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AbstractWe study semilattices whose diagrams are trees. First, we characterize them as semilatticeswhose convex subsemilattices form a convex geometry, or, equivalently, the closure induced byconvex subsemilattices is antiexchange. Then we give lattice theoretic and two graph theoreticcharacterizations of atomistic semilattices with tree diagrams.1 IntroductionGraph theoretic properties of lattice and semilattice diagrams are of great interest in lattice theory incombinatorics. Even such fundamental properties of lattices as distributivity and modularity can beexpressed as properties of diagrams. Various graph theoretic properties of diagrams give rise to veryinteresting classes of lattices. For example, planar lattices were characterized in [7] via a number offorbidden con�gurations. A simple forbidden con�guration, a poset with the diagram like the letter N,has a nice characterization for posets which generalizes smoothly to lattices and semilattices [4, 12, 9].In this paper we look at a very simple property of a poset diagram | we study �nite posets whosediagrams are rooted trees. Such posets are semilattices because unique paths from any two nodesto the root have a minimal common point which is the least upper bound. Chains being the onlyexception, lattice diagrams are not trees, but a similar investigation for lattices can be carried out ifonly non-zero elements are considered. However, lattices whose non-zero elements have a tree diagramare equivalent to tree diagram semilattices.The paper is organized in three sections. In the remainder of this section we give all necessaryde�nitions. In Section 2 we characterize tree-diagram semilattices as semilattices having antiexchangeclosures induced by their convex subsemilattices. Families of closed sets of antiexchange closures areknown under the name of convex geometries and families of complements of closed sets are sometimes�Supported in part by NSF Grant IRI-90-04137 and AT&T Doctoral Fellowship.yOn leave from the International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Moscow,Russia. 1



referred to as antimatroids, see [1, 2, 3, 8]. It is well-known that the closure operator induced bysubsemilattices of a semilattice is antiexchange. If the family of subsemilattices is restricted to theconvex ones, then the antiexchange property gives us tree-diagram semilattices.In Section 3 atomistic tree diagram semilattices are studied. Three characterizations are obtained.Firstly, it is shown that such semilattices are exactly series-parallel atomistic semilattices. Secondly,trees arising as diagrams of such semilattices are characterized as branchy trees, i.e. trees whose ver-tices, except for leaves, have at least two children. Finally, it is observed that tree-diagram semilatticescan be described by complete chromatic graphs with four forbidden subgraphs.In the sequel, lattices and semilattices will be denoted by the letters L and S respectively (possiblywith indices) and 0 and 1 will stand for the least and the greatest elements. In this paper we consideronly �nite lattices and semilattices. The semilattices are join-semilattices, that is, the order is givenby x � y , x _ y = y. Graphs will be denoted by hV;Ei, where V is a set of vertices and E a set ofedges. A tree with a root s will be denoted by hV;E; si.A semilattice is called tree-diagram if its diagram is a rooted tree with root 1. In the sequel we shallalways assume that whenever the diagram of a semilattice is a tree, it is rooted and the root is themaximal element. This corresponds to the de�nition of a computer science tree in [13]. In [13], a posettree is a poset whose cover graph is a tree (that is, does not contain a circuit). Generally, a poset treemay not be a computer science tree; however, in the case of �nite semilattices, these two de�nitionsare equivalent.Below all other de�nitions are given.Tree-diagram lattice : A lattice L such that the diagram of the join-semilattice L� f0g is a tree.Series-parallel poset : A poset containing no four-element subposet with diagram like the letter N .Series-parallel lattice (semilattice) [9] : A lattice (semilattice) which is series-parallel as a poset.Antiexchange closure [2] : A closure G on a set X satisfying:8A � X;x; y 2 X : x; y 62 G(A); x 2 G(A [ y)) y 62 G(A [ x).Convex geometry [3] : A family of closed sets of an antiexchange closure.Sub(S) (or Sub(L)) : The family of all subsemilattices (or sublattices) of S (or L).CSub(S) : The family of all convex, or order preserving subsemilattices of S, that is, subsemilatticesS0 such that x � y � z and x; z 2 S0 imply y 2 S0.Ordinal sum of posets hP1;�1i and hP2;�2i with P1 \ P2 = ; : The poset hP1 [ P2;�i where �coincides with �1 and �2 on P1 and P2, and if p1 2 P1; p2 2 P2 then p1 � p2. This poset is denotedby P1 � P2.Single-element poset will be denoted by 1 and 2 stands for a two-element chain.Branchy tree : A rooted tree hV;E; si such that val(s) 6= 1 and for all v 2 V � s : val(v) 6= 2, whereval(v) =jfw 2 V : (v; w) 2 Egj (i.e. all vertices that are not leaves have at least two children).Atomistic lattice : A lattice every non-zero element of which is the join of atoms.Atomistic semilattice: A semilattice every element of which is the join of the minimal elements belowit. If L is atomistic, then so is L� f0g considered as a join-semilattice.
