On Representation and Querying Incomplete Information
in Databases with Bags

Leonid Libkin Limsoon Wong
AT&T Bell Laboratories Real World Computing Partnership Novel Function
600 Mountain Avenue Institute of Systems Science Laboratory
Murray Hill, NJ 07974, USA Heng Mui Keng Terrace, Singapore 0511
Email: 1ibkin@research.att.com Email: 1imsoon@iss.nus.sg
Abstract

We extend the approach to representation of partial information based on orderings on objects
from sets to multisets. We characterize orderings arising under closed- and open-world assumptions
and analyze their complexity. In contrast to the set case, where orderings are first-order definable
and are thus expressible in standard database query languages, the orderings on bags are not
expressible in standard bag languages. We give an example of a query on nested relations whose
inexpressibility in the extension of relational algebra to nested objects cannot be proved by reduction
to the first-order case.

1 Introduction

One approach to representing partial information in databases that treats objects as elements of
partially ordered sets, where the meaning of the order is “being more informative”, has proved to
be very useful for analyzing incompleteness of information in the relational database model and its
extensions [3, 5, 9, 12]. In particular, it has allowed a number of powerful tools from denotational
semantics of programming languages to be used to analyze the phenomenon of incomplete information
[1,4, 7, 8]. All these papers deal with set-based databases. However, real database systems frequently
use bags (also called multisets) as the underlying model. While there was a flurry of activity in studying
many aspects of bag-based databases — query language design, expressive power and complexity, query
optimization and view maintenance, to name a few — no work has been done on partial information
and bags.

We present two main results. First, we extend the order-theoretic approach from sets to bags. This
results in two orderings that must be used for bags under the open- and the closed-world assumptions.
Second, we prove that these orderings are not definable in basic bag algebras such as those in [2, 11].
This may impact query language design for bag-based databases. While in the set case, orderings are
definable in any language that extends relational calculus, in the bag case one may have to enrich
basic languages with primitives capable of expressing these orderings. In addition, as a somewhat
unexpected corollary, we prove that the existence of systems of distinct representatives cannot be
tested in the nested relational algebra, which is a natural extension of relational algebra to nested
relations or complex objects. Unlike all other known limitations of expressive power of the nested
relational algebra, this one cannot be proved by a reduction to the first-order case.

2 Ordering on Objects and Partiality

Database objects are built from base objects such as tuples of reals, booleans, etc. by using collection
type constructors such as sets and bags. The “being more informative” ordering is given for values of
base types, usually by specifying possible null values; for example, the no-information null L is less
informative than any non-null value. Therefore, to order arbitrary database objects, one has to lift
orderings to collections.

We consider sets first. Suppose a partially-ordered set (A, <) is given and we want to lift < to finite
subsets of A. Three liftings are frequently used in semantics of concurrency [4]: the Hoare, Smyth,
and Plotkin orderings defined below. They are generally pre-orders. However, when restricted to
antichains, which are sets without comparable elements, they become partial orders.

(Hoare) X<U'Y & VeeX3IeY: z<y
(Smyth) X<5Y & VyeYIreX: z<y
(Plotkin) X<PY & X<UyandX<®Y

Ordering Sets of Incomplete Objects

To define orderings for collections, we adopt the approach of [9]. A collection Cj is more informative
than Cy if Cy can be obtained from Cy by a sequence of elementary updates that add information.
This approach reduces the problem of choosing an ordering to the problem of formulating elementary
updates. Such updates depend on certain assumptions on partial data. We consider two, following [5,
3]. The closed-world assumption or CWA, says that only elementary updates that improve knowledge
about objects in the database are allowed. That is, adding new objects is not allowed, unless they
improve upon objects already in the database. In contrast, the open-world assumption or OWA, allows
both adding objects and improving knowledge of objects already stored. That is, databases are open
for new objects.

To formalize this, we define the following updates on subsets of (A, <):

X 08 (X L {z}) UX" wherez € X, X' # 0 and = < &' for all 2’ € X",
XIBYif XI5 Yo XCV.

Let CCWA and COYA denote the transitive-reflexive closure of (s and 3. That is, X CY* Y or
X COYAY if Y is obtained from X by a sequence of allowed updates that add information.

