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set of the positions l su
h that the lth 
hara
ter in sis ai. Then a senten
e � of some logi
 L de�nes alanguage L(�) = fs 2 �� j Ms j= �g. Two 
las-si
al results on logi
 and language theory state thatlanguages thus de�nable in monadi
 se
ond-order logi
(MSO) are pre
isely the regular languages [8℄, and thelanguages de�nable in �rst-order logi
 (FO) are pre-
isely the star-free languages [25℄. For a survey, see[28, 29℄.An alternative approa
h to de�nability of strings,based on 
lassi
al in�nite model theory rather than �-nite model theory, dates ba
k to [8, 10℄. One 
onsidersan in�nite stru
ture M 
onsisting of h��;
i, where 
is a set of fun
tions, predi
ates and 
onstants on ��.One 
an then look at de�nable sets, those of the formf~a jM j= '(~a)g, where ' is a �rst-order formula in thelanguage of M . A well-known result links de�nabil-ity with traditional formal language theory. Let 
reg
onsist of unary fun
tions la, a 2 �, binary predi
atesel(x; y) and x � y, where la(x) = x � a, el(x; y) statesthat x and y have the same length, and x � y statesthat x is a pre�x of y. Let Slen be the model h��;
regi(we will explain the notation later). Then subsets of�� de�nable in Slen are pre
isely the regular languages[8, 10, 9℄.An advantage of the \model-theoreti
 approa
h" isthat one immediately gets an extension of the notionof re
ognizability from string languages to n-ary stringrelations for arbitrary n. One gets an algebra of n-arystring relations for every n, and these algebras auto-mati
ally have 
losure under proje
tion and produ
t,in addition to the boolean operations. In the 
ase ofthe model Slen above, this algebra is not new: in fa
t,the de�nable n-ary relations are exa
tly the ones re
-ognizable under a natural notion of automaton runningover n-tuples [10, 15℄.An obvious question to ask, then, is whether newalgebras of string relations arise through the model-theoreti
 approa
h. In parti
ular, if we restri
t thesignature 
 to be less expressive than 
reg, do we getnew relation algebras lying within the re
ognizable re-lations?1



A natural starting point would be to �nd a signa-ture that 
aptures properties of the star-free sets. Hereagain, a simple example leaps out: 
onsider the signa-ture 
sf = (�; (la)a2�), and let S = h��;
sfi. One
an easily show that the de�nable subsets of �� in Sare exa
tly the star-free ones. Furthermore, we willshow that the de�nable n-ary relations of this modelare exa
tly those de�nable by regular pre�x automata(
f. [1℄) whose underlying string automata are 
ounter-free.Just as there is a signi�
ant di�eren
e between the
omplexity-theoreti
 behavior of regular languages andstar-free languages, we �nd that the model S is mu
hmore tra
table, in terms of its model-theory and its
omplexity than Slen. In parti
ular, we show that S hasquanti�er-elimination in a natural relational extension,while Slen does not.It would be tempting to think of S and Slen as 
anon-i
al extensions of the notions of regularity and star-freeto n-ary relations. However, we will show that in fa
tthere are many 
hoi
es for 
 that share the same one-dimensional de�nable sets (either star-free or regular).Furthermore, algebras of de�nable sets may be iden-ti
al in terms of the string languages they de�ne, butdi�er 
onsiderably in the n-ary string relations in thede�nable algebra. We thus say that an algebra of de-�nable sets based on h��;
i, with 
 � 
reg is a regularalgebra of de�nable sets if the subsets of �� in it (i.ethe one-dimensional de�nable sets of h��;
i) are ex-a
tly the regular sets. We likewise say that the algebrabased on de�nable sets for h��;
i is a star-free algebraof de�nable sets if the subsets of �� in the algebra areexa
tly the star-free sets.The rest of the paper studies new examples of reg-ular and star-free de�nable algebras. We give an ex-ample of a star-free algebra with 
onsiderably more ex-pressive power than the basi
 star-free algebra S. Thismodel, whi
h we denote by Sleft (as it allows one to add
hara
ters on the left of a string), shares most of the de-sirable properties of S: in parti
ular, it has quanti�er-elimination in a natural language, and membership testin this algebra has low 
omplexity.More surprisingly, perhaps, we give examples of reg-ular algebras (whi
h we denote Sreg and Sreg;left) thatare stri
tly 
ontained in Slen = h��;
regi. Althoughthe one-dimensional sets in these algebras are still theregular sets, the algebra as a whole shares many of theattra
tive properties of the star-free languages. In par-ti
ular, we give quanti�er-elimination results for thesealgebras.One key motivation for our work 
omes fromthe �eld of databases, in parti
ular, the study of

