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Abstract

We study algebras of definable string relations —
classes of reqular n-ary relations that arise as the defin-
able sets within a model whose carrier is the set of all
strings. We show that the largest such algebra — the col-
lection of reqular relations — has some quite undesirable
computational and model-theoretic properties. In con-
trast, we exhibit several definable relation algebras that
have much tamer behavior: for example, they admit
quantifier elimination, and have finite VC dimension.
We show that the properties of a definable relation al-
gebra are not at all determined by the one-dimensional
definable sets. We give models whose definable sets are
all star-free, but whose binary relations are quite com-
plex, as well as models whose definable sets include all
reqular sets, but which are much more restricted and
tractable than the full algebra of reqular relations.

1 Introduction

In the past 40 years, various connections between
logic, formal languages and automata have been ex-
plored in great detail. The standard setting for con-
necting logical definability with various properties of
formal languages is to represent strings over a finite al-
phabet ¥ = {ay,...,a,} as first-order structures in the
signature (P,,,..., P,,, <), so that the structure M,
for a string s of length k has the universe {1,...,k},
with < being the usual ordering, and P,, being the
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set of the positions [ such that the Ith character in s
is a;. Then a sentence ® of some logic £ defines a
language L(®) = {s € £* | M, = ®}. Two clas-
sical results on logic and language theory state that
languages thus definable in monadic second-order logic
(MSO) are precisely the regular languages [8], and the
languages definable in first-order logic (FO) are pre-
cisely the star-free languages [25]. For a survey, see
[28, 29].

An alternative approach to definability of strings,
based on classical infinite model theory rather than fi-
nite model theory, dates back to [8, 10]. One considers
an infinite structure M consisting of (£*,Q), where
is a set of functions, predicates and constants on X*.
One can then look at definable sets, those of the form
{@| M |= p(a@)}, where ¢ is a first-order formula in the
language of M. A well-known result links definabil-
ity with traditional formal language theory. Let Qeq
consist of unary functions l,, a € X, binary predicates
el(z,y) and z < y, where l,(z) = x - a, el(z,y) states
that z and y have the same length, and =z < y states
that z is a prefix of y. Let Sien be the model (X%, Qyeq)
(we will explain the notation later). Then subsets of
¥* definable in Sje, are precisely the regular languages
[8, 10, 9].

An advantage of the “model-theoretic approach” is
that one immediately gets an extension of the notion
of recognizability from string languages to n-ary string
relations for arbitrary n. One gets an algebra of n-ary
string relations for every n, and these algebras auto-
matically have closure under projection and product,
in addition to the boolean operations. In the case of
the model Si., above, this algebra is not new: in fact,
the definable n-ary relations are exactly the ones rec-
ognizable under a natural notion of automaton running
over n-tuples [10, 15].

An obvious question to ask, then, is whether new
algebras of string relations arise through the model-
theoretic approach. In particular, if we restrict the
signature () to be less expressive than (g, do we get
new relation algebras lying within the recognizable re-
lations?



A natural starting point would be to find a signa-
ture that captures properties of the star-free sets. Here
again, a simple example leaps out: consider the signa-
ture Qsr = (X, (la)aex), and let S = (X* Q). One
can easily show that the definable subsets of ¥* in S
are exactly the star-free ones. Furthermore, we will
show that the definable n-ary relations of this model
are exactly those definable by regular prefix automata
(cf. [1]) whose underlying string automata are counter-

free.

Just as there is a significant difference between the
complexity-theoretic behavior of regular languages and
star-free languages, we find that the model S is much
more tractable, in terms of its model-theory and its
complexity than Sjen. In particular, we show that S has
quantifier-elimination in a natural relational extension,
while Sjen does not.

It would be tempting to think of S and Sie,, as canon-
ical extensions of the notions of regularity and star-free
to m-ary relations. However, we will show that in fact
there are many choices for Q that share the same one-
dimensional definable sets (either star-free or regular).
Furthermore, algebras of definable sets may be iden-
tical in terms of the string languages they define, but
differ considerably in the n-ary string relations in the
definable algebra. We thus say that an algebra of de-
finable sets based on (X*, ), with Q C Q,¢, is a regular
algebra of definable sets if the subsets of ¥* in it (i.e
the one-dimensional definable sets of (¥*,Q)) are ex-
actly the regular sets. We likewise say that the algebra
based on definable sets for (¥*, Q) is a star-free algebra
of definable sets if the subsets of ¥* in the algebra are
exactly the star-free sets.

The rest of the paper studies new examples of reg-
ular and star-free definable algebras. We give an ex-
ample of a star-free algebra with considerably more ex-
pressive power than the basic star-free algebra S. This
model, which we denote by Sjest (as it allows one to add
characters on the left of a string), shares most of the de-
sirable properties of S: in particular, it has quantifier-
elimination in a natural language, and membership test
in this algebra has low complexity.

