} :: {int} : co

- smap (pair(id,id)) x1;

val it = {(1, 1), (2, 2)F :: {int * int} : co

- val x2 = create "{3,4}";

val x2 = {3, 4} :: {int} : co

- union(x1,x2);

6.1. OVERVIEW OF OR-SML 209

val it = {1, 2, 3, 4} :: {int} : co

- Set.cartprod(x1,x2);

val it = {(1, 3), (1, 4), (2, 3), (2, 4)} :: {int * int} : co
- val y = create '"<1,2,3,4>";

val y = <1, 2, 3, 4> :: <int> : co
- val z = create "’ab’";

val z = ’ab’ :: string : co

- orpairwith(z,y);

val it = <(’ab’, 1), (’ab’, 2), (’ab’, 3), (’ab’, 4)> :: <string * int> : co
- orsmap pl it;
val it = <’ab’> :: <string> : co

Normalization of types and objects is represented in OR-SML by two functions normalize :
co_type -> co_type and normal co -> co. For example,

- val x = create "{(1,<2,3>),(4,<5,6>)}";

val x = {(1, <2, 3>), (4, <5, 6>)} :: {int * <int>} : co

- normalize (typeof x);

val it = <{int * int}> : co_type

- normal x;

val it = <{(1, 2), (4, 5)}, {(1, 3), (4, B}, {1, 20, (4, 6)}, {(1,3), (4, 8)}> : co

OR-SML allows user defined base types. Values of these types have type base in ML. The
user is required to supply a structure containing basic information about the base type when
a particular version of OR-SML is built. One of the functions that is included in this user-
supplied structure is parsing; its type is string -> base. If user-defined base types are used,
then creation of objects requires special care. Objects of base type are printed in parentheses
and preceded by the symbol @. They also must be input accordingly if make or create is used.
For example, in a version of OR-SML with real numbers, one would write:

- val a = create "@(2.5)";
val a = ©(2.5) :: real : co

In the case of reals numbers, the symbol "." plays a crucial role and can not be used to indicate
the end of the input to make. There is a way to change the symbol whose meaning is “end of
object”.

- End_symb := "!";

val it = () : unit

- val b = make ();

{ @(2.5), @(3.5), @(4.5) }!

val b = {0(2.5), @(3.5), @(4.5)} :: {real} : co

210 CHAPTER 6. OR-SML

There are also a number of functions that make complex objects out of ML objects. These are
necessary, for example, if a user-defined base type is supplied without a parser. In this case
objects can be created using constructor functions. The function mkbaseco is used to produce
a complex object (that is, an element of type co) from an element of base type. Similarly,
mkintco produces complex object integers, mkprodco produces a pair from two complex objects
and mksetco and mkorsco produce sets and or-sets from lists of complex objects. For example:

- val a = [[2.5,3.7],[4.5,5.3]];

val a = [[2.5,3.7],[4.5,5.3]] : real list list

- val co_a = mksetco(map (fn z => mkorsco(map mkbaseco z)) a);
val co_a = {<@(2.5), @(3.7)>, <@(4.5), @(5.3)>} :: {<real>} : co

There are various styles for printing objects and object types. Some of them are better suited for
printing normalized objects, while others do not distinguish between sets and or-sets. All styles
for objects and types can be freely combined, giving OR-SML a total of nine different printing
styles. A new printer can be installed by using the functions printer and printer_type of type
int -> unit. These functions can be invoked at any time. Further details can be found in the
system manual E. Gunter and Libkin [69]. In examples in this chapter we use different printing
styles. For instance, we often chose not to print types of objects if those do not fit on one line.

This concludes our discussion of the core language. In the subsequent sections we will show how
to enrich the language to make it suitable for solving problems related to normalization and
approximations.

6.1.2 Additional features
Arithmetic functions

OR-SML has integers as one of its base types. The following operations are available on integers:
addition, multiplication, monus, summation over sets and or-sets and gen. In the table below
we give their OR-SML names:

H or-ARL name ‘ OR-SML name H or-ARL name ‘ OR-SML name H

+ plus . mult
~ monus > sum
gen gen or_>" orsum

The reason these operators have been included comes primarily from our discussion of bags. As
we have seen, these operators elevate a set language to a bag language (with power operators

6.1. OVERVIEW OF OR-SML 211

and/or structural recursion). If bags are represented as sets of pairs of “element-number of
occurrences”, all functions on bags from subsection 3.2.3 can now be modeled easily in OR-
SML. For example, under the assumption that in a bag X for each element all its occurrences
are recorded once (that is, we can not have pairs (a,2) and («, 3) instead of one pair (a,5)), the
difference of two bags X 1LY is

select(Az.—eq(ma(2),0))(map(Ax.(m1(x), monus(mwa(x), X(wa)(select(Ay.eq(mi (x), 71(y)))(Y)))))(X))

We are using a function select from Set which takes in a predicate p : t — bool and a set X : {t}
and returns {# € X | p(z)}. Below we show how to implement these functions in OR-SML.
First, total second column would look like

= create "{(’a’,2),(’b’,4),(’c’,1)}";
val x = {(’c’, 1), (’a’, 2), (°b’, 4)} :: {string * int} : co
- val y = create "{(’b’,1),(’b?,2),(’°c’,3),(’d’,1)}";

- val

]

val y = {(°d’, 1), Cb’, 1), (b’, 2), (Pc’, 3)} :: {string * int} : co
- sum p2 y;
val it = 7 :: int : co

Bag difference can be implemented as follows:

fun bag_diff (x,y) = let
fun equals_a a = select (fn z => eq(pi(z),pi(al))) y
in select (fn v => neg(eq(p2(v),mkintco(0))))
(smap (fn z => mkprodco(pl(z),monus(p2(z), (sum p2 (equals_a z))))) x)
end;
val bag_diff = fn : co * co -> co
- bag_diff(x,y);
val it = {(°b’, 1), (’a’, 2)} :: {string * int} : co

Various functions can be implemented using arithmetic functions. Two of them, which are of
particular importance, are included in the standard library Set. One is card, and the other is
rank assignment function sort : {s} — {s x int} discussed in subsection 3.2.3. Note that card
is simply summation of the constant function:

- val card = sum (fn x => mkintco(1));
val card = fn : co -> co

- card (create "{1,2,3,4}");

val it = 4 :: int : co

To be able to assign unique ranks to elements of a set, it is necessary to lift order to all types,
as it is done in theorem 3.29. This is implemented by means of a function leq:co -> co in
the structure Set that compares objects of the same true type (if true types do not coincide, it
raises exception Cannotcompare.) For example:

212 CHAPTER 6. OR-SML

- val a = create "{<1,2,3>, <4,5,6>, <8,4>}";

val a = {1, 2, 3>, <4, 8>, <4, 5, 6>} :: {<int>} : co
- val b = create "{<2,5,6>, <1,3>, <4,2>}";

val b = {<1, 3>, <2, 4>, <2, 5, 6>} :: {<int>} : co
- val ¢ = create "{1,2,3}";

val ¢ = {1, 2, 3} :: {int} : co

- leq(a,b);

val it = F :: bool : co

- leq(b,a);

val it = T :: bool : co

- leq(b,c);

uncaught exception Cannotcompare
- sort a;
val it = {(<1, 2, 3>, 1), (<4, 8>, 3), (<4, 5, 6>, 2)} :: {(<int> * int)} : co

Primitives involving base types

Since the system allows user-defined base types, it must provide a way of making functions on
those base types into functions that fit into the type system of OR-SML. For example, if the
user-defined base type is real, there must be a way to have a function plus : co * co -> co
whose semantics is addition of real numbers. Furthermore, there is a need for a mechanism of
translation of predicates on base types into predicates on complex objects that can be used with
cond and select.

The solution to this problem is given by the function apply that takes a function £ : base
list -> base and returns a function from co to co representing the action of £ on complex ob-
jects. For example, if val f_co = apply f, then £_co applied to a complex object (rq,(r3,73))
vields £ [ry,72,73] in the form of a complex object.

In practice, most of the primitives on base types are unary or binary. Therefore, OR-SML has
a special feature that allows you to apply binary and unary functions on base types by using
functions apply_unary, apply_binary and apply_op2. The difference between apply binary
and apply_op2 is that apply_binary produces a function of type co -> co whose true type
is supposed to be b x b — b. That is, the argument must be a pair. The function apply_op2
produces a function of type co * co -> co. For predicates, apply_test takes a function of
type (base -> bool) and returns it in the form of a function on complex objects.

Erample:

- val addone_co = apply_unary (fn x => x + 1.0);
val addone_co = fn : co -> co

- val x = create "{ @(2.5),0(4.5) }";

val x = {0(2.5), @(4.5)} :: {real} : co

6.1. OVERVIEW OF OR-SML 213

- smap addone_co Xx;

val it = {@(3.5), @(5.5)} :: {real} : co

- val addreal_co = apply_binary (fn ((x:real),(y:real)) => x + y);
val addreal_co = fn : co -> co

- smap addreal_co (Set.cartprod(x,x));

val it = {@(5.0), @(7.0), @(9.0)} : co

- val biggerthanthree_co = apply_test (fn x => x > 3.0);

val biggerthanthree_co = fn : co —> co

- Set.select biggerthanthree_co x;

val it = {@(4,5)} :: {real} : co

Structural recursion

Structural recursion on sets and or-sets a very powerful programming tool for query languages.
Unfortunately, it is too powerful because it is often unsafe. A function defined by structural
recursion is not guaranteed to be well-defined, and well-definedness can not be generally checked
by a compiler. It is, however, often helpful in writing programs or changing types of big databases
(rather than reinputting them), so we have decided to include structural recursion in OR-SML.
Structural recursion on sets and or-sets is available to the user by means of two constructs sr
and orsr.

frisxt—1t e:t frisxt—1t e:t
sr(e, f): {s} —t orsr(e, f): (s) —t

They take an object e of type ¢ and a function f of type s Xt — t and return a function sr(e, f)
of type {s} — t or a function orsr(e, f) of type (s) — ¢ respectively. The semantics is as
follows: sr(e, f){z1,...,2.} = f(a1, f(z2, f(23,...f(zn,€)...))) and similarly for orsr. The
two functions implementing structural recursion are SR.sr and SR.orsr. For example, to find
the product of elements of a set, one may use structural recursion as follows:

- val fact = SR.sr((create "1"),mult);
val fact = fn : co -> co

- fact (create "{1,2,3,4,5}");

val it = 120 :: int : co

There are a few functions that can be written with help of structural recursion which are included
in the library “sr.lib”. Among them are set_to_or : {t{} — (¢) and or_to_set : (t) — {t} that

214 CHAPTER 6. OR-SML

convert sets into or-sets and vice versa, powerset : {t} — {{t}} (which can also be implemented
using just), and pick: {t} — ¢ which picks an element of a set.

In section 3.2 we showed that structural recursion is equivalent to the loop construct that iterates
a function once for each element of a set. In the following example we show how to implement
loop and how to use it to iterate the function that increments an integer given number of times.
Recall that ¢ from the example of applying sort is a three-element set.

- fun loop £ = (fn (X,z) => SR.sr(z, (fn (vi,v2) => £(v2)))(X));
val loop = fn : (co -> co) -> co * co —> co

- val one = create "1";

val one = 1 :: int : co

- fun intaddone x = plus(x,one);

val intaddone = fn : co -> co

- loop intaddone (c,one);

val it = 4 :: int : co

Moreover, using sort it is now possible to give an efficient translating from loop to structural
recursion:

- fun select_max X = Set.select (fn z => eq(p2(z),Set.card(X))) X;
val select_max = fn : co -> co
- fun new_sr (e,f) =
let fun g INPUT = let val X_curr = pl INPUT
val RES_curr = p2 INPUT
val x_max = select_max X_curr
in mkprodco(
Set.diff(X_curr,x_max),

flat ((smap
(fn z => (smap (fn v => f(pi1(z),v)) RES_curr))
x_max)))
end
in
(fn X => p2(loop g (X,mkprodco((Set.sort(X),sng(e))))))
end;

val new_sr = fn : co * (co * co -> co) -> co —> co
- val new_fact = new_sr((create "1"),mult);

val new_fact = fn : co -> co

- new_fact (create "{1,2,3,4,5}");

val it = {120} :: {int} : co

This example shows the “cost” one has to pay for translation from loop into structural recursion
(cf. theorem 3.35): instead of a value v, the translation produces the singleton {v}.

6.1. OVERVIEW OF OR-SML 215

I/0

To support a form of persistence for databases, OR-SML provides means for writing lists of
complex objects to files and reading such lists back in later. There are two modules for file I/O
in OR-SML: one working with binary files and one with ASCII files. Working with ASCII files
is relatively safe: if there is any problem with reading an object, an exception will be raised. (It
is not safe from editing). However, it requires a parser for objects of base type, because strings
read from a file are parsed to create complex objects.

If a parser for objects of base type was not provided, then the binary input-output module must
be used. Since binary I/0 is an unsafe feature of Standard ML [158], all binary files are required
to have the extension “.db”. If it is not used, OR-SML will add it and ask if the operation
should be continued. It is also possible to obtain the list of all files with extension “.db” in the
current directory using the function show_db:unit -> unit.

The ASCII input-output module provides two functions: store_db: co 1list * string -> unit
takes a database and a file name and stores the database. For example, store_db (db,"mydb'")
stores a list of complex objects db in a file "mydb". To read a database, use retrieve db :
string -> co list. This function takes a file name and returns the database stored in that

file.

