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Abstract

Many known tools for proving expressibility bounds for first-order logic are based on one of
several locality properties. In this paper we characterize the relationship between those notions
of locality. We note that Gaifman’s locality theorem gives rise to two notions: one deals with
sentences and one with open formulae. We prove that the former implies Hanf’s notion of locality,
which in turn implies Gaifman’s locality for open formulae. Each of these implies the bounded
degree property, which is one of the easiest tools for proving expressibility bounds. These results
apply beyond the first-order case. We use them to derive expressibility bounds for first-order logic
with unary quantifiers and counting. We also characterize the notions of locality on structures of
small degree.

1 Introduction

It is well known that first-order logic has limited expressive power. Typically, inexpressibility proofs
are based on either a compactness argument, or Ehrenfeucht-Fraissé games. In recent years, the
expressive power of logics over finite models has been studied extensively. This increased interest
is mostly due to a number of applications in computer science. For example, most database query
languages have well known logical counterparts: traditional relational calculus has precisely the power
of first-order logic, the language Datalog, with added negation and evaluated inflationary, corresponds
to the least-fixpoint logic, and the query language with while loops is equivalent to the partial-fixpoint
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logic, cf. [1]. Another area of application is descriptive complexity. It turns out that familiar logics
capture complexity classes over classes of (ordered) finite structures, cf. [8, 18].

Since compactness fails in restriction to finite structures [15], to prove results about the limits of
expressiveness of first-order logic, one has to use Ehrenfeucht-Fraissé games. Moreover, Ehrenfeucht-
Fraissé games are often used as the basic step in other, more sophisticated games for different logics.
For example, playing the Ehrenfeucht-Fraissé game is one of the steps in the Ajtai-Fagin game for
monadic X1 [2]. Since playing the game often involves an intricate combinatorial argument, it was
suggested by Fagin, Stockmeyer and Vardi in [11] to build a library of winning strategies for those
games. Or, more generally, one would like to have a collection of versatile and easily applicable tools
for proving expressibility bounds for first-order logic.

A number of results proving expressibility bounds explain the nature of the limitations of first-order
logic by saying that it can only express local properties. Intuitively, one cannot grasp the whole
structure; instead, to answer a first-order query, one only looks at small portions of the input.

Several proposals have been made to formalize the notion of locality. Gaifman [12] proved that the
outcome of a first-order definable query depends only on the isomorphism types of neighborhoods
of a fixed radius. Fagin, Stockmeyer and Vardi [11], modifying a result by Hanf [16] for the finite
case, proved that if a certain criterion relating the numbers of small neighborhoods in two structures
holds, then these structures agree on sentences whose quantifier rank is determined by the size of those
neighborhoods. Libkin and Wong [22] showed that if a first-order query operates on graphs, then the
number of different in- and out-degrees in the output is below a bound given by the query and the
maximal degree in the input graph. This property, called the bounded degree property, was generalized
to first-order queries on arbitrary finite structures by Dong, Libkin and Wong [6].

Typically, inexpressibility proofs based on the bounded degree property are very easy (see, e.g., [22]).
Proofs based on Hanf’s theorem, while often easier than playing a game directly (compare, for example,
the proofs that connectivity is not monadic X1 in [2] and [11]) may still involve somewhat nontrivial
combinatorial argument (see, e.g., [5]). On the other hand, Hanf’s theorem being close to game
characterization of logics, its extensions have been proved for several extensions of first-order logics
[9, 24, 26]. Thus, it would be desirable to understand the relationship between various locality notions
for first-order logic and its extensions.

This constitutes the main goal of the paper. We isolate the locality notions underlying Gaifman’s
and Hanf’s theorems, and prove a chain of implications among them. In particular, we show that the
bounded degree property and an analog of Gaifman’s theorem hold in several counting extensions of
first-order logic.

Organization and summary In Section 2, we introduce the notation and describe the basic notions
of locality. We start by reviewing Gaifman’s theorem, and note that it leads to two properties, called
the Gaifman-locality and the strong Gaifman-locality. The result of [12] then says that first-order logic
has both of these properties. We review the modification of Hanf’s technique [16] for the finite case
[11], and define the notion of Hanf-locality. We review the bounded degree property of [6, 22] which
is implied by the Gaifman-locality [6].

In Section 3 we review the extensions of first-order logic we consider in this paper. These are fragments
of infinitary logic, logics with unary quantifiers and first-order logic with second-sort counting. We
then establish that all these logics have the Hanf-locality property. In Section 4 we give the main
technical machinery which is used in the rest of the paper. Mainly, we examine Hanf’s technique more



closely and among other things give a new simple proof that the extension of first-order logic by all
unary generalized quantifiers has the Hanf-locality property.

In Section 5 relationships between the notions of locality are considered. In Section 5.1, we show
that the Hanf-locality implies the Gaifman-locality. We use this to derive a number of expressibility
bounds for various logics; we also touch on some applications in descriptive complexity. This implies
the bounded degree property for any logic that possesses the Hanf-locality property. In Section 5.2, we
show that the strong Gaifman-locality implies the Hanf-locality. We do not yet know of any extension
of first-order that is strongly Gaifman-local, so the main implication of this result is a very simple and
intuitive proof that first-order logic is Hanf-local.

In Section 6, we give complete characterizations of the three main notions of locality on structures of
small degree. We show that, in order to check whether a query has the bounded degree property, it is
enough to check whether it is definable in a certain logic on structures of bounded degree. These results
may also be helpful in proving expressibility bounds over finite models, as many counterexamples that
are constructed in finite model theory turn out to be structures of small degree.

2 Notions of locality

Notation

Unless explicitly stated otherwise, all structures are assumed to be finite.

A relational signature o is a set of relation symbols {Ry, ..., R;}, with an associated arity function.
In what follows, p;(> 0) denotes the arity of R;. We write o, for o extended with n new constant
symbols. The signature of graphs (that is, one binary predicate R) is denoted by og;.

A o-structure is A = (A, Rf‘, e ,RlA), where A is a finite set, and R;4 C APi interprets R;. The class
of finite o-structures is denoted by STRUCT|[o]. When there is no confusion, we may write R; in place
of RZA. Isomorphism of structures is denoted by =2. We shall adopt the convention that the carrier of
a structure A is always denoted by A and the carrier of B is denoted by B.

To make our results applicable to a number of logics, we state below the condition that is necessary

for the proofs. Let £ be a logic. Assume a vocabulary o, and let Uy, ..., U, be relational symbols
not in 0. Let o' = o U{Uy,...,Up}. Then, for every o formula ¢(Z) in £, we can form a ¢’ sentence
¢ = Vi(y(Z) — ¢(%)) in L, where 7 is a Boolean combination of atomic formulas in {Uy,...,Upn}

using variables from #. That is, a o'-structure A satisfies ® iff for every @ from A such that (a)
holds, it is the case that A, |= (@), where A, is the o-reduct of A. This condition can be formulated
along the lines of [7, 20] for abstract logics. However, as all the logics we consider here are extensions
of first-order that trivially satisfy this condition, we will not go into more detail. In what follows,
whenever we speak of a logic closed under first-order operations, we mean that the condition above is
satisfied.

With each formula (x1,...,z,) in a logical language whose symbols are in o, we associate a query
that maps a o-structure A to an m-ary relation ¥4 = {(a1,...,amn) € A™| A = 9¥(a1,...,an)}; we
denote the corresponding structure with universe A by [A] = (A, ).

