
De�nable Relations and First-Order Query Languages over Strings�Mi
hael BenediktyBell Labs Leonid LibkinxU. Toronto Thomas S
hwenti
k{U. Marburg Lu
 Segou�nkINRIA
Abstra
tWe study analogs of
lassi
al relational
al
ulus in the
ontext of strings. We start by study-ing string logi
s. Taking a
lassi
al model-theoreti
 approa
h, we �x a set of string operationsand look at the resulting
olle
tion of de�nable relations. These form an algebra | a
lass ofn-ary relations for every n,
losed under proje
tion and Boolean operations. We show that by
hoosing the string vo
abulary
arefully, we get string logi
s that have desirable properties:
om-putable evaluation and normal forms. We identify �ve distin
t models and study the di�eren
esin their model-theory and
omplexity of evaluation. We identify a subset of these models whi
hhave additional attra
tive properties, su
h as �nite VC dimension and quanti�er elimination.On
e you have a logi
, the addition of free predi
ate symbols gives you a string querylanguage. The resulting languages have attra
tive
losure properties from a database point ofview: while SQL does not allow the full
omposition of string pattern-mat
hing expressions withrelational operators, these logi
s yield
ompositional query languages that
an
apture
ommonstring-mat
hing queries while remaining tra
table. For ea
h of the logi
s studied in the �rstpart of the paper, we study properties of the
orresponding query languages. We give boundson the data
omplexity of queries, extend the normal form results from logi
s to queries, andshow that the languages have
orresponding algebras expressing safe queries.1 Introdu
tionIn the past 40 years, various
onne
tions between logi
 on strings, formal languages and �niteautomata have been explored in great detail. The standard setting for
onne
ting logi
al de�nabilitywith various properties of formal languages is to represent strings over a �nite alphabet � =fa1; : : : ; ang as �rst-order stru
tures in the signature (Pa1 ; : : : ; Pan ; <), so that the stru
tureMs fora string s of length k has the universe f1; : : : ; kg, with < being the usual ordering, and Pai beingthe set of the positions l su
h that the lth
hara
ter in s is ai. Then a senten
e � of some logi
 Lde�nes a language L(�) = fs 2 �� j Ms j= �g. Two
lassi
al results on logi
 and language theorystate that languages thus de�nable in monadi
 se
ond-order logi
 (MSO) are pre
isely the regular�Part of this work was done while the se
ond and the third authors visited INRIA, and the se
ond and the fourthauthors visited Mainz.yBell Laboratories, 263 Shuman Blvd, Naperville, IL 60566, USA. E-mail: benedikt�resear
h.bell-labs.
om.xDepartment of Computer S
ien
e, University of Toronto, 6 King's College Road, Toronto, Ontario M5S 3H5,Canada. E-mail: libkin�
s.toronto.edu.{Fa
hberei
h Mathematik und Informatik, Philipps-Universit�at Marburg, D-35032 Marburg, Germany. Email:ti
k�informatik.uni-marburg.de. Part of this work done while at U. Mainz.kINRIA-Ro
quen
ourt, B.P. 105, 78153 Le Chesnay Cedex, Fran
e. E-mail: Lu
.Segou�n�inria.fr.1

languages [20℄, and the languages de�nable in �rst-order logi
 (FO) are pre
isely the star-freelanguages [54℄. For a survey, see [65, 67℄.An alternative approa
h to de�nability of strings, based on
lassi
al in�nite model theory ratherthan �nite model theory, dates ba
k to the 1960s [20, 19℄. One
onsiders an in�nite stru
ture M
onsisting of h��;
i, where
 is a set of fun
tions, predi
ates and
onstants on ��. One
an thenlook at de�nable sets, those of the form f~a j M j= '(~a)g, where ' is a �rst-order formula in thelanguage of M . A well-known result links de�nability with traditional formal language theory. Let
reg
onsist of unary fun
tions la, a 2 �, binary predi
ates el(x; y) and x � y, where la(x) = x � a,el(x; y) states that x and y have the same length, and x � y states that x is a pre�x of y. Let Slenbe the model h��;
regi (we will explain the notation later). Then subsets of �� de�nable in Slenare pre
isely the regular languages [20, 19, 14℄; moreover, this implies de
idability of the �rst-ordertheory of Slen [45, 14℄.The key advantage of the \model-theoreti
 approa
h" is that one immediately gets an extension ofthe notion of re
ognizability from string languages to n-ary string relations for arbitrary n. One getsan algebra of n-ary string relations for every n, and these algebras automati
ally have
losure underproje
tion and produ
t, in addition to the Boolean operations. In the
ase of the model Slen above,this algebra is not new: in fa
t, the de�nable n-ary relations are exa
tly the ones re
ognizable undera natural notion of automaton running over n-tuples [19, 29℄. We will refer to these automata-de�nable relations as the regular relations: the formal de�nition is given in subse
tion 3.1.1. Weshow here that by taking restri
tions of the model Slen, one gets new algebras of regular relationswhi
h behave better, in many ways, than the full algebra of re
ognizable relations given by Slen. Weintrodu
e four su
h models here, and show that the de�nable sets in these models enjoy superiormodel-theoreti
 properties relative to the full algebra of re
ognizable relations asso
iated with Slen.A key motivation for �nding
losed algebras of string relations
omes from the �eld of databases,in parti
ular, the study of query languages with interpreted operations [8, 10, 37, 50℄. String ma-nipulation fa
ilities have long been re
ognized as a
riti
al
omponent of a realisti
 database querylanguage. In SQL, for example, the WHERE
lause
an
ontain string pattern-mat
hing expressions,su
h as FACULTY.NAME LIKE 'Nyk%nen'. These expressions
an themselves be seen as queries overstring relations: the above
lause, for example,
an be seen as a sele
tion performed on a proje
tionof the FACULTY relation. While the Relational Cal
ulus gives a satisfa
tory formal model for SQLqueries in the absen
e of built-in datatypes, there has been thus far no satisfa
tory model thatfully a

ounts for string queries. The la
k of an adequate formal model is related to the fa
t thatSQL restri
ts the intera
tion of string operations and relational operations in a number of ad-ho
ways: one
annot apply the LIKE operator to a subquery to build up a new query, nor
an onetake the produ
t of two string expressions built with LIKE. The natural way to obtain a
al
uluson string relations where one
an freely
ompose string operations and relational operators is tostart with a de
idable stru
ture on strings, like those mentioned above, and extend them to querylanguages by adding free predi
ate symbols | in the same way that traditional Relational Cal
ulus
an be obtained from �rst-order logi
 over pure equality. Using this approa
h we see that
orre-sponding to Slen and ea
h of the four restri
ted models mentioned above, we obtain �ve interesting
ompositional query languages on strings.The paper has two main parts. In the �rst part, we study de�nable algebras of string relations,that is, model-theoreti
 stru
tures on �� and de�nability in these stru
tures. We fo
us on �vestru
tures, of whi
h the model Slen mentioned above is the ri
hest. In the se
ond part of thepaper, we deal with database appli
ations, and study the
orresponding query languages for string2

databases given by ea
h of the �ve stru
tures. This
an be thought of as de�nability over model-theoreti
 stru
tures and a �nite relational database. Naturally, the results of the �rst part formthe basis for reasoning about string query languages.We now summarize the developments in both parts of the paper.As mentioned above, we know that there exists a regular string algebra [20, 19, 14℄, i.e., an algebrawhi
h exa
tly
aptures the regular sets when restri
ted to unary relations. An obvious question toask, then, is whether new algebras of string relations arise through the model-theoreti
 approa
h.In parti
ular, if we restri
t the signature
 to be less expressive than
reg, do we get new relationalgebras lying within the re
ognizable relations?A natural starting point would be to �nd a signature that
aptures properties of the star-freesets. Here again, a simple example leaps out:
onsider the signature
sf = (�; (la)a2�), and letS = h��;
sfi. One
an easily show that the de�nable subsets of �� in S are exa
tly the star-freeones. Furthermore, we will show that the de�nable n-ary relations of this model are exa
tly thosede�nable by regular pre�x automata (
f. [4℄) whose underlying string automata are
ounter-free.Just as there is a signi�
ant di�eren
e between the
omplexity-theoreti
 behavior of regular lan-guages and star-free languages (the latter are in AC0 whereas the former are not), we �nd thatthe model S is mu
h more tra
table, in terms of its model-theory and its
omplexity than Slen. Inparti
ular, we show that S has quanti�er-elimination in a natural relational extension, while Slendoes not.It would be tempting to think of S and Slen as
anoni
al extensions of the notions of regularityand star-free to n-ary relations. However, we will show that in fa
t there are many
hoi
es for
 that share the same one-dimensional de�nable sets (either star-free or regular). Furthermore,algebras of de�nable sets may be identi
al in terms of the string languages they de�ne, but di�er
onsiderably in the n-ary string relations in the de�nable algebra. We thus say that an algebra ofde�nable sets based on h��;
i, with
 �
reg is a regular algebra of de�nable sets if the subsets of�� in it (i.e the one-dimensional de�nable sets of h��;
i) are exa
tly the regular sets. We likewisesay that the algebra based on de�nable sets for h��;
i is a star-free algebra of de�nable sets if thesubsets of �� in the algebra are exa
tly the star-free sets.We then study new examples of regular and star-free de�nable algebras. We give an example ofa star-free algebra with
onsiderably more expressive power than the basi
 star-free algebra S.This model, whi
h we denote by Sleft (as it allows one to add
hara
ters on the left of a string),shares most of the desirable properties of S: in parti
ular, it has quanti�er-elimination in a naturallanguage, and membership test in this algebra has low
omplexity.More surprisingly, perhaps, we give examples of regular algebras (whi
h we denote Sreg and Sreg;left)that are stri
tly
ontained in Slen = h��;
regi. Although the one-dimensional sets in these algebrasare still the regular sets, the algebra as a whole shares many of the attra
tive properties of the star-free languages. In parti
ular, we give quanti�er-elimination results for these algebras. In
ontrast tothis, we present a result giving a partial answer to open question 0 in [55℄, whi
h asks whether Slenitself has quanti�er-elimination in a reasonable signature. We show that it does not have quanti�er-elimination in any relational signature of bounded arity but does have quanti�er-elimination in asignature
ontaining binary fun
tions.We now turn to the se
ond part of the paper, studying the string query languages formed from3

ea
h of these models. What are some properties one would desire of a string query language? Oneproblem fa
ed in any work
ombining string pattern-mat
hing queries with relational
al
ulus isthat pattern-mat
hing expressions may return an in�nite number of strings. This is the standardissue of safety. Previous proposals for
ombining relational algebra with string-mat
hing primitivesta
kle this problem by identifying safe fragments of their languages, using a number of synta
ti
restri
tions | see, e.g., [39, 42, 38, 40, 59℄ | but they
annot
apture the safe fragment of thelanguage synta
ti
ally. A se
ond issue with any string query language is its expressive power. Manyquery languages designed in the prior literature turn out to be Turing
omplete, a feature that inturn makes many sorts of analysis and optimization impossible. Indeed, as noted in [40℄, adding just
on
atenation to the relational
al
ulus already yields a query language whi
h is Turing
omplete.This immediately implies that there is no e�e
tive syntax for the
orresponding safe fragment [64℄.In
ontrast to the above, we would like our languages to ful�ll the following
riteria:1. Query evaluation is eÆ
ient;2. There is e�e
tive syntax
apturing safe queries;3. There is an algebra equivalent to the language.Hen
e, we
onsider ea
h of our query languages with respe
t to these
riteria. As mentioned above,we
onsider relational
al
ulus, RC, over ea
h model de�ned in the �rst part, beginning withthe weakest model, S. The query language obtained by adding database relations to S
apturesbasi
 SQL with simple LIKE pattern-mat
hing and lexi
ographi
 ordering. We show that thesafe fragment of this model
an be e�e
tively
aptured in a natural way, and prove
omplexitybounds for queries in this language that mat
h the known bounds for ordinary relational
al
ulus.RC(S) however, is unable to express
ertain natural queries, e.g., SELECT a � x FROM R, where ais a �xed
hara
ter. We
ontrast this to the query language RC(Slen) formed over the ri
hestmodel. This extension has mu
h greater expressiveness: it enables additional operations su
h astrimming/adding symbols on both left and right of a string, and the SIMILAR pattern-mat
hing for
he
king membership in a regular language [41℄. We show that this language also satis�es
riteria2 and 3 above, but in RC(Slen) one
an express NP-
omplete and
oNP-
omplete problems.This leads us to the
onsideration of the three intermediate languages, RC(Sleft) ,RC(Sreg), andRC(Sreg;left). We �nd that ea
h of these languages satis�es all three of the required
riteria, while
onsiderably extending the expressive power of RC(S).Related Work: One motivation of our approa
h was the study of automati
 stru
tures [48, 14℄,whi
h are a sub
lass of re
ursive stru
tures [43℄, and were introdu
ed as a generalization of auto-mati
 groups [30℄. In an automati
 stru
ture M = h��;
i, every predi
ate in
 is de�nable by a�nite automaton. More pre
isely, an n-ary predi
ate P is given by a letter-to-letter n-automaton[29, 34℄. These stru
tures were also studied in [45℄ in
onne
tion with de
idability questions for�rst-order theories.It is known [19, 14℄ that a stru
ture is automati
 i� it
an be interpreted in the stru
ture Slen;hen
e Slen is in some sense the universal automati
 stru
ture. The �rst part of this paper
an beseen as a study of sub
lasses of automati
 stru
tures de�nable within Slen that are signi�
antlymore restri
tive, and that might have stronger model-theoreti
 or
omputational properties than ari
h stru
ture like Slen. 4

The stru
ture Sleft, without the pre�x relation, is useful for modeling queues and it �rst appearedin the veri�
ation
ontext [16℄, where an algorithm for de
iding existential senten
es was given.That algorithm was extended to the full theory in [60℄, but still without the pre�x relation.On the database side, several approa
hes toward unifying string algebras with relational algebrahave been developed in the prior literature. Most of them are based on the
on
atenation operator,or other operations that make logi
s unde
idable in general. [36℄ studied the
onsequen
es of addingpattern-mat
hing features to SQL. Papers [39, 42, 38℄ proposed an extension of the relational
al
u-lus with alignment logi
s and studied their
omplexity and expressive power. Without restri
tions,they
an de�ne an arbitrary r.e. set [39℄. Another approa
h was proposed in [17, 18℄, whi
h
on-sidered Datalog extended with appropriate transdu
ers for string operations, and proved a numberof
ompleteness results. In [24℄ arbitrary regions (substrings)
an be queried; this, when
oupledwith relational
al
ulus, gives the power of string
on
atenation. Closer to our approa
h, [40, 59℄study the relational
al
ulus/algebra extended with an operation for
on
atenating strings. [25℄studies �rst-order logi
 over term algebras and extends expressive bounds and
omplexity resultsfrom relational
al
ulus to this setting. But SQL-style string pattern-mat
hing
annot be expressedin the language of [25℄ { indeed in this language one
annot even query for strings beginning witha �xed symbol.The general approa
h to studying databases over interpreted domains is
losely related to the�eld of
onstraint databases [50℄. Most theory of
onstraint databases was done over
ontinuousdomains, typi
ally various stru
tures over the reals. In
ontrast, our results
ould be viewed as thetheory of (�nite)
onstraint databases over dis
rete domains, in parti
ular, strings.Organization: The paper is organized as follows. The next se
tion gives the notation that will beused in the paper. Then we deal with de�nability for models on strings, in parti
ular, quanti�erelimination, bounded VC dimension and expressive power. The last part
ontains database appli
a-tions in terms of expressiveness, data
omplexity and safety of the
orresponding query languages.Earlier presentation of this work appeared in two
onferen
e pro
eedings: [13, 12℄.2 NotationThroughout the paper, � denotes a �nite alphabet, and �� the set of all �nite strings over �. We
onsider a number of operations and predi
ates on ��:� x � y {
on
atenation of two strings x and y.� x � y { x is a pre�x of y.� la(x), a 2 �, is x � a (adds last
hara
ter).� fa(x), a 2 �, is a � x (adds f irst
hara
ter).� jx j is the length of string x.� x u y is the longest
ommon pre�x of the strings x and y.� x� y { the string z su
h that y � z = x, if it exists, and � otherwise.5

� x+y, whi
h is an alternative notation for the
on
atenation y�x. Note that always (x+y)�y =y.� el(x; y) is true i� jxj = jyj.We write w[i; j℄ to refer to the substring of a string w starting from position i and ending at positionj. Here, the �rst position of a string has number 1, e.g., it holds that w = w[1; jw j℄. We write w[i℄for w[i; i℄.We write x l y to express that y extends x by exa
tly one symbol. Let pre�x (C) stand for thepre�x-
losure of C: fs j s � s0; s0 2 Cg. By #(C) we denote fs j jsj � js0j; s0 2 Cg.Given a set S of strings , we let Tree(S) be the tree (i.e. the partially-ordered stru
ture) generatedby
losing S [f�g under u. In other words, Tree(S) is the poset hfxu y j x; y 2 S [f�gg;�i. (Notethat for any set of strings s1; : : : ; sk, there are two indi
es i; j � k su
h that s1 u : : :u sk = si u sj.)If S is a set of strings and w 2 ��, let Meet(w;S) be the longest string among fw u u j u 2Sg, let Meet�(w;S) be the element of Tree(S) whi
h is the longest pre�x of Meet(w;S), andlet Meet+(w;S) be the smallest element of Tree(S) for whi
h Meet(w;S) is a pre�x. Note thatMeet+(w;S) is well-de�ned (as are Meet(w;S) and Meet�(w;S)), sin
e Meet(w;S) is either a stringfrom Tree(S) or it has a unique smallest extension in Tree(S).A
omplete tree-order des
ription of a ve
tor ~w of variables is the atomi
 diagram of Tree(~w) in thelanguage of �;�;u. In other words, it is a spe
i�
ation of all the � relations that hold and do nothold in Tree(~w).For example, let ~w = (a; aba; abbb). Then aba u abbb = ab, and Tree(~w) is f�; a; ab; aba; abbbg. The
omplete tree-order des
ription of ~w
onsists of all the � relations that hold among the elements off�; a; ab; aba; abbbg, as well as all the u-relations, e.g., aba u abbb = ab, a u aba = a, ab u � = �, et
.We shall
onsider several stru
tures on ��. The basi
 one is the stru
ture S = h��;�; (la)a2�i.We
ould equivalently use unary predi
ates La, where La(x) is true for strings x having a as lastsymbol. Note that in the presen
e of �, la and La are interde�nable, and we thus shall use both ofthem.We further
onsider a number of extensions of S. In one of them
hara
ters
an be added on theleft as well as on the right. This stru
ture is denoted by Sleft def= h��;�; (la)a2�; (fa)a2�i.Another extension, denoted by Slen, adds length
omparisons via the el predi
ate (note that using� and el one
an express various relationships between lengths of strings, e.g. jxjf=; 6=; <;>gjyj,jxj = jyj+ k for a
onstant k, et
.). To summarize, we mainly deal with the following stru
tures:� S = h��;�; (la)a2�i;� Sleft = h��;�; (la)a2�; (fa)a2�i;� Slen = h��;�; (la)a2�; eli.On
e we
onsider regular algebras, we introdu
e two more stru
tures; however, operations in themwill be motivated by quanti�er-elimination results for S and Sleft and thus those stru
tures will bede�ned later. 6

There is a very
lose
onne
tion between Slen and an extension of Presburger arithmeti
. Assumethat � = f0; 1g. Let val(n), for n 2 N, be n in binary,
onsidered as a string in ��. Let V2(n) be thelargest power of 2 that divides n. Then P � Nk is de�nable in hN;+; V2i i� f(val(n1); : : : ; val(nk)) j(n1; : : : ; nk) 2 Pg is de�nable in Slen [20, 19℄.De�nability over S;Sleft;Slen. We give a few simple examples of de�nability over these stru
-tures.Mat
hing with LIKE
an be expressed over S, sin
e de�nable subsets in S are pre
isely star-freelanguages. For example, the
ondition x LIKE a_b%a_ | saying that the �rst symbol of x is a, thethird is b, and the last but one is a again |
an be expressed by a formula '(x):9u; v; w0� u � v � w � x^ La(u) ^ Lb(v) ^ La(w)^ 1(u) ^ 3(v) ^ �1(w) 1A ;where 1(u); 3(v); �1(w) say that u; v; w are pre�xes extending up to the �rst, third, and penul-timate positions in the string x.Another important operation expressible over S is the lexi
ographi
 ordering �lex. Assume that� = fa1; : : : ; ang and an ordering a1 < : : : < an is given. The lexi
ographi
 ordering x �lex y isthen expressed by:x � y _ 9z (z � x ^ z � y ^_i<j((lai(z) � x) ^ (laj (z) � y))) :The graph of the fun
tion fa, f(x; y) j y = fa(x)g, is de�nable in Slen byjyj = jxj+ 1 ^ (9w � y jwj = 1 ^ La(w))^ 8z � x9v � y (jvj = jzj+ 1 ^Vb2� Lb(z)$ Lb(v));where jvj = juj+ 1 is de�ned by 9w(w l u ^ el(w; v)), and w l u � w � u ^ :9t (w � t ^ t � u).Strings as stru
tures We shall use
lassi
al results on de�nability of strings represented as �nite�rst-order stru
tures. If � = fa1; : : : ; ang, then a string s 2 ��
an be represented as a stru
tureMsin the signature (Pa1 ; : : : ; Pan ; <). If jsj = k, then the universe of Ms is f1; : : : ; kg, < is interpretedas the usual ordering, and Paj is the set fi j 1 � i � k; and the ith position of s is ajg.If � is a senten
e of some logi
, it de�nes a language L(�) = fs 2 �� j Ms j= �g. Whenthe logi
 is MSO, monadi
 se
ond-order logi
, the languages that arise this way are pre
isely theregular languages [20℄. When the logi
 is FO, �rst-order, then the languages that arise are pre
iselythe star-free languages (that is, those that
an be obtained from ; and faig; i � n by using theoperations of union,
omplement, and
on
atenation) [54℄.Databases and query languages A database s
hema SC is a
olle
tion of relation namesR1; : : : ; Rl, Ri being of arity pi > 0. In an instan
e of SC over a set U , ea
h Ri is interpreted as a�nite subset of Upi . The a
tive domain of a database D, adom(D), is the set of elements from Uthat appear in D. 7

