e

. J. Albert. Algebraic properties of bag data types. In VLDB’91, pages 211-219.

5. J. Barwise et al eds., Model-Theoretic Logics. Springer-Verlag, 1985.

. P. Buneman, S. Naqvi, V. Tannen, [.. Wong. Principles of programming with com-
plex objects and collection types. Theoretical Computer Science, 149 (1995), 3—438.
7. S. Chaudhuri, M. Y. Vardi, Optimization of real conjunctive queries, In PODS’93.
8. M.P. Consens, A.O. Mendelzon, Low complexity aggregation in GraphLog and

Datalog, Theoretical Computer Science 116 (1993), 95-116.

9. G. Dong, L. Libkin, L. Wong. On impossibility of decremental recomputation of
recursive queries in relational calculus and SQL. In Database Progr. Lang.’95,
Springer Electronic Workshops in Computing, 1996.

10. G. Dong, L. Libkin, L.. Wong. Local properties of query languages, Tech. Memo,

Bell Labs, 1995.
11. G. Dong and J. Su. Incremental and Decremental Evaluation of Transitive Closure
by First-Order Queries. Information and Computation, 120(1):101-106, 1995.
12. G. Dong and J. Su. Space-bounded FOIES. In PODS’95, pages 139-150.
13. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.
14. K. Etessami, Counting quantifiers, successor relations, and logarithmic space, in
Conf. on Structure in Complexity Theory, 1995.

15. R. Fagin, L. Stockmeyer, M. Vardi, On monadic NP vs monadic co-NP, Informa-
tion and Computation, 120 (1994), 78-92.

16. H. Gaifman, On local and non-local properties, in Logic Colloquium ’81, North
Holland, 1982.

17. T. Gniffin, L. Libkin, Incremental maintenance of views with duplicates, In SIG-
MOD’95, pages 319-330.

18. S. Grumbach, T. Milo, Towards tractable algebras for bags, Journal of Computer
and System Sciences, 52 (1996), 77-77.

19. S. Grumbach, L. Libkin, T. Milo and L. Wong. Query languages for bags: expres-
sive power and complexity. SIGACT News, 27 (1996), 30-37.

20. S. Grumbach and C. Tollu. On the expressive power of counting. Theoretical
Computer Science 149(1): 67-99, 1995.

21. A. Klug, Equivalence of relational algebra and relational calculus query languages
having aggregate functions, Journal of the ACM 29, No. 3 (1982), 699-717.

22. L. Libkin, L. Wong, Some properties of query languages for bags, In DBPL’93,

(=]

Springer, 1994.

23. L. Libkin, L. Wong, Query languages for bags and aggregate functions. JCSS, to
appear. Extended abstract in PODS 94, pages 155-166.

24. L. Libkin, L. Wong, On representation and querying incomplete information in
databases with bags, Information Processing Letters 56 (1995), 209-214.

25. G. Ozsoyoglu, Z. M. Ozsoyoglu, V. Matos, Extending relational algebra and rela-
tional calculus with set-valued attributes and aggregate functions, ACM Transac-
tions on Database Systems 12, No. 4 (1987), 566-592.

26. J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions
into flat algebra expressions. ACM TODS, 17(1):65-93, March 1992.

27. S. Patnaik and N. Immerman. Dyn-FO: A parallel dynamic complexity class. In
PODS’94, pages 210-221.

28. L. Wong, Normal forms and conservative properties for query languages over col-
lection types, JOSS 52 (1996), 495-505.

This article was processed using the #TEX macro package with LLNCS style

a tuple ¢ in I, produces the output of the query on I — {t}. Then both proofs in
[9] show how to use this assumption to produce an expression in first-order logic
plus ¢ that computes the transitive closure of a chain. Since the construction
of [9] does not assume any auxiliary data, we can apply it here to obtain that,
if either query 1s maintainable in first-order in the presence of auxiliary data of
moderate degree, then with such auxiliary data the transitive closure of a chain
is computable, which contradicts Corollary 13. a

Using essentially the same argument, but employing Corollary 21 in place of
Corollary 13, we can also prove that

Corollary 24. Neither transitive closure nor same-generation can be main-
tained in N'RC®®®8" in the presence of auwiliary data whose degrees are bounded
by a constant. a

8 Future Work

There are many open questions we would like to address in the future. We
are interested in developing techniques for proving languages local. So far, there
appears to be no commonality between Gaifman’s proof of locality for first-order
[16] and our proof of (restricted) locality of NRC*E". We also believe that this
restriction can be eliminated, but we have not been able to prove it.

Conjecture 1 Every relational query in NRC*® is local.

The previous results do not seem to apply to ordered structures: indeed, by
taking any input and returning the graph of the underlying linear order, we
violate the bounded degree property. Thus, it does not hold in NRC*8"(<,),
which is N'RC®®®" augmented with a linear order on type b. However, we still
believe that the bounded degree property can be partially recovered:

Conjecture 2 Fvery relational query in NRC™8(<,) that is order-
independent has the bounded degree property.

Acknowledgements. We thank Moshe Vardi for suggesting the extension from
Theorem 2 to Theorem 6, and Tim Griffin for a careful reading of the manuscript. Part
of this work was done while Wong was visiting the University of Melbourne and Bell
Laboratories. Wong would like to thank these organizations and fellow coauthors for
their hospitality during this work.

