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For example, relational calculus, that underlies majority of practical query lan-guages, has exactly the power of �rst-order logic. The language Datalog withnegation corresponds to LFP, and the extension of relational calculus with whileloops corresponds to PFP (see [1]).Several counting properties have also been considered in complexity anddatabase theory. We give a few examples here. A logic can be extended with alinearly ordered second sort universe of numbers, and counting quanti�ers `thereare at least n elements.' A very strong result in [9] shows that least �xpoint logicwith such second sort counting fails to capture the complexity class PTIME. Incircuit complexity theory, counting modulo quanti�ers have been studied. Allow-ing gates which count inputs modulo a constant p, for every p, in the de�nition ofAC0, one obtains the class ACC. Again, this class has a logical characterization,and the problem whether the containment ACC � NC1 is strict, is still open.In [5], it was shown that the class TC0, that extends AC0 with threshold gates,can be captured on ordered structures by �rst-order logic with the second sortcounting, and simple arithmetic predicates on numbers.In database theory, one often extends traditional �rst-order based languages withaggregate functions, such as summing up all values in a column in a relation, or�nding the average value. One also extends those languages with grouping, thatpermits queries such as �nding the average salary in each department. While theexpressive power of relational calculus and many other query languages is wellunderstood, much less is known about their aggregate extensions.These applications have motivated a systematic study of the expressive powerof counting properties from the viewpoint of �nite model theory. In �nitemodel theory, one normally uses games to prove expressivity bounds. For ex-ample, Ehrenfeucht-Fra��ss�e games are used for �rst-order logic, and bijectiveEhrenfeucht-Fra��ss�e games are used for FO extended with unary generalizedquanti�ers. In Section 3 we review rules of such games for FO and some of itsextensions with counting.Playing a game often involves a complicated combinatorial argument. Many re-sults on the expressive power of �rst-order logic and its extensions with counting,in particular, those obtained as an attempt to avoid game arguments, give us theintuition that these logics can express only local properties, and lack a mecha-nism for �xpoint computation. In Section 4, we review several results of this kind.We consider Gaifman's theorem [18] for �rst-order logic, which shows that every�rst-order formula is equivalent to a local one, in the sense that only a small partof a structure is relevant for evaluating the query given by a formula. We alsostudy modi�cations of Hanf's result [22]. In this approach one counts the numberof isomorphism types of �xed radius neighborhoods of points. If the result of thiscounting satis�es certain criteria, then the structures considered are guaranteedto be elementary equivalent in a certain logic. This technique has been modi�edfor �rst-order logic [17], �rst-order logic with counting modulo quanti�ers [41]and �rst-order logic extended by all unary generalized quanti�ers [40], for the



case of �nite structures. Proofs of applicability of Hanf's technique typically arenot very di�cult [17, 15, 40, 42]. We will see some examples in Section 4.The above results have motivated a study of general notions of locality [32,24]. We review this line of work in Section 5. We show that Gaifman's theoremgives rise to two general notions, one for sentences and one for open formulas.We formulate an abstract notion of locality that captures Hanf's condition, andstudy the relationship between the notions of locality. We also consider thebounded degree property, which is implied by all other notions of locality, and isparticularly well suited for proving expressivity bounds, especially for propertiesinvolving �xpoint computation.In Section 6, we discuss applications of the concept of locality in complexitytheory. In particular, we study the relationship between the circuit complexityclass TC0 and other complexity classes such as L and NL. In Section 7, weconsider applications in database theory. We review results on expressive powerof relational languages that resemble commercial languages such as SQL. Weshow that queries such as transitive closure, are inexpressible in a theoreticallanguage that has the power of core SQL.2 PreliminariesA relational signature � is a �nite set of relation symbols fR1, ..., Rlg, each ofwhich has an arity pi > 0. We write �n for � extended with n new constantsymbols. A �-structure is A = (A;R1; : : : ; Rl), where A is a non-empty set andRi � Api interprets Ri. If the universe A is �nite, the structure A is called�nite. Unless mentioned otherwise, all structures considered here are assumedto be �nite. When the notation is clear from the context, we write Ri in placeof Ri. The class of �nite �-structures is denoted by STRUCT[�]. For instance, agraph A = (A;E) is a structure over a signature which consists of a single binaryrelation symbol E. If E is required to be symmetric, then A is an undirectedgraph.If X � A, by A � X we mean the structure with universe X , where the in-terpretation of each Ri is restricted to X . An isomorphism f : A ! B isa bijection A ! B such that (a1; : : : ; api) 2 Ri holds in A if and only if(f(a1); : : : ; f(api)) 2 Ri holds in B. If a1; : : : ; an 2 A and b1; : : : ; bn 2 B, wesay that f(ai; bi) j 1 � i � ng is a partial isomorphism A ! B if it is anisomorphism A � fa1; : : : ; ang ! B � fb1; : : : ; bng.Every formula  (x1; : : : ; xm) with free variables x1; : : : ; xm de�nes a query whichmaps a �-structure A to an m-ary relation q (A) = fa 2 Am j A j=  (a)g.We denote the corresponding structure by  [A] = (A; q (A)). An m-ary queryq is de�nable in a logic L if there is a formula '(x) of that logic such thatfor every A 2 STRUCT[�] we have q(A) = fa 2 Am j A j= '(a)g. As anexample, consider the transitive closure query TRCL. Suppose we are given agraph A = (A;E). Then TRCL consists of all pairs (a; b) 2 A2 such that there



is an E-path from a to b, that is,qTRCL = �(a; b) 2 A2 ����9a1; : : : ; ak 2 A such that a = a1 and b = ak andE(ai; ai+1) for all i � :This query is de�nable in many �xpoint logics, and in second-order logic, butwe shall see that it is not de�nable in FO and its counting extensions.The Gaifman graph G(A) of a �-structure A is the undirected graph (A;E)where (a; b) 2 E if and only if there is a tuple t 2 Ri for some Ri 2 � suchthat a; b 2 t. Note that if A is an undirected graph, then A = G(A). Thedegree of a point is its degree in the Gaifman graph. The distance d(a; b) is thelength of the shortest path from a to b in G(A). For a 2 A, its r-sphere isSAr (a) = fb 2 A j d(b; a) � rg. For an n-tuple t we de�ne SAr (t) = [a2tSAr (a).The r-neighborhood of a tuple t is the �n-structure NAr (t) = (A � SAr (t); t). Thatis, it is the restriction of A to SAr (t), with t being n distinguished constants.For instance, if A is a chordless cycle of length at least 2r + 2 and a 2 A,then NAr (a) is the chordless path of length 2r + 1 with one distinguished pointa. We denote the isomorphism type of NAr (t) by tpAr (t). We emphasize herethat if h : NAr (a) ! NAr (b) is an isomorphism, where a = (a1; : : : ; an) andb = (b1; : : : ; bn), then h(a1) = b1; : : : ; h(an) = bn, as neighborhoods NAr (a) andNAr (b) are �n-structures.If the structure A is understood, we omit it from the notations when convenient.3 Logics and gamesIn this section we introduce the logics that are considered in this paper. Theselogics are �rst-order logic FO and its extensions with various generalized quanti-�ers. All logics we consider are closed under Boolean connectives and �rst-orderquanti�cation, and are regular in the sense of [12, 31] (we do not go into detailsin this survey). We also review game-theoretic characterizations for elementaryequivalence in these logics, and show how the games can be used to prove ex-pressivity bounds.We use the standard de�nitions for formulas and semantics of �rst-order logicFO (see e.g. [13]). Equality is treated as a special relation symbol which is nota member of the signature. The quanti�er rank of a formula ' is de�ned to bethe depth of quanti�er nesting in ', and is denoted by qr(').The rules of the �rst-order Ehrenfeucht-Fra��ss�e game are as follows. There aretwo players, the spoiler and the duplicator. Two �-structures A and B and thenumber of rounds, say n, are given. In each round the spoiler �rst selects a pointof one of the structures and the duplicator selects a point of the other structure.Let a1; : : : ; an and b1; : : : ; bn be the points selected after the last round from Aand B, respectively. The duplicator is declared the winner if f(ai; bi) j 1 � i � ngis a partial isomorphism A ! B; otherwise the spoiler wins. We say that a player



