Incremental Recomputation in Local Languages*!

Guozhu Dong Leonid Libkin®
Dept of Comp. Sc. and Engr Department of Computer Science
Wright State University University of Toronto
Dayton, OH 45435 Toronto, Ontario, M5S 3H5, Canada
Email: gdong@cs.wright.edu Email: 1ibkin@cs.toronto.edu

Limsoon Wong
Kent Ridge Digital Labs
21 Heng Mui Keng Terrace
Singapore 119613
Email: 1imsoon@krdl.org.sg

Abstract

We study the problem of maintaining recursively-defined views, such as the transitive closure of
a relation, in traditional relational languages that do not have recursion mechanisms. The main
results of this paper are negative ones: we show that a certain property of query languages implies
impossibility of such incremental maintenance. The property we use is locality of queries, which
is known to hold for relational calculus and various extensions, including those with grouping and
aggregate constructs (essentially, plain SQL).

1 Introduction

It is well known that relational calculus, or first-order logic, cannot express recursive queries such as
transitive closure or same-generation, cf. [1]. This is one of the main reasons why languages extending
first-order logic, such as various fixpoint logics, have been so extensively studied in database theory.
However, most practical database systems still use query languages with limited expressive power.
Indeed, the plain SQL that is used for writing the majority of queries is essentially first-order logic
extended with grouping and aggregation, and as such it cannot code recursion mechanisms.

What can one do if one needs to know the result of a recursive query? One possibility is to use a
general-purpose programming language to compute such a query. However, this may not be desirable,

“Part of this work was done when the authors were visiting each other in 5 out of 6 possible combinations (Libkin
never visited Dong.). A revised version was made during Libkin’s visit to INRIA-Rocquencourt.

fContact author: Leonid Libkin, Department of Computer Science, University of Toronto, Toronto, Ontario, M5S
3H5, Canada. Phone: (416) 978-4158, Fax: (416) 978-4765. Email: libkin@cs.toronto.edu.

SResearch affiliation: Bell Laboratories.

as one no longer has access to a declarative query language and to a query language optimizer. An
alternative solution is to use a general-purpose programming language to compute the initial result of
a query, and then update the result every time the database changes. For example, for the transitive
closure query this amounts to updating the transitive closure of a graph every time an edge is inserted
or deleted.

The problem of updating the results of queries (called views) when the underlying database changes
is known under the name of view maintenance, or incremental recomputation. There is also extensive
literature on dynamic algorithms (see, for example, [19, 27]) which does not consider the issue of a
query language in which updates are expressed. Since databases are normally queried and updated
by languages of limited expressive power, this issue becomes important for view maintenance. There
is a large body of literature on view maintenance that assumes that views are defined and maintained
using the same language. Numerous algorithms exist dealing with fragments of relational algebra [2],
full relational algebra [29, 13], bag (multiset) languages [12], languages with grouping and aggregation
[16, 30] and others; see [15] for a survey.

However, much less is known in the case when a view is defined in one, more powerful language, and
is maintained in another one, less powerful. Those papers that do consider this situation deal with
the case when a recursive query is computable in polynomial time and definable in a language such
as recursive datalog, and the maintenance is done in relational calculus.

The query that received most attention is the transitive closure. It can be easily shown that the
transitive closure can be maintained under the insertion of edges [5, 3]. A more interesting result
of [28, 6] shows that transitive closure of undirected graphs can always be maintained, provided some
auxiliary (binary) relations can be used. For directed graphs, the situation is more complex. It is
known [4] that the transitive closure of acyclic graphs can be maintained in relational calculus, but
the question is still open for arbitrary directed graphs.

In general, it is known that every query that can be incrementally maintained in relational calculus
has PTIME data complexity [28, 6]. It is conjectured that the containment is strict, but, as was
shown in [9], when auxiliary relations of arity 2 or higher are allowed, proving such bounds amounts
to proving lower bounds for a general model of computation, and bounds of this kind are eztremely
hard to obtain.

