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Abstra
tWe study the problem of maintaining re
ursively-de�ned views, su
h as the transitive 
losure ofa relation, in traditional relational languages that do not have re
ursion me
hanisms. The mainresults of this paper are negative ones: we show that a 
ertain property of query languages impliesimpossibility of su
h in
remental maintenan
e. The property we use is lo
ality of queries, whi
his known to hold for relational 
al
ulus and various extensions, in
luding those with grouping andaggregate 
onstru
ts (essentially, plain SQL).1 Introdu
tionIt is well known that relational 
al
ulus, or �rst-order logi
, 
annot express re
ursive queries su
h astransitive 
losure or same-generation, 
f. [1℄. This is one of the main reasons why languages extending�rst-order logi
, su
h as various �xpoint logi
s, have been so extensively studied in database theory.However, most pra
ti
al database systems still use query languages with limited expressive power.Indeed, the plain SQL that is used for writing the majority of queries is essentially �rst-order logi
extended with grouping and aggregation, and as su
h it 
annot 
ode re
ursion me
hanisms.What 
an one do if one needs to know the result of a re
ursive query? One possibility is to use ageneral-purpose programming language to 
ompute su
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as one no longer has a

ess to a de
larative query language and to a query language optimizer. Analternative solution is to use a general-purpose programming language to 
ompute the initial result ofa query, and then update the result every time the database 
hanges. For example, for the transitive
losure query this amounts to updating the transitive 
losure of a graph every time an edge is insertedor deleted.The problem of updating the results of queries (
alled views) when the underlying database 
hangesis known under the name of view maintenan
e, or in
remental re
omputation. There is also extensiveliterature on dynami
 algorithms (see, for example, [19, 27℄) whi
h does not 
onsider the issue of aquery language in whi
h updates are expressed. Sin
e databases are normally queried and updatedby languages of limited expressive power, this issue be
omes important for view maintenan
e. Thereis a large body of literature on view maintenan
e that assumes that views are de�ned and maintainedusing the same language. Numerous algorithms exist dealing with fragments of relational algebra [2℄,full relational algebra [29, 13℄, bag (multiset) languages [12℄, languages with grouping and aggregation[16, 30℄ and others; see [15℄ for a survey.However, mu
h less is known in the 
ase when a view is de�ned in one, more powerful language, andis maintained in another one, less powerful. Those papers that do 
onsider this situation deal withthe 
ase when a re
ursive query is 
omputable in polynomial time and de�nable in a language su
has re
ursive datalog, and the maintenan
e is done in relational 
al
ulus.The query that re
eived most attention is the transitive 
losure. It 
an be easily shown that thetransitive 
losure 
an be maintained under the insertion of edges [5, 3℄. A more interesting resultof [28, 6℄ shows that transitive 
losure of undire
ted graphs 
an always be maintained, provided someauxiliary (binary) relations 
an be used. For dire
ted graphs, the situation is more 
omplex. It isknown [4℄ that the transitive 
losure of a
y
li
 graphs 
an be maintained in relational 
al
ulus, butthe question is still open for arbitrary dire
ted graphs.In general, it is known that every query that 
an be in
rementally maintained in relational 
al
ulushas PTIME data 
omplexity [28, 6℄. It is 
onje
tured that the 
ontainment is stri
t, but, as wasshown in [9℄, when auxiliary relations of arity 2 or higher are allowed, proving su
h bounds amountsto proving lower bounds for a general model of 
omputation, and bounds of this kind are extremelyhard to obtain.For auxiliary relations of arity 1 (or no auxiliary relations), some bounds have been reported forrelational 
al
ulus [6℄. These results are not 
ompletely satisfa
tory as they are very 
losely tiedto a parti
ular language; in fa
t, the proofs rely on Ehrenfeu