query languages with interpreted operations [3, 5, 19℄,and 
onstraint databases [23℄. In those settings,quanti�er-elimination gives one 
losed-form evaluationfor queries; it says that one 
an evaluate queries whoseinput is a quanti�er-free de�nable set and get a 
losedform solution as another quanti�er-free de�nable set.This approa
h has generally been applied to numeri
aldomains over the reals, sin
e there are several pow-erful quanti�er-elimination results available there. Itis natural to extend this approa
h to databases overstrings: the string datatype, after all, is ubiquitous indatabase appli
ations, and languages su
h as SQL al-ready give some 
apability of manipulating star-freesets (via the LIKE predi
ate) de�ned from the in-put data within queries. But in order to extend the
onstraint-database approa
h to the string 
ontext, weare �rst required to �nd de�nable algebras that ad-mit quanti�er-elimination in some natural yet power-ful language. (Some of the previous results in this di-re
tion 
onsidered query languages over unde
idablestru
tures [20℄, or de
idable ones but not 
apable ofexpressing some very basi
 operations on strings [14℄.)The quanti�er-elimination results here thus yield newexamples where the 
onstraint approa
h 
an be ap-plied. In fa
t, the results we present here were usedin [7℄ to give expressiveness and 
omplexity bounds forthe database query languages that arise from severalalgebras of de�nable sets.Our approa
h was also motivated by the study ofautomati
 stru
tures [22, 9℄, whi
h are a sub
lass ofre
ursive stru
tures [21℄, and were introdu
ed re
entlyas a generalization of automati
 groups [16℄. In anautomati
 stru
ture M = h��;
i, every predi
ate in
 is de�nable by a �nite automaton. More pre
isely,an n-ary predi
ate P is given by a letter-to-letter n-automaton [15, 18℄. Su
h an automaton is a usualDFA whose alphabet is (� [ f#g)n, # 62 �. An n-tuple of strings s1; : : : ; sn 
an be viewed as a word oflength maxi jsij over the alphabet � [ f#g, where thejth letter is the tuple (sj1; : : : ; sjn); here sjk is the jthletter of sk, if jskj � j, and # otherwise. We then saythat a predi
ate P � (��)n is de�nable by a letter-to-letter n-automaton A if (s1; : : : ; sn) 2 P i� A a

eptss1; : : : ; sn.It is known [10, 9℄ that a stru
ture is automati
 i�it 
an be interpreted in the stru
ture Slen; hen
e Slenis in some sense the universal automati
 stru
ture. Itis interesting then to look at sub
lasses of automati
stru
tures de�nable within Slen that are signi�
antlymore restri
tive, and that might have stronger model-theoreti
 or 
omputational properties than a ri
h stru
-ture like Slen. One dividing line we fo
us on is be-tween automati
 stru
tures that do admit quanti�er-2



elimination in a natural relational language, and thosethat do not. Our �rst result gives a partial answer toopen question 0 in [26℄, whi
h asks whether Slen itselfhas quanti�er-elimination in a reasonable signature.We show that it does not have quanti�er-eliminationin any relational signature of bounded arity. The otherstru
tures that we study | S, Sreg, Sleft and Sreg;left| do admit su
h a quanti�er-elimination. A se
onddi
hotomy is between automati
 stru
tures that admitstar-free de�nable algebras versus those that have reg-ular algebras. We show that the models S and Slefthave star-free de�nable algebras, while the model Sregdoes not. Our results indi
ate that the 
lass of auto-mati
 stru
tures that admit star-free de�nable algebrasis ri
her than one might have guessed.Organization Se
tion 2 introdu
es the notation.Se
tion 3 explores the motivating example, the modelSlen, and proves a set of results 
on
erning its limita-tions. In Se
tion 4 we turn to the minimal example of astar-free algebra, the model S, and prove a quanti�er-elimination result for this model that 
ontrasts withthe negative result proved for Slen. Se
tion 5 extendsthe results of the previous se
tion to a more 
omplexexample of a star-free algebra, the model Sleft. Se
-tion 6 gives a restri
tion of Slen that admits a regularalgebra, and proves a quanti�er elimination result forthis model. The se
tion also 
onne
ts this model tothe minimal model S. Se
tion 7 gives an additional ex-ample of a regular algebra, whi
h 
ontains ea
h of theprevious examples. Se
tion 8 gives 
on
lusions. Allproofs are in the full version [6℄.2 NotationsThroughout the paper, � denotes a �nite alphabet,and �� the set of all �nite strings over �. We 
onsidera number of operations on ��:� x � y { 
on
atenation of two strings x and y.� x � y { x is a pre�x of y.� la(x), a 2 �, is x � a (adds last 
hara
ter).� fa(x), a 2 �, is a � x (adds f irst 
hara
ter).� jx j is the length of string x.� xu y is the longest 
ommon pre�x of the strings xand y.� x� y { the string z su
h that y � z = x, if it exists,and � otherwise.