For auxiliary relations of arity 1 (or no auxiliary relations), some bounds have been reported for
relational calculus [6]. These results are not completely satisfactory as they are very closely tied
to a particular language; in fact, the proofs rely on Ehrenfeucht-Fraissé games. It would thus be
impossible to extend proof techniques from [6] to cover languages that more closely resemble the
commercial lingua franca of the database world—SQL. Nor it is clear how to extend those results to
deal with operations such as a built-in linear order.

Thus, the main goal of this paper is to find properties of query languages (describing their expressive-
ness) that would imply unmaintainability of certain recursive views. The main property we use is that
of locality. The ideas we describe here are the ones typically used as tools in finite-model theory for
proving inexpressibility results. In particular, the fact that they are possessed by relational calculus
(even with aggregate functions) is known. In terms of recursive queries, we concentrate on the two
most famous examples of queries expressible in datalog but not in relational calculus: transitive clo-

sure and same-generation. Given the fact that some recursive queries can be maintained in relational
calculus, it is probably impossible to find general characterizations of this kind, and thus one has to
concentrate on some particular queries. However, we believe that the techniques developed in this
paper are easily extendible to deal with other queries.

The rest of the paper is organized as follows. We define the framework for incremental maintenance
in Section 2. In Section 3, we define locality of query languages. In Section 4, we show how to use
locality to derive bounds on incremental maintenance in query languages.

2 Definition of incremental maintenance

In this section, we describe our setting for the problem of incremental maintenance of views. We
assume that all values that can appear in a database are drawn from a countably infinite domain
U. A relational schema SC is a collection {Ry, ..., R;} of relation names, each name R; having arity
m; > 0. By Inst(SC) we denote the set of instances of the schema SC, that is, the set of families of
finite relations Rf) cum™,... ,RlD C U™. We shall write just R; in place of RiD when it does not
lead to confusion.

Let @ be a query, that is, a map that associates to every database D in Inst(SCj;,) an instance of an
output schema SC,,;. When SC,,; consists of a single n-ary relation symbol, we speak of an n-ary

query.

We say that @ can be (incrementally) maintained under insertions in a language L, if for each m-ary
symbol R in SCj,, there exists a £ query QF_ that takes as its inputs D € Inst(SCi,), Q(D) €
Inst(SCout), and an m-ary tuple , and returns the result of Q on D updated in such a way that # is
inserted into R. In other words,

ins(D,Q(D),1) = Q(D[R:= RU{#}])
where D[R := S]) means D in which the relation R is replaced with the relation S.

Similarly, @ can be (incrementally) maintained under deletions in a language L, if for each m-ary
symbol R in SCj,, there exists a £ query QF, that takes as its inputs D € Inst(SC;,), Q(D) €
Inst(SCout), and an m-ary tuple £, and returns the result of Q on D updated in such a way that # is
deleted from R. In other words,

QE,(D,Q(D),#) = Q(DI[R:=R-{#}]).

This definition assumes that no auxiliary data are kept. That is, to recompute the value of @) after
a single insertion or deletion, only the old value of @, the old database and the inserted (deleted)
tuple are needed. There are example of queries that cannot be recomputed in such a way, but can
be recomputed in the presence of some auxiliary data. To capture this situation, we say that @Q is
(incrementally) maintainable under insertions (deletions) in the presence of auxiliary relations if, there
exists a schema SC 4y, disjoint from SC;, and SC,y;, and a query Q' from Inst(SC, USCyyr USCayz)
to Inst(SC gy U SCayz) such that @' is maintainable under insertions (deletions) to SC;,-relations,
and Q' is an extension of Q.

