On the Structure of Queries in Constraint Query Languages

Michael Benedikt
Bell Laboratories
1000 E Warrenville Rd
Naperville, IL 60566
E-mail: benedikt@bell-labs.com

Abstract

We study the structure of first-order and second-
order queries over constraint databases. Constraint
databases are formally modeled as finite relational
structures embedded in some fized infinite structure.
We concentrate on problems of elimination of con-
straints, reducing quantification range to the active do-
main of the database and obtaining new complezrity
bounds. We show that for a large class of signatures,
including real arithmetic constraints, unbounded quan-
tification can be eliminated. That is, one can transform
a sentence containing unrestricted quantification over
the infinite universe to get an equivalent sentence in
which quantifiers range over the finite relational struc-
ture. We use this result to get a new complexity upper
bound on the evaluation of real arithmetic constraints.
We also expand upon techniques in [21] and [4] for get-
ting upper bounds on the erpressiveness of constraint
query languages, and apply it to a number of first-order
and second-order query languages.

1. Introduction

Techniques of finite model theory have found appli-
cations in a number of areas such as database theory
[1] and descriptive complexity [18]. Database applica-
tions of finite model theory stem from one of the basic
results of relational database theory: Classical query
languages, such as relational algebra, have precisely the
power of first-order logic. Since relational databases
can be viewed as finite models in the language of the
relational schema, this basic observation allows us to
apply the tools of finite model theory to study express-
ibility of relational query languages. Early work in that
direction includes [2, 8, 11]; for a survey see [1].

In recent years, various extensions of the basic rela-
tional model have been studied. Two most notable ones

Leonid Libkin
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
E-mail: libkin@bell-labs.com

are extensions to complex objects, or nested relations
[27], which underlie most object-oriented datamodels,
and extensions to constraint databases [19, 20], which
are used as the basis for geographical and temporal
datamodels. For nested relations most basic questions
about expressive power and the structure of queries
have been answered (see [27] and references therein),
but only very recently has some progress been made
for constraint databases.

The framework of constraint databases assumes
some underlying model M = (U,) where U is a set
(always assumed to be infinite in this paper), and €
is a signature that consists of a number of interpreted
functions and predicates over U. For instance, the do-
main very often considered for geographical databases
is (R, +,%,0,1,<), with the intention that databases
represent some regions on the real plane. In the classi-
cal framework of [20], (generalized) databases over M
are given by quantifier-free formulae ¢(z1,...,2,) in
the language of Q; such a database represents the set

M, = {G=(a1,...,an) |G € U™, M [(@)}

For example, a convex polygon with known set of ver-
tices can easily be represented in such a way. The
model M is typically chosen to admit quantifier elim-
ination. Then the query evaluation process reduces to
application of the quantifier elimination procedure [20].

Recently, attention has shifted from finitely repre-
sented models (that is, those that arise as M) to fi-
nite ones, cf. [4, 21, 23, 24]. Since queries arising in
geographical applications often involve regions that are
determined by a fixed finite number of points (i.e. a
convex polygon can be given by its vertices), we can
convert most interesting questions involving finitely-
represented models to questions involving finite models
[22]. For example, it was conjectured that first-order
logic with polynomial inequality constraints cannot ex-
press topological connectivity. A result of [23] reduced
that problem to connectivity of finite graphs whose

nodes come from IR, and the problem for graph connec-
tivity was recently solved in [4]. In addition, the setting
of finite databases embedded in a fixed infinite struc-
ture enables one to study constraint databases via the
tools of finite (and infinite) model theory, and allows
for helpful characterizations of the expressive power of
classes of queries even in settings where quantifier elim-
ination does not hold in the underlying structure.

We will work in the setting of finite databases em-
bedded in infinite fixed structures. We start with the
underlying model M = (U, Q) and add a number of
predicate symbols R, ..., R, R; being of arity 7;, for
finite database relations. These will be interpreted as
Ti-ary relations over U. Following the database tradi-
tion, we will call Ry, ..., R a schema, and denote 1t by
SC. As our main language we take FO(M, S5C), the
first-order logic over the language L(SC, Q) that con-
tains Q and SC. If SC is understood, we often omit it.
We will mostly deal with sentences, since most of the
results for sentences can be extended (as we’ll show)
for arbitrary formulae.

Let Inst(U,SC) be the set of k-tuples of finite re-
lations over U, the ith one being of arity =; (that is,
the set of possible finite instances of SC over U). For
D € Inst(U, SC) and ¢ a L(M, SC) sentence, we define
D = p in the usual way.

Although the syntax of our formulas can be straight-
forwardly adapted from classical predicate logic, the
properties of queries can depend in subtle ways on the
domain of quantification. For D € Inst(U, SC), the
minimum possible range of quantification is the active
domain of D: adom(D) is the set of all elements of U
that occur in relations in D, cf. [1, 17]. For A C U, we
write D =4 ¢ if D = ¢ where ¢’ is obtained from ¢
by replacing each quantifier Qz by its bounded version
Qz € adom(D) U A.

There are two cases of the |=4 relations that are of
special interest: =y is the usual relation |= (which is
sometimes called the natural interpretation of queries),
and |=¢ restricts quantification to the active domain
of the finite D (this is sometimes called the active, or
active-domain interpretation of queries). To see the
difference between the two, assume that M = (R, <
Y, and ¢ is JzVy.(z < y) V (2 = y). Then, for any
nonempty D € Inst(IR, SC), D = - but D |54 ¢.

Much of what has been done in constraint databases
addresses the problem of evaluating constraint queries;
that is, queries in FO(M, SC), or in a language based
on another logic (e.g. fixpoint logic). To find satisfac-
tory query evaluation algorithms for a query language,
we have to address the following issues.