Note that jxj does not return a string, so it is notan operation of ��. Instead, we often 
onsider thepredi
ate el(x; y) whi
h is true i� jxj = jyj.We shall 
onsider several stru
tures on ��. The ba-si
 one is the stru
ture S = h��;�; (la)a2�i. We 
ouldequivalently use unary predi
ates La, where La(x) istrue for strings of the form x0 � a. Note that in thepresen
e of �, la and La are interde�nable, and wethus shall use both of them.We further 
onsider a number of extensions of S.In one of them 
hara
ters 
an be added on the leftas well as on the right. This stru
ture is denoted bySleft def= h��;�; (la)a2�; (fa)a2�i. Another extension,denoted by Slen, adds length 
omparisons via the elpredi
ate (note that using � and el one 
an expressvarious relationships between lengths of strings, e.g.jxjf=; 6=; <;>gjyj, jxj = jyj+ k for a 
onstant k, et
.).To summarize, we mainly deal with the following stru
-tures:� S = h��;�; (la)a2�i;� Sleft = h��;�; (la)a2�; (fa)a2�i;� Slen = h��;�; (la)a2�; eli.On
e we 
onsider regular algebras, we introdu
e twomore stru
tures; however, operations in them will bemotivated by quanti�er-elimination results for S andSleft and thus those stru
tures will be de�ned later.There is a very 
lose 
onne
tion between Slen and anextension of Presburger arithmeti
. Assume that � =f0; 1g. Let val(n), for n 2 N, be n in binary, 
onsideredas a string in ��. Let V2(n) be the largest power of 2that divides n. Then P � Nk is de�nable in hN;+; V2 ii� f(val�1(n1); : : : ; val�1(nk)) j (n1; : : : ; nk) 2 Pg isde�nable in Slen [8, 10℄.Model theory ba
kground Let 
 be a �nite or
ountably in�nite �rst-order signature, andM a modelover 
. By FO(M) we denote the set of all �rst-orderformulae in the language of 
. The (
omplete) theoryofM , Th(M), is the set of all senten
es in FO(M) truein M . Two models M and M 0 over 
 are elementaryequivalent if Th(M) = Th(M 0).We say thatM admits quanti�er elimination (QE) iffor every formula '(~x) in FO(M) there is a quanti�er-free formula '0(~x) su
h that 8~x '(~x) $ '0(~x) is truein M .For a tuple ~a and a model M over 
, we let tpM (~a)be the type of ~a inM (the set of all formulae of FO(M)satis�ed by ~a), and atpM (~a) be the atomi
 type in M3



(the set of all quanti�er-free formulae of FO(M) sat-is�ed by ~a) . If A is a subset of M , tpM (~a=A) is thetype of ~a over A in M (the set of all FO-formulae over
 [ A satis�ed by ~a).A !-saturated model M over 
 is a model su
h thatea
h 
onsistent type over a �nite set A in FO(M) issatis�ed in M . It is known [11℄ that every model Mover 
 has an elementary equivalent !-saturated modelM�.Isolation, VC-dimension Let T be a theory over
 and M be a model of T . A subset A of M is saidto be pseudo-�nite if (M;A) j= F (T; P ), where P is aunary predi
ate, and F (T; P ) is the set of all formulaeof FO(
 [ P ) satis�ed by all �nite sets of elements inany model of T .If p is a type over A in M , a subset q of p isolatesp if p is the only type over A in M 
ontaining q. A
omplete theory T over 
 is said to have the strongisolation property if for any model M of T and anypseudo-�nite set A and any element a in M , there isa �nite subset A0 of A su
h that tpM (a=A0) isolatestpM (a=A). We say that it has the isolation property ifa 
ountable A0 exists as above.Isolation is an interesting property in the database
ontext be
ause it implies 
ertain 
ollapse results forquery languages [3, 17℄ and it is used for that purposein [7℄. Here we use it to provide bounds on the VC-dimension of de�nable families.For a family C of subsets of a set U , and a set F � U ,we say that C shatters F if fF \ C j C 2 Cg is thepowerset of F . The VC-dimension of C is the maxi-mum 
ardinality of a �nite set shattered by C (or 1,if arbitrarily large �nite sets are shattered by C). This
on
ept is fundamental to learning theory, as �nite VC-dimension of a hypothesis spa
e is equivalent to learn-ability (PAC-learnability) [2, 4℄.Now 
onsider a stru
ture M = h��;
i, and aFO(M) formula '(~x; ~y). For ea
h ~a, let '(~a;M) = f~b jM j= '(~a;~b)g. The family of sets '(~a;M), where ~aranges over all tuples overM , is 
alled a de�nable fam-ily. We say that M has �nite VC-dimension if everyde�nable family has �nite VC-dimension. In parti
u-lar, this implies learnability of 
on
epts de�ned in FOover M .3 Regular algebra based on SlenAs mentioned in the introdu
tion, Slen is the 
anoni-
al automati
 stru
ture, and relations de�nable in Slenare pre
isely the regular relations, that is, k-ary de-