If a parser for objects of base type was not provided, it is necessary to use the binary input-
output module. Function write_db: co list * string -> unit is used to write a database
to a file. For example, write_db(db,"mydb.db") will write a list of complex objects db into
the file “mydb.db”. Moreover, write db(db,"mydb.db") and write_db(db,"mydb") will have
the same effect. Databases are read by using the function read_db: string -> co list. For
instance, val db = read db("mydb") creates a list of complex objects stored in “mydb.db”.

Fzample (in this example we use function t1 that produces the tail of a list).

- val DB = let val a = create "{1,2,3}"

val b = create "{2,3,4}"

val ¢ = create "{5,6,7}"

in [a,b,c] end;

val DB = [{1, 2, 3},{2, 3, 4},{5, 6, 7}] : co list
- store_db(DB,"mydbfile");
val it = () : unit
- write_db (t1(DB), "mydbfile");
File names must have extension .db
Do you want to write your database in mydbfile.db?(yes,no) yes

Database written to mydbfile.db

val it = () : unit
- show_db();

216 CHAPTER 6. OR-SML

mydbfile.db

Now we have two files, one named mydbfile and containing three sets, and the other named
mydbfile.db and containing two sets. It is possible to read them back:

- val get_big DB = retrieve_db "mydbfile";

val get_big DB = [{1, 2, 3},{2, 3, 4},{5, 6, 7}] : co list

- val get_small DB = read_db "mydbfile";

File names must have extension .db

Do you want to read your database from mydbfile.db?(yes,no) yes
Warning: read is an unsafe operation.

If there is a problem with your file, it will throw you out of orsml
Are you ready to read the file? (yes,no) yes

val get_small_DB = [{2, 3, 4},{5, 6, 7}] : co list

Deconstruction of complex objects

It may be the case that after evaluating a query, the user may need to write some program to
deal with the result. Since all operations of OR-SML work with type co, there is a need to
have a way out of complex objects to the usual ML types. The structure DEST contains some
functions to deconstruct complex objects and obtain ML values. For example, to convert an
object of true type {(int)} (which still has SML type co) into int list list, one writes:

- val a = create "{<1,2>,<3,4>}";

val a = {<1, 2>, <3, 4>} : co

- DEST.co_to_list a;

val it = [<1, 2>,<3, 4>] : co list

- map DEST.co_to_list it;

val it = [[1,2]1,[3,4]1]1 : co list list
- map (map DEST.co_to_int) it;

val it = [[1,2],[3,4]] : int list 1list

Orderings and antichains

In chapter 5 we saw that the language for the antichain semantics, or-A’RL,, can be viewed as
a sublanguage of or-A’RL. This point of view is supported by OR-SML. It provides a library of
derived functions dealing with orderings and antichains. Among them are leqdom that compares
elements of the same true type (that is, it implements the order <;), meet and join that compute
the meet and join operations, set_max and orset_min that select maximal and minimal elements
from sets and or-sets to implement the transformation # — 2° we used throughout chapter 5.

6.1. OVERVIEW OF OR-SML 217

Note that the true type of join and meet is ¢t X ¢t — (t). If the join (or meet) of two objects
and y is defined, then the corresponding function produces a singleton containing that join or
meet. If it is not defined, it produces ().

Erample:

= create "{<1,2,3>,<1,2>,<3,4,5>,<3,4>}";
{<1, 2>, <1, 2, 3>, <3, 4>, <3, 4, 5>} :: {<int>} : co
- val b = create "{<1,2,5,4>,<1,2,4>}";

val b {<1, 2, 4>, <1, 2, 4, 5>} :: {<int>} : co

- val al = set_max a;

val al = {<1, 2>, <3, 4>F :: {<int>} : co

- val bl = set_max b;

val bl = {<1, 2, 4>} :: {<int>} : co

- leqdom(bil,al);

val it = T :: bool : co

- join(a, (create "{<7,8>}"));

val it = <{<1, 2>, <3, 4>, <7, 8>}> :: <{<int>}> : co

- val
val a

n o nw

6.1.3 Implementation issues

In this subsection we briefly describe the general structure of OR-SML implementation and
discuss duplicate elimination.

The general structure of the implementation of OR-SML is given in figure 6.1. This figure shows
dependencies between the pieces of the implementation. Each piece is implemented as an SML
functor. A short description of each piece is given in figure 6.2.

In the initial version of OR-SML, duplicate elimination was done straightforwardly. That is, a
O(n?) time complexity algorithm was used. However, a number of experiments revealed that it
was mostly the duplicate elimination component that hampered the performance of the system.
In the current version we use the following hash function for objects:

1 if o : unat
0 if o:nt
) o] if 0: string
(o) = if othen 1 else 0 if o: bool
h(o1) + h(oz2) if 0 = (01,02)
h(or)+ ...+ h(o,) ifo={o1,...,0,} oro=(01,...,04)

Then it is easy to show that, for any type involving sets and or-sets of a type with non-finite
domain, for two randomly generated objects 01 and o3, the probability of h(o1) = h(0z) is zero.
Therefore, the expected running time of the duplicate elimination with hashing is O(nlogn).
Some results showing performance of OR-SML with two kinds of duplicate elimination algorithm

218 CHAPTER 6. OR-SML

BUILD_ORSML

IO_ASCII

PRINT

COMMON

BTS (user-supplied)

Figure 6.1: OR-SML implementation

6.1. OVERVIEW OF OR-SML 219

BTS

COMMON

TYPE

DUPELIM

SR

DESTRUCT

I0_BIN

MAKE

PRINT

PARSER

ALGEBRA

I0_ASCII

BUILD_ORSML

Base Type Structure. It is supplied by the user to build a new version
of OR-SML with additional base types.

contains some auxiliary functions used in all other modules.
provides functions to work with complex object types.
duplicate elimination.

implementation of structural recursion.

functions for destruction of complex objects.

operations for binary file 1/0.

takes as an input structures created by TYPE and DUPELIM and pro-
vides functions for creating complex objects.

takes in the structure created by TYPE and provides printing routines.

takes in the structure created by MAKE and gives the parser for complex
objects.

implements operations of the language.

takes in the structures created by PRINT and PARSER and provides
operations for the ASCII file I/0.

builds the system and exports it together with ML compiler.

Figure 6.2: Description of OR-SML modules

220 CHAPTER 6. OR-SML

CartesianProduct
| size [50x50]75x%75]100x 100 [150 x 150 |
without
hashing | 26.5 | 130.5 | 400.85 | 1927.37
with
hashing | 0.47 1.49 3.12 10.56
Flattening
| size | 200 | 400 | 600 | 800 | 1000 | 4000 |
without
hashing | 0.02 | 0.11 | 0.23 | 0.37 | 0.65 | 10.79
with
hashing | 0.01 | 0.02 | 0.03 | 0.04 | 0.07 | 0.18

Figure 6.3: Comparison of two duplicate elimination algorithms

are shown in figure 6.3. Two functions for which we determined running time are cartesian
product and flattening of a large set of sets.

6.2 Applications of OR-SML

In this section we show how to use OR-SML to ask conceptual queries if only a compact repre-
sentation of incomplete objects is stored in a database, and how to solve some of the problems
of querying independent databases described in section 1.3.

6.2.1 Querying incomplete databases

In this subsection we show applications of normalization of databases. We start with a database
containing an incomplete design and ask certain queries about possible completed designs. We
then show how to write these queries using normalization.

Assume that we have a database containing the incomplete design shown in figure 5.3. That
is, the whole design requires two subparts, A and B. An A is either Al or A2. The part Al
consists of two subparts: Al.1 and A1.2. An Al.l is either or y and an Al.2 is either z or
v. The part A1.2 consists of three subparts: A2.1, A2.2 and A2.3. An A2.1 is either p or ¢, an
A2.2 is either r or s and an A2.3 is either ¢ or u. A B consists of Bl and B2. A Bl is either
w or k and a B2 is either [or m. Now assume that we know the cost and reliability of each
part that can make it into the completed designs (that is, for parts denoted by the lower case

6.2. APPLICATIONS OF OR-SML

letters.)

221

‘ Part ‘(jost ‘I{ehabiﬁty ‘

l 12 0.94
m | 14 0.95
w | 17 0.96
Eo| o1l 0.93
z | 21 0.999
y | 20 0.98
= | 13 0.95
v | 14 0.955
p | 12 0.95
g | 13 0.96
ro| 18 0.97
s | 17 0.96
t | 19 0.98
u | 20 0.99

Now we can create OR-SML values describing these parts as follows:

val
val
val
val
val
val
val
val
val
val
val
val
val
val

g v Ho"- 4 N9 ¥ " 5 8

create
create
create
create
create
create
create
create
create
create
create
create
create
create

w(>17,(12,0(0.
"(Om’, (14,0(0.
"(w’,(17,0(0.
"k, (11,0(0.
n(rx?,(21,0(0.
"y, (20,0(0.
w(rz7,(13,0(0.
"y, (14,0(0.
"(’p’,(12,0(0.
"(’q’,(13,0(0.
w(orr,(18,0(0.
"(’s?,(17,0(0.
w47, (19,0(0.
w(>17,(20,0(0.

94)))";
95)))";
96)))";
93)))";
999)))";
98)))";
95)))";
955)))";
95)))";
96)))";
97IN";
96)))";
98)))";
99)))";

Fach part has true type string x (int X real). Now B can be created as

- val B

val

(<Ck’, (11, @(0.93))), (Cw’,
<(’1’, (12, @(0.94))), C’m’, (14, ©(0.95)))>) :

B

= mkprodco ((mkorsco [w,k]), (mkorsco [1,m]));

(17, @(0.96)))>,
co

222

CHAPTER 6. OR-SML

and Al, A2 and A can be created as

- val A1 = mksetco
val Al =
{<(’z’, (13, e(o0.
<(’y’, (20, @(0.
- val A2 = mksetco
val A2 =
{<Cp’, (12, (0.
<(’s’, (17, @(0.
<(’t’, (19, o(0.

[(mkorsco [x,y]), (mkorsco [z,v])];

95))), Cv’,
98))), Cx’,

(14, @(0.955)))>,
(21, @(0.999)))>} : co

[(mkorsco [p,ql), (mkorsco [r,s]), (mkorsco [t,ul)];

95))), Cq’,
96))), Cr’,
98))), (17,

- val A = mkorsco [A1, A2];

val A =
<{<(’z’, (13, @(0
<(’y’, (20, e(0
{<Cp’, (12, (0
<(’s’, (17, @(0
<(’t’, (19, @(0
> : co

.95))), v,
.98))), (Ox’,
.95))), (’q’,
.96))), (Cr’,
.98))), (°1,

(13, ©(0.96)))>,
(18, @(0.97)))>,
(20, @(0.99)))>} : co

(14, @(0.955)))>,
(21, ©(0.999)))>},
(13, @(0.96)))>,
(18, @(0.97)))>,
(20, @(0.99)))>}

Finally, the whole design is created as

- val design = mkprodco (A,B);

val design =
(<{<(C’z’, (13, @(
<(’y’, (20, @(
{<Cp’, (12, o
<(’s?, (17, of
<(’t?, (19, of

0.95))), Cv’,

0.98))), (Ox’
0.95))), (g’
0.96))), (¢’
0.98))), (°1°

(14, @(0.955)))>,
, (21, @(0.999)))>},
, (13, @(0.96)))>,
, (18, @(0.97)))>,
, (20, @(0.99)))>}>,

(<Ck’, (11, @(0.93))), (’w’, (17, @(0.96)))>,
<(’1’, (12, ©(0.94))), Cm’, (14, @(0.95)))>)) : co

Inferring the type of design and normalizing it shows us the type of the database of completed

designs.

val ndt =
<({(string * (int

* real))} *

((string * (int * real)) * (string * (int * real))))> : co_type

Hence, one can write the cost function which is the sum of the costs of all the parts. In this

particular case it is

6.2. APPLICATIONS OF OR-SML 223

- fun cost X =
let fun costl X = sum (fn z => p1(p2(z2))) (pl X)
fun cost2 X pl(p2(p1(p2(X))))
fun cost3 X = p1(p2(p2(p2(X))))
in plus(costi1(X), plus(cost2(X),cost3(X))) end;
val cost = fn : co —-> co

Calculating reliability may be a bit harder because it depends on how different parts are con-
nected. In the case of parallel connection of two parts with individual reliabilities ry and ro, the
reliability is calculated as 71 + ro L ry - o, whereas for the series connection it is 71 - 9. To be
able to operate with these functions, we must have them as functions from complex objects to
complex objects. That is, we need the following;:

- val rminus = apply_op2 (fn (x:real,y:real) => x - y);

val rminus = fn : co * co —> co

- val rmult = apply_op2 (fn (x:real,y:real) => x * y);

val rmult = fn : co * co -> co

- val rprod = SR.sr ((create "@(1.0)"), rmult);

val rprod = fn : co -> co

- val par_rel = apply_op2 (fn (x:real,y:real) => x + y - (x * y));
val par_rel = fn : co * co —> co

Now we can calculate reliabilities for A, B1 and B2, assuming that subparts of A are connected
in series.

