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Abstract
A formulay(xy,. .., z,) conforms to a partition P of {x1, ..., 2, } if it is equivalent to a Boolean

combination of formulae that do not have free variables from more than one block of P. We show
that if ¢ conforms to two partitions P, and Ps, it also conforms to their greatest lower bound in
the partition lattice. As a corollary, we obtain that the concept of orthographic dimension of a
constraint-definable set, introduced in the field of constraint databases, is well-defined.

1 Introduction

The primary motivation for the concept of orthographic dimension is from the field of constraint
databases [5, 6], but it may also be of independent interest. The idea of constraint databases is
that database relations are first-order definable sets over some structure. This way one can store
a finite representation of an infinite set in a database, and query it as if the entire set were stored.
Query evaluation over constraint databases then reduces to constraint processing. For large constraint
datasets, this could become very expensive if the dimension (number of variables) is high.

However, in many applications data of high dimensionality can be described by a combination of several
components of lower dimension. For example, a cadastral database may contain spatial information
(who owns what land) and time (who owns it when). Or, in a 3-dimensional GIS, it may be possible
to losslessly describe the data as a set of 2-dimensional layers. In other words, some variables may
be independent of each other. One can often benefit from such independence: for example, query
evaluation can be considerably improved [4, 3]. It was also shown in [1], that spatial aggregates can
be safely introduced into query languages under such independence conditions.

A related notion is that of the “orthographic dimension” — the size of the largest block of dependent
variables. This concept is important since many algorithms on constraint databases have running
time of the form O(n®@) where n is the size of the constraint representation and d the orthographic
dimension; thus, establishing a lower orthographic dimension decreases complexity. This concept was
introduced in [4], but it was not clear whether it was well-defined: conceivably, there could be various
ways of breaking free variables into independent blocks of variables, and for two such ways the sizes
of the largest blocks may not coincide.

In this note, we show that this is not the case — for any constraint-definable set, the orthographic
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dimension is well-defined. In fact, we prove a more general result: if there are two ways to partition
variables into independent blocks, then there is another way to do so that refines both partitions.

This result, and its algorithmic consequences described in [7], may be related to work on variable
elimination and early projection in CLP (see, e.g., [2]), and perhaps to other constraint processing
algorithms. It also seems close in spirit to various interpolation theorems in logic, but despite these
similarities, the notion of orthographic dimension does not appear to have been studied outside of the
field of constraint databases.

2 Definitions and Main Theorem

Suppose we are given a first-order language L, an L-structure M, and an L-formula ¢(z1,...,2,)
with free variables zy, ..., #,. Let P be a partition on {zy,...,2,}. We say that ¢ M-conforms to
P (written as ¢ ~aq P) if there exists a finite collection of formulae v;, 7 € I, such that:

1. ¢ is equivalent to a Boolean combination of formulae v;, and

2. no v; has free variables from two different blocks of the partition P.

For example, if L = (+,%,0,1,<), M is the real field, ¢(z1,22) = ((z1 > 0) A (22 > 0) A (21 >
z2)) V ((xz1 > 0) A (z2 > 0) A (z2 > z1)), then ¢ ~aq {{z1}, {z2}}, since for y1(z1) = (21 > 0) and
v2(22) = (22 > 0) one has @(x1,22) < v1(21) A vy2(22).

If M admits quantifier-elimination (that is, for every (&), there exists a quantifier-free ¢ (&) such
that M |= V& o(¥) < (%)), the definition of ¢ ~xq P can be restated as the existence of a family
v (%g,), i=1,..., k, j=1,..., m of quantifier-free formulae, where P = {By,..., B, }, and ¥p,; is
the subtuple of &' consisting of x;s with [ € B;, such that

k
M o(@) & \[ (0 (@B) A - A (EB,,)) (1)

=1

The set of partitions of a set X forms a lattice Part(X) where P C P"iff P is a refinement of P’. The
meet operation M in Part(X) is defined in the following way: the blocks of P, M P, are the nonempty
sets of the form By N By, where B; is a block of P, 1 =1, 2.