More surprisingly, perhaps, we give examples of reg-
ular algebras (which we denote S;eg and Syeg left) that
are strictly contained in Sien = (X%, Qreg). Although
the one-dimensional sets in these algebras are still the
regular sets, the algebra as a whole shares many of the
attractive properties of the star-free languages. In par-
ticular, we give quantifier-elimination results for these
algebras.

One key motivation for our work comes from
the field of databases, in particular, the study of

query languages with interpreted operations [3, 5, 19],
and constraint databases [23]. In those settings,
quantifier-elimination gives one closed-form evaluation
for queries; it says that one can evaluate queries whose
input is a quantifier-free definable set and get a closed
form solution as another quantifier-free definable set.
This approach has generally been applied to numerical
domains over the reals, since there are several pow-
erful quantifier-elimination results available there. It
is natural to extend this approach to databases over
strings: the string datatype, after all, is ubiquitous in
database applications, and languages such as SQL al-
ready give some capability of manipulating star-free
sets (via the LIKE predicate) defined from the in-
put data within queries. But in order to extend the
constraint-database approach to the string context, we
are first required to find definable algebras that ad-
mit quantifier-elimination in some natural yet power-
ful language. (Some of the previous results in this di-
rection considered query languages over undecidable
structures [20], or decidable ones but not capable of
expressing some very basic operations on strings [14].)
The quantifier-elimination results here thus yield new
examples where the constraint approach can be ap-
plied. In fact, the results we present here were used
in [7] to give expressiveness and complexity bounds for
the database query languages that arise from several
algebras of definable sets.

Our approach was also motivated by the study of
automatic structures [22, 9], which are a subclass of
recursive structures [21], and were introduced recently
as a generalization of automatic groups [16]. In an
automatic structure M = (X* Q), every predicate in
Q is definable by a finite automaton. More precisely,
an n-ary predicate P is given by a letter-to-letter n-
automaton [15, 18]. Such an automaton is a usual
DFA whose alphabet is (X U {#})", # ¢ £. An n-
tuple of strings si,...,s, can be viewed as a word of
length max; |s;| over the alphabet ¥ U {#}, where the
jth letter is the tuple (s],...,s%); here s}, is the jth
letter of si, if |sx| < j, and # otherwise. We then say
that a predicate P C (X*)" is definable by a letter-to-
letter n-automaton A if (s1,...,s,) € P iff A accepts

It is known [10, 9] that a structure is automatic iff
it can be interpreted in the structure Sje,; hence Siep
is in some sense the universal automatic structure. It
is interesting then to look at subclasses of automatic
structures definable within Sjen that are significantly
more restrictive, and that might have stronger model-
theoretic or computational properties than a rich struc-
ture like Spe,. One dividing line we focus on is be-
tween automatic structures that do admit quantifier-



elimination in a natural relational language, and those
that do not. Our first result gives a partial answer to
open question 0 in [26], which asks whether Sje, itself
has quantifier-elimination in a reasonable signature.
We show that it does not have quantifier-elimination
in any relational signature of bounded arity. The other
structures that we study — S, Sreg, Siert and Sreg left
— do admit such a quantifier-elimination. A second
dichotomy is between automatic structures that admit
star-free definable algebras versus those that have reg-
ular algebras. We show that the models S and Sieg
have star-free definable algebras, while the model S;eg
does not. Our results indicate that the class of auto-
matic structures that admit star-free definable algebras
is richer than one might have guessed.

Organization Section 2 introduces the notation.
Section 3 explores the motivating example, the model
Sien; and proves a set of results concerning its limita-
tions. In Section 4 we turn to the minimal example of a
star-free algebra, the model S, and prove a quantifier-
elimination result for this model that contrasts with
the negative result proved for Si,. Section 5 extends
the results of the previous section to a more complex
example of a star-free algebra, the model Sieg. Sec-
tion 6 gives a restriction of Sje, that admits a regular
algebra, and proves a quantifier elimination result for
this model. The section also connects this model to
the minimal model S. Section 7 gives an additional ex-
ample of a regular algebra, which contains each of the
previous examples. Section 8 gives conclusions. All
proofs are in the full version [6].

2 Notations

Throughout the paper, ¥ denotes a finite alphabet,
and X* the set of all finite strings over ¥. We consider
a number of operations on X*:

e 1 -y — concatenation of two strings x and y.

e £ <y —xis a prefix of y.

o l,(x),a € X, is x-a (adds last character).

e fo(z),a € X is a-x (adds first character).

e |z| is the length of string .

e My is the longest common prefix of the strings z
and y.

e 1z —y — the string z such that y- z = =, if it exists,
and e otherwise.