has a winning strategy if he can guarantee a win, no matter how the other playerplays. This game is interesting because of the following result.Theorem 1 (cf. [13]). Let A;B 2 STRUCT[�]. Then the duplicator has a win-ning strategy in the n-round Ehrenfeucht-Fra��ss�e game if and only if A and Bagree on all �rst-order sentences of quanti�er rank up to n. �We use the notation A �nFO B if the duplicator has a winning strategy in the n-round game on A and B. The above theorem can be used to provide the followingtool for proving expressivity bounds.Corollary 1 (cf. [13]). A class C � STRUCT[�] is not de�nable in �rst-orderlogic if and only if for every n there are �-structures A 2 C and B 62 C such thatthe duplicator has a winning strategy in the n-round Ehrenfeucht-Fra��ss�e gameon A and B. �In other words, if for every n we can �nd one �-structure from the class C andanother from the complement of C, such that the duplicator can maintain apartial isomorphism for n rounds, then C is not de�nable in FO.We now give some examples. Note that in those examples, we do not spell outevery single detail of the game argument { this may require more space thanthis entire section. We shall o�er much simpler proofs of the existence of winningstrategies in the next section, after we have introduced the ideas of locality.First, one can use Ehrenfeucht-Fra��ss�e games to show that connectivity of �-nite graphs cannot be expressed in �rst-order logic. Assume that connectivityis de�nable, and take as a counterexample, for each �nite n, A to be a chord-less cycle of length 2n and B to be a disjoint union of two chordless cycles oflength 2n. The duplicator's strategy in the n-round Ehrenfeucht-Fra��ss�e game isto preserve, in each round j � n, distances up to 2n�j . The only way the spoilercould win is to show that in B there are two points with no path between them,whereas in A there always is a path between any two points. But if the spoilercannot build a path between two points in n rounds, it does not matter how farthese points are, or whether there is a path between them at all. This informalreasoning can be formalized to show that the duplicator has a winning strategyin the n-round Ehrenfeucht-Fra��ss�e game over A and B. This result holds alsofor ordered structures, see [13]. Note that this shows that the transitive closurequery TRCL cannot be de�ned in FO. Indeed, assume that a �rst-order formula (x; y) de�nes TRCL. Then 8x8y (x; y) would be a �rst-order sentence de�ningconnectivity.Next, assume that we are given two distinguished points a and b of a graphA. Then we cannot de�ne, in �rst-order logic, the property that a and b haveequally many neighbors. As a counterexample we can take, for every n, a to be apoint which has n+2 neighbors and b to be a point with n+1 neighbors in somegraph A. Since there are only n rounds available, the spoiler cannot demonstratethat b has fewer neighbors.



3.1 Unary quanti�ersA commonly used way to increase the expressive power of �rst-order logic is toextend it with generalized quanti�ers, cf. [31, 48]. The basic idea is that we aregiven a class of structures, and we can check whether a substructure de�ned bya given family of formulas belongs to this class. In computational complexitytheory, generalized quanti�ers are often considered as oracles. In this section,however, we concentrate more on logical aspects of generalized quanti�ers. Wenow review this method in detail in the case of unary generalized quanti�ers.Let �unaryk be a signature of k unary symbols. Suppose K is an isomorphismclosed class of �unaryk -structures. Then FO(QK) is the extension of FO by a newformula formation rule:if  i(xi;yi) is a formula of FO(QK) for i = 1; : : : ; k, thenQKx1; : : : ; xk( 1(x1;y1); : : : ;  k(xk;yk)) is a formula of FO(QK).The corresponding semantic rule is:A j= QKx1 : : : xk( 1(x1;a1); : : : ;  k(xk ;ak))i� (A; 1[A;a1]; : : : ;  k[A;ak]) 2 K,where  i[A;ai] = fa 2 A j A j=  i(a;ai)g.Here the tuple ai gives the interpretation for those free variables in  i(xi;yi)which are not equal to xi. The extension FO(Q) by a setQ of unary quanti�ers isde�ned similarly by adding to FO the above rule for each QK 2 Q. The quanti�errank of a formula of FO(Q) is de�ned as usually by the maximum depth ofnesting of quanti�ers (counting both �rst-order and generalized quanti�ers). Wealso write FO(Qu) for FO extended by all (continuum many) unary quanti�ers.Note that the same de�nition can be used with other ambient logics, not just FO.In particular, we shall use L1!(Qu), the in�nitary logic extended with unarygeneralized quanti�ers.We now list some well-known examples.Example 1. (1) The existential quanti�er 9 corresponds to the class of struc-tures f(A;P ) j ; 6= P � Ag. Similarly, the universal quanti�er 8 can beidenti�ed with the unary quanti�er which is de�ned by the class f(A;P ) jP = Ag.(2) Counting quanti�er 9�k can be de�ned by the class f(A;P ) j card(P ) � kg.Note that each 9�k can be de�ned in �rst-order logic; however, this requires kquanti�ers 9, and increases the quanti�er rank by k. In contrast, the countingquanti�er 9�k increases the quanti�er rank by one. We denote the set of allcounting quanti�ers 9�k by C, i.e., C = f9�k j k � 1g.(3) Counting modulo m quanti�er Dm is de�ned by the class f(A;P ) jcard(P ) � 0 (mod m)g. An easy �rst-order Ehrenfeucht-Fra��ss�e game ar-gument shows that Dm is not de�nable in FO whenever m > 1. Thus



FO(Dm) is strictly more expressive than FO. For instance, the sentenceD2x(x = x) of FO(D2) says that the number of points in a structure is even;it is well-known that this property is not de�nable in �rst-order logic alone.(4) Majority quanti�er MAJ, which is de�ned by the class f(A;P ) j card(P ) �12card(A)g, is not de�nable in FO, either. For example, in FO(MAJ) we cansay that there is a node in a graph A that is connected to at least half of thenodes of A: the de�ning sentence is 9yMAJxE(y; x). This quanti�er is alsointeresting in connection with capturing complexity classes, see Section 6.(5) Extending FO with Rescher (bigger cardinality) or H�artig (equicardinality)quanti�ers also increases the expressive power. Rescher quanti�er R is de-�ned by the class f(A;P; S) j card(P ) � card(S)g and H�artig quanti�er Hby the class f(A;P; S) j card(P ) = card(S)g. Thus, for instance, given twopoints a and b in an undirected graph, Rx; y(E(a; x); E(b; y)) says that a hasat most as many neighbors as b. Similarly, Hx; y(E(a; x); E(b; y)) says thata and b have equally many neighbors.For each QK, there is a natural Ehrenfeucht-Fra��ss�e style game-theoretic char-acterization for elementary equivalence in FO(QK). We formulate the rules ofthis game for the counting modulo m quanti�er. The rules of the game are asfor �rst-order Ehrenfeucht-Fra��ss�e game except that now the spoiler may alsochoose a subset from one of the structures, say X � A. The duplicator has to re-spond by choosing a subset of the other structure, Y � B, which has modulo mequal cardinality to the spoiler's choice, that is, card(Y ) � card(X) (mod m).The spoiler then challenges the duplicator's choice by selecting a point from theduplicator's structure, b 2 B, and the duplicator has to choose a point from theother structure, a 2 A, such that a 2 X if and only if b 2 Y . Again, if a1; : : : ; anare the points chosen from A and b1; : : : ; bn are the points chosen from B duringn rounds, the duplicator wins if and only if f(ai; bi) j 1 � i � ng is a partial iso-morphism A ! B. We call this game the counting modulo m Ehrenfeucht-Fra��ss�egame.Note that the �rst-order Ehrenfeucht-Fra��ss�e game can be seen as a special caseof the counting modulo m Ehrenfeucht-Fra��ss�e game: the spoiler can choose theempty subset from one of the structures, and, in order to win, the duplicator hasto respond with the empty set. The spoiler and the duplicator then choose theirpoints from the complement of the empty set, that is, without any restrictions,just as in the regular Ehrenfeucht-Fra��ss�e game.The following theorem shows that the counting modulo m Ehrenfeucht-Fra��ss�egame indeed gives us the game-theoretic characterization we were looking for.We use the notation A�nFO(Dm)B when the duplicator has a winning strategy inthe n-round counting modulo m Ehrenfeucht-Fra��ss�e game.Theorem 2 (see [31]). Let A;B 2 STRUCT[�]. Then A�nFO(Dm)B if and onlyif A and B agree on all FO(Dm) sentences of quanti�er rank up to n. �



Corollary 2. A class C � STRUCT[�] is not de�nable in FO(Dm) if and onlyif for every n there are �-structures A 2 C and B 62 C such that the duplicatorhas a winning strategy in the n-round counting modulo m Ehrenfeucht-Fra��ss�egame on A and B.The intuition behind this theorem is that if all subsets of A and B that the spoilerand the duplicator can use in the game look similar, and there are modulo mequally many of them, then FO(Dm) can distinguish between A and B no morethan FO can. In the next section we give a precise formulation for this intuition.Theorem 2 can be used to show limits of expressive bounds of counting moduloquanti�ers. For instance, we can show that connectivity of �nite graphs is notde�nable in FO(Dm), for any m. The construction is similar to the �rst-ordercase, but we also have to require that there are modulo m equally many pointsin both structures. Then we can proceed very much like in the proof for �rst-order. Similarly, we can show that the majority quanti�er MAJ (or Rescheror H�artig quanti�ers) cannot be de�ned in FO(Dm). To see this, we can, forinstance, take, for each n, A = (A;U) to be a set with a unary relation Usuch that card(A) = 3nm and card(U) = 2nm. Take B = (B;U) which satis�escard(B) = 3nm but card(U) = nm. It is not di�cult to show that the duplicatorhas a winning strategy in the n-round counting modulo m Ehrenfeucht-Fra��ss�egame over A and B. But obviously A j= MAJxU(x) and B 6j= MAJxU(x). Theseresults can be extended to the ordered case, see [41].If we want to give a game-theoretic method to prove expressive bounds for �rst-order logic with all unary quanti�ers, di�erent techniques must be used. Themethod we employ here is based on bijective Ehrenfeucht-Fra��ss�e games. Therules of the game are the following. As before, the players are the spoiler andthe duplicator. There are two �-structures A and B and the number of rounds,say n, given. In each round i the duplicator �rst selects a bijection fi : A ! B(if card(A) 6= card(B), then the duplicator loses), and then the spoiler selects apoint ai 2 A. The duplicator has to select the point fi(ai) from B. This continuesfor n rounds. After the last round, the duplicator is declared the winner if andonly if f(ai; fi(ai)) j 1 � i � ng is a partial isomorphism from A to B. We usethe notation A �nbij B if the duplicator has a winning strategy in the n-movebijective game on A and B.It turns out that this game characterizes elementary equivalence in a logic that isstronger than FO(Qu). This logic is obtained from FO(Qu) by allowing in�nitedisjunctions and conjunctions, but by keeping quanti�er rank bounded. Moreprecisely, let L1!(Qu)k be the extension of FO(Qu) where in�nite disjunctionsand conjunctions are allowed but quanti�er rank of each formula is at most k. Theunion of all these logics L1!(Qu)k over all natural numbers k < ! is denoted byL1!(Qu)! (that is, the depth of nesting of quanti�ers in each formula is �nite).Methods used in [23] give us the following result (a proof can be found in [24]).