References

1. S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison Wesley, 1995.

2. S. Abiteboul, P. Kanellakis. Query languages for complex object databases.
SIGACT News, 21(3):9-18, 1990.

3. M. Ajtai and R. Fagin. Reachability is harder for directed than for undirected
graphs. Journal of Symbolic Logic, 55(1):113-150, March 1990.

Corollary 20. Relational queries in N'RC*®" have the bounded degree property.
We immediately conclude from Corollary 20 that

Corollary 21. (cf. [23]) N'RC?*88" cannot exzpress the following queries: (deter-
ministic) transitive closure of a graph, connectivity test, testing for a (binary,
ternary, ete.) tree. This continues to hold when a built-in successor relation or
any other butlt-in relations whose degrees do not exceed a fized number k are
avatlable on the nodes. ad

Recall that Hartig and Rescher quantifiers are two generalized quantifiers for
equal cardinality and bigger cardinality respectively. Since these tests can be
done in N'RC?®" we obtain:

Corollary 22. Fvery first-order query with Hartig and Rescher quantifiers has
the bounded degree property. a

7 Applications to Incremental Recomputation

Since relational calculus has a limited expressive power and cannot compute
queries such as transitive closure, one often stores the results of these queries as
materialized database views. Once the underlying database changes, the changes
must be propagated to the views as well. In the case when a view is defined in re-
lational calculus, or at least in the same language in which update propagations
are specified, the problem of incremental maintenance has been studied thor-
oughly. However, few papers [11, 9, 12, 27] addressed the issue of maintaining
queries such as the transitive closure in first-order or N"RC*6E".

It was shown [9] that, in the absence of auxiliary data, recursive queries such
as transitive closure and same generation cannot be maintained in relational
calculus or even in SQL. It was conjectured in [9, 12] that this continues to be
true in the presence of auxiliary data. Using the results developed in previous
sections, we can address this question partially. In particular, we now show that
maintenance of some recursive queries remains impossible even if auxiliary data
of moderate or low degree are available.

We also consider the same-generation query over a graph having two label
symbols A and B. Such a graph can be conveniently represented by two relations,
one for edges labeled A and the other for B, which need not be disjoint. We use
A and B to name these two relations. Then ¢ and y are in the same generation
with respect to A and B iff there is a z such that there is a walk from « to z in
A and a walk from z to y in B that are equal in length.

Theorem 23. Neither transitive closure nor same-generation can be maintained
i the relational calculus when auziliary data of moderate degree are available.
Proof sketch. The main idea of the proof of non-maintainability of both
transitive closure and same-generation [9] is essentially this: Suppose there is an
expression ¢(I, I*,t) that, given an input I, the result of a query It on I, and

Before, we assumed queries to be formulae ¢(z1, ..., 2,), mapping struc-
tures of some relational vocabulary 7 into m-ary relations, defined by ¥(A) =
(A {(ar,...,am) | a1,...;am € A, A = ¥(a1,...,am)}). Now we have to show
how N'RC*8 -expressions correspond to queries. After this, we shall be able to
transfer the notions of locality and bounded degree to N"RC?88",

First, we model 7-structures as tuples of objects of types of the form {b x
... x b}, with the arities corresponding to those of the symbols in 7. We shall
abbreviate b x ... x b, m times, as b™. A relational query over STRUCT][r]
in N'RC*8" is an N'RC*88" expression e of type {0™}, whose free variables have
types {bP1}, ... {bP'}, where p; is the arity of the ith symbol in 7. Given such
an expression, which we write as e(Ry,..., Ry) or e(é), it can be considered as
a query ¢, as follows. We let, for a 7-structure A over the domain of type b,

AEvYe(ar,...,am) iff (a1,...,am) € e(A)

In other words, the ¥, corresponding to the query 1. is precisely e. (This is true
because (ai,...,am) € e(A) implies that all a;s are in the carrier of A.)

Now, for each relational query e, we say that it is local if 1. 1s, and e’s locality
rank is that of ¢.. Similarly, we define the bounded degree property of relational
queries in N'RC*®8". Finally, we say that a query is local on a class of structures
C C STRUCT(r] if the condition in the definition of locality is satisfied on every
structure from C (but not necessarily on every structure in STRUCT[r]).

Our main result is:

Theorem 18. For any fized k, every relational query in NRC*®® is local on
STRUCT[7].

Proof sketch. The proof relies on the following key lemma which gives us a
very convenient ‘normal form’ of NRC*E" queries when restricted to structures
of degrees at most k. The normal form is a chain of if-then-else statements
where each branch is a relational calculus expression, and all uses of aggregate
functions can only appear in the conditions of these if-then-else statements.

Lemma19. Let R denote a vector of relations of degree at most k, e(é) . s be
an N'RC*8 -expression, with s of height at most 1. Then e(R) is equivalent {o

an expression of the form if P1(R) then e1(R) ... else if Pa(R) then ed(é) else
ed+1(é), where each ej(é) is in N'RC(=;) and d depends only on k and e. DO

This normal form result gets complicated aggregate functions out of the
way. We can now prove our theorem. Let R denote a structure in STRUCT}[7]
whose elements are of base type b. Let e(R) be a relational query in NRC*88".