Proposition 2.1 (See [9,8].) X CO YV if X <MY, and X TV Y iff X <P Y. Moreover, this
continues to hold when subsets are restricted to antichains and updates are modified in such a way
that after each update only mazimal (most informative) elements are retained. O

We should remark that the Smyth ordering <5 corresponds to or-sets that are sets of possible choices.
This was first observed in [14] and formalized in a way similar to Proposition 2.1 in [9]. It should also
be noted that in early work on using orderings for partiality, orderings for collections were usually
chosen in an ad hoc way, without any justification.

Ordering Bags of Incomplete Objects

We now use similar techniques to define orderings for bags. To extend the update idea, notice that in
bags we do not identify objects even if information we have about them is the same, since later we
may obtain additional information that would distinguish one object from the other.

This justifies the following definition. Bag Bs is more informative than bag B; if Bs can be obtained
from B; by a sequence of updates of the following form: (1) an element a in By is replaced by an
element b such that b is more informative than a, and under the OWA, (2) an element b is added to
Bj. Notice that in contrast to the set case, updates of form (1) replace an element by an element. In
sets we do identify elements if we have the same information about them. Thus, we had to permit
replacement of an element by a set to account for the fact that one element of a set may represent
more than one object.

Formally, let (A, <) be a partially-ordered set. We use the {|[} brackets for bags. We also use W for
additive union and = for bag difference. Updates are defined as follows:

CWA

B~ (B ~{lal}) W {b} ifa € B and a <b.

B B iff B B' or B = Bw {b]}.

As for sets, we denote the reflexive-transitive closure of 5 and “%" respectively by <OWA and <OWA,
To describe these relations, let N' denote the totally unordered poset whose elements are natural
numbers. (The superscript is used to distinguish it from N, which typically denotes natural numbers
with the usual ordering.) Given a finite bag B and an injective map ¢ : B — N', which is called a
labeling, we denote the set {(b,¢(b)) | b € B} by ¢(B). In other words, ¢ assigns a unique label to
each element of a bag. The ordering on pairs (b,n) where b € B and n € N' is the usual pair ordering;
that is, (b,n) < (b/,n/) if b < b and n =n'.

< CWA < OWA

Proposition 2.2 Binary relations and on bags are partial orders. Given two bags B
and By, By <°VA By (B <°%A By) iff there exist labelings ¢ and 1 on By and By such that ¢(By) <V

$(By) (respectively ¢(B1) <M 4(Bz)).

Proof. We prove the statement about <°"*; the statement about <°V* is proved similarly. We write
By < By if there exist ¢ and ¢ such that ¢(B;) <! ¢(By). We first demonstrate that < is a partial
order.

Reflexivity is obvious. To prove transitivity, let By < B and By < Bs. That is, a(B;) <! (B;) and
$(Bz) <M (B3). Let v be a bijection on N such that 7o 8 = ¢. Define § as 7o @. Then for every
b € B; there is i’ € By such that b < b and «(b) = B(b'). Therefore, (b) = ¢(b') and there exists
" € Bs such that 1 (b") = ¢(b') and b” > b'. This shows §(B;) <™ ¢(B3) and hence B; < Bs.

To show that < is anti-symmetric, let By < By and By < B;j. As was shown above, there exist
a, ¢ and 1) such that a(B;) <! ¢(By) <M 4(B;). In particular, if we define g : a(B;) — (Bi) by
g(b,n) = (b',n) where 9)(b') = n, then ¢ is one-to-one and inflationary. Since B is finite, it is the
identity map. If " € By and ¢(b") = n, then b < 0" < b = b, so b = b” where a(b) = (') = n.
Therefore, every element of By is in By and vice versa, i.e. By = Bs. This shows that < is a partial
order.

Since B; 5 By implies B; < Bs, we conclude <°V* C <. Conversely, if B; < Bo, i.e. ¢(B;) <!

1(Bs), then, according to Proposition 2.1, 1)(B3) can be obtained from ¢(B;) by a sequence of g

updates which, if we drop labels, are translated into W updates on bags. Therefore, B; <°V* By,
which proves <°WA = <, O

The Hoare ordering <" on sets can be effectively verified. Indeed, if two sets are given, there is an
O(n?) time algorithm to check if they are comparable. The description of <°V* and <" given above
seems to be somewhat awkward, algorithmically. However, it is not much harder to test for.

Proposition 2.3 There exists an O(n5/2) time algorithm that, given two bags By and By of elements
of a poset A, returns true if By °VA By (B <°VA By) and false otherwise, provided that the ordering
on A can be tested in O(1) time.