ht-Fra��ss�e games. It would thus beimpossible to extend proof te
hniques from [6℄ to 
over languages that more 
losely resemble the
ommer
ial lingua fran
a of the database world|SQL. Nor it is 
lear how to extend those results todeal with operations su
h as a built-in linear order.Thus, the main goal of this paper is to �nd properties of query languages (des
ribing their expressive-ness) that would imply unmaintainability of 
ertain re
ursive views. The main property we use is thatof lo
ality. The ideas we des
ribe here are the ones typi
ally used as tools in �nite-model theory forproving inexpressibility results. In parti
ular, the fa
t that they are possessed by relational 
al
ulus(even with aggregate fun
tions) is known. In terms of re
ursive queries, we 
on
entrate on the twomost famous examples of queries expressible in datalog but not in relational 
al
ulus: transitive 
lo-2



sure and same-generation. Given the fa
t that some re
ursive queries 
an be maintained in relational
al
ulus, it is probably impossible to �nd general 
hara
terizations of this kind, and thus one has to
on
entrate on some parti
ular queries. However, we believe that the te
hniques developed in thispaper are easily extendible to deal with other queries.The rest of the paper is organized as follows. We de�ne the framework for in
remental maintenan
ein Se
tion 2. In Se
tion 3, we de�ne lo
ality of query languages. In Se
tion 4, we show how to uselo
ality to derive bounds on in
remental maintenan
e in query languages.2 De�nition of in
remental maintenan
eIn this se
tion, we des
ribe our setting for the problem of in
remental maintenan
e of views. Weassume that all values that 
an appear in a database are drawn from a 
ountably in�nite domainU . A relational s
hema SC is a 
olle
tion fR1; : : : ; Rlg of relation names, ea
h name Ri having aritymi > 0. By Inst(SC) we denote the set of instan
es of the s
hema SC, that is, the set of families of�nite relations RD1 � Um1 ; : : : ; RDl � Uml . We shall write just Ri in pla
e of RDi when it does notlead to 
onfusion.Let Q be a query, that is, a map that asso
iates to every database D in Inst(SC in) an instan
e of anoutput s
hema SCout . When SCout 
onsists of a single n-ary relation symbol, we speak of an n-aryquery.We say that Q 
an be (in
rementally) maintained under insertions in a language L, if for ea
h m-arysymbol R in SC in , there exists a L query QRins that takes as its inputs D 2 Inst(SC in), Q(D) 2Inst(SCout ), and an m-ary tuple ~t, and returns the result of Q on D updated in su
h a way that ~t isinserted into R. In other words,QRins(D;Q(D);~t) = Q(D[R := R [ f~tg℄)where D[R := S℄) means D in whi
h the relation R is repla
ed with the relation S.Similarly, Q 
an be (in
rementally) maintained under deletions in a language L, if for ea
h m-arysymbol R in SC in , there exists a L query QRdel that takes as its inputs D 2 Inst(SC in), Q(D) 2Inst(SCout ), and an m-ary tuple ~t, and returns the result of Q on D updated in su
h a way that ~t isdeleted from R. In other words,QRdel (D;Q(D);~t) = Q(D[R := R� f~tg℄):This de�nition assumes that no auxiliary data are kept. That is, to re
ompute the value of Q aftera single insertion or deletion, only the old value of Q, the old database and the inserted (deleted)tuple are needed. There are example of queries that 
annot be re
omputed in su
h a way, but 
anbe re
omputed in the presen
e of some auxiliary data. To 
apture this situation, we say that Q is(in
rementally) maintainable under insertions (deletions) in the presen
e of auxiliary relations if, thereexists a s
hema SCaux , disjoint from SC in and SCout , and a query Q0 from Inst(SC in [SCout [SCaux )to Inst(SCout [ SCaux ) su
h that Q0 is maintainable under insertions (deletions) to SC in -relations,and Q0 is an extension of Q. 3



To de�ne this latter notion pre
isely, we have to explain how the initial value of the output of Q and ofthe auxiliary relations is obtained. In one model, we start with the empty database, and keep insertingand deleting tuples. In the other model, we are given the initial value of D;Q(D) and the auxiliarydata. Note that this is the model that makes sense when we deal with maintenan