Theorem 3 (see [23, 24]). Let A;B 2 STRUCT[�]. Then A �nbij B if and onlyif A and B agree on all L1!(Qu)! sentences of quanti�er rank up to n. �Corollary 3. A class C � STRUCT[�] is not de�nable in L1!(Qu)! if andonly if for every n there are A 2 C and B 62 C such that the duplicator has awinning strategy in the n-round bijective Ehrenfeucht-Fra��ss�e game on A and B.�Note that the expressive power of FO(Qu) is strictly weaker than that ofL1!(Qu)!. In FO(Qu), it is not possible to express the second vectorizationof H�artig quanti�er (that is, the equicardinality quanti�er for pairs) [39], whiletechniques used in [31] show that every vectorization of every unary quanti-�er can be de�ned in L1!(Qu)!. It also follows from [31] that L1!(Qu)! isas strong in expressive power as L1!(C)! . (In [31], this was shown for �nite-variable logics, but the same proof technique works for L1!(Qu)! [23].)Although L1!(Qu)! has strong counting power, the game characterization canbe used to show that connectivity and transitive closure are not de�nable in it.The idea is the same as before: For each n, we can take A to be a chordlesscycle of length 2n+1 and B a disjoint union of two chordless cycles of length 2n.Now the duplicator's strategy is to choose in round j a bijection that preservesthe distances up to 2n�j between the points next to the already chosen ones.A combinatorial proof can be given that shows the existence of such a strategy[27]; however, we shall see a much easier way to establish this in the next section.We remark that bijective games are useless in the presence of a linear order.In order to win, the duplicator has to follow the linear order when he choosesbijections (otherwise the spoiler wins in the next two rounds). Thus, there isessentially only one bijection the duplicator can choose. This gives us an exampleof di�culties that arise when one attempts to prove expressivity bounds in theordered setting. In the subsequent sections, we shall face similar problems severaltimes.Another interesting counting logic is FO + COUNT, cf. [15, 30]. This is a two-sorted logic with the second sort being the sort of natural numbers. More pre-cisely, in this approach a structure is of the formA = (fv1; : : : ; vng; f1; : : : ; ng; R1; : : : ; Rl;�; BIT; 1;max):Here relations Ri apply to the non-numerical domain fv1; : : : ; vng, while thelinear order �, the BIT predicate and the constants 1 and max (interpreted as 1and n) refer to the numerical domain f1; : : : ; ng. Here BIT (i; j) holds if and onlyif the ith bit in the binary representation of j is one. These two disjoint domainsare connected by allowing formulas of the form 9ix'(x) with the semantics thatat least i elements satisfy ', i.e., card(fa 2 A j A j= '(a)g) � i. Here i refers tothe numerical domain and x refers to the non-numerical domain; the quanti�er9ix binds x but not i. As an example, consider the sentence9i9j[(j + j = i) ^ 9ix'(x) ^ 8k(9kx'(x)! k � i)]:



This sentence tests if the cardinality of fa j '(a)g is even. Indeed, 9ix'(x) ^8k(9kx'(x) ! k � i) holds i� exactly i elements satisfy ', and i is even sinceit is of the form 2j. Note that we used the fact that + and � are de�nable asternary predicates in the presence of the BIT relation, cf. [15, 28].Remark 1. L. Hella made the following observation. While �rst-order logic ex-tended by Rescher quanti�erR is in general strictly weaker than FO+COUNT, inthe presence of a built-out linear order, FO(R) and FO+COUNT have the sameexpressive power. Clearly, Rx; y('(x);  (y)) can be written in FO+COUNT. Onthe other hand, 9ix'(x) can be expressed by Rj; x(j < i; '(x)).A game-theoretic characterization for elementary equivalence in FO+ COUNTwas introduced in [30] and used subsequently in [14]. However, we do not go intodetail here, mainly due to the fact that the counting games of [30] are subsumedby the bijective games. The logic FO+COUNT has a number of applications incomputer science, in particular, in complexity theory. This will be discussed inSection 6.Finally, we refer the reader to [31, 48] for a more detailed overview of results ongeneralized quanti�ers in �nite-model theory.4 Gaifman's and Hanf's conditionsThe game-theoretic characterizations for elementary equivalence of logics con-sidered in the previous section gave us a vague intuition that these logics canonly express local properties. This intuition will be formalized in this section.We review theorems by Gaifman and Hanf, and their modi�cations.4.1 Gaifman's theoremWe start with Gaifman's theorem [18]. Let A be a �-structure. Recall that thedistance d(a; b) is the length of the shortest path from a to b in the Gaifman graphof A, and Sr(a) = fb j d(b; a) � r; a 2 ag. For each �xed k, there are �rst-orderformulas that de�ne the relations d(a; b) > k, d(a; b) = k and d(a; b) < k (see[13]). Hence, bounded quanti�cations of the form 8x 2 Sk(y) and 9x 2 Sk(y)are expressible in �rst-order logic for every �xed k. A formula '(r)(y) is calledr-local around y if every quanti�er in it is of the form 8x 2 Sk(y) or 9x 2 Sk(y)with k � r. A sentence  is called basic r-local if it is of the form9x1 : : : 9xm( ^1�i�m'(r)(xi) ^ ^1�i<j�m d(xi; xj) > 2r)where '(r)(x) is an r-local formula around x.



Theorem 4 (Gaifman [18]). Every �rst-order sentence is equivalent to aBoolean combination of basic r-local sentences, and every �rst-order for-mula '(x1; : : : ; xn) is equivalent to a Boolean combination of t-local formu-las around x1; : : : ; xn and basic r-local sentences. Furthermore, r � 7qr(')�1,t � (7qr(')�1)=2 and m � n+ qr('). �Gaifman's theorem tells us that every �rst-order formula can see only a boundednumber of local neighborhoods in a structure, i.e., only a small part of the input.This is indeed a formalization of the informal statement that �rst-order logic canexpress only local properties. : : : b : : : : : :-�: : : 2t2t : : :: : :: : : a �-- �� �� �� �� --- - - - -Fig. 1. Formula '(x; y) cannot distinguish (a; b) from (b; a).Example 2. We show that �rst-order logic cannot express the transitive closureof a directed graph. Assume, to the contrary, that there is a �rst-order for-mula '(x; y) in the language of a single binary relation E, such that '[A] =(A; f(a; b) 2 A j A j= '(a; b)g) is the transitive closure of A. Apply Gaifman'stheorem to it, and �nd t and r. Now consider the graph shown in Figure 1. Itis a successor relation, on which we select two points, a and b. Assume thatd(a; b) > 2t, and the distances from a and b to the start and the end nodeof the graph are at least t + 1. Then the t-neighborhoods of (a; b) and (b; a)are isomorphic, and by Gaifman's theorem, ' cannot distinguish (a; b) from(b; a). Thus, ' cannot de�ne the transitive closure, since (a; b) 2 TRCL(A), but(b; a) 62 TRCL(A).4.2 Hanf's theorem and its modi�cationsWhile Gaifman's theorem helps prove expressivity bounds for FO directly, with-out resorting to establishing a winning strategy for the duplicator1, Hanf's the-orem [22] and its numerous modi�cations [17, 24, 40, 41] provide criteria for theexistence of a strategy for the duplicator that is based on counting of smallneighborhoods in two structures.Hanf's theorem was originally proved for in�nite structures. It was observedby Fagin, Stockmeyer and Vardi [17] that the technique can be modi�ed to be1 New winning conditions for the duplicator based on Gaifman's theorem were pre-sented recently in [47].