Given a structure A, its Gaifman graph [11, 12, 8] G(A) is defined as (A, E) where (a,b) is in E iff
there is a tuple £ € R;4 for some i such that both a and b are in £. The distance d(a,b) is defined as



the length of the shortest path from a to b in G(A); we assume d(a,a) = 0. Given a € A, its r-sphere
SA(a) is {b € A|d(a,b) < r}. For a tuple £, define SA(#) as UaefS;“(a).

Given a tuple £ = (ty,...,t,), its r-neighborhood NA(t) is defined as a o, structure
AT SAE) = (SA@), RN SAE™, .. RENSABP . k)

That is, the carrier of NA(f) is SAA(), the interpretation of the o-relations is obtained by restricting
them from A to the carrier, and the n extra constants are the elements of ¢. If the structure A is clear
from the context, we shall write S,.(£) and N, (f).

The quantifier rank of a first-order formula v, qr(t)), is defined as the maximum depth of quantifier
nesting in ¢; that is, qr(¢)) = 0 for atomic formulas ), qr()) = max{qr(¢),qr(n)} if ¢ is p V7,
ar(y) = qr(y) if ¢ is =, and qr(yp) = qr(p) + 1 if ¢ is of the form Jzp or Vap.

Gaifman-locality

Before presenting Gaifman’s theorem, note that for any o-structure A, there is a first order formula
Yo (z,y) such that A |= v, (a,b) iff (a,b) € G(A). Thus, for every fixed k, there are first order formulae
dei(z,y), dp(z,y) and dsi(z,y) such that A = dok(a,b) iff d(a,b) < k, and similarly for dj and d.
This means that bounded quantification of the form Vz € Si(y) and 3z € Sk(¥) is expressible for
every constant k. If every quantifier in a formula is of this form, where i are among its free variables,
and k < r, we call the formula r-local.

Theorem 2.1 (Gaifman [12]) For every first-order formula ¢(z1,...,x,) there exist t and r such
that 1 is equivalent to a Boolean combination of t-local formulae x(z;,,...,x;,) and sentences of the
form

m
(1) Fyrym (N o) A N\ dsar Wi y)))

i=1 i, <m,i#j

where ¢ is r-local. Furthermore, we can choose r < 79W=1 < (79(W)=1 _ 1)/2 m < n + qr(¢),
and, if 1 is a sentence, only sentences (1) occur in the Boolean combination. O

Note that this theorem holds both on infinite and finite structures. To abstract the notion of being
local and extend it to other logics, we introduce the following definitions. For o-structures A4 and B,
and two tuples @ from A and b from B of the same length, we write @ ~;"° b if NA(@) = Nf(g) Ifa
and b are both tuples of elements of A, we abbreviate this as d z;“ b. Again, A and B are omitted if
they are clear from the context.

Definition 2.2 e A formula (z1,...,Ty), is Gaifman-local if there exists r > 0 such that, for
every A € STRUCT[o]| and for every two m-tuples a, b of elements of A, d =, b implies
A=) iff A= W(b). The minimum r for which this holds is called the locality rank of 1,
and is denoted by Ir(1)).

o A formula Y(x1,...,2y), is strongly Gaifman-local if there exists r > 0 such that, for every
A, B € STRUCT[o] and for every two m-tuples @, b of elements of A and B respectively, @ ~, b

implies A |= (@) iff B = 4(b).



e A sentence ¥ is strongly Gaifman-local if it is equivalent to a Boolean combination of sentences
of the form 3yp(y), where ¥ (4) is a strongly Gaifman-local formula.

Now we immediately see:

Proposition 2.3 Fvery first-order formula is Gaifman-local, and every first-order sentence is strongly
Gaifman-local. Moreover, for every (%) of quantifier rank n, lr(1p) < (7" —1)/2.

Proof: Suppose (%) is a first-order formula. Then it is equivalent to a Boolean combination of
formulae ~; (%) and sentences I'j, where each v; is r;-local. Let r = maxr;. Then Ir(¢)) < r. Indeed,

-,

take a structure A and let @ =, b. Since N, (@) = N, (b), we have A |= 7i(@) <> 7;(b), which gives us

-,

A = ¢(a@) <> 1(b), since all T';s are sentences.

To prove strong Gaifman-locality, note that any formula of the form

(2) P(H) = Quzi € 5, (Y) - Qrzr € S, (§)7(Y 2),

where the ;s are quantifiers and v is quantifier-free, is strongly Gaifman-local, since max®_, r; wit-
nesses strong locality. The formula A,_; , 0(¥i) N A; j<pmizj d>2r (Yir y;), where ¢ is r-local, can be
represented in the form (2) with 7; < 2r+1 for each i = 1,..., k. This implies strong Gaifman-locality.
]

Note that not every first-order formula is strongly Gaifman-local. Consider ¢ (z) = (Vy—R(y,z)) A
32Vy—R(z,y). Assume that it is strongly local, fix r as in the definition and consider two graphs: G,
is a chain of length r + 1, and G is obtained from G; by adding a loop on the end-node of G;. Let
a; be the start node of G;. Then aq zfl’@ as, but Gy = 1(a1) and Go = —(asg).

Hanf-locality

Let 7 be an isomorphism type of a structure in the language o1 (0 extended with one constant). A
point a in a structure A d-realizes 7, written as 74(A,a) = 7, if Nf(a) is of isomorphism type 7.

By #4[A, 7] we denote the number of elements of A which d-realize 7, that is, the cardinality of
{a€ Al 14(Aa) =1}

We say that A, B € STRUCT[o] are d-equivalent, if for every isomorphism type 7 of a o1-structure we
have #4[A, 7| = #4[B, 7]. This is denoted by A =4 B. If d > d', then A S, B implies A Sy B [11].
Note that d-equivalence can also be defined by letting A <, B iff there exists a bijection f: A - B
such that a z“j’B f(a) for every a € A.

It was shown by Hanf [16] that two (finite or infinite) models are elementary equivalent if their spheres
of finite radius are finite and, for each d and each type 7, either #4[A, 7] = #4[B,7] < w, or both
#4|A, 7] and #4[B, 7] are infinite. This was recently modified for the finite case as follows.

Theorem 2.4 (Fagin-Stockmeyer-Vardi [11]) Letn > 0. Then there exists an integer d > 0 such
that whenever A Sy B, then A and B agree on all first-order sentences ¢ with qr(y) < n. O

It follows from the proof in [11] that d can be taken to be 3"~! see also [10]. This leads to the
following definition.



Definition 2.5 A sentence W is Hanf-local if there exists a number d such that any two d-equivalent
structures agree on V. The minimum d for which this holds is called the Hanf locality rank of ¥, and
is denoted by hlr(T).

Thus, Fagin-Stockmeyer-Vardi’s theorem says that every first order sentence ¥ is Hanf-local, and
hir(®) < 39(¥)=1  Several extensions of this theorem are known. We consider them in the next
section.

Bounded degree property

We define the notions of degrees in the usual way. For a graph G, its degree set deg_set(G) is the set of all
possible in- and out-degrees that are realized in G, and deg_count(G) is the cardinality of deg_set(G).
These notions generalize to arbitrary o-structures: Given a relation Rg‘l in A, degreej(Ri,a) is the
number of tuples in R#* whose jth component is a. Then deg_set(A) is the set {degree j(R;,a) | R; €
o,a € A,j < p;}, and deg_count(A) is its cardinality. The class of o-structures A with deg_set(A) C
{0,1,...,k} is denoted by STRUCT[o].