Note that |z| does not return a string, so it is not
an operation of ¥*. Instead, we often consider the
predicate el(z,y) which is true iff |z| = |y|.

We shall consider several structures on ¥*. The ba-
sic one is the structure S = (X*, <, (l4)qex). We could
equivalently use unary predicates L,, where L,(z) is
true for strings of the form 2z’ - a. Note that in the
presence of <, I, and L, are interdefinable, and we
thus shall use both of them.

We further consider a number of extensions of S.
In one of them characters can be added on the left

as well as on the right. This structure is denoted by

sleft dZEf <Z*7 ja (la)aEEa (fa)aEE>' Another eXtenSion:

denoted by Sien, adds length comparisons via the el
predicate (note that using < and el one can express
various relationships between lengths of strings, e.g.
lz[{=,#,<,>}yl, |z| = |y| + k for a constant k, etc.).
To summarize, we mainly deal with the following struc-
tures:

¢ S=(¥* <, (l)aex);

L sleft = <Z*, = (la)aEEa (fa)aEE>;

L4 slen = <Z*, jv (la)aEEaeD-

Once we consider regular algebras, we introduce two
more structures; however, operations in them will be
motivated by quantifier-elimination results for S and
Siere and thus those structures will be defined later.

There is a very close connection between S, and an
extension of Presburger arithmetic. Assume that ¥ =
{0,1}. Let val(n), for n € N, be n in binary, considered
as a string in ¥*. Let V2(n) be the largest power of 2
that divides n. Then P C NF is definable in (N, +, V%)
iff {(val™'(n1),...,val™ (ng)) | (n1....,n) € P} is
definable in Sie, [8, 10].

Model theory background Let Q be a finite or
countably infinite first-order signature, and M a model
over 2. By FO(M) we denote the set of all first-order
formulae in the language of 2. The (complete) theory
of M, Th(M), is the set of all sentences in FO(M) true
in M. Two models M and M’ over Q are elementary
equivalent if Th(M) = Th(M").

We say that M admits quantifier elimination (QE) if
for every formula ¢(%) in FO(M) there is a quantifier-
free formula ¢'(Z) such that VZ o(Z) < ¢'(Z) is true
in M.

For a tuple @ and a model M over Q, we let tpy (@)
be the type of @ in M (the set of all formulae of FO(M)
satisfied by @), and atpys (@) be the atomic type in M

3



(the set of all quantifier-free formulae of FO(M) sat-
isfied by @) . If A is a subset of M, tpy(d/A) is the
type of @ over A in M (the set of all FO-formulae over
QU A satisfied by @).

A w-saturated model M over Q is a model such that
each consistent type over a finite set A in FO(M) is
satisfied in M. It is known [11] that every model M
over {) has an elementary equivalent w-saturated model
M.

Isolation, VC-dimension Let T be a theory over
Q and M be a model of T. A subset A of M is said
to be pseudo-finite if (M, A) = F(T,P), where P is a
unary predicate, and F(T, P) is the set of all formulae
of FO(Q2 U P) satisfied by all finite sets of elements in

any model of T.

If p is a type over A in M, a subset ¢ of p isolates
p if p is the only type over A in M containing q. A
complete theory T over () is said to have the strong
isolation property if for any model M of T and any
pseudo-finite set A and any element a in M, there is
a finite subset Ay of A such that tpyr(a/Ag) isolates
tpam(a/A). We say that it has the isolation property if
a countable A, exists as above.

Isolation is an interesting property in the database
context because it implies certain collapse results for
query languages [3, 17] and it is used for that purpose
in [7]. Here we use it to provide bounds on the VC-
dimension of definable families.

For a family C of subsets of aset U, and aset FF C U,
we say that C shatters F if {FNC | C € C} is the
powerset of F. The VC-dimension of C is the maxi-
mum cardinality of a finite set shattered by C (or oc,
if arbitrarily large finite sets are shattered by C). This
concept is fundamental to learning theory, as finite VC-
dimension of a hypothesis space is equivalent to learn-
ability (PAC-learnability) [2, 4].

Now consider a structure M = (¥* Q), and a
FO(M) formula (&, 7). For each @, let (@, M) = {b |
M = ¢(@,b)}. The family of sets (@, M), where @
ranges over all tuples over M, is called a definable fam-
ily. We say that M has finite VC-dimension if every
definable family has finite VC-dimension. In particu-
lar, this implies learnability of concepts defined in FO
over M.