To define this latter notion precisely, we have to explain how the initial value of the output of () and of
the auxiliary relations is obtained. In one model, we start with the empty database, and keep inserting
and deleting tuples. In the other model, we are given the initial value of D,Q(D) and the auxiliary
data. Note that this is the model that makes sense when we deal with maintenance under deletions
only. When we say that Q' is an extension of @), we mean that for every D € Inst(SC), the associated
auxiliary relations V' € Inst(SC,y;), and Q(D), for any sequence of updates u1, ..., u, to the database
D, and the sequence Dy = D, Zy = (Q(D),V),...,Diy1 = ujt1(D;), Zit1 = Qu +1(DZ,Z), it holds
that the values of SC,,;-relations in Z; are Q(DZ)) < n. Here @, is the query maintaining @)’ under
the update u.

Note that there are some subtle differences between the two ways of initializing auxiliary data [6, 28].
However, it will be clear from the proofs in the next section that our results are not affected by the
way in which data is initialized.

If all relations in SC,,,; are at most unary (binary, etc.) then we say that @) is maintainable in the
presence of unary (binary, etc.) auxiliary relations. In this paper we concentrate on maintenance
with at most unary auxiliary relations. As pointed out in the introduction, proving bounds for
maintenance with auxiliary relations of arity 2 and higher is probably beyond reach. Note also that in
the algorithmic literature on view maintenance one typically considers maintenance without auxiliary
data, see [2, 13, 12, 15, 16].

Another parameter of incremental maintenance is whether the value of auxiliary relations is the same
for any sequence of updates that leads to a given database. It was shown in [7] that fewer queries
can be incrementally maintained under this restriction. In what follows, we thus consider this more
powerful model of incremental recomputation, as we are interested in proving negative results.

3 Query languages and locality
In the rest of the paper, when we say “language L£,” we always assume that the following is true of L:

1. L contains relational calculus, or first-order logic, as a sublanguage.
2. L is closed under first-order operations.

3. L is closed under substitutions. That is, assume that there is a £ query @ : Inst(SC;,) —
Inst(SC,y;). Assume that some of the relations Ry, ..., Ry are defined by means of other queries,
Q1,...,Q on input databases of schemas SCy,...,SCy. Let SC' = SC — {Ry,...,Rx}. Then
there exists a £ query Q' : Inst(SC' U SC; U...USCy) — Inst(SC,yt) such that

Q'(D) = Q(D[Ry := Q1(Dy),..., Ry := Qx(Dy)))

where D; is the SC; part of D.

For example, relational calculus and plain SQL are such languages.

Next we define the concept of local queries and local languages. Given a schema SC;, and D €
Inst(SCiy), its active domain, adom(D), is the set of all elements from D that occur in relations from
D. The Gaifman graph [8, 11, 10] of D, G(D) is defined as a graph (A, E), where A = adom(D), and
(a,b) is in E iff there is a tuple £ € R for some i such that both a and b are in £. The distance
d(a,b) is defined as the length of the shortest path from a to b in G(D); we assume d(a,a) = 0. If
a=(ai,...,an), then d(d,b) = min;; d(a;,b).

Given a tuple @ of elements of A = adom(D), its r-ball SP(a@) is {b € A | d(@,b) < r}. Its r-
neighborhood N,P (@) is defined as an instance of SC;, where each relation symbol R; is interpreted as
a set of tuples € RP where all elements in t are from S} (@). Furthermore, we treat @ as distinguished
constants.

o
7 ~D

We write d ~, b if NP(@) and NP(b) are isomorphic; that is, if there exists a one-to-one map
h : SP(@) — SP(b) such that h(@) = b and t € R; iff h(t) € R;, for every i < [and a tuple # of
elements of S ().

Definition 1 (cf. [11, 17]) An n-ary query Q is called local if there exists a number v > 0 such that,
for any database D € Inst(SCj,) and any a,b € adom(D)" ,

_’N
a =~

)
Db implies @€ Q(A) iff be Q(A).
The minimum such r is called the locality rank of Q, and is denoted by Ir(Q).

A language s called local if every m-ary query definable in it, m > 0, is local. O

Gaifman’s theorem [11] on locality of first-order queries implies that every query definable in relational
calculus is local.