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2 Tree-diagram lattices and semilattices and the antiexchange clo-suresIn this section we �rst show that tree-diagram lattices are of form L ' 1 � S, where S is a tree-diagram semilattice. Therefore, all results about tree-diagram semilattices can be reformulated fortree-diagram lattices in a straightforward manner. Then we prove the main result of the section statingthat a semilattice S is tree-diagram i� CSub(S) is a convex geometry.We start with a simple lemma whose proof is omitted.Lemma 1 Let S be a tree-diagram semilattice and S0 its subsemilattice with the least element x. ThenS' is a chain. In particular, a lattice L is tree-diagram i� L ' 1� S for a tree-diagram semilattice S.2Therefore, it su�ces to prove all results for tree-diagram semilattices only. Now we are ready to provethe main result of this section.Theorem 1 A semilattice S is tree-diagram i� CSub(S) is a convex geometry.Proof. Let S be a tree-diagram semilattice. To prove that CSub(S) is a convex geometry, we mustshow that for every S0 2 CSub(S) if S0 6= S then there exists x 62 S0 such that S0 [ x 2 CSub(S) (seeequivalent de�nitions of convex geometry in [3]). If S has unique minimal element, it is a chain bylemma 1 and its intervals form a convex geometry [3]. Suppose S has two or more minimal elements.Two cases arise.Case 1. S0 contains all minimal elements of S. If S0 = S, then we are done. If S0 6= S, consider thetop element y of S0, which does not coincide with 1 because S0 is convex. Then its �lter, [y), has atleast two elements, and since [y) is a subsemilattice, by lemma 1, y is covered by a unique element x.Prove that S0 [ x 2 CSub(S). Clearly, S0 [ x 2 Sub(S). It is enough to prove that b 2 S0 whenevera < b < x for a 2 S0. Let c be a minimal element of S such that b > c. Then [c) is a chain andy > c. Hence either b � y or y � b. By the de�nitions of x and b, y � b. Therefore, b 2 S0 becauseS0 2 CSub(S). Thus, S0 [ x 2 CSub(S).Case 2. There is a minimal element of S which does not belong to S0. Then there is an element x 62 S0covered by y 2 S0. Prove that S0 [ x 2 CSub(S). Let z 2 S0. Then z _ y � z _ x. Since [x) is a chainand y covers x, we have that z_x � y and z_x = z_y 2 S0. Hence, S0 2 Sub(S). Let x < z < v 2 S0.Since [x) is a chain, y is the unique cover of x and z � y. Since S0 is order preserving, so is S0 [ x.Therefore, CSub(S) is a convex geometry.Conversely, assume that S is a semilattice whose diagram S is not a tree. Consider a circuit on thisdiagram. Let x be a minimal element of this circuit and y; z its neighbors. Then both y and z coverx. Let p = y _ z. Then p 6= y; z and the minimal order preserving subsemilattice containing fx; pgor fx; y; zg is [x; p]. Then, according to the list of the equivalent de�nitions of convex geometries [3],CSub(S) is not convex geometry because in a convex geometry no set may have two di�erent bases.The theorem is completely proved. 2There is another relationship between tree diagrams and convex geometries: if a lattice L is tree-diagram, then Sub(L) is a convex geometry. Indeed, a tree-diagram lattice is series-parallel (having3



an N would imply having a circuit) and Sub(L) is a convex geometry i� L is series-parallel [9, 11].We have seen that in a tree-diagram semilattice two incomparable elements can not have a commonlower bound. Therefore, if x = a1 _ : : : _ an in a tree-diagram semilattice, x = ai _ aj for appropriatei; j 2 f1; : : : ; ng. Tree diagram lattices or semilattices are planar and hence have dimension one ortwo. Either of these facts implies that tree-diagram lattices are 2-distributive, that is, they satisfyx ^ (y0 _ y1 _ y2) = (x ^ (y0 _ y1)) _ (x ^ (y0 _ y2)) _ (x ^ (y1 _ y2)), cf. [10].The structure of modular and distributive tree-diagram lattices can be easily described. Let Mn bean n�point projective line, i.e. Mn = f0; 1; a1; : : : ; ang where ai _ aj = 1; ai ^ aj = 0 whenever i 6= j.Proposition 1 A lattice L is modular and tree-diagram i� L ' L1�L2 where L1 is either isomorphicto Mn for some n or empty, and L2 is a chain.Proof. The 'if ' part is obvious. To prove the 'only if ' part, let L be modular tree-diagram lattice. IfjLj = 1, we are done. Let jLj > 1. Let a1; : : : ; an be atoms of L, n � 1. Suppose