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Abstract

We study semilattices whose diagrams are trees. First, we characterize them as semilattices
whose convex subsemilattices form a convex geometry, or, equivalently, the closure induced by
convex subsemilattices is antiexchange. Then we give lattice theoretic and two graph theoretic
characterizations of atomistic semilattices with tree diagrams.

1 Introduction

Graph theoretic properties of lattice and semilattice diagrams are of great interest in lattice theory in
combinatorics. Even such fundamental properties of lattices as distributivity and modularity can be
expressed as properties of diagrams. Various graph theoretic properties of diagrams give rise to very
interesting classes of lattices. For example, planar lattices were characterized in [7] via a number of
forbidden configurations. A simple forbidden configuration, a poset with the diagram like the letter N,
has a nice characterization for posets which generalizes smoothly to lattices and semilattices [4, 12, 9].
In this paper we look at a very simple property of a poset diagram — we study finite posets whose
diagrams are rooted trees. Such posets are semilattices because unique paths from any two nodes
to the root have a minimal common point which is the least upper bound. Chains being the only
exception, lattice diagrams are not trees, but a similar investigation for lattices can be carried out if
only non-zero elements are considered. However, lattices whose non-zero elements have a tree diagram
are equivalent to tree diagram semilattices.

The paper is organized in three sections. In the remainder of this section we give all necessary
definitions. In Section 2 we characterize tree-diagram semilattices as semilattices having antiexchange
closures induced by their convex subsemilattices. Families of closed sets of antiexchange closures are
known under the name of conver geometries and families of complements of closed sets are sometimes
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referred to as antimatroids, see [1, 2, 3, 8]. It is well-known that the closure operator induced by
subsemilattices of a semilattice is antiexchange. If the family of subsemilattices is restricted to the
convex ones, then the antiexchange property gives us tree-diagram semilattices.

In Section 3 atomistic tree diagram semilattices are studied. Three characterizations are obtained.
Firstly, it is shown that such semilattices are exactly series-parallel atomistic semilattices. Secondly,
trees arising as diagrams of such semilattices are characterized as branchy trees, i.e. trees whose ver-
tices, except for leaves, have at least two children. Finally, it is observed that tree-diagram semilattices
can be described by complete chromatic graphs with four forbidden subgraphs.

In the sequel, lattices and semilattices will be denoted by the letters L and S respectively (possibly
with indices) and 0 and 1 will stand for the least and the greatest elements. In this paper we consider
only finite lattices and semilattices. The semilattices are join-semilattices, that is, the order is given
by © <y < xVy =y. Graphs will be denoted by (V, E), where V is a set of vertices and F a set of
edges. A tree with a root s will be denoted by (V, E, s).

A semilattice is called tree-diagram if its diagram is a rooted tree with root 1. In the sequel we shall
always assume that whenever the diagram of a semilattice is a tree, it is rooted and the root is the
maximal element. This corresponds to the definition of a computer science tree in [13]. In [13], a poset
tree is a poset whose cover graph is a tree (that is, does not contain a circuit). Generally, a poset tree
may not be a computer science tree; however, in the case of finite semilattices, these two definitions
are equivalent.

Below all other definitions are given.
Tree-diagram lattice : A lattice L such that the diagram of the join-semilattice L — {0} is a tree.
Series-parallel poset : A poset containing no four-element subposet with diagram like the letter N.
Series-parallel lattice (semilattice) [9] : A lattice (semilattice) which is series-parallel as a poset.
Antiexchange closure [2] : A closure G on a set X satisfying:

VACX,z,ye X:2,y ¢ G(A),z € G(AUy) =y & G(AUx).
Convez geometry [3] : A family of closed sets of an antiexchange closure.
Sub(S) (or Sub(L)) : The family of all subsemilattices (or sublattices) of S (or L).

CSub(S) : The family of all convex, or order preserving subsemilattices of S, that is, subsemilattices
S’ such that z <y < zand z,z € S’ imply y € S'.

Ordinal sum of posets (P1,<1) and (P, <) with Py N P, = () : The poset (P; U P5, <) where <
coincides with <; and <5 on P; and P, and if p; € P;,py € P, then p; < py. This poset is denoted
by P, & Ps.