Z Expressive Power. Classical relational query lan-
guages have been studied in great depth, and their ex-
pressive power is well known. Prior results allow one
to infer what sorts of recursion constructs are neces-
sary to express properties such as parity, connectivity
and others that arise in database applications. We also
know much about the impact of adding these program-
ming constructs on query optimization. For constraint
query languages, an understanding of many of the fun-
damental expressivity questions is still lacking. In par-
ticular, there is a need for tools to assist in getting up-
per bounds for the expressivity of constraint languages.
In this paper we continue the work of [4, 21, 24] in
getting techniques to bound the expressivity of con-
straint query languages. We show how to extend the
results of [4] to show equivalence in expressive power
for many first-order and second-order constraint query
languages. We prove several kinds of collapse results,
which say that adding new predicates or functions to
the signature Q does not significantly increase expres-
sive power.

Z Range of Quantification. While databases them-
selves are finite, the natural range of quantification for
constraint queries is the whole universe U. Thus, we
need tools to reduce the problem of query evaluation to
a finitary process. By choosing M to be decidable, we
guarantee the ability to evaluate constraint queries for
a fixed database, since given a query ¢, we can replace
each occurrence of Ri(Z)in o by 2=t V...VZ =1,
where R; = {t1,...,tm} and apply the decision proce-
dure to the resulting formula. However, this still for-
bids us from doing important compile-time query op-
timizations that are possible in the classical database
setting. In particular, we lack the ability to reorder
quantifiers based on the range of quantification, or to
evaluate expressions ‘bottom-up’ by retrieving stored
values of subexpressions. One possible solution seems
to be this: try to show that unbounded quantification
can be eliminated. This is equivalent to showing that
every query ¢ has an equivalent one under the active
interpretation. That is, there is a 9 such that D = ¢
iff D =g . We will prove that this is possible for
many constraint query languages of interest, and that

it holds for the real ordered field.

Z Complexity of Constraints. There are many funda-
mental questions to be answered about the complex-
ity of query evaluation for constraint query languages.
Since the relational algebra and calculus are equivalent
to pure first-order logic, they have AC? complexity [1].
Adding constraints increases this complexity. For in-
stance, if multiplication is in the signature, the AC°

complexity bound is lost, cf. [7]. As an upper bound for
complexity, it is known that if M = (R, +, %,0,1, <),
then data complexity of first-order queries is NC, see
[20, 6]. Since AC® C NC, one could hope for more
precise information about the complexity of constraint
queries over the real field. We would also like to know
something about the effect of adding other interpreted
structure on these complexity bounds, both for first-
order and higher-order logics. In this paper we will use
results on equivalence of signatures and on bounding
quantification to get tighter bounds on query evalua-
tion for the real field, and to get complexity bounds
for a variety of other first-order and second-order lan-
guages. One tool for doing this will be partial collapse
results: results that show that a certain set of oper-
ations in the signature can be eliminated, assuming
that our databases have all their elements coming from
a certain infinite set. Using these results, we will be
able to get tighter complexity and expressive bounds
for queries that are gemeric [1] (those invariant under
certain endomaps on U), since their behavior over any
infinite set determines their behavior globally.

Organization and quick summary In this paper
we offer a detailed study of the structure of constraint
queries, addressing the three issues described above.

In section 2 we introduce notation and a new notion
of the ‘approximate collapse’ arrow relation FO(M) =
FO(M'), for two models M and M’ on the same set
U, meaning (informally) this: for every query ¢ in
FO(M), one can find an infinite set X C U and a query
¥ in FO(M') such that for every D € Inst(U, SC) with
adom(D) C X, D Ex ¢ iff D Ex ¢. We are inter-
ested in the case when M’ is a reduct of M. The arrow
relation shows that we have a means for reducing ex-
pressivity and complexity questions about M to ones
concerning M’, a tool we will use later on in the paper.

In section 3 we study the ability to eliminate un-
bounded quantification in queries in favor of quantifi-
cation bounded by the active domain. Our main re-
sult is Theorem 1, which shows that unbounded quan-
tification can be removed for all models that admit
quantifier elimination and satisfy the condition of o-
minimality [25]. This class includes both cases for
which the elimination result is known [17, 24], and also
the important case of (R, +, %, 0,1, <}, thus solving the
open problem from [24].

In section 4 we state approximate collapse results for
query languages, along the lines of [4, 21, 24]: we show
that one can get an infinite set on which all constraints
in a query can be reduced to constraints in smaller
languages. We prove such results for first-order logic
and for fragments of second-order logic, and show how

they can be used to get expressivity bounds for first-
and second-order queries.

In section 5, we apply the results of section 3 to
prove a TC® complexity bound for first-order logic with
polynomial constraints, thus improving the NC bound
of [20]. We also establish some complexity bounds for
active-domain second-order constraint queries.

In section 6 we show that collapse results and
bounded quantification results can always be extended
from boolean queries to nonboolean queries (that is,
from sentences to arbitrary formulae). We apply these
results to get expressivity and complexity bounds for
nonboolean queries.

Section 7 contains concluding remarks.

All proofs can be found in [5].

2. Notations

Assume that the domain is an infinite set U. A
, Ri) of
relation names, R; being of arity 7. A database in-
stance D of schema SC is given by an interpretation of

schema is a nonempty collection SC = (Ry, ...

each relational symbol R; as a finite 7;-ary relation over
U. The set of all instances is denoted by Inst(U, SC).
The active domain of D, adom(D) is the set of all ele-
ments in U that are in relations in D.