e under deletionsonly. When we say that Q0 is an extension of Q, we mean that for every D 2 Inst(SC), the asso
iatedauxiliary relations V 2 Inst(SCaux ), and Q(D), for any sequen
e of updates u1; : : : ; un to the databaseD, and the sequen
e D0 = D;Z0 = (Q(D); V ); : : : ;Di+1 = ui+1(Di); Zi+1 = Q0ui+1(Di; Zi), it holdsthat the values of SCout -relations in Zi are Q(Di), i � n. Here Q0u is the query maintaining Q0 underthe update u.Note that there are some subtle di�eren
es between the two ways of initializing auxiliary data [6, 28℄.However, it will be 
lear from the proofs in the next se
tion that our results are not a�e
ted by theway in whi
h data is initialized.If all relations in SCaux are at most unary (binary, et
.) then we say that Q is maintainable in thepresen
e of unary (binary, et
.) auxiliary relations. In this paper we 
on
entrate on maintenan
ewith at most unary auxiliary relations. As pointed out in the introdu
tion, proving bounds formaintenan
e with auxiliary relations of arity 2 and higher is probably beyond rea
h. Note also that inthe algorithmi
 literature on view maintenan
e one typi
ally 
onsiders maintenan
e without auxiliarydata, see [2, 13, 12, 15, 16℄.Another parameter of in
remental maintenan
e is whether the value of auxiliary relations is the samefor any sequen
e of updates that leads to a given database. It was shown in [7℄ that fewer queries
an be in
rementally maintained under this restri
tion. In what follows, we thus 
onsider this morepowerful model of in
remental re
omputation, as we are interested in proving negative results.3 Query languages and lo
alityIn the rest of the paper, when we say \language L," we always assume that the following is true of L:1. L 
ontains relational 
al
ulus, or �rst-order logi
, as a sublanguage.2. L is 
losed under �rst-order operations.3. L is 
losed under substitutions. That is, assume that there is a L query Q : Inst(SC in) !Inst(SCout ). Assume that some of the relations R1; : : : ; Rk are de�ned by means of other queries,Q1; : : : ; Qk on input databases of s
hemas SC1; : : : ;SCk. Let SC 0 = SC � fR1; : : : ; Rkg. Thenthere exists a L query Q0 : Inst(SC 0 [ SC1 [ : : : [ SCk)! Inst(SCout ) su
h thatQ0(D) = Q(D[R1 := Q1(D1); : : : ; Rk := Qk(Dk)℄)where Di is the SCi part of D.For example, relational 
al
ulus and plain SQL are su
h languages.4



Next we de�ne the 
on
ept of lo
al queries and lo
al languages. Given a s
hema SC in and D 2Inst(SC in), its a
tive domain, adom(D), is the set of all elements from D that o

ur in relations fromD. The Gaifman graph [8, 11, 10℄ of D, G(D) is de�ned as a graph hA;Ei, where A = adom(D), and(a; b) is in E i� there is a tuple ~t 2 RDi for some i su
h that both a and b are in ~t. The distan
ed(a; b) is de�ned as the length of the shortest path from a to b in G(D); we assume d(a; a) = 0. If~a = (a1; : : : ; an), then d(~a; b) = minij d(ai; b).Given a tuple ~a of elements of A = adom(D), its r-ball SDr (~a) is fb 2 A j d(~a; b) � rg. Its r-neighborhood NDr (~a) is de�ned as an instan
e of SC in where ea
h relation symbol Ri is interpreted asa set of tuples ~t 2 RDi where all elements in ~t are from SDr (~a). Furthermore, we treat ~a as distinguished
onstants.We write ~a �Dr ~b if NDr (~a) and NDr (~b) are isomorphi
; that is, if there exists a one-to-one maph : SDr (~a) ! SDr (~b) su
h that h(~a) = ~b and ~t 2 Ri i� h(~t) 2 Ri, for every i � l and a tuple ~t ofelements of SDr (~a).De�nition 1 (
f. [11, 17℄) An n-ary query Q is 
alled lo
al if there exists a number r � 0 su
h that,for any database D 2 Inst(SC in) and any ~a;~b 2 adom(D)n ,~a �Dr ~b implies ~a 2 Q(�A) i� ~b 2 Q(�A):The minimum su
h r is 
alled the lo
ality rank of Q, and is denoted by lr(Q).A language is 
alled lo
al if every m-ary query de�nable in it, m > 0, is lo
al. 2Gaifman's theorem [11℄ on lo
ality of �rst-order queries implies that every query de�nable in relational
al
ulus is lo
al.It is rather pleasant that lo
ality 
an be established for the language that is essentially plain SQL. SQL,the dominant language of 
ommer
ial databases, adds two main features to the relational 
al
ulus:grouping and aggregation. In a number of papers [23, 25, 18℄ we studied a theoreti
al re
onstru
tion ofplain SQL and its expressive power. Our approa