Proof. The proof is almost the same for both <°W"4 and <°WA, Given B; and Bs, consider two
labelings ¢ and 1 on By and Bs with disjoint codomains. Define a bipartite graph G = (V, E) by
V = ¢(By) Up(Bg) and E := {((b,n), (b',n")) | (byn) € ¢(B1),(t),n') € ¥(Bz2),b < b'}. It can be
easily concluded from Proposition 2.2 that By <°VA By iff there is a matching in G that contains all
¢(B1). In other words, By <°"* By iff the cardinality of the maximal matching in G is that of Bj.
The proposition now follows from the facts that all maximal matching in G have the same cardinality
and that the Hopcroft-Karp algorithm finds a maximal matching in O(n®/2) where n = |V |. 0

There is a big difference between orders on sets and bags. While X <" ¥ does not say anything about
cardinality of X and Y, B; <°V* B, implies that the cardinality of B; is at most the cardinality
of Bs. Indeed, elements of a bag represent distinct objects that cannot be identified in the process
of gaining information. Under the CWA, cardinality is always preserved, which also conforms to the
intuition about the closed worlds.

Remark. Using bags to represent incomplete information was also studied in [6, 15], but the focus of
these papers is very different from ours. In [15] a bagdomain is defined, which is a category whose
objects are bags over an ordered set, and morphisms are so-called refinements. Both <°VA and W4
are examples of refinements, but so are many other orderings that are not well suited for representing
partiality in databases. In [6] the main construction of [15] is extended so that it can be viewed as
freely generated in a certain sense by the underlying poset.

3 Querying Bags of Incomplete Objects

The orderings <" and < used for sets under the OWA and the CWA are defined by first-order
formulae. Thus, any language with relational algebra or calculus as a sublanguage has enough power
to lift < to <" and <P. The situation is very different in the bag case.

In order to demonstrate this result, we need a “standard” language for bags that has a role similar to
that of relational calculus for sets. Such a language has recently been proposed and studied [2, 11].
The object types are given by the grammar

ti=0b | txt | {t}

where b ranges over a collection of base types (among them bool, the type of Booleans), ¢; X t5 is the
type of pairs (we use pairs rather than records to keep notation simple), and values of type {|t[} are

finite bags of values of type t. Note that we deal with complex objects, which may involve nesting of
bags, and not just flat bags, which are bags of records of base types.

The operations of the language include pair formation and projections, function composition, if-then-else,
and the following operations on bags (in addition, empty bag is available as constant):
e bn:t— {t]} forms singleton bags.
W {|t]} x {|t]} — {|t[} is the additive union of bags.
= {|t]} x {|t]} — {/t|} is the bag difference.
b {{t}} — {t]} flattens a bag of bags, adding up multiplicities.
unique : {[t[} — {t} is the duplicate elimination operation.
b-map(f) : {|s[} — {|t]} applies the function f of type s — ¢ to every element of a bag of type {s[}.
b_ps s x {|t[} = {/s x t[} is the function that pairs an object with every element in a bag.

We call this language BQL [11] (also called BALG without powerset in [2]). Now we prove our main
result that BQL cannot express an algorithm that lifts a binary relation < to <°VA or <°"* in the
way described in Proposition 2.2.

Theorem 3.1 The orderings <°W* and <V cannot be defined in BQL.

Proof. Let b be a base type with infinite domain, with only equality test available on it. A directed
graph X : {{bx b} is called a chain if it has the form {(z1,z2), (z2,23), ..., (Tm—1, Zm)[}, where all z;’s
are distinct. Let chaineven : {{b x b} — bool be a predicate such that for every chain X, chaineven(X)
is true iff X has an even number of nodes.

A bag of bags B = {|By,..., By} : {{b[}|} is said to have a family of distinct representatives iff it is
possible to pick an element x; from each B; such that z; # z; whenever 7 # j. Note that both B and its
elements are allowed to have duplicates, but the z; picked must be distinct. Let sdr : {|{|b[}[} — bool
be the predicate such that for every bag of bags B, sdr(B) is true iff B has a family of distinct
representatives.

The proof is based on the following two lemmas.