Let Q be a signature, that is, a collection of inter-
preted functions and predicates on U. The language
that contains the schema predicates, equality and the
symbols in 2 is denoted by L(SC, Q). A boolean query
is a first-order sentence in L(SC, Q). That is, it is built
up from atomic formulae via the usual logical connec-
tives and quantifiers of the form Vz and Jz.

Let A be a subset of U. Under the A-interpretation
of queries, we assume that for every D the quan-
tifiers range over A U adom(D). That is, the 0-
interpretation is the active domain interpretation, and
the U-interpretation is the natural interpretation. We
write D =4 ¢ to mean that ¢ is satisfied by D under
the A-interpretation.

The class of Boolean queries (maps from instances
of schema SC to {T,F}) under the A-interpretation
is denoted by FO*(U,Q,SC). If A = U we omit
it, i.e. we use FO(U,Q,SC) for FO'(U,Q, SC) and
k= for =y. We write FO*(U,Q){=, C}FO*(U,0) to
mean that FO4(U,Q, SC){=, C}FO*(U, ©, SC) holds
for any schema SC.

The kind of unbounded-quantifier elimination result
we are interested in can be written as FO(U,Q) =
FOP (U, Q). Two such results are known:

LAll languages we consider are assumed to have equality, so
we will not mention this explicitly any more.

Fact 1 (see [17, 24]) FO(U,0) = f@m(U,@);
FO(R,+,—,0,1,<) = FO (R, +,—,0,1,<). m

In section 3 we will extend these results.

We are also interested in equivalence of constraint
languages, which in our notation can be written as
FO(U,Q) = FO(U,O) where generally © is “sim-
pler” than Q.These kinds of results are hard to achieve,
and often we can only find a certain approximation to
equality. For this, we need the following notation.

Definition 1 We write
FO4(U,Q,SC) = FOB(U,0,50)

if, for every L(SC, Q) sentence ¢, we can find an infi-
nite set X C U and a L(SC, ©) sentence ¢ such that
for any D with adom(D) C X,

D Fanx ¢ iff DEpnx ¢.

We write FO4U,Q) = FOBU,0) if
FO4U,Q,8C) = FOP(U,0,5C) holds for any
schema SC.

The relation = is an approximation to inclusion; it
is an approximation in the sense that it is the inclu-
sion restricted to models from a certain infinite set.
We also further restrict quantification to that set X.
For instance, if A = B = U (and this is the sit-
uation we encounter most often), then FO(U,Q) =
FO(U, ©) means that there is an infinite set X such
that FO(X, Q) C FO(X, 0), i.e. we have the inclusion
for the natural interpretation over an infinite X.

Thus, the desired collapse results would be
FO(U,Q) = FO%U,Q), or FO(U,Q) = FO(U,O),
when X happens to be U.

We can analogously define similar arrow notation
for nonboolean queries. The framework of nonboolean
queries assumes the output schema SC' = {Ty,...,Ti},
Il > 0. Then a first-order query is given by a formula
o(z1,...,2n), for each n-ary output relation. Such a
formula defines the relation (under A-interpretation)
given by {@ € U™ | D a4 (@)} for each input
D € Inst(U,SC). We denote the class of nonboolean
queries with input schema SC and output schema SC’
by FFOgr(U,R,SC). (Here FFO stands for “full
first-order”, as opposed to sentences only.)

The definition of the arrow relation generalizes
straightforwardly. That is, we must say D Fanx ¢(&)
iff D Epnx ¥(d) for any @ € (edom(D)UX)™. Finally,
we write

FFO(U,Q) {=,=} FFO(U,0)

if FFOgr(U,9Q,5C) = FFOg(U,0,S5C) (respec-
tively for =) holds for any pair of input and output
schemas SC and SC'.

3. Eliminating unbounded quantification

In this section we prove that unbounded quantifi-
cation can be eliminated in favor of quantification
bounded by the active domain for a large class of struc-
tures. This is equivalent to saying that the active-
domain interpretation and the natural interpretation
coincide for a large class of structures.

Recall that a structure (U,), where the order re-
lation < is in Q, is called o-minimal [25] if every de-
finable set {¢ € U | (U, Q) = ¢(c)} is composed of a
finite union of intervals. Here ¢ is a formula in the
language that includes all symbols of 2 and constants
for elements of U. Examples of o-minimal structures
are (R, <), (R, +, *,0, 1, <) (this follows from quantifier
elimination [9]) and (R, +, *, %) [28].

Our main result is as follows:

Theorem 1 Let Q be a signature on U such that
(U, Q) is o-minimal and admits quantifier elimination.
Then

FO(U,Q)= FO* (U, Q)

That is, every first-order query using symbols from Q
and the schema relations is equivalent to a formula
where the quantifiers are bounded by the active domain.

Proof sketch: As in [4], we give here a nonconstructive
proof using the technique of nonstandard universes.
For all the definitions, see [4].

Lemma 1 If we have two hyperfinite instances A and
A’ that agree on every standard active-semantics query,
then they agree on every natural-semantics query.

Proof of Lemma. As in [4], *M is the nonstandard ex-
tension of M in a nonstandard universe satisfying the
Isomorphism Property of [16]. Fix a counterexample,
that is, fix A and A’, and a natural-semantics query ¢
on which they disagree. Let *M(A) be the expansion
of *M to L(SC,) given by interpreting the schema
relation symbols as in A, and let *M(A’) be likewise.