- - -

By Lemma 19, we can assume that e(R) has the form if P1(R) then ei(R) ...
else if Pd(é) then ed(é) else ed+1(é), where each ei(é) is in N'RC(=s). Since
NRC(=) enjoys the conservative extension property [28], each e; can be defined
in relational calculus. By Fact 1, every 1., has some finite locality index r;. From

this we immediately conclude that 1. has locality index max; r;. a

From here, applying verbatim the proof of Theorem 9, we conclude

types that appear in the typing derivation of e. For example, [J{U{{(z,v)} | = €
R} | y € S} is an expression of height 1 if both R and S are flat relations. It
is known [26, 28] that when restricted to expressions of height 1, NRC(=) is
equivalent to the usual relational algebra. We also write N'RC(=;) when the
equality test 1s restricted to base types b, B, and Q. We sometimes list the free
variables in an expression in brackets like: e(R, z).

As was mentioned, the practical database language SQL extends the rela-
tional calculus by having arithmetic operations, a group-by operation, and var-
ious aggregate functions such as AVG, COUNT, SUM, MIN, and MAX. It is known [6]
that the group-by operator can already be simulated in A’RC(=). The others
need to be added. The arithmetic operators are the standard ones: +, —, -, and
+ of type @ x Q — Q. We also add the order on the rationals: <g: Q x Q@ — B.
As to aggregate functions, we add just the following construct

e1:Q es:{s}
2Aler [2* €ea: Q

The semantics is this: map the function f = Ax.e; over all elements of e5 and then
add up the results. Thus, if e5 is the set {o1,...,0,}, it returns f(o1)+- - -+ f(0n).
For example, > {1 | # € X[} returns the cardinality of X. Note that this is
different from adding up the values in {f(01), ..., f(on)}; in the example above,
doing so yields 1 as no duplicates are kept. To emphasize that duplicate values
of f are being added up, we use bag (multiset) brackets { [} in this construct.

We denote this theoretical reconstruction of SQL by NRC®®E". That is,
NRC?*® has all the constructs of NRC(=), the arithmetic operations +, —, -
and =+, the summation construct) and the linear order on the rationals.

Let us provide two examples to demonstrate how typical SQL queries involv-
ing aggregate functions can be implemented in N"RC*E". For the first example,
consider the query that computes the total expenditure on male employees in
various departments in a company. Let EM P : {name x salary x sex x dept} be a
relation that tabulates the name, salary, sex, and department of employees. The
query in SQL 1s SELECT dept, SUM(salary) FROM EMP WHERE sex = ’male’
GROUPBY dept. It can be expressed in NRC™8" as [J{{(Taept «, D _{|if Taept © =
Taept Y then if Toee y = 'male’ then Toq1ary y else 0 else 0|y € EMPJ)} |z €
EMP}. For the second example, consider the query that computes the number
of distinct salaries of male employees in various departments in the same com-
pany. The query in SQL is SELECT dept, COUNT(distinct salary) FROM EMP
WHERE sex = ’male’ GROUPBY dept. Note that in this query, duplicate salary
figures in a department are eliminated before counting. It can be expressed in
NRC*E" as | J{{(maept #, D A1 | y € U{if Taept 2 = Taept & then if Toep 2 =
"male’ then {msatary 2} else {} else {} | z€ EMP}})} | 2 € EMP}.

In fact, it is known [23] that all possible nested applications of all SQL
aggregate functions mentioned above can be implemented in ANRC?8". Tt is
also known [23] that A’RC*88" has the conservative extension property and thus
its expressive power depends only on the height of input and output and is
independent of the height of intermediate data. So to conform to SQL, it suffices
to restrict our input and output to height at most one.

6 Aggregation, SQL, and the Bounded Degree Property

In this section, we investigate locality and the bounded degree property in the
context of SQL-like languages. We start by briefly describing the syntax and se-
mantics of the theoretical SQL-like language to be analyzed. Two main features
that distinguish (plain) SQL from the relational calculus are grouping (the SQL
GROUPBY operator) and aggregate functions (such as COUNT and AVG). Our lan-
guages incorporate these features in a clean analyzable way. We then show how
the notions of locality and bounded degree extend to queries in our language.
The main result is that queries naturally representing those on STRUCT[7] are
local for every fixed k. Consequently, such queries have the BDP, and thus many
inexpressibility proofs carry over from the first-order case to SQL.

Let us start with the syntax and semantics of our SQL-like language. The
data types that can be manipulated in the language are given by the grammar:

su=b|B|Q]|s1 x -Xs, | {s}

Elements of the base type b are drawn from an unspecified infinite domain. The
type B contains the two Boolean objects true and false. The type Q contains the
rational numbers. Elements of the product type s; x - - - x s, are n-tuples whose
ith component is of type s;. Finally, elements of the set type {s} are finite sets
whose elements are of type s.

We present, the language incrementally. We start from ARC(=), which is
equivalent to the usual nested relational algebra [2, 6]. To obtain our SQL-like
language we add arithmetic and a summation operation to model aggregation.

