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Abstract. We survey recent results on logics with counting and their
local properties. We first consider game-theoretic characterizations of
first-order logic and its counting extensions provided by unary general-
ized quantifiers. We then study Gaifman’s and Hanf’s locality theorems,
their connection with game characterizations, and examples of their us-
age in proving expressivity bounds for first-order logic and its extensions.
We review the abstract notions of Gaifman’s and Hanf’s locality, and
show how they are related. We also consider a closely related bounded
degree property, and demonstrate its usefulness in proving expressiv-
ity bounds. We discuss two applications. One deals with proving lower
bounds for the complexity class TC?. In particular, we use logical char-
acterization of TC" and locality theorems for first-order with counting
quantifiers to provide lower bounds. We then explain how the notions
of locality are used in database theory to prove that extensions of rela-
tional calculus with aggregate functions and grouping still lack the power
to express fixpoint computation.

1 Introduction

Finite model theory is an active area of research, mostly due to its connections to
theoretical computer science, in particular, database theory [1] and complexity
theory [13,28]. Several important complexity classes have nice logical character-
izations. For instance, the star-free languages are exactly the ones definable in
first-order logic FO, least fixpoint logic LFP captures PTIME, and partial fix-
point logic PFP captures PSPACE on ordered finite structures (see [13]). These
logics also have their counterparts in the theory of database query languages.
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For example, relational calculus, that underlies majority of practical query lan-
guages, has exactly the power of first-order logic. The language Datalog with
negation corresponds to LFP, and the extension of relational calculus with while
loops corresponds to PFP (see [1]).

Several counting properties have also been considered in complexity and
database theory. We give a few examples here. A logic can be extended with a
linearly ordered second sort universe of numbers, and counting quantifiers ‘there
are at least n elements.” A very strong result in [9] shows that least fixpoint logic
with such second sort counting fails to capture the complexity class PTIME. In
circuit complexity theory, counting modulo quantifiers have been studied. Allow-
ing gates which count inputs modulo a constant p, for every p, in the definition of
ACY, one obtains the class ACC. Again, this class has a logical characterization,
and the problem whether the containment ACC C NC' is strict, is still open.
In [5], it was shown that the class TC?, that extends AC® with threshold gates,
can be captured on ordered structures by first-order logic with the second sort
counting, and simple arithmetic predicates on numbers.

In database theory, one often extends traditional first-order based languages with
aggregate functions, such as summing up all values in a column in a relation, or
finding the average value. One also extends those languages with grouping, that
permits queries such as finding the average salary in each department. While the
expressive power of relational calculus and many other query languages is well
understood, much less is known about their aggregate extensions.

These applications have motivated a systematic study of the expressive power
of counting properties from the viewpoint of finite model theory. In finite
model theory, one normally uses games to prove expressivity bounds. For ex-
ample, Ehrenfeucht-Fraissé games are used for first-order logic, and bijective
Ehrenfeucht-Fraissé games are used for FO extended with unary generalized
quantifiers. In Section 3 we review rules of such games for FO and some of its
extensions with counting.

Playing a game often involves a complicated combinatorial argument. Many re-
sults on the expressive power of first-order logic and its extensions with counting,
in particular, those obtained as an attempt to avoid game arguments, give us the
intuition that these logics can express only local properties, and lack a mecha-
nism for fixpoint computation. In Section 4, we review several results of this kind.
We consider Gaifman’s theorem [18] for first-order logic, which shows that every
first-order formula is equivalent to a local one, in the sense that only a small part
of a structure is relevant for evaluating the query given by a formula. We also
study modifications of Hanf’s result [22]. In this approach one counts the number
of isomorphism types of fixed radius neighborhoods of points. If the result of this
counting satisfies certain criteria, then the structures considered are guaranteed
to be elementary equivalent in a certain logic. This technique has been modified
for first-order logic [17], first-order logic with counting modulo quantifiers [41]
and first-order logic extended by all unary generalized quantifiers [40], for the
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case of finite structures. Proofs of applicability of Hanf’s technique typically are
not very difficult [17,15,40,42]. We will see some examples in Section 4.

The above results have motivated a study of general notions of locality [32,
24]. We review this line of work in Section 5. We show that Gaifman’s theorem
gives rise to two general notions, one for sentences and one for open formulas.
We formulate an abstract notion of locality that captures Hanf’s condition, and
study the relationship between the notions of locality. We also consider the
bounded degree property, which is implied by all other notions of locality, and is
particularly well suited for proving expressivity bounds, especially for properties
involving fixpoint computation.

In Section 6, we discuss applications of the concept of locality in complexity
theory. In particular, we study the relationship between the circuit complexity
class TC” and other complexity classes such as L and NL. In Section 7, we
consider applications in database theory. We review results on expressive power
of relational languages that resemble commercial languages such as SQL. We
show that queries such as transitive closure, are inexpressible in a theoretical
language that has the power of core SQL.

2 Preliminaries

A relational signature o is a finite set of relation symbols {Ry, ..., R;}, each of
which has an arity p; > 0. We write o, for o extended with n new constant
symbols. A o-structure is A = (A, Ry,..., R;), where A is a non-empty set and
R; C APi interprets R;. If the universe A is finite, the structure A is called
finite. Unless mentioned otherwise, all structures considered here are assumed
to be finite. When the notation is clear from the context, we write R; in place
of R;. The class of finite o-structures is denoted by STRUCT|[¢]. For instance, a
graph A = (A, E) is a structure over a signature which consists of a single binary
relation symbol E. If E is required to be symmetric, then A is an undirected
graph.

If X C A, by A ] X we mean the structure with universe X, where the in-
terpretation of each R; is restricted to X. An isomorphism f : A — B is
a bijection A — B such that (ai,...,a,,) € R; holds in A if and only if
(f(ay),..., f(ap,)) € R; holds in B. If ay,...,a, € A and by,....b, € B, we
say that {(a;,b;) | 1 < i < n} is a partial isomorphism A — B if it is an
isomorphism A | {a1,...,an} = B [ {b1,...,bn}.

Every formula ¢(z1, ..., 2, ) with free variables z1, ..., z,, defines a query which
maps a o-structure A to an m-ary relation gy(A) = {a € A™ | A |= ¥(a)}.
We denote the corresponding structure by ¥[A] = (A4, gy (A)). An m-ary query
q is definable in a logic £ if there is a formula ¢(x) of that logic such that
for every A € STRUCT[s] we have ¢(A) = {a € A™ | A |= ¢(a)}. As an
example, consider the transitive closure query TRCL. Suppose we are given a
graph A = (A, E). Then TRCL consists of all pairs (a,b) € A2 such that there



is an E-path from a to b, that is,

_ 5 [Jay,...,ar € A such that ¢ = ay and b = a; and
I4TRCL — {(a,b) €4 E(a;,a;11) for all 4 ’

This query is definable in many fixpoint logics, and in second-order logic, but
we shall see that it is not definable in FO and its counting extensions.

The Gaifman graph G(A) of a o-structure A is the undirected graph (A, E)
where (a,b) € E if and only if there is a tuple ¢ € R; for some R; € o such
that a,b € t. Note that if A is an undirected graph, then A = G(A). The
degree of a point is its degree in the Gaifman graph. The distance d(a, b) is the
length of the shortest path from a to b in G(A). For a € A, its r-sphere is
SA(a) = {b e A|d(b,a) <r}. For an n-tuple t we define SA(t) = U,etS2(a).
The r-neighborhood of a tuple ¢ is the o,,-structure NA(t) = (A | SA(t),t). That
is, it is the restriction of A to S7A(t), with ¢ being n distinguished constants.
For instance, if A is a chordless cycle of length at least 2r + 2 and a € A,
then N:4(a) is the chordless path of length 2r 4+ 1 with one distinguished point
a. We denote the isomorphism type of NA(t) by tp7(t). We emphasize here
that if A : NA(a) — NA(b) is an isomorphism, where @ = (ay,...,a,) and
b= (by,...,by), then h(a;) = by,...,h(an) = by, as neighborhoods N*(a) and
NA(b) are o,-structures.

If the structure A is understood, we omit it from the notations when convenient.

3 Logics and games

In this section we introduce the logics that are considered in this paper. These
logics are first-order logic FO and its extensions with various generalized quanti-
fiers. All logics we consider are closed under Boolean connectives and first-order
quantification, and are regular in the sense of [12,31] (we do not go into details
in this survey). We also review game-theoretic characterizations for elementary
equivalence in these logics, and show how the games can be used to prove ex-
pressivity bounds.

We use the standard definitions for formulas and semantics of first-order logic
FO (see e.g. [13]). Equality is treated as a special relation symbol which is not
a member of the signature. The quantifier rank of a formula ¢ is defined to be
the depth of quantifier nesting in ¢, and is denoted by gr(y).

The rules of the first-order Ehrenfeucht-Fraissé game are as follows. There are
two players, the spoiler and the duplicator. Two o-structures A and B and the
number of rounds, say n, are given. In each round the spoiler first selects a point
of one of the structures and the duplicator selects a point of the other structure.
Let aq,...,a, and by,...,b, be the points selected after the last round from A
and B, respectively. The duplicator is declared the winner if {(a;,b;) | 1 <i < n}
is a partial isomorphism A — [3; otherwise the spoiler wins. We say that a player



has a winning strategy if he can guarantee a win, no matter how the other player
plays. This game is interesting because of the following result.