a = a1 _ : : : _ an. Ifthere is bka, then, by lemma 1, bka1 and b^ a = 0. b^ a1 = 0 because a1 is an atom. Since b_ a1 anda can not be incomparable in view of lemma 1, b_ a1 � a. This means that b_ a1 = b_ a. Therefore,f0; a1; a; b; a _ bg is a sublattice of L isomorphic to N5. This contradiction shows that L ' [0; a] � L2where L2 is a chain by lemma 1.If n = 1 then L is a chain, and L1 is empty. If n 6= 1, we have to prove that [0; a] 'Mn. To do this,we only have to show that a covers ai for all i 2 [1; n]. Suppose there is such i that a does not coverai, i.e. a > b > ai for some b. Since b < a, there is aj 6� b. Let x = aj _ b. Then x � ai and bylemma 1 x and y = ai _ aj are comparable. If y were less than b, we would have aj � b. Hence, y � band therefore x = y. It shows that f0; ai; aj ; b; xg is a sublattice isomorphic to N5. This contradictionproves that a covers ai, i.e. [0; a] 'Mn and L 'Mn �L2 where L2 is a chain. Proposition is proved.2Corollary 1 A lattice L is distributive and tree-diagram i� L ' L1�L2 where L1 is either empty orisomorphic to 2 or 2�2 and L2 is a chain. 23 Atomistic tree-diagram semilattices and chromatic graphsIn this section we characterize atomistic tree-diagram semilattices as atomistic series-parallel semilat-tices and show that their diagrams are branchy trees. Then we extend the representation technique forpositional structures in game theory (cf. [5, 6]) to describe such semilattices via complete chromaticsubgraphs with four forbidden subgraphs.Let K = hA;Ei be a �nite complete graph without loops and multiple edges, i.e. E = f(a1; a2) :a1; a2 2 A; a1 6= a2g. Let c : E ! N be a coloring mapping. Usually N = f1; 2; : : : ; ng, i.e. edges arecolored with n colors : c(a1; a2) 2 N is the color of the edge (a1; a2) 2 E. Such a triple � = hN;A; ciis called a chromatic graph. Each subset A0 � A generates a chromatic subgraph �0 of �. In whatfollows, four chromatic subgraphs �;�;2; j4 depicted on the �gure below will pay the crucial role.
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@@@@@@ ������������@@@@@@������ ...........@@@@@@������ j42��Given a semilattice S, let AS be the set of its atoms. De�ne a chromatic graph �S associated with Sas follows: �S = hS;AS ; cSi where cS(x; y) = x _ y 2 S.Theorem 2 Given a semilattice S, the following are equivalent:1) S is atomistic and series-parallel;2) S is atomistic and tree-diagram;3) The diagram of S is a branchy tree with root 1.In addition, if S is atomistic, then it is tree-diagram i� the chromatic graph �S does not containsubgraphs isomorphic to �;�;2; j4.Proof. 1) ) 3). Let S be atomistic and series-parallel. Prove that S is tree-diagram �rst. Assumeit is not and consider a circuit with a minimal element x and its neighbors y; z. Both y and z coverx. Since S is atomistic, there is an atom a � y such that a 6� z, and hence a 6� x. Therefore,a < y; y > x; x < z (a 6= y because y is not an atom) and akx; akz; ykz. Thus, S is not series-parallel.This contradiction shows that S is tree-diagram. Show that the diagram of S considered as a rootedtree with root 1 is branchy. Suppose there is an element x 6= 1 with val(x) = 2, that is, x covers aunique element y, because x is covered by a unique element by lemma 1. Consider an atom a � xsuch that a 6� y. Clearly, x 6= a for x is not an atom because atoms are terminal vertices of theconsidered rooted tree, and for every atom b : val(b) = 1. Hence, there exists z 2 [a; x] covered by x,and since x covers only y, z = y. Thus, y � a, which contradicts our assumption. Hence, val(x) 6= 2for all x 6= 1. If val(1) = 1, then let x be the only element covered by 1 and let a be an atom. Thereexists an element y covered by 1 in [a; 1] and, since x is the only element covered by 1, x = y � a.Therefore, x is greater than the join of all atoms and 1 can not be represented as the join of atoms.This contradiction shows val(1) 6= 1 and �nishes the proof of 1) ) 3).3) ) 2). Let 3) hold. Then S is tree-diagram and we must prove that S is atomistic. Let x bea join-irreducible element which is not an atom. Then x covers a unique element. If x = 1, thenval(1) = 1, and if x 6= 1, then, by lemma 1, x has a unique cover and val(x) = 2, i.e. the diagram ofS is not branchy. This contradiction shows that S