The syntax of N'RC(=) is given below.

x® s c:Q
er:B e3:s e3:s €1:8 €9:8
true : B false : B of ey then es else ez : s e1 = e : B
€:81 X X Sy €1:81 -+ €y :Sp
me S (61,...,€n) 181 X -+ X Sy

e:s er:{s} ea:{s} ep:{t} es:{s}
{3 st A{ed o {s} e1Ues : {s} Ufer [2* € ea} - {t}
We often omit the type superscripts as they can be inferred. Let us briefly recall
the semantics, cf. [6]. Variables 2* are available for each type s. Every rational

constant is available. The operations for Booleans, tupling and projections are
standard. {} forms the empty set. {e} forms the singleton set containing e.
€1 U ey unions the two sets ey and es. Finally, [J{e1 | # € ez} maps the function
f = Az.ey over all elements in e; and then returns their union; thus if e; 1s the
set {01,...,0pn}, the result of this operation would be f(o1)U ---U f(o0,). For
example, | J{{(z,2)} | # € {1,2}} evaluates to {(1,1),(2,2)}.

Given a type s, the height of s is defined as the nesting depth of set brackets
in s. For example, the usual flat relations (sets of tuples of base types) have height
1. Given an expression e, the height of e is defined as the maximal height of all

5 Stronger Bounded Degree Properties

The reader may have noticed a certain asymmetry in the statement of the
bounded degree property: We make an assumption about the degree set
deg_set(A), and give a conclusion that there is an upper bound on the de-
gree count deg(¥(A)). So, the question arises: Can the bounded degree prop-
erty be strengthened? In what follows, we present two most obvious attempts
to strengthen it. It was conjectured that both of them hold for first-order logic,
but we show that this is not the case. Consequently, not all local queries possess
these stronger properties.

Definition14. A query t has the strong bounded degree property, or
SBDP, if there exists a function fy : N — N such that deg(¥(A)) < fy(deg(A))

for any structure A. a

Definition15. A query % has the interval bounded degree property, or
IBDP, if there exists a function fy : N — N such that deg(¥(A)) < fy(k) for
any structure A with max deg_set(A) — min deg_set(A) < k. O

It is easy to see that the SBDP implies the IBDP and the IBDP implies
the BDP. It turns out, somewhat unexpectedly, that there are first-order graph
queries that do not have them.

Theorem 16. There are first-order graph queries that do not have the inter-
val bounded degree property. Consequently, they do not have the strong bounded
degree property either.

Thus, in contrast to Theorem 9, we conclude that

Corollary 17. There are local quertes that do not possess the interval or the
strong bounded degree properties. a

In the remainder we sketch the main construction of Theorem 16. We need
to construct a first-order graph query that does not have the IBDP. First fix
n > 3, four disjoint sets X = {z1,...,2,}, Y ={y1,.. ., un}, C ={e1,.. ., en},
D = {di,...,d,}, and a permutation 7 : {1,...,n} — {l,...,n}. Define the
graph G as follows. Its set of nodes N is X UY UC U DU {a,b,c}. Its edges
are given as follows:

— There are loops (a,a), (b,b), (¢,c) and also edges (b, ¢) and (¢, b).

— For each ¢ < n, there are edges (z;, z;41) and (¥i, Yit1)-

— For each i < n, there is an edge (%, Yr(:))-

— For each ¢ < n, there are edges (a, x;), (#;,a), (b,vi), (v;,b), (¢, u:), (yi,).
— For each ¢ < n and j < n, there are edges (2;,¢;), (¢j, i), (yi,d;), (d;, =;).

Define the graph (), as the disjoint union of G for all permutations 7. That is,
Gy, has n! connected components and (4n 4+ 3) - n! nodes. Tt follows straightfor-
wardly from the construction that deg_set(Gr) ={n,n+ 1,n+2,n+ 3, n+4}.

Next, we define a query ¥ as follows: In some component (G, in the output
we get an edge from a to y; iff we have m(x;41) = yi+1 where 2; = 77 1(y;). One
can now show that ¥ is first-order definable, but deg(¥(G,)) depends on n. O

Lemma10. Let d = (2m — 2)(2r + 1). Suppose a &4 b and Sy(a) N Sq(b) = 0.
Then |degree;(a) — degree;(b)] < (254(d))™! for any i < m. O

From this lemma we derive that deg(¥(A)) < m -7 - 2147+ where s =
sa((4m — 4)(2r + 1)). Finally, since deg_set(A) C {0,...,k}, there is an upper
bound on s4(n) that depends on n, k, and p only, from which the bounded
degree property follows. a

Let us discuss some implications of this result. As a start, we note that the
graph bounded degree property result from [23] applies only to queries from
graphs to graphs. One may ask what happens in the presence of auxiliary infor-
mation, such as the successor relation. Since the successor relation only adds 0
and 1 to the degree set, we obtain immediately

Corollary 11. The graph bounded degree property of first-order queries contin-
ues to hold in the presence of a successor relation. a

But what happens if relations more complex than the successor are allowed?
For instance, auxiliary relations whose degrees are not bounded by any constant,
but are still not very large? We can answer this question by using the (slightly
modified) notion of moderate degree from [15], and the estimate on the number
of in- and out-degrees obtained in the proof of Theorem 9.