Given M with a universe U, a formula ¢(z1,...,2,), the set definable by ¢ is the set (M) =
{@ e U™ | M [ ¢(@)}. The orthographic dimension of definable sets was defined as follows [4]. Let
Pum(p) = {P € Part({z1,...,2,}) | ¢ ~m P}. Then the orthographic dimension of ¢(M) is the
maximal size of a block of a minimal element P € Pag(p) (that is, any P’ C P does not belong to
Pam(p)). In other words, one takes a partition that ¢ conforms to, and that cannot be further refined
while preserving this property, and defines the orthographic dimension to be the maximum size of a
block of such a partition.

The problem with this definition is that it is not clear whether one can have two minimal elements
P, Py € Pap(p) with different maximum block sizes. We prove that this is impossible. In fact, we
prove a more general result, implying that Pas(¢) always has a unique minimal element.

Theorem 1 Let M be an L-structure, and @(x1,...,2,) be an L-formula. Assume that ¢ ~ay Py
and @ ~ap Py for P, Py € Part({z1,...,2,}). Then ¢ ~p P11 P,



Corollary 1 For any M and ¢ as above, the set Pap(p) = {P | ¢ ~m P} is nonempty and has a
unique least element.

Thus, the concept of the orthographic dimension is well-defined for any constraint-definable set.

3 Proof of the theorem

The structure of the proof is as follows. We start by proving an easy case of two partitions of the
form A, BUC and AU B,C (Lemma 2), which is preceded by Lemma 1 establishing a certain kind of
unambiguous representations of formulae. After that we use Lemma 2 to prove a general case of two
two-block partitions (Lemma 4), which again relies on certain unambiguous representations (Lemma
3). With this preparatory work, we conclude the proof by induction: the base case is provided by
Lemma 4, and the induction step follows from Lemma 2.

We now fix a structure M and a formula ¢(z1,...,2,). For a subset B of {z1,...,2,}, we let &p
be the subtuple of (z1,...,2,) that consists of variables in B. For blocks of partitions, we sometimes
write AB instead of A U B and subsequently #4p, or £4Z5. When M is clear from the context, we
write ¢ ~ P.

Suppose we have a partition P = {By,..., B,,} and let ¢ ~ P. By putting ¢ in DNF we assume that
it is of the form

V(@i (@) AN ol (T5,.) (2)
=1
We call the above representation unambiguous in By if M = =37(al(7) A oeé(y_')) for 7 # j. That is,

formulae 04; are mutually exclusive: no yp, can satisfy more than one 04;.

Lemma 1 Let ¢ and P be as above, with ¢ ~ P. Fiz 1 <1 < m. Then ¢ admits a representation
unambiguous in l. Furthermore, if in the representation (2) every oeﬁ» conforms to some fixed partition
Py on By, then there is a representation unambiguous in | in which all formulae that depend on Zp,
also conform to P.

Proof. Make each disjunct in (2) into 2V ~! ones by replacing each oeﬁ» with all the possible conjunctions

ab A Njzi (aé)g(j), where o is a map from an N — 1 element set to {+, —} and ()" = o, (a)” = —a.
Then use distributivity to ensure that no two identical formulae in the variables ¥p, are present in
the DNF. O

Now, suppose a partition P is given, and let ' be a union of some of its blocks. Then P naturally
induces a partition Pz on C. Suppose we have a formula 1 (Z¢). If it conforms to Pr, we shall say
that it conforms to P, in order to simplify the notation.

Lemma 2 Let P = {A, B,C} be a partition. Consider two partitions P4 on A and Pe on C. Let P’
be the partition whose blocks are those of Py and BUC, and let P" be the partition whose blocks are
those of Pc and AU B. Assume that ¢ ~ P and ¢ ~ P". Then ¢ ~ P' 11 P".