Theorem 1 (cf. [13]). Let A, B € STRUCT[o]. Then the duplicator has a win-
ning strategy in the n-round Ehrenfeucht-Fraissé game if and only if A and B
agree on all first-order sentences of quantifier rank up to n. d

We use the notation A =} B if the duplicator has a winning strategy in the n-
round game on 4 and B. The above theorem can be used to provide the following
tool for proving expressivity bounds.

Corollary 1 (cf. [13]). A class C C STRUCT|o] is not definable in first-order
logic if and only if for every n there are o-structures A € C and B & C such that
the duplicator has a winning strategy in the n-round Ehrenfeucht-Fraissé game
on A and B. O

In other words, if for every n we can find one o-structure from the class C and
another from the complement of C, such that the duplicator can maintain a
partial isomorphism for n rounds, then C is not definable in FO.

We now give some examples. Note that in those examples, we do not spell out
every single detail of the game argument — this may require more space than
this entire section. We shall offer much simpler proofs of the existence of winning
strategies in the next section, after we have introduced the ideas of locality.

First, one can use Ehrenfeucht-Fraissé games to show that connectivity of fi-
nite graphs cannot be expressed in first-order logic. Assume that connectivity
is definable, and take as a counterexample, for each finite n, A to be a chord-
less cycle of length 2™ and B to be a disjoint union of two chordless cycles of
length 2™. The duplicator’s strategy in the n-round Ehrenfeucht-Fraissé game is
to preserve, in each round j < n, distances up to 2”77. The only way the spoiler
could win is to show that in 5 there are two points with no path between them,
whereas in A there always is a path between any two points. But if the spoiler
cannot build a path between two points in n rounds, it does not matter how far
these points are, or whether there is a path between them at all. This informal
reasoning can be formalized to show that the duplicator has a winning strategy
in the n-round Ehrenfeucht-Fraissé game over A and B. This result holds also
for ordered structures, see [13]. Note that this shows that the transitive closure
query TRCL cannot be defined in FO. Indeed, assume that a first-order formula
¥(z,y) defines TRCL. Then VaVyi(x,y) would be a first-order sentence defining
connectivity.

Next, assume that we are given two distinguished points a and b of a graph
A. Then we cannot define, in first-order logic, the property that a and b have
equally many neighbors. As a counterexample we can take, for every n, a to be a
point which has n + 2 neighbors and b to be a point with n + 1 neighbors in some
graph A. Since there are only n rounds available, the spoiler cannot demonstrate
that b has fewer neighbors.



3.1 Unary quantifiers

A commonly used way to increase the expressive power of first-order logic is to
extend it with generalized quantifiers, cf. [31,48]. The basic idea is that we are
given a class of structures, and we can check whether a substructure defined by
a given family of formulas belongs to this class. In computational complexity
theory, generalized quantifiers are often considered as oracles. In this section,
however, we concentrate more on logical aspects of generalized quantifiers. We
now review this method in detail in the case of unary generalized quantifiers.

Let o, be a signature of k unary symbols. Suppose K is an isomorphism
closed class of o, """Y-structures. Then FO(Q) is the extension of FO by a new
formula formation rule:

if v;(z;,y;) is a formula of FO(Qk) fori = 1,...,k, then
Qrz1,. - xre(P1(1,91), - i (Tr, yr)) is a formula of FO(Qk).

The corresponding semantic rule is:

A ‘: QK:ml .. .ZEk(i/Jl(ml,al); e :¢k(xk=ak))
iff (A71/}1[A7a1]7 B 7¢k["4:ak]) € ’C7
where ¢;[A,a;] ={a € A| A= 1vi(a, a:)}.

Here the tuple a; gives the interpretation for those free variables in v;(x;, y;:)
which are not equal to z;. The extension FO(Q) by a set Q of unary quantifiers is
defined similarly by adding to FO the above rule for each Qx € Q. The quantifier
rank of a formula of FO(Q) is defined as usually by the maximum depth of
nesting of quantifiers (counting both first-order and generalized quantifiers). We
also write FO(Q,,) for FO extended by all (continuum many) unary quantifiers.
Note that the same definition can be used with other ambient logics, not just FO.
In particular, we shall use £, (Q,,), the infinitary logic extended with unary
generalized quantifiers.

We now list some well-known examples.

Ezample 1. (1) The existential quantifier 3 corresponds to the class of struc-
tures {(A,P) | @ # P C A}. Similarly, the universal quantifier V can be
identified with the unary quantifier which is defined by the class {(4, P) |
P = A}

(2) Counting quantifier 32* can be defined by the class {(4, P) | card(P) > k}.
Note that each 3% can be defined in first-order logic; however, this requires &
quantifiers 3, and increases the quantifier rank by k. In contrast, the counting
quantifier 32* increases the quantifier rank by one. We denote the set of all
counting quantifiers 32% by C, i.e., C = {32% | k > 1}.

(3) Counting modulo m quantifier D,, is defined by the class {(A4,P) |
card(P) =0 (mod m)}. An easy first-order Ehrenfeucht-Fraissé game ar-
gument shows that D,, is not definable in FO whenever m > 1. Thus



FO(D,,) is strictly more expressive than FO. For instance, the sentence
Dyx(x = x) of FO(D>) says that the number of points in a structure is even;
it is well-known that this property is not definable in first-order logic alone.

(4) Majority quantifier MAJ, which is defined by the class {(A4, P) | card(P) >
tcard(A)}, is not definable in FO, either. For example, in FO(MAJ) we can
say that there is a node in a graph A that is connected to at least half of the
nodes of A: the defining sentence is IyMAJxE(y, x). This quantifier is also
interesting in connection with capturing complexity classes, see Section 6.

(5) Extending FO with Rescher (bigger cardinality) or Hdartig (equicardinality)
quantifiers also increases the expressive power. Rescher quantifier R is de-
fined by the class {(A4, P,S) | card(P) < card(S)} and Hértig quantifier H
by the class {(A4, P, S) | card(P) = card(S)}. Thus, for instance, given two
points a and b in an undirected graph, Rz, y(E(a,x), E(b,y)) says that a has
at most as many neighbors as b. Similarly, Hz,y(E(a,z), E(b,y)) says that
a and b have equally many neighbors.

For each @k, there is a natural Ehrenfeucht-Fraissé style game-theoretic char-
acterization for elementary equivalence in FO(Qx). We formulate the rules of
this game for the counting modulo m quantifier. The rules of the game are as
for first-order Ehrenfeucht-Fraissé game except that now the spoiler may also
choose a subset from one of the structures, say X C A. The duplicator has to re-
spond by choosing a subset of the other structure, Y C B, which has modulo m
equal cardinality to the spoiler’s choice, that is, card(Y') = card(X) (mod m).
The spoiler then challenges the duplicator’s choice by selecting a point from the
duplicator’s structure, b € B, and the duplicator has to choose a point from the
other structure, a € A, such that a € X if and only if b € Y. Again, if ay,...,a,
are the points chosen from A and by, ..., b, are the points chosen from B during
n rounds, the duplicator wins if and only if {(a;,b;) | 1 < i < n} is a partial iso-
morphism A — 5. We call this game the counting modulo m Ehrenfeucht-Fraissé
game.

Note that the first-order Ehrenfeucht-Fraissé game can be seen as a special case
of the counting modulo m Ehrenfeucht-Fraissé game: the spoiler can choose the
empty subset from one of the structures, and, in order to win, the duplicator has
to respond with the empty set. The spoiler and the duplicator then choose their
points from the complement of the empty set, that is, without any restrictions,
just as in the regular Ehrenfeucht-Fraissé game.

The following theorem shows that the counting modulo m Ehrenfeucht-Fraissé
game indeed gives us the game-theoretic characterization we were looking for.
We use the notation AE?O(DM)B when the duplicator has a winning strategy in
the n-round counting modulo m Ehrenfeucht-Fraissé game.

Theorem 2 (see [31]). Let A, B € STRUCT|o]. Then A=gqp, B if and only
if A and B agree on all FO(D,,) sentences of quantifier rank up to n. O



Corollary 2. A class C C STRUCT][o] is not definable in FO(D,,) if and only
if for every m there are o-structures A € C and B € C such that the duplicator
has a winning strategy in the n-round counting modulo m Ehrenfeucht-Fraissé
game on A and B.

The intuition behind this theorem is that if all subsets of A and B that the spoiler
and the duplicator can use in the game look similar, and there are modulo m
equally many of them, then FO(D,,,) can distinguish between A and B no more
than FO can. In the next section we give a precise formulation for this intuition.

Theorem 2 can be used to show limits of expressive bounds of counting modulo
quantifiers. For instance, we can show that connectivity of finite graphs is not
definable in FO(D,,), for any m. The construction is similar to the first-order
case, but we also have to require that there are modulo m equally many points
in both structures. Then we can proceed very much like in the proof for first-
order. Similarly, we can show that the majority quantifier MAJ (or Rescher
or Hirtig quantifiers) cannot be defined in FO(D,,). To see this, we can, for
instance, take, for each n, 4 = (A,U) to be a set with a unary relation U
such that card(A) = 3nm and card(U) = 2nm. Take B = (B,U) which satisfies
card(B) = 3nm but card(U) = nm. It is not difficult to show that the duplicator
has a winning strategy in the n-round counting modulo m Ehrenfeucht-Fraissé
game over A and B. But obviously A = MAJzU (z) and B = MAJzU(z). These
results can be extended to the ordered case, see [41].