3 Regular algebra based on Sj,

As mentioned in the introduction, Sie, is the canoni-
cal automatic structure, and relations definable in Siep
are precisely the regular relations, that is, k-ary de-

finable relations are precisely those given by letter-to-
letter k-automata [9, 10]. In particular, this gives a
normal form for Sje,-formulae. We introduce a new
type of length-bounded quantifiers of the form 3|z| < |y
and V|z| < |y|. A formula J|z| < |y|lp is meant as
an abbreviation for 3z(]z| < |y|) A ¢. Since every fi-
nite automaton can be simulated by a length-bounded
FO(Sjen) formula, we conclude that each FO(Sjen) for-
mula is equivalent to a length-bounded FO(Sje,) for-
mula. Note that this result can also be shown by a
straightforward Ehrenfeucht-Fraissé game argument.

The universal property of Sje;, mentioned above in-
dicates that S, may be “too rich” in relations for
many applications. We present evidence for this by
addressing the open question of [12, 26] whether Sjen
has quantifier elimination in a reasonable signature.
One first needs to define what “reasonable” means here.
Clearly, every structure has quantifier elimination in a
sufficiently large expansion of the signature: add sym-
bols for all definable predicates, for example. One can
thus take reasonable to mean a finite expansion, but
this is not satisfactory: for example, Presburger arith-
metic has quantifier elimination in an infinite signature
(+,<,0,1, (mod k)g~1). Note however that in this ex-
ample, the maximum arity of the predicates and func-
tions is 2. In fact, it appears to be a common phe-
nomenon that when one proves quantifier elimination
in an infinite signature, there is an upper bound on the
arity of functions and predicates in it.

We thus view this condition as necessary for a signa-
ture to be “reasonable”. In general, a reasonable signa-
ture might contain relation symbols as well as function
symbols. Nevertheless, we can rule out the possibility
of a reasonable, purely relational signature for which
Sien has quantifier elimination. This is in contrast to
the weaker structures that we consider, all of which
have quantifier elimination in a relational signature of
bounded arity. Let Sl(:n’m) be the expansion of Sje,
with all definable predicates of arity at most n, and
definable functions of arity m. We show the following:
Theorem 1 (a) For anyn >0, and m = 0,1, Sl(;;m)

does not have QF. In particular, there is a property
definable in Sie,, which is not a Boolean combina-
tion of at most n-ary definable predicates in Sien.
(b) S(1:2) e expansion of Sien with all unary predi-

len 7
cates and binary functions, has QF.

Proof sketch. For (a), the property is whether for an
N-tuple of strings, for sufficiently large N, there is a
position ¢ such that the ith symbol of all NV strings is
0. For (b), we show a stronger result, assuming that
Y contains {0,1}. We prove QE in a signature that



contains the bitwise and, or, and not functions, left and
right shifts, and the following two functions. Fil,(w)
has a 1 at position 7 iff w[i] = ¢ and a 0 otherwise,
and Pat; ;(w) has the same length as w and has a 1
at position ¢ iff i mod k = 7 and a 0 otherwise, where
Jj <k.

In cases of both (a) and (b), the proofs are based on
automata representations of definable sets, cf. [9]. O

Our next result shows another model-theoretic and
computational shortcoming of Sie,: namely, a single
formula ¢(z,y) can define a widely varying collection of
relations as we let the parameter  vary. We formalize
this through the notion of VC-dimension.

Proposition 1 There are definable families in Sien
that have infinite VC-dimension. O

4 Star-free algebra based on S

We now turn to the most obvious analog of Sie,
for the star-free sets. This is the model S, which is
the most basic model among those studied in the pa-
per. We show that it has remarkably nice behavior:
it admits effective QE in a rather small extension to
the signature. This immediately tells us that definable
subsets of ¥* are precisely the star-free languages. We
then characterize the n-dimensional definable relations
in S by their closure properties, and by an automaton
model.

Note that S is very close to strings considered as
term algebras, that is, to (X, €, (l4)aex). It is of course
well-known that the theory of arbitrary term algebras
is decidable and admits QE [24]. However, adding the
prefix relation is not necessarily a trivial addition: for
arbitrary term algebras with prefix (subterm), only the
existential theory is decidable, but the full theory is un-
decidable [30] (similar results hold for other orderings
on terms [13]). The undecidability result of [30] re-
quires at least one binary term constructor; our results
indicate that in the simpler case of strings one recovers
QE with the prefix relation.

We start with a result that gives a normal form for
formulae of FO(S). Given a set S of strings , we let
Tree(S) be the tree (i.e. the partially-ordered struc-
ture) generated by closing S U {e} under M. In other
words, Tree(S) is the poset ({zMy | z,y € SU{e}}, <).
(Note that for any set of strings s1,...,sg, there are
two indices 4, j < k such that s1 0...Ms; = s; M s;.)