It is rather pleasant that locality can be established for the language that is essentially plain SQL. SQL,
the dominant language of commercial databases, adds two main features to the relational calculus:
grouping and aggregation. In a number of papers [23, 25, 18] we studied a theoretical reconstruction of
plain SQL and its expressive power. Our approach was as follows. To model the grouping feature, we
considered a nested relational language, as in [3]. If one deals with the usual queries from flat relational
databases to flat relational databases, then nested sets can appear as intermediate results. It is known
that the nested relational algebra is an extension of relational algebra that has enough power to express
the GROUPBY and HAVING clauses of SQL. To model aggregation, we made the language two-sorted. In
other words, it has two base types, one of them being the type of rational numbers. By graph queries
we meant queries of the type {b x b} — {b x b}, where b is the other base type. We assumed that the
usual rational arithmetic is present. Furthermore, we added an operator for summation of function
values over a column, and showed that such a language computes the standard aggregate functions
such as AVG, TOTAL, COUNT.

Then [25] established locality of relational queries in such a language (that is, queries that do not have
values of the numerical type in their input and output, but can use them for intermediate steps of
the computation). Furthermore, [18] showed (a stronger form of) locality under the assumption that
every arithmetic function and every aggregate operator is present in the language.

Another very useful result is that queries definable in relational calculus in the presence of a built-in
order relation are local, provided they are order-invariant [14]. Normally, adding order as one of the
relations in D would render the concept of locality meaningless, as for every a, its unit ball Si(a)
would contain the entire active domain. However, one can also define the concept of neighborhoods
with respect to the original database, and use order as an additional built-in predicate, and restrict
one’s attention to queries that do not depend on the particular interpretation of this built-in order.
The result is the order-invariant relational calculus, which is known to be a proper extension of the
relational calculus [1]. The result of [14] shows that it is still local.

4 Incremental recomputation of recursive queries

In this section we prove our main results showing that certain recursive queries cannot be incrementally
maintained in local languages. The queries we choose are prototypical recursive queries that can be
expressed in languages such as datalog, but not in relational calculus: the transitive closure query tc,
and the same-generation query sg. In both cases, the input is a directed graph (binary relation) R.
The transitive closure query is given by the following datalog program:

tc(m,y) - R(mvy)
te(xz,y) - R(z,z),te(z,y).

The same-generation query is given by the program

sg(z,x) -
sg(z,y) = sg(a',y'), R(z,2'), R(y,y').

That is, a pair (a,b) belongs to the output of the same-generation query iff there is a node ¢ and two
equi-distant walks in the graph, one from c to a, and the other from c to b.

It is well known that the transitive closure query can be incrementally maintained in relational calculus
under insertions (essentially, by coding Warshall’s algorithm, cf. [3, 5]). Here we show that other
maintenance queries are impossible. The proof applies to all local languages, and, unlike the techniques
of [6], it is not limited to relational calculus.

Theorem 2 Let L be a local language. Then it cannot incrementally maintain the transitive closure
query under deletions, nor the same-generation query under either deletions or insertions, even in the
presence of unary auxiliary relations.

Proof. Throughout the proof, R is a binary relation symbol for the input graph, and G denotes the
graph itself. The main technique is the following. Let C be a class of graphs. We say that an n-ary
query @ on graphs is L-definable on C with unary relations if there exists a number m, a schema
SC,, = {R,V1,...,Vin}, and an n-ary query Q' on Inst(SC,,) definable in £ such that, for every
graph G € C, there exists D € Inst(SC,,) with RP = G, satisfying

Q'(D) = Q(G).