- fun reldA X = rprod (smap (fn z => p2(p2(z))) (pl X));
val reld = fn : co -> co

- fun relB1 X = p2(p2(p1(p2(X))));

val relBl = fn : co -> co

- fun relB2 X = p2(p2(p2(p2(X))));

val relB2 = fn : co -> co

With these functions, it is possible to write various reliability functions depending on the way A,
Bl and B2 are connected. For example, if only series connection is used, then the total reliability
function is the product of relA, relB1 and relB2. In our example, we assume parallel connection
of Bl and B2 and series connection of A and B. Then

- fun reliability X = rmult(relA(X), par_rel(relBi(X),relB2(X)));
val reliability = fn : co -> co

Now assume that we want to answer the following conceptual queries:

224 CHAPTER 6. OR-SML

e How many completed designs are there?
o Which completed design has the best reliability?

o Which completed design that costs less than n dollars has the best reliability?

To answer these queries, we first normalize design, creating the or-set of all possible completed
designs:

val nd = normal design; (* output omitted *)

Now it is possible to get all information about reliabilities and costs of completed designs by
saying orsmap cr nd where cr is the function fn x => mkprodco ((cost x), (reliability
x)). To answer our queries, we write

- orsum (fn z => mkintco(1)) nd;
val it = 48 : co

Hence, there are 48 completed designs. To find the one that has the best reliability, we write
the following query

- fun is_better(x,y) = apply_test (fn (z:real) => z > 0.0) (rminus(x,y));
val is_better = fn : co * co -> co
- fun is_best (x,obj) = eq(
(Set.orselect
(fn y => is_better(reliability(y),
reliability(x)))
obj), orempty);
val is_best = fn : co * co —> co

and then ask

- val select_best = Set.orselect (fn y => is_best(y,nd)) nd;
val select_best =
<({Cv?, (14, @(0.955))), (’x’, (21, @(0.999)))},
(Cw, (17, @(0.96))), (’m’, (14, @(0.95)))))> : co
- orsmap cr select_best;
val it = <(66, @(0.95213691))> : co

6.2. APPLICATIONS OF OR-SML 225

Thus, we see that the design with the best reliability costs only $66, even though the cost varies
from $56 to $82, as we know from mapping cr over nd. So, as it often happens, one does not
have to buy the most expensive thing to get the best quality.

Finally, to select the design with the best reliability that costs under n dollars, we write a
function

- fun bestunder n =
let val des_under_n = (Set.orselect (fn y =>
eq(mkintco(0),
monus (cost(y) ,mkintco(n))))
nd)
in
Set.orselect (fn y => is_best(y,des_under_n)) des_under_n
end;
val bestunder = fn : int -> co

and then ask for the best design that costs under, say, $62:

- bestunder 62;
val it =
<({Cv’, (14, @(0.955))), (’°x’, (21, @(0.999))},
(Ckx’, (11, @(0.93))), (m’, (14, @(0.95)))))> : co
- orsmap cr it;
val it = <(60, @(0.9507058425))> : co

Again, it is not necessary to get the most expensive design for the best quality.

Summing up, we see that normalization is a very powerful tool for answering conceptual queries.
Many queries that would be practically impossible to answer in just the structural language,
now can be programmed in a matter of minutes in OR-SML.

6.2.2 Querying independent databases and approximations

In this subsection we discuss various solutions to the problem of finding teaching assistants, given
relations Employees of employees and CS1 of people teaching the course CS1. First, consider
the following example:

226

Employees

‘ Name ‘ Salary ‘
John 10K
John 15K
Mary 12K
Sally 17K

Cs1
‘ Name ‘ Room ‘
John 076
Jim 320
Sally 120

CHAPTER 6. OR-SML

Assume that our query asks to compute the set TA of teaching assistants. We further assume

that only TAs can teach CS1 and every TA is a university employee.

Let us recall the problems we face answering the TA query. First, the databases are inconsistent.
Jim teaches CS1 and hence he is a TA and an employee, but there is no record for Jim in the

Employees relation. To get rid of this anomaly, we must decide if we believe CS1 or Employees.
If the former is the case, then the problem is solved by adding Jim from CS1 to Employees.

However, a more intersting case is when we believe the Employees relation. Here we have two

possibilities.

e The Name field is a key. This is the assumption made in Buneman et al. [31, 32]. Then
the record corresponding to Jim is deleted from CS1.

e The Name field is not a key. This may cause problems if there are several anomalous

records. For example, if there were two records with name Jim in CS1 but only one in
Employees, then one record should be deleted from CS1, but which one? We suggest using
or-sets to represent both possibilities, as this is the best knowledge that can be obtained.

Now assume there are no inconsistencies in relations. We have to find an approximation of the
set of TAs, that is, we have to find people who certainly are TAs and those who could be. Again,

there are two cases.

e The Name field is a key. Then all people in CS1 are TAs, and those in Employees who

are not represented in CS1 could be TAs. Now, to produce an approximation, two things

must be done:

- For every entry in CS1, try to infer as much information about it as possible using
Employees. In our example that means adding the Salary field. To do so, check all
records in Employees consistent with a given record in CS1 and, if such a record is

found, use the value of its Salary field. Inferring such additional information was

called promotion in [31, 32].

- For each entry of Employees, check if that entry is also represented by the CS1
relation. If it is not, then we found a possible TA.

6.2. APPLICATIONS OF OR-SML 227

e The Name field is not a key. Then it is impossible to determine promotion unambiguously
because there could be two records in Employees with the same Name filed but different
Salary fields. Our solution is to use or-sets to represent both possibilities. Then, for each
possible choice of records in Employees corresponding to records in CS1 we have uniquely
determined set of possible TAs.

We are going to show how some of the operations described above can be done in OR-SML.
First we have to define a framework for doing operations like promotion and consistency check.

As before, we assume that all records have the same fields by putting L (null) into the missing
fields. This allows us to take joins and meet of records. Notice that the join of two records is
not necessarily defined.

Now we show how a query “approximate the set of TAs” can be done in OR-SML. Since Em-
ployees and CS1 are going to make either a sandwich or a mix for TA, we make Employees an
or-set and CS1 a set. We now represent the data as follows:

- val emp = make();
<(?John’, ({e(10.00)}, {})), ("John’, ({@(15.000}, {})),
("Mary’, ({@(12.00)}, {})), (°Sally’, ({e(17.00)}, {}))>!
- val csl = create "{(’John’, ({},{76})), CJim’,({},{320})), (’Sally’,({},{120}))}";

The first problem we face is getting rid of inconsistencies in the database. In our particular
example, Jim is in CS1 but not in the Employees. Assuming we believe the Employees relation,
we remove this anomaly as follows:

- fun remove_anomaly compat (R,S) =
let fun compat_to_X (X,x) =
Set .ormember (mkboolco(true), (orsmap (fn z => compat(z,x)) X));
in Set.select (fn z => compat_to_X (R,z)) S end;

- val new_csl = remove_anomaly compatible (emp,csl);
val new_cs1l = {(’John’, ({}, {76})), (’Sally’, ({J}, {12031} : co

Here compatible is a function that tests whether the join of two elements is defined:
fun compatible (x,y) = neg(eq(join(x,y),orempty));

Now, consider the solution proposed by Buneman et al. [31, 32]. Given an element 2 € CS1,
let y1,...,y, be those elements in Employees that can be joined with . Then 2’ = A, (2 V ;)
was called a promotion of z. (Intuitively, the promotion of 2 adds all information about z from

228 CHAPTER 6. OR-SML

Employees.) The solution was to take all promotions of elements in CS1 as “sure TAs” and
elements of Employees not consistent with those promotions as “possible TAs”. However, this
solution was contingent upon the condition that the name field is a key. With this condition, we
can easily program the solution of [31, 32] using a function promote and a new relation emp1i:

- fun promote compat (R,S) =
let fun compat_to_x (X,x) = Set.orselect (fn z => compat(z,x)) X
in alpha (smap (fn z => big_meet (orflat(orsmap (fn v => join(z,v))
(compat_to_x (R,z)))))
S) end;
- val empl = make();
<(’John’, ({@(10.00)}, {})), (CMary’,({e(12.00)}, {})), (’sally’, ({e(17.00)}, {}))>!

- val promoted_csl = promote compatible (empl,new_csi);
val promoted_csl = <{(’John’, ({@(10.0)}, {76})), (’Sally’, ({@(17.0)}, {120}))}> : co

Here big meet calculates the meet of a family of objects. Observe that this operation corresponds
precisely to forcing a sandwich into a mix using the assumption about keys.

Now it is possible to separate sure TAs from possible TAs:

fun divide compat (R,S) = let
fun compat_to_set (X,x) = member(mkboolco(true),
(smap (fn z => compat(z,x)) X))
in (orselect (fn z => neg(compat_to_set (5,z))) R, S) end;

fun divide_all compat (R,S) = orsmap (fn z => mkprodco(
divide compat (p1(z),p2(z))))
(orpairwith(R,S));

- val res = divide_all compatible (empl,promoted_csl);
val res = <(<(’Mary’, ({@(12.0)}, {}))>,
{("John’, ({@(10.0)}, {76})), (’Sally’, ({e(17.0)}, {120}))})> : co

Therefore, John from office 76 and with salary 10K and Sally from office 120 and with salary
17K are definitely TAs and Mary with salary 12K and not known office may be a TA.

However, if the name field is not a key, this solution will not work. For example, both Johns
from Employees will be joined with John from CS1, and when the meet is taken, the salary
field is lost. But this is not what the information in the database tells us. We know that one
John from Employees teaches CS1, but we do not know which John. Since either could be, the
solution is to use an or-set to represent this situation. In particular, we take all possible joins
xVy,...,xVy, and make them into an or-set, which now plays the role of the promotion of z.

6.2. APPLICATIONS OF OR-SML 229

Then, taking the or-set brackets outside, we obtain the or-set with all possible answers to the
TA query.

fun solution compat (R,S) = let fun get_R_a a = orselect (fn z => compat(z,a)) R
in orpairwith(R, alpha(smap get_R_a S)) end;

val solution = fn : (co * co —> co) -> co * co —> co
- val result = solution compatible (emp, new_csi);
val result =
<(<(’John’, ({@(10.0)}, {})), (CMary’, ({e(12.0)}, {})),
(?John’, ({@(15.0)}, {})), (’sally’, ({e(17.0)}, {}))>,
{(’John’, ({@(10.0)}, {})), (’sally’, ({e(17.0)}, {33},
(<(’John’, ({@(10.0)}, {})), (CMary’, ({@(12.0)}, {})),
(?John’, ({@(15.0)}, {})), (’sally’, ({e(17.0)}, {}))>,
{(?John’, ({@(15.0)}, {})), (’sally’, ({@{(17.00}, {}))})> : co

We now see that there are two possible answers to the TA query: both say that Mary could be
a TA and that Sally is a TA, and one says that John making 10K is a TA while the other says
that John making 15K is a TA.

Summing up, we have seen that one of the canonical problems of querying independent databases
can be solved by OR-SML. Moreover, using or-sets gives us the correct answer even if the key
constraints do not hold, something that the solution of Buneman et al. [31, 32] falls short of
doing.

As the final example, we demonstrate the implementation of mixes as a new OR-SML datatype,
as was suggested in chapter 5. The operations we have on mixes are the monad operation
miz_ext, operations of the mix algebra, and type inference. That is, to implement mixes, we
create a structure MIX of signature MIXSIG following the description of miz_ext given in chapter
5. These signature and structure are shown in figure 6.4.

Using mix_ext, it is possible to implement monad operations like map mix and flat mix as
follows:

- local open MIX in
fun map_mix f = mix_ext (fn x => mix_sng(f x))
val flat_mix = mix_ext (fn x => ((p1(x),p2(x)):mix))
end
val map_mix = fn : (co -> co) -> MIX.mix -> MIX.mix
val flat_mix = fn : MIX.mix —-> MIX.mix

The following simple example shows how mixes can be created and manipulated. We assume
that three complex objects a, b and ¢ which are respectively 1,2 and 3, are given. Then we show

230 CHAPTER 6. OR-SML

signature MIXSIG =

sig
type mix
val mix_sng : co -> mix
val mix_plus : mix * mix —-> mix
val mix_box : mix -> mix
val mix_ext : (co -> mix) -> mix —-> mix
val typeof_mix : mix -> unit

end

structure MIX = struct
type mix = co * co
fun mix_sng x = ((orsng(x), sng(x)):mix)
fun mix_plus ((x:mix),(y:mix)) = let val (x1,x2) = x
val (y1,y2) =y
in
((orset_min(orunion(x1,y1)),
set_max (union (x2,y2))):mix)
end
fun mix_box (x:mix) = let val (x1,_) = x in ((x1,empty):mix) end
fun mix_ext (£ : co -> mix) =
(fn (MX:mix) =>
let val (U,L)
val FIRST

MX

orsmap (fn v =>
let val (vi,_.)
in v1 end)

1]
=)
<

U
val SECOND = smap (fn v =>
let val (_,v2) = f v
in v2 end)
L
in
((orset_min(orflat FIRST),
set_max (flat SECOND)):mix)
end)
fun typeof_mix (x:mix) = let val (x1,_) = x
val tx = tp_print(typeof x1)
val tp = substring (tx,1,size(tx)-2)
in print (tp~" mix\n\n") end

end;

Figure 6.4: Implementation of mixes in OR-SML

6.2. APPLICATIONS OF OR-SML 231

how the function, that for any object n creates a mix encoded as ({(n + 1,7+ 2),{n 4 1}), can
be extended to a mix over integers by means of mix_ext.