The general setting for query languages is that of a �nite database and an in�nite underlyingstru
ture M = hU;
i, where
 is a set of operations (fun
tions and predi
ates) on U . As ourbasi
 language we
onsider relational
al
ulus, or �rst-order logi
, over the s
hema SC and M,denoted by RC(SC;M). We often omit SC when it is understood, or irrelevant. Here we willfo
us ex
lusively on the string datatype, hen
e we will always have U = ��. For example, ifM = h��;�; (La)a2�i, the query9x R(x) ^ L0(x) ^ 9y(y � x ^ L1(y) ^ (:9z y � z � x))tests if there is a string in the relation R whi
h ends with 10. Indeed, it asks if the last symbol ofx is 0, and if there exists a pre�x y, whi
h is the largest proper pre�x of x (as there is no z withy � z � x) su
h that the last symbol of y is 1.Given a query '(x1; : : : ; xn) in RC(SC;M) and ~a 2 Un, we write D j= '(~a) when '(~a) is true in(D;M). We write '(D) for the output of ' on D, that is, f~a 2 Un j D j= '(~a)g. We say that 'is safe on D if '(D) is �nite, and that ' is safe if it is safe on every D. The safety problem is todetermine whether a query is safe, and it is known to be unde
idable even for the pure relational
al
ulus [1℄. The state-safety problem is to de
ide, for a given ' and D, if ' is safe on D.We say that safe queries in RC(M) have e�e
tive syntax if there exists a re
ursively enumerableset A, of safe queries in RC(M) su
h that, for every SC, every safe RC(SC;M) query is equivalentto one in A.E�e
tive syntax is a �rst step towards an algebrai
 language expressing all safe queries. Indeed ifsu
h a language exists, safe queries must have e�e
tive syntax.That e�e
tive syntax exists for safe queries in the pure relational
al
ulus is a
lassi
al relationaltheory result [1℄. Other results { both positive or negative { have been proved re
ently [11, 64℄.Collapse results These establish very strong expressivity bounds for relational
al
uli. To for-mulate them, we need an important restri
tion of queries: to quanti�
ation over the a
tive domain.We use quanti�ers 9x2adom and 8x2adom, whose meaning is as follows: D j= 9x2adom '(x; �)if D j= '(a; �) for some a 2 adom(D) (as opposed to for some a 2 U in the
ase of the usual 9xquanti�er), and similarly for the universal quanti�er. These restri
ted quanti�ers are de�nable inrelational
al
ulus, but it is often helpful to have them available separately.A relational
al
ulus formula is
alled an a
tive-domain formula if all quanti�ers in it are of the form8x 2 adom;9x 2 adom. We say that RC(M) admits natural-a
tive
ollapse [10℄ if every RC(M)formula is equivalent to an a
tive-domain formula. We say that RC(M) admits restri
ted quanti�er
ollapse if every RC(M) formula is equivalent to one in whi
h SC-relations appear only under thes
ope of quanti�ers 9x2adom and 8x2adom. Note that ifM admits quanti�er-elimination, thesetwo notions
oin
ide.A query is generi
 if it
ommutes with permutations on the domain. The a
tive-generi

ollapse[10℄ states that if an RC(M) formula with quanti�
ation of the form 9x 2 adom and 8x 2 adomexpresses a generi
 query Q, then Q must be expressible using only a linear order on the a
tivedomain, and no other predi
ates and fun
tions from M.Model theory ba
kground Let
 be a �nite or
ountably in�nite �rst-order signature, and Ma model over
. By FO(M) we denote the set of all �rst-order formulae in the language of
. The8

(
omplete) theory of M , Th(M), is the set of all senten
es in FO(M) true in M . Two models Mand M 0 over
 are elementary equivalent if Th(M) = Th(M 0).We say that M admits quanti�er elimination (QE) if for every formula '(~x) in FO(M) there is aquanti�er-free formula '0(~x) su
h that 8~x '(~x)$ '0(~x) is true in M . In every
ase where we showquanti�er-elimination for a model in this paper, the
onversion to a quanti�er-free formula
an bemade e�e
tive, although in several
ases (e.g. Theorem 3.12) we will not give the details of thee�e
tive versions.For a tuple ~a and a modelM over
, we let tpM(~a) be the type of ~a inM (the set of all formulae ofFO(M) satis�ed by ~a), and atpM (~a) be the atomi
 type inM (the set of all quanti�er-free formulaeof FO(M) satis�ed by ~a). If A is a subset of M , tpM (~a=A) is the type of ~a over A in M (the set ofall FO-formulae over
 [A satis�ed by ~a).An !-saturated model M over
 is a model su
h that ea
h
onsistent type (a type is
onsistent ifit has a witness in at least one model of
) over a �nite set A in FO(M) is satis�ed in M . It isknown [21℄ that every model M over
 has an elementary equivalent !-saturated model M�.Many proofs use Ehrenfeu
ht-Fra��ss�e games [28, 33, 27℄. For two stru
tures M1 and M2 of thesame vo
abulary, we write M1 �k M2 if the dupli
ator has a winning strategy in the k-roundgame on M1 and M2 (that is, if M1 and M2 agree on all senten
es of quanti�er rank up to k).We also assume familiarity with Monadi
 Se
ond Order Logi
 (MSO) [27℄. Some proofs will useMSO games [27℄; we write M1 �MSOk M2 if the dupli
ator has a winning strategy in the k-roundMSO game, whi
h similarly means the two stru
tures
an not be distinguished by MSO-senten
esof quanti�er depth k.Isolation, VC-dimension, and
ollapse We review several model-theoreti

on
epts that proveuseful in establishing bounds on the expressive power of query languages.Let T be a theory over
 and M be a model of T . A subset A of M is said to be pseudo-�niteif (M;A) j= F (T; P), where P is a unary predi
ate, and F (T; P) is the set of all formulae ofFO(
 [fPg) satis�ed by all �nite sets of elements in any model of T .If p is a type over A in M , a subset q of p isolates p if p is the only type over A in M
ontainingq. A
omplete theory T over
 is said to have the strong isolation property if for any model M ofT and any pseudo-�nite set A and any element a in M , there is a �nite subset A0 of A su
h thattpM (a=A0) isolates tpM(a=A). We say that it has the isolation property if a
ountable A0 exists asabove.Isolation is an interesting property in the database
ontext be
ause it implies the restri
ted quan-ti�er
ollapse [8, 32℄. Here we also use it to provide bounds on the VC-dimension of de�nablefamilies.For a family C of subsets of a set U , and a set F � U , we say that C shatters F if fF \C j C 2 Cg isthe powerset of F . The VC-dimension of C is the maximum
ardinality of a �nite set shattered byC (or 1, if arbitrarily large �nite sets are shattered by C). This
on
ept is fundamental to learningtheory, as �nite VC-dimension of a hypothesis spa
e is equivalent to learnability (PAC-learnability)[5, 15℄.Now
onsider a stru
ture M = h��;
i, and a FO(M) formula '(~x; ~y). For ea
h ~a, let '(~a;M) =9

f~b j M j= '(~a;~b)g. The family of sets '(~a;M), where ~a ranges over all tuples over M , is
alleda de�nable family. We say that M has �nite VC-dimension if every de�nable family has �niteVC-dimension. In parti
ular, this implies learnability of FO-de�nable families over M .We shall see more
onne
tions between isolation, VC dimension, and
ollapse results later in thepaper.Complexity
lasses Some
omplexity results in this paper refer to parallel
omplexity
lassesAC0, TC0, and NC1. AC0 is
onstant parallel time; more pre
isely, the
lass of languages a

eptedby polynomial-size
onstant-depth unbounded fan-in
ir
uits. TC0 additionally has majority gatesof unbounded fan-in. In NC1, there are no majority gates, the depth is allowed to be logarithmi
,but fan-in is bounded. It is known that AC0 � TC0 � NC1 (parity separates TC0 from AC0). We
onsider uniform versions of these
lasses [7℄; uniform AC0 over �nite stru
tures
an be
hara
terizedvia de�nability in FO(BIT; <): �rst-order logi
 with linear order and the BIT predi
ate (BIT(i; j)is true i� the jth bit in the binary representation of i is one.) To
apture uniform TC0 it suÆ
esto add
ounting quanti�ers to FO(BIT; <) [7℄.PH is the polynomial hierar
hy, whi
h
ontains, e.g., NP and
oNP and is itself in
luded in PSPACE[57℄.As usual, for data
omplexity, one �xes a query Q and
onsiders the
omplexity of fen
(D)#en
(t) jt 2 Q(D)g, where en
 is an en
oding of databases and tuples over some �xed alphabet, typi
allyf0; 1g [1℄. Normally in pure relational
al
ulus the en
oding is su
h that the a
tive domain is
onsidered to be f1; : : : ; kg, and ea
h number i is represented in binary. When we deal withinterpreted elements stored in a database, su
h an en
oding is not appropriate, as one needs to takeinto a

ount operations on those interpreted elements. In parti
ular, in the
ase of strings over a�nite alphabet, we
onsider the en
oding of a string to be itself (in the
ase of an alphabet di�erentfrom f0; 1g we may have to
ode letters in f0; 1g �rst).3 Model theory of stringsIn this se
tion we study logi
al de�nability over Slen;S;Sleft and two other stru
tures, de�ningregular algebras over ��. We are parti
ularly interested in quanti�er-elimination results, and insome model-theoreti
 properties (isolation, VC dimension) that will later give us results about theexpressive power of the relational
al
uli based on these stru
tures. We start with the strongestregular algebra Slen, then move to the star-free algebra S, and to a more expressive star-free algebraSleft. The quanti�er-elimination proof for the latter is te
hni
ally the most involved result in thisse
tion. We then show how to expand S and Sleft to regular algebras, without losing their ni
eproperties.3.1 A regular algebra based on SlenIn this subse
tion we will fo
us on the stru
ture Slen. We will assume here that the alphabet �
ontains at least two letters. For a 1-letter alphabet , it is easy to see that Slen redu
es to S, whi
hwill be dealt with in the next subse
tion. 10

3.1.1 Automata and De�nabilityA letter-by-letter automaton is a usual DFA whose alphabet is (� [f#g)n, # 62 �. An n-tuple ofstrings s1; : : : ; sn
an be viewed as a word of length maxi jsij over the alphabet �[f#g, where thejth letter is the tuple (sj1; : : : ; sjn); here sjk is the jth letter of sk, if jskj � j, and # otherwise. Wesay that a predi
ate P � (��)n is de�nable by a letter-to-letter n-automaton A if (s1; : : : ; sn) 2 Pi� A a

epts s1; : : : ; sn.As mentioned in the introdu
tion, Slen = h��;�; (la)a2�; eli is the
anoni
al automati
 stru
ture,and relations de�nable in Slen are pre
isely the regular relations, that is, k-ary de�nable relationsare pre
isely those given by letter-to-letter k-automata [14, 19℄. In parti
ular, this gives a normalform for Slen-formulae. We introdu
e a new type of length-bounded quanti�ers of the form 9jxj � jyjand 8jxj � jyj. A formula 9jxj � jyj' is meant as an abbreviation for 9x((jxj � jyj) ^ ').Sin
e every �nite automaton
an be simulated by a length-bounded FO(Slen) formula, we
on
ludethat ea
h FO(Slen) formula is equivalent to a length-bounded FO(Slen) formula. Note that thisresult
an also be shown dire
tly by an Ehrenfeu
ht-Fra��ss�e game argument.3.1.2 Quanti�er EliminationThe universal property of Slen mentioned above indi
ates that Slen may be \too ri
h" in relationsfor many appli
ations. We present eviden
e for this by addressing the open question of [22, 55℄whether Slen has quanti�er elimination in a reasonable signature. One �rst needs to de�ne what\reasonable" means here. Clearly, every stru
ture has quanti�er elimination in a suÆ
iently largeexpansion of the signature: add symbols for all de�nable predi
ates, for example. One
an thustake reasonable to mean a �nite expansion, but this is not satisfa
tory: for example, Presburgerarithmeti
 has quanti�er elimination in an in�nite signature (+; <; 0; 1; (mod k)k>1) [31℄. Notehowever that in this example, the maximum arity of the predi
ates and fun
tions is 2. In fa
t, itappears to be a
ommon phenomenon that when one proves quanti�er elimination in an in�nitesignature, there is an upper bound on the arity of fun
tions and predi
ates in it.We thus view this
ondition as ne
essary for a signature to be \reasonable". In general, a reasonablesignature might
ontain relation symbols as well as fun
tion symbols. Nevertheless, we
an ruleout the possibility of a signature with fun
tion symbols of arity at most 1 for whi
h Slen hasquanti�er elimination. This is in
ontrast to the weaker stru
tures that we
onsider, all of whi
hhave quanti�er elimination in a relational signature of bounded arity. Let S(n;m)len be the expansionof Slen with all de�nable predi
ates of arity at most n, and de�nable fun
tions of arity at most m.We show the following:3.1 Theorem (a) For any n � 0, and m = 0; 1, S(n;m)len does not have QE.(b) S(1;2)len , the expansion of Slen with all unary predi
ates and binary fun
tions, has QE.Proof. (a). We assume � = f0; 1g and �x n. Let m = 0. The de�nable property whi
h
an notbe expressed by a quanti�er-free formula is de�ned as follows. It holds for a tuple x1; : : : ; xn+1 ofstrings, if there is a position i su
h that the ith symbol in all xjs is 0.11

This is
learly de�nable in Slen by '(x1; : : : ; xn+1):9y1; : : : ; yn+1 ĵ yj � xj ^ ĵ L0(yj) ^ ĵ;k el(yj; yk) :We now assume that ' is a Boolean
ombination of formulae depending on n variables ea
h. Letthese formulae be named as �ij, i 2 f1; : : : ; n + 1g, j 2 f1; : : : ; lig, where �ij does not have xi asfree variable.By [14℄, ea
h �ij is given by a letter-to-letter n-automaton Aij over �n. Let m be the maximumnumber of states of the Aij .Now let p1 < p2 < : : : < pn+1 be primes with p1 > m + 1. Let �i = Qj 6=i pj, and let P = Qj pj(= �i � pi, for ea
h i).We now de�ne !-words wj , j = 1; : : : ; n+ 1, bywj [k℄ = � 0 k = 0(mod pj);1 otherwise;where, as for �nite strings, wj [k℄ denotes the kth position in wj .Now �x i � n + 1 and s � li, and
onsider a run of Ais on (wj , j 6= i) (that is, the kth inputsymbol is (w1[k℄; : : : ; wi�1[k℄; wi+1[k℄; : : : ; wn+1[k℄)). At every position that is equal to 0 modulo�i (and only at those positions), the input symbol is ~0 = (0; : : : ; 0). Moreover, for any l � 0 andany
1;
2 > 0, the input symbols are the same at positions l +
1 � �i and l +
2 � �i.We now
onsider positions equal to 0 modulo �i; sin
e Ais has at most m states, we
an �nd twonumbers d1 < d2 � m+1 (depending on s) su
h that in positions d1 � �i and d2 � �i the automatonAis is in the same state q, reading ~0. Let d = (d2 � d1) � �1. Thus, at every position d1 � �i + k � d,the automaton is in the state q, reading ~0.Then for every l � 0 and every k � 0, we have that Ais is in the same state in positions d1 � �i + land d1 � �i + l + k � d, and reads the same symbol in those states. Furthermore, noti
e thatd2 � �i � (m+ 1) � �i < p1 � �i � pi � �i = P .Summing up, for ea
h Ais, we have two
onstants, ais (= d1 ��i) and bis (= d), su
h that ais < P andthe state of Ais is the same in positions ais + l and ais + l + k � bis, for l; k � 0.Now let C = maxi;s ais and C 0 = C + P �Qi;s bis. We have C 0 > P > C, and all automata Ais are inthe same state in positions C and C 0. In parti
ular, if wj [1; k℄ denotes the �nite word that
onsistsof the �rst k positions of wj , we have that every �ij agrees on(w1[1; C℄; : : : ; wi�1[1; C℄; wi+1[1; C℄; : : : ; wn+1[1; C℄)and (w1[1; C 0℄; : : : ; wi�1[1; C 0℄; wi+1[1; C 0℄; : : : ; wn+1[1; C 0℄):The assumption that ' is a Boolean
ombination of �ijs now gives us that 'agrees on (w1[1; C℄; : : : ; wn+1[1; C℄) and (w1[1; C 0℄ : : : ; wn+1[1; C 0℄), whi
h is impossible, sin
e'(w1[1; C℄; : : : ; wn+1[1; C℄) is false (C < P and there is no position with all zeros in it) and'(w1[1; C 0℄; : : : ; wn+1[1; C 0℄) is true (C 0 > P , and in position P all symbols are 0).12

For the
ase of m = 1, it suÆ
es to noti
e that for any n > 1, any quanti�er-free formula�(x1; : : : ; xn) in S(n;1)len is equivalent to a quanti�er-free formula in S(n;0)len . For instan
e R(f(x); f(y))where R is a de�nable S(2;0)len relation, is equivalent to Rf;g(x; y), where Rf;g is the S(2;0)len relationde�ned by R(f(x); f(y)).Proof of (b).Let us assume that �
ontains at least the symbols 0 and 1 and let S+len be the expansion of Slenby the following de�nable fun
tions and predi
ates:� the binary fun
tions f^; f_ whi
h are the bitwise AND and OR of two 0-1 strings u andv, respe
tively (and � for non-0-1-inputs). When u and v do not have the same length weadd suÆ
iently many 0s to the right of the shorter string. Thus the length of the result ismax(juj; jvj). E.g., f^(101; 11) = 100;� the unary fun
tion f: whi
h is the bitwise NOT of a 0-1 string;� for ea
h � 2 �, a unary fun
tion Fil�, where Fil�(w) has a 1 at position i i� w[i℄ = � and a0 otherwise;� for ea
h j; k, j < k, a unary fun
tion Patj;k where Patj;k(w) has the same length as w andhas a 1 at position i i� i � j(modk) and a 0 otherwise;� unary fun
tions LShift, RShift, where RShift(w) is obtained from w by deleting the last(rightmost) symbol and LShift(w) is obtained from w by deleting the �rst (leftmost) symbol;� for ea
h j;m, j < m, the unary predi
ate Pm;j whi
h will be de�ned below.Let R be an n-ary relation over �, de�nable in Slen. Our goal is to �nd a quanti�er-free S+len-formula' su
h that, for ea
h n-tuple ~w of strings, S+len j= '(~w) i� ~w 2 R.We know from [14, 19℄ that the relations de�nable in Slen are pre
isely the regular relations, thatis, pre
isely those given by letter-to-letter n-automata [14, 19℄.Let A be su
h an automaton for R over the alphabet (�[f#g)n with state set Qm = fq0; : : : ; qm�1g,initial state q0, transition fun
tion Æ and set F of a

epting states.An m-state behavior fun
tion is any fun
tion f : Qm ! Qm. An m-state behavior fun
tion
an been
oded into a binary behavior string b(f) of length M := m2 as follows. For j; j0 < m, positionjm+ j0 + 1 of b(f) is 1 i� f(qj) = qj0 .Let Pm;j , j < m, be the unary predi
ate whi
h holds for all strings u = b1 � � � bl, where ea
h bien
odes an m-state behavior fun
tion f i and f l(� � � (f1(q0)) � � �) = qj. As the blo
ks bi are of
onstant length these predi
ates are regular.The idea of the proof is to map ea
h blo
k of the input of length m2 to the string whi
h des
ribesthe behavior of A on this blo
k. Whether A a

epts the input
an then be expressed by means ofthe predi
ates Pm;j .For a given n-tuple ~w, let l be minimal su
h that lM � j~wj where j~wj = max(jw1j; : : : ; jwnj) andlet f i~w = Æ�(�; ~w[(i � 1)M + 1; iM ℄), for i < l and f l~w = Æ�(�; ~w[(l � 1)M + 1; j~wj℄). Then the stateof A after reading ~w, starting from the initial state q0, is j if and only if b(f1~w) � � � b(f l~w) 2 Pm;j .13

Hen
e, it is suÆ
ient to �nd an S+len-term � su
h that �(~w) = b(f1~w) � � � b(f l~w). The
onstru
tion of� is des
ribed in two steps.First, let fmax(~w) be de�ned as W�2�Wni=1 Fil�(wi). Here, as in the following the Boolean operatorsare abbreviations for the respe
tive terms using f_, f^, f:. Note that fmax(~w) de�nes a string oflength maxfjwij j i � ng
onsisting only of ones. Further let
Fil�;i(~w) be the term fmax(~w)^Fil�(wi)and let
Fil#;i(~w) be fmax(~w) ^ :(W�2� Fil�(wi)). Hen
e, for ea
h symbol � 2 � [f#g,
Fil�;i(~w)has a 1 at position j, if the automaton A reads a � as the j-th symbol of wi.Now we are ready to �nish the des
ription of �. For simpli
ity, we des
ribe � for the
ase wherejfmax(~w)j is a multiple of M . The general
ase is slightly more
ompli
ated. �(~w) has to
arry a 1at a position (j0 � 1)M + jm + j0 + 1, for j; j0 < m, j0 > 0, i� the tuple ~w[(j0 � 1)M + 1; j0M ℄,
onsisting of n strings of length M is in the set T (j; j0) := f~s j Æ�(j; ~s) = j0g. Therefore �
an beexpressed as_j;j0 _~s2T (j;j0) �Patl;M (fmax(~w)) ^ l̂i=1 n̂k=1RShift(l�i)(
Filsk[i℄;k(~w)) ^ M̂i=l+1 n̂k=1LShift(i�l)(
Filsk[i℄;k(~w))�;(1)where l is a shorthand for jm+ j0 + 1 and f (i) denotes the i-fold appli
ation of f .The formula says the following: Assume 0 < l � M and ~s 2 T (j; j0) �xed, a blo
k ~w[(j0 � 1)M +1; j0M ℄ of size M is viewed
entered in its lth position and thus has l� 1
hara
ters on its left andM � l on its right. The last part of the formula
he
ks for the blo
ks of size M
entered in l thatequal ~s. The test is made separately for the left and right part (this
orresponds to the variablei) and for ea
h element of ~s (this
orresponds to the variable k). All the results of the tests areshifted to the right for the left part of the blo
k and to the left for the right part in order to alignthem on the
entered position l. Thus the big bitwise V is true i� all the previous tests were trueand thus i� the blo
k of size M
entered in l equals ~s.The �rst part of the formula �lters the blo
ks we are interested in by keeping only the one
enteredin jm+ j0 + 1 modulo M . The se
ond bitwise W will
he
k for all possibilities for ~s 2 T (j; j0) thusthe jm + j0 + 1 modulo M positions will be equal to 1 i� the
orresponding blo
k is a string ofT (j; j0) as desired. The �rst bitwise W ensures that we
over all positions. 23.1.3 VC-DimensionOur next result shows another model-theoreti
 and learning-theoreti
 short
oming of Slen: namely,a single formula '(x; y)
an de�ne a widely varying
olle
tion of relations as we let the parameterx vary. We formalize this through the notion of VC-dimension.3.2 Proposition There are de�nable families in Slen that have in�nite VC-dimension.Proof. Let � = f0; 1g, and let '(x; y) be 9z (z � x ^ el(z; y) ^ L1(z)). Let C be the
orrespondingde�nable family: S 2 C i� S = '(s;Slen) for some string s. Let An = f0i j i < ng. Then An isshattered by C: given any subset X of An, let sX be a string of length n where the ith
hara
ter14

is 1 i� 0i 2 X. Then '(sX ;Slen) \ An = X. Sin
e n was arbitrary, this shows that C has in�niteVC-dimension. 23.2 A star-free algebra based on SWe now turn to the most obvious analog of Slen for the star-free sets. This is the model S =h��;�; (la)a2�i, whi
h is the most basi
 model among those studied in the paper. We show that ithas remarkably ni
e behavior: it admits e�e
tive QE in a rather small extension to the signature.This immediately tells us that the de�nable subsets of �� are pre
isely the star-free languages. Wethen
hara
terize the n-dimensional de�nable relations in S by their
losure properties, and by anautomaton model.Note that S is very
lose to strings
onsidered as term algebras, that is, to h�; �; (la)a2�i. It is well-known that the theory of arbitrary term algebras is de
idable and admits QE [53, 44℄. However,adding the pre�x relation is not ne
essarily a trivial addition: for arbitrary term algebras withpre�x (subterm), only the existential theory is de
idable, but the full theory is unde
idable [68℄(similar results hold for other orderings on terms [23℄). The unde
idability result of [68℄ requiresat least one binary term
onstru
tor; our results indi
ate that in the simpler
ase of strings onere
overs QE with the pre�x relation.3.2.1 A Normal Form for SWe start with a result that gives a normal form for formulae of FO(S).For that, we need the following predi
ates, introdu
ed in [52℄. For ea
h L � ��, let PL be the setof pairs (x; y) of strings su
h that x � y and y� x 2 L. The following lemma is obvious, sin
e it iswell-known that star-free sets are �rst-order de�nable on string models [54℄.3.3 Lemma For ea
h star free language L, there is a formula 'L(x; y) in FO(S) whi
h de�nes PL.We now give a normal form result for FO(S).3.4 Proposition Every formula (~x) in FO(S)
an be e�e
tively transformed into an equivalentformula whi
h is a disjun
tion of formulae of the form
(~x) ^ Æ(~x);where
(~x) is a
omplete tree-order des
ription over ~x and Æ(~x) is a
onjun
tion of formulae of theform 'L(t(~x); t0(~x)), where L is star-free, ea
h of t(~x) and t0(~x) is either � or a term of the formxi u xj , and
(~x) implies that t0(~x) is an immediate su