Lemma 3.2 Let X,, : {b} be a chain {|(z1,22), ..., (Tm-1,2m)[}. Define Sy, : {{{|b}[} to be the bag
Wi, Qzml), {21, 7al), {o2, 24l o (2ms, 2o}, as depicted in Figure 1. Then for m > 2,
sdr(Sy,) is true iff m is even.

Lemma 3.3 BQL cannot express chaineven.

First, let us show how the theorem follows from the lemmas. Consider a chain X, as in Lemma
3.2 and construct two bags of bags (objects of type {{b}[}): one is S,, and the other is T, =
{Hzil, {22}, - Alzm=1}, {zm}[}. Both 7, and S, are definable in BQL. For example, 7, =
b-map (b_n) (unique(J(b-map(m1)(X:m), b-map(m2)(Xpm)))), where m; and 7y are the first and the second
projections.

For bags of type {|b]}, define By < By iff By is a subbag of By. This ordering is definable in BQL;
see [11]. Assume that an algorithm lifting < to <°%* or to <°"* is definable in BQL. Since 7;, and
S have the same cardinality, 7, <°"* S, iff T, <V S,,,. Moreover, it is immediately seen from

1 2 xrs3 Z; Ti+1 Tm—-1 Tm

I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
A\ \4 \4 \ \ \ \
Sm = {a1d {erzsh {es,zal lzicrizipal {oieigel {em-zoml {oml [}

Figure 1: Definition of S,

Proposition 2.2 that T, <°W* S, iff S, has a family of distinct representatives. (Those representatives
are given by the matching between S, and Ty, that <" or <°VA establishes.)

Thus, if <°VA or <°"2 were definable, it would be possible to define a function in BQL that, for a
chain X,,, tests if sdr(S,,) is true. That is, it tests if m is even, according to Lemma 3.2. Then it
would be possible to write the chaineven query in BQL, but this is impossible, according to Lemma,
3.3. So, to finish the proof of the theorem, it remains to prove the two lemmas.

Proof of Lemma 3.2. First, fix some notation. Given X,,, let Y;™ be {z;[} for i = 1, {{z,[} for i = m,
and {z;,—1, [} for 1 < i < m. If a family {Y"[} of bags has a system of distinct representatives,
then we use ¢(Y;™) to denote the representative of Y.

We prove this claim by induction on m. For m = 3 or 4 it is easy to see that claim is true. Now, assume
that m > 4 and m is even. By induction hypothesis, we know S,, o has a system of distinct repre-
sentatives. For any i <m 1 2, Y/* = Y2, Furthermore, Y=} = {zm_al}, ¥ o = {Zm—3, Zm—1]},
Y =A{zm-2, zml}, Y = {lzm[}. Then S, has a system of distinct representatives: for k < m L 2,

c(Y") = c(Ykm_Q), (Y o) = xm—1, (Y, |) = &m—2 and ¢(Y,") = zp,.

m—1

Now let m > 4 be odd. We know S,,_o does not have a system of distinct representatives. Assume
Sm does have it. Then ¢(Y,)') = xm, c¢(Y,"') = Zm_2, and (Y, 5) is either z,_3 or zp_1. If
c(Y," 9) = T3, then z,,_1 is not present in any other Y, and hence will never get selected. But
since the cardinalities of X,, and S,, coincide, this means S,, does not have a system of distinct
representatives. Thus, ¢(Y,"5) = 2m—1 and for any ¢ < m L 2, ¢(Y;") = z; where j < m L 2. Since
Y™ =Y/""2 for i < m L 2, then by taking c¢(Y;""2) = ¢(Y;™) for i <m L 2 and ¢(Y,"2}) = zp_o we

obtain a system of distinct representatives for S,, s, contradiction. Lemma 3.2 is proved.

Proof of Lemma 3.3. We prove this claim via a detour to a nested relational algebra with arithmetic
operations and aggregate functions. According to [11], the language BQL has exactly the same power
as the set language that we call NRL" here (cf. [11, 10]). Its types are given by the grammar
t:=b | N | txt | {t} where values of type {¢} are finite sets of values of type t. The operations
on records are the same as those of BQL. The set operations are s_n, U, s_u, s_p2 and s_map, which
correspond to similar operations of BQL, but duplicates are eliminated. Also, equality test eq : t xt —
bool is available for all types. The operations on natural numbers include addition, multiplication,
modified subtraction -, and the summation operator Y [f] : {t} — N, where f : ¢ — N, with semantics
NIz, .-, 20}) = f(z1) + ... + f(2n). The language NRL obtained from NRL" by removing
the arithmetic operations is equivalent to the nested relational algebra, which is a generalization of

relational algebra to complex objects (cf. [13, 16]).