A complete tree-order description of a vector w of
variables is the atomic diagram of Tree(w) in the lan-
guage of €,<,M. In other words, it is a specification

of all the < relations that hold and do not hold in
Tree(w).

For each L C ¥*, let Py, be the set of pairs (z,y) of
strings such that x < y and y — x € L. The following
lemma is obvious, since it is well-known that star-free
sets are first-order definable on string models [25].

Lemma 1 For each star free language L, there is a
formula @r,(x,y) in FO(S) which defines Pr,. m|

We now give a normal form result for FO(S).

Proposition 2 Every formula (Z) in FO(S) can
be effectively transformed into an equivalent formula
which is a disjunction of formulae of the form

V(Z) A 6(F)

where v(Z) is a complete tree-order description over
Z and 6(Z) is a conjunction of formulae of the form
oL (t(Z),t'(¥)), where L is star-free, t(Z) and t'(¥) are
either € or a term of the form z; Nz, and y(Z) implies
that t(Z) is an immediate successor of t'(Z) in the tree-
order.

Proof is by induction on the structure of . |

Let ST be the expansion of S to the signature that
contains €, M and a binary predicate Py, for each star-
free language L. Note that ST is a definable expansion
of S, as all additional functions and predicates are de-
finable. From the normal form we now immediately
obtain:

Theorem 2 STt admits quantifier elimination.

Remark. As mentioned above there is no need
to nest the MM-operator.  Therefore, St can be
turned into a relational signature that admits quan-
tifier elimination as follows. For each star-free L let
P; be the set of tuples (s1,$2,s53,54) of strings for
which Pp(M(s1,s2),M(ss,s4)). Note, that M(sy,s2) <
M(s3,s4) can be expressed as Ps«(M(s1, $2),M(s3,54))-
It is straightforward to check that this signature admits
quantifier elimination. In the same way, the quantifier
elimination results in the remainder of the paper can be
turned into quantifier elimination results in a relational
signature.

Note also that ST could be considered as an expan-
sion of S with either functions I, or predicates L, in
the signature. In the latter case, predicates L, are not
needed as L,(x) iff Ps«q(e, z).

Another corollary of the normal form is that in the
language of S, it suffices to use only bounded quan-
tification. That is, we introduce bounded quantifiers of



the form 3z < y and Vz < y (where 3z < y ¢ means
dz z <y Ay), and let FO(S) be the restriction of
FO(S) to formulae ¢(y1,...,yr) in which all quanti-
fiers are of the form Qx < y;. From the normal form
and the fact that each ¢y, can be defined with bounded
quantifiers, we obtain:

Corollary 1 FO,(S) = FO(S). O

Finally, we characterize S-definable subsets of X*
and (X*)k. Given a subset R C (¥*)* and a per-
mutation 7 on {1,...,k}, by 7(R) we mean the set

{(8,7(1), ey Sw(k)) | (Sl, . ,Sk) € R}
Corollary 2

a) A language L C ¥* is definable in S iff it is star-
free.

b) The class of relations definable over FO(S) is the
minimal class containing the empty set, {e}, {a}
a € X, X, N, and closed under Boolean operations,
Cartesian product, permutation, and the operation
* defined by Ly x Lo = {(s1,81 - 82) | 851 € L1,89 €
LQ} fOT Ll,LQ g ¥,

Proof. a) ST formulae in one free variable are Boolean
combinations of Py, (¢, z), for L star-free, and thus they
define only star-free languages.

b) For one direction notice that e, {a}, <, N are
definable in FO(S), and that FO(S) is closed under
boolean operations, permutation and Cartesian prod-
uct. The closure under x is an easy consequence of
Lemma 1 as Ly * Ly corresponds to {(z,y) | ¢, (€, x) A
vL,(z,y)}. The other direction follows from the nor-
mal form. O

Note that the projection operation is not needed in
the closure result above.

Automaton We now give an automaton model char-
acterizing definability in FO(S). This automaton
model corresponds exactly to the counter-free variant
of regular prefiz automaton as defined in [1].

Let us recall the definition of regular prefix automa-
ton. Let A be a finite non-deterministic automaton on
strings with state set @, transition relation d and ini-
tial state go. We construct from A an automaton A=
(2,Q,qo, F,§) accepting n-tuples @ = (w1, -, wy,) of
strings in the following way. F' is a subset of Q" which
denotes the accepting states of A. Let prefiz () be the
set of all prefixes of all w;. A run of A over 7 is a
mapping h from prefiz(w) to Q which assigns to every

node a € prefiz(W) a state ¢ € @ such that h(e) = g
and, f = l,(a) implies h(B) € 6(h(a),a). The run is
accepting if (h(w1),---,h(wy)) € F. The n-tuple « is
accepted by A if there is an accepting run of A over .
See [1] for more details.