essor of t(~x) in the tree-order.Proof. The proof is by indu
tion on the stru
ture of . The base
ase of the indu
tion is handledby noting that the atomi
 formulae are binary, and the basi
 formulae x � y and and y = x � a aresimple
ases of 'L(x; y).Note that for any
onjun
tion �(~x) of formulae of the form t1(~x)f�;=gt2(~x) and their negations(where t1; t2 are u; �-terms), there are �nitely many
omplete tree order des
riptions
i; i 2 I over ~x15

whi
h are
onsistent with �, and furthermore, all su
h
i's
an be e�e
tively found. Thus, any
on-jun
tion of two formulae in the normal form, �1(~x)^�2(~x),
an be put in the form Wi2I
i(~x)^�(~x),where �(~x) is a
onjun
tion of formulae 'L(t(~x); t0(~x)). This is almost in the normal form, but
imay not imply that t0(~x) is an immediate su

essor of t(~x) in the tree-order. If that is the
ase,
hoose some term t00(~x) su
h that t(~x) � t00(~x) � t0(~x). By a de
omposition argument similar to theone used in the proof of Theorem 4.4 in [67℄, there exists a �nite sequen
e of pairs of star-free lan-guages (L0j ; L00j) su
h that 'L(t(~x); t0(~x)) is equivalent to Wj('L0j (t(~x); t00(~x)) ^ 'L00j (t00(~x); t0(~x))).We
an now propagate disjun
tion and repeat the pro
ess until for all formulae of the form'L(t(~x); t0(~x)),
i implies that t0(~x) is an immediate su

essor of t(~x). This shows that any Boolean
ombination of formulae in the normal form
an be put in the normal form itself.Thus, the only nontrivial
ase is = 9x �(x; ~y). By indu
tion, we
an assume that � is in therequired form. So we have = 9x _i (
i(x; ~y) ^ ĵ Æij(x; ~y));where the
i are tree-order des
riptions, and the Æij(x; ~y)) are of the form 'L(t(x; ~y); t0(x; ~y)). Thus,it suÆ
es to show how to eliminate x from �(~y) = 9x
(x; ~y) ^Vj 'Lj (tj(x; ~y); t0j(x; ~y)) where
 isa
omplete tree-order des
ription, all Ljs are star-free, and ea
h tj; t0j is a �;u-term, su
h that
implies that t0j is an immediate su

essor of tj in the tree-order. We
an further assume without lossof generality that for every pair of terms tj; t0j , there is at most one formula of the form 'Lj (tj ; t0j)in the
onjun
tion (if not, one
an take the interse
tion of all the languages in su
h formulae forthese two terms, whi
h will still be star-free). Furthermore, assume
 sets one of the yl to � (if not,add an extra variable and set it to � in
). Let
0(~y) be the restri
tion of
 to ~y (that is,
ompletetree-order des
ription of Tree(~y) implied by
).We now
onsider four
ases, depending on the relationship between x and Tree(~y) whi
h is impliedby
(x; ~y). First, assume that
(x; ~y) implies that x is a node in Tree(~y), that is, � or yi u yj forsome i; j. In this
ase every term of the form x u yk
an be rewritten as a term that only uses ~yvariables, and every formula of the form 'Lj (tj(x; ~y); t0j(x; ~y)) is thus equivalent to a disjun
tionof formulas 'Lj (�j(~y); � 0j(~y)), where �j; � 0j are the result of eliminating x from tj ; t0j . Thus, � isequivalent to a disjun
tion of formulas of the form
0(~y) ^Vj 'Lj (�j(~y); � 0j(~y)).In the se
ond
ase,
(x; ~y) implies that x is not a pre�x of any yk from ~y, and that the meet of xand ~y is a node yi u yj in Tree(~y). In this
ase we may have a formula of the form 'L(yi u yj; x) asa
onjun
t in �. The
ase is handled just as the previous one, ex
ept that we need to deal with theformula 'L(yi u yj; x) (whi
h is the only formula in this
ase that mentions x). The existen
e of xsatisfying it is guaranteed i� there exists a string in L with a �rst symbol a su
h that (yi u yj) � ais not a pre�x of any string in ~y. Hen
e we
an repla
e 'L(yi u yj; x) by_a k̂ :'a��(yi u yj; yk);where the
onjun
tion is over all k for whi
h yk is an immediate su

essor of yiuyj in the tree-orderand the disjun
tion is over all symbols a for whi
h L \ a�� 6= ;.For the remaining two
ases, we need the fa
t that star-free languages are
losed under
on
ate-nation. Hen
e, for star-free languages L0 and L00 there exists a star-free language L su
h that the16

following is true: for any two strings s0 � s1, it is the
ase that there is a string s with s0 � s � s1,s� s0 2 L0 and s1 � s 2 L00 i� s1 � s0 2 L.The proof is straightforward from the fa
t that star-free languages are pre
isely those �rst-orderde�nable in string models [54℄.Next, we
onsider the
ase when
 implies that x is in the pre�x
losure of ~y, but not a node ofTree(~y). That is, we have two nodes s0 = yi u yj; s1 = yk u yl of Tree(~y) su
h that there are noother nodes of Tree(~y) between them, and s0 � x � s1. Noti
e that any �;u-term t in x; ~y thatinvolves x
an be rewritten as an equivalent term � in variables ~y or by x. Thus, there are at mosttwo formulae of the form 'Lj where terms mention x: these are 'L0(s0; x) and 'L00(x; s1) for somestar-free L0; L00. Hen
e, �(~y) is equivalent to
0(~y) ^ m̂ 'Lm(�m(~y); � 0m(~y)) ^ 9x ((s0 � x � s1) ^ 'L0(s0; x) ^ 'L00(x; s0));where the big
onjun
tion is over formulae 'Lj and terms do not mention x. By the
laim, thereis a star-free language L su
h that 9x ((s0 � x � s1) ^ 'L0(s0; x) ^ 'L00(x; s0)) is equivalent tos1 � s0 2 L, that is, 'L(yi u yj; yk u yl), whi
h shows that �(~y)
an be put in the required form.The last
ase is when
 spe
i�es that x is not in the pre�x
losure of ~y, and the meet of x and Tree(~y)is a string s between two nodes of Tree(~y). That is, for two
onse
utive nodes s0 = yiuyj; s1 = ykuylof Tree(~y) we have s0 � xu s1 � s1. In parti
ular, xu s1 = xu yk = xu yl. We thus have formulae'L1(s0; xuyk); 'L2(xuyk; yluyk) and 'L0(xuyk; x) as
onjun
ts of �, for some star-free languagesL1; L2; L0. We may assume that other subformulae of the form 'L do not mention x. Let �(~y) bethe
onjun
tion of all those other subformulae. Then �(~y) is equivalent to_a2� 9z
0(~y) ^ (s0 � z � s1) ^ �(~y) ^ 'L1(s0; z) ^ 'L2\(a��)(z; s1) ^ 9x(z � x ^ 'L0�a��(z; x))(z plays the role of xu s1, and the disjun
tion ensures that the �rst letters of s1 � z and x� z aredi�erent). Let �0 = fa 2 � j L0 � a�� 6= ;g. Then we obtain that �(~y) is equivalent to_a2�0
0(~y) ^ 9z(s0 � z � s1) ^ �(~y) ^ 'L1(s0; z) ^ 'L2\(a��)(z; s1);from whi
h z
an be eliminated just as in the previous
ase. This
on
ludes the proof. 2We now give an illustration of the normal form. Suppose we have a formula (x; y) = 9z (z �x^ z � y ^La(z)). In other words, there is a proper pre�x of xu y whose last letter is a. Let L bethe language that
onsists of strings that have su
h a pre�x. It is a star-free languages, sin
e it isde�nable by an FO formula over string models: 9i9j (i < j ^ Pa(i)).To produ
e the normal form for , we
onsider four di�erent possibilities for x and y: x = y, x � y,y � x, and x 6� y; y 6� x; x 6= y, and for ea
h we state that the meet of x and y, in the
orrespondingtree, belongs to L. That is, the formula is:�(� � x ^ x = y) ^ 'L(�; x)�_ �(� � x ^ x � y) ^ 'L(�; x)�_ ��� � y ^ y � x) ^ 'L(�; y)�_ ��� � x u y ^ :(x � y) ^ :(y � x) ^ :(x = y)) ^ 'L(�; x u y)� :17

3.2.2 Quanti�er EliminationLet S+ be the expansion of S to the signature that
ontains �, u and a binary predi
ate PL forea
h star-free language L. Note that S+ is a de�nable expansion of S, as all additional fun
tionsand predi
ates are de�nable. From the normal form we now immediately obtain:3.5 Theorem S+ admits quanti�er elimination.Remark. As mentioned above, there is no need to nest the u-operator. Therefore, S+
an beturned into a relational signature that admits quanti�er elimination as follows. For ea
h star-freeL, let P 0L be the set of tuples (s1; s2; s3; s4) of strings for whi
h PL(u(s1; s2);u(s3; s4)). Note,that u(s1; s2) � u(s3; s4)
an be expressed as P��(u(s1; s2);u(s3; s4)). It is straightforward to
he
k that this signature admits quanti�er elimination. In the same way, the quanti�er eliminationresults in the remainder of the paper
an be turned into quanti�er-elimination results in a relationalsignature.Note also that S+
ould be
onsidered as an expansion of S with either fun
tions la or predi
atesLa in the signature. In the latter
ase, predi
ates La are not needed as La(x) i� P��a(�; x).Another
orollary of the normal form is that in the language of S, it suÆ
es to use only boundedquanti�
ation. That is, we introdu
e bounded quanti�ers of the form 9x � y and 8x � y (where9x � y ' means 9x x � y^'), and let FOb(S) be the restri
tion of FO(S) to formulae '(y1; : : : ; yk)in whi
h all quanti�ers are of the form Qx � yi. From the normal form and the fa
t that ea
h 'L
an be de�ned with bounded quanti�ers, we obtain:3.6 Corollary FOb(S) = FO(S).Finally, we
hara
terize S-de�nable subsets of �� and (��)k. Given a subset R � (��)k and apermutation � on f1; : : : ; kg, by �(R) we mean the set f(s�(1); : : : ; s�(k)) j (s1; : : : ; sk) 2 Rg.3.7 Corollarya) A language L � �� is de�nable in S i� it is star-free.b) The
lass of relations de�nable over FO(S) is the minimal
lass
ontaining the empty set, f�g,fag, for a 2 �, �, u, and
losed under Boolean operations, Cartesian produ
t, permutation,and the operation � de�ned by L1 � L2 = f(s1; s1 � s2) j s1 2 L1; s2 2 L2g for L1; L2 � ��.Proof. a) S+ formulae in one free variable are Boolean
ombinations of PL(�; x), for L star-free,and thus they de�ne only star-free languages.b) For one dire
tion noti
e that �, fag, �, u are de�nable in FO(S), and that FO(S) is
losedunder Boolean operations, permutation and Cartesian produ
t. The
losure under � is an easy
onsequen
e of Lemma 3.3 as L1 � L2
orresponds to f(x; y) j 'L1(�; x) ^ 'L2(x; y)g. The otherdire
tion follows from the normal form. 2Note that the proje
tion operation is not needed in the
losure result above.18

3.2.3 AutomataWe now give an automaton model
hara
terizing de�nability in FO(S). This automaton model
orresponds exa
tly to the
ounter-free variant of regular pre�x automaton as de�ned in [4℄.Let us re
all the de�nition of regular pre�x automata. Let A be a �nite non-deterministi
 automatonon strings with state set Q, transition relation Æ and initial state q0. We
onstru
t from A anautomaton Â = (�; Q; q0; F; Æ) a

epting n-tuples ~w = (w1; � � � ; wn) of strings in the following way.F is a subset of Qn whi
h denotes the a

epting states of Â. Let pre�x (~w) be the set of all pre�xesof all wi. A run of Â over ~w is a mapping h from pre�x (~w) to Q whi
h assigns to every node� 2 pre�x (~w) a state q 2 Q su
h that h(�) = q0 and, � = la(�) implies h(�) 2 Æ(h(�); a). The runis a

epting if (h(w1); � � � ; h(wn)) 2 F . The n-tuple ~w is a

epted by Â if there is an a

epting runof Â over ~w. See [4℄ for more details.For ea
h �nite non-deterministi
 automaton A a
orresponding automaton Â is
alled a regularpre�x automaton (RPA). The subset of (��)n, n 2 N, it de�nes is
alled a regular pre�x relation(RPR).We say that Â is
ounter-free (CF-PA) if A is
ounter-free. The following shows that the relationsde�nable in FO(S) are exa
tly those re
ognizable by a CF-PA.3.8 Proposition A relation is de�nable in FO(S) if and only if it is de�nable by a
ounter-freepre�x automaton.Proof. One dire
tion follows from Corollary 3.7 as it is easy to verify that
ounter-free pre�xautomata
an re
ognize the empty set, f�g, fag a 2 �, f(u; v) j u � vg, f(u; v; w) j uu v = wg, andare
losed under Boolean operations, Cartesian produ
t, permutation, and �.For the opposite dire
tion let Â be a CF-PA a

epting the relation R of arity n. We show that R
an be de�ned by an FO(S) formula '. Let Q be the set of states of A. If q1; q2 are two states inQ, let L(q1; q2) be the set of strings w su
h that A
an get from state q1 to state q2 by reading w.Be
ause A is
ounter-free L(q1; q2) is a star-free language.The formula ' is a disjun
tion over formulae
(~x) ^
(~x), where

y
les through all
ompletetree-order des
riptions. Ea
h formula
(~x) is a disjun
tion over all possible assignments of statesto the (at most 2n) strings of Tree(~x). For ea
h su
h assignment it
he
ks that the ve
tor of statesat ~x is a

epting and that the states are
onsistent, i.e., that, for ea
h pair (y; z) of su

essiveelements of Tree(~x), the path from y to z ful�lls PL(q1; q2) where q1 and q2 are the states at y andz in the assignment under
onsideration, respe
tively. 23.2.4 VC-dimension and IsolationWe de�ned the notions of isolation and VC dimension in Se
tion 2; these notions are very importantfor the database part of the paper, as they provide strong bounds on the expressiveness of variousrelational
al
uli. The notion of �nite VC-dimension,
oming originally from statisti
s and ma
hinelearning [5℄, is of independent interest, as it states that families de�nable over some stru
tures onstrings
ould be learned e�e
tively. 19

We have seen that Slen has in�nite VC-dimension. It turns out that all other stru
tures we
onsiderhere, have �nite VC-dimension. To prove this, we have to introdu
e some new ma
hinery, whi
h ispresented next. After that, we show that S has �nite VC-dimension.3.9 Lemma Let M be a model with the isolation property. Then its de�nable families have �niteVC-dimension.Proof. We give two proofs of this result, one is
omplexity-theoreti
 and one is model-theoreti
. Westart with the
omplexity-theoreti
 proof. Assume that M does not have �nite VC dimension. By[51℄ it has the independen
e property, and by [63℄, there is a single formula '(~x; ~y) (in fa
t, '(~x; y))that has the independen
e property: that is, for every n, there is a set Fn �M of size n su
h thatfor every X � Fn, there is ~xX su
h that for any y0 2 Fn, '(~xX ; y0) i� y0 2 X.Next
onsider an expansion of M with one unary predi
ate U , and one binary predi
ate E. Let �be 8v; w�E(v; w)! (U(v) ^ U(w))�^ :9~s1; ~s2� 8vU(v)$ ('(~s1; v) _ '(~s2; v))^ 8v; w (U(v) ^ U(w) ^ '(~s1; v) ^ '(~s2; w))! :E(v; w) � :The �rst
onjun
t says that E is a graph whose nodes are in the set U . The se
ond says that,assuming U � Fn, there
annot be two subsets of U su
h that there are no E-edges between them.Thus, if U is a �nite subset of Fn, � says that E is
onne
ted.The isolation property [8, 32℄ implies that �
an be expressed by a senten
e 	 of the form Qz1 2U : : : Qzl 2 U�(~z) over all �nite U , where � is a Boolean
ombination of E;U -atomi
 formulae,and formulae
(~z) in the language of M .Next, for ea
h n, �x a 1-to-1 mapping � : f1; : : : ; ng ! Fn and for ea
h
 appearing in 	, de�neP n
 (~z) on f1; : : : ; ng to
ontain all the tuples ~n su
h that
(�(~n)) is true. Let then 	n be thesenten
e in the language of E and all P n
 of the form Qz1 : : : Qzl�0 where �0 is obtained from �by repla
ing ea
h U(�) by true, and ea
h
(~z) by P n
 (~z). It then follows that for a graph E onf1; : : : ; ng, E j= 	n i� E is
onne
ted. However, this implies that
onne
tivity is in non-uniformAC0, whi
h is false [26℄. This
on
ludes the proof.Se
ond proof. We now give another, model-theoreti
 proof. For a formula '(~x; ~y) and set A � M ,a '-type over A is a maximal
onsistent (w.r.t. Th(M)) set of formulae of the form '(~x;~a) with ~aa tuple over A. For ~
 inM and A as above, we
an then talk about the '-type of ~
 over A, denotedtp'(~
=A).Let '(~x; ~y) be a formula over M . We next show that there are integers n and K su
h that for any�nite set A, there are at most KjAjn '-types over A.To prove this we �rst
laim that for ea
h ' there is a formula
'(~x; ~z) and an integer n su
h thatfor every �nite set A, and any ve
tor ~s, there is an n-element subset X of A su
h that tp'(~s=A) isisolated by tp
'(~s=X).Indeed, assume that for some ' there was no su
h n and
. Then for ea
h
 and ea
h n there existsa �nite set An
 and a ve
tor ~sn
 su
h that for any �nite subset X of An
 of size < n, tp'(~sn
=An
) is notisolated by tp
(~sn
=X). Then, by
ompa
tness, we get a pseudo-�nite set W
 (the ultraprodu
t ofthe (An
)n2N) and a ve
tor ~s
 (the ultraprodu
t of the (~sn
)n2N) in a model of Th(M) su
h that for20

any �nite set X of W
 , tp'(~s
=W
) is not isolated by tp(~s
=X). Then, by
ompa
tness again, weget another model of Th(M) with a pseudo-�nite set W and ~s, su
h that for any
ountable subsetX of W , tp(~s=W) is not isolated by tp(~s=X), whi
h
ontradi
ts isolation.Now let K be 2nj~zj . It is easy to see that n and K work. There are at most jAjn subsets X fromA of size n. For ea
h �xed set X of size n, there are at most nj~zj formulae of the form
(~x;~e) with~e 2 X, and hen
e there are at most K
-types over X. Sin
e the '-type of a ve
tor ~
 from M isdetermined by the
hoi
e of the set X whose
-type isolates it and the
-type of ~
 over X, it followsthat there are at most KjAjn types.Now let C be the family de�nable by '(~x; ~y). If a �nite set A is shattered by members of C, thenthe number of '-types over A is 2jAj. Hen
e, arbitrarily large �nite sets
annot be shattered by C.2Next, we show the following.3.10 Proposition Th(S) has the strong isolation property.Proof. Let M be a model of Th(S), W be a pseudo-�nite set of elements of M , and a 2 M . Weexhibit a �nite subset W0 of W su
h that tpM (a=W0) isolates tpM (a=W).Note that for ea
h �nite set X, the elements Meet(a;X);Meet�(a;X) and Meet+(a;X)
an bedes
ribed by means of formulae of FO(S): Meet(a;X) is the largest pre�x of a whi
h is in the pre�x
losure of X, and Meet�(a;X), Meet+(a;X) are the nodes of Tree(X) (meets of two elements ofX) whi
h are
losest to Meet(a;X). Hen
e, su
h elements exist for W , sin
e W is pseudo-�nite.Let w1; w2; w3; w4 2 W be su
h that w1 u w2 = Meet�(a;W) and w3 u w4 = Meet+(a;W). TakeW0 = fw1; w2; w3; w4g.We know that any formulae of FO(S)
an be put in the normal form des
ribed in Proposition3.4. Thus a type of a over W is entirely de�ned by the tree stru
ture of a [W and the pathsbetween de�nable nodes of that tree. If we �x W , we
on
lude that the paths between Meet(a;W),Meet�(a;W), Meet+(a;W) and a
ompletely de�ne tpM (a=W). Be
ause tpM(a=W0) already de-s
ribes all the paths between Meet(a;W), Meet�(a;W), Meet+(a;W) and a, the result follows.2Combining Proposition 3.10 and Lemma 3.9, we
on
lude that the model S, unlike Slen, has learn-able de�nable families.3.11 Corollary Every de�nable family in S has �nite VC-dimension.3.3 A star-free algebra based on SleftWe now study an example of a star-free algebra, in whi
h the n-ary relations in the algebra aremore
omplex than those de�nable over S. Re
all that Sleft = h��;�; (la)a2�; (fa)a2�i; that is, inthis stru
ture one
an add
hara
ters on the right as well as on the left.Without the pre�x relation, this stru
ture was studied in [16, 60℄, as a model of queues. A quanti�er-elimination result was proved in [60℄, by extending quanti�er-elimination for term algebras (in fa
t[60℄ showed that term algebras with queues admit QE). However, as in the
ase of S, whi
h di�ers21

from strings as terms algebras in that it has the pre�x relation, the pre�x relation
ompli
atesthings
onsiderably.We start with the easy observation that FO(Sleft) expresses more relations that FO(S). Indeed,the graph of fa, Fa = f(x; a � x) j x 2 ��g is not expressible in FO(S), whi
h
an be shown by asimple game argument. More pre
isely, given a number k of rounds, let n = 2k + 1 and
onsiderthe game on the tuples (0n; 10n) and (0n+1; 10n). By Corollary 3.6 it is suÆ
ient to play on thepre�xes of the parti
ipating strings. The dupli
ator has a trivial winning strategy on the strings10n and a well-known winning strategy on 0n versus 0n+1.3.3.1 Quanti�er EliminationLet S+left be the extension of Sleft with the same (de�nable) fun
tions and predi
ates we added toS+ (that is, a
onstant � for the empty string, the binary fun
tion u for the longest
ommon pre�x,the predi
ate PL(x; y) for ea
h star-free language L), and the unary fun
tion x 7! x � a, for ea
ha 2 � (whi
h is also de�nable).3.12 Theorem S+left admits quanti�er elimination.In the rest of the se
tion, we prove Theorem 3.12. Let
S+ and
S+left be the �rst-order signatureof S+ and S+left, respe
tively. Let M be an !-saturated model over
S+left elementary equivalent toS+left. It suÆ
es to prove quanti�er elimination inM . Note that M
an have both �nite and in�nitestrings.We next need the following standard result:Claim 1 If there exists a formula whi
h does not admit quanti�er elimination in M , then thereexist two tuples of elements in M whi
h have the same atomi
 type but not the same type.Proof of Claim 1. Let '(~x) 2 FO(S+left), and let Q enumerate all quanti�er free formulae over
S+leftrealizable in M . Let �'(~x1; ~x2) be the type asserting V 2Q((~x1)$ (~x2)) ^ :('(~x1)$ '(~x2)).We show that if ' is not equivalent to a quanti�er-free formula then �' is satis�ed in M . Towardsa
ontradi
tion assume �' is not satis�ed inM . Sin
eM is !-saturated, by
ompa
tness it followsthat there is a �nite set J � Q su
h that8~x1 8~x2 [(î2J i(~x1)$ i(~x2))! ('(~x1)$ '(~x2))℄holds in M . For K � J let �K be Vi2K i ^Vi2J�K : i.Let G be fI � J jM j= 8~x �I(~x)! '(~x)g and � = WI2G �I . To get a
ontradi
tion we show that� is equivalent to ' in M . Let ~
 be a tuple of M with M j= '(~
). Let L = fi 2 J j M j= i(~
)g.If a tuple ~d from M satis�es �L then for ea
h i 2 J , M j= i(~
) $ i(~d). By the
hoi
e of J we
an
on
lude that M j= '(~
) $ '(~d), hen
e M j= '(~d). Therefore L 2 G and M j= �(~
). On theother hand, by the de�nition of G and � it follows immediately that M j= �(~
) implies M j= '(~
).Hen
e, ' and � are equivalent in M , the desired
ontradi
tion. The
laim is proved. 222