�nable relations are pre
isely those given by letter-to-letter k-automata [9, 10℄. In parti
ular, this gives anormal form for Slen-formulae. We introdu
e a newtype of length-bounded quanti�ers of the form 9jxj � jyjand 8jxj � jyj. A formula 9jxj � jyj' is meant asan abbreviation for 9x(jxj � jyj) ^ '. Sin
e every �-nite automaton 
an be simulated by a length-boundedFO(Slen) formula, we 
on
lude that ea
h FO(Slen) for-mula is equivalent to a length-bounded FO(Slen) for-mula. Note that this result 
an also be shown by astraightforward Ehrenfeu
ht-Fra��ss�e game argument.The universal property of Slen mentioned above in-di
ates that Slen may be \too ri
h" in relations formany appli
ations. We present eviden
e for this byaddressing the open question of [12, 26℄ whether Slenhas quanti�er elimination in a reasonable signature.One �rst needs to de�ne what \reasonable"means here.Clearly, every stru
ture has quanti�er elimination in asuÆ
iently large expansion of the signature: add sym-bols for all de�nable predi
ates, for example. One 
anthus take reasonable to mean a �nite expansion, butthis is not satisfa
tory: for example, Presburger arith-meti
 has quanti�er elimination in an in�nite signature(+; <; 0; 1; (mod k)k>1). Note however that in this ex-ample, the maximum arity of the predi
ates and fun
-tions is 2. In fa
t, it appears to be a 
ommon phe-nomenon that when one proves quanti�er eliminationin an in�nite signature, there is an upper bound on thearity of fun
tions and predi
ates in it.We thus view this 
ondition as ne
essary for a signa-ture to be \reasonable". In general, a reasonable signa-ture might 
ontain relation symbols as well as fun
tionsymbols. Nevertheless, we 
an rule out the possibilityof a reasonable, purely relational signature for whi
hSlen has quanti�er elimination. This is in 
ontrast tothe weaker stru
tures that we 
onsider, all of whi
hhave quanti�er elimination in a relational signature ofbounded arity. Let S(n;m)len be the expansion of Slenwith all de�nable predi
ates of arity at most n, andde�nable fun
tions of arity m. We show the following:Theorem 1 (a) For any n � 0, and m = 0; 1, S(n;m)lendoes not have QE. In parti
ular, there is a propertyde�nable in Slen whi
h is not a Boolean 
ombina-tion of at most n-ary de�nable predi
ates in Slen.(b) S(1;2)len , the expansion of Slen with all unary predi-
ates and binary fun
tions, has QE.Proof sket
h. For (a), the property is whether for anN -tuple of strings, for suÆ
iently large N , there is aposition i su
h that the ith symbol of all N strings is0. For (b), we show a stronger result, assuming that� 
ontains f0; 1g. We prove QE in a signature that4




ontains the bitwise and, or, and not fun
tions, left andright shifts, and the following two fun
tions. Fil�(w)has a 1 at position i i� w[i℄ = � and a 0 otherwise,and Patj;k(w) has the same length as w and has a 1at position i i� i mod k = j and a 0 otherwise, wherej < k.In 
ases of both (a) and (b), the proofs are based onautomata representations of de�nable sets, 
f. [9℄. 2Our next result shows another model-theoreti
 and
omputational short
oming of Slen: namely, a singleformula '(x; y) 
an de�ne a widely varying 
olle
tion ofrelations as we let the parameter x vary. We formalizethis through the notion of VC-dimension.Proposition 1 There are de�nable families in Slenthat have in�nite VC-dimension. 24 Star-free algebra based on SWe now turn to the most obvious analog of Slenfor the star-free sets. This is the model S, whi
h isthe most basi
 model among those studied in the pa-per. We show that it has remarkably ni
e behavior:it admits e�e
tive QE in a rather small extension tothe signature. This immediately tells us that de�nablesubsets of �� are pre
isely the star-free languages. Wethen 
hara
terize the n-dimensional de�nable relationsin S by their 
losure properties, and by an automatonmodel.Note that S is very 
lose to strings 
onsidered asterm algebras, that is, to h�; �; (la)a2�i. It is of 
oursewell-known that the theory of arbitrary term algebrasis de
idable and admits QE [24℄. However, adding thepre�x relation is not ne
essarily a trivial addition: forarbitrary term algebras with pre�x (subterm), only theexistential theory is de
idable, but the full theory is un-de
idable [30℄ (similar results hold for other orderingson terms [13℄). The unde
idability result of [30℄ re-quires at least one binary term 
onstru
tor; our resultsindi
ate that in the simpler 
ase of strings one re
oversQE with the pre�x relation.We start with a result that gives a normal form forformulae of FO(S). Given a set S of strings , we letTree(S) be the tree (i.e. the partially-ordered stru
-ture) generated by 
losing S [ f�g under u. In otherwords, Tree(S) is the poset hfxuy j x; y 2 S[f�gg;�i.(Note that for any set of strings s1; : : : ; sk, there aretwo indi
es i; j � k su
h that s1 u : : : u sk = si u sj .)A 
omplete tree-order des
ription of a ve
tor ~w ofvariables is the atomi
 diagram of Tree(~w) in the lan-guage of �;�;u. In other words, it is a spe
i�
ation