That is, there is a way to define m unary predicates on the nodes of G such that @’ on the resulting
colored graph yields Q(G). Now, in each case, we first show that, assuming that a query can be
maintained, a certain query would be L£-definable on some class of graphs with unary relations. Then
we would show that such definability contradicts locality.

a) Transitive closure under deletions. Let C be the class of chains, that is, graphs of the form
{(ag,a1), (a1,a2),...,(ar_1,ax)}, k > 0, where all a;s are distinct. Given any G, let G' stand for
the complete graph with the same set of nodes as that of G. Assuming that the tc query can be
maintained under deletions (perhaps with unary auxiliary relations), we find a query Q' that takes
in a graph, its transitive closure, an edge to be deleted, and the auxiliary relations, and produces the
transitive closure after the deletion. In particular, if G is the chain as above, and V is the tuple of
unary auxiliary relations, Q%,(G U {(ak,a0)}, G, (ax, ao), V) returns tc(G), since G U {(ag, ag)} is a
cycle, and its transitive closure is G '. Since the edge (ay, ag) is definable from G in relational calculus,
and so is G, we conclude that the transitive closure query is £-definable on C with unary relations.

It thus remains to show that this is impossible. Let m be the number of unary relations, and Q' a
query that computes the transitive closure of a chain G, given unary relations Vi,...,V,,. We can
view adding these unary relations as coloring the nodes of G with 2™ colors. Let r = Ir(Q'). For
any node a in G at the distance at least r from the start and the end nodes, its r-neighborhood is a
2r + 1-element chain, colored with 2™ colors according to the Vis. There are thus at most 2m(27+1)
different types of r-neighborhoods of such nodes in terms of their colors. Hence, for any chain with
k> (2r+3)-2m@+1) 4 2 there would be at least 2r + 3 nodes at the distance at least r from the end
nodes, and having the same neighborhood type, no matter how V;s are interpreted. In particular, one
can then find two such nodes, a,b, with d(a,b) > 2r + 1. This implies that in D € Inst(SC,,) where
the relation R is interpreted as G, we have (a,b) =P (b,a), and thus (a,b) € Q'(D) iff (b,a) € Q'(D).
However, this contradicts the assumption that @’ computes the transitive closure, as exactly one of
the pairs (a,b), (b,a), belongs to tc(G). This contradiction proves case a).

b) Same-generation query under insertion. The class C consists of the graphs of the following form.
Let G be the union of a chain {(bg,b1),...,(by—1,b,)},p > 1, and an edge (bg, b,), where all b;s and
b, are distinct. Let G be similarly defined as the union of a chain {(ag,a1),...,(ax_1,a5)},0 <k <p
and an edge (ag, ax), where a, # a;,i =0,..., k. We also assume that Gy and G; are disjoint. Then
graphs in C are those of the form G = Gy U G U {(ag, bo)}.

Let G' be Gy U Gy. Then s¢(G') = {(a,a) | a node of G} U {(ax,a1), (a1,a4), (bs,b1),(b1,bs)}; in
particular, it is definable in relational calculus with G' as an input. Note also that the pair (ag, by) is
definable in relational calculus (when the input is G), since ag is the only node of outdegree 3, and
by is the only node of indegree 1 and outdegree 2. Furthermore, for 4,5 # 0,%, (a;,b;) € sg(G) iff
jg=1i-—1.

Assume now that sg can be maintained under the insertion of edges (perhaps with auxiliary unary

relations). Then there is a query Q.o that takes in a graph, an edge, and some unary relations

Vi,...,Vm, and returns the output of the same-generation query on the graph resulting from inserting
the input edge into the input graph. In particular, Q:? (G’, (ag,bo), sg(G"), V) would return sg(G).

ms
Since (ag, bg) and sg(G') are definable in relational calculus (with G as input), this means that sg is

L-definable on C with unary relations.

To show that this is impossible, let Q' be a query defining sg on C with unary relations, and let
r = Ir(Q"). As in the proof of a), we conclude that if k is large enough, there are two indices,
4 > 1 > r, such that a; z? aj, where D is an extension of G with unary predicates Vjs. This holds
no matter what the interpretation of Vjs is. This implies that (a;,bj_1) ~” (a;,bj_1), since the r-
balls of a; and bj_; are disjoint (and likewise for a; and bj_;). Thus, locality of @' would imply
that (ai,bj,l) € Q'(D) iff (aj,bjfl) € Q'(D). Since (ai,bjfl) ¢ sg(G) and (aj,bjfl) € sg(@), this
contradicts the assumption that sg can be maintained under insertions.