Thus, to prove QE, we must show that every two tuples of elements of M that have the sameatomi
 type, have the same type.De�ne a ni
e term of
S+left as a term of the form t(x) = x� a+ b (meaning (x� a) + b), where aand b are �nite strings.We de�ne two relations � and �1 on tuples (of the same length) of strings as follows.� ~
 � ~d for n-tuples ~
 and ~d i� for all sequen
es i1; : : : ; ik from f1; : : : ; ng and all sequen
est1; : : : ; tk of ni
e terms:atpS+(t1(
i1); : : : ; tk(
ik)) = atpS+(t1(di1); : : : ; tk(dik)) :� (
0;~
) �1 (d0; ~d) for n-tuples ~
, ~d and strings
0; d0 i� for all sequen
es i1; : : : ; ik from f1; : : : ; ngand all sequen
es t1; : : : ; tk of ni
e terms:atpS+(
0; t1(
i1); : : : ; tk(
ik)) = atpS+(d0; t1(di1); : : : ; tk(dik)) :Of
ourse, (
0;~
) � (d0; ~d) implies (
0;~
) �1 (d0; ~d), as the identity is a ni
e term. We will show thatthese two relations
oin
ide.We will show in Lemma 3.14 a stronger result than what is needed by Claim 1 in order to proveTheorem 3.12. Indeed we will show that � has the ba
k-and-forth property. In order to simplifythe strategy for the � game we �rst show in Lemma 3.13 that it is enough to have a strategy forthe �1 game. Lemma 3.13 is proved by rewriting rules on the atomi
 formulas that get rid of ni
eterms
ontaining
0.3.13 Lemma If (
0;~
) �1 (d0; ~d), then also (
0;~
) � (d0; ~d).On
e the equivalen
e of �1 and � is established, we will show that they have the ba
k-and-forthproperty, from whi
h quanti�er-elimination will follow.Proof of Lemma 3.13. We start with a few observations. It is easy to see that for every atomi
formula of FO(S+left), there is an equivalent FO(S+left) formula in whi
h every term is a meet of twoni
e terms (addition and subtra
tion of t1 u t2
an be pushed ba
k into t1 and t2, while multiplemeets
an be eliminated by adding disjun
tions of tree-ordering formulae
onsidering all possible
ases). Noti
e also that atomi
 formulae of the form t � t0 where t and t0 are terms are equivalentto P��(t; t0), and t � t0 is equivalent to P�+(t; t0). Thus, we
an assume that no symbols � and �o

ur.We
all a ni
e term t(x) = x� a+ b empty if a = b = �.The proof of Lemma 3.13 is done by rewriting atomi
 formulas in order to get rid of ni
e termsfrom one of the variables. We will pro
eed by a
ase analysis based on the rewriting rules presentedin the next 4
laims.The �rst
laim shows how to repla
e a single ni
e terms from a distinguished variable s0. The proofis straightforward.Claim 2 1. Let s; s0 be in M and let a; b be �nite strings and let L be star-free. Then PL(s; s0�a+ b) is true in M i� one of the following
onditions holds.23

� s � b, and s0 � a+ (b� s) 2 L� a � s0, b � s and PL(s� b+ a; s0).Noti
e that in the �rst
ase above s is �nite, and thus the
ondition over s0 is expressiblein FO(S)).2. Let s; s0 be in M and let a; b be �nite strings and let L be star-free. Then PL(s� a+ b; s0) istrue in M i� one of the following
onditions holds.� a 6� s, b � s0 and s0 � b 2 L;� a � s and PL(s; s0 � b+ a).The next
laim shows how to get rid of terms of the form t(s) u s from distinguished variable s.Claim 3 Let s be an element of M , t a ni
e term over
S+left. Let s0 = t(s) u s. There is aquanti�er-free FO(S+) formula 's;t(x; y) su
h that 's;t(s; s0) and 8x 's;t(x; y)! y = xu t(x) holdin M .Proof of Claim 3. Let a, b �nite strings su
h that t(x) = x� a+ b. If s0 = s u (s� a+ b) is �nite,then 's;t(x; y) is s0 = (x u (x � a + b)) ^ y = s0. Here, s0 = x u (x � a + b)
an be expressed inFO(S) by (s0 � x) ^ (s0 � b + a � x) ^ V�2� :(s0 � � � x ^ s0 � � � b + a � x). If s0 is in�nite,then let n = jaj and m = jbj. We have b � s, a � s, and s[n + i℄ = s[m + i℄ for i 2 N. For givenn;m it is possible to de�ne an FO(S) formula (x; y) whi
h is true if and only if y is maximalsu
h that y � x, jyj > m, and x(n + i) = x(m + i), where i = jyj � m. Then we let 's;t(x; y)be a � x ^ b � x ^ (x; y). It is easy to verify that 's;t(s; s0) holds and that 's;t(x; y) impliesy = x u t(x). Finally, by quanti�er-elimination in FO(S+) 's;t
an be made quanti�er-free. 2The following is the analog of the pre
eding
laim for terms of the form t(s u s0).Claim 4 Let t; t0 be ni
e terms and L star-free. Assume that there are strings s, s0, s00 su
h thatPL(t(s u s0); t0(s u s00)) holds. Then there is an FO(S) formula �(x; y; z) su
h that �(s; s0; s00) holdsand su
h that, for all r; r0; r00 in M , �(r; r0; r00) implies PL(t(r u r0); t0(r u r00)).Proof of Claim 4. Let t(x) = x� a+ b and t0(x) = x� a0+ b0. First of all, if PL(t(su s0); t0(su s00))holds then from Claim 2 we have either:1. t(s u s0) � b0 and (s u s00)� a0 + (b0 � t(s u s0)) 2 L, or2. a0 � s u s00, b0 � t(s u s0), and PL(t(s u s0)� b0 + a0; s u s00).Consider the �rst
ase. Noti
e that it implies that t(s u s0) is a �nite string. Hen
e, the se
ond
ondition says that su s00 2 L0, for the star-free set L0 of strings z with z� a0+ (b0 � t(su s0)) 2 L.The �rst
ondition holds i� (a) a is not a pre�x of s u s0 and b � b0 or (b) s u s0 is �nite in whi
h
ase t(s u s0) � b0
an be easily expressed in FO(S).Consider now the se
ond
ase. The
onditions a0 � su s00 and b0 � t(su s0)
an be easily expressedin FO(S). It remains to express PL(t(s u s0) � b0 + a0; s u s00). As before, we
an assume that the�rst term is ni
e, i.e., we only have to show how PL(t(s u s0); s u s00), where t(x) = x � a+ b,
anbe expressed. 24

We distinguish two sub
ases.If t(sus0) is �nite then the
orresponding FO(S) formula is obtained similarly to the previous
ase.Assume now t(s u s0) in�nite. In this
ase, as s u s0 is a pre�x of s (and therefore s u s0 � s u s00or s u s00 � s u s0 holds), it is suÆ
ient to express that the suÆx of s u s00 relative to its pre�x oflength js u s0j � jbj+ jaj is in L. This
an
learly be expressed in FO(S). 2Let '(x; y) be an FO(S) formula. If inM , there is at most one s0 for ea
h s su
h that '(s; s0) holds,then we
all ' fun
tional, as ' de�nes a partial fun
tion f' on M by f'(s) = s0 if '(s; s0) holds.Note that 's;t of Claim 3 is fun
tional. We
all a term of the form f'(x) where ' is fun
tional a
S-fun
tion term, if for ea
h s in M , f'(s) � s. Let
S++left be the signature obtained from
S+leftby adding all
S-fun
tion terms.The next
laim shows that in attempting to eliminate terms with \�" from distinguished variabley, it suÆ
es to deal with terms of a parti
ularly simple form.Claim 5 Let s be an element of M . For every atomi
 FO(S+left) formula '(y; ~x) there is aquanti�er-free FO(S++left) formula '0(y; ~x), su
h that for all ~r from M , '(s; ~r) holds if and onlyif '0(s; ~r) holds. We
an also ensure that y appears in '0 only in terms of the form t(y u t0(xi)),where t and t0 are ni
e terms, and in
S-fun
tion terms t(f'(y)). Furthermore, we
an arrangethat
S-fun
tion terms in y are the only
S-fun
tion terms in '0.Proof of Claim 5. As mentioned before, we
an assume w.l.o.g. that ' only
ontains terms of theform t1(v1)u t2(v2), where t1; t2 are ni
e and v1; v2 are from y; ~x. We �rst show, that every atomi
formula (t(y) u t0(xi); t00(y; ~x))
an be repla
ed by an equivalent formula 0(y; ~x) =_j j(y; xi) ^ (tj(y u t0j(xi)); t00(y; ~x));where the j are quanti�er-free FO(S) formulae and the tj; t0j are ni
e terms.Let t(y) be y � a + b and t0(xi) be xi � a0 + b0. To prove the above statement we
onsider three
ases.Case 1 b � b0. Then y � a+ b u xi � a0 + b0 is b if a 6� y and (y u (xi � a0 + (b0 � b) + a))� a+ b,otherwise.Case 2 b0 � b. Then y�a+buxi�a0+b0 is (y�a+(b�b0)) u xi�a0)+b0. There are two sub
ases.Either (b� b0) � (xi� a0) and then y� a+ bu xi� a0+ b0 is ((y� a)u (xi� a0� (b� b0))) + band we pro
eed as in
ase 1. Otherwise b 6� xi � a0 + b0 and therefore y � a+ b u xi � a0 + b0is (b u (xi � a0 + b0)).Case 3 b and b0 are in
omparable. Then y � a+ b u xi � a0 + b0 is just b u b0.Next, we
onsider formulae of the form (t(y) u t0(y); t00(y; ~x)). In a
ompletely analogous way, we
an repla
e by a formula 0 of the form 0(y; ~x) = Wj j(y; xi) ^ (tj(y u t0j(y)); t00(y; ~x)). ByClaim 3, for ea
h j, there is a fun
tional FO(S) formula �j(y; x) su
h that �j(s; su t0j(s)) holds andsu
h that, for all r; r0 in M , �j(r; r0) holds only if r0 = r u t0j(r).Hen
e, ea
h subformula (tj(y u t0j(y)); t00(y; ~x))
an be repla
ed by (tj(f�j (y)); t00(y; ~x)).25

The same reasoning
an of
ourse be used to transform formulae (t00(y; ~x); t(y) u t0(xi)) and (t00(y; ~x); t(y) u t0(y)). 2Now we return to the proof of Lemma 3.13. Assume (
0;~
) �1 (d0; ~d). Re
all that by Theorem3.5, if two strings satisfy exa
tly the same atomi
 formulae of
S+ , then they agree on all FO(S+)formulae.By Claim 5 it is enough to prove that if (
0;~
) �1 (d0; ~d) then (
0;~
) and (d0; ~d) agree on all atomi

S+left formulae that have one or two terms of the form t(y u t0(xi)) or t(f (y)), where t; t0 are ni
eterms.Let '(y; ~x) be an atomi
 S+left formula with two terms, where at least one of the terms is of theform t(yu t0(xi)) or t(f (y)). Assume that '(y; ~x) holds for (
0;~
) (the
ase where '(y; ~x) holds for(d0; ~d) is
ompletely analogous). Let t(z) = z � a+ b. We distinguish the following
ases.Case 1. One term of ' is t(y u t0(xi)) or t(f (y)) and the other does not
ontain y. Hen
e ' is ofone of the following forms:� PL(t(y u t0(xi)); t00(~x))� PL(t00(~x); t(y u t0(xi)))� PL(t(f (y)); t00(~x))� PL(t00(~x); t(f (y)))It follows from Claim 2 that in all these sub
ases one
an get rid of the t term, e.g., by adding�b+ a to the other term. It is important here that, for a ni
e term t1, t1(x) 2 L is an FO(S)expressible property. Then the
laim follows from the assumption (
0;~
) �1 (d0; ~d).Case 2. ' is of the form PL(t1(yu t2(xi)); t3(yu t4(xj))). By Claim 4 there is an FO(S) formula �su
h that �(
0; t2(
i); t4(
j)) holds inM and �(r0; t2(ri); t4(rj)) implies PL(t1(r0ut2(ri)); t3(r0ut4(rj))), for all (r0; ~r) in M . By our assumption (
0;~
) �1 (d0; ~d) it follows that PL(t1(y ut2(xi)); t3(y u t4(xj))) holds also for (d0; ~d).Case 3. ' is of the form PL(t(y u t0(xi)); t00(f (y))) or of the form PL(t00(f (y)) u t(y; t0(xi))).Again by Claim 2 we
an assume that t00 is empty. Re
all that by de�nition of
S-fun
tionterms f (y) � y and therefore f (y) u y = f (y). Hen
e, by applying Claim 4 (where wetake one term as empty and s = y) we get a FO(S) formula �(y; t0(xi)) su
h that � holds for(
0;~
) and, whenever �(y; t0(xi)) holds for (d0; ~d), then also ' holds for (d0; ~d). Again the
laimfollows from our assumption that (
0;~
) �1 (d0; ~d).Case 4. Both terms of ' are of the form t(f (y)). In this
ase, we also get an equivalent FO(S)formula by �rst applying Claim 2 to get rid of one symbol t and then applying Claim 4.This
on
ludes the proof of Lemma 3.13. 2Now we
ome ba
k to the proof of Theorem 3.12. We a
tually prove the following whi
h is strongerthan what is needed for quanti�er-elimination.3.14 Lemma � has the ba
k-and-forth property in M .26

As mentioned at the beginning of the proof of the theorem, the statement of the theorem followsfrom the lemma, as ea
h type of the form atpS+(t1(
i1); : : : ; tk(
ik)) is also an atomi
 type of S+left.Let ~
 and ~d su
h that ~
 � ~d. Our goal is to show, that for ea
h
0, there is d0 su
h that (
0;~
) � (d0; ~d).By Lemma 3.13 it is enough to �nd d0 su
h that (
0;~
) �1 (d0; ~d).By
ompa
tness, it suÆ
es to show that for all �nite sequen
es t1; : : : ; tk of terms and all sequen
esi1; : : : ; ik there is a d0 su
h thatatpS+(
0; t1(
i1); : : : ; tk(
ik)) = atpS+(d0; t1(di1); : : : ; tk(dik)):Let therefore su
h sequen
es and
0 be �xed. Let T be Tree(ftj(
ij) j j � kg). Let T 0 be the
orresponding tree for ~d. Let w = Meet(
0; T), N = Meet+(
0; T) and P = Meet�(
0; T).Note that both of these last two strings are given by meets of terms in + and � over ~
. Let N 0be the image of N in the other model (i.e. the
orresponding term in ~d), and P 0 be the image ofP . Noti
e that the indu
tive hypothesis ~
 � ~d guarantees that the ordering relation between meetsof these terms in T is preserved when we look at the image terms over ~d and T 0. The indu
tivehypothesis also tells us that (N;P) and (N 0; P 0) are equivalent as string models (that is, modelsin the usual string signature plus an extra predi
ate for the shorter string); this is be
ause theseterms satisfy all the same atomi
 formulae of S+, whi
h in
lude all PLs.Now let w0 be between N 0 and P 0 su
h that the pairs (N;w) and (N 0; w0), and (w;P) and (w0; P 0),are elementary equivalent as string models. Su
h a string w0 exists be
ause quanti�er eliminationover S+ (Theorem 3.5) implies that (M;N;P) and (M;N 0; P 0) are elementary equivalent in thelanguage of S, and hen
e for any w there is w0 su
h that the equivalen
e extends to (M;N;P;w)and (M;N;P;w0). It is
lear that su
h a w0 suÆ
es.Now, let d0 = w0 � (
0 � w). We obviously have that (w;
0) and (w0; d0) are elementary equivalentas string models. We
an now
he
k that d0 is what we want. We have to show that Meet(d0; T 0),Meet�(d0; T 0) and Meet+(d0; T 0) are w0, P 0 and N 0 respe
tively, and that for every star-free languageL we have: PL(w0; d0) i� PL(w;
0), PL(P 0; w0) i� PL(P;w), and PL(w0; N 0) i� PL(w;N). All of theseeasily follow from the de�nition of d0.This �nishes the proof of Lemma 3.14 and thus of Theorem 3.12. 2From the previous theorem we get the following
orollaries. First, the ba
k-and-forth property of�1 gives us the following normal form for FO(S+left) formulae.3.15 Corollary For every FO(Sleft) formula �(x; ~y) there is an FO(S) formula �0(x; ~z) and a �niteset of ni
e S+left terms ~t su
h that 8x~y (�(x; ~y)$ �0(x;~t(~y)))holds in Sleft.Then Corollary 3.15 for the empty tuple ~y and Corollary 3.7 imply:3.16 Corollary Subsets of �� de�nable over Sleft are pre
isely the star-free languages.27

For formulae in the language of Sleft (as opposed to S+left), we
an show that bounded quanti�
ationsuÆ
es, although the notion of bounded quanti�
ation is slightly di�erent here from that used inthe previous se
tion. Let Np(s) be the pre�x-
losure of fs� s1 + s2 j js1j; js2j � pg. Clearly Np(s)is de�nable from s over Sleft. We then de�ne FO�(Sleft) as the
lass of FO(Sleft) formulae '(~x) inwhi
h all quanti�
ation is of the form 9z 2 Np(xi) and 8z 2 Np(xi), where xi is a free variable of' and p � 0 arbitrary.3.17 Corollary FO�(Sleft) = FO(Sleft).Isolation and VC-dimension We now show that the results about isolation and VC-dimensionextend from S to Sleft.3.18 Proposition Th(Sleft) has the isolation property.Proof. Let M be a model of Th(Sleft), W be a pseudo-�nite set of elements of M , and a 2M . Letp = tpM (a=W). We exhibit a
ountable subset W0 of W su
h that tpM (a=W0) isolates tpM (a=W).Let ~e; ~f be �nite tuples of �nite strings, and let W (~e; ~f) = fw � e + f j w 2 W; e 2 ~e; f 2 ~fg.Let w1(~e; ~f); w2(~e; ~f); w3(~e; ~f); w4(~e; ~f) be elements of W su
h that for some e1; e2 in ~e and somef1; f2 2 ~f , (w1(~e; ~f)� e1 + f1) u (w2(~e; ~f)� e2 + f2) = Meet�(a;W (~e; ~f))and likewise for some e3; e4; f3; f4 in ~e; ~f(w3(~e; ~f)� e3 + f3) u (w4(~e; ~f)� e4 + f4) = Meet+(a;W (~e; ~f)):Take W0 =[fw1(~e; ~f); w2(~e; ~f); w3(~e; ~f); w4(~e; ~f)g;where the union is taken over all �nite tuples of �nite strings. Clearly W0 is
ountable. We
laimthat tpM (a=W0) isolates tpM(a=W).Suppose we have a0 with tpM(a0=W0) = tpM (a=W0). Note that by
onstru
tion ofW0 and de�nitionof tpM(a=W0) this implies that a0 has the same Meet� and Meet+ over ea
h W (~e; ~f) that a does.This also implies that the type of a0�Meet(a0;W (~e; ~f)) is the same as for a, and similarly for the typeof Meet+(a0;W (~e; ~f))�Meet(a0;W (~e; ~f)) and the type of Meet(a0;W (~e; ~f))�Meet�(a0;W (~e; ~f)).We want to show that tpM(a0=W) = tpM(a=W). By quanti�er elimination (Theorem 3.12) overSleft, it suÆ
es to show that they have the same atomi
 types over S+left.From the remark above that a and a0 have the same meets and the same paths between those meetsand Meet+;Meet� and themselves it follows that whenever an atom of the form PL(t1 u t2; t3 u t4)holds for a, where the ti are either a or ni
e terms over ~w and where t1 u t2 is a dire
t prede
essorof t3 u t4 in the tree de�ned by W , then it also holds for a0. By the normal form for S+ queries(Proposition 3.4) we
an
on
lude atpS+(a; ~w � ~e + ~f) = atpS+(a0; ~w � ~e + ~f), for all �nite ~e; ~f .Hen
e, by Claim 3.13 we get that tpM (a0=W) = tpM (a=W) have the same atomi
 types over S+left,as required. 2By Lemma 3.9, we obtain the following.3.19 Corollary Every de�nable family in Sleft has �nite VC-dimension.28

3.4 A regular algebra extending SThe previous se
tions presented star-free algebras with attra
tive properties. We now give anexample of a regular algebra that has signi�
antly less expressive power than the ri
h stru
tureSlen, and whi
h shares some of the ni
e properties (isolation, �nite VC, QE) of the star-free algebrasin the previous se
tions.This algebra
an be obtained by
onsidering two possible ways of extending FO(S): the �rst isby adding the predi
ates PL for all regular languages L; that is, predi
ates PL(x; y) whi
h holdfor x � y su
h that y � x 2 L, where L is a regular language. The se
ond extension is by usingmonadi
-se
ond order logi
 instead of only �rst-order logi
. It turns out that these extensions de�neexa
tly the same algebra. We show this, and also show that the resulting regular algebra sharesthe QE and VC-dimension properties of the star-free algebras de�ned previously.Let Sreg = h��;�; (la)a2�; (PL)L regulari. Sin
e it de�nes arbitrary regular languages in ��, it is aproper extension of S. Every FO(Sreg)-de�nable set is de�nable over Slen, be
ause the predi
atesPL are de�nable in Slen (the easiest way to see this is by using the
hara
terization of Slen de�nableproperties via letter-to-letter automata). Thus, we have:3.20 Proposition Subsets of �� de�nable over Sreg are pre
isely the regular languages.Let S+reg be the extension of Sreg with � and u. Most of the results about S and S+ from Se
tion3.2
an be straightforwardly lifted to Sreg and S+reg. For example, the normal form Proposition3.4 holds for Sreg if one repla
es \star-free" with \regular": the proof given in Se
tion 3.2 appliesverbatim. In fa
t, similar normal form arguments, in a slightly di�erent form, were given in [52, 66℄.We now obtain:3.21 Theorem (see [52℄) S+reg admits quanti�er elimination.The normal form result also shows that neither the fun
tions fa nor the predi
ate el are de�nable inSreg (the latter
an also be seen from the fa
t that Sreg has QE in a relational signature of boundedarity, and Slen does not; for inexpressibility of fa it suÆ
es to apply the normal form results topairs of strings of the form (1 �0k; 0k): sin
e 1 �0k u0k = �, it is impossible to
he
k if two sequen
esof zeros have the same length). One
an also show, as in the
ase of S, that bounded quanti�
ationover pre�xes is suÆ
ient.Furthermore, there is a
lose
onne
tion between FO-de�nability over Sreg and MSO-de�nabilityover S. It was shown in [52℄ that MSO(S) = FO(Sreg):This result was used in [52℄ to show that S2S and WS2S de�ne the same relations over the in�nitebinary tree. Here S2S refers to the monadi
 se
ond-order theory of the in�nite binary tree, andWS2S to the weak monadi
 theory (that is, monadi
 se
ond-order quanti�
ation is restri
ted to�nite sets). Note that it follows from [58℄ that sets, rather than arbitrary relations, de�nable inS2S and WS2S, are the same.From the result of [52℄ it thus follows that the subsets of �� de�nable in MSO over Sreg are pre
iselythe regular languages. 29