is atomistic.That 2) implies 1) follows from the fact that any tree-diagram semilattice is series-parallel.To prove the last statement, we need a few auxiliary de�nitions. Let G = hT;N; 'i, where T is arooted tree hV;E; si whose set of leaves is denoted by A, N is a �nite set and ' is a map from V �Ato N . (These constructions are called positional structures in game theory). Associate a chromaticgraph � = �(G) = hN;A; ci with G, where the coloring function is de�ned as follows. If (ai; aj) is anedge in �, let pij be the common node of paths s{ai and s{aj which is farthest from the root. Thenc(ai; aj) = '(pij). For example, if T is a two-colored balanced binary tree of depth 2, whose root iscolored by one color and intermediate nodes by the other, then � applied to it would yield a chromaticgraph isomorphic to 2. We call G nonrepeated if '(b) 6= '(b0) whenever (b; b0) is an edge in T . It wasproved by the second author in [5, 6] that the mapping � is a 1-1 correspondence between nonrepeatedstructures G whose underlying trees are branchy, and chromatic graphs without subgraphs isomorphic5



to � and �.Moreover, if ' is injective, then �(G) does not contain a subgraph isomorphic to 2 or j4 [5]. Conversely,if � is chromatic graph not containing subgraphs isomorphic to �;�;2 and j4, by the result cited abovethere exists a unique nonrepeated structure G whose underlying tree is branchy such that �(G) = �.Prove that ' of that structure G is injective. Suppose it is not, that is, '(b) = '(b0) for b 6= b0. SinceG is nonrepeated, b and b0 are not adjacent. Then there exists a node a inside the path b{b0 suchthat '(a) 6= '(b). Two cases arise depending on whether there is a path from the root containingboth b; b0. It is easy to show that in the �rst case when such path exists, �(G) contains a chromaticsubgraph isomorphic to j4, and in the second case when there is no such path, �(G) contains a chromaticsubgraph isomorphic to either j4 or 2. Therefore, we have proved that the mapping � establishes a 1-1correspondence between nonrepeated structures G with injective functions ' and whose underlyingtrees are branchy and chromatic graphs without chromatic subgraphs isomorphic to �;�;2; j4.Now, given a tree-diagram semilattice S, consider GS =  (S) = hTS ; S � AS ; idi, where TS is thediagram of S. The semilattice S is tree-diagram i� TS is branchy. Therefore, since �S = �( (S)), theone-to-one correspondence established above �nishes the proof of the theorem. 2Corollary 2 For any tree-diagram semilattice S, the chromatic graph �S does not contain subgraphsisomorphic to �;�;2; j4. Moreover, the mapping S �! �S is a 1-1 correspondence between atomistictree-diagram semilattices and chromatic graphs without subgraphs isomorphic to �;�;2; j4. 2Acknowledgements: The authors would like to thank an anonymous referee for several helpfulsuggestions.References[1] B.L. Dietrich, Matroids and antimatroids { a survey, Discrete Math. 78 (1989), 223-237.[2] P.H. Edelman, Meet-distributive lattices and the antiexchange closure, Algebra Universalis 10 (1980),290-299.[3] P.H. Edelman and R.E. Jamison, The theory of convex geometries, Geom. Dedicata 19 (1985), 247-270.[4] P.A. Grillet, Maximal chains and antichains, Fund. Math. 15 (1969), 157-167.[5] V.A. Gurvich, Positional structures and chromatic graphs (Russian), Dokl. Acad. Nauk 322 (1992), 828-831.English translation will appear in Soviet Math. Dokl., volume 45.[6] V.A. Gurvich, Some properties and applications of complete edge-chromatic graphs and hypergraphs,Soviet Math. Dokl. 30 (1984), 803-807.[7] D. Kelly and I. Rival, Planar lattices, Canad. J. Math. 27 (1975), 635-665.[8] B. Korte, L. Lov�asz and R. Schrader, \Greedoids", Springer-Verlag, Berlin, 1991.[9] L. Libkin, Separation theorem for lattices, MTA SZTAKI K�ozlem�enyek 39 (1988), 93-100.[10] L. Libkin, n-distributivity, dimension and Carath�eodory's theorem, Algebra Universalis ?? (1994), ???-???.[11] L. Libkin and I. Muchnik, Separatory sublattices and subsemilattices, Studia Sci. Math. Hungar. 27(1992), 471-477.[12] Z. Lonc and I. Rival, Chains, antichains and �bres, J.Combin.Th. (A) 44 (1987), 207-228.[13] W.T. Trotter, \Combinatorics and Partially Ordered Sets: Dimension Theory", The John Hopkins Uni-versity Press, 1992. 6