If we want to give a game-theoretic method to prove expressive bounds for first-
order logic with all unary quantifiers, different techniques must be used. The
method we employ here is based on bijective Ehrenfeucht-Fraissé games. The
rules of the game are the following. As before, the players are the spoiler and
the duplicator. There are two o-structures A and B and the number of rounds,
say n, given. In each round i the duplicator first selects a bijection f; : A — B
(if card(A) # card(B), then the duplicator loses), and then the spoiler selects a
point a; € A. The duplicator has to select the point f;(a;) from B. This continues
for n rounds. After the last round, the duplicator is declared the winner if and
only if {(as, fi(a;)) | 1 < < n} is a partial isomorphism from A to 5. We use
the notation A4 EZij B if the duplicator has a winning strategy in the n-move
bijective game on A and B.

It turns out that this game characterizes elementary equivalence in a logic that is
stronger than FO(Q,,). This logic is obtained from FO(Q,,) by allowing infinite
disjunctions and conjunctions, but by keeping quantifier rank bounded. More
precisely, let £...,(Q,)* be the extension of FO(Q,) where infinite disjunctions
and conjunctions are allowed but quantifier rank of each formula is at most k. The
union of all these logics L., (Q,,)* over all natural numbers k < w is denoted by
Loow(Qy)¥ (that is, the depth of nesting of quantifiers in each formula is finite).
Methods used in [23] give us the following result (a proof can be found in [24]).



Theorem 3 (see [23,24]). Let A,B € STRUCT[o]. Then A EZij B if and only
if A and B agree on all L., (Q,)* sentences of quantifier rank up to n. d

Corollary 3. A class C C STRUCT[o] is not definable in Loy, (Q,)* if and
only if for every n there are A € C and B & C such that the duplicator has a
winning strategy in the n-round bijective Ehrenfeucht-Fraissé game on A and B.
O

Note that the expressive power of FO(Q,) is strictly weaker than that of
Lo0w(Q,)”. In FO(Q,), it is not possible to express the second vectorization
of Hartig quantifier (that is, the equicardinality quantifier for pairs) [39], while
techniques used in [31] show that every vectorization of every unary quanti-
fier can be defined in L4,(Q,)“. It also follows from [31] that L, (Q, )" is
as strong in expressive power as Loo,(C)“. (In [31], this was shown for finite-
variable logics, but the same proof technique works for L., (Q,)* [23].)

Although £, (Q,)“ has strong counting power, the game characterization can
be used to show that connectivity and transitive closure are not definable in it.
The idea is the same as before: For each n, we can take A to be a chordless
cycle of length 27*! and B a disjoint union of two chordless cycles of length 2.
Now the duplicator’s strategy is to choose in round j a bijection that preserves
the distances up to 2777 between the points next to the already chosen ones.
A combinatorial proof can be given that shows the existence of such a strategy
[27]; however, we shall see a much easier way to establish this in the next section.

We remark that bijective games are useless in the presence of a linear order.
In order to win, the duplicator has to follow the linear order when he chooses
bijections (otherwise the spoiler wins in the next two rounds). Thus, there is
essentially only one bijection the duplicator can choose. This gives us an example
of difficulties that arise when one attempts to prove expressivity bounds in the
ordered setting. In the subsequent sections, we shall face similar problems several
times.

Another interesting counting logic is FO + COUNT, cf. [15,30]. This is a two-
sorted logic with the second sort being the sort of natural numbers. More pre-
cisely, in this approach a structure is of the form

A={vi,...,o},{1,...,n},Ry,...,R;, <, BIT, 1, max).

Here relations R; apply to the non-numerical domain {v,...,v,}, while the
linear order <, the BIT predicate and the constants 1 and max (interpreted as 1
and n) refer to the numerical domain {1,...,n}. Here BIT(i, j) holds if and only
if the ith bit in the binary representation of j is one. These two disjoint domains
are connected by allowing formulas of the form Jizp(z) with the semantics that
at least i elements satisfy ¢, i.e., card({a € A| A |= ¢(a)}) > i. Here i refers to
the numerical domain and z refers to the non-numerical domain; the quantifier
Jiz binds = but not 7. As an example, consider the sentence

335[(j + j = i) A Jizp(z) A VEGkzp(z) — k < 1)).



This sentence tests if the cardinality of {a | p(a)} is even. Indeed, Jizp(z) A
Vk(Ikzp(x) — k < i) holds iff exactly i elements satisfy o, and ¢ is even since
it is of the form 2j. Note that we used the fact that + and % are definable as
ternary predicates in the presence of the BIT relation, cf. [15, 28].

Remark 1. L. Hella made the following observation. While first-order logic ex-
tended by Rescher quantifier R is in general strictly weaker than FO+COUNT, in
the presence of a built-out linear order, FO(R) and FO+ COUNT have the same
expressive power. Clearly, Rz, y(p(z),%(y)) can be written in FO4+COUNT. On
the other hand, Fizp(z) can be expressed by Rj, z(j < i, p(z)).

A game-theoretic characterization for elementary equivalence in FO + COUNT
was introduced in [30] and used subsequently in [14]. However, we do not go into
detail here, mainly due to the fact that the counting games of [30] are subsumed
by the bijective games. The logic FO + COUNT has a number of applications in
computer science, in particular, in complexity theory. This will be discussed in
Section 6.

Finally, we refer the reader to [31,48] for a more detailed overview of results on
generalized quantifiers in finite-model theory.

4 Gaifman’s and Hanf’s conditions

The game-theoretic characterizations for elementary equivalence of logics con-
sidered in the previous section gave us a vague intuition that these logics can
only express local properties. This intuition will be formalized in this section.
We review theorems by Gaifman and Hanf, and their modifications.

4.1 Gaifman’s theorem

We start with Gaifman’s theorem [18]. Let A be a o-structure. Recall that the
distance d(a, b) is the length of the shortest path from a to b in the Gaifman graph
of A, and S,(a) = {b]| d(b,a) < r,a € a}. For each fixed k, there are first-order
formulas that define the relations d(a,b) > k, d(a,b) = k and d(a,b) < k (see
[13]). Hence, bounded quantifications of the form Vz € Si(y) and 3z € Si(y)
are expressible in first-order logic for every fixed k. A formula ¢(")(y) is called
r-local around y if every quantifier in it is of the form Vz € Si(y) or 3z € Si(y)
with & < r. A sentence v is called basic r-local if it is of the form

Ay .. Fwn( /\ o) (z;) A /\ d(z;,zj) > 2r)

1<i<m 1<i<j<m

where (") (z) is an r-local formula around z.



Theorem 4 (Gaifman [18]). Every first-order sentence is equivalent to a
Boolean combination of basic r-local sentences, and every first-order for-

mula @(x1,...,2,) is equivalent to a Boolean combination of t-local formu-
las around xq,...,2, and basic r-local sentences. Furthermore, r < 747(#)—1
t < (7779)71)/2 and m < n + qr(y). a

Gaifman’s theorem tells us that every first-order formula can see only a bounded
number of local neighborhoods in a structure, i.e., only a small part of the input.
This is indeed a formalization of the informal statement that first-order logic can
express only local properties.

2t 2t

. [_,a_, ] [_,b_, ] e e

Fig. 1. Formula ¢(z,y) cannot distinguish (a,b) from (b,a).

Example 2. We show that first-order logic cannot express the transitive closure
of a directed graph. Assume, to the contrary, that there is a first-order for-
mula ¢(z,y) in the language of a single binary relation E, such that ¢[A] =
(A, {(a,b) € A| A = ©(a,b)}) is the transitive closure of A. Apply Gaifman’s
theorem to it, and find ¢ and r. Now consider the graph shown in Figure 1. It
is a successor relation, on which we select two points, a and b. Assume that
d(a,b) > 2t, and the distances from a and b to the start and the end node
of the graph are at least ¢ + 1. Then the t-neighborhoods of (a,b) and (b,a)
are isomorphic, and by Gaifman’s theorem, ¢ cannot distinguish (a,b) from
(b,a). Thus, ¢ cannot define the transitive closure, since (a,b) € TRCL(A), but
(b,a) & TRCL(A).

4.2 Hanf’s theorem and its modifications

While Gaifman’s theorem helps prove expressivity bounds for FO directly, with-
out resorting to establishing a winning strategy for the duplicator!, Hanf’s the-
orem [22] and its numerous modifications [17,24,40,41] provide criteria for the
existence of a strategy for the duplicator that is based on counting of small
neighborhoods in two structures.

Hanf’s theorem was originally proved for infinite structures. It was observed
by Fagin, Stockmeyer and Vardi [17] that the technique can be modified to be

! New winning conditions for the duplicator based on Gaifman’s theorem were pre-
sented recently in [47].



applicable to finite structures. The extensions of Hanf’s technique [24,40,41]
follow the ideas of [17].

Let A be a o-structure and a € A. Recall that the isomorphism type of N71'(a)
is denoted by tpj'(a). Let 7 be an isomorphism type of a ay-structure (o ex-
tended with one constant). We denote the number of points a € A whose d-
neighborhoods realize 7 by ng(A, 7). That is,

na(A,7) = card({a € A|tp}(a) =7}).