h was as follows. To model the grouping feature, we
onsidered a nested relational language, as in [3℄. If one deals with the usual queries from 
at relationaldatabases to 
at relational databases, then nested sets 
an appear as intermediate results. It is knownthat the nested relational algebra is an extension of relational algebra that has enough power to expressthe GROUPBY and HAVING 
lauses of SQL. To model aggregation, we made the language two-sorted. Inother words, it has two base types, one of them being the type of rational numbers. By graph querieswe meant queries of the type fb� bg ! fb� bg, where b is the other base type. We assumed that theusual rational arithmeti
 is present. Furthermore, we added an operator for summation of fun
tionvalues over a 
olumn, and showed that su
h a language 
omputes the standard aggregate fun
tionssu
h as AVG, TOTAL, COUNT.Then [25℄ established lo
ality of relational queries in su
h a language (that is, queries that do not havevalues of the numeri
al type in their input and output, but 
an use them for intermediate steps ofthe 
omputation). Furthermore, [18℄ showed (a stronger form of) lo
ality under the assumption thatevery arithmeti
 fun
tion and every aggregate operator is present in the language.5



Another very useful result is that queries de�nable in relational 
al
ulus in the presen
e of a built-inorder relation are lo
al, provided they are order-invariant [14℄. Normally, adding order as one of therelations in D would render the 
on
ept of lo
ality meaningless, as for every a, its unit ball S1(a)would 
ontain the entire a
tive domain. However, one 
an also de�ne the 
on
ept of neighborhoodswith respe
t to the original database, and use order as an additional built-in predi
ate, and restri
tone's attention to queries that do not depend on the parti
ular interpretation of this built-in order.The result is the order-invariant relational 
al
ulus, whi
h is known to be a proper extension of therelational 
al
ulus [1℄. The result of [14℄ shows that it is still lo
al.4 In
remental re
omputation of re
ursive queriesIn this se
tion we prove our main results showing that 
ertain re
ursive queries 
annot be in
rementallymaintained in lo
al languages. The queries we 
hoose are prototypi
al re
ursive queries that 
an beexpressed in languages su
h as datalog, but not in relational 
al
ulus: the transitive 
losure query t
,and the same-generation query sg . In both 
ases, the input is a dire
ted graph (binary relation) R.The transitive 
losure query is given by the following datalog program:t
(x; y) :- R(x; y)t
(x; y) :- R(x; z); t
(z; y):The same-generation query is given by the programsg(x; x) :-sg(x; y) :- sg(x0; y0); R(x; x0); R(y; y0):That is, a pair (a; b) belongs to the output of the same-generation query i� there is a node 
 and twoequi-distant walks in the graph, one from 
 to a, and the other from 
 to b.It is well known that the transitive 
losure query 
an be in
rementally maintained in relational 
al
ulusunder insertions (essentially, by 
oding Warshall's algorithm, 
f. [3, 5℄). Here we show that othermaintenan
e queries are impossible. The proof applies to all lo
al languages, and, unlike the te
hniquesof [6℄, it is not limited to relational 
al
ulus.Theorem 2 Let L be a lo
al language. Then it 
annot in
rementally maintain the transitive 
losurequery under deletions, nor the same-generation query under either deletions or insertions, even in thepresen
e of unary auxiliary relations.Proof. Throughout the proof, R is a binary relation symbol for the input graph, and G denotes thegraph itself. The main te
hnique is the following. Let C be a 
lass of graphs. We say that an n-aryquery Q on graphs is L-de�nable on C with unary relations if there exists a number m, a s
hemaSCm = fR;V1; : : : ; Vmg, and an n-ary query Q0 on Inst(SCm) de�nable in L su
h that, for everygraph G 2 C, there exists D 2 Inst(SCm) with RD = G, satisfyingQ0(D) = Q(G):6



That is, there is a way to de�ne m unary predi
ates on the nodes of G su
h that Q0 on the resulting
olored graph yields Q(G). Now, in ea
h 
ase, we �rst show that, assuming that a query 
an bemaintained, a 
ertain query would be L-de�nable on some 
lass of graphs with unary relations. Thenwe would show that su