Consider a class of structures C C STRUCT]7] for some relational vocabulary
7. Define a function s¢ : N — N by letting s¢(n) be the maximal possible in-
or out-degree in some n-element structure .4 € C. Given an increasing function
g(n) such that g(n) is not bounded by any constant, we say that C is of g(n)-
moderate degree if s¢(n) < logo(l) g(n). That is, we have a function 6 : N — N
such that lim, . 8(n) = 0 and s¢(n) < logé(”) g(n). When g is the identity, we
have the definition of moderate degree of [15].

Proposition12. Let ¢ be a local query. Let C be a class of structures of g(n)-
moderate degree. Then there is N € N such that for any A € C with card(A) =
n > N, we have deg(W(A)) < g(n). O

The transitive closure of a chain has as many distinct degrees as there are
links in the chain. It is thus not definable by a local query even when auxiliary
data of moderate degree are available. Now, using the fact that the transitive
closure of a chain is FO-complete for DLOGSPACE [14], we obtain

Corollary 13. Let P be a problem complete for DLOGSPACE under FO reduc-
tions. Then P is not definable by a local query even in the presence of relations
of moderate degree. a

The converse to Theorem 9 is not true. That is, there is a non-local query that
has the bounded degree property. Indeed, let ¢(z, y) be a graph query defined as
follows. If GG is the union of disjoint chains having a unique longest chain, then
G E ¢(x,y) iff (z,y) is an edge in the unique longest chain in G; otherwise,
G W= (x,y) for all ,y. It is clear that ¢ has the bounded degree property
but violates locality. Nevertheless, it should be pointed out that the relational
algebra augmented with this query % does not have the bounded degree property.

Proof sketch. We prove this theorem by reduction to graph queries.
Given a query ¥(x1,...,2,), n > 2, define ¢'(z1,...,2,—1) by letting A E
(a1, ..., an—1) iff for some @ € A, and for some index 0 < 7 < n — 1, it is the
case that A = ¢(ay, ..., 4,4, ai41, ..., Cn_1).

Lemma 7. Let (21, ...,2,) be of locality rank v > 0. Then (21, ..., 8n_1) is
of locality rank 3r 4+ 1.

To prove the theorem, first note that if ¢(x,y) is a graph query of locality
rank r, and ¢*(z,y) is such that A | ¢*(a,b) iff A E ¥(a,b) or A E ¥(b,a),
then ¢* also has locality rank r.

For an arbitrary query ¢(zyi,...,2,), n > 2, define ¢1(z1,...,20-1) =
(21, 1), Ya(x1, ..., ¥n_2) = P)(21,...,2n_2), etc., until we obtain
d(x,y) = Yn_2(x,y). Tt is easy to see that A | ¢(a,b) iff (a,b) is in the
Gaifman graph of W(A). From Lemma 7, we see that the locality rank of ¢
is 3"72r 4+ (3”72 — 1)/2. Now the theorem follows from the observation made
above, Theorem 2, and the fact that G(¥(.A)) is undirected. O

4 Bounded Degree Property

A very convenient form of the locality property is called the bounded degree
property. It says that for structures from STRUCT}[7] (that is, r-structures in
which no degree exceeds k), there is an upper bound on deg(¥(.A)) that depends
only on ¢ and k. A special case of this property is the graph bounded degree
property mentioned in Section 2. It was established for first-order graph queries
in [23] (see also Corollary 5).

Definition8. A query ¢(#1,...,%m,) is said to have the bounded degree
property, or BDP if there is a function fy : N — N such that deg(¥(A)) <
fu(k) for every A € STRUCT[7]. O

This property can be used as an easy-to-apply tool for establishing expres-
siveness bounds of query languages. Assume that it is known that every query in
a language £ has the BDP. To show that some query ¢ is not definable in £, one
has to find a number k and a class C of input structures in STRUCT[r] such
that ¢(A) can realize arbitrarily large degrees on structures A from C. This is
exactly the idea of the proof of Corollary 4. The usefulness of BDP for proving
expressiveness bounds on first-order graph queries was demonstrated in [23].

The main result of this section is the following.

Theorem 9. FEvery local query has the bounded degree property.

Proof sketch. Fix a query ¢(z1, ..., ¥m) of locality rank r. Fix a structure
A in STRUCTg[7]. Without loss of generality assume m > 1, r > 0 and 4 # 0.
Let p =, pi. Let s4(d) be the maximum size of S4(a) for a € A. Under these
assumptions, we claim

Theorem 2. Let (x,y) be a graph query on 7-structures of finite locality index
r. Then for any A € STRUCT][7],

deg(W(A)) < 2-ntp(3r+1,A4)

In fact, the number of distinct in-degrees in W(A) is at most ntp(3r + 1, A), and
the number of distinct out-degrees in W(A) is at most ntp(3r + 1, A).
Proof sketch. The key to our theorem is the following observation.

Lemma3. Letr >0, d > 3r+ 1, and let a =4 b. Then there is a permutation
7 on Sq—r(a,b) such that for every x € Sq_,(a,b), it is the case that Ny(a,z) =
Ny (b, w(x)).