For example, if A is a chordless undirected cycle of length at least 2d + 2 then
there is only one isomorphism type 7 of a d-neighborhood of a point occurring
in A: the chordless path of length 2d + 1. In this case na(A, 7) = card(A).

We call structures A and B (d, m)-equivalent if for every isomorphism type 7
they have exactly the same number of points whose d-neighborhoods realize T,
or both structures have at least m such points, that is,

min(nqa(A,7),m) = min(nq(B,7),m).

The modification of Hanf’s theorem for the finite case is the following.

Theorem 5 ([17]). Let n and f be positive integers. There are positive integers
d and m such that whenever A and B are (d, m)-equivalent structures where every
point has degree at most f, then A =}y B, that is, A and B satisfy the same
sentences of FO of quantifier rank up to n. O

Note that since we consider finite models, for any A4 there is a number f that
exceeds degrees of all points of A. This leads to the following. We say that A
and B are d-equivalent, written as A S, B, if for every type of a d-neighborhood
of a point, 7, equally many points realize it in A4 and B. That is,

ASaB it ng(A,7) =nq«B,7) for every .

Corollary 4 ([17]). Let n be a positive integer. There there exists a positive
integer d such that A g B implies A =3 B. O

This result makes precise the intuition that counting power of first-order logic
is rather limited. It also shows that only local neighborhoods are relevant for
elementary equivalence in FO. Most importantly, the result above yields much
simpler proofs of expressivity bounds that those based on games. Below we give
a canonical example of applicability of Hanf’s technique.

Ezample 8. We show that connectivity of finite graphs is not definable in FO.
Assume, to the contrary, that it is definable by a FO sentence & of quantifier
rank n. Apply Corollary 4 to find d > 0 such that A S, B would imply A = &
iff B |= &. Now let A be a (chordless) cycle which has length 4d + 4, and let B
be a disjoint union of two chordless cycles of length 2d + 2, see Figure 2.
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Fig. 2. Hanf’s technique proves that connectivity is not first-order

As we noticed before, there is only one type of a d-neighborhood that these
graphs realize, namely a chain on 2d + 1 points. Thus, 4 Sy B, since they have
the same number of vertices. At the same time, A is connected, but B is not,
proving that connectivity cannot be expressed by &.

Other examples, proved previously with games, can be shown to be derivable
from Hanf’s technique. For example, with the concept of (d, m)-equivalence, it is
now easy to show that the majority quantifier (or Rescher and Hartig quantifiers)
are not definable in first-order logic. O

Before we outline the proof of Theorem 5 in [17], we state Hanf’s theorem from
[22]. Tt says that two arbitrary structures .4 and B are elementary equivalent
if SA(a) and SB(b) are finite, for every finite r and every a € A and b € B,
and, for each r > 0 and each type 7 of an r-neighborhood of a point, either
ne(A,7) =n.(B,7) < w, or both 4 and B have infinitely many realizers of type
T.

Now we explain how Theorem 5 is proved. First, d is taken to be 3"7717 and

m is taken to exceed the size of any d-neighborhood of a point in a structure
whose degrees are bounded by f. Define d; = 3"“2# for j < n; in particular,
dj =3-dj;+1+1,d =d and d, = 1. It is then shown that the duplicator
can play in the first-order Ehrenfeucht-Fraissé game in such a way that after
each round j < n, if @ € A7 and b € B are the points chosen so far, then
tp“d“]_(a) = tpf](b). This suffices, since tpfi(ay,...,a,) = tpP(by,...,b,) implies
that the mapping a; — b; is a partial isomorphism. The condition that A and 5
are (d,m)-equivalent allows the duplicator to make the first move by choosing

a point with a given type of its d-neighborhood. Suppose that the duplicator



maintained the condition successfully for the first j rounds. That is, we have
tpjt_(a) = tpg](b). Assume that a € A is spoiler’s next choice in the game. If

a € SﬁHHl(a), then the duplicator selects the point b € 52ij+1+1 which is
given by the isomorphism between Ndf]‘(a) and ij(b). Then one easily checks
that tpjéﬂ(aa) = tp§j+1(bb). Ifag¢ Sé‘}iﬁl_l_l(a) then the duplicator can choose
any b ¢ S5, 1(b) such that tpj  (a) = tpf , (b). If m is chosen as above,
such a point b always exists. Then again we can see that tpjturl (aa) = tprl (bb)

holds, since no points in S;‘}H(a) and S;‘}H(a) belong to the same tuple of an
A-relation, and likewise for B.

Having established Hanf’s condition for FO, we turn to counting extensions
of FO. In [41], the proof of Theorem 5 was modified for FO(Dy), k > 1. Two
structures A and B are called (d, m, Dy )-equivalent, if for each isomorphism type
T they have the same number of points whose d-neighborhoods realize 7, or in
both structures there are at least m such points but modulo k£ equally many,
that is,

min(ng(A,7),m) = min(n.(B,7),m) and n4(A,7)=n4(B,7) (mod k).

Note that (d, m, D;)-equivalence is just the (d, m)-equivalence. Thus, the follow-
ing result extends Theorem 5.

Theorem 6 ([41]). Let n, f and k be positive integers. There are positive in-
tegers d and m such that whenever A and B are (d, m, Dy,)-equivalent structures
where every point has degree at most f, then AE;O(D;C)B' That is, A and B

satisfy the same sentences of FO(Dy) of quantifier rank up to n. O

The intuition behind this theorem is that the counting power of FO(Dy,) is rather
limited, and that FO(Dy,) is not much stronger than FO. For instance, we can
use Theorem 6 to show that connectivity is not definable in FO(Dy) for any k,
by using the same argument as in Example 3.

The proof of Theorem 6 in [41] follows the same idea than the proof of Theorem
5. One could ask whether this proof technique can be easily modified to prove
elementary equivalence for FO(Q), where @ is an arbitrary unary quantifier. It
turns out that in this technique additivity property of the quantifier is crucial,
and all unary quantifiers which satisfy this property are essentially counting
modulo quantifiers. However, we now show a more general result that describes
a winning condition in a bijective game.

Theorem 7 ([24,40]). Let n be a positive integer. There is a positive integer
d such that A Sq B implies A EZij B. In particular, if A S4 B, then A and B

satisfy the same sentences of Loow(Q,) of quantifier rank up to n. O

Before we explain how this result is proved, we give the following alternative
definition of d-equivalence. Two structures A and B are d-equivalent if there



exists a bijection f : A — B such that for every a € A,

tpy(a) = tpg(f(a).

Now the proof of Theorem 7 is very similar to the proof of Hanf’s theorem
n41—

for first-order logic. We again let d; be =L and take d to be d;. The
duplicator’s strategy is to play so that after each round j in the bijective
Ehrenfeucht-Fraissé game we have tp“d“]_(a) = tpgj(b), if a € A7 and b € B’
are chosen during those j rounds. The first round bijection is given by the re-
formulation of d-equivalence above. Assume j rounds have been played, and we
have tp;i“](a) = tde](b), where d; = 3 -dj+1 + 1. Assume that tpjéﬂ(a) =T,
for a € Sﬁﬁﬁl(a). Then tpfjJrl(h(a)) = 7, and h(a) € SQBd]+1+1(b)= where
h : Nj]‘_(a) — ij(b) is an isomorphism. Thus, the number of points realiz-
ing 7 is the same in complemjnts of SQAQHI_'_l(a)Band SQBd]+1+1(b)7 and hence
we have a bijection g : A — S5, . (a) - B— 55,  ,(b) with the property
tpé_ﬂ(m) = tde]H(g(a:)). We now define a bijection f;;1 for the round j + 1 to
be h on Sﬁj+1+1(a)v and g on its complement. It is routine to verify that f;44
is a bijection, and that tpjl]ur1 (aa) = tde]H(bfjH(a)) for every a € A. After the
last round we have vectors with isomorphic 1-neighborhoods; hence they define
a partial isomorphism.

Theorem 7 shows the limits of expressive power provided by all unary quantifiers.
It also significantly simplifies proofs of expressivity bounds, as applying bijective
games is usually not a very easy task. For instance, we can use Example 3 to show
that connectivity of finite graphs is not definable in £, (Q,)“, thus avoiding
all the tedious combinatorics involved in an argument based on bijective games.

As another example, we consider classes of undirected graphs which are closed
under stretching. More precisely, let A be a graph and let Ay be the graph
obtained by replacing every edge of A by a path of length 2d + 1. Then each
d-neighborhood of a point in 4, contains at most one node whose degree is
greater than two. We say that a class C of graphs is closed under stretching if
Aq € C for every A € C and for every positive integer d. Now it is easy to see
that if A and B are 1l-equivalent graphs, then Ay and B, are d-equivalent. In
other words, if there are the same number of points in both graphs A and B of
each degree, then Ay and B, are d-equivalent. It can then be proved that if a
class C and its complement are closed under stretching, and there are A € C and
B ¢ C as above, then C is not definable in £.,(Q,,)“ [26]. This argument shows
that graph properties such as planarity and 3-colorability are not definable in

‘COOW(QU)W'

Hanf’s technique was also used by Etessami [15] (although a preliminary con-
ference version [14] had a proof based on counting games of [30]). It was shown
in [15] that a linear order cannot be defined in FO + COUNT from its underly-
ing successor relation. The proof relies on Hanf’s technique for FO + COUNT.
Its applicability follows from Theorem 7, since every FO + COUNT sentence is
definable in L., (Q,)“.