Given a formula 1 (z1, ..., z,,) and a structure A, one can apply these concepts to the output structure
Y[A] = (A,¢4). The bounded degree property says that there is an upper bound on deg_count(¢[A])
that depends only on ¢ and the maximal value in deg_set(.A). More precisely,

Definition 2.6 (see [6]) A formula ¢ (z1,..., %) has the bounded degree property (BDP), if there
is a function f: N — N such that deg_count(¢[A]) < f(k) for any A € STRUCTy[o]. O

The BDP was introduced and proved for first-order queries from graphs to graphs (that is, formulae
Y(x,y) in the language o,,) in [22]. It was also shown there that the BDP proves many inexpressibility
results effortlessly. For example, to prove that (deterministic) transitive closure [8, 18] is not first-order,
consider the following C,, € STRUCT [0,]:

where n is the number of nodes. Since the degree-set of its (deterministic) transitive closure has n
elements, it violates the BDP and thus is not first-order definable. Another example in [22] is testing
for balanced binary trees (that is, all paths from the root to the leaves are of the same length; note that
this involves both recursive computation and counting). Assume this test is definable, and assume
G is an input graph. For every two nodes a,b in GG, having two successors each, a1, as and by, by, we
define a new graph G, by making by, by the successors of a and a1, as the successors of b. If G were
a balanced binary tree, then G, is a balanced binary tree iff ¢ and b have the same distance to the
root. Thus, we see that there is a first-order query that, when its input is a balanced binary tree
G € STRUCTy[og,] of length n, returns the set of cliques of elements at the same distance from the
root, that is, a graph with an n + 1-element degree-set. This again violates the BDP.

Theorem 2.7 (Dong-Libkin-Wong [6]) Every Gaifman-local formula has the bounded degree prop-
erty. O



Thus, from Gaifman’s theorem, we obtain:
Corollary 2.8 FEvery first-order formula has the bounded degree property. O

We saw that simple forms of recursion (deterministic transitive closure) violate the BDP. So does the
simplest form of second-order quantification: monadic ! is not local. The BDP was introduced in
connection with studying expressive power of database languages with aggregation [14, 22|, where it
was asked if such languages have it. The positive answer given recently [6] also implies that first-order
logic with Rescher and Hértig quantifiers (see below for a definition of these quantifiers) has the BDP,
but it was not known (although conjectured) if any of these is Gaifman-local.

3 Extensions of first-order logic

In this section we introduce the extensions of first-order logic that are considered in this paper. These
are extensions with unary quantifiers and counting, and a fragment of infinitary logic with unary
quantifiers.

First of all, recall that infinitary logic L4, is the extension of first-order logic where infinite disjunctions
and conjunctions of formulas are also allowed. It is well known that any (isomorphism closed) class
C C STRUCT([o] can be defined in Lo,. Interest of this logic comes from its fragments which have
weaker expressive power. One such fragment is [,’gow where only k distinct variables, free or bound,
are allowed. The finite variable logic £, is then the union of £F _ over all natural numbers k. For

an extensive study of this logic, see e.g. [8].

Another fragment of L, we are interested in, is the one where the quantifier rank of each formula
is allowed to be at most r. From now on, we use the notation (Lu)" for this fragment and (Loow)®
for the union of the logics (Loc,)" over all natural numbers r. More generally, if £ is any logic with a
well-defined notion of quantifier rank, then the fragment of £ consisting of all formulas with quantifier
rank at most r is denoted by L", L" = {¢ | ¢ € L,qr(¢) < r}, and their union over all natural
numbers r is denoted by £“. (The parenthesis notation (L)" is used to avoid confusion with the
finite variable logic.)

Unary quantifiers

Suppose L is a logic. Let agnary be a signature of k unary symbols, and let K be a class of o
structures which is closed under isomorphisms. Then £(Qj) extends the set of formulae of £ with the
following additional rule:

unary
& -

if 1[)1(3:11 gl)a s awk(xka gk) are formulae, then QK::EI cee xk(,l[)l(xlagl)a s awk(xka gk))
is a formula.

Here Qx binds z; in the ith formula, for each i = 1,... k. A free occurrence of a variable y in ¢;(z;, ;)
remains free in this new formula unless y = z;. The semantics of Qi is defined as follows:

A |: QIC$1---$k(1/)1($1751)a---a@bk(xkaak)) iff (Aawl['Aaa:lLawk[Aade € K, where
1/)2[./4, C_m = {a e A ‘ A ‘: 1/),(@,6,)}



In this definition, @; is a tuple of parameters that gives the interpretation for those free variables of
¥i(z;, ;) which are not equal to z;. The logic £(Q) for a set Q of unary generalized quantifiers is
defined similarly with the corresponding rule for each quantifier Qx € Q. The quantifier rank qr(yp)
of an £(Q) formula ¢ is defined as the quantifier rank for the logic £ with the following additional
rule for each Qx € Q:

ar(Qxx1, -, xp(1(w1, 1), o Yr(wr, Ur))) = max{qr(yi(z;, 4;)) | i < k} + 1.

Examples of unary quantifiers include the usual 3 and V, as well as the Rescher (bigger cardinality)
and the Hartig (equicardinality) quantifiers. The Rescher quantifier Q% and the Hartig quantifier Q7
are classes of 0,"""Y-structures; the Rescher quantifier Qrz172 (11 (21,a1), 12 (w2, d2)) is true if and
only if there are at most as many points a that satisfy 11 (a,d;) as there are points b that satisfy
19 (b, d2). The Hartig quantifier Qzx129 (11 (z1,d1), ¥2(x9,d2)) in turn is true if and only if there are
equally many points a that satisfy i (a,d;) as there are points b that satisfy 1o(b,d3). We use the
notation £(Q,) for £ extended with all unary quantifiers.

Next we give a game characterization for queries definable in Lo, (Q,)“, that is, the fragment of
infinitary logic with unary quantifiers that consists of formulas of finite quantifier rank. For this, we
recall the definition of bijective Ehrenfeucht-Fraissé game [17]. There are two players in this game,
called the spoiler and the duplicator. Furthermore, the number of rounds, say n, and two structures
A, B € STRUCT|o] are given. In each round i = 1,...,n, the duplicator selects a bijection f; : A — B,
and the spoiler selects a point a; € A (if card(A) # card(B), then the spoiler wins). The duplicator
wins the game, if after the last round the relation {(a;, fi(a;)) | 1 < i < n} is a partial isomorphism
A — B; otherwise the spoiler wins. From the results in [17] it follows that the bijective Ehrenfeucht-
Fraissé game characterizes the expressive power of L4, (Qy)“. To see this, we first recall the following
result.

Theorem 3.1 ([17]) Let A,B € STRUCT[o]. Then A and B agree on all sentences of FO(Qy) of
quantifier rank up to n if and only if the duplicator has a winning strategy in the n-round bijective
Ehrenfeucht-Fraissé game over A and B. O

The proof of this in [17] actually shows that if the duplicator has a winning strategy in the n-round
bijective Ehrenfeucht-Fraissé game, then the structures agree on all sentences of Loo,(Qy)™. This
yields the following characterization.

Proposition 3.2 A class C C STRUCT[o] is definable in Loow,(Qy)® iff there is n such that the spoiler
has a winning strategy in the n-round bijective Ehrenfeucht-Fraissé game over A and B whenever A € C
and B ¢ C.

Proof: Suppose C is definable by a sentence ¢ of Lo,(Qq)", for some n. Then for every A, B €
STRUCT(o] such that A and B satisfy the same sentences of Lo, (Q) of quantifier rank up to n, we
have A € C if and only if B € C. Hence there cannot be structures A and B as in the claim.