For each finite non-deterministic automaton A the
corresponding automaton A is called reqular prefix au-
tomaton (RPA). The subset of (£*)", n € N, it defines
is called a regular prefix relation (RPR).

If the automaton A is counter-free then we say that
the corresponding automaton A is counter-free (CF-
PA). The following shows that the relations definable
in FO(S) are exactly those recognizable by a CF-PA.

Proposition 3 A relation is definable in FO(S) if and
only if it is definable by a counter-free prefix automa-
ton. O

It should be noted that FO(S) can also be character-
ized by means of counter-free deterministic bottom-up
automata.

VC-dimension and Isolation In addition to quan-
tifier elimination, S has some further model-theoretic
properties that distinguish it from Siey.

Proposition 4 Th(S) has the strong isolation prop-
erty. O

As a corollary of the isolation property, we prove
that, unlike for S, the definable families for S are
learnable. First, we need the following.

Proposition 5 Let M be a model with the isolation
property. Then its definable families have finite VC-
dimension.

We give two proofs of this result in the full version: one
is a complexity-theoretic argument, the other model-
theoretic. |

It follows that the model S, unlike Siep, has learnable
definable families.

Corollary 3 Every definable family in S has finite
VC-dimension. a

5 Star-free algebra based on S

We now study an example of a star-free algebra,
one where the n-ary relations in the algebra are more
complex than those definable over S. Recall that



Siett = (X%, =, (la)aes; (fa)aex); that is, in this struc-
ture one can add characters on the left as well as on
the right.

Without the prefix relation, this structure was stud-
ied in [27], where a quantifier-elimination result was
proved, by extending quantifier-elimination for term
algebras (in fact [27] showed that term algebras with
queues admit QE). However, as in the case of S, which
differs from strings as terms algebras in that it has the
prefix relation, here, too, the prefix relation compli-
cates things considerably.

We start with an easy observation that FO(Sjeft) ex-
presses more relations that FO(S). Indeed, the graph
of fo, F, = {(z,a-2) | x € £*} is not expressible in
FO(S), which can be shown by a simple game argu-
ment. More precisely, given a number £ of rounds, let
n = 2¥4+1 and consider the game on the tuples (07, 10?)
and (0"*!,10™). By Corollary 1 it is sufficient to play
on the prefixes of the participating strings. The dupli-
cator has a trivial winning strategy on the strings 10"
and a well-known winning strategy on 0™ versus 0”1,

Let Sltft be the extension of Sjery with the same (de-
finable) functions and predicates we added to ST (that
is, a constant € for the empty string, the binary function
M for the longest common prefix, the predicate Pr,(x,y)
for each star-free language L), and the unary function
x +— x — a, for each a € ¥ (which is also definable).

Theorem 3 Sl'zft admits quantifier elimination.

Proof sketch. Let g+ and QSlJr“ be the first-order

signatures of S* and SIZ& Let M be an w-saturated
model over Qsltft elementary equivalent to S[';ft. It suf-
fices to prove quantifier elimination in M. Note that
M can have both finite and infinite strings. To prove
QE, we must show that every two tuples of elements
of M that have the same atomic type, have the same

type. Define a nice term of Qs* as a term of the form
t(z) =z —a+b, where a and b are finite strings. Given

two tuples ¢ and d of the same length over M, define
two relations on them:

e #=diff for all sequences i1, . ..,i from {1,...,n}
(where n is the length of ¢) and all sequences

t1,...,tr of nice terms:
atps+ (t1 (Cl'1 ), ey tk (Cik ))
= atps+ (t1 (d“ ), ey tk(dzk ))
o (¢,&) = (d',d) iff for all sequences iy,..., iy
from {1,...,n} and all sequences t1, ..., of nice

terms:

atps+ (cla ty (621)' et (clk))
= atpS"’ (dla ty (dn)' cee ;tk(dlk))

Of course, (c',@) = (d',d) implies (¢',&) = (d',d),
as the identity is a nice term. We then prove the main
lemma, which shows that these two relations coincide;
that is, if (¢',€) =1 (d', d), then also (¢', &) = (d', d).

Using this, we show that = has the back-and-forth
property in M (which is actually stronger than what
is needed for quantifier-elimination). The theorem
follows from the lemma, as each type of the form
atps+(t1(ciy), ..., tr(ci,)) is also an atomic type of
Sit. . Hence, the atomic types determine the types.

left*
For details, see the full version [6]. O

From the previous theorem we get the following
corollaries. First, the back-and-forth property of =,
gives us the following normal form for FO(S ;) for-
mulae.