Proof. Note that the blocks of P’ P” are those of P4, Po and B. By the preceding lemma, we write

© in two equivalent ways, as
N

V(Oéi(fA) A Bi(ZBTc))

and as
M

\ (3 (FaZB) A 5;(F0))

j=1
with 37 4.0, (Z4) A, (£ 4) being false for iy # i3 and with a;s conforming to Py and §;s conforming to
Pc. We now construct foreach 1 < i < Nand 1 < j < M aformula ¢;;(%) = a;(Z4)A6; (Zc) Axi; (£B)
where x;;(¥p) is 3 (;(2) Av;(Z7B)). We claim that ¢ is equivalent to \/;; ¢;;. Clearly this will suffice
as subformulae of 1);;s conform to partitions P4 and Pc.

One must now show M = V& (¢(Z) ¢ V,; ¢;(7)). If p(d@), we have that for some i, j, a;(d@a) A
Bi(@pdc) is true and v;(@adp) A 0;(dc), and thus ;;(@) is true. Conversely, if 1;;(d@) is true, we
have that for some @ of the same length as 74, it is the case that a;(%) is true and +;(ddp) is true;
furthermore, o;(@4) and §;(dc) are true. We thus obtain that p(@dpdc) is true. Hence, for some
index 1 <1 < N, we have (@) and §j(@gdc). Since we know that «;(#) is true, by unambiguity of
the first representation in A-variables, we have [ = ¢; hence, §;(@pdc) is true and thus ¢(@) is true.
This proves the lemma. a

Next, we need a variant of Lemma 1 that involves two different formulae.

Lemma 3 Let ®(Z, 7)) be V/_;(Gi(Z) A ¥i(7)) and let U(Z, Z) be \/7, (xi(Z) N&(Z)) where & and §

(and likewise ¥ and Z) have no variables in common. Then there exist formulae o; (%), 8:(9), vi(%),
1=1, ..., k, such that

ME ®(F,7) & \/ ((T) AB(D) ,

-

o
Il
—

-

o
Il
—

MEVE D < (@) Av) ,

and furthermore M {= =3%(0;(Z) A o (%)) for any i # j.

Proof. Assume without loss of generality that n, m > 0. Let ¥ be the set of all 2°T™ mappings from
{1,...,ny,n+1,....,n+m} to {+,—}. Let T = § and 6= = =4 for any formula §. For each o € ¥, let

n m
A A "

—»—»

Then @ is equivalent to the following formula ®'(Z, 7):

g (F)

n

VI V(@@ (ee@®nr@) |

=1 \o€X,o(1)=+ UEE a(1)
where F (%) is any unsatisfiable formula (e.g., ¥ # 7). Thus, ®' is equivalent to the formula of the form
V (@ (@) A (7))
cEX



where each (3, is either a disjunction of some ;s, or an unsatisfiable formula. Clearly, any «, and «a,:
for 0 # o' are inconsistent. The proof that U admits a similar representation with the same family
{a,} is identical. O

We next consider the key case of two two-block partitions, e.g., {AB,C'D} and {AC, BD}.

Lemma 4 Let ®1(7,§, 4, ©) be \/'_; (i(Z, ) A B:(#,0)), and let ®o(F, 7, @, 0) be /T, (v;(Z, @) A
0;(y,0)), where Z,y, 4,0 are pairwise disjoint nonempty tuples of variables. Assume that M |= &1 <
&y, Then there exists a collection of formulae ¥ (%), xi(¥), & (%), pp(¥) such that

M #%H\/ De(T) A Xk () A &k () A pi(T)) -

Proof. First, we assume, in view of Lemma 1, that the representation for ®; is unambiguous in ¥,
¥ (that is, M | =37y (o (7, §) A oy (Z, ) for i # ¢'). Consider @ (7,7, 0) = Fu(P1(Z, 7, 4, 0)). Let
v;(Z) be Elu'y](x @) and let B/(¥) be Jup; (@, ¥). Then P is equivalent to both

\/ (i@, ) A (D))

=1
and

V%5A5%D-

Applying Lemma 2, we find a collection of formulae 1&;(5), Xi(%), pi(V) such that @] is equivalent to

V(&) A () A pu(E)).