3.4.1 Automata model, isolation, and VC dimensionIt was proved in [4℄ that Regular Pre�x Relations (RPR) (those de�nable by Regular Pre�x Au-tomata (RPA), introdu
ed in Se
tion 3.2) are exa
tly those de�nable in MSO(S). Thus, the resultsof [4℄ and [52℄ give a
hara
terization of FO(Sreg).3.22 Corollary The relations de�nable in FO(Sreg) are exa
tly the RPR relations. Thus ea
hrelation de�nable in FO(Sreg) is re
ognizable by a RPA.The proof of the isolation property for S (Proposition 3.10) is una�e
ted by the
hange fromstar-free PL to regular PL. Thus, we obtain:3.23 Corollary Th(Sreg) has the isolation property, and de�nable families of Sreg have �nite VC-dimension.3.5 A regular algebra extending SleftWe now give a �nal example of a regular algebra. Let Sreg;left be the
ommon expansion of Sleftand Sreg, that is, h��;�; (la)a2�; (fa)a2�; (PL)L regulari. Sin
e Sreg
annot express the fun
tionsfa, and Sleft
annot de�ne arbitrary regular sets, we see that Sreg;left is a proper expansion of Sregand Sleft. Furthermore, all Sreg;left-de�nable sets are Slen-de�nable; the �niteness of VC dimensionfor Sreg;left, shown below, implies that this
ontainment is proper, too.Let S+reg;left be the
ommon expansion of S+left and Sreg, that is, the expansion of Sreg;left with � andu. The te
hniques of the previous se
tions
an be used to show the following:3.24 Theorem S+reg;left has quanti�er-elimination. Furthermore, Th(Sreg;left) has the isolationproperty, and de�nable families in Sreg;left have �nite VC-dimension.Proof. We sket
h the proof of QE. This is done by simply mimi
king the proof of Theorem 3.12,but with the role of S played now by Sreg. On
e again, we work in a saturated modelM , and de�nethe equivalen
e relations � and �1 as in the proof of Theorem 3.12, but the atomi
 type is withrespe
t to S+reg. We then show that �1 and � are the same. This is done by proving the followingmodi�
ation of Claims 2, 3, 4, and 5, by substituting uniformly S+reg;left for S+left, and Sreg for S.The property of star-free languages used in ea
h these
laims is just that if L is star-free, and aand b are strings, then the set of x su
h that x� a+ b 2 L is also star-free. This
learly holds withregular substituted uniformly for star-free.We then show that � has the ba
k-and-forth property in M , whi
h implies QE. The proof isthe same as before, but instead of elementary equivalen
e of string models in �rst-order logi
, we
onsider their elementary equivalen
e in monadi
 se
ond-order logi
. 2Similarly to Sleft, we derive from the proof of Theorem 3.24 the following normal form for Sreg;leftformulae:3.25 Corollary For every FO(Sreg;left) formula �(x; ~y) there is an FO(Sreg) formula �0(x; ~z) and a�nite set of ni
e S+left terms ~t su
h that8x~y �(x; ~y)$ �0(x;~t(~y))30

holds in Sreg;left.As we have seen earlier that MSO(S) = FO(Sreg), one might ask if a similar result holds wheninsertion on the left is allowed; that is, whether MSO(Sleft) = FO(Sreg;left). Sin
e the MSO-theoryof Sleft is unde
idable [67℄, there is
ertainly no e�e
tive translation. And in fa
t one
an easilysee that the two are di�erent. Sin
e the fun
tion g : x 7! 0 � x � 1 is FO-de�nable in Sleft, one
aneasily see that even weak MSO(Sleft), where set quanti�
ation is restri
ted to �nite sets, de�nesf0n1n j n � 0g, a non-regular set.We
on
lude this se
tion with a remark showing that arithmeti
 properties de�nable in stru
turesS;Sleft;Sreg;Sreg;left are weaker than those de�nable in Slen. As we mentioned earlier, under thebinary en
oding, Slen gives us an extension of Presburger arithmeti
; namely, it de�nes + and V2,where V2(x) is the largest power of 2 that divides x. But even Sreg;left is mu
h weaker:3.26 Proposition Neither su

essor, nor order, nor addition, are de�nable in Sreg;left (and hen
ein S;Sreg;Sleft).Proof. Sin
e order is de�nable from addition, and su

essor from order, it suÆ
es to show thatsu

essor is not de�nable. Let xk = 10k; yk = 1k; that is, under the binary en
oding, x is thesu

essor of y. We show that f(xk; yk) j k > 0g is not de�nable in Sreg;left.Assume it were; by Corollary 3.25 we get a set of ni
e terms ti(y) = y � ai + bi and a formula�(x; ~z) over Sreg su
h that �(x;~t(y)) is true i� for some k, x = xk and y = yk. For suÆ
iently largek, ~t(yk)
onsists of strings of the form
i � 1k�pi where
i and pi depend on ~t only. As
i � 1k�pi � 1piis
i � yk, there is a formula �(x; z1; : : : ; zl) of Sreg (where l is the length of ~t) su
h that �(x; ~z) istrue i� for some big enough k, x = xk and zi =
i � yk.We now show that for suÆ
iently large k, depending on �, if �(xk;
1yk; : : : ;
lyk) is true, then forsome m > k, �(xm;
1yk; : : : ;
lyk) is true. Clearly this will suÆ
e. For this we use the normal formfor Sreg whi
h is analogous to Proposition 3.4 ex
ept that L in PL
ould be regular. Note that forsuÆ
iently large k0, and any k;m � k0, Tree(xk;~
 � yk) is isomorphi
 (as a tree) to Tree(xm;~
 � yk).In parti
ular, the prede
essor of xk (and xm) in su
h a tree is its meet with one of
i �yk, say
1 �yk.Su
h a meet is 1 if
1 = �, or a pre�x of
1 if
1 6= �. Thus, xk � (xk u
1yk) is either xk or a string0p for p � k � j
1j, with p depending only on
1. (The same is true when one repla
es k by m).Let PL be the formula des
ribing the segment (xu
1y; x) in the normal form for � (we may assumew.l.o.g. that there is only one su
h formula; if there are several, one
an
ombine them into oneby taking the interse
tion of the languages). Pi
k k1; k2 > k0 su
h that xk1 � (
1yk1 u xk1) is inL i� xk2 � (
1yk1 u xk2) is. It follows from the des
ription of those meets given above that su
hk1; k2 always exist. Now it is immediate from the normal form result that �(xk1 ;
1yk1 ; : : : ;
lyk1)i� �(xk2 ;
1yk1 ; : : : ;
lyk1), whi
h �nishes the proof. 2Figure 1 and Table 1 summarize the results of this se
tion.4 String query languagesThe goal of this se
tion is to study relational
al
uli based on the �ve stru
tures
onsidered in theprevious se
tion. Note, however, that most of the previous resear
h on string query languages used31

����������������
QE in relational signatureno QE in relational signature

SSleft Sreg;leftSreg
Slen

star-free algebras regular algebras
Figure 1: Relationships between S;Sleft;Sreg;Sreg;left, and Slen.

Stru
ture Signature Expansion with Expansionquanti�er-elimination nameSlen �; (la)a2�; el all unary relations & S(1;2)lenbinary fun
tionsS �; (la)a2� �; (la)a2�; �;u; S+(PL)L star�freeSleft �; (la)a2�; (fa)a2� �; (la)a2�; (fa)a2�; �; S+left(x� a)a2�;u; (PL)L star�freeSreg �; (la)a2�; (PL)L regular �; (la)a2�; �;u; (PL)L regular S+regSreg;left �; (la)a2�; (fa)a2�; (PL)L regular �; (la)a2�; (fa)a2�; �; S+reg;left(x� a)a2�;u; (PL)L regularDe�nition of PL: (x; y) 2 PL i� x � y and y � x 2 L.Table 1: Summary of quanti�er-elimination results
32

on
atenation as the main string operation. We give a few simple results indi
ating that our maingoals of getting a low
omplexity language with an adequate notion of relational algebra
annot bea
hieved if we in
lude
on
atenation as a primitive. After that, we explain how operations used inS;Sleft;Sreg;Sreg;left;Slen are related to SQL string operations, and present properties of relational
al
uli based on these stru
tures. Most of these are based on model-theoreti
 properties of the �vestru
tures established in Se
tion 3.4.1 Problemati

on
atenationMost earlier papers
onsidered relational
al
ulus with
on
atenation RC
on
at , that is,RC(SC; h��;
i) where
 has the operation of
on
atenation, and
onstant symbols for ea
h a 2 �.This language is extremely attra
tive in terms of
ompositionality: given queries Q and Q0 re-turning sets of strings, one
an substitute Q and Q0 within regular-expressions to form new LIKEqueries. However, as noti
ed in [40℄, for � = f0; 1; ℄g, RC
on
at expresses all
omputable querieson databases
ontaining strings from f0; 1g� (see [61℄ for a proof). In fa
t, it is easy to show asomewhat stronger result whi
h only requires two letters in �.4.1 Proposition Let �
ontain at least two letters. Then RC
on
at expresses all
omputablequeries on databases over ��.Proof. We �rst show that all
omputable predi
ates on f0; 1g� are expressible. We follow thelines of [61℄, Chapter III, Theorem 12.4, whi
h uses an extra symbol ℄ to en
ode a Turing ma
hine
omputation in RC
on
at . Let M be a Turing ma
hine. Let Q = fq2; � � � ; qmg be the set of statesof M , q2 being the initial state. At step i of the exe
ution of M over an input x, the
on�gurationof M
an be represented by a string ui℄�ivi, ui; vi 2 f0; 1g�, where ui is the tape
ontent left ofthe head, vi is the
ontent of the
urrent position and the positions right of the
urrent position,and q�i is the
urrent state. Let 'M (x) be the formula of RC
on
at whi
h states the existen
e of astring w 2 f0; 1; ℄g� whi
h will represent the
omputation of M on x. This is done as follows:1. w = ℄�0v0℄u1℄�1v1℄ � � � ℄un℄�nvn, for some n, where ui; vi 2 f0; 1g�.2. v0 = x, �0 = 2.3. if ui℄�vi℄ui+1℄�vi+1 is a substring of w then ui+1℄�vi+1 represents the
on�guration afterexe
uting M , for one step, from the
on�guration represented by ui℄�vi.4. q�n is an a

epting state of M .All the points enumerated above
an be
he
ked in RC
on
at [61℄. It is also easy to see that theexisten
e of su
h a string w is equivalent to the a

eptan
e of x by M .In order to remove the extra symbol ℄, the formula 'M (x) also states the existen
e of a string x℄ ofthe form 10k1, su
h that none of the strings ui; vi
ontains 0k as a substring. As the
omputation is�nite, su
h a string always exists and it
an easily be distinguished from the ui and vi. The formulathen states the existen
e of a string w0 of the form x�0℄ v0x℄u1x�1℄ v1x℄ � � � x℄unx�n℄ vn and
ondition3 is
hanged analogously. 33

Sin
e all
omputable predi
ates on f0; 1g� are expressible, there is a one-to-one mapping f :N ! f0; 1g� su
h that the image of addition and multipli
ation under f is expressible in FOover h��; �; 0; 1i. It is known (see [50℄, Chapter 3), that relational
al
ulus over hN;+; �i expressesall
omputable queries over �nite databases (simply by
oding �nite databases with numbers).Hen
e, the same
oding will apply to RC
on
at , showing that it expresses all
omputable queries. 2In databases, we are a

ustomed to relational
al
ulus having limited expressiveness; then thequeries
an be analyzed and often good optimizations
an be dis
overed. This is
ertainly not the
ase here; moreover, there is no hope of �nding a syntax for safe queries.4.2 Corollary Let �
ontain at least two letters. Then there is no e�e
tive syntax for safe queriesin RC
on
at . Furthermore, the state-safety problem is unde
idable for RC
on
at .Proof. This follows from [64℄. Indeed from Proposition 4.1, RC
on
at is Turing-
omplete and thusthe stru
ture of [64℄ in whi
h there is no safe syntax for safe queries, and in whi
h state-safety isunde
idable is de�nable. 2Note that when � has one symbol, h��; �i is essentially hN;+i, and there exists e�e
tive syntax forsafe queries, and state-safety is de
idable [64℄.4.2 Basi
 string operations in SQLWhen looking at existing SQL string operations, the most often-used operation is LIKE pattern-mat
hing. It allows one to say, for example, that a given string is a pre�x of another string andalso that a string has a �xed string as a substring. LIKE patterns are built from alphabet letters,and
hara
ters % (whi
h mat
hes any string, in
luding �), and _ (whi
h mat
hes a single letter).For example, the pattern ab_
% mat
hes any string whose �rst letter is a, se
ond is b, and fourthis
. Mat
hing with LIKE
an be expressed in �rst-order logi
 over S: indeed, with LIKE one
anonly de�ne star-free languages, whi
h are FO-de�nable in S.Another important SQL string operation is the lexi
ographi
 ordering�lex, whi
h, as we saw earlier,is also expressible in S.SQL also allows trimming/adding symbols on both left and right of a string. We know thattrimming/adding symbols on the right (operation la and its inverse) is expressible over S, butadding/trimming on the left (operation fa and its inverse) is not. This motivated the study ofthe stru
ture Sleft; it
orresponds to LIKE pattern mat
hing, lexi
ographi
 ordering, and arbitrarytrimming/adding operators of SQL.The operator LIKE
he
ks membership in a star-free language. The new SQL standard [41℄ intro-du
es an arbitrary regular expression pattern-mat
hing by a new operator
alled SIMILAR. Addingthis operator
orresponds to going from S to Sreg or Sleft to Sreg;left: in both
ases, the additionmeans that the one-dimensional de�nable families be
ome regular instead of star-free.Finally, SQL has a string-length operation
alled LEN. Sin
e this does not return a string, we turnit into a pure string operation that
ompares lengths of strings: el(x; y) is true if jxj = jyj. Thus,Slen
orresponds to a set of SQL operations that in
ludes LIKE, lexi
ographi
 ordering and length
omparison. Furthermore, sin
e Slen subsumes Sleft;Sreg and Sreg;left, the operator SIMILAR andtrimming/adding on the left are expressible over Slen.34

4.3 Expressive power and
omplexityIn this se
tion we study expressiveness and
omplexity of the �ve relational
al
uli. We obtain anumber of
ollapse results using the isolation property shown in the �rst part of the paper, andestablish
omplexity bounds, both in the
ases with and without
ollapse.4.3.1 Relational
al
ulus over SOur goal here is to get bounds on the expressiveness and data
omplexity for queries in RC(S).The main tool used is a
ollapse result, Theorem 4.3, in the spirit of those produ
ed for
onstraintdatabases [10, 8℄. Re
all that relational
al
ulus over a domain RC(M) admits restri
ted quanti�er
ollapse if every RC(SC;M) formula '(~x) is equivalent to a formula '0(~x) in whi
h SC-predi
ateso

ur only within the s
ope of a
tive domain quanti�ers 9x2adom and 8x2adom. It admits thenatural-a
tive
ollapse if every formula is equivalent to one with only a
tive-domain quanti�ers.We already mentioned that the isolation property implies restri
ted quanti�er
ollapse [8, 32℄. Fromthe QE of S+ we also get4.3 Theorem RC(S) admits restri
ted quanti�er
ollapse, and RC(S+) admits the natural-a
tive
ollapse.Another quanti�er-restri
tion result is given in the following
orollary. Extend RC(SC;S) withquanti�ers of the form 9x� adom and 8x� adom, whose meaning is as follows. Given a formula'(x; ~y), an interpretation ~a for ~y, and a database D, 9x� adom '(x;~a) states that there exists astring
 making '(
;~a) true su
h that either
 � ai for ai a
omponent of ~a, or
 � b where b is inadom(D). Sin
e bounded quanti�
ation suÆ
es for S formulae (Corollary 3.6), we obtain:4.4 Corollary Every RC(SC;S) formula is equivalent to a formula that only uses quanti�ers9x�adom and 8x�adom.We note that a a straightforward
orollary of Theorem 4.3 shows that the data
omplexity forRC(S) mat
hes that of pure relational
al
ulus.4.5 Corollary The data
omplexity of RC(S) is in AC0. In parti
ular, neither parity nor
onne
-tivity test is expressible in RC(S).Proof. By Corollary 4.4 we
an assume that a given query '(~x) is of the form Q~y 2adom WV�i(~x; ~y) where ea
h �i is either an atomi
 or negated atomi
 SC-formula, or an Sformula, in whi
h all quanti�
ation is restri
ted to pre�xes of ~x; ~y. The proof then follows thestandard proof of AC0 data
omplexity for the relational
al
ulus (see, for example, [1℄), and oneonly has to prove that ea
h S formula
an be evaluated in AC0.Suppose �(z1; : : : ; zk) is an S formula in whi
h all quanti�
ation is restri
ted to pre�xes of zis.With ~z, asso
iate a stru
ture S~z of the signature
onsisting of unary predi
ates Zi; (Pa)a2�;# anda binary predi
ate < as follows: the domain is f1; : : : ;Mg, where M = Pi jzij + (k � 1), and theinterpretation of < is standard. The �rst jz1j elements belong to Z1, followed by an element thatbelongs to #, followed by jz2j elements that belong to Z2 et
. The membership in Pa is determined35

by the
orresponding symbol in the zis. To show that �
an be evaluated in AC0, it is enough toshow that there is a FO(BIT; <) senten
e � su
h that S j= �(~z) i� S~z j= �. This is done by astraightforward indu
tion on the stru
ture of �, as one
an en
ode the pre�x relation over S~z usingthe de�nability of + and � in FO(BIT; <) (
f. [47℄). 2Another
orollary
on
erns the expressive power of generi
 queries. Re
all that a query is generi
 ifit
ommutes with permutations on the domain; in other words, it is independent of spe
i�
 elementsstored in a database.Every query expressible in pure relational
al
ulus is generi
. Examples of other generi
 queriesare parity test and graph
onne
tivity test; these are well known to be inexpressible in relational
al
ulus.Combining Theorem 4.3 with the a
tive generi

ollapse [10℄, we obtain:4.6 Corollary Every generi
 query expressible inRC(S) is already expressible inRC(<), relational
al
ulus over ordered databases.With respe
t to time
omplexity Corollary 4.5 only gives a polynomial upper bound. We show nextthat for unary databases we get a mu
h stri
ter
omplexity result. We
all a database s
hema SCunary if it only
ontains unary relation names. We next show that queries over unary databases
anbe evaluated in linear time. This is be
ause a unary database
an be transformed into a tree, anda query
an be transformed into a �rst-order senten
e over the tree, whi
h
an then be evaluatedby a tree automaton. More pre
isely, we have:4.7 Proposition Let SC be unary. Then every Boolean RC(SC;S)-query
an be evaluated inlinear time in the size of the database.Proof. Let SC be unary. We de�ne a representation of SC-databases by �nite labeled treesas follows. Let R1; : : : ; Rm be the relation names of SC. Let, for simpli
ity, � be f0; 1g. LetX = fx1; : : : ; xkg be a set of variables. For a �nite database D over SC and a ve
tor ~a = a1; : : : ; akof strings from �� the (�nite) tree t = t(D;~a) is de�ned as follows.� The set of verti
es of t is pre�x (D;~a).� Ea
h vertex v of t is labeled by a 0-1-ve
tor ~r(v) = (r1(v); : : : ; rm(v)), where ri(v) = 1 if andonly if v 2 Ri.� Ea
h vertex v is labeled by a subset X(v) of X, where xi 2 X(v) if and only if ai = v.It should be pointed out that all leaves v of t(D;~a)
arry a label ~r(v) with at least one non-zeroentry or a label X(v) whi
h is not the empty set.It is straightforward that, for ea
h RC(SC;S)-formula ' (with pre�x quanti�
ation) there is a �rst-order formula '0 on labeled trees (represented as �nite stru
tures in the usual way) su
h that forea
h SC-database D and ea
h ve
tor ~a = a1; : : : ; ak of strings, (D;~a) j= ' if and only if t(D;~a) j= '0.In the
ase of Boolean queries, k equals 0. As it is well-known that even MSO-senten
es
an beevaluated in linear time on labeled trees (e.g., via the simulation of suitable tree automata, see[67℄), we
an
on
lude the desired
omplexity bound. 236