Corollary 4 For every FO(Siest) formula p(z,¥) there
is an FO(S ) formula p'(x,2) and a finite set of nice

Sleft terms t such that

Vzij p(z, ) < p'(x, {i))
holds in Sieft. O

Then Corollary 4 for the empty tuple ¢ and Corol-
lary 2 imply:

Corollary 5 Subsets of ¥* definable over Sies, are pre-
cisely the star-free languages. |

For formulae in the language of Sy (as opposed
to Sit;). we can show that bounded quantification
suffices, although the notion of bounded quantifica-
tion is slightly different here from that used in the
previous section. Let Np(s) be the prefix-closure of
{s —s1+ 52| |s1],|s2] < p}. Clearly N,(s) is definable
from s over Sier. We then define FO, (Siery) as the class
of FO(Sief) formulae ¢(#) in which all quantification
is of the form 3z € N,(x;) and Vz € Ny(x;), where z;
is a free variable of ¢ and p > 0 arbitrary.

Corollary 6 FO,(Sier;) = FO(Sieft)- O

Isolation and VC-dimension We now show that
the results about isolation and VC-dimension extend
from S to Sieg-

Proposition 6 Th(Sies) has the isolation property. O

Since the argument for corollary 3 actually shows
that isolation implies finite VC-dimension, we con-
clude:

Corollary 7 Every definable family in Sie; has finite
VC-dimension. a



6 Regular algebra extending S

The previous sections presented star-free algebras
with attractive properties. We now give an example of
a regular algebra that has significantly less expressive
power than the rich structure Sien, and which shares
some of the nicer properties of the star-free algebras in
the previous sections.

This algebra can be obtained by considering two pos-
sible ways of extending FO(S): the first is by adding
the predicates Pr, for all regular languages L; that is,
predicates Pr(z,y) which hold for x < y such that
y —x € L, where L is a regular language. The sec-
ond extension is by using monadic-second order logic
instead of only first-order logic. It turns out that these
extensions define exactly the same algebra. We show
this, and also show that the resulting regular algebra
shares the QE and VC-dimension properties of the star-
free algebras defined previously.

Let Sreg = <E*: = (la)aGZ: (PL)L regular
defines arbitrary regular languages in ¥*, it is a proper
extension of S. Every FO(S,¢g)-definable set is defin-
able over Sien, because the predicates Pj, are definable
in Sje, (the easiest way to see this is by using the char-
acterization of Sje, definable properties via letter-to-
letter automata). Thus, we have:

). Since it

Proposition 7 Subsets of £* definable over S,e; are
precisely the reqular languages. O

Let S;';g be the extension of Seg with € and M. Most
of the results about S and ST from Section 4 can be
straightforwardly lifted to S,eg and Sy,,. For example,
the normal form Proposition 2 holds for S,., if one
replaces “star-free” with “regular”: the proof given in
Section 4 applies verbatim. From this normal form we
immediately obtain:

Theorem 4 Sf., admits quantifier elimination. O

The normal form result also shows that neither the
functions f, nor the predicate el are definable in S;eg
(the former can also be seen from the fact that S,eg has
QE in a signature of bounded arity, and S)e, does not;
for inexpressibility of f, it suffices to apply the normal
form results to pairs of strings of the form (1-0*, 0%)).
One can also show, as in the case of S, that bounded
quantification over prefixes is sufficient.

Our next aim is to show that FO(S,¢g) gives us ex-
actly the same algebra of definable sets as MSO(S).

Notice first that each relation definable in FO(S;eg)
is already definable in MSO(S) because each predicate

Py, is definable in MSO. We will show in the following
that the converse implication also holds.

The proof relies on a lemma which essentially shows
that the monadic second-order type of a tuple of strings
only depends on its tree-order type and the monadic
second-order types of the paths between the strings and
their common prefixes.

For a sequence @ = (aq,...,a,) of strings, let Tz be
the structure (X*, <, (Ly)aey, @).

For each string w € ¥*, let Z,, be the finite structure
(Iw, <, (Ra)aex, 1, |w|) where I, is {1,...,|w|}, < is
the usual order and, for each a € 3, R, is the set of all
positions of w that carry the letter a. For two strings

u,v € ¥*, we write u =§ v if 7, =mso, Zv-

Lemma 2 For each k > 0, there is k' > 0 s_}wh
that the following holds. Let @ = (ay,...,a,),b =
(b1,...,bn) be sequences of strings for which there is

-

a tree isomorphism h : Tree(@) — Tree(b) such that
(i) for each i € {1,...,n}, h(a;) = b;, and

(i) whenever u is the immediate predecessor of v in
Tree(d@) then v —u =§, h(v) — h(u).