of all the � relations that hold and do not hold inTree(~w).For ea
h L � ��, let PL be the set of pairs (x; y) ofstrings su
h that x � y and y � x 2 L. The followinglemma is obvious, sin
e it is well-known that star-freesets are �rst-order de�nable on string models [25℄.Lemma 1 For ea
h star free language L, there is aformula 'L(x; y) in FO(S) whi
h de�nes PL. 2We now give a normal form result for FO(S).Proposition 2 Every formula  (~x) in FO(S) 
anbe e�e
tively transformed into an equivalent formulawhi
h is a disjun
tion of formulae of the form
(~x) ^ Æ(~x)where 
(~x) is a 
omplete tree-order des
ription over~x and Æ(~x) is a 
onjun
tion of formulae of the form'L(t(~x); t0(~x)), where L is star-free, t(~x) and t0(~x) areeither � or a term of the form xiuxj , and 
(~x) impliesthat t(~x) is an immediate su

essor of t0(~x) in the tree-order.Proof is by indu
tion on the stru
ture of  . 2Let S+ be the expansion of S to the signature that
ontains �, u and a binary predi
ate PL for ea
h star-free language L. Note that S+ is a de�nable expansionof S, as all additional fun
tions and predi
ates are de-�nable. From the normal form we now immediatelyobtain:Theorem 2 S+ admits quanti�er elimination.Remark. As mentioned above there is no needto nest the u-operator. Therefore, S+ 
an beturned into a relational signature that admits quan-ti�er elimination as follows. For ea
h star-free L letP 0L be the set of tuples (s1; s2; s3; s4) of strings forwhi
h PL(u(s1; s2);u(s3; s4)). Note, that u(s1; s2) �u(s3; s4) 
an be expressed as P��(u(s1; s2);u(s3; s4)).It is straightforward to 
he
k that this signature admitsquanti�er elimination. In the same way, the quanti�erelimination results in the remainder of the paper 
an beturned into quanti�er elimination results in a relationalsignature.Note also that S+ 
ould be 
onsidered as an expan-sion of S with either fun
tions la or predi
ates La inthe signature. In the latter 
ase, predi
ates La are notneeded as La(x) i� P��a(�; x).Another 
orollary of the normal form is that in thelanguage of S, it suÆ
es to use only bounded quan-ti�
ation. That is, we introdu
e bounded quanti�ers of5



the form 9x � y and 8x � y (where 9x � y ' means9x x � y ^ '), and let FOb(S) be the restri
tion ofFO(S) to formulae '(y1; : : : ; yk) in whi
h all quanti-�ers are of the form Qx � yi. From the normal formand the fa
t that ea
h 'L 
an be de�ned with boundedquanti�ers, we obtain:Corollary 1 FOb(S) = FO(S). 2Finally, we 
hara
terize S-de�nable subsets of ��and (��)k. Given a subset R � (��)k and a per-mutation � on f1; : : : ; kg, by �(R) we mean the setf(s�(1); : : : ; s�(k)) j (s1; : : : ; sk) 2 Rg.Corollary 2a) A language L � �� is de�nable in S i� it is star-free.b) The 
lass of relations de�nable over FO(S) is theminimal 
lass 
ontaining the empty set, f�g, faga 2 �, �, u, and 
losed under Boolean operations,Cartesian produ
t, permutation, and the operation� de�ned by L1 � L2 = f(s1; s1 � s2) j s1 2 L1; s2 2L2g for L1; L2 � ��.Proof. a) S+ formulae in one free variable are Boolean
ombinations of PL(�; x), for L star-free, and thus theyde�ne only star-free languages.b) For one dire
tion noti
e that �, fag, �, u arede�nable in FO(S), and that FO(S) is 
losed underboolean operations, permutation and Cartesian prod-u
t. The 
losure under � is an easy 
onsequen
e ofLemma 1 as L1 �L2 
orresponds to f(x; y) j 'L1(�; x)^'L2(x; y)g. The other dire
tion follows from the nor-mal form. 2Note that the proje
tion operation is not needed inthe 
losure result above.Automaton We now give an automaton model 
har-a
terizing de�nability in FO(S). This automatonmodel 
orresponds exa
tly to the 
ounter-free variantof regular pre�x automaton as de�ned in [1℄.Let us re
all the de�nition of regular pre�x automa-ton. Let A be a �nite non-deterministi
 automaton onstrings with state set Q, transition relation Æ and ini-tial state q0. We 
onstru
t from A an automaton Â =(�; Q; q0; F; Æ) a

epting n-tuples ~w = (w1; � � � ; wn) ofstrings in the following way. F is a subset of Qn whi
hdenotes the a

epting states of Â. Let pre�x(~w) be theset of all pre�xes of all wi. A run of Â over ~w is amapping h from pre�x(~w) to Q whi
h assigns to every

node � 2 pre�x (~w) a state q 2 Q su
h that h(�) = q0and, � = la(�) implies h(�) 2 Æ(h(�); a). The run isa