From Lemma 4.20 below and the results of [56℄ it follows that safe unary RC(SC;S)-queries (i.e.,with one free variable)
an be evaluated in linear time in the size of the database. By
ombiningthis with the te
hniques of [62℄ it
an be shown that, in general, k-ary queries
an be evaluated intime O(nk) for databases of size n.4.3.2 Relational
al
ulus over SlenWe have seen that query evaluation for relational
al
ulus over S has low
omplexity. However,many useful queries of low
omplexity, su
h as the query that appends a �xed string on the leftof a given
olumn, are not expressible in S. Hen
e we examine the addition of the equal lengthpredi
ate, that is, relational
al
ulus over Slen. Throughout this se
tion, we again assume that thealphabet has at least two symbols (as over the one-symbol alphabet, equal length is simply equalityand thus does not give us any extra power).To analyze the expressive power and
omplexity of Slen, we again make use of a normal-form resultfor queries. In this
ase it is no longer suÆ
ient to quantify over pre�xes of strings in the a
tivedomain; however a di�erent restri
ted quanti�
ation suÆ
es.We introdu
e quanti�ers 9 jxj � adom and 8 jxj � adom to be interpreted as follows. Given aformula '(~y), a database D and an interpretation ~a for ~y, a subformula 9 jxj � adom �(x; �) issatis�ed if there exists a string
 satisfying �(
; �) su
h that the length of
 does not ex
eed thelength of the longest string in adom(D) and ~a. We
all these length-restri
ted quanti�ers. Notethat they are just a notational
onvenien
e, as they
an be expressed in RC(Slen). Moreover, they
apture the expressiveness of RC(Slen):4.8 Proposition Every RC(SC;Slen) formula is equivalent to a formula that uses only length-restri
ted quanti�ers.Proof. For an SC-database D and a tuple of strings ~s, we use the notation # (D;~s) for fs0 j 9s 2adom(D) [~s : js0j � jsjg, and S[D;~s℄ for the stru
ture with the universe # (D;~s) in the languageof Slen plus the SC-relations, plus
onstants for the elements of ~s. We write Slen(D;~s) for thestru
ture in the same language whose universe is ��. Let m be the maximum arity of any relationname of SC.We write (D1; ~s1) �k (D2; ~s2) if the dupli
ator has a winning strategy in the k-round Ehrenfeu
ht-Fra��ss�e game on Slen(D1; ~s1) and Slen(D2; ~s2), and (D1; ~s1) �bk (D2; ~s2) if the dupli
ator has awinning strategy in the k-round Ehrenfeu
ht-Fra��ss�e game on S[D1; ~s1℄ and S[D2; ~s2℄. We
laimthat �bk+m+1 re�nes �k. By the Ehrenfeu
ht-Fra��ss�e theorem (
f. [27, 47℄), this implies the result,as both equivalen
e relations are of �nite index, ea
h
lass of �bk+m+1 is de�nable with length-restri
ted quanti�ers, and ea
h RC(Slen) query of quanti�er rank k is a union of �k-
lasses.We now des
ribe the winning strategy for the dupli
ator for k moves in the game on Slen(D1; ~s1)and Slen(D2; ~s2). Let lj be the maximum length of a string in S[Dj ; ~sj℄; j = 1; 2. In response toea
h move, say ai 2 Slen(D1; ~s1) by the spoiler, the dupli
ator produ
es, in addition to his responsebi 2 Slen(D2; ~s2), two extra elements a0i 2 S[D1; ~s1℄ and b0i 2 S[D2; ~s2℄. This is done as follows.Suppose the rounds 1; : : : ; i� 1 have already been played, and the spoiler plays ai 2 Slen(D1; ~s1).There are two
ases. If ai 2 S[D1; ~s1℄, then a0i = ai, and the dupli
ator looks at the position(a01; : : : ; a0i�1; a0i); (b01; : : : ; b0i�1) in the game on S[D1; ~s1℄ and S[D2; ~s2℄, and sele
ts b0i 2 S[D2; ~s2℄37

a

ording to his winning strategy. He then sets bi = b0i.In the other
ase, we have ai 62 S[D1; ~s1℄, that is, jaij > l1. Let a0i be the pre�x of ai of lengthl1. As before, the dupli
ator now looks at the
on�guration (a01; : : : ; a0i�1; a0i); (b01; : : : ; b0i�1) in thegame on S[D1; ~s1℄ and S[D2; ~s2℄, and sele
ts b0i as the response to a0i. Note that b0i is of length l2.Indeed, sin
e the dupli
ator
an play in the game on S[D1; ~s1℄ and S[D2; ~s2℄ for k+m+1 moves, forevery move up to k his response to a string of length l1 must be a string of length l2, for otherwisewith the next m+ 1 moves the spoiler would be able to
hoose an extension bi+1 of bi and stringsbi+2; : : : ; bi+m+1 su
h that bi+2 has the same length as bi+1 and is in ~s2 or D2. The latter mightbe witnessed by the strings bi+3; : : : ; bi+m+1. The dupli
ator would have no suitable response inS[D1; ~s1℄. We now set bi = b0i � x, where x = ai � a0i, that is, x is the relative suÆx of a0i in ai. Itfollows immediately that this strategy ensures the win by the dupli
ator in the k-round game onSlen(D1; ~s1) and Slen(D2; ~s2). 2Pre�x-restri
ted quanti�
ation does not suÆ
e for RC(Slen). Indeed,
onsider the following queryQ on a unary relation U : Q(U) is true i� U
ontains a single element, whi
h is from 0� and of evenlength. This is expressible in RC(Slen) by9!x U(x) ^ 8x(U(x)! (x 2 0�) ^ 9z 2 (01)�el(z; x));where 9!xU(x) expresses that there is exa
tly one x with U(x). Note that the predi
ates x 2 0� andz 2 (01)�
an be expressed even over S: re
all that S
an de�ne any star-free language and Slen anyregular language. However, this query Q is inexpressible with just pre�x quanti�
ation: if it were,then over single-element databases
ontained in 0�, the predi
ate el
ould be repla
ed by equality.Hen
e the set of strings from 0� of even length would be de�nable over S. But this language is notstar-free, and this
ontradi
ts the fa
t that the languages de�nable over S are exa
tly the star-freelanguages (Corollary 3.7).As with Theorem 4.3, from Proposition 4.8 we get us a rough upper bound on the
omplexity ofRC(Slen), whi
h should be
ompared with Corollary 4.11 and Proposition 4.12 below:4.9 Corollary The data
omplexity of RC(Slen) is in PH.Proof. To
he
k if D j= '(~a), it is enough to quantify over strings whose length does not ex
eedN , where N is the maximum length of a string in adom(D) [~a (see Proposition 4.8). If ' hasalternation depth k this
an be done by a polynomial time alternating Turing ma
hine with kalternations, hen
e in PH. 2The result below establishes two bounds. The �rst one is for
omplexity of generi
 queries inRC(Slen). That is, the
omplexity of the language fen
(D)#en
(t) j D j= '(t)g for a generi
 '.The other
omplexity bound is very useful for proving expressibility results. A relational (Boolean)query is a set of isomorphism types of SC-databases (w.r.t. the SC-relations only). A relationalquery is in AC0 if it is in AC0 under the usual relational en
oding en
0: elements of a k-elementa
tive domain are en
oded by 1; : : : ; k, in binary (
f. [1℄). A relational query Q is expressible inRC(Slen) if there is a RC(Slen) senten
e � su
h that the SC-isomorphism type of D is in Q i�D j= �.4.10 Theorem The data
omplexity of generi
 queries in RC(Slen) is in TC0. Furthermore, anyrelational query that is expressible in RC(Slen) is in AC0.38

Proof. Without loss of generality, we
onsider Boolean queries and assume that � = f0; 1g. For astring s 2 ��, let N(s) be the number whi
h is 1 � s in binary. Let s <N s0 i� N(s) < N(s0). Notethat for strings of length k, N(s) ranges from 2k to 2k+1 � 1, and jsj < js0j implies N(s) < N(s0).We
all a database ni
e if the set fN(s) j s 2 adom(D)g is of the form f1; : : : ; ng for some n � 1.Note that the maximum length of a string in su
h a database is l(n) = dlog2(n+ 1)e � 1.Now we
laim that every Boolean generi
 query �
an be evaluated in AC0 over ni
e databases. ByProposition 4.8, without loss of generality, all quanti�ers in � are assumed to be length-restri
ted.With a ni
e database D, we asso
iate a new database D0 of the same s
hema with the universef1; : : : ; ng = fN(s) j s 2 adom(D)g, su
h that (t1; : : : ; tk) 2 R in D i� (N(t1); : : : ; N(tk)) 2 Rin D0. We next show that �
an be expressed in FO(BIT; <) over stru
tures of the form D0,where D is ni
e. This will suÆ
e to prove the
laim, as the en
odings of D and D0 are identi
al,and FO(BIT; <)
aptures uniform AC0 [7℄. Re
all the de�nition of BIT from Se
tion 2. We alsore
all that the usual arithmeti
 predi
ates (+ and �, given as ternary predi
ates) are de�nable inFO(BIT; <), and so are many other helpful predi
ates, for example, a predi
ate for the powers of2 [47℄.There are two main problems: �rst, quanti�
ation in � is restri
ted to the maximum lengthof a string (that is, over ni
e databases, quanti�ers in � range not over f1; : : : ; ng but ratherf1; : : : ; 2l(n)+1 � 1g); se
ond, we must show that the operations of Slen
an be expressed.To deal with the �rst problem, we assume that � is in prenex form, and repla
e ea
h quanti�er 9swith two quanti�ers 9is9i0s. Ea
h string s of length not ex
eeding l(n)
an be represented uniquelyby two numbers is; i0s su
h that:is = � N(s) if N(s) � n;n if N(s) > n; i0s = � 2l(n) if N(s) � n;N(s)� n if N(s) > n:Note that is; i0s � n, and for N(s) > n, i0s < 2l(n), if jsj � l(n). For ea
h new pair of quanti�ers9is9i0s we add a formula stating that is; i0s satisfy the following
onditions: either is < n andi0s = 2l(n), or is = n, and i0s < 2l(n). This
an be done in FO(BIT; <), as the
ondition x = 2l(n)is expressible (it says that x is the largest power of 2 that does not ex
eed n, whi
h is expressiblewith BIT).Next, we must show how to translate the atomi
 and negated atomi
 subformulae of �. Ea
hsubformula of the formR(s1; : : : ; sk), whereR 2 SC, is translated into R(is1 ; : : : ; isk)^Vi i0si = 2l(n).Che
king L0(s) is simply :BIT(is; 1), and L1(s) is BIT(is; 1). For el(s; u), one has to
he
k thatthe largest power of 2 not ex
eeding is + i0s and iu + i0u is the same. This happens i� either bothi0s; i0u are less than 2l(n) (in this
ase jsj = juj = l(n)), or both equal 2l(n) (in whi
h
ase both s andu are in the a
tive domain), and for ea
h p � max(is; iu) whi
h is a power of 2, p�is $ p�iu, where� ranges over the
omparisons <, > and =. These
onditions
an be expressed in FO(BIT; <).We now
onsider the predi
ate s � u. There are four
ases. If both i0s; i0u < 2l(n), this is false, as s; uare not in the a
tive domain, and hen
e of the same length. Similarly if i0s < 2l(n) and i0u = 2l(n),then s � u is false.The third
ase is when i0s = i0u = 2l(n). In this
ase both s and u are in the a
tive domain, and theformula below states that s � u:9p; p0 FirstBIT(is; p) ^ FirstBIT(iu; p0) ^ p < p0^8q � p0 BIT(is; p� q)$ BIT(iu; p0 � q);39

where FirstBIT(u; p) is the formulaBIT(u; p) ^ 8q (p < q � l(n))! :BIT(u; q)expressing that u has length p.The last
ase is when i0s = 2l(n) and i0u < 2l(n) (that is, s is in the a
tive domain, u is not). Weredu
e it to the previous
ase as follows: s � u i� s = v or s � v, where v is the immediateprede
essor (in the � relation) of u. Note that for u of length l(n), its prede
essor is in the a
tivedomain, so if we
an state this
ondition, then the previous
ase applies to test if s � v. To
he
kthat a number m is su
h that v with N(v) = m is an immediate prede
essor of u, we
onsider twosub
ases. In the �rst sub
ase, n+ i0u is odd (this
an be tested with BIT). In that
ase, one shouldtest if 2m+1 = n+ i0u. Note that in FO(BIT; <) we
an only quantify over numbers not ex
eedingn, so this test is done by 9k (k +m = n) ^ (k + i0u = m+ 1):In the sub
ase when n+ i0u is even, one should test if 2m = n+ i0u, whi
h is done by 9k (k +m =n) ^ (k + i0u = m).Thus, we have shown that every Boolean query
an be evaluated in AC0 over ni
e databases. Nowlet Q be a Boolean relational query Q, that is expressible in RC(C) by a query 	. There is a familyof
ir
uits C that
omputes 	 on ni
e databases. Now, for a relational database, let en
0(D) bethe standard en
oding under whi
h elements of the a
tive domain of size k are
oded as integers1; : : : ; k in binary. Given an arbitrary relational database D,
onsider en
0(D) as the input to C.Let D0 be a (ni
e) database over strings obtained from D by repla
ing the ith element of the a
tivedomain with the string s su
h that N(s) = i. Then en
(D0) = en
0(D), and thus when it is givento C, C returns 	(D0). But by generi
ity, we have Q(D) = Q(D0) = 	(D0), whi
h implies that Qis in AC0.It remains to show that the data
omplexity of generi
 queries in RC(Slen) is in TC0. Let 	 be ageneri
 query de�nable in RC(Slen). For ea
h database D, let ni
e(D) be a database obtained fromD as follows: let adom(D) = fs1; : : : ; skg, where s1 �lex : : : �lex sk. Then in ni
e(D), ea
h si fromD is repla
ed by a string s0i with N(s0i) = i. Note that this transformation
an be
arried out inTC0, as �lex is in AC0 by Corollary 4.5, and
ounting the number of elements satisfying a formula
an be done in TC0 [7℄. Furthermore, by generi
ity, D j= 	 i� ni
e(D) j= 	. The latter
an be
he
ked in AC0, whi
h gives us a TC0 upper bound on the data
omplexity of generi
 queries. Thetheorem is proved. 2One
annot draw any de�nite
on
lusions from the �rst statement of Theorem 4.10, as TC0 isnot yet separated from NP (although widely believed to be properly
ontained in DLogSpa
e).However, the se
ond statement, and known lower bounds for AC0 [2, 35℄ give us:4.11 Corollary Parity test and
onne
tivity test are not de�nable in RC(Slen).We now prove lower bounds that show the
omplexity of Slen queries, although within PH, may beprohibitively high. Let MSO(SC) be the
lass of queries over SC expressible in monadi
 se
ond-order logi
. This in
ludes queries of high-
omplexity, namely for ea
h level of the polynomial hier-ar
hy, PH,
omplete queries [3℄, in parti
ular, NP-
omplete and
oNP-
omplete ones (3-
olorabilityand its
omplement). Su
h queries
annot be expressed over arbitrary databases in RC(Slen) (e.g.,not over ni
e ones); however, they
an be expressed under some additional assumptions.40

We say that the width of the a
tive domain of an SC database D (over ��) is k if k is the maximalsize of a subset of adom(D) whose elements are pairwise in
omparable by the pre�x relation. Itshould be noted that every database D
an be transformed into a database D0 of width 1 whi
h isisomorphi
 to D with respe
t to the SC-predi
ates.4.12 Proposition For every �xed k, all MSO(SC)-expressible queries
an be expressed overdatabases of width at most k in RC(SC;Slen).Proof. Assume without loss of generality that 0; 1 2 �. For a database D of width k, the set of�-maximal elements fs1; : : : ; slg of adom(D) has
ardinality l � k, and thus pre�x (D) is the unionof
hains pre�x (s1); : : : ; pre�x (sl), where pre�x (s) = fs0 j s0 � sg. The idea of the proof is this: asubset Z of pre�x (s)
an be modeled by a string sZ 2 f0; 1g� of the same length as s, su
h thats0 � s is in Z i� the pre�x of sZ of the length js0j ends on a 1.Now suppose an MSO(SC) query Q is given. We assume it is expressed by an MSO senten
e � inwhi
h all quanti�ed se
ond-order variables are distin
t. Letm1; : : : ;mk be fresh �rst-order variables(to be interpreted as maximal elements of adom(D)). We then asso
iate with ea
h se
ond-orderquanti�er 9Z new �rst-order variables s1Z ; : : : ; skZ , and de�ne the following transformation ' 7! 'Æof subformulae of �:� Every atomi
 subformula other than Z(x), where Z is a se
ond-order variable, is un
hanged.� Every subformula Z(x) is repla
ed by (Z(x))Æ de�ned ask_i=1x �mi ^ 9y � siZ el(y; x) ^ L1(y):� ('1 �'2)Æ = 'Æ1 �'Æ2, where � is ^ or _, (:')Æ = :'Æ, (9u')Æ = 9u'Æ, where u is a �rst-ordervariable.� A subformula 9Z' is repla
ed by (9Z')Æ de�ned as9s1Z ; : : : ; skZ k̂i=1 el(siZ ;mi) ^ 'Æ:The result of this transformation is an open RC(Slen) query �Æ(m1; : : : ;mk). We now de�ne aBoolean RC(Slen) as9m12adom : : : 9mk2adom 8u2adom_i u � mi ^�Æ(m1; : : : ;mk);stating that m1; : : : ;mk list all (not ne
essarily distin
t) maximal elements of adom(D), and that�Æ(m1; : : : ;mk) holds. For a database of width at most k, this means that �Æ(m1; : : : ;mk) holdsfor the list of all maximal elements in adom(D), whi
h happens i� D j= �. 2Thus, while not
omputationally
omplete as RC
on
at , RC(Slen)
an express some queries thatnormally would not be expe
ted to be expressible in a �rst-order language.41

Re
all that we had a linear time bound for the evaluation of Boolean RC(S)-queries on unarydatabases. We show next, that this might not be the
ase for RC(Slen). Even worse, there mightbe even no �xed polynomial bound.We
onsider ordered graphs as �nite stru
tures with a universe U of the form f1; : : : ; ng, the naturalorder relation < on U and a binary relation E. Let SC be the database s
hema with one unaryrelation name R.4.13 Lemma For every �rst-order formula ' on ordered graphs there is a RC(SC;Slen)-formula'0 and an algorithm whi
h
omputes for ea
h graph G an SC-database DG su
h that G j= ' if andonly if DG j= '0. Furthermore, the algorithm works in time O(n2 log n) on graphs with n verti
esand the maximum length of a string in DG is 2dlog2 ne + 1 and,
onsequently, the size of DG isO(n2 log n).Proof. We give the proof for � = f0; 1g. Let an ordered graph G with n verti
es be given and letm := dlog2 ne. We de�ne DG as follows. Let a1; : : : ; an denote the lexi
ographi
ally �rst n stringsof length m. We de�ne the set R asfa1; : : : ; ang [fai � 0 � ai j i � ng [fai � 1 � aj j (j; i) 2 Eg:Intuitively, the strings a1; : : : ; an represent the verti
es of G. There is an edge from vertex j tovertex i if and only if ai � 1 � aj 2 R. The verti
es ai � 0 � ai are used to get ai from aj � 1 � ai.It is straightforward to
he
k that DG has the desired size and
an be produ
ed in time O(n2 logn)assuming a suitable representation of G.The formula '0 is obtained from ' as follows. First, all subformulas of the form 9x (x) are repla
edby 9x 2 adom(:9y y � x ^ R(y)) ^ (x). Intuitively, the quanti�
ation is restri
ted to minimalelements of the a
tive domain of DG, i.e., to a1; : : : ; an. Note however that the next two steps willintrodu
e new unrestri
ted quanti�ers.Next, atomi
 formulas x < y are repla
ed by9z; z0; z1 l0(z) = z0 ^ l1(z) = z1 ^ z0 � x ^ z1 � yFinally, atomi
 formulas E(x; y) are repla
ed by9x1; x2; y1; y2 l0(x) = x1 ^ l1(y) = y1 ^ x1 � x2 ^ y1 � y2 ^R(x2) ^R(y2)^8x3; y3(x1 � x3 � x2 ^ y1 � y3 � y2 ^ el(x3; y3))! (L0(x3)$ L0(y3))whi
h states the existen
e of strings x2 and y2 of the form x0x and y1x0 and su
h that, se
ond lineof the formula, x = x0. It is straightforward to
he
k that G j= ' if and only if DG j= '0. 2It follows from the lemma that a linear (or �xed polynomial) bound for the evaluation of BooleanRC(Slen)-queries on unary databases would imply a �xed polynomial bound for the data
omplexityof �rst-order senten
es on ordered graphs. It would imply further a �xed polynomial bound forthe evaluation of �rst-order senten
es on BIT-stru
tures (
f., [6℄). This, in turn, would separate�rst-order logi
 from least �xed point logi
 on su
h stru
tures and therefore imply the validity ofthe ordered
onje
ture [49℄ with various
onsequen
es in
omplexity theory (see [6℄ for a dis
ussion).We
annot
on
lude from this
onne
tion that linear time evaluation for RC(Slen) queries on unarydatabases is impossible. But we
annot expe
t a proof as simple as that of Proposition 4.7 forRC(S). 42

4.3.3 Relational
al
uli over Sleft;Sreg and Sreg;leftThese
al
uli behave similarly to RC(S), although some
omplexity bounds are slightly di�erent.From the isolation property shown for all the stru
tures and from QE results we
on
lude thefollowing:4.14 Theorem RC(Sleft), RC(Sreg), and RC(Sreg;left) admit the restri
ted quanti�er
ollapse.Furthermore, RC(S+left), RC(S+reg), and RC(S+reg;left) admit the natural-a
tive
ollapse.4.15 Corollary RC(Sleft) queries have AC0 data
omplexity, while RC(Sreg) and RC(Sreg;left)queries have NC1 data
omplexity. Furthermore, every generi
 query expressible in RC(Sleft) orRC(Sreg) is expressible in RC(<).Proof. The proof of the AC0 bound is the same as for Corollary 4.5 ex
ept that we need to showthat ea
h �xed Sleft formula
an be evaluated in AC0. By the quanti�er elimination result quotedin the proof of Theorem 4.14, it suÆ
es to show that every �xed quanti�er-free formula in S+left
anbe evaluated in AC0. For that, we noti
e that every S+left term
an be evaluated in AC0 (sin
e bothx� a and a � x operations are available), and the rest follows the proof for S.For Sreg, we again use the
ollapse result and the proof that RC(S) queries with a
tive-domainquanti�
ation
an be evaluated in AC0 (and hen
e NC1). The only di�eren
e is in evaluating thePL predi
ates, whi
h
an no longer be done in AC0 as L may not be star-free. However, everyregular language is in NC1 [65℄, and thus PL
an be evaluated in NC1 on its inputs, showing thatthe data
omplexity of RC(Sreg) is in NC1. The proof for Sreg;left
ombines the proofs for Sleft andSreg.The last statement follows from the
ollapse result and [10℄. 2Note the
ontrast of the above with Proposition 4.12, whi
h implies that relational
al
ulus overSlen
ontains problems
omplete for ea
h level of the polynomial hierar
hy. Theorem 4.14 is thekey for obtaining low data
omplexity. It follows from the isolation property of the underlyingstru
ture, whi
h fails for Slen as it does not have �nite VC-dimension (re
all Proposition 3.2).4.4 Safe QueriesAll the relational
al
uli we study here
ontain queries that sometimes produ
e in�nite output.Thus one of our goals is to synta
ti
ally
apture the safe queries in these languages, and to be ableto analyze safety properties of a query { for example, given an arbitrary query and a database,to tell whether the output of the query on that database is �nite. We saw that this
annot bedone if the set of operations in
ludes
on
atenation. In
ontrast, for our �ve stru
tures, we
ansynta
ti
ally des
ribe safe queries, give an algebra that
aptures these queries, and extend themajor de
idability results for query safety analysis that hold for pure relational
al
ulus.
43

4.4.1 E�e
tive syntax for safe queries: de�ning �nitenessThe simplest way to show that safe queries in RC(M) have e�e
tive syntax is to show that one
antest if a given query returns a �nite result on a given database. To do so, it is enough to ensurethat �niteness is de�nable in RC(M). Formally, �niteness is de�nable in RC(M) if there exists asenten
e �safe in the language of M and SC expanded with a single new unary predi
ate symbolU su
h that for any query '(x) and any database D, (D;'(D)) j= �safe i� '(D) is �nite. Forexample, �niteness is easily de�nable in RC(Slen) by9y8x(U(x)! 9z � y el(z; x)):On
e �niteness is de�nable, an enumeration of safe queries
an easily be obtained. Given a query'(~x), let '(x) be another relational
al
ulus query that de�nes the a
tive domain of the output of'. Let �safe' be the Boolean query obtained from �safe be repla
ing U(�) by '(�). Then '(~x)^�safe'lists all safe queries.For traditional relational
al
ulus, and for its analogs over order
onstraints, linear
onstraints, andpolynomial
onstraints, �niteness
an easily be shown to be de�nable [11℄. It is thus surprising thatfor RC(S) this approa
h does not work:4.16 Proposition Finiteness is not de�nable in RC(S).Proof. We prove the proposition for � = f0; 1g; it is straightforward to generalize this for anyalphabet. We
onsider databases with one unary predi
ate U . We show by an Ehrenfeu
ht-Fra��ss�egame argument that, for ea
h k, there are databases Ak and Bk su
h that U is a �nite set in Akand an in�nite set in Bk but Ak and Bk
an not be distinguished by a RC(S)-formula of quanti�errank k.Let k � 0 be �xed.Let Ti denote the set of strings of length at most i. Intuitively, Ti is the full binary tree of depth i(and formally it is the same as ��i).We use �k to denote equivalen
e in the k-round Ehrenfeu
ht game on stru
tures based on S and�sk to denote equivalen
e in the k-round Ehrenfeu
ht-Fra��ss�e game on strings.We will use the following Claim.Claim 1 There exist N and n > 0 (depending on k) su
h that for ea
h i � N it holds that(S; Ti) �k (S; Ti+n). Without loss of generality we
an
hoose N as a multiple of n.Proof of the Claim: For every k, �k has �nitely many equivalen
e
lass. Let N be this number.By the pigeon-hole prin
iple there exists two integers i; j su
h that i � N + 1 and j � N + 1 andTi �k Tj. We show that for any two integers u; v, Tu � Tv implies Tu+1 � Tv+1, the
laim willthen follow with n = j � i. To prove the latter noti
e that Tu+1 is simply j�j
opies of Tu plus onenode. Similarly Tv+1 is simply j�j
opies of Tv plus one node. The FOk strategy on Tu+1 and Tv+1mimi
s the strategy for Tu and Tv on ea
h
opy separately and the root is played as soon as theother root is played. 2Let m = 2kn and M = 23kkn+N . Let Ak be (S; TM).44