h de�nability 
ontradi
ts lo
ality.a) Transitive 
losure under deletions. Let C be the 
lass of 
hains, that is, graphs of the formf(a0; a1); (a1; a2); : : : ; (ak�1; ak)g, k > 0, where all ais are distin
t. Given any G, let G> stand forthe 
omplete graph with the same set of nodes as that of G. Assuming that the t
 query 
an bemaintained under deletions (perhaps with unary auxiliary relations), we �nd a query Qt
del that takesin a graph, its transitive 
losure, an edge to be deleted, and the auxiliary relations, and produ
es thetransitive 
losure after the deletion. In parti
ular, if G is the 
hain as above, and ~V is the tuple ofunary auxiliary relations, Qt
del (G [ f(ak; a0)g; G>; (ak; a0); ~V ) returns t
(G), sin
e G [ f(ak; a0)g is a
y
le, and its transitive 
losure is G>. Sin
e the edge (ak; a0) is de�nable from G in relational 
al
ulus,and so is G>, we 
on
lude that the transitive 
losure query is L-de�nable on C with unary relations.It thus remains to show that this is impossible. Let m be the number of unary relations, and Q0 aquery that 
omputes the transitive 
losure of a 
hain G, given unary relations V1; : : : ; Vm. We 
anview adding these unary relations as 
oloring the nodes of G with 2m 
olors. Let r = lr(Q0). Forany node a in G at the distan
e at least r from the start and the end nodes, its r-neighborhood is a2r + 1-element 
hain, 
olored with 2m 
olors a

ording to the Vis. There are thus at most 2m(2r+1)di�erent types of r-neighborhoods of su
h nodes in terms of their 
olors. Hen
e, for any 
hain withk > (2r+3) � 2m(2r+1)+2r there would be at least 2r+3 nodes at the distan
e at least r from the endnodes, and having the same neighborhood type, no matter how Vis are interpreted. In parti
ular, one
an then �nd two su
h nodes, a; b, with d(a; b) > 2r + 1. This implies that in D 2 Inst(SCm) wherethe relation R is interpreted as G, we have (a; b) �Dr (b; a), and thus (a; b) 2 Q0(D) i� (b; a) 2 Q0(D).However, this 
ontradi
ts the assumption that Q0 
omputes the transitive 
losure, as exa
tly one ofthe pairs (a; b), (b; a), belongs to t
(G). This 
ontradi
tion proves 
ase a).b) Same-generation query under insertion. The 
lass C 
onsists of the graphs of the following form.Let G0 be the union of a 
hain f(b0; b1); : : : ; (bp�1; bp)g; p > 1, and an edge (b0; b�), where all bis andb� are distin
t. Let G1 be similarly de�ned as the union of a 
hain f(a0; a1); : : : ; (ak�1; ak)g; 0 < k < pand an edge (a0; a�), where a� 6= ai; i = 0; : : : ; k. We also assume that G0 and G1 are disjoint. Thengraphs in C are those of the form G = G0 [G1 [ f(a0; b0)g.Let G0 be G0 [ G1. Then sg(G0) = f(a; a) j a node of Gg [ f(a�; a1); (a1; a�); (b�; b1); (b1; b�)g; inparti
ular, it is de�nable in relational 
al
ulus with G as an input. Note also that the pair (a0; b0) isde�nable in relational 
al
ulus (when the input is G), sin
e a0 is the only node of outdegree 3, andb0 is the only node of indegree 1 and outdegree 2. Furthermore, for i; j 6= 0; �, (ai; bj) 2 sg(G) i�j = i� 1.Assume now that sg 
an be maintained under the insertion of edges (perhaps with auxiliary unaryrelations). Then there is a query Qsgins that takes in a graph, an edge, and some unary relationsV1; : : : ; Vm, and returns the output of the same-generation query on the graph resulting from insertingthe input edge into the input graph. In parti
ular, Qsgins(G0; (a0; b0); sg(G0); ~V ) would return sg(G).Sin
e (a0; b0) and sg(G0) are de�nable in relational 
al
ulus (with G as input), this means that sg isL-de�nable on C with unary relations. 7



To show that this is impossible, let Q0 be a query de�ning sg on C with unary relations, and letr = lr(Q0). As in the proof of a), we 
on
lude that if k is large enough, there are two indi
es,j > i > r, su
h that ai �Dr aj, where D is an extension of G with unary predi
ates Vis. This holdsno matter what the interpretation of Vis is. This implies that (ai; bj�1) �D (aj ; bj�1), sin
e the r-balls of ai and bj�1 are disjoint (and likewise for aj and bj�1). Thus, lo
ality of Q0 would implythat (ai; bj�1) 2 Q0(D) i� (aj ; bj�1) 2 Q0(D). Sin
e (ai; bj�1) 62 sg(G) and (aj ; bj�1) 2 sg(G), this
ontradi
ts the assumption that sg 
an be maintained under insertions.