Let Q' be the language containing (only) predicate
symbols for each atomic formula of 2. Let M’ be the
model for ' with domain equal to U, and with the
predicates of Q' interpreted in the obvious way. Then
M’ also admits elimination of quantifiers. Consider
Q'(A) and Q'(A’) as structures for L(SC, ') in which
the domains are the active domains of A and A’, respec-
tively, the schema relations are unchanged, and each
predicate of Q' is interpreted as the * of the correspond-
ing definable subset of M . Using the assumption that
A and A’ agree on standard active-semantics queries,
we can show:

Claim 1 Q'(A4) and Q'(A') are elementary equivalent
in L(SC, Q")

We apply the Isomorphism Property to €'(4) and
Q'(A"), to get a mapping f from the active domain
of A onto active domain of A’ that preserves schema
relations and the predicates of '. Since M’ has elim-
ination of quantifiers, for each ¢(Z) in Q' and ¢'in the
active domain of A, we have *M' = ¢(¢) if and only if
*M' | o(f(€)), since ¢(€) is equivalent to a boolean
combination of atomic formulae, each of which will be
preserved by f.

Now it follows from the techniques developed in [4]
that *M’(A4) and *M'(A") (which are defined analo-
gously to *M(A) and *M(A’) but for the language
Q' instead of Q) satisfy all the same sentences of
L(SC,€). Then it can be shown that *M(A4) and
*M(A") satisfy all the same sentences of L(SC, Q).

This gives us a contradiction, which proves the lemma.

To show that lemma 1 implies the theorem, suppose
there were a counterexample ¢ to the theorem (that is,
g is definable as a natural-semantics query, but not as
an active-semantics query). We first note that for ev-
ery finite collection F of active-semantics queries, there
must be two finite instances Ar and A’'r that agree
on all queries in F' but disagree on ¢ . By applying
saturation, we would get two hyperfinite instances A
and A’ in the nonstandard universe that agree on ev-
ery standard active-semantics query, but disagree on g¢,
contradicting lemma 1. This completes the proof. 0O

The proof merely establishes the existence of an
active-domain query that is equivalent to a query us-
ing unbounded quantification. However, the process
of transforming an unbounded-quantifier sentence into
a bounded-quantifier sentence can be done effectively
assuming that the quantifier elimination procedure for
the underlying model is effective. We shall present such
a procedure in a subsequent paper.

Now, using the o-minimality of (R, +, *, 0,1, <} and
theorem 1, we settle the open problem from [24].

Corollary 1 Every first-order query in the language
of the schema relations and +,%,0,1,< can be ezx-
pressed by a formula in the same language with all
quantifiers bounded by the active domain. That is,

FO(R,+,%,0,1,<) = FO* (R, +, *,0,1, <). O

For example, consider (R, +,*,0,1,<), and let our
schema have a binary predicate S(z,y). The sentence
@ states that all elements of S lie on some line:

@ = JaIVaVy.(S(z,y) > y=axz+b)

This gets converted to the equivalent active-domain

sentence ¥ = (card(S) < 3) V ((card(S) > 3) A ¢')

where the conditions on cardinality of S are written as
first-order sentences in the language of S, and ¢’ is

Jz1Iy Ve Vys VesVys.S(z1,y1) A (S(z2,72) A
S(zs,y3) = (22 — 21)(y3 — y1) = (v2 — y1)(z3 — 21))

Then D |= ¢ iff D |=¢ ¢ for any D € Inst(R, {S}).

The analog of corollary 1 for linear constraints was
proved in [24]. These result stand in sharp contrast
to the results of [14], who showed that elimination of
unbounded quantifiers fails for integer arithmetic con-
straints.

The ability to convert natural-semantics queries to
bounded-quantifier queries is important for achieving
efficient query evaluation. In addition, corollary 1 gives
us an alternative proof of the conjecture that parity
test cannot be defined by first-order queries that use
polynomial inequality constraints (this conjecture was
recently confirmed in [4]). Indeed, assume that parity
is definable in such a way; then it is definable under
the active semantics, and we know (see [4] and next
section) that this is not the case.

Using the fact that each model has a definitional ex-
pansion to a model that admits quantifier elimination,
we obtain:

Corollary 2 Let Q be an o-minimal signature on U.
Then we can find a (definitional) ezpansion of Q to '
such that

FO(U,Q) = FO(U,Q) = FO (U, Q).
4. Collapsing signatures

4.1 First-order logic

The goal of this section is to investigate the approx-
imate collapse relation. We are interested in results
collapsing queries over signature {2 to queries over @,
where © is much simpler than Q. We start by review-
ing the first-order case. We state a generalization of
the result from [4] and [21], which can be used to get
expressivity bounds on first-order constraint languages
(this technique is already implicitin [24]). We will then
make use of the techniques developed in these proofs to
extend the arrow relation results to second-order logic
and to existential second-order.

Our first approximate collapse result shows that any
signature approximately collapses to the order relation.
The proof of the theorem below follows the basic idea of
[4]: first, rewrite a query, and then use Ramsey theorem
[12] repeatedly to eliminate all constraints other than
order comparisons.

Theorem 2 Let U be ordered by <. Then for any
L(SC, Q) sentence @, we can find an infinite set X C U

and o L(SC, <) sentence ¢ such that for any D €
Inst(SC, X), and any Y C X, it is the case that

DEye iff DEy 4.

Corollary 3 Let U be ordered by <. Then, for any
signature €,

FOU,Q) = FO(U,<).

Theorem 2 was proved for the case Y = @ in [4].
Results of this kind are particularly useful for study-
ing expressibility under the active-domain semantics,
as demonstrated in [4] and [21]. For example, many
queries of interest are generic, that is, independent un-
der permutations of the underlying domain. For such
queries, their behavior on an infinite subset of U fully
determines their behavior on U. For example, it can
be immediately derived from theorem 2 that for any £2,
there is no L(SC, Q) sentence ¢ such that D =g ¢ iff
adom(D) has even cardinality.