Next, we de�ne an in�nite set S su
h that Ak and (S; S)
an not be distinguished by a formula ofdepth k. Let h be the string homomorphism whi
h maps 0 to 0m and 1 to 1m. We
all a string wnormal if it is of the form h((01)i), for some i � 0. We
all w semi-normal if it is h(v) for somestring v. The set S is de�ned as the set of all strings of the form uv, where u is a normal stringand v is a string of length at most N + 2m. We set Bk = (S; S). Note that S is pre�x-
losed andthat all maximal strings in Bk have a length whi
h is a multiple of n.For two strings u and w su
h that u is a pre�x of w we write Ak[u;w℄ for the substru
ture of Ak that
onsists of all strings v su
h that u is a pre�x of v but w is not a stri
t pre�x of v and analogouslyfor Bk. Let Modn denote a sequen
e Z0; : : : ; Zn�1 of unary relations over (initial segments of) thenatural numbers su
h that Zi(j) holds if and only if (j mod n) = i.For later use we need the following lemma.4.17 Lemma (a) Let v; w be semi-normal strings and v0; w0 normal strings su
h that v is apre�x of w and v0 is a pre�x of w0 and jwj � M � N . Let u = w � v and u0 = w0 � v0. If(u;Modn) �sk (u0;Modn) then Ak[v; w℄ �k Bk[v0; w0℄.(b) (h(0);Modn) �sk (h(00);Modn) and (h(01);Modn) �sk (h(001);Modn).(
) For ea
h i � 2k + 1 it holds that (h((01)2k+1);Modn) �sk (h((01)i);Modn).Proof of Lemma 4.17.(a) Intuitively in the tree TM , [v; w℄
onsists of the path from v to w and of trees bran
hing o�the strings on that path. By de�nition of Ak the tree bran
hing o� a string z of the path hasdepth M � jzj � 1 whi
h is at least N and
ongruent to N � jz � vj � 1 modulo n, as M , Nand jvj are multiples of n. More pre
isely, we refer here to the tree that is rooted at the
hildof z whi
h is not a pre�x of w. Analogously, if z0 is a string of the path from v0 to w0 in Bkthere is a tree of depth (2m+N)�jz0�y0j�1 bran
hing o� z0, where y0 is the longest normalstring whi
h is a pre�x of z0. Hen
e, the depth of this tree is at least N and it is
ongruentto N � jz0 � v0j � 1 modulo n. We
an
on
lude from Claim 1 that the bran
hing trees at zand z0 are k-equivalent, whenever jz � vj and jz0 � v0j are
ongruent modulo n.By
ombining the winning strategy of the dupli
ator on (u;Modn) and (u0;Modn) with thewinning strategies on the o�-bran
hing trees we get (a).(b) The �rst statement is shown by a standard game argument using the fa
t that h(0) is the
on
atenation of 2k strings of length n. Ea
h of these substrings is identi
ally labeled byModn. In a k round game this
an not be distinguished from the
on
atenation of 2 � 2k su
hstrings. The se
ond statement follows dire
tly from the �rst one.(
) This
an also be shown by a standard argument. 2Next, we have to show that (S; TM) �k (S; S).Claim 2 The dupli
ator
an play the k round Ehrenfeu
ht-Fra��ss�e game in a way that guaranteesthat the following holds after l rounds of the game.45

Let ~a = a1; : : : ; al denote the sele
ted elements of Ak and let ~b = b1; : : : ; bl denote the
orrespondingelements in Bk.There is a semi-normal string pl and a normal string ql (the pivot strings) su
h that1. None of the ai has pl as a pre�x and none of the bi has ql as a pre�x.2. (Ak � pl�;~a) �k (Bk � ql�;~b).3. jplj � l23kn.Here, Ak� pl� denotes the substru
ture of Ak in whi
h all strings that have pl as a stri
t pre�x areomitted and in whi
h pl is a distinguished
onstant (and analogously for Bk � ql�).Proof of the
laim. It should be noted that, as ql is normal, Bk � ql� only
ontains a �nite part ofS. In the proof, it will always be the
ase that pl is a pre�x of pl+1 and ql is a pre�x of ql+1.Be
ause of
ondition (1) we
an
on
lude from (2) that there is a partial S-isomorphism from ~a)to ~b) at the end of the game. Hen
e the
laim implies the statement of the theorem.We prove the
laim by indu
tion on l. For l = 0 we
hoose p0 = q0 = �. This guarantees (1)-(3).Now assume that, for some l < k, l rounds have been played and there are pl and ql su
h that(1)-(3) hold. We show that the dupli
ator
an play in a way su
h that, for suitable
hoi
es of pl+1and ql+1 (1)-(3) also holds for l + 1.We distinguish 3
ases.Case 1. The spoiler
hooses a vertex in Ak � pl� or Bk � ql�. Then we simply set pl+1 = pl andql+1 = ql and (1)-(3) follow dire
tly.Case 2. The spoiler
hooses a string al+1 whi
h has pl as a pre�x. Let u = al+1 � pl.� If u is of the form h(01) �v, for some v then we set pl+1 = pl �h(001) and ql+1 = ql �h(01).� Otherwise we set pl+1 = pl � h(01) and ql+1 = ql � h(01).In both sub
ases, pl+1 is not a pre�x of al+1. As jpl+1j � jplj + 3m � M � N it followsfrom Lemma 4.17 (a) and (b) that in both sub
ases Ak[pl; pl+1℄ �k Bk[ql; ql+1℄. Thereforethe dupli
ator
an
hoose a string bl+1 in Bk[ql; ql+1℄ that guarantees a winning strategyon Ak[pl; pl+1℄ and Bk[ql; ql+1℄ for k � 1 more rounds. By
ombining this winning strategywith the winning strategy on (Ak � pl�;~a) and (Bk � ql�;~b) we obtain a k � l � 1 roundwinning strategy on (Ak � pl+1�;~a; al+1) and (Bk � ql+1�;~b; bl+1). Hen
e, we
an
on
lude(2). Furthermore, of
ourse, (1) and (3) hold.Case 3. The spoiler
hooses a string bl+1 whi
h has ql as a pre�x. Let i be maximal su
h that bl+1
an be written as ql � h((01)i) � v, for some string v. We
hoose ql+1 = ql � h((01)i+1) andpl+1 = � pl � h((01)i+1) if i � 2k,pl � h((01)2k+1) otherwise.The
hoi
e of ql+1 guarantees that it is not a pre�x of bl+1. From Lemma 4.17 (
) and (a)it follows that in both sub
ases Ak[pl; pl+1℄ �k Bk[ql; ql+1℄. This implies the existen
e of an46

appropriate al+1 in Ak[pl; pl+1℄ su
h that (2) holds again. By the
hoi
e of pl+1 and indu
tionwe also get (1) and (3). 2This
ompletes the proof of the proposition. 24.4.2 E�e
tive syntax for safe queries: range-restri
tionWhile post-
he
king �niteness is a way to obtain e�e
tive syntax for safe queries, one often wishesto have a more expli
it representation of safe queries. It turns out that we
an get natural repre-sentations for safe queries in RC(S) and RC(Slen) and other
al
uli. The te
hnique we use derivesfrom work on safe languages with linear or polynomial
onstraints [11℄: for ea
h query Q, we ef-fe
tively
onstru
t another safe query Q0 that gives an upper bound on Q(D), if it is �nite. Su
hexpli
it
onstru
tions are used to prove the theorem below, as well as to provide relational algebraextensions.We follow the idea of range-restri
tion as presented in [11℄. A formula
(x; z) over M is
alledalgebrai
 if for every b, the set fa j M j=
(a; b)g is �nite. An RC(M) query in range-restri
tedform is a pair Q = (
(x; y); '(x1; : : : ; xn)), where ' is an arbitrary query and
 is an algebrai
formula over M. The semanti
s is given by '(~x) ^ 9~y2adom (Vi
(xi; yi)). That is,Q(D) =
(adom(D))n \ '(D);where
(X) = fa j
(a; b) for some b 2 Xg. Clearly, every query in range-restri
ted form is safe.4.18 Theorem Let M be S, or Sleft, or Sreg, or Sreg;left, or Slen. Then there is a re
ursive set � ofalgebrai
 formulae over M su
h that, given a query '(~x) in RC(M), there is
(x; y) 2 � with theproperty that the range-restri
ted query Q = (
; ')
oin
ides with ' on all databases over whi
h' is safe.Proof. The proof is based on a number of lemmas, whi
h show that if a query '(x) is satis�edby an element that is suÆ
iently far from adom(D), then ' returns an in�nite result on D. Thede�nition of \suÆ
iently far" depends on the parti
ular stru
ture.First, we need two observations. The �rst one is a generalized version of the pumping lemma for�nite automata.4.19 Lemma For ea
h sequen
e L1; : : : ; Lm of regular languages there is a number k su
h that forea
h string z, jzj > k, there are strings u; v; w, with z = uvw and jvj > 0, su
h that for ea
h stringx, ea
h j 2 f1; : : : ;mg and ea
h i > 0,xuvw 2 Lj () xuviw 2 Lj :Proof of Lemma 4.19. Let, for ea
h i � m, Ai be a deterministi
 automaton for Li with transitionfun
tion Æi. Without loss of generality we assume that all automata have the same set f1; : : : ; ngof states with 1 as the initial state. Let k := nnm and z be a string with jzj > k. For ea
h j � m,� � n and l � jzj, let qj�l be de�ned as Æj(�; z[1; l℄), where z[1; l℄ is the pre�x of z of length l.47

I.e., qj�l is the state of Aj after reading the �rst l symbols of z starting from state �. As jzj > kthere must be l1 6= l2 su
h that qj�l1 = qj�l2 , for all j � m and � � n. Let u; v; w be
hosen su
hthat z = uvw, u is the pre�x of z of length l1 and v is of length l2 � l1. We
laim that for everyj � m, every i > 0 and every string x, xuvw 2 Lj if and only if xuviw 2 Lj . Indeed, let � be thestate Æj(1; x). Then, as qj�l1 = qj�l2 we have Æj(�; u) = Æj(�; uv) = Æj(�; uvi). Therefore xuvw isa

epted by Aj if and only if xuviw is a

epted by Aj. 2Using this lemma, we show:Claim. Let M = h��;
i be su
h that all operations in
 are de�nable in Slen. Then, for everyr > 0, there exists k > 0 su
h that for any string s with jsj � k, there are in�nitely many stringss0 satisfying (M; s) �r (M; s0).Proof of the
laim. Indeed, let �1(x); : : : ; �l(x) list formulae (of quanti�er rank r) that de�ne allthe r-types of a single string over M. Sin
e ea
h �i is de�nable over Slen, there is a DFA Ai whi
ha

epts a string s i� M j= �i(s) [14℄. In parti
ular, the set of strings s whi
h make �i(s) true is aregular language Li. From Lemma 4.19 it follows, that there is a k su
h that, for ea
h string s withjsj > k there are in�nitely many strings s0 that are
ontained exa
tly in the same languages Li ass, i.e., make the same formulas �i true, whi
h implies (M; s) �r (M; s0). This proves the
laim. 2Given C � �� and s 2 ��, let d(s; C) be jsj � jMeet(s; C)j, that is, the length of the relative suÆxof Meet(s; C) in s.Given a database D, let pre�x (D) = fs j s � s0; s0 2 adom(D)g.4.20 Lemma Let '(x) be a RC(S) query. Then there exists a number k > 0, su
h that thefollowing holds. If D j= '(s) for some s with d(s; pre�x (D)) > k then there are in�nitely manystrings
 su
h that D j= '(
). If ' only uses pre�x-restri
ted quanti�
ation then k
an be e�e
tively
omputed.Proof of Lemma 4.20. By Corollary 4.4 we may assume without loss of generality that all quan-ti�
ation in ' is pre�x-restri
ted. Let r be the quanti�er rank of '. We show that we
an �nd ksu
h that the following holds. Let D be a database, and s a string with d(s; pre�x (D)) > k. For astring u, let Cu = pre�x (D) [fs0 j s0 � ug. Then there are in�nitely many strings u su
h that thedupli
ator has a winning strategy for the r-round Ehrenfeu
ht game on Cs and Cu (with the partialisomorphism being with respe
t to the operations of S, and with s mapped to u); moreover, inthe winning strategy, the dupli
ator simply
opies the spoiler's moves on pre�x (D). Note that this
ondition implies that in the �nal position all the SC-relations are preserved, and hen
e D j= '(s)i� D j= '(u), thus implying the lemma.To prove the above
ondition, let k > 0 be given by the
laim. Consider s with d(s; pre�x (D)) > k,and let s0 be the relative suÆx of Meet(s; pre�x (D)) in s. We have js0j > k. We then have in�nitelymany strings u0 su
h that (S; s0) �r (S; u0). Take any su
h string u0, and form a new stringu = (Meet(s; pre�x (D))) � u0. It is
lear that the required strategy exists for the dupli
ator on Csand Cu.To show that k
an be found from ', note �rst that the
onversion into a query with pre�x-boundedquanti�
ation is e�e
tive, and the
laim is e�e
tive too, as any Slen formula
an be e�e
tively
onverted into an automaton. The lemma is proved. 248

Next we de�ne #D = fs j jsj � js0j; s0 2 adom(D)g.4.21 Lemma Let '(x) be a RC(Slen) query. Then there exists a number k > 0 su
h that thefollowing holds. If D j= '(s) for some s with d(s; #D) > k then there are in�nitely many strings
 su
h that D j= '(
). If ' only uses length-restri
ted quanti�
ation then k
an be e�e
tively
omputed.Proof of Lemma 4.21. By Proposition 4.8 we may assume without loss of generality that in '(x)all quanti�
ation is length-restri
ted. Let r be the quanti�er rank of '. For any string s, let Sslenbe the stru
ture (#s;�; (La)a2�; el; s). By the Claim, we
an �nd a number k su
h that for anystring s of jsj > k, there exist in�nitely many strings s0 of js0j > k with Sslen �r Ss0len. Note that k
an be found e�e
tively for a given '.Now assume that for some D and s, D j= '(s) with d(s; #D) > k. Let m be the maximum lengthof a string in adom(D), and s0 the pre�x of s of length m. Then s = s0 � s1 for a string s1 ofjs1j > k. We now show that there are in�nitely many strings s0 of length greater than m+ k su
hthat the dupli
ator has a winning strategy in the r-round Ehrenfeu
ht game on Sslen and Ss0len su
hthat the play is the identity fun
tion when restri
ted to strings of length not ex
eeding m. Clearly,this suÆ
es to prove the lemma, sin
e jxj � m for all x 2 adom(D) and thus (D; s) �r (D; s0) andD j= '(s0).Consider any string s01 su
h that Ss1len �r Ss01len (we know that there are in�nitely many of them),and let s0 be s0 � s01. We prove that the dupli
ator wins the r-round game on Sslen and Ss0len. Thestrategy is as follows. The dupli
ator maintains (for his memory) a separate game on Ss1len and Ss01len.If the spoiler plays a string of length not ex
eeding m, the dupli
ator's response is the same string.Assume that the spoiler plays x of jxj > m. Let x = x0 � x1 with x0 being the length m pre�x ofx. Assume that the spoiler plays it in Sslen (if the spoiler plays in Ss0len, the proof is identi
al). Thedupli
ator then looks at the
urrent position of the auxiliary game on Ss1len and Ss01len (whi
h is emptyuntil the spoiler makes the �rst move of length > m), and extends it by one move: spoiler's moveis x1 on Ss1len, and the response is a string x01 in Ss01len a

ording to the winning strategy Ss1len �r Ss01len.Having done that, the dupli
ator returns to the game on Sslen and Ss0len, and responds by x0 � x01 inSs0len.We now show that the dupli
ator wins the game. Clearly all La predi
ates are preserved. Assumethat in Sslen, u � v, where u and v are two moves in the game. Let u0 and v0 be the
orrespondingmoves played on Ss0len. If both u and v are of length at most m, then u0 = u; v0 = v and u0 � v0.If juj � m and jvj > m, then u0 = u, and v0 is of the form v0 � v01, where v0 is the pre�x of v oflength m, and thus u0 � v0. If ju j; j v j> m then u0 � v0 by the winning strategy on Sslen and Ss0lenand the fa
t that u and v have the same pre�x of length m. Next, assume el(u; v) holds. The
aseof the length � m is trivial. If juj; jvj > m, then u = u0 � u1; v = v0 � v1, where u0; v0 are lengthm pre�xes, and by the des
ription of the dupli
ator's strategy, u0 = u0 � u01 and v0 = v0 � v01, whereu01; v01 are moves taken from the auxiliary game on Ss1len and Ss01len. Sin
e the dupli
ator wins theauxiliary game, we have ju1j = ju01j and jv1j = jv01j, and thus el(u0; v0) holds. This
ompletes theproof of the lemma. 2For any set X, let N0p (X) = fs�s1+s2 j s 2 X; js1j; js2j � pg, and let Np(X) = pre�x (N0p (X)) (thatis, the pre�x-
losure of N0p (X)). Note that Np(X) = N0p (pre�x (X)), and Nk(Nm(X)) � Nk+m(X).49

4.22 Lemma Let '(x) be a RC(Sleft) query. Then there exist numbers l;m > 0 su
h that thefollowing holds. If D j= '(s) for some s with d(s;Nm(pre�x (D))) > l then there are in�nitely manystrings
 su
h that D j= '(
).Proof of Lemma 4.22. This follows from the normal form for Sleft (Corollary 3.15) and Lemma4.20. 24.23 Lemma Given a RC(Sreg) query '(x), there exists k > 0 su
h that whenever D j= '(s) withd(s; pre�x (D)) > k, there are in�nitely many strings
 su
h that D j= '(
).Proof of Lemma 4.23. To show this, assume by the restri
ted quanti�er
ollapse and quanti�er-elimination for S+reg that ' is of the formQy1 2 adom : : : Qyl 2 adom _i ĵ �ij(x; ~y);where ea
h �ij is either an atomi
 or negated atomi
 SC-formula, or an Sreg formula not involvingthe variable x, or a formula of the form PL(t1(x; ~y); t2(x; ~y)), where ti is either � or a u-term.Let L1; : : : ; Lm be the regular languages su
h that the formulae PLi appear in '. We denote thequanti�er-free part (that is WiVj �ij) by �(x; ~y).Let i > 1 and D j= '(s) with d(s; pre�x (D)) > k. We apply Lemma 4.19 to z = s �(Meet(s; pre�x (D))), and let
 = (Meet(s; pre�x (D))) � uviw; i > 1. We now show that for ev-ery ~y0 2 (adom(D) [f�g)l, it is the
ase that D j= �(s; ~y0) i� D j= �(
; ~y0). This will implyD j= '(s) $ '(
) (see [10℄) thus proving the result. To prove D j= �(s; ~y0) $ �(
; ~y0), it suÆ
esto show that D j= PL(t1(
; ~y0); t2(
; ~y0)) $ PL(t1(s; ~y0); t2(s; ~y0)), where L 2 fL1; : : : ; Lmg, as forall other types of formulae �ij the equivalen
e is trivial.We now �x ~y0 2 (adom(D) [f�g)l and
onsider the atomi
 formula �(x) = PL(t1(x; ~y0); t2(x; ~y0)).If tj, j = 1; 2 involves meets of x with some of the
omponents of ~y0, then the value of tj will bethe same on s and on
, as Meet(s; pre�x (D)) = Meet(
; pre�x (D)). Thus, if both t1 and t2 involvesu
h meets, we have D j= �(s)$ �(
).The other
ase is when t2 is simply x, and in this
ase t1 is either � or x u yi10 u : : : u yip0 , for some
omponents of ~y0 (we
an in
lude x in the u-term without loss of generality, sin
e its value must bea pre�x of x, by the de�nition of PL). Sin
e Meet(s; pre�x (D)) = Meet(
; pre�x (D)), t1(s) equalst1(
) and belongs to pre�x (D). To prove D j= �(s)$ �(
), it then suÆ
es to show that s� s0 2 Li�
�s0 2 L, whi
h follows immediately from Lemma 4.19. This
ompletes the proof of the lemma.2Finally, we need a lemma for Sreg;left. Its proof follows from the normal form for Sreg;left (Corollary3.25) and Lemma 4.23.4.24 Lemma Let '(x) be a RC(Sreg;left) query. Then there exist numbers l;m > 0 su
h that thefollowing holds. Assume that D j= '(s) for some s with d(s;Nm(pre�x (D))) > l. Then there arein�nitely many strings
 su
h that D j= '(
).Proof of Theorem 4.18,
ompleted. To prove the theorem, take an arbitrary query (~y) and form50

'(x) that de�nes the a
tive domain of the output of , that is, '(x) is9y2; : : : ; yn (x; y2; : : : ; yn) _ : : : _ 9y1; : : : ; yn�1 (y1; : : : ; yn�1; x):It then suÆ
es to prove the theorem for '(x), sin
e is safe for D i� ' is safe for D, and thus forany
 su
h that (
; ') is equivalent to ' on all D for whi
h ' is safe, the same would be true for(
;) and .Having redu
ed the problem to queries on one variable, simply apply the
orresponding lemmas.For RC(S), given '(x), �nd the number k as in Lemma 4.20, and let
(x; y) say that x is a pre�xof the string of the form y � s with jsj � k. From Lemma 4.20 it follows that (
; ') is equivalent to' on any D for whi
h ' is safe. Finally,
 is
learly algebrai
, and expressible over S for any �xedk.For RC(Slen), given '(x), we get k from Lemma 4.21 and let
(x; y) be an Slen formula saying thatthe length of x is at most the length of y plus k. Clearly, this is expressible for ea
h �xed k, and(
; ')
oin
ides with ' on any D for whi
h ' is safe. This
ompletes the proof of the theorem.The proof for Sleft is similar: one gets l; t from Lemma 4.22, and the formula
(x; y) says that xis at the distan
e at most l from a pre�x of a string of the form y � e + f , with jej; jf j � t. Theproofs for Sreg and Sreg;left follow the same idea. This
on
ludes the proof of Theorem 4.18. 24.25 Corollary For ea
h of� RC(S),� RC(Sleft),� RC(Sreg),� RC(Sreg;left),� RC(Slen),the
lasses of range-restri
ted and safe queries
oin
ide, and safe queries have e�e
tive syntax.Note that for queries in RC(S) and RC(Slen) that use a restri
ted form of quanti�
ation (pre�x orlength), the proof gives us a stronger result: namely, the formula

an be e�e
tively found for agiven '.4.4.3 Relational algebrasIt is a
lassi
al result of relational database theory that the set of safe relational
al
ulus queriesis pre
isely the set of relational algebra queries [1℄. This result extends to string
al
uli
onsideredhere: safety theorems proved earlier
an be used to show that safe queries in RC(S) and RC(Slen)
an be
aptured by appropriate extensions of relational algebra.Let safe RC(M) be the
lass of all safe queries in RC(M). To de�ne algebras
apturing safe RC(M)for the previous two stru
tures, we need a number of operations extending the usual relationalalgebra (that is, sele
tion �, proje
tion �,
artesian produ
t �, di�eren
e �, union [):51