- val big = mix_plus(mix_sng(a),mix_plus(mix_sng(b) ,mix_sng(c)));
val big = (<1, 2, 3>,{1, 2, 3}) : mix
- val small = mix_plus(mix_sng(a),mix_sng(b));
val small = (<1, 2>,{1, 2}) : mix
- val newmix = mix_plus(small, mix_box(big));
val newmix = (<1, 2, 3>,{1, 2}) : mix
- map_mix intaddone newmix;
val it = (<2, 3, 4>,{2, 3}) : mix
- fun £ x = mix_plus(
mix_box(
mix_plus(mix_sng(intaddone(x)),
mix_sng(intaddone(intaddone(x))))),
mix_sng(intaddone(x)));
val £ = fn : co -> mix
- mix_ext f newmix;
val it = (<2, 3, 4, 5>,{2, 3}) : mix
- typeof_mix newmix;
int mix

This shows that OR-SML is capable of supporting operations on approximations arising from
their universality properties, as well as some nontraditional operations like promotion and remov-
ing anomalies. Such operations may often occur in real life applications. This further confirms
that or-ARL (and hence OR-SML) has adequate power to program with approximations, and is
in fact a good candidate for a language for solving problems like querying independent databases.

232 CHAPTER 6. OR-SML

Chapter 7

Conclusion and further research

7.1 Brief summary

We started this thesis with a survey of the field of databases with partial information and finally
arrived to a point where we had a well thought out language for partial information. The main
tool was using new techniques to understand the semantics of partiality.

In chapter 1 we formulated two main principles of our approach: partiality of data is represented
via orderings on values and semantics suggests programming constructs. In chapter 3 we made
a first step toward applying these principles to the study of databases with partial information.
First, a general order-theoretic model of partial information was developed. Second, we presented
an approach to design of query languages based on the universality properties of the semantic
domains corresponding to the type constructors. In chapter 4 we studied the semantics of various
kinds of partial information and proved the universality properties. In chapter 5 we used those
universality properties to design and study languages for partial information. Finally, in chapter
6 we described an implementation of a query language based on these ideas.

Before we discuss open problems, let us briefly recall the main contributions of this thesis.

e We have surveyed the field of partial information in databases and analyzed structures
and techniques used for studying partial information. We have concluded that there are
no adequate analytical and algebraic tools available for the study of partial information.

o We have suggested a new approach to the study of partial information based on two main
premises. One says that the concept of being more informative is represented as an ordering
on objects. The other says that the right programming constructs should be derived from
the mathematical properties of the semantics of partial data.

233

234

CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

We have extended the approach of Buneman, Jung and Ohori [33] that treats database
objects as elements of domains. In particular, it was shown how schemes can be defined
and how multivalued dependencies and decompositions are related in such a generalized
setting.

We have described the approach to the language design based on turning universality
properties of collections into programming syntax. We have introduced new tools for
analyzing expressibility of such languages and explained the difference between using sets
and bags (multisets).

Two levels of manipulating or-sets — structural and conceptual — were clearly distinguished.

We have shown how all known approximation constructs arise in the problem of query-
ing independent databases. Based on the analysis of the models of approximations, we
suggested a new classification of those.

We have used the “update” semantics to define orderings for five kinds of collections:
sets under OWA and CWA, bags under OWA and CWA and or-sets. Orderings for sets
under OWA and CWA and or-sets are the Hoare, the Plotkin and the Smyth orderings
respectively.

Based on the orderings for collections, we have defined their semantics. For objects in-
volving or-sets we have given both structural and conceptual semantics. We have shown
that the semantic domains of collections have the universality properties.

For the first time, an isomorphism between the iterated powerdomains (Smyth and Hoare)
has been explicitly constructed. This isomorphism has given us a primitive to include into
the structural language for sets and or-sets to provide interaction between sets and or-sets.
It has also been proved that the iterated construction possesses a universality property.

Semantics for approximations has been given and the orderings have been determined
using the update approach. From this it has been concluded how approximations can be
modeled with sets and or-sets.

Most constructions used in approximations have been characterized as free algebras. That
is, they all possess universality properties which allow to incorporate them into a program-
ming language. Some of them have been shown not to arise as free algebras. However, for
those approximations it is possible to obtain restricted universality properties.

Languages for collections based on their universality properties have been defined. The
languages arising from the ordered semantics were shown to be sublanguages of the lan-
guages arising from the set theoretic semantics. However, well-definedness of functions on
ordered objects within the languages based on the set theoretic semantics turned out to

be undecidable.

It was proved that the orderings for bags under both OWA and CWA are not definable in
the standard bag language BOL.

7.2. PROBLEMS FOR FURTHER INVESTIGATION 235

e The language or-ARL based on combining sets and or-sets and using the isomorphism
between the iterated powerdomains has been introduced. or-A’RL was shown to contain
some known languages for partial information as sublanguages.

e The normalization theorem for or-ARL has been proved for both set theoretic and ordered
semantics. That is, all objects normalize to the same object, no matter how they are
normalized. The normalization construct gives us the language to query sets and or-sets
at the conceptual level.

e The costs of normalization have been studied and tight upper bounds have been found.

e The partial normalization theorem for or-ARL has been proved for both set theoretic and
ordered semantics. That is, for properly restricted types, all objects of type ¢ normalize to
the same object of type s, no matter how they are normalized. It was shown that partial
normalization may help answer conceptual queries faster.

e Structural recursion and monad languages have been studied for all approximations. The
monad constructs have been shown to require preconditions which are generally undecid-
able. It also has been shown that the monad languages for approximations are sublan-

guages of or-NRL.

e The language OR-SML based on or-NRL and BOL has been implemented on top of Stan-
dard ML. Its applications in querying incomplete and independent databases have been
shown.

7.2 Problems for further investigation

In this section we outline some problems that must be further investigated. Discussion of some
of them is quite speculative as the field is new and many areas have not been looked into at all.
However, we show a number of very concrete problems that should be solvable using techniques
developed in this thesis. The problems are given in no particular order.

Bags, aggregate functions and partial information

Most theoretical results in the field of databases deal with sets, whereas most practical imple-
mentations use bags as the underlying model. It has not been until just a few years ago that
people started paying attention to theoretical problems arising in the study of databases that
use multisets. Albert [14] proposed a number of operations for bags and studied some of their
properties. Grumbach and Milo [60] introduced a bag algebra and proved some complexity re-
sults. At the same time, Chaudhuri and Vardi [38] showed that many optimization principles
do not carry over from sets to bags.

236 CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

Incorporating aggregate functions into relational languages was also studied by Klug [92] and
Ozsoyoglu et al. [129] who introduced aggregate functions by defining them separately for each
column of a relation. An alternative approach using a technique called hiding was used by
Klausner and Goodman [91]. Both approaches are rather clumsy and do not show any clear
connection between bags and aggregate functions.

Finally, in Libkin and Wong [105, 108] it was proved that in terms of expressive power adding
bags is precisely adding aggregate function; see also theorem 3.26. However, very little is know
about expressibility of languages with aggregate function. For example, Consens and Mendelzon
[42] showed inexpressibility of transitive closure assuming separation of complexity classes, and
Mumick and Shmueli [120] gave a rather involved argument to show that certain recursive query
is not definable in a language with a limited number of aggregate functions.

If we could only show that the bounded degree property, proved in section 3.2 for NRL, also
holds for BOQL, many results on expressive power would follow immediately. We believe that the
bounded degree property does hold for BQL, but proving this remains open. The main reason
this problem seems to be hard is that there is no logic capturing BOL or its flat fragment. Many
traditional languages for databases do not produce new values (are internal in terminology of
Hull [76]), but this is certainly not the case for BOC which is translated into a language with
aggregates and hence can produce new values. Finding logics that capture such languages is
a difficult task. For example, the logic with counting quantifiers [85] does not have enough
“generating ability” to capture BQL. And results like the bounded degree property are proved
by using locality properties which in turn are based on the quantifier elimination procedure.

Very little is known about interaction of partial information and bags or aggregate functions. In
this thesis we were able to define orderings on bags and, using certain results about expressive
power of BQL, showed that it can not define the orderings. This leads to a number of questions.
What is the minimal “natural” set of operations that can be added to BOL to enable it to
define the orderings? What are the corresponding operations in the set language with aggregate
functions? What is a natural interpretation of orderings on bags when they are translated into
the set language? In other words, how partial information interacts with aggregate functions?
How aggregate functions are evaluated on partial data? Although there are a number of ad-hoc
solutions in practical languages, there has been no systematic study of these problems.

Another set of intersting questions arises when one studies the ability to calculate by using
bags. We showed that three different bag languages can express classes of extended polynomials,
elementary and primitive recursive functions. It can also be shown that there is a correspondence
between slightly enchanced versions of BQL and small classes of primitive recursive functions
like £ and &2 (see Rose [150] for the definition.) It is not known what orderings on bags give
us in terms of the arithmetic power.

Our ordering for bags is closely connected with the ordering used by Pollard and Moshier [139]
in linguistic applications. This connection could be worth studying.

7.2. PROBLEMS FOR FURTHER INVESTIGATION 237

Sets under the closed world assumption

Most results in chapter 5 were proved for sets under the open world assumption. Which results
remain true if we switch to the closed world assumption? We saw that CWA sets can be
represented in or-ARL, by simply keeping both maximal and minimal elements, and therefore
all operations arising from the CWA set monad can be expressed. But the interaction between
CWA and or-sets has not been studied. What is the right primitive that provides such an
interaction? It must be an analog of a, but we do not know if there is a commutativity result
for the Smyth and Plotkin powerdomains. So, one of the questions is the following. Is there an
analog of theorem 4.21 that relates the iterated Smyth and Plotkin constructions?

If there is such an analog, and if it can be converted into a programming primitive, can we
recover the normalization theorem? If yes, is it possible to represent such a normalization in
or-NRL,? If not, what is the main problem and is there a way around it?

Recursive types and values

The complex object data model, which was the main object of study in this thesis, usually
serves as the underlying model for object-oriented databases. But object-oriented databases
include more than that. In particular, they often deal with recursive values. That is, objects
can be defined recursively. In many models this is achieved by introducing objects identifiers,
see Abiteboul and Kanellakis [7]. In practice, these are implemented as pointers. However, the
formal semantics of recursive types and values, and in particular recursive types and values in
the presence of partial information, must be worked out.

Since semantics of recursive types is usually obtained as a limit construction, this suggests using
domain instead of arbitrary posets. Assume that we add the recursive type constructor to the
type system:

t:=a | b | unit | txt | {t} | pat

where 2 ranges over type variables, and pz.t is a recursive type constructor (z must be free in
t.) A similar type system was considered, for example, in Lamersdorf [93] in the context of a
simple language, but no semantics was given. How do we define the semantics of these types?

Since semantics of recursive types is usually obtained as a solution to an equation, which in turn
is a (co)limit in some category, we have to switch to categories of domains from categories of
posets. It was suggested by Gunter [65] that one formulate a number of requirements on the
category of domains in which the semantics of types is to be found. In [65] such conditions were
given for categories suitable for giving semantics of types used in functional languages. However,
[65] did not consider the set type constructor.

Now, following Gunter [65], let us try to formulate a number of requirements on the category

238 CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

of domains C that is suitable for giving semantics of recursive complex object types. First of
all, its objects must be closed under x (product type) and ’(-) which is IdI(P*(K-)), the ideal
completion of Pb(K-). Second, it must contain the domains of base types (which are usually flat
domains). Third, domain equations of form D = F(D), where F is a functor composed from the
constant base type functors, products and pb(-), must have a solution in C. This guarantees
that the semantics of recursive types can still be found in C.

Of course the category SFP and even the category of Scott domains satisfy these requirements.
But these categories contain too many domains that never arise as domains of types. Recall that
we interpret compact elements as objects that can actually be stored in a database. If we have
an object that can be stored and an object y that is less informative than z, then, provided
or-sets are not used, it must be possible to store y is a database. In other words, domains D
which are objects of C must satisfy the following condition: |KD = KD. This is precisely the
condition that enabled us to define schemes at the level of compact elements, see proposition
3.7.

Now we formulate the requirements on the categories C for database semantics.

1. All objects of C must be domains satisfying | KD = KD.
2. C must contain flat domains and be closed under x and @’(-).

3. Any equation D = F(D) must have a solution in C where F is an endofunctor on C built
from constant base type functors by using X and pb()

As the first attempt we could consider C; that consists precisely of Scott domains satisfying
KD = KD. But this category does not satisfy 2). It is known that the decreasing chain
condition is preserved by pb() [22]. However, C; that contains domains in which |2 satisfies the
decreasing chain condition for any z € KD, does not satisfy 1. Now, take C3 in which objects
are those domains which are objects in both C; and C,. That is, domains in which |z does
not have infinite chains for any 2 € KD. Even restricting this, we take C4 to be the category
of I-domains which satisfy the condition that |z is finite for any x € KD. Now it is possible to
prove that Cs and Cy satisfy conditions 1, 2 and 3, and so do their full subcategories given by
distributive domains, and subcategories thereof in which morphisms carry compact elements to
compact elements, see Libkin [101]. Moreover, the category of dI-domains (distributive domains
satisfying the property I) and stable maps (preserving infima of bounded pairs) also satisfies
conditions 1, 2 and 3 [101].