It is generally impossible to eliminate the order re-
lation from the right hand side of the arrow relation.
However, it was shown in [4] that for signatures over
the reals satisfying certain smoothness conditions, col-
lapse results to pure relational algebra are available.

Definition 2 A signature Q on R is called analytic if
it consists of restrictions of analytic functions to real
arguments.

In other words, Q = (fi)iecr is analytic if there is a
set of analytic functions (F;)icr such that each f; is the
restriction of F; to the real arguments. For example,
(+, %, €%) is an analytic signature.

Theorem 3 Let Q be an analytic signature on the re-
als. Then for any L(SC, Q) sentence ¢, we can find an
infinite (in fact, uncountable) set X C U and a L(SC)
sentence Y such that for any D € Inst(SC, X), and
any Y C X, it is the case that

DEye iff DEy 4.

A roughly analogous result was proved in [4], al-
though the results there contained extra hypotheses
and provided no cardinality information. The main dif-
ference between the proof of theorem 3 and the proof in
[4] is that here we demonstrate the existence of an un-
countable set X. This is done by showing that a family
of nontrivial equations f;(£) = 0, where f;s are terms
in QU {r | r € R}, can be simultaneously invalidated
by assigning distinct values from some uncountable set
to distinct variables z;s.

As a corollary, we obtain the following fact about
the arrow relation.

Corollary 4 Let Q be an analytic signature on the re-
als. Then
FO(R, Q)= FO(R, D).

Combining the results of this section with the col-
lapse result of section 3, we obtain:

Corollary 5 Assume that (U,<) is o dense order
without endpoints. Then for an arbitrary signature Q
we have FO(U,Q) = FO (U, <). Also, FO(R,Q) =
FOP (R, 0) for any analytic signature) on the reals. O

We note that the hypothesis that the underlying or-
der is dense in corollary 5 cannot be removed:

Proposition 1 Let (U, <) be a scattered linear order-
ing. Then .7:(9(U,<)75>.7:(’)m(U,<). O

4.2 Second-order logic

The goal of this section is to generalize approximate
collapse results to second-order logic and its fragments.
When we deal with sentences, we assume that they are
converted into normal form. That is, sentences

QiP1...QL PnQiz1...Quin.-0(21,...,Ts)

where QiP; are second-order quantifiers, and ¢ is
a first-order formula in the language that contains
Pi,...,Pn. Now, suppose that D € Inst(SC,U).
For ® a second-order sentence, we define D = & in
the usual way. Furthermore, for X C U we define
D E=x & by letting all first-order quantifiers range over
adom(D) U X and letting each second-order quantifier
Q. P; range over 2(“d°m(D)UX)k, if P; is of arity k.

For a schema SC, a signature 2 on U, the class
of second-order constraint queries, under the X inter-
pretation, will be denoted by S(’)X(U,Q,SC). That
is, S(’)X(U, Q, SC) is the class of queries @ over some
schema SC for which there exists a second-order sen-
tence ® such that Q(D) = T iff D =x ®. As before,
we write SO instead of SOU. Similarly to the first
order case, omitting the schema in a statement about
equation or arrow relation means “for all schemas”.

We shall also consider fragments of second-order
logic given by the quantifier prefixes of second-order
quantifiers. Formally, a prefix is a finite sequence
of pairs (7,V) or (3,3) where ¢ > 0. Then a (nor-
mal form) second-order sentence conforms to the prefix
(i1, Q%), ..., (45, Q*) if it has s second-order quantifiers,
the jth one is Q7 and it binds predicates of arity 5.

A fragment F is the set of sentences that conform to
some collection of prefixes. Examples of fragments are
full second-order logic, existential second-order logic

and monadic £1. The fragment associated with a set
of prefixes F' (under the X-interpretation) will be de-
noted by SO% (U, Q,5C), or SO(U,Q,SC) if X = U.

We call a fragment given by a collection of prefixes
F orderable if F # () and for every f € F, (m,3) fol-
lowed by f is in F for some m > 2. Examples are
full second-order, and existential second-order £€S0O.
A non-orderable fragment is monadic £}. Now we can
prove a result that extends approximate collapse theo-
rems to second-order constraint queries, and further
generalizes them for orderable fragments of second-
order logic.

Theorem 4 1) Let F be an arbitrary fragment.
Then SOp(U,Q) = SOr(U,<). Furthermore,
SOr(R,Q) = SOr(R, D) if Q is analytic.

2) Let F be an orderable fragment of second-order
logic. Then

SOr(U,Q) = SOp(U, 0)

In particular, SO(U,Q) = SO(U,0)
and ESO(U,Q) = ESO(U, D). These results are true

for the active-domain interpretation as well; that is,

S0%(U,0) = SOLU, D).

Proof sketch: The proof proceeds by converting a
second-order formula into a normal form, and then ap-
plying the techniques in the proofs of theorem 2 and 3
to the first-order part. For any orderable fragment we
can also get rid of the order relation, because it is de-
finable by one extra second-order quantifier over m-ary
relations for any m > 2. a

It is easy to show that part 2) of theorem 4 fails for
monadic 1.

As we saw earlier, any approximate collapse result
completely describes the behavior of generic queries
(those invariant under permutations of the domain,
such as parity test or transitive closure). Thus, we
obtain

Corollary 6 If F is an orderable fragment, and Q
is an arbitrary signature, then every generic query in

S(’)%(U, Q) is ezpressible in S(’)%(U,). O

From this we get some expressivity bounds. For ex-
ample, connectivity of directed graphs is not definable
under the active interpretation as a monadic X1 con-
straint query, no matter what operations are in the
signature. Similarly, any query that is complete for
exponential space cannot be defined as a second-order
constraint query under the active interpretation.