According to [11], for any boolean query g of type {b x b} — bool in NRL"™, there exists a number k
such that for any Iy, ls > k and any two cycles C; and C5 of length [and 5 respectively, ¢(C1) = ¢(C5).
Thus, NRL"" cannot define a query that is equivalent to chaineven on sets, because it is possible to
use chaineven to distinguish cycles of even and odd cardinality. Since BQL and NRL"® are equally
expressive, we conclude that chaineven is not expressible in BQL. This finishes the proof of the theorem.
0.

Now observe the we can extract the following corollary from the proof of our main theorem.

Corollary 3.4 The nested relational algebra cannot test whether a family of sets has a system of
distinct representatives. O

What makes this result different from other known limitations of the nested relational algebra is that it
cannot be proved by reduction to the first-order case. So far, all inexpressibility results for the nested
relational languages were proved in the following way. First, a conservativity result is established that
shows that expressive power of the language is independent of the depth of set nesting in intermediate
results (see [10, 13, 16] for examples of such results). Then the desired results are proved by reduction
to the first-order case, when no nested relations are allowed. For example, the flat fragment of the
nested relational algebra is equivalent to the relational algebra [13, 16]. Hence, recursive queries such
as transitive closure cannot be expressed. In contrast, the query asking whether there exists a system
of distinct representatives requires set nesting of depth two, and it does not have a flat analog. Thus,
it cannot be proved by standard conservativity techniques.

Acknowledgements. We thank anonymous referees for their helpful suggestions.

References

[1] P. Buneman, A. Jung, A. Ohori. Using powerdomains to generalize relational databases. Theo-
retical Computer Science 91(1991), 23-55.

[2] S. Grumbach and T. Milo. Towards tractable algebras for bags. Proc. of the 12th Symposium on
Principles of Database Systems, Washington DC, 1993, pages 49-58.

[3] G. Grahne. “The Problem of Incomplete Information in Relational Databases”. Springer-Verlag,
Berlin, 1991.

[4] C. Gunter. “Semantics of Programming Languages”. The MIT Press, 1992.

[6] T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of ACM
31(1984), 761-791.

6] P.T. Johnstone. Partial products, bagdomains and hyperlocal toposes. In Applications of Cate-
g
gories in Computer Science, London Math. Soc. Lecture Notes, v. 177, 1992, pages 315-339.

[7] M. Levene and G. Loizou. The nested relation type model: An application of domain theory to
databases. The Computer Journal 33 (1990), 19-30.

8]

[9]

[10]

[11]

[12]

[13]

[14]

L. Libkin. Approximation in databases. In G. Gottlob and M. Vardi, eds., LNCS 893: Proc.
Internat. Conference on Database Theory, Prague, 1995, pages 411-424. Springer-Verlag, 1995.

L. Libkin and L. Wong. Semantic representations and query languages for or-sets. Proc. of the
12th Symposium on Principles of Database Systems, Washington, DC, May 1993, pages 37-48.

L. Libkin and L. Wong. Conservativity of nested relational calculi with internal generic functions.
Information Processing Letters 49 (1994), 273-280.

L. Libkin and L. Wong. New techniques for studying set languages, bag languages and aggregate
functions. In Proc. of the 13th Symposium on Principles of Database Systems, Minneapolis MN,
May 1994, pages 155-166.

A. Ohori. Orderings and types in databases. In “Advances in Database Programming Languages”

(F. Bancilhon and P. Buneman, eds.), ACM Press, 1990, pages 97-116.

J. Paredaens and D. Van Gucht. Converting nested relational algebra expressions into flat algebra
expressions. ACM Transaction on Database Systems, 17 (1992), 65-93.

B. Rounds. Situation-theoretic aspects of databases. In Proceedings of Conference on Situation
Theory and Applications, CSLI vol. 26, 1991, pages 229-256.

S. Vickers. Geometric theories and databases. In Applications of Categories in Computer Science,
London Math. Soc. Lecture Notes, v. 177, 1992, pages 288-314.

L. Wong. Normal forms and conservative properties for query languages over collection types.
In Proc. of the 12th Symposium on Principles of Database Systems, Washington, DC, May 1993,
pages 26-36.