Assume then that the spoiler has a winning strategy in the n-round bijective Ehrenfeucht-Fraissé
over all 4 and B where A € C and B ¢ C. For every such pair A and B, by Theorem 3.1 there
is a sentence ¢ 45 of Lo, (Qy)" such that A = @45 but B [~ p45. But now C is defined by the
Loow(Qy)"-sentence

V [N\ eas

Aec \Bgc



Note that the infinite conjunctions and disjunction above can be restricted to range over sets, since
there are only countably many non-isomorphic structures in STRUCT|[o]. O

Let us remark that Lo, (Q,)“ is strictly stronger in expressive power than FO(Q,)“. This follows
because the second vectorization of Hartig quantifier cannot be defined in FO(Q,)¥, as was shown
by Luosto [23] (using Ramsey theory). On the other hand, each vectorization of a unary quantifier
can be defined in Lo, (Qy)“ [20].

As mentioned in the previous section, several extensions of Theorem 2.4 are known. One such extension
can be given for L4,(Q,)¥. This is because in [24] it was shown that d-equivalence, for large enough
d, guarantees a winning strategy for the duplicator in the n-round bijective Ehrenfeucht-Fraissé game.

Theorem 3.3 (see [24, 26]) Every Loow(Qu)* sentence U is Hanf-local. Moreover, hlr(¥) < 397(%)
]

In the next section we give a new simple proof for this fact.

We also consider first-order logic with counting FO + COUNT [19]. We present it here following [9].
FO 4+ COUNT is defined as a two sorted logic, with second sort being the sort of natural numbers.
More precisely, in this approach a structure A is of the form

A=({{1,...,n},{v1,...,v,},<,BIT, 1, max, Ry, ..., R").

Here the relations R;4 are defined on the domain {vy,...,v,}, while on the numerical domain {1,...,n}
one has 1, max, < and the BIT predicate available (BIT(i, 7) iff the ith bit in the binary representation
of j is one). It also has counting quantifiers Jizp(z), meaning that ¢ has at least i satisfiers; here 4
refers to the numerical domain and z to the domain {v1,...,v,}. These quantifiers bind z but not 1.
Etessami noticed that the technique used in a proof of [24] (which is based on bijective Ehrenfeucht-
Fraissé games [17]) applies to FO + COUNT:

Theorem 3.4 (see [9]) Every FO + COUNT sentence is Hanf-local. Moreover, hlr(¥) < 39(¥) O

4 Technical machinery

In this section we give the technical machinery used repeatedly in the paper in examining the rela-
tionships of the notions of locality, and characterizations of these notions on structures of bounded
degree.

We start with a lemma which is one of our main technical tools and we apply it several times in this
section. The idea of the proof given below is similar to all the earlier applications of Hanf’s technique
mentioned before [11, 16, 24, 25], but we believe this proof is simpler.

First, we need two obvious facts stated previously in [6].

Claim 4.1 Assume that A € STRUCT[o] and h : NA(@) — NA(b) is_an isomorphism. Let d <.
Then h restricted to S;\(@) is an isomorphism between N7 (@) and N3 (b). 0



-,

Claim 4.2 Assume that A € STRUCT[o] and h : NA(@) — NA(b) is an isomorphism. Let d+1<r
and & be a tuple from Si(@). Then h(S4(%)) = Sq(h(Z)), and Ny(Z) and Ng(h(Z)) are isomorphic. O

The next claim generalizes a result from [6].

Claim 4.3 Let A,B € STRUCT[o] and let @, € A”,El € B™ forn > 1, and ds € Am,gg € B™ for
m > 1. Assume that d| ~, l;l and dy ~, 52. Let @ be dy followed by do and b be 51 followed by 52.
Furthermore, assume that for any components a',a® of @ and dy respectively we have d(a',a®) >
2r + l, and similarly for any components b, b* of 51 and 52 respectively, d(b*,b?) > 2r +1. Then

a =, b.

Proof: Since the distance between any two components of @; and ds is at least 2r + 1, any tuple in any
o-relation in Ny(@) either has all its components in S/A(@;), or it has all its components in S;*(d).
Similarly, any tuple in a o-relation in N5(b) either has all its components in S5(b;), or in SB(by).
Thus, the isomorphism between NA(@) and N2(b) can be defined componentwise. 0

Let @ be an n-tuple. By @z we denote the n + 1-tuple whose first n components are those of @ and
the last one is x.

We define d-equivalence for structures with parameters. Let A, B € STRUCT[o] and let @ and b be
two tuples of the same length of A and B, respectively. We say that (A, a) and (B, b) are d-equivalent

if
card({z € A | Nj\(dz) is of isomorphism type 7}) =

card({y € B | Nf(gy) is of isomorphism type 7})

for every isomorphism type 7. That is, there is a bijection f : A — B such that dz ~4 l;f(x) for every
xz € A. This is denoted by (A, @) S4 (B,b).

Lemma 4.4 If A5y B and G 47 b, then (A, @) Sq (B,D).

Proof: We need to define a bijection f : A — B such that ax %?’B gf(x) for every z € A. Since
g‘tl’fl b, there is an isomorphism h : Ng‘éﬂ(d'_)‘ — N3j§+1(5). Then the restriction of h to S{}i_i_l(d') is
an isomorphism between N2“Z+1(C_i) and N;}Hl( ) (Claim 4.1), and thus

_’N
a =~

card (A — S3y41(@)) = card(B — S5, (b)).

Now consider an arbitrary type 7 of a d-neighborhood of a single point. Assume that a € S{}H_I(Ei)
realizes 7 in A. Since h is an isomorphism of 3d + l-neighborhoods, we see that S7'(a) C Sé‘}Hl(d') and

thus h(a) € Sfdﬂ(g) realizes 7. Thus, the number of elements in Syy, (@) and Sgdﬂ(g) that realize 7
is the same.

Since A Sy B (that is, #4[A, 7] = #4[B, 7]), the observation above implies that
card({a € A — S{}Hl(ﬁi) ' 14(A,a) =71}) = card({b€ B - S§d+1(i§) | 74(B,b) = 7})

-,

for any 7. Thus, we can find a bijection g : A — Sﬁi_i_l(d') — B— SQBd+1( ) such that a ~4 g(a) for any
a€A— S (@)

10



We now define f by

h(z) ifzeS3 (@

f(:E) — { ( ) " S%+1(~)

glz) ifz¢ 2d+1(a)
It is clear that f is a bijection A — B.
We now claim that @z ~g bf(z) for every z € A. If z € Sﬁﬂ(&’), then Si'(z) C Sz{}lﬂ(d) and
@r ~q bh(z) because h is an isomorphism. If z & Sﬁﬂ(&’), then f(z) = g(z) & S§d+1(g)
x =g g(z). Hence, by Claim 4.3, dz =4 gg(m) O

?
, and

Lemma 4.4 says that d-equivalent structures are d-equivalent even with parameters if large enough
neighborhoods of these parameters are isomorphic. A similar idea was used in [24] to show that d-
equivalence, for large enough d, guarantees a win for duplicator in the r-round bijective Ehrenfeucht-
Fraissé game. Lemma 4.4 allows us to simplify the proof of Theorem 3.3 given in [24].

First we give an easy consequence of Lemma 4.4.

-

Corollary 4.5 If (A,d) S3q41 (B,b) then there ezists a bijection f : A — B such that (A,dz) Sy
(B,bf(x)) for every x € A.