Note also that the coincidence of the active and nat-
ural interpretations proved for the first-order logic with
polynomial constraints does not extend to the second-
order case.

Proposition 2 For any fragment F that allows ez-
istential quantifiers over unary predicates (e.g., full
second-order, ezistential second-order, monadic ¥1),

SOp(R,+,%,0,1,<) # SOL(R, +,*,0,1, <).

Proof sketch: The set of natural numbers can be de-
fined by a second-order formula with one unary existen-
tial second order quantifier in the language of +, 0, <.
Then it follows from [14] that any total recursive query
on databases whose active domain consists only of nat-
ural numbers is in SOF(R, +, *,0,1,<). On the other
hand, every query in SO° (R,+,*,0,1,<) (and thus
in S(’)%(}R,—I—, ,0,1,<)) has PSPACE data complex-
ity, which proves the proposition. a

5. Complexity of constraint queries

As was mentioned in the introduction, the results
on elimination of unbounded quantification allow us
to prove new low complexity bounds. In this section
we use theorem 1 to give a new complexity bound for
FO(R, +,%,0,1,<). We also use corollary 6 to estab-
lish complexity bound on generic second-order queries.

We are dealing with data complexity, that is, the
complexity of evaluating a given query for instances
that vary. We only look at boolean queries here, but
all results generalize easily for nonboolean queries. As-
sume some encoding of instances, for example, the en-
coding of [1]. Given D € Inst(SC,U), we denote its
encoding by enc(D). Then for each boolean query
¢ we define the language L, = {enc(D) | D €
Inst(SC,U), D = ¢}. The data complexity of ¢ is the
conventional complexity of L,. In particular, for any
complexity class C we say that ¢ has C data complexity
if the language L, is in C.

It was previously known [20] that every query from
FO(R, +,%,0,1,<) has NC data complexity. In fact,
this follows from the NC complexity bound for the
first-order theory of real closed fields with a fixed
number of variables [6]. However, pure first-order
logic queries, as well as first-order queries with lin-
ear constraints, have AC° data complexity [1, 15]
and we know that AC° C NC [7]. So the question
arises if we can improve the data complexity bound
for FO(R,+,*,0,1,<) using the elimination of un-
bounded quantification result proved in section 3. This
is indeed possible. We prove below a TC° complex-
ity bound. Recall that AC? is the class of problems
definable with unbounded fan-in constant depth cir-
cuits that use and, or and not gates, and the num-
ber of gates is polynomial in the size of input. The
class TC® extends AC° by allowing threshold gates,
or equivalently majority gates [3]. It is known that

AC®° Cc TC° C NC* C L C NL C NC and all C
inclusions are conjectured to be strict [3].

Theorem 5 Every query in FO(R,+,%,0,1,<) has
TC° data complezity.

Proof sketch: Let RA o1y be relational algebra in which
polynomial inequality constraints are allowed as selec-
tion predicates. For instance, ou1s42s44(R) selects
pairs (z,y) for which z > 3® + 4. Using theorem
1 and the standard technique for equivalence of re-
lational algebra and calculus, we show that, for each
L(SC,+,%,0,1, <) sentence ¢, there is a RAp,p ex-
pression e, such that D = ¢ if e,(D) = {()} (empty
tuple) and D | —¢ if e, (D) = {}.

Next, we show that every RAp.iy query has TC°
data complexity. The proof proceeds exactly as the
proof of AC? data complexity for relational algebra
(see [1]) with one exception: every time the o, operator
is encountered, we have to compute the condition p.
If p is of form ¢1(¥){=, <, #, £}t2(2) where ¢1,%; are
terms (that is, polynomials), we construct circuits that
compute t; and ¢5 first and then make the comparison.
Since addition and multiplication are in T'C° [3], we
can insert a threshold circuit that computes o,. The
theorem is proved. a

Since the behavior of generic (invariant under per-
mutations) queries is fully determined by their behav-
ior on an infinite set, we obtain from corollary 1 (this
can also be derived from combining the results of [4]

and [15]):

Corollary 7 Every generic query n
FO(R,+,%,0,1,<) has AC® data complezity. O

From corollary 6 and classical descriptive complexity
results (cf. [18]) we obtain

Corollary 8 Every generic query in S(’)m(U,Q) has
PH data complezity, and every generic query in

SSOQ(U, Q) has NP data complezity. O

6. Extension to nonboolean first-order
queries

In this section we show the following: all results con-
cerning boolean queries extend to arbitrary nonboolean
queries. In other words, all results we proved for sen-
tences can be also proved for formulae with free vari-
ables. We show this by proving “transfer” results that
extend a = or an equality result from boolean queries
to arbitrary ones. Note that transfer results for generic
queries (active or natural) were proved earlier in [4].

Since we are now interested in arbitrary queries, we
need two schemas: the input schema SC; and the out-
put schema SC;. Given the underlying model (M, 0},
a query is given by a formula ¢(z1, ..., Z,), in the lan-
guage L(SC1,), for each n-ary predicate symbol in
SC;. For each input D € Inst(SC,U) and each set X,
under the X-interpretation such a query defines the
n-ary relation ¢px[D] = {d | @ € U™, D Ex ¢(&)}.
The class of first-order queries between the schemas
SC; and SC,, under the X-interpretation, is denoted
by -7:-7:0)5'(02(U,Q,501)- Recall that this is a set of
semantic objects.

Note that ¢x[D] need not be finite. That is,
fTOJS-(Cz(U,Q, 5C,) is actually a set of maps from
Inst(SC1,U) to Insteo(SC2,U), where Instoo(:) is the
class of finite and infinite instances. Since we are of-
ten interested in the class of maps from Inst(SC1, U)
to Inst(SC»,U), we define a restriction on queries that
guarantees finiteness.