) Same-generation under deletions. Let C 
onsist of graphs of the from f(a1; a2), (a2; a3), : : :,(al�1; al), (al; al+1), : : :, (a2l�1; a2l), (a�; a1), (a�; al+1)g, l > 1. That is, the subgraph on the nodes ai,i 6= �, is a 
hain, and we have edges from a� to two nodes on this 
hain: the start a1 and the middleal. Note that for su
h a graph G, sg(G) is the union of f(a; a) j a node of Gg, f(al+i; ai) j 1 � i � lg,and f(ai; al+i) j 1 � i � lg.Let G0 be obtained from G by adding two edges: (a2l; a1) and (a1; a1). Then sg(G0) = f(a�; a�)g [f(ai; aj) j i; j 6= �g. This is be
ause for every k < l, and every N > k, there is a walk of length Nfrom a� to ak of length N , simply by using the loop on a1 suÆ
iently many times. Similarly, for everyk > l, and every N > 2l + k + 1, there is a walk of length N from a� to ak: one moves to al, then toa2l, uses the (a2l; a1) edge to move ba
k to a1, stay suÆ
iently long at a1 and then moves to ak alongthe 
hain. Hen
e, (ai; aj) 2 sg(G0) for any i; j 6= �.Now assume now that sg 
an be maintained under the deletion of edges (perhaps with auxiliary unaryrelations). Then there is a query Qsgdel that takes in a graph, an edge, and some unary relationsV1; : : : ; Vm, and returns the output of the same-generation query on the graph resulting from deletingthe input edge from the input graph, as well as new values V 01 ; : : : ; V 0m of the auxiliary relations. Bothpairs (a2l; a1) and (a1; a1) are de�nable in relational 
al
ulus, given G as input (a2l is the only node ofoutdegree 0, and a1 is the su

essor of indegree 1 of the node of indegree 0), as well as sg(G0), if G isgiven as an input. Thus, we 
an �rst de�neQsgdel (G[f(a1; a1); (a2l; a1)g; (a2l; a1); sg(G0); ~V ) in L, whi
hprodu
es sg(G [ f(a1; a1)g) and the new values ~V 0 of auxiliary relations. Then, by 
ompositionality,we 
an de�ne, in L, Qsgdel (G [ f(a1; a1)g; (a1; a1); sg(G [ f(a1; a1)g); ~V 0), whi
h produ
es sg(G). Thus,the same-generation query is L-de�nable on C with unary relations.We now show that this is impossible. Again, assume that the same-generation query is de�nable bya query Q0 with lr(Q0) = r, using m auxiliary relations. Let D refer to the extension of G with unaryrelations Vis. As before, we 
an show that for large enough l, there exist two indi
es r < i < j < l� rsu
h that ai �Dr aj , no matter what the interpretation of Vis is (sin
e r-neighborhoods of ai and ajare 2r + 1 
hains 
olored with 2m 
olors). Therefore, (ai; aj+l) �Dr (aj ; aj+l), as elements in thesepairs at the distan
e at least 2r + 1 from ea
h other. By the lo
ality of Q0, (ai; aj+l) 2 Q0(G; ~V ) i�(aj ; aj+l) 2 Q0(G; ~V ), and thus Q0 
annot de�ne the same-generation query, sin
e (aj ; aj+l) 2 sg(G)and (ai; aj+l) 62 sg(G). This 
ompletes the proof. 2Remark It follows from the proof of a) that transitive 
losure 
an be repla
ed by deterministi
 transitive
losure [21℄ (every node on a path, ex
ept the �nal one, is required to have outdegree 1)|this queryis 
omplete for deterministi
 logspa
e. 8



CorollariesSin
e relational 
al
ulus is lo
al [11℄, we immediately obtain:Corollary 3 It is impossible to in
rementally maintain, in relational 
al
ulus, the transitive 
losurequery under deletions and the same-generation query under either deletions or insertions, even in thepresen
e of unary auxiliary relations. 2As we explained in the introdu
tion, proving bounds in the presen
e of binary auxiliary relations isprobably beyond rea
h. One parti
ular binary relation used very often is a linear order on the domainU . While a linear order 
an be maintained with binary relations [9, 24℄, it is often available as a basi
operation in relational 
al
ulus. In the 