So, we have a number of categories in which semantics of recursive complex object types can
be found. But this is not the end of the story, because there are two major issues that must
be addressed. First, condition 1 is not longer satisfied if we add the or-set type constructor.
Or-sets correspond to the Smyth powerdomain gF(-) = IdI(P*(K-)) which does not preserve even

7.2. PROBLEMS FOR FURTHER INVESTIGATION 239

the decreasing chain condition. Hence, condition 1 must be replaced by another condition for
or-sets. The search for such a condition continues.

All recursive database objects have finite representation and could be stored in a database.
But we can easily see that they are not necessarily compact elements in the domains of their
types. For example, consider pz.string X x. Its elements are infinite sequences of strings, and
compact elements are those in which almost all entries are L,,,. We can think of this type
as, for example, type person = [Name:string, spouse:person]. Its elements certainly have finite
representation, but are not compact elements of the domain of person. Therefore, we need to
identify elements of the domains which have a finite representation. This identification must
be done order-theoretically. Similar problems have been studied by Ohori [123, 125] but he
considered the model based on the regular trees [44]. Such a model does not seem to be suitable
for dealing with partial information, whereas using the domain based model is well justified.

Therefore, a proper definition of elements having a finite representation and identification of
elements of solutions of recursive domain equations having finite representations remain open
problems. We believe that progress towards solving these problems will suggests the right
operations to be used for programming with recursive complex objects.

Types and schemas

Hull [77] studied connections between database schemas and complex objects in the type system
that includes variant types but does not include or-sets. He defined a number of reductions
that are similar to the rewrite rules applied to or-types. These reductions were shown to form
a Church-Rosser rewrite system, and hence each database schema had a unique normal form.

If we consider variants as two-element or-sets (similarly pairs can be considered as two element
sets), then all rewrites in Hull [77] will becomes rewrites in our system for or-types. But our
analysis of the rewrite system is much deeper than just establishing Church-Rosserness. In
particular, we characterized the rewrite system in terms of the partial order < on types and
gave an efficient algorithm that tests this order. Therefore, one might expect that our analysis
of the rewrite system for types may help gain a better understanding of transformations of
database schemas. For example, it may help produce efficient algorithms that check if one
schema could be transformed into another.

Constraints and partial information

In this thesis we developed type systems and languages for databases with partial information,
but did not cover a very important area of constraints. Relatively little is known about con-
straints in relational databases with nulls (see [17, 18,62, 74,97, 131, 166]) and virtually nothing
is known about constraints for other kinds of partial information. To the best of our knowledge,

240 CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

no work has been done on understanding how the ordering interacts with constraints.

An idea that proved to be useful for relational databases with the ni nulls is to introduce analogs
of some constrains in a “disjunctive” manner, see Atzeni and Morfuni [17] and Thalheim [165].
Following Thalheim [165], we consider keys. In a usual relational database, a set K of attributes
is a key if Tx(t1) # mi(t2) for any two distinct tuples ¢; and #3. A family K = {Kq,..., K, }
of sets of attributes is called a key set [165] if for any two distinct tuples ¢; and o, there exists
a K; € K such that ¢; and ¢, are defined on K; (that is, none of the K;-values is ni) and
7K, (t1) # 7K, (t2). For relations without null values this simply means that [JK is a key. A key
set is minimal if all K;s are singletons. The disjunctive nature of such constraints matches the
usual key constrains in the closed world semantics.

Proposition 7.1 For any relation R with ni null values and a set K of attributes, K = {{k} |
k€ K} is a minimal key set iff T ndet(t,)(t) = Trndet(e,)(t') implies t = t', where def(t,t') is
the set of attributes on which both t and t' are defined. Furthermore, this implies that for any
T € [R]SYS with card T < card R, K is a key of T. O

max

The converse to the last statement is not true. Consider R = {(ni, 1),(2,1)}. Then for any 7T
as in the statement of the proposition, the first attribute is a key, but it is not a key set for R.

We believe that this idea of making one constraint into a family while maintaining a close
connection with the intended semantics can be quite productive. The concept of a key set can
be reformulated as V¢, ¢’ VK € K : (K C def(t,t') = 7x(t) = 7x(t')) = t=1t. This in turn
implies that |JK is a key for any T € [[R]]rchZi and shows that keys can be further generalized

to functional dependencies and probably a to greater class of dependencies given in a first order
language with equality.

Let us give a simple example to illustrate some of the problems arising from using other nulls.
Consider a simple relation

Name | Dept | Room

ne ne 76

We interpret this relation as saying that room 76 does not belong to any department and is
empty. Now, consider a different relation:

Name | Dept | Room

ne ne 76
Joe CS 76

Jim ne 76

7.2. PROBLEMS FOR FURTHER INVESTIGATION 241

This relation says that there is one room 76 which does not have people in it and does not
belong to any department, and there is another room, also named 76, that belongs to CS and
Joe sits in it. Moreover, there is yet another room 76 which does not belong to any department
but has someone named Jim in it.

Of course we can not represent the second database as a first order theory as in Reiter [143],
because it would yield a contradiction: P(Joe,CS,76) & —3z—-3y P(x,y,76). However, it still
makes perfect sense. But now assume that there is a constraint which says that there is only one
room 76. While having two records‘ Joe ‘ CS ‘ 76 ‘and‘ Ann ‘ Math ‘ 76 ‘does not contadict
it, having a record ‘ ne ‘ ne ‘ 76 ‘ does contradict the constraint as it would be imply the
existence of two rooms 76: one with Joe and Ann in it, and one empty. Even though the ne
null is a maximal element in the ordering and is treated in the same way as the usual nonpartial
values, it does behave differently in the presence of constraints.

How could one approach the problem of dealing with constraints in databases with partial
information? Since we advocate the order-theoretic models of databases and consider rather
complicated type systems, we believe one should try to apply the approach that formalizes con-
straints independently of the particular kind of data structures involved. For example, one may
use the lattice theoretic approach to dependencies and normalization developed in Demetro-
vics et al. [47] and Day [45] or define dependencies as certain classes of first order formulae
as in Fagin [50]. One may also benefit from using these approaches since most papers dealing
with constraints in the complex object model only study constraints on the top level attributes
[48, 130, 169]. But at this point there is almost no understanding how constraints interact with
partial information represented via orderings on objects. The area is completely open.

Genericity, computability and polymorphism

This subsection is definitely the most speculative of all. One of the important problems in
database theory is identifying important classes of queries and designing languages capable of
expressing those queries. There are several ways in which database query languages are different
from traditional programming languages. First, most database queries are internal (see Hull
[76]). That is, they only manipulate with values stored in a database and do not create new
values. Second, they are generic. Most definitions of genericity, such as in Chandra and Harel
[36], assume that there is only one domain of values and simply require that queries be invariant
under permutations of such a domain. For instance, a query computing the transitive closure of
a relation is such but the query returning the sum of two largest numbers stored in a database
is not.

Many researchers tried to identify languages capable of expressing precisely all generic queries
from a given complexity class over relational databases. A language for all computable queries
was given in Chandra and Harel [36]. In Immerman [83] and Vardi [170] languages for the
class PTIME were given, and Abitebouland Vianu [9] showed how to capture PSPACE. Their

242 CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

results use an assumption that a linear ordering is given on objects. The question we would
like to investigate is how using partial order that represents incompleteness of information will
affect the main definitions, like genericity, and results about capturing complexity classes. The
situation when we have a partial order falls between the totally ordered case and the totally
unordered case which appears to be much harder, cf. Abiteboul and Vianu [10] and Immerman
and Lander [85]. Note also that we want to look at these problems in the context of typed
languages, whereas in the above mentioned papers it is always assumed that only one domain
of values is present.

Another interesting project is to try to make precise a rather vague idea of establishing con-
nection between genericity and polymorphism. Genericity means that the queries are invariant
under permutations of the domains, and this is very close in the spirit to the idea of paramet-
ric polymorphism. Until recently, genericity has not been considered in the context of typed
database languages. In Libkin and Wong [107], a type system with type variables was studied.
That is, types are given by ¢t := a | b | unit | t X t | {t} where x ranges over type variables.
Then the definition of genericity of a query of type s — ¢ was reformulated, where s and ¢ may
have some type variables. That definition is much closer to various definitions of polymorphic
functions and can serve as a good starting point.

Note that in all our languages (even including the SML implementation of or-ARL that uses
higher-order functions) we deal only with instances of predicative polymorphism [116]. That is,
in universal types Vz.t, the range of does not involve universal types. For instance, the type
of transitive closure can be viewed as Vz.{z x 2} — {& X } where z ranges over object types.

The definition of genericity in Libkin and Wong [107] is set-theoretic. An intersting problem is to
find out whether there exist set-theoretic models for universal types in database query languages
like NRL. We have the set type constructor, so one may expect to observe a phenomenon similar
to Reynolds [146] where a power construction was used to refute the existence of set-theoretic
models for universal types. On the other hand, we deal only with instances of predicative
polymorphism, and it may be possible that the complications of [146] will be irrelevant.

Invariance under permutations no longer suffices as the definition of genericity if we deal with
incomplete information represented via orderings on domains of object types. We need to extend
the definition to accommodate orderings. This situation appears to be quite similar — at least in
the spirit — to characterizing A-definability (see Plotkin [138]): invariance under permutations is
an obvious first try, but it does not work. Instead, invariance under logical relations is needed.
Being invariant under logical relations is what parametric polymorphism is semantically, see
Mitchell [116]. To extend the standard definitions from those suitable for languages based on
A-calculi to languages with sets, one has to lift logical relations to powerdomains and not only
to function spaces. To the best of our knowledge, this has not been done, and it might be worth
looking at.

Returning to the problem of invariance under permutations or logical relations, we have a number

7.2. PROBLEMS FOR FURTHER INVESTIGATION 243

of new questions. First, one may want to describe functions expressible in the languages that we
have studied as functions which are invariant and satisfy some additional conditions. This idea
of course comes directly from the problem of A-definability, since we suggest that our languages
can be viewed as “canonical” languages for partial information, very much in the same way as
A-calculus is the basis for the functional programming. Conversely, one may take some class C of
queries and search for a language that expresses exactly all invariant queries in C. Observe that
if C is a complexity class, then this is the problem of capturing such a class that was discussed
a few paragraphs ago. There is an indication that this problem may be very hard for important
classes like PTIME, with or without presence of partial information.

Using ordered semantics we have advocated can be helpful in finding models of universal types
involving sets. There exist domain-theoretic models of polymorphism. An interesting project
would be to extend the model of Coquand et al. [43] based on Grothendieck fibrations to in-
clude the set and or-set type constructors. From the results of this thesis we know what the
corresponding domain constructions are: they are the Hoare and the Smyth powerdomains. It
would be worth checking if the results of Coquand et al. [43] carry over to these powerdomains.

Since we deal mostly with predicative polymorphism, there is hope that many complications of
the impredicative polymorphism will not show up, and carrying out the project of understanding
genericity as polymorphism of functions in typed languages with sets will be possible. Of course
the most important outcome of this project would be having the database community speak of
polymorphic functions rather than generic queries.

Formal models of approximations

The theory of approximation in databases started just a few years ago and there are many
topics to be investigated. First, the algebraic characterization given in this thesis points out to
an intimate connection between these constructions and various algebras with idempotent binary
operations that have been extensively studied, most notably by Romanowska and Smith, see
[61, 149, 148, 147]. In [148] they characterized freely generated meet-distributive bisemilattices,
that is, bisemilattices satisfying only one distributive law. In [147] idempotent semirings with
semilattice reducts are characterized. These algebras are closely related to the scone algebras.

Algebras corresponding to three kinds of approximations (or absence thereof) have not been
discovered yet. Even though we showed that using structural recursion and monads based on
the universality properties of approximations is not the right approach to program with them,
finding such characterization is still helpful as it would allow us to extend theorem 5.32 to include
all ten constructions.

Another open problem is applying Abramsky’s approach [11] that finds logical theories corre-
sponding to various constructions on domains. For mixes this was done by Gunter [66]. Recently,
some progress has been made in Darmstadt in applying Abramsky’s approach to snacks. It may

244 CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

also be interesting to see what, if any, are the connections between our work and recent work
by Chaudhuri and Kolaitis [37] on approximating recursive datalog programs with nonrecursive
ones.

How to answer conceptual queries faster?

We suggested using normalization as a means of answering conceptual queries and demonstrated
its usefulness. However, we showed that normalization can be quite expensive. Hence, one has
to look for ways to normalize faster.

We considered one approach to the problem. Often it is not necessary to normalize all way
to the normal form to answer a query. We proved a partial normalization result saying that
for types without occurrences of subtypes ((¢)), an analog of the normalization theorem holds.
Hence, for such types it is possible to do partial normalization. Even though in all examples we
have encountered there were no occurrences of types of form ((¢)) other than at the intermediate
stages of the rewriting, we believe that it is still possible to improve the partial normalization
theorem by extending it to a larger class of types.

Even more importantly is to combine partial normalization with a smart evaluation strategy.
Most queries asked against normal forms are existential queries. That is, the queries asking if
there is a possibility in the normal form satisfying certain properties. Presently, the normal-
ization process computes all possibilities and then outputs them. The evaluation strategy we
need should evaluate normalization lazily. That is, it should try to produce an element of a
normal form, check if it satisfies a given property and then go on. This kind of optimization
that produces the first answer fast was considered by Wong [180] for his implementation of a
language based on NRL. In addition to using such optimizations, it would be desirable if query
evaluation algorithm tried to use some heuristics that would help produce an answer satisfying
the given condition faster.