We call a query @ domain-preserving if for any input
D, adom(Q(D)) C adom(D). That is, no element of
U can be present in Q(D) unless it is present in D
itself. (Every query expressed in relational algebra or
safe relational calculus is such.) For a class of queries
C, we denote the subclass of domain-preserving queries
in C by dp_C.

The arrow notation extends to nonboolean queries
and to domain preserving queries in the natural way.
As usual, omitting SC; and SC; in the equality or ar-
row relation means that the equality or arrow relation
holds for all SC; and SC5. Now we prove the first
transfer theorem that allows us to extend the arrow
results to arbitrary queries.

Theorem 6 For any signatures and ©, FO (U, Q)
= FO(U, O) implies FFO(U, Q) = FFO(U, 0).

Furthermore, FO*(U,Q) = FOB(U,0) implies
dp_ FFO4(U,Q) = dp_ FFOE (U, 0).

Proof sketch: We follow the idea of [4], where a similar
transfer result was proved for the equality of classes
of generic queries. Let ¢(z1,...,2,) be a L(SC1,Q)
formula defining a nonboolean query for some n-ary
relational symbol in SCs. We extend SC; to SC' by
n unary predicate symbols Sq,...,S5, which are not
present in SC; U SC5. Define the following L(SC’, Q)

sentence ®:

Ni=1(Gz.Si(z)) A (VeVy.(Si(z) A Si(y) = = = y))) A
(Ve1 .. Veo (S1(z1) A ... ASp(20)) = o(21, ..., 24))

Using the assumption, we get a L(SC’,©) sentence
¥ and an infinite set X such that for every D €
Inst(SC', X), D =x ®iff D =x ¥. Let ¥(z1,...,2n)
be a L(5C1, ©) formula obtained from ¥ be replacing

each S;(z) with z = z;, where z;s are not used in .
Now .7:.7:0502(@,501, Q) => .7:.7:(')502(@, 5C4,0) is
proved by showing that D |Ex ¢(&) iff D Ex ¢(d) for
every D € Inst(SC1,X) and every @ € (adom(D) U
X)™. Part 2 is proved similarly. a

From this we immediately obtain:

Corollary 9 1) FFO(U,Q) = FFO(U,).

2) FFO(R,Q)=> FFO(R, D), if Q is analytic.

3) If U is a dense order without endpoints, then
dp_FFO(U,Q) = dp_FFO" (U, <).

4) If Q is analytic, then dp-FFO(R,Q) =
dp FFO (R, 0).

Note that the right hand sides in 3) and 4) are the
classes of queries well known in the classical relational
theory. Indeed, dp_FFO° (U, SC) is precisely the class
of queries that can be defined by the relational alge-
bra, and dp_FFO" (U, <, SC) is the class of queries de-
finable by the relational algebra with < comparisons
allowed in selections.

Next, we prove a transfer theorem that allows us
to extend elimination of unbounded quantification to
nonboolean queries.

Theorem 7 Suppose that for some signature it is

the case that FO(U,Q) = T(’)qj(U, Q). Then,
FFO(U,Q)=FFO'(U,Q).

Proof sketch: The proof is similar to the proof of the-
orem 6, but we need a different translation from ¥ to
1(-) since we are dealing with bounded quantification.
We define this translation as before except for the case
of existential quantification: Jz.x(z,%) is translated
into Jz.x°(z, %) V x°(21, %) V ... V x°(2n, ¥) where x°
is the translation of x and zi,..., 2, are the free vari-
ables of ¢. Now, define 9(z1,...,2,) as ¥°. It can be
shown that for any D € Inst(SC1,U) and any & € U™,
D E ¢(a@) iff D |=¢ (&), which proves the theorem. O

Corollary 10 Let Q be o-minimal and admit quanti-
fier elimination. Then FFO(U,Q) = FFO® (U,Q). In
particular, the classes of arbitrary nonboolean queries
that are first-order expressible with polynomial inequal-
ity constraints over the reals, are the same under both
natural end active-domain interpretations. a

We can now use the above results to get some ex-
pressivity bounds.

Corollary 11 The following cannot be expressed by
any first-order constraint query under the active in-
terpretation, nor by any first-order query with polyno-
mial inequality constraints under the naturael interpre-
tation: transitive, or deterministic transitive closure of

a graph; mazimal matching in a bipartite graph; Eule-
rian cycle. a

7. Conclusions

Through the results of this paper, along with recent
works such as [4, 21, 24], we have a much better feel for
the expressive capabilities of constraint languages. Al-
though the implications of these results for the design
of query languages are dependent on many parameters
of the application domain, we can draw a few general
conclusions for language design.

Our results indicate that it is particularly promising
to focus on constraint query languages over o-minimal
structures. In particular, it seems that these languages
inherit most of the pleasant formal properties of the
pure relational calculus, along with uniform versions of
the formal properties of first-order logic over the real
ordered field. We can use the techniques developed
here to get finer information about formal properties
of definable sets that are possessed by these languages,

Although many of our main results yield construc-
tive proofs, we have not fully explored all the algo-
rithmic consequences of the theorems. In particular,
we are interested in investigating semantic query op-
timization strategies enabled by theorems 2 and 1 in
detail. As mentioned in section 3, there is an effec-
tive version of theorem 1, which can be seen as gener-
alizations of the classical Tarski-Seidenberg algorithm
for quantifier elimination. We are interested in seeing
if algorithms based on these results can be useful in
geometric theorem-proving applications that involving
large numbers of rational parameters.