applicable to �nite structures. The extensions of Hanf's technique [24, 40, 41]follow the ideas of [17].Let A be a �-structure and a 2 A. Recall that the isomorphism type of NAd (a)is denoted by tpAd (a). Let � be an isomorphism type of a �1-structure (� ex-tended with one constant). We denote the number of points a 2 A whose d-neighborhoods realize � by nd(A; �). That is,nd(A; �) = card(fa 2 A j tpAd (a) = �g):For example, if A is a chordless undirected cycle of length at least 2d + 2 thenthere is only one isomorphism type � of a d-neighborhood of a point occurringin A: the chordless path of length 2d+ 1. In this case nd(A; �) = card(A).We call structures A and B (d;m)-equivalent if for every isomorphism type �they have exactly the same number of points whose d-neighborhoods realize � ,or both structures have at least m such points, that is,min(nd(A; �);m) = min(nd(B; �);m):The modi�cation of Hanf's theorem for the �nite case is the following.Theorem 5 ([17]). Let n and f be positive integers. There are positive integersd and m such that whenever A and B are (d;m)-equivalent structures where everypoint has degree at most f , then A �nFO B, that is, A and B satisfy the samesentences of FO of quanti�er rank up to n. �Note that since we consider �nite models, for any A there is a number f thatexceeds degrees of all points of A. This leads to the following. We say that Aand B are d-equivalent, written as A�d B, if for every type of a d-neighborhoodof a point, � , equally many points realize it in A and B. That is,A�d B i� nd(A; �) = nd(B; �) for every �:Corollary 4 ([17]). Let n be a positive integer. There there exists a positiveinteger d such that A�d B implies A �nFO B. �This result makes precise the intuition that counting power of �rst-order logicis rather limited. It also shows that only local neighborhoods are relevant forelementary equivalence in FO. Most importantly, the result above yields muchsimpler proofs of expressivity bounds that those based on games. Below we givea canonical example of applicability of Hanf's technique.Example 3. We show that connectivity of �nite graphs is not de�nable in FO.Assume, to the contrary, that it is de�nable by a FO sentence � of quanti�errank n. Apply Corollary 4 to �nd d > 0 such that A�d B would imply A j= �i� B j= �. Now let A be a (chordless) cycle which has length 4d + 4, and let Bbe a disjoint union of two chordless cycles of length 2d+ 2, see Figure 2.
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Fig. 2. Hanf's technique proves that connectivity is not �rst-orderAs we noticed before, there is only one type of a d-neighborhood that thesegraphs realize, namely a chain on 2d+1 points. Thus, A�d B, since they havethe same number of vertices. At the same time, A is connected, but B is not,proving that connectivity cannot be expressed by �.Other examples, proved previously with games, can be shown to be derivablefrom Hanf's technique. For example, with the concept of (d;m)-equivalence, it isnow easy to show that the majority quanti�er (or Rescher and H�artig quanti�ers)are not de�nable in �rst-order logic. �Before we outline the proof of Theorem 5 in [17], we state Hanf's theorem from[22]. It says that two arbitrary structures A and B are elementary equivalentif SAr (a) and SBr (b) are �nite, for every �nite r and every a 2 A and b 2 B,and, for each r > 0 and each type � of an r-neighborhood of a point, eithernr(A; �) = nr(B; �) < !, or both A and B have in�nitely many realizers of type� .Now we explain how Theorem 5 is proved. First, d is taken to be 3n�12 , andm is taken to exceed the size of any d-neighborhood of a point in a structurewhose degrees are bounded by f . De�ne dj = 3n+1�j�12 for j � n; in particular,dj = 3 � dj+1 + 1, d1 = d and dn = 1. It is then shown that the duplicatorcan play in the �rst-order Ehrenfeucht-Fra��ss�e game in such a way that aftereach round j � n, if a 2 Aj and b 2 Bj are the points chosen so far, thentpAdj (a) = tpBdj (b). This su�ces, since tpA1 (a1; : : : ; an) = tpB1 (b1; : : : ; bn) impliesthat the mapping ai 7! bi is a partial isomorphism. The condition that A and Bare (d;m)-equivalent allows the duplicator to make the �rst move by choosinga point with a given type of its d-neighborhood. Suppose that the duplicator



maintained the condition successfully for the �rst j rounds. That is, we havetpAdj (a) = tpBdj (b). Assume that a 2 A is spoiler's next choice in the game. Ifa 2 SA2dj+1+1(a), then the duplicator selects the point b 2 SB2dj+1+1 which isgiven by the isomorphism between NAdj (a) and NBdj (b). Then one easily checksthat tpAdj+1(aa) = tpBdj+1(bb). If a 62 SA2dj+1+1(a) then the duplicator can chooseany b 62 SB2dj+1+1(b) such that tpAdj+1(a) = tpBdj+1(b). If m is chosen as above,such a point b always exists. Then again we can see that tpAdj+1(aa) = tpBdj+1(bb)holds, since no points in SAdj+1(a) and SAdj+1(a) belong to the same tuple of anA-relation, and likewise for B.Having established Hanf's condition for FO, we turn to counting extensionsof FO. In [41], the proof of Theorem 5 was modi�ed for FO(Dk), k > 1. Twostructures A and B are called (d;m;Dk)-equivalent, if for each isomorphism type� they have the same number of points whose d-neighborhoods realize � , or inboth structures there are at least m such points but modulo k equally many,that is,min(nd(A; �);m) = min(nd(B; �);m) and nd(A; �) � nd(B; �) (mod k):Note that (d;m;D1)-equivalence is just the (d;m)-equivalence. Thus, the follow-ing result extends Theorem 5.Theorem 6 ([41]). Let n, f and k be positive integers. There are positive in-tegers d and m such that whenever A and B are (d;m;Dk)-equivalent structureswhere every point has degree at most f , then A�nFO(Dk)B. That is, A and Bsatisfy the same sentences of FO(Dk) of quanti�er rank up to n. �The intuition behind this theorem is that the counting power of FO(Dk) is ratherlimited, and that FO(Dk) is not much stronger than FO. For instance, we canuse Theorem 6 to show that connectivity is not de�nable in FO(Dk) for any k,by using the same argument as in Example 3.The proof of Theorem 6 in [41] follows the same idea than the proof of Theorem5. One could ask whether this proof technique can be easily modi�ed to proveelementary equivalence for FO(Q), where Q is an arbitrary unary quanti�er. Itturns out that in this technique additivity property of the quanti�er is crucial,and all unary quanti�ers which satisfy this property are essentially countingmodulo quanti�ers. However, we now show a more general result that describesa winning condition in a bijective game.Theorem 7 ([24, 40]). Let n be a positive integer. There is a positive integerd such that A �d B implies A �nbij B. In particular, if A �d B, then A and Bsatisfy the same sentences of L1!(Qu) of quanti�er rank up to n. �Before we explain how this result is proved, we give the following alternativede�nition of d-equivalence. Two structures A and B are d-equivalent if there



exists a bijection f : A! B such that for every a 2 A,tpAd (a) = tpBd (f(a)):Now the proof of Theorem 7 is very similar to the proof of Hanf's theoremfor �rst-order logic. We again let dj be 3n+1�j�12 , and take d to be d1. Theduplicator's strategy is to play so that after each round j in the bijectiveEhrenfeucht-Fra��ss�e game we have tpAdj (a) = tpBdj (b), if a 2 Aj and b 2 Bjare chosen during those j rounds. The �rst round bijection is given by the re-formulation of d-equivalence above. Assume j rounds have been played, and wehave tpAdj (a) = tpBdj (b), where dj = 3 � dj+1 + 1. Assume that tpAdj+1(a) = � ,for a 2 SA2dj+1+1(a). Then tpBdj+1(h(a)) = � , and h(a) 2 SB2dj+1+1(b), whereh : NAdj (a) ! NBdj (b) is an isomorphism. Thus, the number of points realiz-ing � is the same in complements of SA2dj+1+1(a) and SB2dj+1+1(b), and hencewe have a bijection g : A � SA2dj+1+1(a) ! B � SB2dj+1+1(b) with the propertytpAdj+1(x) = tpBdj+1(g(x)). We now de�ne a bijection fj+1 for the round j + 1 tobe h on SA2dj+1+1(a), and g on its complement. It is routine to verify that fj+1is a bijection, and that tpAdj+1(aa) = tpBdj+1(bfj+1(a)) for every a 2 A. After thelast round we have vectors with isomorphic 1-neighborhoods; hence they de�nea partial isomorphism.Theorem 7 shows the limits of expressive power provided by all unary quanti�ers.It also signi�cantly simpli�es proofs of expressivity bounds, as applying bijectivegames is usually not a very easy task. For instance, we can use Example 3 to showthat connectivity of �nite graphs is not de�nable in L1!(Qu)!, thus avoidingall the tedious combinatorics involved in an argument based on bijective games.As another example, we consider classes of undirected graphs which are closedunder stretching. More precisely, let A be a graph and let Ad be the graphobtained by replacing every edge of A by a path of length 2d + 1. Then eachd-neighborhood of a point in Ad contains at most one node whose degree isgreater than two. We say that a class C of graphs is closed under stretching ifAd 2 C for every A 2 C and for every positive integer d. Now it is easy to seethat if A and B are 1-equivalent graphs, then Ad and Bd are d-equivalent. Inother words, if there are the same number of points in both graphs A and B ofeach degree, then Ad and Bd are d-equivalent. It can then be proved that if aclass C and its complement are closed under stretching, and there are A 2 C andB 62 C as above, then C is not de�nable in L1!(Qu)! [26]. This argument showsthat graph properties such as planarity and 3-colorability are not de�nable inL1!(Qu)!.Hanf's technique was also used by Etessami [15] (although a preliminary con-ference version [14] had a proof based on counting games of [30]). It was shownin [15] that a linear order cannot be de�ned in FO+COUNT from its underly-ing successor relation. The proof relies on Hanf's technique for FO + COUNT.Its applicability follows from Theorem 7, since every FO+ COUNT sentence isde�nable in L1!(Qu)! .