epting if (h(w1); � � � ; h(wn)) 2 F . The n-tuple ~w isa

epted by Â if there is an a

epting run of Â over ~w.See [1℄ for more details.For ea
h �nite non-deterministi
 automaton A the
orresponding automaton Â is 
alled regular pre�x au-tomaton (RPA). The subset of (��)n, n 2 N, it de�nesis 
alled a regular pre�x relation (RPR).If the automaton A is 
ounter-free then we say thatthe 
orresponding automaton Â is 
ounter-free (CF-PA). The following shows that the relations de�nablein FO(S) are exa
tly those re
ognizable by a CF-PA.Proposition 3 A relation is de�nable in FO(S) if andonly if it is de�nable by a 
ounter-free pre�x automa-ton. 2It should be noted that FO(S) 
an also be 
hara
ter-ized by means of 
ounter-free deterministi
 bottom-upautomata.VC-dimension and Isolation In addition to quan-ti�er elimination, S has some further model-theoreti
properties that distinguish it from Slen.Proposition 4 Th(S) has the strong isolation prop-erty. 2As a 
orollary of the isolation property, we provethat, unlike for Slen, the de�nable families for S arelearnable. First, we need the following.Proposition 5 Let M be a model with the isolationproperty. Then its de�nable families have �nite VC-dimension.We give two proofs of this result in the full version: oneis a 
omplexity-theoreti
 argument, the other model-theoreti
. 2It follows that the model S, unlike Slen, has learnablede�nable families.Corollary 3 Every de�nable family in S has �niteVC-dimension. 25 Star-free algebra based on SleftWe now study an example of a star-free algebra,one where the n-ary relations in the algebra are more
omplex than those de�nable over S. Re
all that6



Sleft = h��;�; (la)a2�; (fa)a2�i; that is, in this stru
-ture one 
an add 
hara
ters on the left as well as onthe right.Without the pre�x relation, this stru
ture was stud-ied in [27℄, where a quanti�er-elimination result wasproved, by extending quanti�er-elimination for termalgebras (in fa
t [27℄ showed that term algebras withqueues admit QE). However, as in the 
ase of S, whi
hdi�ers from strings as terms algebras in that it has thepre�x relation, here, too, the pre�x relation 
ompli-
ates things 
onsiderably.We start with an easy observation that FO(Sleft) ex-presses more relations that FO(S). Indeed, the graphof fa, Fa = f(x; a � x) j x 2 ��g is not expressible inFO(S), whi
h 
an be shown by a simple game argu-ment. More pre
isely, given a number k of rounds, letn = 2k+1 and 
onsider the game on the tuples (0n; 10n)and (0n+1; 10n). By Corollary 1 it is suÆ
ient to playon the pre�xes of the parti
ipating strings. The dupli-
ator has a trivial winning strategy on the strings 10nand a well-known winning strategy on 0n versus 0n+1.Let S+left be the extension of Sleft with the same (de-�nable) fun
tions and predi
ates we added to S+ (thatis, a 
onstant � for the empty string, the binary fun
tionu for the longest 
ommon pre�x, the predi
ate PL(x; y)for ea
h star-free language L), and the unary fun
tionx 7! x� a, for ea
h a 2 � (whi
h is also de�nable).Theorem 3 S+left admits quanti�er elimination.Proof sket
h. Let 
S+ and 
S+left be the �rst-ordersignatures of S+ and S+left. Let M be an !-saturatedmodel over 
S+left elementary equivalent to S+left. It suf-�
es to prove quanti�er elimination in M . Note thatM 
an have both �nite and in�nite strings. To proveQE, we must show that every two tuples of elementsof M that have the same atomi
 type, have the sametype. De�ne a ni
e term of 
S+left as a term of the formt(x) = x�a+b, where a and b are �nite strings. Giventwo tuples ~
 and ~d of the same length over M , de�netwo relations on them:� ~
 � ~d i� for all sequen
es i1; : : : ; ik from f1; : : : ; ng(where n is the length of ~
) and all sequen
est1; : : : ; tk of ni
e terms:atpS+(t1(
i1); : : : ; tk(
ik ))= atpS+(t1(di1 ); : : : ; tk(dik ))� (
0;~
) �1 (d0; ~d) i� for all sequen
es i1; : : : ; ikfrom f1; : : : ; ng and all sequen
es t1; : : : ; tk of ni
eterms: atpS+(
0; t1(
i1); : : : ; tk(
ik ))= atpS+(d0; t1(di1); : : : ; tk(dik ))