To show how lemma 3 implies the theorem, let G' = (V, E') be ¥(A). Let
d =3r+ 1. Let a mq b. For every & & Sary1(a,b), Np(a,z) =2 N,(b,x), since
Ny(a) =2 N.(b) and d(a,z),d(b,z) > 2r + 1. Thus, (a,z) € E' iff (b,z) € E
by locality. Furthermore, by Lemma 3, for every « € Say41(a,b), (a,z) € E' iff
(b,w(x)) € B’ by locality and the property of 7. Hence a and b have the same
outdegrees. A similar argument shows that @ and b have the same indegrees.
Hence degset(G') has at most 2 - ntp(d, G) elements. a

Let us give two simple applications to demonstrate the usefulness of Theorem
2 in establishing expressiveness bounds. The second of these will be generalized in
the next section into a powerful result that lets us eliminate Ehrenfeucht-Fraisse
games from many inexpressibility proofs.

Corollary 4. No local query can define the transitive closure of a graph.
Proof. Suppose ¢(z,y) of locality index r defines the transitive closure.
Consider chains, i.e. graphs of the form C,, = {(ag,@1),...,(an—1,a,)} with all
a;s distinet. Then deg(¥(Cy)) = n+ 1. For every d > 0, there are at most 2d
non-isomorphic d-neighborhoods in a chain. Thus, deg(¥(G)) < 4(3r 4+ 1), by
Theorem 2. Hence, 1 cannot define the transitive closure. a

Corollary 5. FEvery local graph query has the graph bounded degree property.
Proof. If all in- and out-degrees in GG are bounded by %, then the maximum
number of non-isomorphic d-neighborhoods depends only on £ and d. Combining
this with Theorem 2, we see that there is a bound on deg(¥(G)) that depends
only on k and the locality index of . a

The statement of Theorem 2 1s not completely satisfactory, since it only deals
with graph queries. To generalize it to arbitrary queries, we look at the Gaifman
graphs of the outputs. Recall that G(A) denotes the Gaifman graph of A.

Theorem 6. Let ¢(x1,...,2,), n > 2, be a query on T-structures of finite lo-
cality index r > 0. Then there is a number m that depends only on n and r such
that, for any A € STRUCT[r], the number of distinct degrees in the Gaifman
graph of W(A) does not exceed ntp(m,.A). In fact,

deg(GP(A)) < ntp(3" 7+ (3"~ = 1)/2,.4)

Are there any interesting examples of local queries? An answer to this is
provided by Gaifman’s locality theorem [16] which implies, in our terminology,
the following fact.

Fact 1 Every first-order (relational caleulus) query is local. a

However, even the simplest fragment of second-order logic, monadic X7, is
not local. It is not hard to construct a nonlocal query using connectivity test for
undirected graphs, which is definable in monadic X} [3].

We shall see later that there are other interesting examples of local queries,
though restricted to some classes of structures. We define these restricted classes
of structures below. They play a central role in the paper.

For a graph G, its degree set deg_set(G) is the set of all possible in- and out-
degrees that are realized in G. By deg(G') we denote the cardinality of deg_set(G);
that is, the number of different in- and out-degrees realized in GG. We also define
similar notions for arbitrary structures. Given a relation R; in a structure A,
degreej(Ri, a) is the number of tuples in R; whose jth component is a. Then
deg-set(A) is defined as the set of all degree;(R;,a) for Ri € Aand a € A.
Finally, deg(.A) is the cardinality of deg_set(A).

The class of 7-structures A with deg_set(A) C {0,1,...,k} is denoted by
STRUCT},[r]. We shall see that many queries in relational calculus augmented
with grouping and arithmetic constructs (this is essentially plain SQL) are local
when restricted to inputs from STRUCT[7], for any fixed k. We also see from
this that first-order queries with Hartig and Rescher quantifiers are local when
restricted to the same structures.

As was mentioned before, a certain notion of uniform behavior of queries on
STRUCT} 1] was introduced earlier in [23]. We say that a graph query ¥ (x,y)
has the graph bounded degree property if there exists a function f : N — ¥
such that deg(¥(G)) < f(k) for any G € STRUCT}[rg]. It was shown in [23]
that every first-order graph query has the graph bounded degree property.

3 Expressiveness of Local Queries

The goal of this section is to prove a general theorem characterizing outputs of
local graph queries. Informally, our main result says this. If ¢ is a local query,
then the Gaifman graph of ¥(A) cannot be much more complex than the struc-
ture A itself. We first prove a theorem that states this result for graph queries.
From this and a lemma that determines the locality rank of a query defining the
Gaifman graph, we obtain our main result.

Recall that for any structure A, the parameter deg(.A) shows how complex
the structure looks globally. That is, how many different degrees are realized
in it. The parameter ntp(d,.A), for any fixed d > 0, shows how many distinct
small neighborhoods are realized in .A. The first result of this section shows the
connection between the parameter ntp(d,-) on an input to a local graph query
and the parameter deg(-) on the output. It can be interpreted as saying that
output of a local graph query cannot be much more complex than its input.

2 Notations

We study queries on finite relational structures. A relational signature 7 1s a
set of relation symbols {Ry, ..., R}, with an associated arity function. In what
follows, p;(> 0) denotes the arity of R;. By 7, we mean 7 extended with n new
constant symbols. We use graphs in many examples; we denote the signature of
graphs by 7, which consists of one binary predicate (for the edges).