Proof: 1f (A,@) Ssgqi1 (B,b) then there exists a bijection f : A — B such that @z ~gq4q bf (z)

=,

for every z € A. On the other hand, (A,@) S3441 (B,b) implies A Sy B. Then by Lemma 4.4,
(A,dz) Sq (B,bf(x)) for every x € A. 0

This provides a winning strategy in the bijective Ehrenfeucht-Fraissé game on A and B, if their
d-equivalence for large enough d can be guaranteed. That is:

Proposition 4.6 Letn > 1 and d = (3" ' —1)/2. Assume that A =4 B. Then the duplicator has a
winning strategy in the n-round bijective Ehrenfeucht-Fraissé game on A and B.

Proof: Let dy =0, dy =3dy+ 1,ds =3d1 +1,...,dp =3dy_1+1,.... Note that d = d,_1. Suppose
that A S, B. Assume that after a round 7 < n the spoiler has chosen points aq,...,a; and the
duplicator has chosen bijections f1,..., f; and the equivalence

(.A, (al, ‘e ,ai)) (:’dn—i (B, (f1 (al), P ,f,(az)))

holds. By Corollary 4.5 the duplicator can choose a bijection f;y; such that

(A (a1, ai1)) Sa, o (B (filar),. .., fit1(ait1)))

for all a;41. In particular, after the last round

(Av (ala e aan)) So (Bv (fl(al)a .- 'afn(an)))a

which guarantees that {(a;, fi(a;)) | 1 <4 < n} is a partial isomorphism. 0

In particular, it follows that every Loo,(Qu)“ sentence is Hanf-local (Theorem 3.3).
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4.1 (n,d)-equivalence

We extend the notion of d-equivalence from points to tuples. Let 7" be an isomorphism type of a
structure in the language o, (o extended with n constants). An n-tuple @ of a structure A d-realizes
7", written as 74(A,a) = 7", if Ny4(a@) is of isomorphism type 7.

We denote the cardinality of {@d € A" | 74(A,d@) = 7"} by #4[A, "], that is, the number of n-tuples
of A which d-realize ™.

We say that structures A, B € STRUCT|o] are (n,d)-equivalent, A <, 4 B, if for every isomorphism
type 7" we have #4[A,7"] = #4[B,7"], i.e., there are equally many n-tuples in A and B whose
d-neighborhoods realize 7. Obviously, (1, d)-equivalence is the same as d-equivalence.

We start by analyzing this notion of equivalence. First observe that A <, ;4 B implies A S, B.
Indeed, let @ € A" be an n-tuple whose all components are a € A. Since A <, 4 B there is be B"
such that @ =~ 5, and this isomorphism proves that all components of b are the same, say b € B. Thus
a =4 b, which shows that A =, B. Recall from a remark preceding Theorem 2.4 that this implies
A Sy B for every d' < d [11].

Our main result in this section is that r-equivalence of n 4+ 1-tuples can be guaranteed by d-equivalence
of n-tuples for sufficiently large d that depends on r only.

First, we give a simple criterion for (n, d)-equivalence.

Proposition 4.7 A S, ; B iff there is a bijection 7w : A" — B" such that for any @ € A",
a ~d 71'(5)

Proof: Let 11, ..., 7 be the collection of all isomorphism types of d-neighborhoods of n-tuples realized
in Aor B. Let A; = {@ € A" | 74(A,@) = 7'} and B; = {b € B" | 74(B,b) = 7'}. Then {Ai}i=1,.. s and
{Bi}i=1,..s form partitions of A" and B" respectively. Assume A <, ; B. Then card(A;) = card(B;)
for every 1 = 1,...,s, and the required 7 is defined as the union of bijective maps between A; and B;
for all . Conversely, if 7 satisfying & =, (%) exists, let 7 be an isomorphism type and let a1, ..., dy
be the elements of A" such that 74(A,d;) = 7. Then 74(B,n(d;)) = 7", and #4[A, "] < #4[B, "]
A symmetric argument shows the reverse inequality. O

The proposition below provides the main technical tool for Section 5.

Proposition 4.8 Letn >0 and d > 0. Then A Sy, 3441 B implies A ;11,4 B. O

Proof: Suppose A <, 3441 B. Then there exists a bijection p : A" — B"™ such that @ ~341; p(a@) for
every @ € A™. As observed above, we also know that A =, B. Thus by Lemma 4.4, (A, d@) S4 (B, u(@))
for every @ € A™. By definition, for every @ € A" there is a bijection fz : A — B such that
dx =g p(a@)fa(z) for every z € A. Now the bijection 7 (dz) = pu(a)fz(x) proves the claim A S, 4 B.
O

As an immediate consequence we state the following.

Corollary 4.9 For any r > 0 and any n > 1 there exists a number d such that A S4 B implies
A S, B. In fact, d can be taken to be 3""'r + (3""2 —1)/2 forn > 1 and d =r forn = 1. 0
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5 Relationships between the notions of locality

This section is dedicated to the study of the relationships between the notions of locality. We show
that the Hanf-locality implies the Gaifman-locality, and the strong Gaifman-locality implies the Hanf-
locality. We then see that each of these notions of locality implies the bounded degree property.

First, we extend Definition 2.5 from sentences to formulas.

Definition 5.1 A formula 1(z1,...,x,) is Hanf-local if there exists a number d such that for every
A, B € STRUCT|o] and for every two n-tuples @ and b of elements of A and B respectively, (A, d) Sy
(B,b) implies A = (@) iff B |= 4(b). The minimum d for which this holds is called the Hanf locality
rank of ¢, and is denoted by hlr(1)).

We start with a simple observation, which shows that in the study of Hanf-locality it is enough to
consider just sentences.

Given a signature o, by o™ we denote o extended with n new unary symbols Uy, ..., U,. Given a
structure A and an n-tuple @, by A[@] we denote the o(®) structure that extends A by interpreting
the U;s as singletons containing the corresponding components of a.

Let 9(z1,...,z,) be a formula with n free variables. By T we denote a sentence in a logic £ that
is equivalent to Vaq...Va, (Ui(z1) A... AUp(zn)) = P(x1,...,2,)); it exists if £ is closed under
first-order operations. Obviously, for any A and any n-tuple @, A = () if and only if A[d] = ¥(™)

Proposition 5.2 Let L be a logic that is closed under first-order operations. If every sentence in L
1s Hanf-local, then every formula in L is Hanf-local.

Proof. Let 1(z1,...,zyn) be a formula of £, and let hir(#(™) = d. Suppose (A, @) Sq (B, b); then also
Ald] 4 B[b]. By the observation above we then have

A @) iff Ala = e™ iff BB = v™ iff B pb).
Hence () is Hanf-local and hlr(¢)) < d. O
5.1 Hanf-locality implies Gaifman-locality

The first main result of this section is:

Theorem 5.3 FEvery Hanf-local formula is Gaifman-local.

A such that @ ~3441 b. Slnce .A S4q A, by Lemma 4.4, (A,d) Sy (A, E) From Hanf-locality of ¢ we

Proof: Let a formula t(21,...,2,) be Hanf-local and suppose hlr(1)) . Let @ and b be n-tuples of
(
see that A = (@) iff A = ¢(b). Thus 1 is Gaifman-local and lr(1))

<3d+1. O
By Proposition 5.2, the following holds as well.