Summing up, the combinatorial arguments in this section allow us to simplify
many proofs that were originally shown by using difficult game-theoretic argu-
ments. Furthermore, we can also prove, often quite easily, new nondefinability
results. Note, however, that in the presence of a linear ordering, none of these
results can be applied to derive inexpressibility results. This is because in the
presence of an order, every point is a neighbor of any other point, and thus
S#(a) contains all elements of A. Many results proving expressive bounds of
these logics on ordered structures still use games (see [13] for first-order case
and [41] for FO(D,,)). However, bijective Ehrenfeucht-Fraissé games cannot be
applied at all in the ordered case. In fact, this is closely connected to some deep
problems in circuit complexity, as will be explained in Section 6.

5 Abstract notions of locality

On the surface, Gaifman’s theorem and various forms of Hanf’s theorem appear
to be quite unrelated. Nevertheless, we shall see soon that there is a very close re-
lationship between these results. To make statements like this, we study abstract
concepts behind locality theorems. This approach can be seen as the study of
the essential ideas behind the proofs of locality theorems, rather than using the
statements of the theorems for proving expressivity bounds. From these theo-
rems, we extract abstract notions of locality, and show how they are related. We
also discuss a new form of locality, the bounded degree property, and show how
it is related to other forms. This property turns out to be particularly simple to
use in proving expressivity bounds.

5.1 Gaifman’s locality

We start by analyzing Gaifman’s theorem. This theorem says that only local
neighborhoods are important for elementary equivalence in first-order logic. This
is captured by the following definition.

Definition 1 ([32,24]). A formula (1, ..., %y ) is Gaifman-local if there ez-
ists r > 0 such that for every A € STRUCT]o]| and for every two m-ary vectors
a,be A™,

tpi(a) = tpA(b)  implies A (a) if and only if A = p(b).

The minimum v for which this holds is called the locality rank of ¢ and is denoted
by Ir(¢).

This definition formulates that if a logic is Gaifman-local, i.e., every formula of a
logic is Gaifman-local, then indeed only small parts of the input are relevant for
elementary equivalence in the logic. The part of Gaifman’s theorem that deals
with sentences, gives rise to the following notion.



Definition 2 ([32,24]).

— A formula Y(x1,...,2m), m > 1, is strongly Gaifman-local if there exists
r > 0 such that for every A, B € STRUCT[o] and for every two m-ary
vectors a € A™ and b € B™, tpA(a) = tpB(b) implies A |= (a) if and only
if B I ¥(b).

— A sentence W is strongly Gaifman-local if it is equivalent to a Boolean com-
bination of sentences of the form 3y (y), where ¥ (y) is a strongly Gaifman-
local formula.

Before going further we notice that not every first-order formula is strongly
Gaifman local. Consider the class of directed graphs. Let ¢(z) be the formula
Vy=E(y,z) A 32¥y—E(z,y). Then 9 (z) says that x has not a predecessor and
there is a point which has no a successor. Suppose that v is strongly Gaifman-
local with locality rank r. Let G; be a chain graph of length r 4+ 1 and let G5 be
a chain graph of the same length with a loop on the end node. Denote the start
node of G; by a;. Then tp&i(a;) = tp&2(az) but obviously Gy [= ¢(a1) whereas
G2 = Y(a2).

From Gaifman’s theorem, we can derive the following.

Corollary 5 ([18,32,24]). Every first-order formula is Gaifman-local and ev-
ery first-order sentence is strongly Gaifman-local. Moreover, for every (x),
IH() < (770 — 1))2. O

5.2 Hanf’s locality

When we studied Hanf’s condition and proofs of Theorems 5, 6 and 7, we noticed
that the essential part in all the proofs was the concept of d-equivalence. We
now consider this concept in more detail and define the notion of Hanf’s locality.
Before giving the definition of the abstract notion we need more notation and
definitions.

We extend the notion of d-equivalence (see Section 4) for structures with pa-
rameters. Let 4, B € STRUCT|o] and @ € A™, b € B™. Then (A, a) and (B, b)
are d-equivalent, (A, a) 54 (B, b), if for every isomorphism type 7,

ni((A,a),7) = nq((B,b), 7).

In other words, there are as many points a € A and b € B such that tp7'(aa) =
tp5(bb); or equivalently, there is a bijection f : A — B such that tp;(az) =
tp5(bf(z)) for all z € A.

Definition 3 ([32,24]). A formula ¢(z1,...,zm) is Hanf-local if there exists
a number d such that for every A,B € STRUCT[o] and for every two m-ary
vectors a and b of elements of A and B respectively,



(A,a) S4(B,b) implies A =(a) if and only if B = ¢(b).

The minimum d for which this holds is called the Hanf locality rank of ¢, and
is denoted by hlr(¢)).

Thus, a sentence ¢ is Hanf-local, if there exists a number d such that A S, B
implies A |= ¢ iff B |= ¢. From results of the previous section, the following
theorem is immediate.

Theorem 8 ([32,24]). Every sentence ¢ of L. (Q,)*, or FO + COUNT, or
FO is Hanf-local, and hlr(p) < 307(#), O

This result confirms that although these logics have substantial counting power,
they can only recognize properties of small neighborhoods, and cannot grasp a
structure as a whole. The definitions above extract the essential notions that
were crucial for proving theorems in the previous section. Now these notions
allow us to compare different locality results.

5.3 Relationship between the notions of locality

The result below is the main technical lemma that establishes the relationship
between strong Gaifman-locality, Gaifman-locality and Hanf-locality. It states
that d-equivalence of structures extends to d-equivalence of structures with pa-
rameters, if large enough neighborhoods of the parameters are isomorphic.

Lemma 1 ([24]). If A S, B and tp3y, , (a) = tpy, ;1 (b), then (A,a) Sq (B,b).
d

Using this, we prove the following.

Theorem 9 ([32,24]). Every Hanf-local formula is Gaifman-local.

Proof. Suppose 9(z1,...,Zmn) is a Hanf-local formula with hlr(¢) = d. We show
that 1 is Gaifman-local. Take any two m-vectors a and b of a structure A such
that tp,(a) = tp,(b), where r = 3d + 1. Since A S4 A, by Lemma 1 we obtain
(A,a) Sq (A, b). Thus, A = ¢(a) if and only if A |= 4(b). Hence 9 is Gaifman-
local and Ir(¢p) < 3d + 1. O

We now consider the relationship between Hanf’s locality and strong Gaifman’s
locality. As a technical tool, we need to extend the notion of d-equivalence to
tuples. The number of different m-tuples whose d-neighborhoods realize an iso-
morphism type 7™ of a op,-structure A, is denoted by ma(A, ™). We write
A So,.q B, if for every isomorphism type 7™,

na(A, ™) = na(B, ™).



Equivalently, A 5, 4 B if and only if there is a bijection f : A™ — B™ such
that tp;'(a) = tp5(f(a)) for every @ € A™. By considering m-tuples whose
components are the same, we see that for all m > 0, A 5, 4 B implies A S4 B.

Our crucial lemma is that r-equivalence of (m + 1)-tuples can be guaranteed
by d-equivalence of tuples for large enough d that depends only on 7. This can
be shown by considering parametrized versions of these structures and applying
Lemma 1.

Proposition 1 ([32,24]). Let m > 0 and d > 0. Then A 5, 3441 B implies
A Sii1,a B. In particular, for every v > 0 and m > 1 there is d such that
A S4B implies A S, » B. O

This can be used to show the following.

Theorem 10 ([32,24]). Every strongly Gaifman-local sentence is Hanf-local.

Consider a sentence ¥ which is equivalent to 3z ...3zm9¥(z1,. .., Zm), where
() is strongly Gaifman-local. Let r > 0 witness strong Gaifman’s locality of
¥. Take d given by Proposition 1. Then hir(?) < d. Indeed, let A <, B and
A = ¥. Then A |= ¥(a) for some a € A™. By Proposition 1 we know that
A S, B, and thus we find b € B™ such that tp;'(a) = tpE(b). Since 1 is
strongly Gaifman-local, B |= v(b) and thus B |= ¥. Hence, hlr(¥) < d. O

This implies that the two parts of Gaifman’s theorem (those dealing with sen-
tences and open formulas) are not independent. In fact, for any logic satisfy-
ing some regularity properties, strong Gaifman-locality of its sentences implies
Gaifman-locality of its open formulae. See [24, 32] for details.

5.4 Bounded degree property

One of the easiest ways to prove expressivity bounds is the bounded degree prop-
erty. It was first introduced for graph queries in studying limits of expressive
power of database query languages [36]. Later it was generalized to arbitrary
(finite) structures in [11]. We now review this concept, show its usefulness in
proving expressivity bounds, and relate it to other notions of locality.

For a relation R; in A, we define degree;(R;,a) to be the number of tuples in R;
whose jth component is a. For directed graphs, this gives us the familiar notions
of in- and out-degree. The set

{degree;(R;,a) | R; € 0,a € A,j < p;}

of all degrees realized in A is denoted by deg-set(.4). We use deg_count(.A) for
card(degset(A)). The class of o-structures A for which deg_set(A) C {0,..., &k}
is denoted by STRUCT}[o].



Informally, a query has the bounded degree property if an upper bound on
the degrees in an input structure implies an upper bound on the number of
degrees realized in the output structure produced by the query. Recall that the
output of ¥(z1,...,z,m) on A, ¥[A], is the structure with one m-ary relation

3

(4, {a € A™ | A= 9(a)}).