A structure is written as A = (A,Rl, .. .,El), where A is a finite set called
the carrier and R; is the interpretation of R;, which is a subset of AP¢. The class
of r-structures is denoted by STRUCT][r]. When no confusion can arise, we write
R; in place of R;. We use the symbol 2 to denote isomorphism of structures.

We would like to make our results general enough to apply to a variety of lan-
guages. To this end, we assume that a query is a formula ¢(z1, ..., 2,), where
T1, ..., &y are ree variables. We also assume the notion of = between structures
and formulas. (You may think of ¢ as a first-order formula in the language of 7,
and |= as the usual satisfaction relation.) Associated with a query ¥(z1,...,2m)
is a mapping ¥ of structures from STRUCT[r] to STRUCT[S,,], where S,
is a symbol of arity m, defined by ¥(A) = (A, {(a1,...,am) € A" A E
Ylay,...,am)}). If m = 2, the output of a query is a graph, and we speak about
graph queries. For convenience, queries are denoted by lower case Greek let-
ters; the associated mappings of structures are denoted by the corresponding
upper case Greek letters.

The following definitions are quite standard; see [13, 16]. Given a structure
A, its graph G(A) is defined as (A, E) where (a,b) is in F iff there is a tuple
ie R; for some 7 such that both @ and b are in . Tt is also called the Gaifman
graph of a structure, cf. [15]. The distance d(a,b) is defined as the length of
the shortest path from a to b in G(A). Note that the triangle inequality holds:
d(a,c) < d(a,b)+d(b,c). Given a € A, its r-sphere S, (a)is {b € A | d(a,b) < r}.
Note that a € Sy(a). For a tuple i Sr(f) = UuerSr(a).

Given a tuple £ = (t1,...,1,), its r-neighborhood N, () is defined as a 7,
structure

S (1), By NSy (D, Ry S (DF* g, ..y,
p p

That 1s, the carrier of N, (t_> s .Sy (f), the interpretation of the relations in 7 is
obtained by restricting them to the carrier, and the n extra constants are the
elements of 7.

Given a structure A, we define an equivalence relation a rs4 b iff Ng(a) =
Na(b). We also define ntp(d, A) to be the number of a4 equivalence classes in A.
That is, ntp(d,.4) is the number of isomorphism types of d-neighborhoods in A.

Now we can give our main definition.

Definition1. Given a query ¥(x1,...,2y), its locality index is a number
r € NN such that, for every A € STRUCT]r] and for every two m-ary vectors
d, b of elements of A, it is the case that N,(&@) = N,(b) implies A = ¢(a) iff

A | ¢(b). If no such r exists, the locality index is co. A query is local if it has
a finite locality index. A language is local if every query in it is. a

transitive closure in such a language by a direct brute-force argument, analyzing
the properties of queries restricted to special classes of inputs (multicycles).

The question of whether relational calculus with grouping and aggregate
functions has the bounded degree property was the main open problem left
in [23]. We also mentioned a possible approach towards solving this problem.
The proof of the bounded degree property for relational calculus was based on
Gaifman’s result that first-order formulae are local, in the sense as defined in
[16]. The locality result in [16] has two parts, and only one was used in our proof
in [23]. Tt says that in order to determine if a formula ¢(%) is satisfied on a tuple
d, one only has to look at a small neighborhood of @ of a predetermined size.
(The second part deals with sentences, and is irrelevant for the discussion here.)
Thus, we thought that it is of interest to give a general study of queries that
satisfy this notion of locality.

The purpose of this paper is twofold. First, we give a general study of local
queries, their expressive power, and more general notions of the bounded degree
property. Second, we prove locality of certain queries in an SQL-like language
and show that this is enough to confirm that it has the bounded degree property.

Organization In the next section, we introduce the notations in such a way that
the presentation of the results about locality and bounded degree properties can
be applied to a number of different languages, including first-order logic and
some of its extensions. We give a formal definition of local queries, and note that
every relational calculus query is local.

In Section 3, we prove the main result about expressiveness of local queries.
We show that the number of different in- and out-degrees realized in the output
of a graph query on an arbitrary structure is bounded above by the number
of nonisomorphic neighborhoods realized in the input structure, such that the
radius of these neighborhoods depends only on the query. We demonstrate some
expressiveness bounds that immediately follow from this result.

The main result of Section 4 is that every local query has the bounded degree
property. We also show how this result can be used to establish expressiveness
bounds in the presence of some auxiliary data.

In Section 5 we look at some generalizations of the bounded degree property
that one migh expect to be true, and show that they fail even for first-order
graph queries.

In Section 6, we introduce a theoretical SQL-like language that extends re-
lational calculus with grouping and aggregate functions, and prove that it is
local when restricted to unordered flat relations whose degrees are bounded by
a constant. Therefore, the language has the bounded degree property over flat
relations without ordering on the domain elements. This implies that it cannot
express the transitive closure. It also follows that first-order queries with Hartig
and Rescher (equicardinality and majority) quantifiers have the bounded degree
property. In Section 7 we apply our results to incremental maintenance of views,
and show that SQL and relational calculus are incapable of maintaining the
transitive closure view even in the presence of certain kinds of auxiliary data.