Corollary 5.4 Let L be a logic that is closed under first-order operations. Assume that every sentence
in L is Hanf-local. Then every formula in L is Gaifman-local. O
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The proof above also shows that Ir(1)) < 3-hlr(T(™) 4+ 1. In the case 1 is a first-order formula, ¥(") is
of quantifier rank qr(¢)) 4+n, and hence we obtain a new bound that improves Gaifman’s (79" (%) —1)/2.

Corollary 5.5 Let o(zy,...,z,) be a first-order formula. Then Ir() < 39rW)+n 41, O

Note that this improves the locality rank implied by Gaifman’s theorem, not the bound on the size of
neighborhood in an ezplicitly constructed formula used in Gaifman’s proof.

We now list some corollaries of Theorem 5.3. We immediately obtain

Corollary 5.6 FEvery Hanf-local formula has the bounded degree property. If L is a logic closed under
first-order operations and such that every L-sentence is Hanf-local, then L has the bounded degree
property. O

Corollary 5.7 FO(Q,) and FO+ COUNT are Gaifman-local and have the bounded degree property.
O

More precisely, every FO + COUNT formula without free variables over the numerical domain is
Gaifman-local and has the BDP. This generalizes a number of known results. For example, the bounded
degree property of first-order logic with Hértig and Rescher quantifiers (proved in [6] by a lengthy and
quite involved argument) follows straightforwardly. We also obtain a theorem by Etessami [9] that
deterministic transitive closure is not definable in FO+ COUNT in the presence of a successor relation.
Note that this can be viewed as a small step towards separating TC® from DLOGSPACE, because
FO + COUNT captures uniform TC® on linearly ordered structures [3] and FO with deterministic
transitive closure captures DLOGSPACE with built-in successor relation [8, 18].

Corollary 5.7 allows us to make the next incremental step. First, recall from Section 3 that with the
counting quantifiers Jizp(z) in FO + COUNT we can use the built-in relations (like < and BIT)
of the numerical second sort. Let then & € N and let S be any family of built-in relations on the
non-numerical domain whose degrees do not exceed k.

Corollary 5.8 Deterministic transitive closure is not definable in FO + COUNT with the built-in
relations Si. ! O

Furthermore, using locality, we can extend the above results to more complex auxiliary data. Consider
a class of structures C C STRUCT[o’] for some relational vocabulary ¢’. Define a function s¢ : N — N
by letting s¢c(n) be the maximal possible degree in some n-element structure 4 € C. We say that C
is of moderate degree (see [11]) if sc(n) < log?") n. That is, there is a function § : N — N such that
limy, 00 8(n) = 0 and s¢(n) < log®™ n.

The following was shown in [6].
Proposition 5.9 (see [6]) Let ¢ be a local graph query, of locality rank r. Then for any structure

A, the number of distinct in-degrees in the graph [ A] is at most the number of non-isomorphic
3r + 1-neighborhoods realized in A. The same is true for out-degrees. O

n fact, if 7 is any set of built-in relations defined on the numerical domain, then deterministic transitive closure
still is not definable in FO + COUNT with the built-in relations S, and the built-in relations 7.

14



Now one can use this proposition and calculate that, for structures of moderate degree, one cannot
construct a graph that has n distinct in-degrees, where n is the number of nodes. This, and locality
of FO + COUNT, gives us

Corollary 5.10 Transitive closure and deterministic transitive closure are not definable in FO +
COUNT in the presence of built-in relations of moderate degree. O

However, the order relation adds all degrees from 0 to the cardinality of the input. Thus, we cannot
generalize Corollary 5.8 to the case of built-in linear order.

5.2 Strong Gaifman-locality implies Hanf-locality

The next main result of the section is:
Theorem 5.11 FEvery strongly Gaifman-local sentence is Hanf-local.

From this and Gaifman’s theorem, the theorem by Fagin, Stockmeyer and Vardi follows immediately
(though not the bound produced by the proof in [11]). We also believe that the proof below is simpler
than that in [11] and shows clearly why this result is indeed a form of locality, as claimed in [11].

Proof of Theorem 5.11. It is enough to consider a sentence ¥ which is equivalent to
Jzq ... JxpY(x1,. .., zyn), where 1(Z) is strongly Gaifman-local. Assume that r > 0 witnesses strong
locality of t: that is, @ ~"F b implies A = (a@) iff B = 1(b). Let d be given by Corollary 4.9; then
A S, B implies A 5, B. We claim that hlr(¥) < d. Indeed, assume A S, B. Let A = U. Then
A = (d) for some @ € A". By Corollary 4.9, A <,,, B, and thus we find b € B such that b ~, d.
From strong Gaifman-locality of ¢ we see B |= ¥ (b) and thus B = W. The converse (that is, B = ¥
implies A |= ¥) is similar. Hence, hlr(¥) < d, which completes the proof. O

From Proposition 5.2 we get the following corollary.

Corollary 5.12 Let L be a logic that is closed under first-order operations. Assume that every sen-
tence in L s strongly Gaifman-local. Then every formula in L is Hanf-local.

Combining the proof above with Gaifman’s theorem, we see that for an arbitrary first-order sentence
W, we have the bound hir(¥) < 2. 39(W) . 79"(¥)~1 which is much worse than 39"(%) that is given by
[11]. However, it is not the bound itself, but its existence that is used in most applications. Also, the
above proof reveals the close connection between Gaifman’s and Hanf’s theorems.

Another corollary of Theorem 5.11 is that the two parts of Gaifman’s theorem are not independent:

Corollary 5.13 Let L be a logic that is closed under first-order operations. Assume that every sen-
tence in L is strongly Gaifman-local. Then every formula in L is Gaifman-local. O
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6 Locality and structures of small degree

In this section we give characterizations of the notions of locality on structures of bounded degree.
We start with a simple observation:

Lemma 6.1 For any signature o, there exist functions fo, Fy : N X N X N — N such that for any
Ae SqH1LKjT}[UL
card({m" | 3ad € A" : 7. (A, @) = 1"}) < fo(k,r,n) and
Vie A" card(SM@)) < Fy(k,r,n).
]

The next two lemmas show us that on structures of bounded degree the relations =~, and &, are
definable by formulas of certain logics.

Recall from Section 2 that for every fixed r there is a first-order formula d<,(z,%) which expresses
that d(z,Z) < r, i.e., d(z,2) < r for some component z of Z. A proof of the first lemma is essentially
given already in [8, Section 1], and we only sketch the proof below.

Lemma 6.2 e For every A, d € A” and a positive integer T, there exists a first-order formula
@™ (L) such that for every B and be B", B ©alb b) iff @ ~r

e For every A and positive integers r and n, there exists a first-order sentence 0;{" such that for
every B, B = 92" iff exactly the same isomorphism types of n-tuples are r-realized in A and B.

Proof: We define ¢’ (%) to be a first-order formula which says that Z realizes the isomorphism

type of NA(d@). For this, let @ € A" and let ay,...,an,b1,...,b, be the elements of S:A(@). Let
1€ T PV B ,ym) be the diagram of NA( d), that is, the conjunction of atomic and negated
atomic formulas realized in NA(&@). Then @™ z(£) can be defined as

Jy1, ... JymVz <p($1,...,xn,y1,...,ym)/\ <d<r(z,f) - (\/z:xi\/ \/z:yﬂ)) .

i=1 i=1
Suppose that for B and b € B" we have B = LprA’a(l_)‘). Then NA(@) and N5(b) satisfy the same atomic
formulas and the second part of the definition of ¢’ ;(Z) says that there are no other points in Sf(l_;)
Hence @ ~, b. Suppose then @ =, b, that is, NA(@) = NB(b b). By construction we have A = ¢'.z(a)
and hence also B |= LpTA,a(l_)‘).