¢) Same-generation under deletions. Let C consist of graphs of the from {(a1,a2), (a2,as), ...,
(aj—1,a1), (ar,ape1),y -y (a91-1,a91), (@, a1), (as,a;11)}, I > 1. That is, the subgraph on the nodes a;,
1 # %, is a chain, and we have edges from a, to two nodes on this chain: the start a¢; and the middle
a;. Note that for such a graph G, sg(G) is the union of {(a,a) | a node of G}, {(a;14,a;) | 1 <i <1},
and {(a;,a;4) |1 <i<lI}.

Let G’ be obtained from G by adding two edges: (ag;,a1) and (a1,a1). Then s¢(G') = {(as,a)} U
{(aj.a;) | i,j # *}. This is because for every k < [, and every N > k, there is a walk of length N
from a, to ay of length N, simply by using the loop on a; sufficiently many times. Similarly, for every
k > 1, and every N > 2l + k + 1, there is a walk of length N from a, to a;: one moves to a;, then to
agy, uses the (a9, a1) edge to move back to aq, stay sufficiently long at a; and then moves to a; along
the chain. Hence, (a;,a;) € sg(G') for any i,j # *.

Now assume now that sg can be maintained under the deletion of edges (perhaps with auxiliary unary
relations). Then there is a query Q;gel that takes in a graph, an edge, and some unary relations
Vi,...,Vm, and returns the output of the same-generation query on the graph resulting from deleting
the input edge from the input graph, as well as new values V/, ...,V of the auxiliary relations. Both
pairs (ag, a1) and (ay,aq) are definable in relational calculus, given G as input (ag; is the only node of
outdegree 0, and a; is the successor of indegree 1 of the node of indegree 0), as well as sg(G'), if G is
given as an input. Thus, we can first define Q% (GU{(a1, a1), (az, a1)}, (as, a1), sg(G'), V) in £, which
produces sg(G U {(a1,a1)}) and the new values V' of auxiliary relations. Then, by compositionality,
we can define, in £, Q% (G U{(a1,a1)}, (a1,a1), s9(G U {(a1,a1)}), V'), which produces sg(G). Thus,
the same-generation query is L£-definable on C with unary relations.

We now show that this is impossible. Again, assume that the same-generation query is definable by
a query Q' with Ir(Q') = r, using m auxiliary relations. Let D refer to the extension of G with unary
relations V;s. As before, we can show that for large enough [, there exist two indices r < i < j <l—7r
such that a; %{? aj, no matter what the interpretation of V;s is (since r-neighborhoods of a; and q;
are 2r + 1 chains colored with 2™ colors). Therefore, (a;,aj1;) ~P (aj,a;4/), as elements in these
pairs at the distance at least 2r 4+ 1 from each other. By the locality of Q', (a;,a;41) € Q'(G, V) iff
(aj,aj11) € Q'(G, V), and thus Q' cannot define the same-generation query, since (aj,a;41) € sg(G)
and (ai,ajy1) € sg(G). This completes the proof. O

Remark Tt follows from the proof of a) that transitive closure can be replaced by deterministic transitive
closure [21] (every node on a path, except the final one, is required to have outdegree 1)—this query
is complete for deterministic logspace.

Corollaries

Since relational calculus is local [11], we immediately obtain:

Corollary 3 It is impossible to incrementally maintain, in relational calculus, the transitive closure
query under deletions and the same-generation query under either deletions or insertions, even in the
presence of unary auxiliary relations. O

As we explained in the introduction, proving bounds in the presence of binary auxiliary relations is
probably beyond reach. One particular binary relation used very often is a linear order on the domain
U. While a linear order can be maintained with binary relations [9, 24], it is often available as a basic
operation in relational calculus. In the case when one can use a linear order in relational calculus
(first-order) formulae, we refer to relational calculus with a built-in linear order. It turns out that the
previous corollary extends to it:

Corollary 4 It is impossible to incrementally maintain, in relational calculus with built-in linear
order, the transitive closure query under deletions and the same-generation query under either deletions
or insertions, even in the presence of unary auziliary relations.