Definition 4 ([11]). 4 formula ¢¥(z1,...,%m) has the bounded degree property
(BDP), if there is a function fy : N — N such that

deg_count(yY[A]) < fy(k) for any A € STRUCT[o].

The bounded degree property is a very useful tool in proving inexpressibility
results of recursive properties, i.e., for those queries that require fixpoint com-
putation. As a simple example, we show that the transitive closure query violates
the BDP. Assume that TRCL does have the BDP; that is, there is a function
f : N — N such that deg_count(TRCL(A)) < f(k) if all in- and out-degrees
in A do not exceed k. Let N = f(1) + 1. Consider A which is a successor re-
lation on N points (see Figure 1). Since all in- and out-degrees in A are at
most 1, we get deg_count(TRCL(A)) < f(1) < N, but one can easily see that
deg_count( TRCL(A)) = N. This contradiction shows that TRCL does not have
the bounded degree property. This proof also shows that deterministic transi-
tive closure violates the BDP. (Deterministic transitive closure is defined just as
transitive closure, except that one only considers paths where each node other
than the last one has outdegree 1, see [29].)

What makes the BDP particularly interesting, is the following result.

Theorem 11 ([11]). Every Gaifman-local formula has the bounded degree prop-
erty. O

From results in the previous subsection, we conclude that first-order logic and
various counting logics we considered have the bounded degree property. This
confirms out intuition that these logics lack mechanisms for expressing recursive
(fixpoint) computation.

Corollary 6 ([32,24]). Every Hanf-local formula has the bounded degree prop-
erty. In particular, Lo (Q,)* formulae, FO + COUNT formulae (without free
numerical variables), and FO formulae have the bounded degree property. g

Since deterministic transitive closure does not have the BDP, we obtain the
following result.

Corollary 7 ([32,24]). Deterministic transitive closure is not definable in
Lo0w(Q,)Y nor in FO + COUNT. O



This follows immediately from the BDP, and avoids all the combinatorial ar-
guments in Section 4, and especially the ones in Section 3, that are based on
game-theoretic techniques.

We now give another example that shows how the BDP can be applied to prove
inexpressibility results.

Ezample 4. A balanced binary tree is a (directed) binary tree in which all paths
from the root to the leaves are of the same length. Can this property be tested
in FO, or perhaps in more expressive logics such as £, (Q,,)“? We now use the
BDP to give the negative answer.

Suppose that we have a sentence @ that tests if a given graph is balanced binary
tree. We next define a query ¢(z,y) as follows. It first defines a new graph,
by interchanging the immediate successors of x, ' and 2", and the immediate
successors of y, y' and y", as shown in Figure 3 below, and then it tests is the
resulting graph is a balanced binary tree. If either x or y fails to have exactly
two immediate successors, then ¢(z,y) will evaluate to false. Assuming @ is in
the logic, so is ¢(z,y), for logics like FO and L., (Q,,)“.

Fig. 3. Changing successors of nodes in a balanced binary tree

We now show that ¢(z,y) violates the BDP. Assume it does have the BDP, and
let N = f,(2)+1. Let A be a balanced binary tree where each path from the root
to a leaf has length N. Since degrees in A do not exceed 2, deg-count(¢[A]) < N
by the BDP. We can see that A = ¢(a, b), for two nodes a, b, if and only if @ and b
are at the same level in A. Thus, ¢[.A] is a disjoint union of N cliques of different
sizes, and hence deg-count(p[A]) = N. This contradiction shows that ¢ does not
have the BDP, and hence cannot be defined in £, (Q,)*. Consequently, testing
for balanced binary trees is not L., (Q,,)“-definable.

One may have noticed that there is a certain asymmetry in the definition of the
BDP. In the assumption, we deal with degset(.A), but the conclusion puts a



bound on deg_count(y[A]). Can the definition be made symmetric? To formalize
this, define the strong bounded degree property of p(x) as follows: there exists a
function f, : N — N such that deg_count(p[A]) < f,(deg-count(A)).

Proposition 2 ([11]). There are first-order definable graph queries that violate
the strong bounded degree property. O

In fact, [11] shows that even a weaker property is violated by some first-order
queries. Define the interval bounded degree property of a query p(x) as the ex-
istence of a function f, : N — N such that deg-count(¢[A]) < f,(k) whenever
degset(A) C {n,n+1,...,n+k} for some number n. Then there exist first-order
definable queries on graphs that violate this property.

To summarize, we have seen four different locality conditions: strong Gaifman-
locality, Hanf-locality, Gaifman-locality, and the bounded degree property. The
relationship between them is shown in Figure 5.4. While Hanf-locality is closely
tied to a game and relatively easy to show for FO and some of its extensions,
Gaifman-locality and the bounded degree property are very easy to use in ex-
pressibility proofs. Fortunately, they are implied by Hanf-locality of a logic.

Strongly Gaifman-local = Hanf-local = Gaifman-local = BDP

Fig. 4. The relationship between the notions of locality

6 Applications in complexity theory

Fagin’s theorem, that equates existential second-order logic and complexity class
NP, started a new line of research in complexity theory. In the past 20 years,
many complexity classes have been characterized in logical terms, see [13, 28] for
an overview. For example, polynomial time and space can be characterized by
least- and partial fixpoint logics, respectively. Essential for many characteriza-
tions is the presence of a linear order on the input. The intuition behind having
an order is simulating the order in which elements of the input appear on the
tape of a Turing machine. While for order-invariant queries, the exact order does
not affect the output, its presence is required for a logic to simulate the compu-
tation of a machine. In fact, it remains an open problem whether there is a logic
for polynomial time properties of unordered graphs, for example.

In this section, we deal with a circuit complexity class TC”. This class is defined
via Boolean circuits. Consider a family of circuits C = {¢1,¢a,...,¢p, ...}, where

the circuit ¢, has n inputs and one output. Given a Boolean string z, we say
that C' accepts z if the output of ¢, on z is 1, whenever z is of length n.



The class AC? is defined as the class of languages accepted by circuits C' where
each gate is either an AND, or an OR, or a NOT gate, with AND and OR gates
having unbounded fan-in (no restriction on the number of inputs). The number
of gates in ¢, is polynomial in n, and the depth of circuits ¢, is constant. (More
generally, for AC*, the depth of ¢, is allowed to be O(logk n).) The class TC" is
defined as ACP, except that majority gates MAJ are also allowed. Assume such
a gate has k inputs. Then its single output is 1 iff at least | k] + 1 of its inputs
are 1.

The class TC? is not an idle creation of complexity theory; in fact, it is of
special importance in computer science. It characterizes the complexity of such
important operations as integer multiplication, division, and sorting, and serves
as a computational model for neural nets [44]. We refer the reader to survey [4]
for additional information on circuit complexity.

Despite its importance, not much is known about the relationship between TC®
and other complexity classes. We do know that AC® ¢ TC?, as the parity lan-
guage (strings with even number of 1s) is in TC?, but not in AC° [8]. We also
know (see [4], for example) that

TC" C NC' C DLOG C NLOG C NC C PTIME C NP,

but we do not know if any of the inclusions is proper! In fact, [45] showed that
there is inherent difficulty in separating TC® from NP, at least using conventional
techniques of circuit complexity. A general notion of natural proof was formulated
in [45]; this notion subsumes most of the existing lower bound proofs. Then [45]
showed that the existence of a natural proof separating these two classes would
imply that no good pseudo-random number generators are computable in TCC.
Putting it in the language of [4], it would imply that no cryptographically-secure
functions can be computed in TC?, even though cryptographers believe that such
functions do exist. As the notion of natural proof is quite different from results on
logical expressibility in finite model theory, one might attempt to avoid obstacles
of [45] by using a logical characterization of TC?. Below, we survey results in
this direction.

Notice that in the definition of classes AC® and TC®, we did not say anything
about the relationship between circuits ¢, € C' when n varies; in fact, they can
compute completely “different” things for different n. However, in most appli-
cations, those circuits compute the same property, like parity. Capturing this
intuition leads to the notion of uniformity. The weakest notion of uniformity is
PTIME-uniformity, meaning that the mapping n — ¢, is computable in polyno-
mial time. Similarly, one can define logspace-uniformity (see [3] for using these
notions with the class TC®). However, the most widely used notion of uniformity
is DLOGTIME-uniformity. We spare the reader the more technical definition,
that can be found in [5], and instead give the characterization theorem.

Theorem 12 ([5]). DLOGTIME-uniform TC° = FO + COUNT+ <. O



From now on, when we speak of TC?, we mean its DLOGTIME-uniform version:
that is, FO + COUNT+ <. The latter is the class of problems definable by
FO 4+ COUNT formulae in the presence of an order relation <. We will mostly
deal with order-independent properties. The notion of order-independence is
defined as follows. Suppose we have a FO + COUNT formula ¢ in the language
of o and <, and suppose A is a o-structure. Then, for any two orderings <; and
<y on A, and for any a, A<, E ¢(a) iff A<, E ¢(a), where A. denotes the
extension of A with the order <.