Of 
ourse, (
0;~
) � (d0; ~d) implies (
0;~
) �1 (d0; ~d),as the identity is a ni
e term. We then prove the mainlemma, whi
h shows that these two relations 
oin
ide;that is, if (
0;~
) �1 (d0; ~d), then also (
0;~
) � (d0; ~d).Using this, we show that � has the ba
k-and-forthproperty in M (whi
h is a
tually stronger than whatis needed for quanti�er-elimination). The theoremfollows from the lemma, as ea
h type of the formatpS+(t1(
i1); : : : ; tk(
ik )) is also an atomi
 type ofS+left. Hen
e, the atomi
 types determine the types.For details, see the full version [6℄. 2From the previous theorem we get the following
orollaries. First, the ba
k-and-forth property of �1gives us the following normal form for FO(S+left) for-mulae.Corollary 4 For every FO(Sleft) formula �(x; ~y) thereis an FO(S) formula �0(x; ~z) and a �nite set of ni
eS+left terms ~t su
h that8x~y �(x; ~y)$ �0(x;~t(~y))holds in Sleft. 2Then Corollary 4 for the empty tuple ~y and Corol-lary 2 imply:Corollary 5 Subsets of �� de�nable over Sleft are pre-
isely the star-free languages. 2For formulae in the language of Sleft (as opposedto S+left), we 
an show that bounded quanti�
ationsuÆ
es, although the notion of bounded quanti�
a-tion is slightly di�erent here from that used in theprevious se
tion. Let Np(s) be the pre�x-
losure offs� s1 + s2 j js1j; js2j � pg. Clearly Np(s) is de�nablefrom s over Sleft. We then de�ne FO�(Sleft) as the 
lassof FO(Sleft) formulae '(~x) in whi
h all quanti�
ationis of the form 9z 2 Np(xi) and 8z 2 Np(xi), where xiis a free variable of ' and p � 0 arbitrary.Corollary 6 FO�(Sleft) = FO(Sleft). 2Isolation and VC-dimension We now show thatthe results about isolation and VC-dimension extendfrom S to Sleft.Proposition 6 Th(Sleft) has the isolation property. 2Sin
e the argument for 
orollary 3 a
tually showsthat isolation implies �nite VC-dimension, we 
on-
lude:Corollary 7 Every de�nable family in Sleft has �niteVC-dimension. 27



6 Regular algebra extending SThe previous se
tions presented star-free algebraswith attra
tive properties. We now give an example ofa regular algebra that has signi�
antly less expressivepower than the ri
h stru
ture Slen, and whi
h sharessome of the ni
er properties of the star-free algebras inthe previous se
tions.This algebra 
an be obtained by 
onsidering two pos-sible ways of extending FO(S): the �rst is by addingthe predi
ates PL for all regular languages L; that is,predi
ates PL(x; y) whi
h hold for x � y su
h thaty � x 2 L, where L is a regular language. The se
-ond extension is by using monadi
-se
ond order logi
instead of only �rst-order logi
. It turns out that theseextensions de�ne exa
tly the same algebra. We showthis, and also show that the resulting regular algebrashares the QE and VC-dimension properties of the star-free algebras de�ned previously.Let Sreg = h��;�; (la)a2�; (PL)L regulari. Sin
e itde�nes arbitrary regular languages in ��, it is a properextension of S. Every FO(Sreg)-de�nable set is de�n-able over Slen, be
ause the predi
ates PL are de�nablein Slen (the easiest way to see this is by using the 
har-a
terization of Slen de�nable properties via letter-to-letter automata). Thus, we have:Proposition 7 Subsets of �� de�nable over Sreg arepre
isely the regular languages. 2Let S+reg be the extension of Sreg with � and u. Mostof the results about S and S+ from Se
tion 4 
an bestraightforwardly lifted to Sreg and S+reg. For example,the normal form Proposition 2 holds for Sreg if onerepla
es \star-free" with \regular": the proof given inSe
tion 4 applies verbatim. From this normal form weimmediately obtain:Theorem 4 S+reg admits quanti�er elimination. 2The normal form result also shows that neither thefun
tions fa nor the predi
ate el are de�nable in Sreg(the former 
an also be seen from the fa
t that Sreg hasQE in a signature of bounded arity, and Slen does not;for inexpressibility of fa it suÆ
es to apply the normalform results to pairs of strings of the form (1 � 0k; 0k)).One 
an also show, as in the 
ase of S, that boundedquanti�
ation over pre�xes is suÆ
ient.Our next aim is to show that FO(Sreg) gives us ex-a
tly the same algebra of de�nable sets as MSO(S).Noti
e �rst that ea
h relation de�nable in FO(Sreg)is already de�nable in MSO(S) be
ause ea
h predi
ate