For the second claim, suppose @ € A™ and consider a first-order formula go’"Aa(*) which says that 7
r-realizes the isomorphism type of NA(d@). We define the first-order sentence 6';" 4 as

\/ 38U a(@) AVE ] ola(@).

acAn acAn

If the same isomorphism types of n-tuples are realized in A and B, then obviously B = 9;1". Suppose
that B = 6;". Then the first part of ;" implies that every isomorphism type of an n-tuple which
is r-realized in A, is also r-realized in B. The second part of the formula in turn says that no other
isomorphism types are realized in B. Thus exactly the same isomorphism types are realized in A and
B. 0
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The second lemma below gives a formula which defines the relation <,. It shows us that on structures
of bounded degree unary quantifiers allow us to keep quantifier rank bounded.

Lemma 6.3 For every A € STRUCT[o], @ € A™ and a positive integer r, there exists a positive

—

integer m, which is independent of A, and an FO(Qu)™-formula 0%y ;(Z) such that, for every B and
beB", BE 77?4@(5) iff (A, @) S, (B,b). Here m can be taken to be Fy(k,r,n) —n+ 1.

Proof: Suppose A € STRUCT[o] and @ € A". For every b € A let ¢’y . (#y) be the first-order
formula given by Lemma 6.2 which describes the isomorphism type of N4(@b). By Lemma 6.1 we see
that qr(¢’y z,) < Fo(k,r,n) —n. Then for every isomorphism type N;!(@b) we can express the number
of points b which realize this isomorphism type by Elzjy<pf4’ab(fy). Here 3=7y is the unary quantifier
given by the class of structures (A, U) where U is a j-element subset of A.

From Lemma 6.1 we see that there exists a bound M on the number of different isomorphism types
Nf(cfe) in structures from STRUCT}[o]. Let these isomorphism types be 71,..., 7y and let §;(Zy)
be the first-order formula given by Lemma 6.2 which describes the isomorphism type 7;. Denote
n; = #[(A, @), 7;]. Then the formula 1, ;(Z) can be defined as

N FBi(Ey).

1<i<M

If (A, @) S, (B,b) then obviously B |= 1’y -(b). By the definition of 1, +(), if B |= 7", (), then there
are exactly the same number of points in B with the same isomorphism type as N:A(@b) for every
b € A. Hence there exists a bijection A — B which shows that (A, a) =, (B,b). |

We first give a characterization for strongly Gaifman-local queries. We say that a Boolean query W is
strongly Gaifman-local on STRUCT[o] if in Definition 2.2 STRUCT([o] is replaced by STRUCT}[o],
i.e., we restrict the consideration to structures where each point has degree at most k. The idea of the
proof given below is similar to the one in [25], where a characterization for Boolean queries definable
in FO (and in FO with modular counting quantifiers) on structures of bounded degree, was given.

Proposition 6.4 Let ¥ be a Boolean query and k a natural number. Then WV is strongly Gaifman-local
on STRUCT[o] iff ¥ is definable in first-order logic.

Proof: The implication from right to left is already established in Proposition 2.3. For the converse,
let ¥ be strongly Gaifman-local, let r witness strong Gaifman-locality. That is, ¥ is a Boolean
combination of sentences of the form 37 (Z) where each @ ~7B 5 implies A = (@) iff B = (b). Let
n be the maximum length of the tuples # in these formulas 1. Consider then the sentence ®:

Voo

AT
AESTRUCT},[o]

where the sentences 0;" are given by Lemma 6.2. Since there are only 2™ sentences 6';" when

A € STRUCT[o] (up to logical equivalence), where m = f,(k,r,n), this disjunction is finite and

hence @ is a first-order sentence. Intuitively, ® describes the isomorphism types of n-tuples which are

r-realized in the structures satisfying W.

We claim that @ is equivalent to ¥ on structures from STRUCT[o]. Suppose that B € STRUCT[0]
and B |= U. Then B |= 05" and thus B |= ®. If B |= ® then B |= 0';" for some A € STRUCT}[o] for
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which A |= ¥. Then exactly the same isomorphism types of n-tuples are r-realized in A and B. Thus,
A and B agree on every sentence of the form 37 (Z), where r witnesses strong Gaifman-locality of 1.
This implies B = . O

Next we give a characterization for Hanf-local queries in terms of logical expressibility.

Proposition 6.5 Let k be a natural number, and let 1 (Z) be a query on STRUCT[o]. Then v is
Hanf-local iff 1 is definable in Locw(Qu)¥.

Proof: The implication from right to left follows from Theorem 3.3 and Proposition 5.2. For the other
direction, let ¢ (z1,...,z,) be Hanf-local and hlr(1)) = r. Consider the formula ¢(Z) defined as

\/ a,6(T)
A=y (a)
AESTRUCT}, [o]
where the formulas 7', -(Z) are given by Lemma 6.3. Since each 1’y -(%) is an FO(Q,)™-formula, ¢(Z)
is an Loy (Qy)™-formula.

We show that ¢(Z) and () are equivalent on STRUCT}[o]. Let B € STRUCTy[o] and b € B™. If

B = 1(b) then B |= Ty E(b) and hence B |= ¢(b). Suppose then that B = ¢(b). Now B = 77?4,5(5) for

=,

some A and @ which satisfy A |= +(d@). Then (A, @) S, (B,b) by Lemma 6.3 and since ¢ has Hanf
locality rank r, we have B |= 1(b). O

In particular, when studying the bounded degree property, Hanf-locality can be replaced by defin-
ability in Lo, (Qy)¥. Using this, we can now give a very simple alternative proof for Corollary 5.6:
Let 9(z1,...,2,) be a formula of L4, (Qu)". Then for each j and I there is a formula ¢;;(z) of
Loow(Qu) ™1 which says that degree (¢, ), the jth degree of x in the output of ¢, is exactly I.
Hence, if for any two points @ and b we have a a4 b, where d = 3"t"~!, then a and b have the same
degrees with respect to 1. But by Lemma 6.1 the number of different isomorphism types of 3"+7 L
neighborhoods realized in structures from STRUCT[o] is bounded, and thus ¢ has the bounded
degree property.

To describe Gaifman-local formulae on structures of small degree, we need the following definition.

Definition 6.6 A formula 1(z1,...,z,) in a language o is given by a first-order definition by cases
on a class C C STRUCT|o] if there exists a partition C = C1 U ... U Cy, and first-order formulae
a1 (1,0 Zn)y oy (21, .., o) in the language o, such that on all structures A € C;, v is equivalent
to a;. That is, for any 1 <1< m and any A € C;,

A EVE(Z) & ai(T)).

This is reminiscent of the familiar case statement (or equivalently, a nested if-then-else statement)
in many programming languages.

Proposition 6.7 Let (z1,...,zy,) be a formula and k a natural number. Then 1 is Gaifman-local
on structures from STRUCT[o] iff ¢ is given by a first-order definition by cases on STRUCT[o].
Furthermore, if 1 is given by a first-order definition by cases on STRUCT[o], and v is in a logic £
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that is closed under first-order operations, then each class C; of the corresponding partition is definable
by a sentence in L.