Even though we restrict our attention to order-independent properties, the mere
presence of an order relation does increase the expressive power:

Proposition 3 ([6]). There are order-independent properties definable in FO +
COUNT+ < but not in FO + COUNT. O

The example of a separating query (not the proof!) is quite simple. Let o =
(E,U), where E is binary and U is unary. Consider the following property: If
the interpretation of E is an equivalence relation, then the number of distinct
sizes of equivalence classes of E equals the cardinality of U. This query is not
definable in FO + COUNT [6], but, as shown in [38], can easily be defined with
order, since all elements whose equivalence classes have the same size, can be
canonically represented by the <-minimal such element. Then one just checks if

the number of those elements equals the cardinality of U.

Theorem 12 reduces the problem of separating TC? from classes above it to
the problem of logical expressibility; for example, to show TC® # NLOG, it
would suffice to show that transitive closure, an NLOG-complete problem, is
not definable in FO + COUNT+ <. Since locality gives us an easy proof that
transitive closure is not in FO + COUNT, one might try to push the ideas of
locality into the ordered setting.

We do not know whether the above expressivity bound on FO + COUNT+ <
is true, although we conjecture that it is. Below, we survey some of the partial
results confirming the intuition. We state the results for the NLOG-complete
problem of computing the transitive closure, but they also hold for deterministic
transitive closure, which is complete for DLOG.

Assume that instead of an order relation, we have a successor relation SUCC.
Since it realizes only degrees 0 and 1, as an immediate consequence of the
bounded degree property of FO + COUNT, we obtain

Corollary 8 ([14]). Transitive closure is not definable in FO + COUNT +
SUCC. a

Note that FO plus transitive closure TRCL plus successor relation capture
NLOG (cf. [13,28]); hence, FO + COUNT + SUCC C NLOG = FO + TRCL +
SUCC. This result was first shown in [14], via a rather complex argument based
on games of [30]. Later, using the results of [40], the journal version of [14] (see



[15]) gave a much simpler proof based on Hanf’s condition. Finally, using the
bounded degree property, we gave a completely elementary proof.

The use of bounded degree property allows us to substitute any auxiliary relation
for SUCC, as long as its degrees are bounded by a constant. For example, we
could use balanced binary trees (note that using such a structure would most
certainly make a game-based proof unmanageable). The next question is: How
can we lift the results for FO + COUNT from the constant world to that where
degrees are allowed to depend on the size of a structure?

First such result was given in [32], and it used the notion of moderate degree of
[17]. Let C be a class of structures. Let mazdeg.(n) denote the maximal degree
of a structure in C, whose cardinality is n. Then we say that C is a class of
relations of moderate degree if mazdeg.(n) < log”!) m. That is, for some function
§: N — N with lim,_ o 6(n) = 0, we have mazdegp(n) < log®™ n. Combination
of results from [11] and [32] led to the following.

Proposition 4 ([32]). Transitive closure is not definable in FO + COUNT in
the presence of relations of moderate degree. d

A linear order on an n-element set realizes n different degrees, from 0 to n — 1.
Thus, we need to lift the results from relations of small (constant or moderate)
degree to relations of large (comparable with the size of the input) degree. The
concept of moderate degree was introduced in [17] to show that connectivity
is not definable in monadic X} in the presence of those relations. Later, [46]
extended this to linear orders. Thus, one may ask if a similar avenue of attack
on the separation problem can be pursued in the case of FO + COUNT.

A partial result in this direction exists. Let Oy stand for the class of relations
which are pre-orders (A, <) (i.e., < is reflexive and transitive), and each equiva-
lence class of the relation z ~ y = (z < y) A (y < z) has at most k elements. In
particular, O, is the class of linear orders.

Theorem 13 ([38]). Transitive closure is not definable in FO + COUNT + Oy,
for any k > 1. O

In fact, the result of [38] is even stronger as it allows relations from Oy to be of
special form: those that have at most g(n) elements in equivalence classes of size
2, and the rest, n — g(n) elements, form a linear order. The function g(n) can be
chosen to be arbitrarily small, e.g., loglog...logn, but it cannot be bounded by
a constant. The version of Theorem 13, proved in [38] for deterministic transitive
closure, implies DLOG € FO + COUNT + O, for any k£ > 1. But this still falls
short of resolving the most important case of k = 1.

One of the main goals of pursuing this line of research was to avoid the obstacles
on the path towards separating TC” from other classes posed by the natural
proofs of [45]. At the first glance, our expressivity bounds look nothing like
natural proofs, although we must admit that there was no systematic study



conducted on the relationship between classical lower bounds proofs in circuit
complexity and logical expressivity bounds for FO + COUNT and the likes.

However, while avoiding one kind of problems, we encountered (perhaps even
created) different ones. For example, the proof of Theorem 13 is based on the
following technique. One first shows that if for a class C of auxiliary relations,
there exists a class of graphs G such that the pair (C, G) satisfies two properties,
P1 and P2, then transitive closure of graphs in G is not definable in FO +
COUNT + C. Then, [38] showed how to construct G for C being Oy, with k >
1, thus proving inexpressibility of transitive closure in FO + COUNT + Oy,.
Unfortunately, [38] also showed that if C = Oy, the class of linear orders, then
there is no class of graphs G such that (C,G) satisfies P1 and P2. That is, the
approach is inherently limited for showing results in the ordered setting.

Another large obstacle to using the ideals of locality for proving the separation
is a recent result:

Theorem 14 ([24]). There exist order-invariant formulae in FO+COUNT+ <
that do not have the bounded degree property. Consequently, order-invariant FO+
COUNT+ < is neither Gaifman-local nor Hanf-local. O

Nevertheless, we believe it was a useful exercise to study the expressivity of FO +
COUNT with relations of large degree, viewing it as a reasonable approximation
of uniform TC®. The bounds of [14], obtained less than 4 years ago with a great
deal of effort, were shown here by a simple application of the bounded degree
property. The best lower bound given by locality arguments (Theorem 13) shows
that one can get very close to a linear order, and thus very close to uniform TC?,
without achieving the power of logspace computation. In a way, results of this
section can be viewed as separating “very uniform” versions of TC? from DLOG
and classes above it.

7 Applications in database theory

The theory of database query languages is firmly grounded in finite-model the-
ory, and also provides a major motivation for finite-model theory research. Tra-
ditional databases query languages, such as relational algebra and calculus, have
precisely the power of first-order logic. An important subclass, called conjunctive
queries, is simply the {3, A}-fragment of first-order logic. Various extensions of
relational calculus, such as Datalog, Datalog with negation, and the language of
while loops, correspond to various fixpoint extensions of first-order logic, see [1].

In the relational model, data is stored in relations. For example, a database may
have two relations, for storing information about employees (called Emp) and
departments (called Dept). Assume that Emp stores triples containing employee
name, department, and salary, and Dept stores triples containing department
name, manager, and manager’s salary. Below is an example of a database:



|[EName|EDept|ESalary| [DName[Manager[MSalary]|

John | Al 50 A1l Bob 80
Ann Al 60 B2 Steve 85
Jim B2 75 C3 Mary 80

An example of a query is “For each employee, find his or her manager.” This
can be written in first-order logic as:

q(emp, manager) =
Jdept, esal, msal Emp(emp, dept, esal) A Dept(dept, manager, msal).

In real life, of course, programmers do not write first-order formulae; instead
they write queries in the language called SQL, which is the lingua franca of the
commercial database world. The above query, in SQL, will look like:

SELECT E.EName, D.Manager
FROM Emp E, Dept D
WHERE E.Edept = D.Dname

The best way to read such statements is as set-theoretic comprehensions: the
above becomes

(EName,EDept,ESalary) € Emp,
(EName, D.Manager) | (DName,Manager,MSalary) € Dept,
EDept = DName

The basis of SQL is the select-from-where statement, with the addition union
and difference, and features such as view creation, which make the language com-
positional. This basis has precisely the power of the first-order logic. However, all
practical implementations of SQL come equipped with two additional features:
arithmetic operations, and aggregate functions. For example, consider the follow-
ing query: “Find all departments that have more than 5 employees, together with
the name of the manager and the average salary of the employees.”

In SQL, this will be written as

SELECT D.DName, D.Manager, AVG(E.ESalary)
FROM Emp E, Dept D

WHERE E.Edept = D.Dname

GROUPBY D.DName

HAVING COUNT(E.EName) > 5

There are two key new features in this query. Grouping is given by the clauses
GROUPBY and HAVING: for each department manager, we group together all the
employees in his/her department, provided there are more than five of them.
The other feature is aggregate function: these are AVG, for computing the average
salary, and COUNT, for counting the number of employees.

Let us now see why adding these features is indeed an extension of first-order
logic. We consider a query that we know is inexpressible in first-order logic alone:



given a graph G, find the set of nodes x with in-deg(z) = out-deg(z). We let
graphs be represented as a binary relation Edges with two attributes, From and
To. As the first step, we create two new relations, one storing nodes together
with their in-degrees, and the other storing nodes with their out-degrees. Such
intermediate relations are called wiews in SQL, and are created as

CREATE VIEW INDEGV(Node, Indeg) AS
SELECT E.To, COUNT(E.From)
FROM Edges E
GROUPBY E.To

CREATE VIEW OUTDEGV(Node, Outdeg) AS
SELECT E.From, COUNT(E.To)
FROM Edges E
GROUPBY E.From

Using these views, one computes the answer to the query as

SELECT INDEGV.Node
FROM  INDEGV, OUTDEGV
WHERE (INDEGV.Node = OUTDEGV.Node)
AND (INDEGV.Indeg = OUTDEGV.Outdeg)

By now, the reader must be convince that Hértig and Rescher quantifiers can be
expressed in SQL. Thus, it is more powerful than first-order logic. The question
now is:

How expressive is SQL?