Proof. We follow the proof of Theorem 2 and observe that every query that we construct in order to
contradict locality, is order-invariant, that is, its result is independent of a particular interpretation of
the linear order. Thus, the proof of Theorem 2 applies verbatim, since [14] shows that order-invariant
first-order queries are local. O

We now turn our attention to plain SQL, that is, an extension of relational calculus with grouping
and aggregation, described briefly at the end of section 3. We assume that there are two base types:
type b, whose domain is U, and type Q of rational numbers. When we talk about graph queries, we
mean queries of the type {b x b} — {b x b}, that is, queries that take a finite graph over U and return
another finite graph over U. We then can show:

Corollary 5 It is impossible to incrementally maintain, in plain SQL, the transitive closure query un-
der deletions and the same-generation query under either deletions or insertions, even in the presence
of mon-numerical unary auxiliary relations.

Proof. Again, we follow the proof of Theorem 2. Every query that we construct in order to contradict
locality, is relational: that is, its input has relations interpreted over U but not Q (due to the restriction
that auxiliary relations are nonnumerical). The result now follows from the fact that such queries are
local [18]. O

Note that if we consider numerical input relations, or even a built-in linear order on the non-numerical
base type, and no auxiliary relations in the setting of plain SQL, then proving bounds not only on
incremental maintenance but even on the expressive power is extremely hard. This follows from the
fact that the language can then express every query whose data complexity is in uniform TC° [18, 22],

which so far has not been separated even from NP. On the other hand, in the incremental maintenance
framework in which one starts with the empty database, it is possible to maintain, in plain SQL, every
query whose data complexity is in the polynomial hierarchy, using a built-in linear order and unary
auxiliary relations [26]. The result of [26] assumes the setting in which there is no @ priori bound on
the number of elements that can be stored in a database (e.g., the number of nodes of graphs). It
was recently shown in [20] that if the number of nodes of graphs is fixed in advance, then transitive
closure can be incrementally maintained in TC?. Tt is still unknown whether TC? can be replaced by
a smaller complexity class, e.g., first-order queries.

5 Conclusion

The primary objective of this note was to investigate general properties of query languages that render
the unmaintainability of certain recursive views. The property we focused on is locality. It is known
that proving bounds on incremental recomputation with auxiliary relations of arity 2 and higher is
extremely hard [9], so we considered auxiliary data of arity at most 1. We showed that locality implies
unmaintainability of two typical recursive queries: transitive closure, and same generation, even in
the presence of unary auxiliary relations. The results apply to relational calculus, relational calculus
with built-in order, and plain SQL.

Acknowledgement The authors wish to thank Neil Immerman for his comments on the paper.

References

[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison Wesley, 1995.

2] J. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently updating materialized views. In Proceedings
of the 1986 ACM-SIGMOD International Conference on Management of Data, ACM Press, 1986,
pages 61-71.

[3] P. Buneman, S. Naqvi, V. Tannen and L. Wong. Principles of programming with complex objects
and collection types. Theoretical Computer Science, 149(1):3-48, 1995.

[4] G. Dong and J. Su. Incremental and decremental evaluation of transitive closure by first-order
queries. Information and Computation; 120(1):101-106, July 1995.

[5] G. Dong and R. Topor. Incremental evaluation of datalog queries. In LNCS 646: Proceedings of
4th International Conference on Database Theory, Berlin, Germany, October 1992, pages 282-296.

[6] G. Dong and J. Su. Arity bounds in first-order incremental evaluation and definition of polynomial
time database queries. JCSS, 57 (1998), 289-308.