We said that or-objects are typically present in the problems arising in design and planning
areas, and in particular in computer aided designs. Such objects are usually very large, and it
is necessary to combine all possible ways to speed up the query evaluation process. One step of
this process — the partial normalization — has been developed in this thesis. Devising a smart
query evaluation algorithm is an important open problem.

New features of OR-SML

There are a number improvements in the implementation of OR-SML that could be made.
First of all, real records must be added. (Now they are simulated with pairs.) A proper set
of operations on records should be identified and some operations of the language, such as
normalization, must be reprogrammed. From the definition of normalization it can be seen

7.2. PROBLEMS FOR FURTHER INVESTIGATION 245

that record concatenation should become a new primitive operation. Therefore, we shall need
to add new tools for representing records and computing with them to the existing OR-SML

implementation. There are a number of known techniques for doing this, such as in Ohori [126]
and Rémy [145].

At this moment null values can only be added to the user-defined base types. Therefore, OR-
SML needs a way for the user to specify null values for already existing types and to define an
order on them. Finally, using new tools such as the “visible compiler” of Appel and MacQueen
[15], the system could be made much more user-friendly.

However, we believe that these changes to the existing implementation should not be made before
many questions related to bags, closed world sets and recursive types are clarified, because they
may cause additional changes. Only those changes that will for sure remain in the language
capable of working with recursive types, bags and closed world sets, could be made at this
stage.

246 CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

Bibliography

(1]

S. Abiteboul and C. Beeri. On the power of languages for the manipulation of complex objects. In
Proc. Int. Workshop on Theory and Applications of Nested Relations and Complex Objects, Darm-
stadt, 1988.

S. Abiteboul, C. Beeri, M. Gyssens and D. Van Gucht. An introduction to the completeness of
languages for complex objects and nested relations. In [4], pages 117-138.

S. Abiteboul and N. Bidoit. Non first normal form relations: an algebra allowing data restructuring.

Journal of Computer and System Sciences 33 (1986), 361-393.

S. Abiteboul, P.C. Fischer and H.-J. Schek, editors. “Nested Relations and Complex Objects”.
Springer LNCS 361, Springer Verlag, 1989.

S. Abiteboul and G. Grahne. Update semantics for incomplete databases. In Proc. Very Large
Databases (1985), 1-12

S. Abiteboul and S. Grumbach. COL: a logical based language for complex objects. in “Advances in
Database Programming Languages” (F. Bancilhon and P. Buneman, eds.), ACM Press, 1990, pages
347-374.

S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In SIGMOD 89,
pages 159-173.

S. Abiteboul, P. Kanellakis and G. Grahne. On the representation and querying of sets of possible
worlds. Theoretical Computer Science 78 (1991), 159-187.

S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. Journal of
Computer and System Sciences 43 (1991), 62-124.

S. Abiteboul and V. Vianu. Generic computation and its complexity. In Proceedings of ACM Symp.
on the Theory of Computing, 1991.

S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic 51 (1991), 1-77.

S. Abramsky and A. Jung. Domain Theory. Chapter in Volume 3 of the “Handbook of Logic in
Computer Science”, Cambridge University Press, 1994.

A. Aho, R. Sethi, and J. Ullman. “Compilers: Principles, Techniques and Tools”. Addison Wesley,
1985.

J. Albert. Algebraic properties of bag data types. In Proceedings of Very Large Databases—91, pages
211-219.

247

248 BIBLIOGRAPHY

[15] A. Appel and D. MacQueen. Separate compilation for Standard ML. In Proceedings of the SIGPLAN
’94 Conf. on Programming Language Design and Implementation.

[16] M. Atkinson, P. Richard and P. Trinder. Bulk types for large scale programming. In Nexzt Generation
Information System Technology, Springer LNCS 504, Springer Verlag, 1990, pages 228-250.

[17] P. Atzeni and N. Morfuni. Functional dependencies and constraints on null values in database
relations. Information and Control, 70 (1986), 1-31.

[18] P. Atzeni and M. De Bernardis. A new basis for the weak instance model. In PODS-87, pages 79-86.

[19] R. Balbes. A representation theorem for distributive quasilattices. FPundamenta Mathematicae 68

(1970), 207-214.

F. Bancilhon and S. Khoshafian. A calculus for complex objects. In PODS 1986, pages 53-59.
M. Barr and C. Wells. “Category Theory for Computing Science”. Prentice Hall, 1990.

G. Birkhoff. “Lattice Theory”. 3rd ed, Amer. Math. Soc., 1967.

J. Biskup. A formal approach to null values in database relations. In: “Advances in Data Base
Theory”, Volume 1, Prenum Press, New York, 1981.

[24] S. Bloom. Varieties of ordered algebras. Journal of Computer and System Sciences 13 (1976),
200-212.

[25] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Proc. of
3rd Int. Workshop on Database Programmang Languages, pages 9-19, Naphlion, Greece, August 1991.

[26] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In LNCS 646:
Proc. ICDT, Berlin, Germany, October, 1992, pages 140-154. Springer-Verlag, October 92.

[27] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of programming with
sets/bags/lists. In LNCS 510: Proc. of 18th ICALP, Madrid, Spain, July 1991, pages 60-75.
Springer Verlag, 1991.

[28] D. Bronshtein. “The chess struggle in practice: candidates tournament, Zurich 1953”. D. McKay
Co., New York, 1978.

[29] S. Brookes, K. Van Stone. Monads and comonads in intensional semantics. Technical Report CMU-

(CS-93-140, Carnegie Mellon University, April 1993.

[30] P. Buneman. Functional programming and databases. In “Research Topics in Functional Program-

ming”, (D. Turner ed), Addison-Wesley, 1990, pages 155-169.

[31] P. Buneman, S. Davidson and A. Watters. A semantics for complex objects and approximate answers.
Journal of Computer and System Sciences 43(1991), 170-218.

[32] P. Buneman, S. Davidson and A. Watters. Querying independent databases. Information Science,
46 (1988), 1-34.

[33] P. Buneman, A. Jung, A. Ohori. Using powerdomains to generalize relational databases. Theoretical

Computer Science 91(1991), 23-55.

[34] P. Buneman, L. Libkin, D. Suciu, V. Tannen and L. Wong. Comprehension syntax. SIGMOD
Record, 23 (1994), 87-96.

[35] L. Cardelli. Types for data-oriented languages. In Proceedings of EDBT-88 (J.W. Schmidt, S. Ceri
and M. Missikoff eds), Springer Lecture Notes in Computer Science, vol. 303, Springer Verlag, 1988.

BIBLIOGRAPHY 249

[36]

[37]

[38]

A. Chandra and D. Harel. Structure and complexity of relational queries. Journal of Computer and

System Sciences, 25 (1982), 99-128.

S. Chaudhuri and Ph. Kolaitis. Can Datalog be approximated? In Proceedings of the 13th Conference
on Principles of Database Systems, Minneapolis MN, May 1994, pages 86-96.

S. Chaudhuri and M. Vardi. Optimization of real conjunctive queries. In Proceedings of 12th ACM
Symposium on Principles of Database Systems, pages 59-70, Washington, D. C., May 1993.

E.F. Codd. Understanding relations. Bulletin of ACM SIGMOD, 1975, pages 23-28.

E.F. Codd. Extending the database relational model to capture more meaning. ACM Trans. Database
Systems 4 (1979), 397-434.

L. Colby. A recursive algebra for nested relations. Information Systems 15 (1990), 567-582.

M. Consens and A. Mendelzon. Low complexity aggregation in GraphLog and Datalog. Theoretical
Computer Science 116 (1993), 95-116.

T. Coquand, C. Gunter and G. Winskel. Domain theoretic models of polymorphism. Information
and Computation 81 (1989), 123-167.

B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science 25 (1983),
95-169.

A. Day. The lattice theory of functional dependencies and normal decompositions. Intern. J. of

Algebra and Computation 2 (1992), 409-431.
J. Demetrovics. private communication.

J. Demetrovics, L. Libkin and I. Muchnik. Functional dependencies in relational databases : a lattice
point of view. Discrete Applied Mathematics 40 (1992), 155-185.

J. Demetrovics, L. Ronyai and H.N. Son. An approach for normalization, composition and decom-
position of attributes. In LNCS 646: Proc. ICDT, Berlin, Germany, October, 1992 pages 71-85.
Springer-Verlag, October 92.

N. Dershowitz and J.-P. Jouannand. Rewrite Systems. Chapter 6 in “Handbook of Theoretical
Computer Science”, North Holland, 1990, pages 243-320.

R. Fagin. Horn clauses and database dependencies. Journal of ACM 29 (1982), 952-985.

R. Fagin. Finite model theory — a personal perspective. Theoretical Computer Science, 116 (1993),
3-32.

R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs monadic co-NP. In Proceedings of 8th
IEEE Conference on Structure in Complezity Theory, pages 19-30, May 1993.

K.E. Flannery and J.J. Martin. Hoare and Smyth power domain constructors commute under
composition. Journal of Computer and System Sciences 40 (1990), 125-135.

M. Furst, J. Saxe and M. Sipser. Parity, circuits and the polynomial time hierarchy. Math. Systems
Theory, 17:13-27, 1984.

H. Gaifman. On local and non-local properties. In: Proceedings of the Herbrand Symposium, Logic

Colloquium ’81, North Holland, 1982, pages 105-135.

M. Garey and D. Johnson. “Computers and Intractability : A Guide to the Theory of NP- complete-
ness”. San Francisco, W.H. Freeman, 1979.

250 BIBLIOGRAPHY

[57] J.-Y. Girard. The system F of variable types : fifteen years later. Theoretical Computer Science 45
(1986), 159-192.

[68] J.-Y. Girard. “Proofs and Types”, Cambridge University Press, 1987.

[59] G. Gottlob and R. Zicari. Closed world databases opened through null values. In Proc. Very Large
Databases (1988), 50-61.

[60] S. Grumbach and T. Milo. Towards tractable algebras for bags. Proceedings of the 12th Conference
on Principles of Database Systems, Washington DC, 1993, pages 49-58.

[61] G. Gierz and A. Romanowska. Duality for distributive bisemilattices. J. Austral. Math. Soc. (A) 51
(1991), 247-275.

[62] G. Grahne. “The Problem of Incomplete Information in Relational Databases”. Springer-Verlag,
Berlin, 1991.

[63] J. Grant. Null values in relational databases. Information Processing Letters 6 (1977), 156-157.
4] G.Gratzer. “Universal Algebra”. Springer Verlag, 1980.

[65] C. Gunter. Comparing categories of domains. In “Mathematical Foundations of Programming Se-
mantics (A. Melton ed), Springer Lecture Notes in Computer Science, vol. 239, Springer, Berlin,
1985, pages 101-121.

[66] C. Gunter. The mixed powerdomain. Theoretical Computer Science 103 (1992), 311-334.
7] C. Gunter. “Semantics of Programming Languages”. The MIT Press, 1992.

[68] C. Gunter and D. Scott. Semantic Domains. Chapter 12 in “Handbook of Theoretical Computer
Science”, ed. J. van Leeuwen (North Holland, 1990), pages 633-674.

[69] E. Gunter and L. Libkin. OR-SML: a functional database programming language for disjunctive
information and 1its applications. In Proceedings of the Conference on Database and Ezpert Systems
Applications DEXA-94, Springer Verlag, to appear.

[70] M. Gyssens and D. Van Gucht. The powerset algebra as a natural tool to handle nested database
relations. Journal of Computer and System Sciences 45 (1992), 76-103.

[71] R. Heckmann. Lower and upper power domain constructions commute on all cpos. Information
Processing Letters 40 (1991), 7-11.

[72] G. G. Hillebrand, P. C. Kanellakis, and H. G. Mairson. Database query languages embedded in
the typed lambda calculus. In Proceedings of §th IEEE Symposium on Logic in Computer Science,
Montreal, Canada, June 1993, pages 332-343.

[73] G. G. Hillebrand and P. C. Kanellakis. Functional database query languages as typed lambda calculi
of fixed order. In Proceedings of the 13th Conference on Principles of Database Systems, Minneapolis
MN, May 1994, pages 222-231.

[74] P. Honeyman. Testing satisfaction of functional dependencies. Journal of the ACM, 29 (1982),
668—677.

[75] J. Hopcroft and R. Karp. An n°/? algorithm for maximum matchings in bipartite graphs. SIAM
J. Computing 4 (1973), 225-231.

[76] R. Hull. Relative information capacity of simple relational database schemata. SIAM Journal of
Computing, 15 (1986), 865-886.

BIBLIOGRAPHY 251

[77]

[78]

[79]

[80]

R. Hull. A survey of theoretical research on typed complex database objects. In “Databases”
(J. Paredaens ed.) Academic Press, London, 1987, pages 193-256.

T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of ACM

31(1984), 761-791.

T. Imielinski and W. Lipski. The relational model of data and cylindric algebras, Journal of
Computer and System Science 28 (1984), 80-102.

T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects — a data model for design and
planning applications. In Proc. of ACM-SIGMOD, Denver, Colorado, May 1991, pages 288-297.
Full paper submitted to ACM TODS.

T. Imielinski, S. Naqvi, and K. Vadaparty. Querying design and planning databases. In LNCS 566:
Deductive and Object Oriented Databases, pages 524-545, Berlin, 1991. Springer-Verlag.