Proof: That a formula given by a first-order definition by cases is Gaifman-local follows from locality
of first-order formulae. Indeed, Ir(¢)) < max!”,{lr(a;)}. For the converse, assume that ¢ is of locality
rank 7. We know that there exists a bound, M = f,(k,r,n), on the number of different isomorphism
types of r-neighborhoods of n-tuples in structures from STRUCT[o], see Lemma 6.1. Let 71,...,7as
be an enumeration of those isomorphism types, and let 3;(#) be the first-order formula given by Lemma
6.2 saying that Z r-realizes 7;. Let ®; be the sentence 37(5;(7) A (7)) (note that ®; is not necessarily
in £, unless £ is closed under first-order operations). We now claim that (%) is equivalent to

M

o(@) = \/(Bi(@) A By)
i=1
on structures from STRUCT[o]. Indeed, if A € STRUCT[o] and A = (a), assuming that @ realizes
7;i in A, we see that A = ®; and thus A |= ¢(d@). Conversely, let A = ¢(d); that is, A = f;(@) and

A |= ®; for some 7. In particular, there exists an n-tuple b such that A |= 8;(b) A1 (b). Since A = 5;(b),
we obtain @ ~; b, and thus A = (@) by locality, which proves the claim.

Finally, for each subset I C {1,..., M}, let Er = (A\;c; ®i) A (Aigy —Pi), and let a;(F) be a first-order
formula equivalent to \/;.; 3i(Z). Then we still have

$@ o\ (@A),

IC{1,...M}

Since the classes C; = {A € STRUCT[o] | A |= E;} form a partition of STRUCTY[o], the above gives
the desired first-order definition by cases. Furthermore, the second claim follows from the proof. O

This proposition gives us yet another proof of the bounded degree property of arbitrary local formulae
(assuming the BDP of first-order formulae). Indeed, for each &, the upper bound on deg_count([A])
for A € STRUCTY[o] can be calculated as the maximum of f,, (k), where a;s come from the first-order
definition by cases of ¢, and f,, is the function giving the bound for first-order formula c;.

As another corollary of the above characterization of locality, we have the following Ramsey-style
property, similar to those studied in [4].

Corollary 6.8 Let C be an infinite class of structures in STRUCT[o]. Let (&) be a Gaifman-local
formula. Then there exists an infinite subclass C' C C and a first-order formula ¢(Z) that is equivalent
to on C'. That is, A EVZ(¢Y(Z) + @(£)) for all A€ . O

Studying the bounded degree property on structures of small degree appears to be of little interest,
since any query producing a result that has a small number of in- and out-degrees will have the
BDP. This leads to an easy characterization of formulae that have the BDP on structures of small
degree. Namely, let R be an n-ary relational symbol, and x,, a formula in the language {R} such
that A = x,,(@) iff @ € RA and there are at most m distinct vectors of the form deg_count(b)
under deg_count(a;), a; € d, in the lexicographic order. Here by deg_count(b) we mean the vector
(degree, (RA, D), ..., degree, (RA,b)). Note that x,, is easily definable in £ . Thus, formulae having
the bounded degree property on structures of small degree can be characterized as those of the form
Xmle(Z)/R(Z)], where ¢ is an arbitrary £% , formula (that is, each occurrence of R(Z) is replaced by

(7).
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7 Conclusion

We examined the main notions of locality of first-order formulae, and proved that these notions are
closely related. We showed that the Hanf-locality implies the Gaifman-locality for open formulae,
and the strong Gaifman-locality for sentences implies the Hanf-locality. Each of these implies the
bounded degree property, which is one of the easiest tools for proving inexpressibility results. Our
presentation goes beyond the first-order case, and thus allows us to infer new results for logics with
unary quantifiers and counting.

We believe that the most challenging problem is to extend these techniques to the ordered setting.
Note that on ordered structures all queries are trivially strongly Gaifman-local; this is simply because
the distance between any two elements in the Gaifman graph of an ordered structure is at most 1.
Thus, to obtain interesting results one should restrict the attention to order-independent queries, such
as the transitive closure. More precisely, we are interested in structures of the form (A, Ry,..., R;, <),
where, in addition to o-relations Ry, ..., R;, we have a binary relation < which is interpreted as a linear
order. When we talk about neighborhoods, we mean neighborhoods in the o-reduct (A, Ry,..., R;) —
this gives us the definitions of all the notions of locality. Finally, if we have a o-structure A, and an
ordering < on A, by A. we denote the corresponding ordered structure. The order-independence of
a query (%) in a language that includes both o and < means that for any A, and any two orderings
<y and <9, we have A., = ¢(ad) iff A, = ¢(a) for every a.

The first natural question is whether the locality properties of first-order logic could be extended to
the order-independent setting. A positive answer to this question was recently obtained by Grohe
and Schwentick [13], who proved that all order-independent queries in FO are Gaifman-local. On the
other hand, the corresponding problem for Hanf-locality is still open.

It would be tempting to conjecture that the Gaifman-locality of O+ COUNT could also be extended
to the case of order-independent queries. Indeed, this would imply that deterministic transitive closure
is not in TC®, which in turn would imply the separation of TC? and DLOGSPACE. However, the
following counterexample shows that this conjecture, made in [21], is false.

Proposition 7.1 There is an order-independent query ¢ in FO + COUNT which does not have the
bounded degree property, and hence is not Gaifman-local.

Proof: Consider structures of the type A = (A, P, E), where P C A and (A, E) is a directed graph
such that £ C P2 is the graph of a successor relation. Let 6(z,y) be a formula of FO+ COUNT in the
extended signature {P, F, <} saying that z € P and card({a € P | a < z}) = card({b € A | b < y}).
Thus, for each ordering < of A, 6 defines in A. a bijection from P to an initial segment P’ of <. Let
E' be the image of the relation E under this bijection. Clearly E’ is definable in A. by a formula of
FO + COUNT, and the graph (P', E') is an isomorphic copy of (P, E).

It is known that the BIT predicate corresponding to an ordering < is definable in O + COUNT (see
[3]). The BIT predicate in turn can be used for encoding subsets of P’ by elements of A as follows: for
each a € A, let S, = {b € P' | BIT(b,a)}. If the initial segment P’ is of length at most log(card(A)),
then all subsets of P’ are encoded by at least one element, i.e., for every S C P’ there is a € A such
that S = S,. Hence, assuming that

(%) card(P) < log(card(A))
we can simulate monadic second-order quantifiers over P’ by first-order quantifiers over A. In par-

ticular, there is a formula ¢'(z,y) of FO + COUNT such that if (x) holds, then for all a,b € P’,

20



(A, P E' <) = ¢'(a,b) iff there is a directed E’-path from a to b.

Let ¢(z,y) be the formula JuJv(6(z,u) A O(y, v) A¢'(u,v)). Thus, p(z,y) says that ¢’ (u,v) holds for
the images u,v of x,y under the bijection defined by 6, which, assuming condition (*), is equivalent
to saying that there is a directed E-path from z to y. Let ¢ (z,y) be the conjunction of ¢(x,y) with
a sentence of FO + COUNT expressing the condition (). Obviously ¢ is order-independent, and it
is easy to see that it does not have the bounded degree property, as it defines the transitive closure
on a subset of nodes of size log(card(A)). 0

Note that the restriction card(P) < log(card(A)) is crucial in the proof above; the simulation of
monadic second-order quantifiers over P’ by first-order quantifiers over A is not possible without this
assumption. Thus, it is still meaningful to ask whether some reasonable weak version of locality holds
for order-independent queries in FO + COUNT. For example, we may ask whether for each order-
independent query 1 (Z) in FO + COUNT there is a sublinear function f : N — N such that if @ z;‘l b
for r = f(card(A)), then A |= ¢(@) iff A = ().
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