Then Tz =MSOy Tg O
As both conditions (i) and (ii) of the Lemma are
expressible in FO(S;eg), we obtain:

Theorem 5 FO(S,.;) = MSO(S). i

The bounded monadic second-order quantifier 3X <
y is defined as follows. A formula 3X < y ¢ holds
if and only if 3X(VzX(z) - = < y) A ¢ holds. We
define MSO,(S) by binding all first-order and monadic
second-order quantifiers.

From Theorem 5 we can easily derive the following
corollaries.

Corollary 8

e MSO,(S) = MSO(S)

e Subsets of X* definable in MSO(S) are exactly the
reqular languages.

Automata model, isolation, and VC dimension
It was proved in [1] that Regular Prefix Relations
(RPR) (those definable by Regular Prefix Automata
(RPA), introduced in Section 4) are exactly those de-
finable in MSO(S). Thus Theorem 5 together with the
results of [1] gives a new characterization of FO(S,eg).
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Figure 1. Relationships between S, Sieft, Sreg, Sreg left: aNd Sien.

Corollary 9 The relations definable in FO(S.eq) are
exactly the RPR relations. Thus each relation definable
in FO(Syeg) 1s recognizable by a RPA. O

The proof of the isolation property for S (Proposi-
tion 4) is unaffected by the change from star-free Py,
to regular Pr,. Thus, we obtain:

Corollary 10 Th(S,e;) has the isolation property,
and definable families of Sieg have finite VC-
dimension. O

7 Regular algebra extending S

We now give a final example of a regular algebra.
Let S;eg,lert be the common expansion of Siegy and Syeg,
that is, (X%, %, (la)aes; (fa)aes, (PL)L regular)' Since
Sreg cannot express the functions f,, and Sier; cannot
define arbitrary regular sets, we see that Sieg lert i5 @
proper expansion of S;e; and Sierr. Furthermore, all
Sreg left-definable sets are Sjen-definable; the finiteness
of VC dimension for S;eg teft, shown below, implies that
this containment is proper, too.

Let S, jor be the common expansion of S;, and
Sreg, that is, the expansion of Sreg ey With € and M.
The techniques of the previous sections can be used to
show the following;:

Theorem 6 S;;g’left has quantifier-elimination. Fur-
thermore, Th(S;eg 1ert) has the isolation property, and
definable families in Sieg lery have finite VC-dimension.
O

Similarly to Sief,, we derive from the proof of Theo-
rem 6 the following normal form for S,eg jert formulae:

Corollary 11 For every FO(S;eg,1eft) formula p(z, )
there is an FO(Syeg) formula p'(z,Z) and a finite set

of nice Sltft terms t such that

Vaii pla, §) < o' (z, 1))

holds in Sieg teft. O

We conclude this section with a remark show-
ing that arithmetic properties definable in structures
S, Steft, Sreg, Sreg,left, are weaker than those definable in
Sien- As we mentioned earlier, under the binary encod-
ing, Sjen gives us an extension of Presburger arithmetic;
namely, it defines + and Vs, where V(z) is the largest
power of 2 that divides . But even S;eg et is much
weaker:

Proposition 8 Neither successor, nor order, nor
addition, are definable in Sreg left (and hence in
Sa Sreg: S]eft)- O

8 Conclusion

There has been significant interest in theoretical
computer science in understanding the structure of the
regular languages, and in identifying subclasses of the
regular languages that have special properties [29, 28].
Our work can be seen as an extension of this program,
where we consider subclasses of the regular n-ary re-
lations rather than the regular sets. In our approach,
however, we do not focus on properties that hold of one
particular regular relation by itself, but rather look at
some desirable properties of a whole algebra of relations
lying within the structure Sjey,.

We have shown a sharp contrast between the behav-
ior of the full algebra of regular relations of S, and
those of various submodels such as S, Sief;, Sreg, and
Sreg left- We show that the latter are more tractable in
many respects. Furthermore, we show that the behav-
ior of an algebra of relations is not at all determined by



the one-dimensional sets (subsets of ¥*) in the algebra:
for example, one can have fairly complex binary rela-
tions definable, yet still maintain the property that all
definable subsets of ¥* are star-free. Figure 1 summa-
rizes the relationships between the star-free and regular
algebras we considered here.

A key question is how many relations one can add
to the models Sief or Speg and still have the attrac-
tive properties like QE and finite VC-dimension. Is
there a model that is somehow maximal with respect
to these properties? We would very much like to know
the answer to this question. There are also several nat-
ural candidate models that would seem amenable to the
approach taken here, and where one would expect the
same results to go through: for example, if one allows
the operation concatenating a fixed sequence “in the
middle” of a string, rather than on the left or on the
right, is the resulting model still tractable?
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