T. Imielinski and K. Vadaparty. Complexity of querying databases with or-objects. In PODS-89.

N. Immerman. Relational queries computable in polynomial time. Information and Control, 68

(1986), 86-104.
N. Immerman. Languages that capture complexity classes. STAM J. Comput. 16 (1987), 760-778.

N. Immerman and E. Lander. Describing graphs: A first order approach to graph canonization. In
“Complexity Theory Retrospective”, Springer Verlag, Berlin, 1990.

N. Immerman, S. Patnaik and D. Stemple. The expressiveness of a family of finite set languages. In
Proceedings of the 10th Symposium on Principles of Database Systems, 1991, pages 37-52.

A. Jung. personal communication.

A. Jung, L. Libkin and H. Puhlmann. Decomposition of domains. In: Proceedings of the Conference
on Mathematical Foundations of Programming Semantics—91, Springer LNCS 598, Springer Verlag,
Berlin, 1992, pages 235-258.

P. Kanellakis. Elements of Relational Database Theory. Chapter 17 in “Handbook of Theoretical
Computer Science”, North Holland, 1990, pages 1075-1156.

M. Kifer and G. Lausen. F-Logic: a higher-order language for reasoning about objects, inheritance

and scheme. In SIGMOD 89, pages 134-146.

A. Klausner and N. Goodman. Multirelations: semantics and languages. In Proceedings of Very
Large Databases—85, pages 251-258.

A. Klug. Equivalence of relational algebra and relational calculus query languages having aggregate

functions. Journal of the ACM 29 (1982), 699-717.
W. Lamersdorf. Recursively defined complex objects. In [4], pages 176-189.
N. Lerat and W. Lipski. Nonapplicable nulls. Theoretical Computer Science 46 (1986), 67-82.

M. Levene and G. Loizou. The nested relation type model: An application of domain theory to

databases. The Computer Journal 33 (1990), 19-30.

M. Levene and G. Loizou. Correction to “Null values in nested relational databases” by M. A. Roth,

H. F. Korth, and A. Silberschatz. Acta Informatica 28 (1991), 603-605.

M. Levene and G. Loizou. Semantics of null extended nested relations. ACM Trans. Database

Systems 18 (1992), 414-459.

252 BIBLIOGRAPHY

[98] M. Levene and G. Loizou. A fully precise null extended nested relational algebra. Fundamenia

Informaticae 19 (1993), 303-343.

[99] L. Libkin. A relational algebra for complex objects based on partial information. In LNCS 495:
Proceedings of Symposium on Mathematical Fundamentals of Database Systems-91, pages 36-41,
Rostock, 1991. Springer-Verlag.

[100] L.Libkin. An elementary proof that upper and lower powerdomain constructions commute. Bulletin

of the EATCS, 48 (1992), 175-177.

[101] L. Libkin. Denotational semantics for complex objects and functions on them. Unpublished notes,
University of Pennsylvania, 1992.

[102] L. Libkin. A remark about algebraicity in complete partial orders. Journal of Pure and Applied
Algebra 86 (1993), 75-77.

[103] L. Libkin. Algebraic characterization of edible powerdomains. Technical Report MS-CIS-93-70/L&C
71, University of Pennsylvania, 1993.

[104] L. Libkin and L. Wong. Semantic representations and query languages for or-sets. Proceedings of
the 12th Conference on Principles of Database Systems, Washington, DC, May 1993, pages 37-48.

[105] L. Libkin and L. Wong. Some properties of query languages for bags. In Proceedings of the Fourth
Workshop on Database Programming Languages, Manhattan NY, August 30-September 1, 1993,
Springer Verlag, 1994, pages 97-114.

[106] L.Libkin and L. Wong. Aggregate functions, conservative extension and linear order. In Proceedings
of the Fourth Workshop on Database Programming Languages, Manhattan NY, August 30-September
1, 1993, Springer Verlag, 1994, pages 282-294.

[107] L. Libkin and L. Wong. Conservativity of nested relational calculi with internal generic functions.
Information Processing Letters 49 (1994), 273-280.

[108] L. Libkin and L. Wong. New techniques for studying set languages, bag languages and aggregate
functions. In Proceedings of the 13th Conference on Principles of Database Systems, Minneapolis

MN, May 1994, pages 155—166.

[109] W. Lipski. On semantic issues connected with incomplete information in databases. ACM
Trans. Database Systems 4 (1979), 262-296.

[110] W. Lipski. On databases with incomplete information. J. ACM 28 (1981), 41-70.

[111] K.C. Liu and R. Sinderraman. Indefinite and maybe information in relational databases. ACM
Trans. Database Systems 15 (1990), 1-39.

112] S. MacLane. “Categories for the Working Mathematician”. Springer Verlag, 1971.
113] D. Maier. “The Theory of Relational Databases”. Computer Science Press, 1983.

[112]
[113]
[114] R. Milner, M. Tofte and R. Harper. “The Definition of Standard ML”. The MIT Press, 1990.
[115] J. Minker, editor. “Foundations of Deductive Dalabases and Logic Programming”. M. Kaufmann
Publishers, 1988.

[116] J. Mitchell. Type systems for programming languages. Chapter 8 in “Handbook of Theoretical
Computer Science”, North Holland, 1990, pages 365-458.

[117] J. Mitchell and A. Scedrov. Notes on sconing and relators. In Computer Science Logic-92, Springer
LNCS 702, 1993, pages 352-378.

BIBLIOGRAPHY 253

[118] E. Moggi. Notions of computation and monads. Information and Computation, 93 (1991), 55-92.
[119] J. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics 3(1965), 23-28.

[120] 1. S. Mumick and O. Shmueli. How expressive if stratified aggregation. Annals of Mathemalics and
Artificial Intelligence, 1994, to appear.

[121] T.-H. Ngair. “Convex Spaces as an Order-theoretic Basis for Problem Solving” (PhD Thesis).
Technical Report MS-CIS-92-60, University of Pennsylvania, 1992.

[122] P. Odifreddi. “Classical Recursion Theory”. North Holland, 1989.

[123] A. Ohori. “A Study on Semantics, Types and Languages for Dalabases and Object-oriented Pro-
gramming”. PhD Thesis, University of Pennsylvania, 1989.

[124] A. Ohori. Orderings and types in databases. In “Advances in Database Programming Languages”
(F. Bancilhon and P. Buneman, eds.), ACM Press, 1990, pages 97-116.

[125] A. Ohori. Semantics of types for database objects. Theoretical Computer Science 76 (1990), 53-91.

[126] A. Ohori. A compilation method for ML-style polymorphic record calculi. In Proc. of Symp. on
Principles of Programming Languages, 1992, pages 145-165.

[127] A. Ohori, V. Breazu-Tannen and P. Buneman. Database programming in Machiavelli: a polymor-
phic language with static type inference. In SIGMOD 89, pages 46-57.

[128] A. Ola. Relational databases with exclusive digjunctions. In Data Engineering 92, pages 328-336.

[129] G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos. Extending relational algebra and relational calculus
with set-valued attributes and aggregate functions. ACM Transactions on Database Systems, 12

(1987), 566-592.

[130] Z. M. Ozsoyoglu and L.-Y. Yuan. A new normal form for nested relations. ACM Transaction on
Database Systems, 12 (1987), 111-136.

[131] J. Paredaens, P. De Bra, M. Gyssens and D. Van Gucht. “The Structure of the Relational Dala
Model”. Springer, Berlin, 1989.

[132] J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions into flat algebra
expressions. ACM Transaction on Database Systems, 17 (1992), 65-93.

[133] L.C. Paulson. “ML for the Working Programmer”. Cambridge University Press, 1991.
[134] J. Plonka. On distributive quasilattices. Fundamenta Mathematicae 60 (1967), 191-200.

[135] J. Plonka. On a method of construction of abstract algebras. Fundamenta Mathematicae 61 (1967),
183-189.

[136] J. Plonka. On free algebras and algebraic decompositions of algebras from some equational classes
defined by regular equations. Algebra Universalis 1 (1971), 261-264.

[137] G. Plotkin. A powerdomain construction. SIAM Journal of Computing 5 (1976), 452-487.

[138] G. Plotkin. Lambda-definability in the full type hierarchy. In “To H.B. Curry: Essays on Combi-
natory Logic, Lambda Calculus and Formalism”, edited by J. Seldin and J. Hindley, Academic Press,
London, 1980, pages 363-373.

[139] C. Pollard and D. Moshier. Unifying partial descriptions of sets. Manuscript, 1993.

254 BIBLIOGRAPHY

[140] A. Poulovassilis and C. Small. A domain theoretic approach to integrating functional and logical
database languages. In Proceedings of Very Large Databases—93, pages 416-428.

[141] H. Puhlmann. The snack powerdomain for database semantics. In LNCS 711: Proceedings of Con-
ference on Mathematical Foundations of Computer Science, Gdansk, Poland, 30 August—3 September
1993, (Andrzej M. Borzyszkowski and Stefan Sokolowski, eds.), Springer Verlag, 1993, pages 650-659.

[142] R. Reiter. On closed world databases. In “Logic and Databases”, H. Gallaire and J. Minker eds,
Plenum Press, 1978, pages 55-76.

[143] R. Reiter. Towards a logical reconstruction of relational database theory. In: “On Conceptual

Modeling” (M. Brodie and J. Schmidt eds.), Springer Verlag, 1984, pages 163-189.

[144] R. Reiter. A sound and sometimes complete query evaluation algorithm for relational databases

with null values. J. ACM 33 (1986), 349-370.

[145] D. Rémy. Efficient representation of extensible records. In ACM SIGPLAN Workshop on ML and
its applications, 1922, pages 12-16.

[146] J. Reynolds. Polymorphism is not set-theoretic. In “Semantics of Data Types” (G. Kahn, D. Mac-
queen and G. Plotkin eds), Springer Lecture Notes in Computer Science, vol. 173, Springer, Berlin,
1984, pages 145-156.

[147] A. Romanowska. Free idempotent distributive semirings with a semilattice reduct. Math. Japonica

27 (1982), 467-481.
[148] A. Romanowska and J.D.H. Smith. Bisemilattices of subsemilattices. J. Algebra 70 (1981), 78-88.

[149] A. Romanowska and J.D.H. Smith. “Modal Theory: An Algebraic Approach to Order, Geomelry
and Convezity”. Heldermann Verlag, Berlin, 1985.

[150] H. Rose. “Subrecursion: Functions and Hierarchies”. Clarendon Press, 1984.

[151] M.A. Roth, H.F. Korth and A. Silberschatz. Null values in nested relational databases. Acta
Informatica, 26 (1989), 615-642.

[152] B. Rounds. Situation-theoretic aspects of databases. In Proceedings of Conference on Situation
Theory and Applications, CSLI vol. 26, 1991, pages 229-256.

[153] H. Sakai. On a framework for logic programming with incomplete information. Fundamenta Infor-

maticae 19 (1993), 223-234.
[154] V.N. Salii. “Lattices with Unique Complements” (AMS, Providence, RI, 1988).

[155] Y. Saraiya. Fixpoints and optimizations in a language based on structural recursion on sets.
Manuscript, December 1992.

[156] H.-J. Schek and M. Scholl. The relational model with relation-valued attributes. Information
Systems 11 (1986), 137-147.

[157] M.B. Smyth. Power domains. Journal of Computer and System Sciences 16 (1978), 23-36.
[158] Standard ML of New Jersey: User’s guide. Version 0.93, February 1993. AT&T Bell Laboratories.

[159] D. Stemple and T. Sheard. A recursive base for database programming primitives. In Next Gener-
ation Information System Technology, Springer LNCS 504, Springer Verlag, 1990, pages 311-352.

[160] A. Stoughton. “Fully Abstract Models of Programming Languages”. Pitman, London, 1988.

BIBLIOGRAPHY 255

[161] D. Suciu. Bounded fixpoints for complex objects. In Proceedings of the Fourth Workshop on
Database Programming Languages, Manhattan NY, August 30-September 1, 1993, Springer Verlag,
1994, pages 263-281.

[162] D. Suciu and J. Paredaens. Any algorithm in the complex object algebra with powerset needs
exponential space to compute transitive closure. In Proceedings of the 13th Conference on Principles
of Database Systems, Minneapolis MN, May 1994, pages 201-109.

[163] D. Suciu and V. Tannen. A query language for NC. In Proceedings of the 13th Conference on
Principles of Database Systems, Minneapolis MN, May 1994, pages 167-178.

[164] K. Tanaka and T.-S. Chang. On natural join in object-oriented databases. In : Proc. of Int. Conf.
on Deductive and Object-Oriented Databases. Kyoto, December 1989.

[165] B. Thalheim. On semantic issues connected with keys in relational databases permitting null values.

J. Inf. Process. and Cybernet., 25(1/2):11-20, 1989.

[166] B. Thalheim. “Dependencies in Relational Databases”. Teubner-Texte zur Mathematik, Band 126,
Stuttgart-Leipzig, 1991.

[167] S.J. Thomas and P. Fischer. Nested relational structures. In P. Kanellakis editor, “Advances in
Computing Research: The Theory of Databases”, pages 269-307, JAI Press, 1986.

[168] J.D. Ullman. “Principles of Dalabase and Knowledge-Base Systems”. Computer Science Press,
1988.

[169] D. Van Gucht and P. Fischer. Multilevel nested relational structures. Journal of Computer and
System Sciences 36 (1988), 77-105.