R�: is the
onstant unary relation f�g.��: for a formula �(x1; : : : ; xn). On an n-attribute relationR, it returns the set of tuples (s1; : : : ; sn)from R su
h that �(s1; : : : ; sn) holds.prefixi: On an m-attribute relation R, it returns the m + 1-attribute relation f(s1; : : : ; sm+1) j(s1; : : : ; sm) 2 R; sm+1 � sig.addlai , a 2 �: On anm-attribute relation R, it returns them+1-attribute relation f(s1; : : : ; sm+1) j(s1; : : : ; sm) 2 R; sm+1 = si � ag.#i: Given an m-attribute relation R, #i(R) returns f(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; jsm+1j �jsijg.addfai , a 2 � : On an m-attribute relation R, it returns the m + 1-attribute relationf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; sm+1 = a � sig.trimai , a 2 � : On an m-attribute relation R, it returns the m + 1-attribute relationf(s1; : : : ; sm+1) j (s1; : : : ; sm) 2 R; sm+1 = si � ag.It should be pointed out that the formula � in �� does not refer to the database.We now de�ne the relational algebras:RA(S) extends relational algebra with R�, ��, where � ranges over FO(S) formulae, prefixi andaddlai .RA(Slen) extends relational algebra with R�, ��, where � ranges over FO(Slen) formulae, # i,prefixi, and addlai .RA(Sleft) is the extension of relational algebra with �� (where � ranges over Sleft formulae), prefix,addfai and trimai .RA(Sreg) extends relational algebra with R�, ��, where � ranges over FO(Sreg) formulae, prefixiand addlai .RA(Sreg;left) extends relational algebra with R�, ��, where � ranges over FO(Sreg;left) formulae,prefixi, addlai and trimai .4.26 Theorem � safe RC(S) = RA(S);� safe RC(Slen) = RA(Slen);� safe RC(Sleft) = RA(Sleft);� safe RC(Sreg) = RA(Sreg);� safe RC(Sreg;left) = RA(Sreg;left).
52

Proof. We start with RA(S). Every RA(S) expression produ
es a �nite result, and the standardtranslation from algebra to
al
ulus (extended with rules for addl and prefix) shows RA(S) �RC(S).For the
onverse, let '(~x) be a safe RC(S) query. By Theorem 4.18, on every database D, thea
tive domain of the output of ' on D is
ontained in the set Vk[D℄ = fx j d(x; pre�x (D)) � kg forsome k � 0.We �rst note that Vk[D℄ is de�nable by an RA(S) expression. Indeed, the a
tive domain of D isde�nable in relational algebra. Next, for ea
h �xed string s and a �nite set S, there is an expressionaddls that de�nes the set f(s0; s0 � s) j s0 2 Sg simply by
omposing addla operations. Thus, forS = adom(D), we de�ne S0 = Sjsj�k addls(S), and note that Vk[D℄ = �3(prefix2(S0)).Let DVk [D℄ be the extension of D by one unary predi
ate interpreted as Vk[D℄. Sin
e ' is safe, everyelement of every tuple in '(D) belongs to Vk[D℄. We know that in order to evaluate '(~x), it suÆ
esto restri
t quanti�
ation to the pre�x-
losure of adom(D) and ~x. Sin
e Vk[D℄ is pre�x-
losed, thisimplies that there is an a
tive-domain query '0(~x) over the s
hema extended with one unary symbolsu
h that '0(DVk [D℄) = '(D) (here a
tive-domain means that all quanti�
ation is restri
ted to thea
tive domain, and that the output is only
onsidered within the a
tive domain of the input). By[10℄, '0
an be expressed by relational algebra extended with ��, for � ranging over S formulae.Sin
e DVk [D℄ is expressible in RA(S) and '(D) = '0(DVk [D℄), we
on
lude that ' is expressible inRA(S).The proof for Slen is almost identi
al, ex
ept that one de�nes Vk[D℄ as fx j jxj � jyj + k; y 2adom(D)g, whi
h is expressible in RA(Slen) using the addls operations and the operations # i.The proof for Sreg is identi
al to the proof of for S, as the set Vk[D℄ is expressible in RA(Sreg).For Sleft, the proof again follows the same lines: all that is needed is that the set Np(adom(D)) isexpressible in RA(Sleft) for a �xed p. But this follows from the fa
t that adom(D) is de�nable inrelational algebra, using prefix; addfai and trimai it is then possible to de�ne Np(adom(D)). Theproof for Sreg;left follows from the expressibility of Vk[D℄ and Np(adom(D)). 2One of the operations in RA(Slen), # i, is very expensive, as it may
reate sets whose size is ex-ponential in the size of the input. This seems, however, unavoidable, as there are very expensive(e.g., NP-
omplete) safe queries in RC(Slen).4.4.4 De
iding Safety Properties of QueriesAlthough query safety is unde
idable for pure relational
al
ulus (and hen
e for any extension),state-safety (given a query ' and a database D, is '(D) �nite?) is de
idable [64℄. State safety isalso known to be de
idable for various extensions of the form RC(M) (for example, for the naturalnumbers with su

essor [64℄ or the real �eld [11℄). For RC(S) and RC(Slen), this de
idability holdsas well:4.27 Proposition State-safety is de
idable for RC(M), where M is one ofS;Sleft;Sreg;Sreg;left;Slen.Proof. Given a query '(~x) and a databaseD, we obtain a formula '0(~x) by repla
ing ea
h o

urren
eof a s
hema predi
ate S(~z) by a disjun
tion ~z = ~t1 _ : : : _ ~z = ~tm where ft1; : : : ; tmg is the53

interpretation of S in D. Sin
e the formula z = s is de�nable in all the stru
tures for every �xed s,'0
an thus be viewed as a formula over Slen su
h that Slen j= '0(~x) i� D j= '(~x). We now
onsiderthe senten
e � de�ned as 9~y 8~x ('0(~x)! 9~z(î zi � yi ^ el(zi; xi))):Then '(D) is �nite i� f~a j Slen j= '0(~a)g is �nite i� Slen j= �, and thus the state-safety is de
idable,sin
e the theory of Slen is de
idable. 2As query safety is unde
idable, one often
onsiders restri
tions for whi
h de
idability
an be ob-tained. Here we look at one of the most fundamental
lasses of queries {
onjun
tive queries. Wetake their de�nition in the
ontext of interpreted operations from [11, 46℄. A
onjun
tive query inRC(M) is a query of the form '(~x) � 9~y k̂i=1Si(~ui) ^
(~x; ~y);where k � 0, ea
h Si is a s
hema relation, ~ui is a subtuple of (~x; ~y) of the same arity as Si, and
 is anM formula. A Datalog-like notation for su
h a query would be '(~x) :{ S1(~u1); : : : ; Sk(~uk);
(~x; ~y).In [11℄, safety of
onjun
tive queries was shown de
idable for RC(M), for various stru
tures Mon the reals with numeri
al operations. We now show a general result from whi
h the de
idabilityresults for string stru
tures S;Slen as well as those
onsidered in [11℄ follow. We say that �nitenessis de�nable with parameters in M if for ea
h formula (~x; ~y) in M, there exists another formula �n(~y) su
h that M j= �n(~a) i� the set f~b j M j= (~b;~a)g is �nite. Furthermore, �n(~y)
an be
omputed e�e
tively.4.28 Theorem Assume that M
an be expanded to M0 su
h that the theory of M0 is de
id-able, and �niteness is de�nable with parameters in M0. Then safety of Boolean
ombinations of
onjun
tive queries in RC(M) is de
idable.Proof. We start with a few easy observations about Boolean
ombinations of
onjun
tive queries inRC(M). First, if �(~x) is a
onjun
tive query, it
an be represented in the form 9~z2adomVi Si(~ui)^
(~x; ~z). Indeed, given a query 9~yVi Si(~ui) ^
0(~x; ~y), let ~z be the subtuple of ~y that
onsists ofyjs appearing in the Si atoms. Then the query
an be rewritten to the one with a
tive-domainquanti�
ation only, where
(~x; ~z) � 9~v
0(~x; ~y) { here ~v lists those variables in ~y that do not belongto ~z. We also note that every
onjun
tive query is monotone.Next, every Boolean
ombination of
onjun
tive queries is equivalent to a union of queries of theform �(~x) ^ :�1(~x) ^ : : : ^ :�k(~x), where k > 0, and �; �1; : : : ; �k are
onjun
tive queries. Indeed,one puts a given Boolean
ombination in DNF, and observes that a
onjun
tion of two
onjun
tivequeries is a
onjun
tive query again, and sin
e true and false are by de�nition
onjun
tive queries,we
an assume that k > 0 and that one
onjun
tive query is present without negation.Thus, we must show that it is de
idable whether a query q(~x) of the form �(~x)^:�1(~x)^: : :^:�k(~x)is safe. Let �(~x) be 9~z2adomVli=1 Si(~ui) ^
(~x; ~z).We show the following
laim: if there exists a database D su
h that q(D) is in�nite, then thereexists a database D0 with at most l tuples su
h q(D0) is �nite. This in turn follows from the54

Model Data
omplexity Data
omplexity E�e
tive syntax Relational Safety of CQof generi
 queries for safe queries algebraRC(S) AC0 FO(<) yes yes de
idableRC(Slen) PH AC0 yes yes de
idableRC(Sleft) AC0 FO(<) yes yes de
idableRC(Sreg) NC1 FO(<) yes yes de
idableRC(Sreg;left) NC1 FO(<) yes yes de
idableRC
on
at unde
idable unde
idable no no unde
idableTable 2: Summary of results on query languagesfollowing: let Dl be the set of all databases D0 with at most l tuples su
h that D0 � D. Then�(D) = [D02Dl�(D0). Indeed, the � in
lusion follows from monotoni
ity, and the � in
lusion fromthe fa
t that to witness ~a 2 �(D), it suÆ
es to �nd ~b su
h that Vli=1 Si(~ui) ^
(~a;~b) holds; if su
h~b exists, the l tuples Si(~ui) form a database D0 for whi
h ~a 2 �(D0).Now, suppose q(D) is in�nite, and D has more than l tuples. We have �(D) = SD02Dl �(D0), andthus q(D) = SD02Dl(�(D0) \Ti :�i(D)) � SD02Dl(�(D0) \Ti :�i(D0)), sin
e :�is are antimono-tone. Sin
e q(D) is in�nite, for some D0 2 Dl, q(D0) = �(D0) \Ti :�i(D0) is in�nite. This provesthe
laim.Let ~t stand for ~t11; : : : ;~t1l ; : : : ;~tp1; : : : ;~tpl , where p is the number of relation symbols in SC, and ~tij isa tuple of variables of the same length as the arity of Si. For a query q of the form �(~x)^:�1(~x)^: : :^:�k(~x), let q0(~x;~t) be theM formula obtained by repla
ing ea
h Si(~u) with Wlj=1 ~u = ~tij. ThenM j= q0(~x;~t) i� D~t j= q(~x), where D~t is the database in whi
h Si is interpreted as f~ti1; : : : ;~tilg. Bythe assumptions on M, we know that in the expanded model we have a formula q0�n(~t) su
h thatM0 j= q0�n(~t) i� the set of ~x su
h that q0(~x;~t) holds is �nite. In other words, it holds i� q(D~t) is�nite. Hen
e, the senten
e 8~tq0�n(~t) is true in M i� q(D) is �nite for every database with at mostl tuples, whi
h by the previous
laim means that q is safe. The de
idability of the theory of M0now implies the de
idability of the safety of q. The theorem is proved. 2We know that Th(Slen) is de
idable [14℄. Moreover, �niteness is de�nable with parameters: for (~x; ~y), �n(~y) is 9~u(8~x (~x; ~y)! 9~zVi zi � ui el(zi; xi)). Thus:4.29 Corollary The safety of Boolean
ombinations of
onjun
tive queries in RC(S),RC(Sleft);RC(Slen), RC(Sreg) and RC(Sreg;left) is de
idable.Table 2 summarizes the results of the se
tion.5 Con
lusionThere has been signi�
ant interest in theoreti
al
omputer s
ien
e in understanding the stru
tureof the regular languages, and in identifying sub
lasses of the regular languages that have spe
ialproperties [67, 65℄. Our work
an be seen as an extension of this program, where we
onsidersub
lasses of the regular n-ary relations rather than the regular sets. In our approa
h, however, we55

do not fo
us on properties that hold of one parti
ular regular relation by itself, but rather look atsome desirable properties of a whole algebra of relations within the stru
ture Slen.We have shown a sharp
ontrast between the behavior of the full algebra of regular relations of Slen,and those of various submodels su
h as S, Sleft, Sreg, and Sreg;left. We show that the latter are moretra
table in many respe
ts. Furthermore, we show that the behavior of an algebra of relations isnot at all determined by the one-dimensional sets (subsets of ��) in the algebra: for example, one
an have fairly
omplex binary relations de�nable, yet still maintain the property that all de�nablesubsets of �� are star-free. Figure 1 summarizes the relationships between the star-free and regularalgebras we
onsidered here.We have also studied extensions of the standard relational
al
ulus with various sets of stringoperations. We were interested in languages that were not
omputationally
omplete, but rathershared the attra
tive
omplexity-theoreti
 and stati
 analysis properties of relational
al
ulus.The language RC(S)
an be seen as a ni
e foundation over whi
h other languages should be built.It
overs the most rudimentary string operations, but its expressive power is quite limited. The ex-tension RC(Slen) is too powerful (but still not
omputationally
omplete). We therefore
onsideredthe languages in between { RC(Sleft);RC(Sreg);RC(Sreg;left) { that
an express some importantoperations found in RC(Slen), but still have low data
omplexity. All the
al
uli have e�e
tivesyntax for safe queries, and
orresponding relational algebras.A key question is how many relations one
an add to the models Sleft or Sreg and still have theattra
tive properties like QE, �nite VC-dimension, and a ni
ely-behaved relational
al
ulus. Isthere a model that is somehow maximal with respe
t to these properties? We would very mu
h liketo know the answer to this question. There are also several natural
andidate models that wouldseem amenable to the approa
h taken here, and where one would expe
t the same results to gothrough: for example, if one allows the operation of
on
atenating a �xed sequen
e \in the middle"of a string, rather than on the left or on the right, is the resulting model still tra
table?A
knowledgments We thank Wolfgang Thomas, S
ott Weinstein, Emmanuel Waller, and JanVan den Buss
he for fruitful dis
ussions on the subje
t, and the anonymous referees for numeroushelpful
omments.Referen
es[1℄ S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.[2℄ M. Ajtai. �11 formulae on �nite stru
tures. Annals of Pure and Applied Logi
, 24 (1983), 1{48.[3℄ M. Ajtai, R. Fagin and L. Sto
kmeyer. The
losure of monadi
 NP. JCSS 60(3): 660{716(2000).[4℄ D. Angluin, D. N. Hoover. Regular pre�x relations. Mathemati
al Systems Theory 17(3),167{191,1984.[5℄ M. Anthony and N. Biggs. Computational Learning Theory. Cambridge Univ. Press, 1992.[6℄ A. Atserias, Ph. Kolaitis. First-order logi
 vs. �xed-point logi
 in �nite set theory. In LICS'98,pages 275{284. 56

[7℄ D.A. Barrington, N. Immerman, H. Straubing. On uniformity within NC1. JCSS, 41:274{306,1990.[8℄ O. Belegradek, A. Stolboushkin, M. Taitslin. Extended order-generi
 queries. Annals of Pureand Applied Logi
 97 (1999), 85{125.[9℄ M. Benedikt, G. Dong, L. Libkin, L. Wong. Relational expressive power of
onstraint querylanguages. Journal of the ACM 45 (1998), 1{34.[10℄ M. Benedikt, L. Libkin. Relational queries over interpreted stru
tures. Journal of the ACM47 (2000), 644{680.[11℄ M. Benedikt, L. Libkin. Safe
onstraint queries. SIAM J. Comput. 29 (2000), 1652{1682.[12℄ M. Benedikt, L. Libkin, T. S
hwenti
k, L. Segou�n. A model-theoreti
 approa
h to regularstring relations. In LICS'01, pages 431{440.[13℄ M. Benedikt, L. Libkin, T. S
hwenti
k, L. Segou�n. String operations in query languages. InPODS'01, pages 183{194.[14℄ A. Blumensath and E. Gr�adel. Automati
 stru
tures. In LICS'00, pages 51{62.[15℄ A. Blumer, A. Ehrenfeu
ht, D. Haussler, M. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM 36 (1989), 929{965.[16℄ N. Bj�rner. Integration of De
ision Pro
edures in Temporal Veri�
ation. PhD Thesis, StanfordUniversity, 2000.[17℄ A. Bonner and G. Me

a. Sequen
es, datalog, and transdu
ers. JCSS 57 (1998), 234{259.[18℄ A. Bonner and G. Me

a. Querying string databases with transdu
ers. In DBPL'97, pages118{135.[19℄ V. Bruy�ere, G. Hansel, C. Mi
haux, R. Villemaire. Logi
 and p-re
ognizable sets of integers.Bull. Belg. Math. So
. 1 (1994), 191{238.[20℄ J.R. B�u
hi. Weak se
ond-order arithmeti
 and �nite automata. Zeit. Math. LogikGrundl. Math. 6 (1960), 66{92.[21℄ C.C. Chang and H.J. Keisler Model Theory. North Holland, 1990.[22℄ G. Cherlin and F. Point. On extensions of Presburger arithmeti
. In Pro
. 4th Easter ModelTheory Conf., Humboldt Univ. Berlin, 1986.[23℄ H. Comon, R. Treinen. The �rst-order theory of lexi
ographi
 path orderings is unde
idable.TCS 176 (1997), 67{87.[24℄ M. Consens and T. Milo. Algebras for querying text regions: expressive power and optimiza-tion. JCSS 57 (1998), 272{288.[25℄ E. Dantsin, A. Voronkov. Expressive power and data
omplexity of query languages for treesand lists. In PODS'2000, pages 157{165. 57

[26℄ L. Denenberg, Y. Gurevi
h and S. Shelah. De�nability by
onstant-depth polynomial-size
ir
uits. Information and Control 70 (1986), 216{240.[27℄ H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.[28℄ A. Ehrenfeu
ht. An appli
ation of games to the
ompleteness problem for formalized theories.Fund. Math., 49:129{141, 1961.[29℄ C. Elgot and J. Mezei. On relations de�ned by generalized �nite automata. IBM J. Res. De-velop. 9 (1965), 47{68.[30℄ D. Epstein et al. Word Pro
essing in Groups. Jones and Bartlett Publ., 1992.[31℄ M. Fis
her and M. Rabin. Super-exponential
omplexity of Presburger arithmeti
. SIAM-AMSPro
eedings 7, 27{41 (1974).[32℄ J. Flum and M. Ziegler. Pseudo-�nite homogeneity and saturation. J. Symb. Logi
 64 (1999),1689{1699.[33℄ R. Fra��ss�e. Sur quelques
lassi�
ations des syst�emes de relations. Publ. S
i. Univ. Alger. S�er.A, 1:35{182, 1954.[34℄ C. Frougny and J. Sakarovit
h. Syn
hronized rational relations of �nite and in�nite words.TCS 108 (1993), 45{82.[35℄ M. Furst, J. Saxe, M. Sipser. Parity,
ir
uits, and the polynomial-time hierar
hy. Math. SystemsTheory 17 (1984), 13{27.[36℄ S. Ginsburg and X.S. Wang. Pattern mat
hing by rs-operations: toward a uni�ed approa
h toquerying sequen
ed data. In PODS'92, pages 293{300.[37℄ E. Gr�adel and Y. Gurevi
h. Meta�nite model theory. Information and Computation 140(1998), 26{81.[38℄ G. Grahne and M. Nyk�anen. Safety, translation and evaluation of alignment
al
ulus. InPro
. of the First East-European Symp. on Advan
es in Databases and Information Systems(ADBIS'97), 295{304, 1997.[39℄ G. Grahne, M. Nyk�anen, E. Ukkonen. Reasoning about strings in databases. JCSS 59 (1999),116{162.[40℄ G. Grahne, E. Waller. How to make SQL stand for string query language. In Pro
eedings ofDBPL'99, Springer LNCS vol. 1949, 2000, pages 61{79.[41℄ P. Gulutzan and S. Pelzer. SQL-99 Complete, Really. R&D Books, 1999.[42℄ R. Hakli, M. Nyk�anen, H. Tamm, and E. Ukkonen. Implementing a de
larative string querylanguage with string restru
turing. In PADL'99, pages 179{195.[43℄ D. Harel. Towards a theory of re
ursive stru
tures. In MFCS'98, pages 36{53.[44℄ M. Hodges. Model Theory. Cambridge, 1993.[45℄ B. Hodgson. D�e
idabilit�e par automate �ni. Ann. S
. Math. Qu�ebe
 7(1) (1983), 39{57.58

[46℄ O. Ibarra, J. Su. A te
hnique for proving de
idability of
ontainment and equivalen
e of linear
onstraint queries. JCSS 59 (1999), 1{28.[47℄ N. Immerman. Des
riptive Complexity. Springer, 1999.[48℄ B. Khoussainov and A. Nerode. Automati
 presentations of stru
tures. In LCC'94, pages367{392.[49℄ Ph. Kolaitis and M. Vardi. Fixpoint logi
 vs. in�nitary logi
 in �nite-model theory. In LICS'92,pages 46{57.[50℄ G. Kuper, L. Libkin, J. Paredaens, editors. Constraint Databases. Springer, 2000.[51℄ M. C. Laskowski. Vapnik-Chervonenkis
lasses of de�nable sets. J. London Math. So
., 45:377{384, 1992.[52℄ H. L�au
hli and C. Savioz. Monadi
 se
ond order de�nable relations on the binary tree.J. Symb. Logi
 51(1) (1987), 219{226.[53℄ A. Ma�l
ev. On the elementary theories of lo
ally free universal algebras. Soviet Math. Doklady2 (1961), 768{771.[54℄ R. M
Naughton and S. Papert. Counter-Free Automata. MIT Press, 1971.[55℄ C. Mi
haux, R. Villemaire. Open questions around B�u
hi and Presburger arithmeti
s. InLogi
: From Foundations to Appli
ations, Oxford Univ. Press, 1996, pages 353{383.[56℄ F. Neven and J. Van den Buss
he. Expressiveness of stru
tured do
ument query languagesbased on attribute grammars. Journal of the ACM, 49(1): 56{100 (2002).[57℄ C. H. Papadimitriou. Computational Complexity Addison-Wesley, 1994.[58℄ M. Rabin. Weakly de�nable relations and spe
ial automata. In Mathemati
al Logi
 andFoundations of Set Theory, North Holland, Amsterdam, 1970, pages 1{23.[59℄ A. Rajasekar. String-oriented databases. SPIRE/CRIWG'99, pages 158{167.[60℄ T. Rybina, A. Voronkov. A de
ision pro
edure for term algebras with queues. ACM TOCL2(2): 155{181 (2001).[61℄ A. Salomaa. Formal Languages. A
ademi
 Press, 1973.[62℄ T. S
hwenti
k. On diving in trees. In Pro
eedings of the 23rd Symposium on Mathemati
alFoundations of Computer S
ien
e (MFCS 2000), Bratislava, 2000, pages 660{669, 2000.[63℄ S. Shelah. Stability, the f.
.p., and superstability. Ann. of Math. Logi
 3 (1971), 271{362.[64℄ A. Stolboushkin, M. Taitslin. Finite queries do not have e�e
tive syntax. Information andComputation, 153(1) (1999), 99{116.[65℄ H. Straubing. Finite Automata, Formal Logi
, and Cir
uit Complexity. Birkh�auser, 1994.[66℄ W. Thomas. In�nite trees and automaton-de�nable relations over !-words. TCS 103 (1992),143{159. 59

[67℄ W. Thomas. Languages, automata, and logi
. Handbook of Formal Languages, Vol. 3, Springer,1997.[68℄ K. Venkataraman. De
idability of the purely existential fragment of the theory of term algebras.Journal of the ACM 34 (1987), 492{510.

60