PL is de�nable in MSO. We will show in the followingthat the 
onverse impli
ation also holds.The proof relies on a lemma whi
h essentially showsthat the monadi
 se
ond-order type of a tuple of stringsonly depends on its tree-order type and the monadi
se
ond-order types of the paths between the strings andtheir 
ommon pre�xes.For a sequen
e ~a = (a1; : : : ; an) of strings, let T~a bethe stru
ture h��;�; (La)a2�;~ai.For ea
h string w 2 ��, let Iw be the �nite stru
turehIw; <; (Ra)a2�; 1; jwji where Iw is f1; : : : ; jwjg, < isthe usual order and, for ea
h a 2 �, Ra is the set of allpositions of w that 
arry the letter a. For two stringsu; v 2 ��, we write u �sk v if Iu �MSOk Iv.Lemma 2 For ea
h k > 0, there is k0 > 0 su
hthat the following holds. Let ~a = (a1; : : : ; an);~b =(b1; : : : ; bn) be sequen
es of strings for whi
h there isa tree isomorphism h : Tree(~a)! Tree(~b) su
h that(i) for ea
h i 2 f1; : : : ; ng, h(ai) = bi, and(ii) whenever u is the immediate prede
essor of v inTree(~a) then v � u �sk h(v)� h(u).Then T~a �MSOk T~b. 2As both 
onditions (i) and (ii) of the Lemma areexpressible in FO(Sreg), we obtain:Theorem 5 FO(Sreg) = MSO(S). 2The bounded monadi
 se
ond-order quanti�er 9X �y is de�ned as follows. A formula 9X � y ' holdsif and only if 9X(8xX(x) ! x � y) ^ ' holds. Wede�ne MSOb(S) by binding all �rst-order and monadi
se
ond-order quanti�ers.From Theorem 5 we 
an easily derive the following
orollaries.Corollary 8� MSOb(S) = MSO(S)� Subsets of �� de�nable in MSO(S) are exa
tly theregular languages.Automata model, isolation, and VC dimensionIt was proved in [1℄ that Regular Pre�x Relations(RPR) (those de�nable by Regular Pre�x Automata(RPA), introdu
ed in Se
tion 4) are exa
tly those de-�nable in MSO(S). Thus Theorem 5 together with theresults of [1℄ gives a new 
hara
terization of FO(Sreg).8
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star-free algebras regular algebras
Figure 1. Relationships between S;Sleft;Sreg;Sreg;left, and Slen.Corollary 9 The relations de�nable in FO(Sreg) areexa
tly the RPR relations. Thus ea
h relation de�nablein FO(Sreg) is re
ognizable by a RPA. 2The proof of the isolation property for S (Proposi-tion 4) is una�e
ted by the 
hange from star-free PLto regular PL. Thus, we obtain:Corollary 10 Th(Sreg) has the isolation property,and de�nable families of Sreg have �nite VC-dimension. 27 Regular algebra extending SleftWe now give a �nal example of a regular algebra.Let Sreg;left be the 
ommon expansion of Sleft and Sreg,that is, h��;�; (la)a2�; (fa)a2�; (PL)L regulari. Sin
eSreg 
annot express the fun
tions fa, and Sleft 
annotde�ne arbitrary regular sets, we see that Sreg;left is aproper expansion of Sreg and Sleft. Furthermore, allSreg;left-de�nable sets are Slen-de�nable; the �nitenessof VC dimension for Sreg;left, shown below, implies thatthis 
ontainment is proper, too.Let S+reg;left be the 
ommon expansion of S+left andSreg, that is, the expansion of Sreg;left with � and u.The te
hniques of the previous se
tions 
an be used toshow the following:Theorem 6 S+reg;left has quanti�er-elimination. Fur-thermore, Th(Sreg;left) has the isolation property, andde�nable families in Sreg;left have �nite VC-dimension.2 Similarly to Sleft, we derive from the proof of Theo-rem 6 the following normal form for Sreg;left formulae:Corollary 11 For every FO(Sreg;left) formula �(x; ~y)there is an FO(Sreg) formula �0(x; ~z) and a �nite set

of ni
e S+left terms ~t su
h that8x~y �(x; ~y)$ �0(x;~t(~y))holds in Sreg;left. 2We 
on
lude this se
tion with a remark show-ing that arithmeti
 properties de�nable in stru
turesS;Sleft;Sreg;Sreg;left are weaker than those de�nable inSlen. As we mentioned earlier, under the binary en
od-ing, Slen gives us an extension of Presburger arithmeti
;namely, it de�nes + and V2, where V2(x) is the largestpower of 2 that divides x. But even Sreg;left is mu
hweaker:Proposition 8 Neither su

essor, nor order, noraddition, are de�nable in Sreg;left (and hen
e inS;Sreg;Sleft). 28 Con
lusionThere has been signi�
ant interest in theoreti
al
omputer s
ien
e in understanding the stru
ture of theregular languages, and in identifying sub
lasses of theregular languages that have spe
ial properties [29, 28℄.Our work 
an be seen as an extension of this program,where we 
onsider sub
lasses of the regular n-ary re-lations rather than the regular sets. In our approa
h,however, we do not fo
us on properties that hold of oneparti
ular regular relation by itself, but rather look atsome desirable properties of a whole algebra of relationslying within the stru
ture Slen.We have shown a sharp 
ontrast between the behav-ior of the full algebra of regular relations of Slen, andthose of various submodels su
h as S, Sleft, Sreg, andSreg;left. We show that the latter are more tra
table inmany respe
ts. Furthermore, we show that the behav-ior of an algebra of relations is not at all determined by9



the one-dimensional sets (subsets of ��) in the algebra:for example, one 
an have fairly 
omplex binary rela-tions de�nable, yet still maintain the property that allde�nable subsets of �� are star-free. Figure 1 summa-rizes the relationships between the star-free and regularalgebras we 
onsidered here.A key question is how many relations one 
an addto the models Sleft or Sreg and still have the attra
-tive properties like QE and �nite VC-dimension. Isthere a model that is somehow maximal with respe
tto these properties? We would very mu
h like to knowthe answer to this question. There are also several nat-ural 
andidate models that would seem amenable to theapproa
h taken here, and where one would expe
t thesame results to go through: for example, if one allowsthe operation 
on
atenating a �xed sequen
e \in themiddle" of a string, rather than on the left or on theright, is the resulting model still tra
table?Referen
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