[170] M. Vardi. The complexity of relational query languages. In Proc. of ACM Symp. on the Theory of
Computing, 1982, pages 137-146.

[171] M. Vardi. On the integrity of databases with incomplete information. In Proc. 5th ACM Symp. on
Principles of Database Systems (1986), 252-266.

[172] Y. Vassiliou. Null values in database management — a denotational semantics approach. In: SIG-

MOD 1979, pages 162-169.

[173] Y. Vassiliou. Functional dependencies and incomplete information. In: Very Large Databases 1980,

pages 260-269.

[174] S. Vickers. Geometric theories and databases. In P. Johnstone and A. Pitts, editors, Applications of
Categories in Computer Science, volume 177 of London Mathematical Society Lecture Notes, pages
288-314. Cambridge University Press, 1992.

[175] P. Wadler. Comprehending monads. In Proceedings of ACM Conference on Lisp and Functional
Programmang, Nice, June 1990.

[176] P. Wadler. The essence of functional programming. In Proc. of Symp. on Principles of Programming
Languages, 1992, pages 1-14.

[177) W. Wechler. “Universal Algebra for Computer Scientists”. Springer-Verlag, Berlin, 1992.
[178] G. Winskel. Powerdomains and modality. Theoretical Computer Science 36 (1985), 127-137.

[179] L. Wong. Normal forms and conservative properties for query languages over collection types. In

PODS 93, pages 26-36, Washington, D. C., May 1993.

256 BIBLIOGRAPHY

[180] L. Wong. “Querying Nested Collections”, PhD Thesis, University of Pennsylvania, 1994.

[181] C. Zaniolo. Database relations with null values. Journal of Compuler and System Sciences 28

(1984), 142-166.

Index

A

Abiteboul, S. 9, 12, 14, 15, 17, 69, 76, 82, 170,
237, 241
Abramsky, S. 35, 243
Adjoint functors 37
Albert, J. 235
Algebra 35, 36
bi-LNB 123
bi-mix 127
carrier of 35
freely generated 35
mix 118
ordered 36
freely generated 36
reduct of 144
relational 9, 10, 60, 71
nested 14, 15, 69, 71
salad 140
scone 133
signature of 35
snack 129
Algebraic cpo 32
Anomalies in databases 20, 226
removal of 227
Antichain 32
Appel, A. 245
Approximations 19-26
as free algebras 117-144
classification of 105, 106
encoding of 111
in OR-SML 225-231
lower
by many relations 24
simple 21
mix 23, 104
orderings on 106-108
relationship between 144-148
salad 25
sandwich 21, 103

257

scone 24, 104

semantics of 108-110

snack 25, 105

upper 21
Arithmetic of bag languages 80, 83
Ascending Chain Condition 52
Atkinson, M. 69
Atzeni, P. 15, 240

B

Balanced binary tree 73
undefinability of 73, 75
Balbes, R. 19
Bancilhon, F. 45
Barr, M. 37, 38
Beeri, C. 76, 82
Bernardis, M. 15
Bidoit, N. 14
Bisemilattice 128
distributive 128
Biskup, J. 2, 3, 8, 27, 45
Bloom, S. 36
Bounded degree property 73
applications of 73
in nested relational language 74
Breazu-Tannen, V. 14, 30, 43, 68, 71, 76, 78, 200
Brookes, S. 40
Buneman, P. 5, 9, 14, 19, 21, 27, 28, 30, 43, 44,
46-49, 51, 55, 59, 68, 69, 71, 76, 109,
128, 226, 227, 229, 234

C

Cardelli, L. 28, 43, 66
Category 37
FSL 37
Kleish of monad 39
Poset 37
Set 37

258

Chain 32
Chandra, A. 241
Chang, T. 63
Chaudhuri, S. 235, 244
Closed World Assumption 6, 88-91, 237, 240
Codd, E.F. 2,8
Colby, L. 14, 69
Complex objects 12-15
as OR-SML type 207
types of 69
Consens, M. 81, 236
Conservativity of languages 71, 80, 155
Consistency
in posets 31
of approximations 21-25
Containment problem 12
Coquand, T. 243
Critical pair 42, 172
Critical pair lemma 42

D

Davidson, S. 5, 19, 21
Day, A. 241
Definability of queries
in bag languages 80-85, 160-162
in set languages 71-7h
Demetrovics, J. 241
Dependency 241
functional
in generalized relations 55, b6
in relations with nulls 15, 240
multivalued 58-60
Dershowitz, N. 40
Directed subset 31
Distinct representatives
systems of 160, 162, 170, 180
undefinability of 162
Domain 32
coatomic 54
distributive 32
flat 45, 61
qualitative 32
Scott 32
Duplicate elimination 79

in OR-SML 217-220

INDEX

E

Element
bottom 32
compact 31
maximal 32
minimal 32
top 32

F

Fagin, R. 73, 241
Filter 31
finitely generated 101
in conceptual semantics 101
Fischer, P. 12, 14, 69
Flannery, K. 113
Function
admissible 118, 120, 133, 138
aggregate 81, 155, 235, 236
monotone 154
undecidability of 154
Functor 37
adjoint 37, 117
left 37, 38, 67, 70
right 37
forgetful 37, 67, 70

G

Gaifman, H. 75

Girard, J.-Y. 32, 183

Goodman, N. 236

Gottlob, G. 9

Grahne, G. 8-10, 12, 15

Grant, J. 2

Gratzer, G. 35, 36, 144

Grumbach, S. 79, 82, 83, 235

Gunter, C. 19, 23, 32, 34, 35, 109, 113, 118, 119,
237, 243

Gunter, E. 30, 210

Gyssens, M. 76

H

Harel, D. 241
Heckmann, R. 113
Hillebrand, G. 69

Homomorphism 35

INDEX

monotone 36
Honeyman, P. 15
Hoperoft, J. 97
Hull, R. 236, 239, 241

I

Ideal 31
completion 35
principal 32
strong 47
Imielinski, T. 9-11, 17, 45, 64, 155, 180
Immerman, N. 68, 69, 73, 83, 241, 242
Iterated constructions 112, 113
isomorphism of 113
universality of 115

J

Jouannand, J.-P. 40
Jung, A. 19, 26, 27, 30, 35, 43, 46, b4, 57, 132,
141, 234

K

Kanellakis, P. 9, 12, 17, 26, 69, 237
Karp, R. 97

Key set 240

Khoshafian, S. 45

Klausner, A. 236

Klug, A. 236

Kolaitis, Ph. 244

Korth, H. 14, 15, 27

L

Lander, E. 242
Language
for bags 78
for sets and or-sets or-ANRL 168
nested relational 69, 71, 72
for antichains 152
null values in 15
of Zaniolo 4, 156, 157
Lattice
free distributive 116
uniquely complemented 57
Least upper bound 31
Left normal band 123

259

Lerat, N. 8
Levene, M. 9, 15, 16, 27, 43
Libkin, L. 14, 17, 19, 27, 28, 30, 32, 43, 47, 54,
68, 71,73,76,79-82, 113, 141, 161, 210,
236, 238, 242
Lipski, W. 5, 8-11, 16, 17, 45, 64, 155
Liu, K. 17
Loizou, G. 9, 15, 16, 27, 43
Loop
equivalence to structural recursion 77, 83,
214
in bag languages 83
in set languages 76
Losslessness theorem 192

M

p-rewriting 181
p-type 181
MacLane, S. 37
MacQueen, D. 245
Maier, D. 1, 8
Mairson, H. 69
Martin, J. 113
Membership
problem 12, 169
test 71, 79
Mendelzon, A. 81, 236
Milner, R. 206
Milo, T. 79, 82, 83, 235
Minker, J. 17
Mitchell, J. 19, 242
Mixes 23, 104
in OR-SML 229-231
properties of 118, 119
semantics of 23, 109
Modules of OR-SML 217
Moggi, E. 40, 71
Monad 38
in programming syntax 67, 68
Monus 80
as bag difference 79
Morfuni, N. 15, 240
Moshier, D. 236
Mumick, I.5. 236

N

Naqvi, S. 17, 30, 43, 68

260

Newman’s lemma 41
Ngair, T.-H. 19, 25, 26, 109, 128
Normalization 166, 170-199
costs of 193-195
in conceptual queries 173, 223
in OR-SML 209, 224
of objects 172, 173
of types 171
partial 186
theorem 173
Null values 1-16
existing unknown un 8
generic 9
no information ni 2
nonexisting ne 8
open 9
ordering of 9

O

Ohori, A. 27, 30, 43, 46, 234, 239, 245
Open World Assumption 6, 91, 92
Operation
elimination 66, 67
introduction 66, 67
nest 13
unnest 13
Operator
a 167, 168
composition 72
conditional 72
flattening 71, 72
map 71, 72
naturally associated with type 66, 67
normalize 173
pair-with 71, 72
pairing 72
singleton 70, 72, 78
union 70, 72
additive 77
Or-sets
examples of 163-165, 220
in complex objects 17, 165
in relations 16, 17
Order
Buneman 107
Hoare 32, 92
lifting of 81, 151, 158
partial 31

Plotkin 32, 90
Smyth 32, 94

Orders for partiality

on approximations 107
on bags 96
computing of 96
undefinability of 160
on or-sets 94
definability of 158
on sets
definability of 151
under CWA 90
under OWA 92

Ozsoyoglu, Z.M. 236

P

Paredaens, J. 12, 71, 76, 155
Patnaik, S. 68, 69

Paulson, L. 206

Plonka, J. 19, 128, 130
Plotkin, G. 242

Pollard, C. 236

Poset 31

bounded complete 32
complete (cpo) 31

Poulovassilis, A. 69
Powerbag 82
Powerdomain orderings 32
Powerdomains 35
Powerset 38

as primitive on bags 82
as primitive on sets 76

finite 38, 70

Programming

data-oriented 6669
with approximations 199-203

Promotion 226

Puhlmann, M. 19, 25-27, 30, 43, 54, 128, 132,

Q

141

Queries

conceptual 18, 19, 149, 163, 173
generic 241

internal 236, 241

polymorphic 68, 71, 242
structural 18, 19, 163

INDEX

INDEX

R

Records
consistent 103
joinable 4, 21
Redundancies
in bags 99
in or-sets 93
in sets 88
removal of 99
Reiter, R. 6, 12, 98, 241
Relations
generalized 46
nested 13
with disjunctive information 16
with nulls 2
Remy, D. 245
Rewrite rule 42
Rewrite system 41
Church-Rosser 41
for complex objects 175
for object types 171
terminating 41
weakly Church-Rosser 41
Reynolds, J. 242
Romanowska, A. 123, 133, 243
Rose, H. 236
Roth, M. 14, 15, 27
Rounds, B. 17

S

Salad 25
properties of 140-143
semantics of 109, 110

Salii, V. 57

Sandwich 21, 103
properties of 119-123
semantics of 22, 109

Saraiya, Y. 76

Scedrov, A. 19

Schek, H.-J. 12, 14, 69

Schemes in domains 47-55
as semi-factors 54
complements of 56-58
definition of 48
orderings on 52
projection on 48

canonical 48, 50

261

saturated b4
Scholl, M. 12, 14, 69
Scone 24, 104
properties of 132-139
semantics of 24, 109, 110
Scott, D. 35, 46
Semantics
conceptual 100-102
of objects 99
of or-sets 99
of sets
under CWA 97
under OWA 97
of types 70, 99
structural 99
Semi-factor 49
Semilattice
free with bottom 36
free with top 36
Sheard, T. 69
Shmueli, O. 236
Silberschatz, A. 14, 15, 27
Sinderraman, R. 17
Small, C. 69
Smith, J.D.H. 123, 133, 243
Snack 25, 105
properties of 128-130
semantics of 25, 109
Stemple, D. 68, 69
Stoughton, A. 36
Structural recursion 67
on bags 78
on insert presentation 76, 78
on or-sets 213
on sets 70, 76, 151, 213
on union presentation 70
preconditions for 67, 76, 78
verification of 71, 76
restricted form of 68
Subalgebra 35
Subrahmanyam, R. 71, 76, 78, 200
Suciu, D. 28, 68, 76, 155

Summation operator 80

T

Table 11
Codd 10, 11, 170
conditioned 11

262 INDEX

equality 11, 169 Winskel, G. 118
Tanaka, K. 63 Wong, L. 14, 17, 28, 30, 43, 68, 71, 73, 76, 79-82,
Tannen, V. see Breazu-Tannen, V. 161, 236, 242, 244
Test

comparability 151, 152 Z

equality 71

membership 71, 79 Zaniolo, C. 4, 7, 27, 65, 150, 156

subbag 79 Zicari, R. 9

subset 71

Thalheim, B. 15, 240
Thomas, S. 12, 14, 69
Transitive closure 75, 76, 82
deterministic 73
Type
base 69
collection 66
variable 237
Type constructor
bag 77
or-set 99
product 69
recursive 237

set 69, 99

U

Ullman, J. 64

Universality properties 66
of approximations 117-144
of or-sets 33, 113
of sets 33, 113

of sets of or-sets 115

vV

Vadaparty, K. 17
Valuation 11

Van Gucht, D. 14, 71, 76
Vardi, M. 7, 235, 241
Vassiliou, Y. 3, 15
Vianu, V. 241

Vickers, S. 95

W

Wadler, P. 40, 69
Watters, A. 5, 19, 21
Wechler, W. 35, 40
Wells, C. 37, 38