Single-element poset will be denoted by 1 and 2 stands for a two-element chain.

Branchy tree : A rooted tree (V. E, s) such that val(s) # 1 and for all v € V — s : val(v) # 2, where
val(v) =[{w € V : (v,w) € E}| (i.e. all vertices that are not leaves have at least two children).
Atomistic lattice : A lattice every non-zero element of which is the join of atoms.

Atomistic semilattice: A semilattice every element of which is the join of the minimal elements below
it. If L is atomistic, then so is L — {0} considered as a join-semilattice.



2 Tree-diagram lattices and semilattices and the antiexchange clo-
sures

In this section we first show that tree-diagram lattices are of form L ~ 1 & S, where S is a tree-
diagram semilattice. Therefore, all results about tree-diagram semilattices can be reformulated for
tree-diagram lattices in a straightforward manner. Then we prove the main result of the section stating
that a semilattice S is tree-diagram iff C'Sub(S) is a convex geometry.

We start with a simple lemma whose proof is omitted.

Lemma 1 Let S be a tree-diagram semilattice and S’ its subsemilattice with the least element x. Then
S’ is a chain. In particular, a lattice L is tree-diagram iff L ~ 1@ S for a tree-diagram semilattice S.
]

Therefore, it suffices to prove all results for tree-diagram semilattices only. Now we are ready to prove
the main result of this section.

Theorem 1 A semilattice S is tree-diagram iff CSub(S) is a convex geometry.

Proof. Let S be a tree-diagram semilattice. To prove that C'Sub(S) is a convex geometry, we must
show that for every S’ € CSub(S) if S’ # S then there exists z ¢ S’ such that S’ Uz € CSub(S) (see
equivalent definitions of convex geometry in [3]). If S has unique minimal element, it is a chain by
lemma 1 and its intervals form a convex geometry [3]. Suppose S has two or more minimal elements.
Two cases arise.

Case 1. S’ contains all minimal elements of S. If S’ = S, then we are done. If S’ # S, consider the
top element y of S’, which does not coincide with 1 because S’ is convex. Then its filter, [y), has at
least two elements, and since [y) is a subsemilattice, by lemma 1, y is covered by a unique element z.
Prove that S’ Uz € CSub(S). Clearly, S’ Uz € Sub(S). It is enough to prove that b € S’ whenever
a <b< zforaecS. Letcbea minimal element of S such that b > ¢. Then [¢) is a chain and
y > c. Hence either b > y or y > b. By the definitions of z and b, y > b. Therefore, b € S’ because
S" € CSub(S). Thus, S’ Uz € CSub(S).

Case 2. There is a minimal element of S which does not belong to S’. Then there is an element z ¢ S’
covered by y € S'. Prove that S’ Ux € CSub(S). Let z € S’. Then zVy > zV z. Since [z) is a chain
and y covers z, we have that zVz >y and zVz = 2Vy € S’. Hence, S’ € Sub(S). Let z <z <wv e S
Since [z) is a chain, y is the unique cover of z and z > y. Since S’ is order preserving, so is S’ U z.
Therefore, CSub(S) is a convex geometry.

Conversely, assume that S is a semilattice whose diagram S is not a tree. Consider a circuit on this
diagram. Let x be a minimal element of this circuit and y, z its neighbors. Then both y and z cover
z. Let p =1y V 2z Then p # y,z and the minimal order preserving subsemilattice containing {z,p}
or {z,y, 2} is [z,p]. Then, according to the list of the equivalent definitions of convex geometries [3],
C'Sub(S) is not convex geometry because in a convex geometry no set may have two different bases.
The theorem is completely proved. O

There is another relationship between tree diagrams and convex geometries: if a lattice L is tree-
diagram, then Sub(L) is a convex geometry. Indeed, a tree-diagram lattice is series-parallel (having



an N would imply having a circuit) and Sub(L) is a convex geometry iff L is series-parallel [9, 11].