Complete proofs of all the results can be found in [10].

developed for first-order logic (or equivalently, the relational calculus); these in-
clude Ehrenfeucht-Fraisse games [1, 13], locality [13, 16], 0-1 laws [1, 13], Hanf’s
technique [15], the bounded degree property [23]. We are especially interested
in local properties of queries, first introduced by Gaifman [16]. These state that
the result of a query can be determined by looking at “small neighborhoods” of
its arguments.

Expressiveness of database query languages remains the major motivation
for research in finite model theory. However, most of those tools developed are
modified Ehrenfeucht-Fraisse games, whose application often involves a rather
intricate argument. Furthermore, most current tools are applicable only to first-
order logic and some of its extensions (like fragments of second-order logic [15],
infinitary logics [5], logics with counting [20], etc.); but they do not apply to
languages that resemble real query languages, like SQL.

The goal of this paper 1s to give a thorough study of local properties of
queries in a context that goes beyond the pure first-order case, and then apply
the resulting tools to analyze expressive power of SQL-like languages.

Languages like SQL differ from the relational calculus in that they have
grouping constructs (modeled by the SQL GROUPBY) and aggregate functions
such as COUNT and AVG. After some initial investigation of extended relational
languages was done in [21, 25], first results on expressive power appeared in [8].
However, the results of [8] were based on the assumption that the deterministic
and nondeterministic logspace are different, and thus questions on expressive
power of SQL-like languages remained open.

In the past few years, several researchers explored the connection between
relational languages with aggregate functions and languages whose main data
structures are bags rather than sets. Among the issues that were studied are
interdefinability of their primitives [4, 22, 18], complexity [18], optimization [7],
equational theories [17] and, finally and most recently, the limitations of their
expressive power [23, 24]. In particular, it was shown in [23] that the transitive
closure of a graph remains inexpressible even when grouping and aggregation
are added to the relational calculus. For a survey of this area, see [19].

Since there was no tool available for studying languages with aggregate func-
tions, in [23] we tried to find a property possessed by the queries in our language,
which 1s not possessed by the transitive closure of a graph. Let a query ¢ take
a graph as an input and return a graph. Then we say that it has the (graph)
bounded degree property if for any k, if all in- and out-degrees in an input graph
G do not exceed k, then the number of distinct in- and out-degrees in the output
graph ¢(G) is bounded by some constant ¢, that depends only on & and ¢, and
not on the graph G. It is clear that the transitive closure query violates this
property: just look at the transitive closure of a chain graph.

We have been able to prove that the bounded degree property holds for every
relational calculus graph query [23]. We have also demonstrated that it is a very
convenient tool for establishing expressivity bounds, often much easier to apply
than the games or other tools. However, we were not able to prove in [23] that it
extends to languages with aggregation. Instead, we showed inexpressibility of the

Local Properties of Query Languages

Guozhu Dong! Leonid Libkin? Limsoon Wong?

! Dept of Computer Science, University of Melbourne, Parkville, Vic. 3052,
Australia, Email: dong@cs.mu.oz.au
2 Bell Laboratories/Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ
07974, USA, Email: 1ibkin@research.bell-labs.com
? Biolnformatics Center & Institute of Systems Science, Singapore 119597, Email:
limsoon@iss.nus.sg

Abstract. Expressiveness of database query languages remains the ma-
jor motivation for research in finite model theory. However, most tech-
niques in finite model theory are based on Ehrenfeucht-Fraisse games,
whose application often involves a rather intricate argument. Further-
more, most tools apply to first-order logic and some of its extensions,
but not to languages that resemble real query languages, like SQL.

In this paper we use locality to analyze expressiveness of query lan-
guages. A query is local if, to determine if a tuple belongs to the output,
one only has to look at a certain predetermined portion of the input.

We study local properties of queries in a context that goes beyond
the pure first-order case, and then apply the resulting tools to analyze
expressive power of SQL-like languages. We first prove a general result
describing outputs of local queries, that leads to many easy inexpressibil-
ity proofs. We then consider a closely related bounded degree property,
which describes the outputs of queries on structures that locally look
“simple,” and makes inexpressibility proofs particularly easy. We prove
that every local query has this property. Since every relational calculus
(first-order) query is local, these results can be viewed as “off-the-shelf”
strategies for inexpressibility proofs, which are often easier to apply than
the games. We also show that some generalizations of the bounded degree
property that were conjectured to hold, fail for relational calculus.

We then prove that the language obtained from relational calculus by
adding grouping and aggregates (essentially plain SQL), has the bounded
degree property, thus solving an open problem. Consequently, first-order
queries with Hartig and Rescher quantifiers have the bounded degree
property. Finally, we apply our results to show that SQL and relational
calculus are incapable of maintaining the transitive closure view even in
the presence of certain kinds of auxiliary data.

1 Introduction

One major issue in the study of database query languages is their expressive
power. Given a query language, it is important to know if the language has
enough power to express certain queries. Most database languages have limited
power; for example, the relational calculus and algebra cannot express the tran-
sitive closure of a graph or the parity test. A large number of tools have been