Summing up, the combinatorial arguments in this section allow us to simplifymany proofs that were originally shown by using di�cult game-theoretic argu-ments. Furthermore, we can also prove, often quite easily, new nonde�nabilityresults. Note, however, that in the presence of a linear ordering, none of theseresults can be applied to derive inexpressibility results. This is because in thepresence of an order, every point is a neighbor of any other point, and thusSA1 (a) contains all elements of A. Many results proving expressive bounds ofthese logics on ordered structures still use games (see [13] for �rst-order caseand [41] for FO(Dm)). However, bijective Ehrenfeucht-Fra��ss�e games cannot beapplied at all in the ordered case. In fact, this is closely connected to some deepproblems in circuit complexity, as will be explained in Section 6.5 Abstract notions of localityOn the surface, Gaifman's theorem and various forms of Hanf's theorem appearto be quite unrelated. Nevertheless, we shall see soon that there is a very close re-lationship between these results. To make statements like this, we study abstractconcepts behind locality theorems. This approach can be seen as the study ofthe essential ideas behind the proofs of locality theorems, rather than using thestatements of the theorems for proving expressivity bounds. From these theo-rems, we extract abstract notions of locality, and show how they are related. Wealso discuss a new form of locality, the bounded degree property, and show howit is related to other forms. This property turns out to be particularly simple touse in proving expressivity bounds.5.1 Gaifman's localityWe start by analyzing Gaifman's theorem. This theorem says that only localneighborhoods are important for elementary equivalence in �rst-order logic. Thisis captured by the following de�nition.De�nition 1 ([32, 24]). A formula  (x1; : : : ; xm) is Gaifman-local if there ex-ists r > 0 such that for every A 2 STRUCT[�] and for every two m-ary vectorsa; b 2 Am,tpAr (a) = tpAr (b) implies A j=  (a) if and only if A j=  (b).The minimum r for which this holds is called the locality rank of  and is denotedby lr( ).This de�nition formulates that if a logic is Gaifman-local, i.e., every formula of alogic is Gaifman-local, then indeed only small parts of the input are relevant forelementary equivalence in the logic. The part of Gaifman's theorem that dealswith sentences, gives rise to the following notion.



De�nition 2 ([32, 24]).{ A formula  (x1; : : : ; xm), m � 1, is strongly Gaifman-local if there existsr > 0 such that for every A;B 2 STRUCT[�] and for every two m-aryvectors a 2 Am and b 2 Bm, tpAr (a) = tpBr (b) implies A j=  (a) if and onlyif B j=  (b).{ A sentence 	 is strongly Gaifman-local if it is equivalent to a Boolean com-bination of sentences of the form 9y (y), where  (y) is a strongly Gaifman-local formula.Before going further we notice that not every �rst-order formula is stronglyGaifman local. Consider the class of directed graphs. Let  (x) be the formula8y:E(y; x) ^ 9z8y:E(z; y). Then  (x) says that x has not a predecessor andthere is a point which has no a successor. Suppose that  is strongly Gaifman-local with locality rank r. Let G1 be a chain graph of length r+1 and let G2 bea chain graph of the same length with a loop on the end node. Denote the startnode of Gi by ai. Then tpG1r (a1) = tpG2r (a2) but obviously G1 j=  (a1) whereasG2 6j=  (a2).From Gaifman's theorem, we can derive the following.Corollary 5 ([18, 32, 24]). Every �rst-order formula is Gaifman-local and ev-ery �rst-order sentence is strongly Gaifman-local. Moreover, for every  (x),lr( ) � (7qr( ) � 1)=2. �5.2 Hanf's localityWhen we studied Hanf's condition and proofs of Theorems 5, 6 and 7, we noticedthat the essential part in all the proofs was the concept of d-equivalence. Wenow consider this concept in more detail and de�ne the notion of Hanf's locality.Before giving the de�nition of the abstract notion we need more notation andde�nitions.We extend the notion of d-equivalence (see Section 4) for structures with pa-rameters. Let A;B 2 STRUCT[�] and a 2 Am, b 2 Bm. Then (A;a) and (B; b)are d-equivalent, (A;a)�d (B; b), if for every isomorphism type � ,nd((A;a); �) = nd((B; b); �):In other words, there are as many points a 2 A and b 2 B such that tpAd (aa) =tpBd (bb); or equivalently, there is a bijection f : A ! B such that tpAd (ax) =tpBd (bf(x)) for all x 2 A.De�nition 3 ([32, 24]). A formula  (x1; : : : ; xm) is Hanf-local if there existsa number d such that for every A;B 2 STRUCT[�] and for every two m-aryvectors a and b of elements of A and B respectively,



(A;a)�d (B; b) implies A j=  (a) if and only if B j=  (b).The minimum d for which this holds is called the Hanf locality rank of  , andis denoted by hlr( ).Thus, a sentence ' is Hanf-local, if there exists a number d such that A �d Bimplies A j= ' i� B j= '. From results of the previous section, the followingtheorem is immediate.Theorem 8 ([32, 24]). Every sentence ' of L1!(Qu)!, or FO+COUNT, orFO is Hanf-local, and hlr(') � 3qr('). �This result con�rms that although these logics have substantial counting power,they can only recognize properties of small neighborhoods, and cannot grasp astructure as a whole. The de�nitions above extract the essential notions thatwere crucial for proving theorems in the previous section. Now these notionsallow us to compare di�erent locality results.5.3 Relationship between the notions of localityThe result below is the main technical lemma that establishes the relationshipbetween strong Gaifman-locality, Gaifman-locality and Hanf-locality. It statesthat d-equivalence of structures extends to d-equivalence of structures with pa-rameters, if large enough neighborhoods of the parameters are isomorphic.Lemma 1 ([24]). If A�d B and tpA3d+1(a) = tpB3d+1(b), then (A;a)�d (B; b).�Using this, we prove the following.Theorem 9 ([32, 24]). Every Hanf-local formula is Gaifman-local.Proof. Suppose  (x1; : : : ; xm) is a Hanf-local formula with hlr( ) = d. We showthat  is Gaifman-local. Take any two m-vectors a and b of a structure A suchthat tpr(a) = tpr(b), where r = 3d+ 1. Since A �d A, by Lemma 1 we obtain(A;a)�d (A; b). Thus, A j=  (a) if and only if A j=  (b). Hence  is Gaifman-local and lr( ) � 3d+ 1. �We now consider the relationship between Hanf's locality and strong Gaifman'slocality. As a technical tool, we need to extend the notion of d-equivalence totuples. The number of di�erent m-tuples whose d-neighborhoods realize an iso-morphism type �m of a �m-structure A, is denoted by nd(A; �m). We writeA�m;d B, if for every isomorphism type �m,nd(A; �m) = nd(B; �m):



Equivalently, A �m;d B if and only if there is a bijection f : Am ! Bm suchthat tpAd (a) = tpBd (f(a)) for every a 2 Am. By considering m-tuples whosecomponents are the same, we see that for all m > 0, A�m;d B implies A�d B.Our crucial lemma is that r-equivalence of (m + 1)-tuples can be guaranteedby d-equivalence of tuples for large enough d that depends only on r. This canbe shown by considering parametrized versions of these structures and applyingLemma 1.Proposition 1 ([32, 24]). Let m > 0 and d � 0. Then A �m;3d+1 B impliesA �m+1;d B. In particular, for every r > 0 and m � 1 there is d such thatA�d B implies A�m;r B. �This can be used to show the following.Theorem 10 ([32, 24]). Every strongly Gaifman-local sentence is Hanf-local.Consider a sentence 	 which is equivalent to 9x1 : : : 9xm (x1; : : : ; xm), where (x) is strongly Gaifman-local. Let r > 0 witness strong Gaifman's locality of . Take d given by Proposition 1. Then hlr(	) � d. Indeed, let A �d B andA j= 	 . Then A j=  (a) for some a 2 Am. By Proposition 1 we know thatA �m;r B, and thus we �nd b 2 Bm such that tpAr (a) = tpBr (b). Since  isstrongly Gaifman-local, B j=  (b) and thus B j= 	 . Hence, hlr(	) � d. �This implies that the two parts of Gaifman's theorem (those dealing with sen-tences and open formulas) are not independent. In fact, for any logic satisfy-ing some regularity properties, strong Gaifman-locality of its sentences impliesGaifman-locality of its open formulae. See [24, 32] for details.5.4 Bounded degree propertyOne of the easiest ways to prove expressivity bounds is the bounded degree prop-erty. It was �rst introduced for graph queries in studying limits of expressivepower of database query languages [36]. Later it was generalized to arbitrary(�nite) structures in [11]. We now review this concept, show its usefulness inproving expressivity bounds, and relate it to other notions of locality.For a relation Ri in A, we de�ne degreej(Ri; a) to be the number of tuples in Riwhose jth component is a. For directed graphs, this gives us the familiar notionsof in- and out-degree. The setfdegreej(Ri; a) j Ri 2 �; a 2 A; j � pigof all degrees realized in A is denoted by deg set(A). We use deg count(A) forcard(deg set(A)). The class of �-structures A for which deg set(A) � f0; : : : ; kgis denoted by STRUCTk[�].