We have seen that in a tree-diagram semilattice two incomparable elements can not have a common
lower bound. Therefore, if x = a1 V...V a, in a tree-diagram semilattice, 2 = a; V a; for appropriate
i,7 € {1,...,n}. Tree diagram lattices or semilattices are planar and hence have dimension one or
two. Kither of these facts implies that tree-diagram lattices are 2-distributive, that is, they satisfy

zA(yoVyrVy2) = (Ao Vy))V(zA(yoVy2))V(zA(yr V), cf [10].

The structure of modular and distributive tree-diagram lattices can be easily described. Let M, be
an n—point projective line, i.e. M, ={0,1,a1,...,a,} where a; V a; = 1,a; A a; = 0 whenever i # j.

Proposition 1 A lattice L is modular and tree-diagram iff L ~ L1 ® Lo where Ly is either isomorphic
to M,, for some n or empty, and Ly is a chain.

Proof. The ’if’ part is obvious. To prove the ’only if ’ part, let L be modular tree-diagram lattice. If
L] =1, we are done. Let |L| > 1. Let ay,...,a, be atoms of L, n > 1. Suppose a = a1 V...V a,. If
there is b||a, then, by lemma 1, b||a; and bAa = 0. bAa; = 0 because a1 is an atom. Since bV a; and
a can not be incomparable in view of lemma 1, bV a; > a. This means that bV a; = bV a. Therefore,
{0,a1,a,b,a V b} is a sublattice of L isomorphic to N5. This contradiction shows that L ~ [0,a] & Lo
where Ly is a chain by lemma 1.

If n =1 then L is a chain, and L; is empty. If n # 1, we have to prove that [0,a] ~ M,. To do this,
we only have to show that a covers a; for all i € [1,n]. Suppose there is such ¢ that a does not cover
a;, i.e. a > b > q; for some b. Since b < a, there is a; £ b. Let x = a; Vb. Then z > q; and by
lemma 1 z and y = a; V a; are comparable. If y were less than b, we would have a; < b. Hence, y > b
and therefore = y. It shows that {0, a;,a;,b, 2} is a sublattice isomorphic to N5. This contradiction
proves that a covers a;, i.e. [0,a] ~ M, and L ~ M,, & Ly where Ly is a chain. Proposition is proved.
O

Corollary 1 A lattice L is distributive and tree-diagram iff L ~ L1 @ Ly where Ly is either empty or
isomorphic to 2 or 2x2 and Lo is a chain. O

3 Atomistic tree-diagram semilattices and chromatic graphs

In this section we characterize atomistic tree-diagram semilattices as atomistic series-parallel semilat-
tices and show that their diagrams are branchy trees. Then we extend the representation technique for
positional structures in game theory (cf. [5, 6]) to describe such semilattices via complete chromatic
subgraphs with four forbidden subgraphs.

Let K = (A, E) be a finite complete graph without loops and multiple edges, i.e. E = {(a1,a2) :
ay,az € A;a; # as}. Let ¢: E — N be a coloring mapping. Usually N = {1,2,...,n}, i.e. edges are
colored with n colors : ¢(ay,a2) € N is the color of the edge (a1,as) € E. Such a triple I' = (N, A, c)
is called a chromatic graph. Each subset A’ C A generates a chromatic subgraph T' of I'. In what
follows, four chromatic subgraphs II, A, 0,4 depicted on the figure below will pay the crucial role.



I A O 0

Given a semilattice S, let Ag be the set of its atoms. Define a chromatic graph I's associated with S
as follows: T's = (S, Ag, cs) where cg(z,y) =z Vy € S.

Theorem 2 Given a semilattice S, the following are equivalent:

1) S is atomistic and series-parallel;

2) S is atomistic and tree-diagram;

3) The diagram of S is a branchy tree with root 1.