The results here can be seen from a mathemati-
cal view as yielding interesting information concerning
the structure of sets definable from formulae with free
second-order variables. As such, they can be seen as
extending works such as [28], in showing the ‘tame’ be-
havior of important fragments of analytic geometry. In
particular, results such as theorem 1 can yield interest-
ing expressivity limits even in cases where there is no
known effective procedure.

Many of the results within this paper point to con-
nections between model-theoretic properties of a struc-
ture M and expressibility properties of the constraint
query language based on M. In future work, we plan to
give more detailed information on this relationship, in-
cluding results for constraint query languages based on
classes appearing in model-theoretic stability theory.

We are interested in extending the (partial) collapse
results to other logics (infinitary, fixpoint) in order to
establish new expressivity bounds for generic queries.

We are also interested in the interplay between

Ramsey-like theorems and collapse results. We can,
for instance, get additional information about collaps-
ing sets by making use of results in Ramsey theory and
set theory, cf. [10]. For instance: we extend the ar-
row notation by FO(U, Q) =, FO(U, O) if, for every
L(SC, Q) sentence ¢, we can find an infinite set X C U
of cardinality « and a L(SC, ©) sentence ¥ such that
for any D € Inst(SC,X), D =x ¢ iff D Ex 4. Fur-
thermore, we use the notation = to mean that the
cardinality of U — X is A. We can now show that:

Theorem 8 [)There exists a signature Q on R such
that FO(R, Q) =, FO(R, <) implies & = Ng.

2) If Q is analytic, then FO(R,Q) =, FO(R, D).
However, FO(R, +, , Q)AN FO(R, §). O

Results such as these may be useful in analyzing
the finer structure of constraint queries (for instance,
in the consideration of queries satisfying weaker no-
tions of genericity), and in analyzing constraint queries
with cardinality quantifiers. We plan to make a more
detailed study of cardinality collapse results in subse-
quent work.

Acknowledgement: We thank Dan Suciu for help-
ful discussions of the material presented in section 5,
and the referees for their comments.

References

[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] A. V. Aho and J. D. Ullman. Universality of data
retrieval languages. In POPL’79, pages 110-120.

[3] D.A. Barrington, N. Immerman, H. Straubing. On
uniformity within NC*. JCSS, 41:274-306,1990.

[4] M. Benedikt, G. Dong, L. Libkin and L. Wong. Rela-
tional expressive power of constraint query languages.
In PODS’96, pages 5-16.

[5] M. Benedikt and L. Libkin. On the structure of queries
in constraint query languages. Bell Labs Technical
Memo, 1995.

[6] M. Ben-Or, D. Kozen, J. Reif. The complexity of
elementary algebra and geometry. JCSS, 32:251-264,
1986.

[7] R.B. Boppana and M. Sipser. The Complexity of Fi-
nite Functions. In Handbook of Theoretical Computer
Science, Vol. A, chapter 14, (J. van Leeuwen editor),
North-Holland, 1990.

[8] A. Chandra and D. Harel. Computable queries for
relational databases. JCSS, 21(2):156-178, 1980.

[9] C.C. Chang and H.J. Keisler. Model Theory. North
Holland, 1990.

[10]

[11]

[12]
[13]

[14]

[15]

[19]

[20]

(21]

(22]

(23]

(24]

P. Erdés, A. Hajnal, A. Maté and R. Rado. Combina-
torial Set Theory: Partition Relations for Cardinals.
North Holland, 1984.

H. Gaifman. On local and non-local properties. In
Proceedings of the Herbrand Symposium, Logic Collo-
guium '81, pages 105-135, North Holland, 1982.

R.L. Graham, B.L. Rothschild and J.H. Spencer. Ram-
sey Theory. John Wiley & Sons, 1990.

S. Grumbach and J. Su. Finitely representable
databases, In PODS’94, pages 289-300.

S. Grumbach and J. Su. First-order definability over
constraint databases. Proc. Conf. on Constr. Progr.,
1995.

S. Grumbach, J. Su, and C. Tollu. Linear constraint
databases. In Proceedings of Logic and Comput. Com-
plexity, 1994, pages 426-446.

C.W. Henson. The isomorphism property in nonstan-
dard analysis and its use in the theory of Banach
spaces. Journal of Symbolic Logic 39 (1974), 717-731.

R. Hull and J. Su. Domain independence and the re-
lational calculus. Acta Informatica 31:513-524, 1994.

N. Immerman. Descriptive complexity: A logician’s
approach to computation. Notices of the AMS 42
(1995), 1127-1133.

P. Kanellakis. Constraint programming and database
languages: A tutorial. In PODS’95, pages 46-53.

P. Kanellakis, G. Kuper, and P. Revesz. Constraint
query languages. JCSS 51 (1995), 26-52. Extended
abstract in PODS’90.

M. Otto and J. Van den Bussche. First-order queries on
databases embedded in an infinite structure. Technical
Report, University of Antwerp, October 1995.

C. Papadimitriou, D. Suciu and V. Vianu. Topological
queries in spatial databases. In PODS’96, pages 81-92.

J. Paredaens, J. Van den Bussche, and D. Van Gucht.
Towards a theory of spatial database queries. In
PODS’94, pages 279-288.

J. Paredaens, J. Van den Bussche, and D. Van Gucht.

First-order queries on finite structures over the reals.
In LICS’95, pages 79-87.

A. Pillay, C. Steinhorn. Definable sets in ordered struc-
tures. Bulletin of the AMS 11 (1984), 159-162.

J. G. Rosenstein. Linear Orderings. Academic Press,
New York, 1982.

V. Tannen. Languages for collection types: A tutorial.
in PODS’94, pages 150-154.

L. Van den Dries, A. Macintyre and D. Marker. The
elementary theory of restricted analytic fields with ex-
ponentiation. Annals of Mathematics 85 (1994), 19-56.