[7] G. Dong and J. Su. Deterministic FOIES are strictly weaker. Annals of Mathematics and Artificial
Intelligence, 19(1-2):127-146, 1997.

[8] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.

10

[9] K. Etessami. Dynamic tree isomorphism via first-order updates. In PODS’98, pages 235-243.

[10] R. Fagin, L. Stockmeyer, M. Vardi, On monadic NP vs monadic co-NP, Information and Com-
putation, 120 (1994), 78-92.

[11] H. Gaifman. On local and non-local properties. In Proceedings of the Herbrand Symposium, Logic
Colloquium ’81, pages 105-135. North Holland, 1982.

[12] T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. Proceedings of the
1995 ACM-SIGMOD International Conference on Management of Data, ACM Press, 1995, pages
328-339.

[13] T. Griffin, L. Libkin, and H. Trickey. An improved algorithm for incremental recomputation of
active relational expressions. IEEE Transactions on Knowledge and Data Engineering, 9 (1997),
508-511.

[14] M. Grohe and T. Schwentick. Locality of order-invariant first-order formulas. ACM Transactions
on Computational Logic, 1 (2000), 112-130.

[15] A. Gupta and I. S. Mumick. Maintenance of Materialized Views: Problems, Techniques, and
Applications. IEEE Data Engineering Bulletin, Special Issue on Materialized Views and Data
Warehousing, 18(2):3-19, June 1995.

[16] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In Proceedings
of the 1993 ACM-SIGMOD International Conference on Management of Data, ACM Press, 1993,
pages 157-166.

[17] L. Hella, L. Libkin and J. Nurmonen. Notions of locality and their logical characterizations over
finite models. Journal of Symbolic Logic, 64 (1999), 1751-1773.

[18] L. Hella, L. Libkin, J. Nurmonen and L. Wong. Logics with aggregate operators. Journal of the
ACM, to appear. Extended abstract in LICS’99, pages 35—44.

[19] M. R. Henzinger and V. King. Fully dynamic biconnectivity and transitive closure. In Proceedings
of the 36th Annual IEEE Symposium on Foundations of Computer Science, pages 664—672, 1995.

[20] W. Hesse. The dynamic complexity of transitive closure is in DynTC®. In Proceedings of Inter-
national Conference on Database Theory, Springer LNCS 1973, 2001, pages 234-247.

[21] N. Immerman. Languages that capture complexity classes. SIAM Journal of Computing, 16:760—
778, 1987.

[22] N. Immerman. Descriptive Complezity. Springer-Verlag, 1999.

[23] L. Libkin and L. Wong. Query languages for bags and aggregate functions. JCSS, 55 (1997),
241-272.

[24] L. Libkin and L. Wong. Incremental recomputation of recursive queries with nested sets and
aggregate functions. In Proc. Database Programming Languages 1997, Springer LNCS 1369, pages
222-238.

11

[25] L. Libkin and L. Wong. On the power of aggregation in relational query languages. In
Proc. Database Programming Languages 1997, Springer LNCS 1369, pages 260-280.

[26] L. Libkin and L. Wong. On the power of incremental evaluation in SQL-like languages. In
Proc. Database Programming Languages 1999, Springer LNCS 1949, pages 17-30.

[27] P. Miltersen, S. Subramanian, J. S. Vitter and R. Tamassia. Complexity models for incremental
computation. Theoretical Computer Science 130 (1994), 203-236.

[28] S. Patnaik and N. Immerman. Dyn-FO: A parallel dynamic complexity class. JCSS, 55 (1997),
199-209.

[29] X. Qian and G. Wiederhold. Incremental recomputation of active relational expressions. IEEE
Transactions on Knowledge and Data Engineering, 3(3):337-341, 1991.

[30] D. Quass. Maintenance expressions for views with aggregation. In Proceedings of the SIGMOD’96
Workshop on Materialized Views, pages 110-118.

12