In addition, if S is atomistic, then it is tree-diagram iff the chromatic graph T's does not contain
subgraphs isomorphic to TI, A, 0,7,

Proof. 1) = 3). Let S be atomistic and series-parallel. Prove that S is tree-diagram first. Assume
it is not and consider a circuit with a minimal element x and its neighbors y, z. Both y and z cover
z. Since S is atomistic, there is an atom a < y such that ¢ £ 2, and hence a £ z. Therefore,
a<y,y>z,x<z(a#ybecause y is not an atom) and a||z, a||z,y||z. Thus, S is not series-parallel.
This contradiction shows that S is tree-diagram. Show that the diagram of S considered as a rooted
tree with root 1 is branchy. Suppose there is an element = # 1 with val(z) = 2, that is, z covers a
unique element gy, because z is covered by a unique element by lemma 1. Consider an atom a <
such that a £ y. Clearly, x # a for z is not an atom because atoms are terminal vertices of the
considered rooted tree, and for every atom b : val(b) = 1. Hence, there exists z € [a, x] covered by z,
and since z covers only y, z = y. Thus, y > a, which contradicts our assumption. Hence, val(z) # 2
for all x # 1. If val(1) = 1, then let x be the only element covered by 1 and let a be an atom. There
exists an element y covered by 1 in [a, 1] and, since z is the only element covered by 1, z = y > a.
Therefore, x is greater than the join of all atoms and 1 can not be represented as the join of atoms.
This contradiction shows val(1) # 1 and finishes the proof of 1) = 3).

3) = 2). Let 3) hold. Then S is tree-diagram and we must prove that S is atomistic. Let z be
a join-irreducible element which is not an atom. Then z covers a unique element. If z = 1, then
val(1) =1, and if  # 1, then, by lemma 1, z has a unique cover and val(z) = 2, i.e. the diagram of
S is not branchy. This contradiction shows that S is atomistic.

That 2) implies 1) follows from the fact that any tree-diagram semilattice is series-parallel.

To prove the last statement, we need a few auxiliary definitions. Let G = (T, N, ¢), where T' is a
rooted tree (V, E, s) whose set of leaves is denoted by A, N is a finite set and ¢ is a map from V — A
to N. (These constructions are called positional structures in game theory). Associate a chromatic
graph I' = 7(G) = (N, A, ¢) with G, where the coloring function is defined as follows. If (a;,a;) is an
edge in I, let p;; be the common node of paths s—a; and s—a; which is farthest from the root. Then
c(a;,aj) = ¢(pij). For example, if T' is a two-colored balanced binary tree of depth 2, whose root is
colored by one color and intermediate nodes by the other, then 7 applied to it would yield a chromatic
graph isomorphic to 0. We call G nonrepeated if ¢(b) # ¢(b') whenever (b,b') is an edge in T'. It was
proved by the second author in [5, 6] that the mapping 7 is a 1-1 correspondence between nonrepeated
structures G whose underlying trees are branchy, and chromatic graphs without subgraphs isomorphic



to II and A.

Moreover, if ¢ is injective, then 7(G) does not contain a subgraph isomorphic to O or4* [5]. Conversely,
if " is chromatic graph not containing subgraphs isomorphic to I1, A, O and‘F, by the result cited above
there exists a unique nonrepeated structure G whose underlying tree is branchy such that 7(G) = T.
Prove that ¢ of that structure G is injective. Suppose it is not, that is, p(b) = @(b') for b # b'. Since
G is nonrepeated, b and b’ are not adjacent. Then there exists a node a inside the path b-b'" such
that p(a) # ¢(b). Two cases arise depending on whether there is a path from the root containing
both b,'. Tt is easy to show that in the first case when such path exists, 7(G) contains a chromatic
subgraph isomorphic to4, and in the second case when there is no such path, 7(G) contains a chromatic
subgraph isomorphic to either‘[l or O. Therefore, we have proved that the mapping 7 establishes a 1-1
correspondence between nonrepeated structures G with injective functions ¢ and whose underlying
trees are branchy and chromatic graphs without chromatic subgraphs isomorphic to II, A, D,‘F.

Now, given a tree-diagram semilattice S, consider Gs = 1(S) = (Ts,S — Ag,id), where Tg is the
diagram of S. The semilattice S is tree-diagram iff T is branchy. Therefore, since I's = 7(¢/(S)), the
one-to-one correspondence established above finishes the proof of the theorem. O

Corollary 2 For any tree-diagram semilattice S, the chromatic graph I's does not contain subgraphs
isomorphic to II, A,0,%. Moreover, the mapping S — T's is a 1-1 correspondence between atomistic
tree-diagram semilattices and chromatic graphs without subgraphs isomorphic to II, A, 0,9, O
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