ase when one 
an use a linear order in relational 
al
ulus(�rst-order) formulae, we refer to relational 
al
ulus with a built-in linear order. It turns out that theprevious 
orollary extends to it:Corollary 4 It is impossible to in
rementally maintain, in relational 
al
ulus with built-in linearorder, the transitive 
losure query under deletions and the same-generation query under either deletionsor insertions, even in the presen
e of unary auxiliary relations.Proof. We follow the proof of Theorem 2 and observe that every query that we 
onstru
t in order to
ontradi
t lo
ality, is order-invariant, that is, its result is independent of a parti
ular interpretation ofthe linear order. Thus, the proof of Theorem 2 applies verbatim, sin
e [14℄ shows that order-invariant�rst-order queries are lo
al. 2We now turn our attention to plain SQL, that is, an extension of relational 
al
ulus with groupingand aggregation, des
ribed brie
y at the end of se
tion 3. We assume that there are two base types:type b, whose domain is U , and type Q of rational numbers. When we talk about graph queries, wemean queries of the type fb� bg ! fb� bg, that is, queries that take a �nite graph over U and returnanother �nite graph over U . We then 
an show:Corollary 5 It is impossible to in
rementally maintain, in plain SQL, the transitive 
losure query un-der deletions and the same-generation query under either deletions or insertions, even in the presen
eof non-numeri
al unary auxiliary relations.Proof. Again, we follow the proof of Theorem 2. Every query that we 
onstru
t in order to 
ontradi
tlo
ality, is relational: that is, its input has relations interpreted over U but not Q (due to the restri
tionthat auxiliary relations are nonnumeri
al). The result now follows from the fa
t that su
h queries arelo
al [18℄. 2Note that if we 
onsider numeri
al input relations, or even a built-in linear order on the non-numeri
albase type, and no auxiliary relations in the setting of plain SQL, then proving bounds not only onin
remental maintenan
e but even on the expressive power is extremely hard. This follows from thefa
t that the language 
an then express every query whose data 
omplexity is in uniform TC0 [18, 22℄,9



whi
h so far has not been separated even from NP. On the other hand, in the in
remental maintenan
eframework in whi
h one starts with the empty database, it is possible to maintain, in plain SQL, everyquery whose data 
omplexity is in the polynomial hierar
hy, using a built-in linear order and unaryauxiliary relations [26℄. The result of [26℄ assumes the setting in whi
h there is no a priori bound onthe number of elements that 
an be stored in a database (e.g., the number of nodes of graphs). Itwas re
ently shown in [20℄ that if the number of nodes of graphs is �xed in advan
e, then transitive
losure 
an be in
rementally maintained in TC0. It is still unknown whether TC0 
an be repla
ed bya smaller 
omplexity 
lass, e.g., �rst-order queries.5 Con
lusionThe primary obje
tive of this note was to investigate general properties of query languages that renderthe unmaintainability of 
ertain re
ursive views. The property we fo
used on is lo
ality. It is knownthat proving bounds on in
remental re
omputation with auxiliary relations of arity 2 and higher isextremely hard [9℄, so we 
onsidered auxiliary data of arity at most 1. We showed that lo
ality impliesunmaintainability of two typi
al re
ursive queries: transitive 
losure, and same generation, even inthe presen
e of unary auxiliary relations. The results apply to relational 
al
ulus, relational 
al
uluswith built-in order, and plain SQL.A
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