Informally, a query has the bounded degree property if an upper bound onthe degrees in an input structure implies an upper bound on the number ofdegrees realized in the output structure produced by the query. Recall that theoutput of  (x1; : : : ; xm) on A,  [A], is the structure with one m-ary relation(A; fa 2 Am j A j=  (a)g).De�nition 4 ([11]). A formula  (x1; : : : ; xm) has the bounded degree property(BDP), if there is a function f : N ! N such thatdeg count( [A]) � f (k) for any A 2 STRUCTk[�].The bounded degree property is a very useful tool in proving inexpressibilityresults of recursive properties, i.e., for those queries that require �xpoint com-putation. As a simple example, we show that the transitive closure query violatesthe BDP. Assume that TRCL does have the BDP; that is, there is a functionf : N ! N such that deg count(TRCL(A)) � f(k) if all in- and out-degreesin A do not exceed k. Let N = f(1) + 1. Consider A which is a successor re-lation on N points (see Figure 1). Since all in- and out-degrees in A are atmost 1, we get deg count(TRCL(A)) � f(1) < N , but one can easily see thatdeg count(TRCL(A)) = N . This contradiction shows that TRCL does not havethe bounded degree property. This proof also shows that deterministic transi-tive closure violates the BDP. (Deterministic transitive closure is de�ned just astransitive closure, except that one only considers paths where each node otherthan the last one has outdegree 1, see [29].)What makes the BDP particularly interesting, is the following result.Theorem 11 ([11]). Every Gaifman-local formula has the bounded degree prop-erty. �From results in the previous subsection, we conclude that �rst-order logic andvarious counting logics we considered have the bounded degree property. Thiscon�rms out intuition that these logics lack mechanisms for expressing recursive(�xpoint) computation.Corollary 6 ([32, 24]). Every Hanf-local formula has the bounded degree prop-erty. In particular, L1!(Qu)! formulae, FO + COUNT formulae (without freenumerical variables), and FO formulae have the bounded degree property. �Since deterministic transitive closure does not have the BDP, we obtain thefollowing result.Corollary 7 ([32, 24]). Deterministic transitive closure is not de�nable inL1!(Qu)! nor in FO+COUNT. �



This follows immediately from the BDP, and avoids all the combinatorial ar-guments in Section 4, and especially the ones in Section 3, that are based ongame-theoretic techniques.We now give another example that shows how the BDP can be applied to proveinexpressibility results.Example 4. A balanced binary tree is a (directed) binary tree in which all pathsfrom the root to the leaves are of the same length. Can this property be testedin FO, or perhaps in more expressive logics such as L1!(Qu)!? We now use theBDP to give the negative answer.Suppose that we have a sentence � that tests if a given graph is balanced binarytree. We next de�ne a query '(x; y) as follows. It �rst de�nes a new graph,by interchanging the immediate successors of x, x0 and x00, and the immediatesuccessors of y, y0 and y00, as shown in Figure 3 below, and then it tests is theresulting graph is a balanced binary tree. If either x or y fails to have exactlytwo immediate successors, then '(x; y) will evaluate to false. Assuming � is inthe logic, so is '(x; y), for logics like FO and L1!(Qu)!.
x y

x’’ y’x’ y’’Fig. 3. Changing successors of nodes in a balanced binary treeWe now show that '(x; y) violates the BDP. Assume it does have the BDP, andlet N = f'(2)+1. Let A be a balanced binary tree where each path from the rootto a leaf has length N . Since degrees in A do not exceed 2, deg count('[A]) < Nby the BDP. We can see that A j= '(a; b), for two nodes a; b, if and only if a and bare at the same level in A. Thus, '[A] is a disjoint union of N cliques of di�erentsizes, and hence deg count('[A]) = N . This contradiction shows that ' does nothave the BDP, and hence cannot be de�ned in L1!(Qu)!. Consequently, testingfor balanced binary trees is not L1!(Qu)!-de�nable.One may have noticed that there is a certain asymmetry in the de�nition of theBDP. In the assumption, we deal with deg set(A), but the conclusion puts a



bound on deg count('[A]). Can the de�nition be made symmetric? To formalizethis, de�ne the strong bounded degree property of '(x) as follows: there exists afunction f' : N ! N such that deg count('[A]) � f'(deg count(A)).Proposition 2 ([11]). There are �rst-order de�nable graph queries that violatethe strong bounded degree property. �In fact, [11] shows that even a weaker property is violated by some �rst-orderqueries. De�ne the interval bounded degree property of a query '(x) as the ex-istence of a function f' : N ! N such that deg count('[A]) � f'(k) wheneverdeg set(A) � fn; n+1; : : : ; n+kg for some number n. Then there exist �rst-orderde�nable queries on graphs that violate this property.To summarize, we have seen four di�erent locality conditions: strong Gaifman-locality, Hanf-locality, Gaifman-locality, and the bounded degree property. Therelationship between them is shown in Figure 5.4. While Hanf-locality is closelytied to a game and relatively easy to show for FO and some of its extensions,Gaifman-locality and the bounded degree property are very easy to use in ex-pressibility proofs. Fortunately, they are implied by Hanf-locality of a logic.Strongly Gaifman-local ) Hanf-local ) Gaifman-local ) BDPFig. 4. The relationship between the notions of locality6 Applications in complexity theoryFagin's theorem, that equates existential second-order logic and complexity classNP, started a new line of research in complexity theory. In the past 20 years,many complexity classes have been characterized in logical terms, see [13, 28] foran overview. For example, polynomial time and space can be characterized byleast- and partial �xpoint logics, respectively. Essential for many characteriza-tions is the presence of a linear order on the input. The intuition behind havingan order is simulating the order in which elements of the input appear on thetape of a Turing machine. While for order-invariant queries, the exact order doesnot a�ect the output, its presence is required for a logic to simulate the compu-tation of a machine. In fact, it remains an open problem whether there is a logicfor polynomial time properties of unordered graphs, for example.In this section, we deal with a circuit complexity class TC0. This class is de�nedvia Boolean circuits. Consider a family of circuits C = fc1; c2; : : : ; cn; : : :g, wherethe circuit cn has n inputs and one output. Given a Boolean string x, we saythat C accepts x if the output of cn on x is 1, whenever x is of length n.



The class AC0 is de�ned as the class of languages accepted by circuits C whereeach gate is either an AND, or an OR, or a NOT gate, with AND and OR gateshaving unbounded fan-in (no restriction on the number of inputs). The numberof gates in cn is polynomial in n, and the depth of circuits cn is constant. (Moregenerally, for ACk, the depth of cn is allowed to be O(logk n).) The class TC0 isde�ned as AC0, except that majority gates MAJ are also allowed. Assume sucha gate has k inputs. Then its single output is 1 i� at least bkc+ 1 of its inputsare 1.The class TC0 is not an idle creation of complexity theory; in fact, it is ofspecial importance in computer science. It characterizes the complexity of suchimportant operations as integer multiplication, division, and sorting, and servesas a computational model for neural nets [44]. We refer the reader to survey [4]for additional information on circuit complexity.Despite its importance, not much is known about the relationship between TC0and other complexity classes. We do know that AC0 � TC0, as the parity lan-guage (strings with even number of 1s) is in TC0, but not in AC0 [8]. We alsoknow (see [4], for example) thatTC0 � NC1 � DLOG � NLOG � NC � PTIME � NP;but we do not know if any of the inclusions is proper! In fact, [45] showed thatthere is inherent di�culty in separating TC0 from NP, at least using conventionaltechniques of circuit complexity. A general notion of natural proof was formulatedin [45]; this notion subsumes most of the existing lower bound proofs. Then [45]showed that the existence of a natural proof separating these two classes wouldimply that no good pseudo-random number generators are computable in TC0.Putting it in the language of [4], it would imply that no cryptographically-securefunctions can be computed in TC0, even though cryptographers believe that suchfunctions do exist. As the notion of natural proof is quite di�erent from results onlogical expressibility in �nite model theory, one might attempt to avoid obstaclesof [45] by using a logical characterization of TC0. Below, we survey results inthis direction.Notice that in the de�nition of classes AC0 and TC0, we did not say anythingabout the relationship between circuits cn 2 C when n varies; in fact, they cancompute completely \di�erent" things for di�erent n. However, in most appli-cations, those circuits compute the same property, like parity. Capturing thisintuition leads to the notion of uniformity. The weakest notion of uniformity isPTIME-uniformity, meaning that the mapping n 7! cn is computable in polyno-mial time. Similarly, one can de�ne logspace-uniformity (see [3] for using thesenotions with the class TC0). However, the most widely used notion of uniformityis DLOGTIME-uniformity. We spare the reader the more technical de�nition,that can be found in [5], and instead give the characterization theorem.Theorem 12 ([5]). DLOGTIME-uniform TC0 = FO+COUNT+ <. �



From now on, when we speak of TC0, we mean its DLOGTIME-uniform version;that is, FO + COUNT+ <. The latter is the class of problems de�nable byFO + COUNT formulae in the presence of an order relation <. We will mostlydeal with order-independent properties. The notion of order-independence isde�ned as follows. Suppose we have a FO+COUNT formula ' in the languageof � and <, and suppose A is a �-structure. Then, for any two orderings <1 and<2 on A, and for any a, A<1 j= '(a) i� A<2 j= '(a), where A< denotes theextension of A with the order <.Even though we restrict our attention to order-independent properties, the merepresence of an order relation does increase the expressive power:Proposition 3 ([6]). There are order-independent properties de�nable in FO+COUNT+ < but not in FO+COUNT. �The example of a separating query (not the proof!) is quite simple. Let � =(E;U), where E is binary and U is unary. Consider the following property: Ifthe interpretation of E is an equivalence relation, then the number of distinctsizes of equivalence classes of E equals the cardinality of U . This query is notde�nable in FO+COUNT [6], but, as shown in [38], can easily be de�ned withorder, since all elements whose equivalence classes have the same size, can becanonically represented by the <-minimal such element. Then one just checks ifthe number of those elements equals the cardinality of U .Theorem 12 reduces the problem of separating TC0 from classes above it tothe problem of logical expressibility; for example, to show TC0 6= NLOG, itwould su�ce to show that transitive closure, an NLOG-complete problem, isnot de�nable in FO + COUNT+ <. Since locality gives us an easy proof thattransitive closure is not in FO + COUNT, one might try to push the ideas oflocality into the ordered setting.We do not know whether the above expressivity bound on FO + COUNT+ <is true, although we conjecture that it is. Below, we survey some of the partialresults con�rming the intuition. We state the results for the NLOG-completeproblem of computing the transitive closure, but they also hold for deterministictransitive closure, which is complete for DLOG.Assume that instead of an order relation, we have a successor relation SUCC.Since it realizes only degrees 0 and 1, as an immediate consequence of thebounded degree property of FO+ COUNT, we obtainCorollary 8 ([14]). Transitive closure is not de�nable in FO + COUNT +SUCC. �Note that FO plus transitive closure TRCL plus successor relation captureNLOG (cf. [13, 28]); hence, FO + COUNT + SUCC � NLOG = FO+ TRCL +SUCC. This result was �rst shown in [14], via a rather complex argument basedon games of [30]. Later, using the results of [40], the journal version of [14] (see



[15]) gave a much simpler proof based on Hanf's condition. Finally, using thebounded degree property, we gave a completely elementary proof.The use of bounded degree property allows us to substitute any auxiliary relationfor SUCC, as long as its degrees are bounded by a constant. For example, wecould use balanced binary trees (note that using such a structure would mostcertainly make a game-based proof unmanageable). The next question is: Howcan we lift the results for FO+COUNT from the constant world to that wheredegrees are allowed to depend on the size of a structure?First such result was given in [32], and it used the notion of moderate degree of[17]. Let C be a class of structures. Let maxdegC(n) denote the maximal degreeof a structure in C, whose cardinality is n. Then we say that C is a class ofrelations of moderate degree if maxdegC(n) � logo(1) n. That is, for some function� : N ! N with limn!1 �(n) = 0, we have maxdegC(n) � log�(n) n. Combinationof results from [11] and [32] led to the following.Proposition 4 ([32]). Transitive closure is not de�nable in FO + COUNT inthe presence of relations of moderate degree. �A linear order on an n-element set realizes n di�erent degrees, from 0 to n� 1.Thus, we need to lift the results from relations of small (constant or moderate)degree to relations of large (comparable with the size of the input) degree. Theconcept of moderate degree was introduced in [17] to show that connectivityis not de�nable in monadic �11 in the presence of those relations. Later, [46]extended this to linear orders. Thus, one may ask if a similar avenue of attackon the separation problem can be pursued in the case of FO + COUNT.A partial result in this direction exists. Let Ok stand for the class of relationswhich are pre-orders hA;�i (i.e., � is re
exive and transitive), and each equiva-lence class of the relation x � y � (x � y) ^ (y � x) has at most k elements. Inparticular, O1 is the class of linear orders.Theorem 13 ([38]). Transitive closure is not de�nable in FO+COUNT+Ok,for any k > 1. �In fact, the result of [38] is even stronger as it allows relations from O2 to be ofspecial form: those that have at most g(n) elements in equivalence classes of size2, and the rest, n� g(n) elements, form a linear order. The function g(n) can bechosen to be arbitrarily small, e.g., log log : : : logn, but it cannot be bounded bya constant. The version of Theorem 13, proved in [38] for deterministic transitiveclosure, implies DLOG 6� FO+ COUNT +Ok for any k > 1. But this still fallsshort of resolving the most important case of k = 1.One of the main goals of pursuing this line of research was to avoid the obstacleson the path towards separating TC0 from other classes posed by the naturalproofs of [45]. At the �rst glance, our expressivity bounds look nothing likenatural proofs, although we must admit that there was no systematic study



conducted on the relationship between classical lower bounds proofs in circuitcomplexity and logical expressivity bounds for FO + COUNT and the likes.However, while avoiding one kind of problems, we encountered (perhaps evencreated) di�erent ones. For example, the proof of Theorem 13 is based on thefollowing technique. One �rst shows that if for a class C of auxiliary relations,there exists a class of graphs G such that the pair (C;G) satis�es two properties,P1 and P2, then transitive closure of graphs in G is not de�nable in FO +COUNT + C. Then, [38] showed how to construct G for C being Ok, with k >1, thus proving inexpressibility of transitive closure in FO + COUNT + Ok.Unfortunately, [38] also showed that if C = O1, the class of linear orders, thenthere is no class of graphs G such that (C;G) satis�es P1 and P2. That is, theapproach is inherently limited for showing results in the ordered setting.Another large obstacle to using the ideals of locality for proving the separationis a recent result:Theorem 14 ([24]). There exist order-invariant formulae in FO+COUNT+ <that do not have the bounded degree property. Consequently, order-invariant FO+COUNT+ < is neither Gaifman-local nor Hanf-local. �Nevertheless, we believe it was a useful exercise to study the expressivity of FO+COUNT with relations of large degree, viewing it as a reasonable approximationof uniform TC0. The bounds of [14], obtained less than 4 years ago with a greatdeal of e�ort, were shown here by a simple application of the bounded degreeproperty. The best lower bound given by locality arguments (Theorem 13) showsthat one can get very close to a linear order, and thus very close to uniform TC0,without achieving the power of logspace computation. In a way, results of thissection can be viewed as separating \very uniform" versions of TC0 from DLOGand classes above it.7 Applications in database theoryThe theory of database query languages is �rmly grounded in �nite-model the-ory, and also provides a major motivation for �nite-model theory research. Tra-ditional databases query languages, such as relational algebra and calculus, haveprecisely the power of �rst-order logic. An important subclass, called conjunctivequeries, is simply the f9;^g-fragment of �rst-order logic. Various extensions ofrelational calculus, such as Datalog, Datalog with negation, and the language ofwhile loops, correspond to various �xpoint extensions of �rst-order logic, see [1].In the relational model, data is stored in relations. For example, a database mayhave two relations, for storing information about employees (called Emp) anddepartments (called Dept). Assume that Emp stores triples containing employeename, department, and salary, and Dept stores triples containing departmentname, manager, and manager's salary. Below is an example of a database:



EName EDept ESalaryJohn A1 50Ann A1 60Jim B2 75 DName Manager MSalaryA1 Bob 80B2 Steve 85C3 Mary 80An example of a query is \For each employee, �nd his or her manager." Thiscan be written in �rst-order logic as:q(emp;manager) �9dept; esal;msal Emp(emp; dept; esal) ^ Dept(dept;manager;msal):In real life, of course, programmers do not write �rst-order formulae; insteadthey write queries in the language called SQL, which is the lingua franca of thecommercial database world. The above query, in SQL, will look like:SELECT E.EName, D.ManagerFROM Emp E, Dept DWHERE E.Edept = D.DnameThe best way to read such statements is as set-theoretic comprehensions: theabove becomes8<: (EName, D.Manager) ������ (EName,EDept,ESalary) 2 Emp;(DName,Manager,MSalary) 2 Dept;EDept = DName 9=;The basis of SQL is the select-from-where statement, with the addition unionand di�erence, and features such as view creation, which make the language com-positional. This basis has precisely the power of the �rst-order logic. However, allpractical implementations of SQL come equipped with two additional features:arithmetic operations, and aggregate functions. For example, consider the follow-ing query: \Find all departments that have more than 5 employees, together withthe name of the manager and the average salary of the employees."In SQL, this will be written asSELECT D.DName, D.Manager, AVG(E.ESalary)FROM Emp E, Dept DWHERE E.Edept = D.DnameGROUPBY D.DNameHAVING COUNT(E.EName) > 5There are two key new features in this query. Grouping is given by the clausesGROUPBY and HAVING: for each department manager, we group together all theemployees in his/her department, provided there are more than �ve of them.The other feature is aggregate function: these are AVG, for computing the averagesalary, and COUNT, for counting the number of employees.Let us now see why adding these features is indeed an extension of �rst-orderlogic. We consider a query that we know is inexpressible in �rst-order logic alone:



given a graph G, �nd the set of nodes x with in-deg(x) = out-deg(x). We letgraphs be represented as a binary relation Edges with two attributes, From andTo. As the �rst step, we create two new relations, one storing nodes togetherwith their in-degrees, and the other storing nodes with their out-degrees. Suchintermediate relations are called views in SQL, and are created asCREATE VIEW INDEGV(Node, Indeg) ASSELECT E.To, COUNT(E.From)FROM Edges EGROUPBY E.ToCREATE VIEW OUTDEGV(Node, Outdeg) ASSELECT E.From, COUNT(E.To)FROM Edges EGROUPBY E.FromUsing these views, one computes the answer to the query asSELECT INDEGV.NodeFROM INDEGV, OUTDEGVWHERE (INDEGV.Node = OUTDEGV.Node)AND (INDEGV.Indeg = OUTDEGV.Outdeg)By now, the reader must be convince that H�artig and Rescher quanti�ers can beexpressed in SQL. Thus, it is more powerful than �rst-order logic. The questionnow is:How expressive is SQL?More precisely, there seems to be a \folk result" saying that SQL cannot computerecursive queries, such as transitive closure. That is, it lacks a mechanism forrecursive computation. The question now is: What kind of formal statement canone prove to con�rm this intuition?The approach of some textbooks is to restrict SQL to its subset which is essen-tially �rst-order logic, and use expressivity bounds for the latter. However, as wehave just seen, this is not satisfactory. The di�culty with answering the questionabove is that there are dozens of di�erent version of SQL (see [43] for an overviewof standards and dialects), and they often support di�erent sets of operators. Forexample, some versions even add the transitive closure operator. Thus, we re-strict our attention to features that are common to all versions of SQL; that is,grouping and aggregation (cf. [1, 43]). The �rst result on the expressive power ofsuch a language was based on yet unproven assumption from complexity theory,and two observations: SQL queries can be evaluated in deterministic logspace,and transitive closure is complete for nondeterministic logspace. Thus,



Proposition 5 ([10]). Assume that DLOGSPACE 6= NLOGSPACE. Thentransitive closure cannot be expressed in SQL. �Can we get rid of the unproven assumption? The problem we face is that SQL perse is quite inconvenient to work with { its syntax is quite awkward, and in factit has been an object of persistent criticism. SQL combines sets and multisetsin order to evaluate aggregates: for example, computing the average salary, onecannot �rst project out the salary attribute and then compute its average, asthe elimination of duplicates will produce an incorrect result. Following [20, 35],a language that deals correctly with multiset and set semantics was proposed in[36]. As this language can model the main features of SQL, and extends �rst-order logic, it was suggested to use it as a rational reconstruction of SQL.Let us now give an informal introduction into this language, which we call hereAGGRQ. It deals with objects which can freely combine rational numbers, el-ements of the domain of atomic values, D, tuples, and sets. In particular, itpermits sets of sets. The language is statically typed (cf. [21, 36]), but we shallnot go into detail here. The full description can be found in [21, 36]; here wehighlight the salient features. The language allows one to apply a function toeach element of a set, that is, obtain a set ff(x) j x 2 Xg from X . If all ele-ments of a set X are sets themselves, their union can be taken: SX2X X . Basicarithmetic operations (+;�; �;�; <) are available on Q. On the domain of basicvalues D, only equality test is available (notice the absence of order). Finally,if f is a function into Q, its values on a set X can be added up; that is, onecan compute Px2X f(x). Note that if f is identically 1, then the above is thecardinality of X .It was proved in [36] that these features model the main features of SQL. Fur-thermore, extending a result from [49], a conservativity property was shown in[36]. It says that nesting of sets is in a sense super
uous: every query from re-lational databases to relational databases in AGGRQ can be written in a waythat does not use sets of sets. Nesting is essential for modeling grouping, andthus the (nontrivial) conservativity result gives us a rather pleasant language(without higher-order features) to model all the features of SQL. In [36], thefollowing was proved:Proposition 6 ([36]). Transitive closure cannot be expressed in AGGRQ. �While this does provide useful bounds, there are two problems with the proof in[36]. First, it is very syntactic. It proceeds by establishing a normal form resultfor queries on a special class of inputs; the property depends both on the class ofinputs, and the properties of the chosen syntax of the language. Thus, makinga minor change in the syntax that does not a�ect expressiveness would meanthat the proof must be redone from scratch. Even more unpleasantly, the proofin [36] establishes inexpressibility of transitive closure, but fails to establish ageneral property that will give us expressivity bounds.



In [21, 36] it was conjectured that relational queries in AGGRQ have the BDP.By relational queries we mean those whose inputs and outputs only containelements of D, but no numbers, although rational numbers can be used in theprocess of evaluating a query. An SQL example of �nding nodes with equalin- and out-degrees shows that there are relational queries de�nable in SQLbut not in �rst-order. Clearly, proving the above conjecture would resolve theproblem for queries such as transitive closure or deterministic transitive closure.By extending the normal form result AGGRQ, the following was proved.Proposition 7 ([11]). Every relational query in AGGRQ has the bounded degreeproperty. �It is still unpleasant that the proof depends on a particular syntax for the lan-guage. Also, it would be interesting to know if relational queries are Gaifman-local. These two questions were considered in [32]. The approach taken by [32]was the following. Restrict the language to natural numbers only. That is, onecan compute COUNT but not AVG. Let us call this language AGGRN. With rationalsout of the way, try to embed it into FO+COUNT to prove locality.Embedding into FO+COUNT turns out to be problematic, as in FO+COUNTthe sizes of the �rst-sort and second-sort universes are the same. In contrast, inSQL, one can create numbers much bigger than the size of the database. A simpleexample is this: consider an n-element set X , and compute Px2X f(x) wheref(x) = 2 for every x. The result is 2n. The solution to the problem is to modifya query, essentially by putting a huge linear order \on the side" and having allarithmetic done on that linear order. This technique led to the following result.Proposition 8 ([32]). For any relational query Q in AGGRN, another queryQ0 can be found such that (a) Q is Gaifman-local i� Q0 is, and (b) Q0 canbe de�ned in FO + COUNT. Consequently, every relational query in AGGRN isGaifman-local. �Using this technique, [37] returned to the main question: what is the expressivepower of SQL? It de�ned a new language, called AGGR
atN , which �rst restrictsAGGRN to objects that do not contain sets of sets, and then adds new arithmeticoperation, and product over a set. That is, given a set X and a function f intoN de�nable in AGGR
atN , one can compute Qx2X f(x) in AGGR
atN . Then thefollowing sequence of results was proved.Theorem 15 ([37]). 1) Every relational AGGRQ query can be expressed inAGGR
atN .2) For any relational query Q in AGGR
atN , another query Q0 in AGGR
atN canbe found such that (a) Q is Gaifman-local i� Q0 is, and (b) Q0 can be de�ned inFO+COUNT. �



The bulk of the proof of this theorem is in showing (b) of part 2). Combiningthese results with locality of FO + COUNT, we obtain:Corollary 9. Every relational query in AGGRQ is Gaifman-local. �Consequently, plain SQL queries are Gaifman-local and have the bounded degreeproperty. Therefore, queries that need a recursion mechanism (transitive closure,deterministic transitive closure, connectivity test, etc.) cannot be computed inSQL.Thus, locality helped us answer important questions about expressive power ofreal world database query languages.We conclude this section by a remark about the set of basic operations on thedomain of atomic values, D. In all the above results, we assume that it is onlypossible to test if two elements of D are equal. In many applications, there isa meaningful linear order on such domains (for examples, salaries can be com-pared). What happens if D is ordered? As it often happens, things become alot more complicated in the ordered setting. In a way, we saw it in the lastsection. For SQL, one can show that it is possible to express any query fromFO+COUNT+ < if D is ordered. Thus, every uniform TC0 property becomesde�nable in SQL, and hence the problems of expressivity in of recursive queries(such as transitive closure) hinges on the separation of complexity classes, thuscon�rming the original intuition of [10]. Note that there are other well-knownexamples of close connection between separation of complexity classes and ex-pressivity bounds of query languages, see [2].One can go further and add more operations to D. For example, one can assumethat D is the �eld of real numbers with the usual operations +; �;�, or perhapsmore complex such as ex. The results of [7] show that for the class of generic [1]queries (those that commute with permutations of D), these extra operations donot add expressive power, beyond a linear order. Most examples of queries weconsider { transitive closure, connectivity test, etc. { are generic. Thus, addingextra operations beyond < does not lead to an increase in power of languagessuch as �rst-order logic or SQL. This assertion, in the case of an interpreteddomainD, depends on what one means by quanti�cation 9x. In most application,quanti�cation in queries assumes the �nite database; however, it is conceivable(and in some applications, important) to quantify over D. We refer the readerto [7] for the discussion on this topic.8 ConclusionIn this paper, we reviewed some results that were developed for proving lowerbounds for logical expressibility. We considered �rst-order logic and its exten-sions with several kinds of counting mechanisms. We presented the usual game-theoretic characterizations of those logics, as well as Gaifman's and Hanf's theo-rems, and general notions behind these results. We also studied the relationship
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