Applying the same argument to @Y (%, 7, @) = 30(®, (7, ¥, @, v)), we find a collection of formulae Vs (T),
Xs(¥), & (@) such that @ is equlvalent to \/ (Vi(Z) A Xs (y“’) A &(@)). Now using Lemma 3, we find a
collection of formulae V% (%), X% (9), X% (%), & (%), px(¥) such that @} is equivalent to

\/ (@) A (@) A G
k

¢! is equivalent to

\/ (@) A XL A pi ()
k

and M E —3Z(;(Z) A ;(Z)) for ¢ # j (this is because the formulae ; and 5; produced in the proof
of Lemma 3 conform to the same partitions as the formulae in the § and Z" variables in the original
DNF formulae).

() and define W(T, g, @ 5) to be V/y (4 (T) A xe(9) A & (@) A pi(T)). We
b,

Now let xx(y) = Xk( ) A\ X
b, e, d) < U(d,b, ¢ d) for any a, b, &, d of appropriate arity over U.

now claim that M = @ (

First, if ®, (@, b, & d) holds, then for some ki, ko, both (g, (@) A Yk, (B) A&k, (&) and (g, (@) A Xk, (B) A
pr, (d)) hold, which implies ky = ky and thus that (&, b, & d) holds.

Next, let m be the length of Z. Define L* to be an extension of L with m new constant symbols,
and let M% be the L*-expansion of M, where the extra constants are interpreted as @. For every



L-formula (&, 5), where & is of length m, let x*(5) be an L* formula in which each free occurrence

of a variable #; in & is replaced by the corresponding constant symbol in L*. Then M = x(a,é) iff

MT = x"(8).

Now assume that U(d, b, ¢, d_j holds. Then Ju (P, (d, b, i, (i)) holds, and thus ¢4 (@, b, &, d_j holds in M
a

—

for some &. Similarly, @4 ( b, ¢, Jg) holds in M for some d.

The formula ® (7, @, ¥) is equivalent, over M, to
\/ (a3 () A Bi(7. 7))

and

V6@ A 6;(5.9))

J

Applying Lemma 2 to M%, we find that &7 is equivalent to a formula of the form

\ () A (@) A v (3)

r

and we may assume, by Lemma 1, that this representation is unambiguous in ¥. Since @f(l;, E’o,d_j
holds in M¥?, we obtain (4 (b) A ny, (Co) A vy, (d)) for some ry. Since &% (b, do) holds in M7, we
obtain (,ug(l;) A, (E) A vy, (do)) for some ry. Using unambiguity, we conclude r; = ry, and thus
(1, (b) A ny (&) Ay, (d)) holds in M?. Hence, ®3(b, d) holds in M7, and thus ®(a@,b, 7, d) holds in
M, which concludes the proof. O

Using Lemma 4, we prove the following result, which is the basis of the main induction argument. Let
Dy, ..., Dy enumerate the blocks of partition Py M P,. Let Pi2(¢) be the partition whose two blocks
are D; and U]‘#Z’D]‘.

Lemma 5 For every i, ¢ ~ Pi2(7).

Proof. Let D; arise as B N C', where B is a block in P, and C' is a block in P. Let A = B — (|,
FE =C — B and let I’ be the complement of B U C' (some of these sets may be empty). ¢ therefore
conforms to {D;A, FF} and to {D;E, AF}. If two or more sets among A, D;, F, F' are empty, the
result is immediate. If one of these sets is empty, the result follows from Lemma 2. If all four are
nonempty, it follows from Lemma 4. a

We now complete the proof of the main theorem by a simple induction. Let P(7) be the partition whose
blocks are Dy, ..., D;, and D;y1U---UDy. We show that ¢ ~ P(7) for all 7; hence, ¢ ~ P(k) = PiNPs.
The base case, ¢ ~ P(1), follows from Lemma 5. Suppose ¢ ~ P(¢); we have to show ¢ ~ P(i + 1).
Let A=DyU---UD;;, B=D;4q and C = DyyoU---U Dy. We then have that ¢ conforms to the
partition with blocks A and BUC, as well as that with blocks B and AU(; furthermore, it conforms

to the subpartition Dy, ..., D; on A. From Lemma 2 it then follows that ¢ conforms to the partition
with blocks Dy, ..., D;; B= D41, C, that is, to P(i + 1). This completes the proof. O
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