More precisely, there seems to be a “folk result” saying that SQL cannot compute
recursive queries, such as transitive closure. That is, it lacks a mechanism for
recursive computation. The question now is: What kind of formal statement can
one prove to confirm this intuition?

The approach of some textbooks is to restrict SQL to its subset which is essen-
tially first-order logic, and use expressivity bounds for the latter. However, as we
have just seen, this is not satisfactory. The difficulty with answering the question
above is that there are dozens of different version of SQL (see [43] for an overview
of standards and dialects), and they often support different sets of operators. For
example, some versions even add the transitive closure operator. Thus, we re-
strict our attention to features that are common to all versions of SQL; that is,
grouping and aggregation (cf. [1,43]). The first result on the expressive power of
such a language was based on yet unproven assumption from complexity theory,
and two observations: SQL queries can be evaluated in deterministic logspace,
and transitive closure is complete for nondeterministic logspace. Thus,



Proposition 5 ([10]). Assume that DLOGSPACE # NLOGSPACE. Then
transitive closure cannot be expressed in SQL. O

Can we get rid of the unproven assumption? The problem we face is that SQL per
se is quite inconvenient to work with — its syntax is quite awkward, and in fact
it has been an object of persistent criticism. SQL combines sets and multisets
in order to evaluate aggregates: for example, computing the average salary, one
cannot first project out the salary attribute and then compute its average, as
the elimination of duplicates will produce an incorrect result. Following [20, 35],
a language that deals correctly with multiset and set semantics was proposed in
[36]. As this language can model the main features of SQL, and extends first-
order logic, it was suggested to use it as a rational reconstruction of SQL.

Let us now give an informal introduction into this language, which we call here
AGGRg. It deals with objects which can freely combine rational numbers, el-
ements of the domain of atomic values, D, tuples, and sets. In particular, it
permits sets of sets. The language is statically typed (cf. [21,36]), but we shall
not go into detail here. The full description can be found in [21,36]; here we
highlight the salient features. The language allows one to apply a function to
each element of a set, that is, obtain a set {f(z) | * € X} from X. If all ele-
ments of a set X" are sets themselves, their union can be taken: | Jy ., X. Basic
arithmetic operations (+, —, *, +, <) are available on Q. On the domain of basic
values D, only equality test is available (notice the absence of order). Finally,
if f is a function into Q, its values on a set X can be added up; that is, one
can compute ) f(z). Note that if f is identically 1, then the above is the
cardinality of X.

It was proved in [36] that these features model the main features of SQL. Fur-
thermore, extending a result from [49], a conservativity property was shown in
[36]. It says that nesting of sets is in a sense superfluous: every query from re-
lational databases to relational databases in AGGRg can be written in a way
that does not use sets of sets. Nesting is essential for modeling grouping, and
thus the (nontrivial) conservativity result gives us a rather pleasant language
(without higher-order features) to model all the features of SQL. In [36], the
following was proved:

Proposition 6 ([36]). Transitive closure cannot be expressed in AGGRg. O

While this does provide useful bounds, there are two problems with the proof in
[36]. First, it is very syntactic. It proceeds by establishing a normal form result
for queries on a special class of inputs; the property depends both on the class of
inputs, and the properties of the chosen syntax of the language. Thus, making
a minor change in the syntax that does not affect expressiveness would mean
that the proof must be redone from scratch. Even more unpleasantly, the proof
in [36] establishes inexpressibility of transitive closure, but fails to establish a
general property that will give us expressivity bounds.



In [21,36] it was conjectured that relational queries in AGGRg have the BDP.
By relational queries we mean those whose inputs and outputs only contain
elements of D, but no numbers, although rational numbers can be used in the
process of evaluating a query. An SQL example of finding nodes with equal
in- and out-degrees shows that there are relational queries definable in SQL
but not in first-order. Clearly, proving the above conjecture would resolve the
problem for queries such as transitive closure or deterministic transitive closure.
By extending the normal form result AGGRg, the following was proved.

Proposition 7 ([11]). Every relational query in AGGRq has the bounded degree
property. O

It is still unpleasant that the proof depends on a particular syntax for the lan-
guage. Also, it would be interesting to know if relational queries are Gaifman-
local. These two questions were considered in [32]. The approach taken by [32]
was the following. Restrict the language to natural numbers only. That is, one
can compute COUNT but not AVG. Let us call this language AGGRy. With rationals
out of the way, try to embed it into FO + COUNT to prove locality.

Embedding into FO + COUNT turns out to be problematic, as in FO + COUNT
the sizes of the first-sort and second-sort universes are the same. In contrast, in
SQL, one can create numbers much bigger than the size of the database. A simple
example is this: consider an n-element set X, and compute ) _y f(x) where
f(z) = 2 for every . The result is 2n. The solution to the problem is to modify
a query, essentially by putting a huge linear order “on the side” and having all
arithmetic done on that linear order. This technique led to the following result.

Proposition 8 ([32]). For any relational query @ in AGGRy, another query
Q' can be found such that (a) Q is Gaifman-local iff Q' is, and (b) Q' can
be defined in FO + COUNT. Consequently, every relational query in AGGRy is
Gaifman-local. O

Using this technique, [37] returned to the main question: what is the expressive
power of SQL? It defined a new language, called AGGRgat, which first restricts
AGGRy to objects that do not contain sets of sets, and then adds new arithmetic
operation, and product over a set. That is, given a set X and a function f into
N definable in AGGRgat, one can compute [[ .x f(z) in AGGRgat. Then the

following sequence of results was proved.

Theorem 15 ([37]). 1) FEvery relational AGGRg query can be expressed in
AGGRflat,
2) For any relational query @ in AGGRgat, another query Q' in AGGRE,at can

be found such that (a) Q is Gaifman-local iff Q' is, and (b) Q' can be defined in
FO + COUNT. O



The bulk of the proof of this theorem is in showing (b) of part 2). Combining
these results with locality of FO + COUNT, we obtain:

Corollary 9. Ewvery relational query in AGGRg is Gaifman-local. O

Consequently, plain SQL queries are Gaifman-local and have the bounded degree
property. Therefore, queries that need a recursion mechanism (transitive closure,
deterministic transitive closure, connectivity test, etc.) cannot be computed in

SQL.

Thus, locality helped us answer important questions about expressive power of
real world database query languages.

We conclude this section by a remark about the set of basic operations on the
domain of atomic values, D. In all the above results, we assume that it is only
possible to test if two elements of D are equal. In many applications, there is
a meaningful linear order on such domains (for examples, salaries can be com-
pared). What happens if D is ordered? As it often happens, things become a
lot more complicated in the ordered setting. In a way, we saw it in the last
section. For SQL, one can show that it is possible to express any query from
FO + COUNT+ < if D is ordered. Thus, every uniform TC? property becomes
definable in SQL, and hence the problems of expressivity in of recursive queries
(such as transitive closure) hinges on the separation of complexity classes, thus
confirming the original intuition of [10]. Note that there are other well-known
examples of close connection between separation of complexity classes and ex-
pressivity bounds of query languages, see [2].

One can go further and add more operations to D. For example, one can assume
that D is the field of real numbers with the usual operations +, x, —, or perhaps
more complex such as e”. The results of [7] show that for the class of generic [1]
queries (those that commute with permutations of D), these extra operations do
not add expressive power, beyond a linear order. Most examples of queries we
consider — transitive closure, connectivity test, etc. — are generic. Thus, adding
extra operations beyond < does not lead to an increase in power of languages
such as first-order logic or SQL. This assertion, in the case of an interpreted
domain D, depends on what one means by quantification 3z. In most application,
quantification in queries assumes the finite database; however, it is conceivable
(and in some applications, important) to quantify over D. We refer the reader
to [7] for the discussion on this topic.

8 Conclusion

In this paper, we reviewed some results that were developed for proving lower
bounds for logical expressibility. We considered first-order logic and its exten-
sions with several kinds of counting mechanisms. We presented the usual game-
theoretic characterizations of those logics, as well as Gaifman’s and Hanf’s theo-
rems, and general notions behind these results. We also studied the relationship



between these notions and the bounded degree property. We reviewed applica-
tions of these notions in descriptive complexity theory and database theory.

Note. Several results on locality of logics appeared recently. As it is too late to
include their detailed descriptions in this survey, we just give pointers to relevant
papers. Most importantly, [19] partly extended locality techniques to the ordered
setting. Namely, [19] proves that every order-invariant query definable in FO+ <
is Gaifman-local, where the concept of neighborhood does not take into account
the order relation. An elementary proof of Gaifman-locality of a very powerful
counting logic was given in [33]; that paper also used a refined argument for
proving locality to find tight bounds on the radii of neighborhoods required
in locality theorems. Here, we typically used the radii of the order 0(3‘"("’));
[33] improves this to O(29"(¥)). Hanf-locality of the counting logic from [33]
was proved in [25]. Tt was also shown in [25] that Hanf-locality remains valid
under the addition of aggregate functions, which provided a transparent proof
of Corollary 9. Finally, [34] improved Theorem 13 by showing that invariant
queries in FO + COUNT + Oy, k > 1, have the bounded degree property. This
remains true for more powerful logics, and a more general class of auxiliary
relations.
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