queries, such as the transitive closure. Resolving these
questions is probably as hard as separating complex-
ity classes. Indeed, proving that order-independent
queries in FQO + COUNT4+ < are local would imply
that TC? is strictly contained in DLOGSPACE. Also,
one could try to show that RA"®&" () can be evalu-
ated with TC® data complexity. This would imply that
RABET(N) with order cannot express transitive closure
if and only if TC® # NLOGSPACE, making another
interesting connection between separation of complex-
ity classes and separation of query languages, in the
spirit of [2].

Remark: After the first draft of this paper was writ-
ten and submitted, I was informed by Lauri Hella and
Juha Nurmonen that they had considered similar prob-
lems and obtained a number of closely related results,
although they had not written them up. We are cur-
rently working on a joint journal paper that, in addition
to clarifying the relationship between various notions
of locality, will contain a number of new results (for
example, characterizations of those notions of locality
on structures of small degree.)

Acknowledgements: I thank Lauri Hella, Rick Hull,
Juha Nurmonen, Limsoon Wong and anonymous refer-
ees for helpful comments.
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A extended with the binary relation S. Since SZ;‘S (@)
does not contain any element of ', and neither does
SZ;‘S (b) for any d, we obtain @ ~s*s b and thus, by the
locality of @, @ € Q,(As) iff b € Q,(As).

Note that all the conditions in (% ,) hold, and thus
Qp(As) = Q(A). Hence, d € Q(A) iff b € Q(A), which
proves that @ is local, and Ir(Q) < r. O

Lemma 5.3 For every relational query @ in
RAE(N), there exists a polynomial p such that vq,
1s definable in FO + COUNT.

Proof sketch: Tt can be shown that, for any RA*E(IV)
query there exist two polynomials p; and ps such that,
for any input object x of size n, (a) Q(#) contains at
most pi(n) elements, and (b) every number produced
in the process of evaluating @ is bounded by pa(n).
From this we also derive that for each fixed number
k, there exists a coding scheme of k-tuples of elements
under pa(n) such that both coding and decoding are
definable in FO 4+ COUNT and there is a polynomial
p such that all codes of tuples are bounded by p(n).

Now we encode RA8(N) objects in Ag by encoding
elements of base type by themselves, and each number
n by the nth element in the ordering S. Using this, we
give a (rather long and tedious) encoding of RA%$&(IV)
operators in FO + COUNT. Note that both types b
and N are coded as elements of the first sort, and the
counting power is used to simulate operations of (). By
choosing p large enough so that all numbers produced
during evaluating ) and all encodings of tuples are
under p(n), we guarantee that the simulation can be
done in FO + COUNT. It turns out that only coding
of tuples of fixed length is needed. For more details,
see the full version [23].

Now by Fact 2.7 and Theorem 3.1, @), is Gaifman-local,
and thus @) is. This proves the theorem. a

Corollary 5.4 (see [10]) FEvery relational query in
RAEY(N) has the bounded degree property. Conse-
quently, (deterministic) transitive closure is not defin-

able in RAS(IN): RA®(N) ¢ DLOGSPACE. O

6 Conclusion

We examined the main notions of locality of first-order
formulae, and proved that these notions are closely re-

/ Bounded Degree Property \

/ Gaifman-local \

Hanf-local

N R (py) (fplational) )
o eRA ()l )

Figure 2. Summary of the notions of locality
and relationship between them.

lated. We showed that Hanf’s locality implies Gaif-
man’s locality for open formulae, and Gaifman’s lo-
cality for sentences implies Hanf’s locality. Each of
these implies the bounded degree property, which is
one of the easiest tools for proving inexpressibility re-
sults. Qur presentation goes beyond the first-order
case, and thus allows us to infer new results for log-
ics with unary quantifiers and counting. We gave a
much simplified proof that relational query language
with aggregate functions cannot express the transitive
closure; and we showed for the first time that its rela-
tional fragment is Gaifman-local.

The results are summarized in Figure 2. We abbreviate
strongly Gaifman-local by “sG-1”. By RA%6&(Q) we
mean an extension of RA8E'(N) to include rational
arithmetic (that is, type @ and additional operations
— and =+). Tt follows from [10] that relational queries

in RA88"(Q)) have the BDP.

We mention two open problems. First, we would like to
find more examples of Gaifman’s locality, perhaps by
extending techniques in [13, 15, 20, 26] to prove Hanf’s
locality for new languages. In terms of applications to
database languages, we believe that Theorem 5.1 holds
for RAE(Q)).

A much more challenging question is to extend these
techniques to the ordered setting. The order relation
gives easy counterexamples to all the forms of locality,
so one should try to prove locality of order-independent



+, %, div,mod : N x N — N

fiu—t g:5—u

KO, K1:T—N
fitt—t,i=1,...,n 1 <n

:b:bXbH{N} IN,<NZNXN—>{N}

d T —T

fog:s—t (fi,. o fa) it =t x ... xty

myn:tlx...xtn —1;

K{}:T — {s}
T xs—{t}

empty : {t} — {IN}

U:{t} x {t} — {t}
f:s—N

n:t—{t}

ext[f]: T x {s} — {t}

cartprod, : {t1} x ... x {tp} = {t1 X ... X t,}

2] {s} =N

Figure 1. Expressions of RA5"(IN)

cartprod, is the cartesian product of n sets. Given
functions f : T x s — {t} and g : s — N, a set X
of type {s}, and an object y of type T, ext[f](y, X)

evaluates to | J,c x f(y, #), and > [g](X) is >°_c x 9(%).
For example, Y [K1](X) is card(X).

Without the type of natural numbers, this language is
equivalent to the relational algebra [8], and thus ex-
presses precisely the first-order queries. Summation
and arithmetic give it the power of aggregate func-
tions; for example, the aggregate TOTAL (cf. [1]) is
given by > [id]. Most commercial systems use a richer
collection of aggregates by allowing rational arithmetic
so that aggregates such as “average” can be defined.
Here we prove the result for the language with natural
arithmetic; we briefly address the problem of extending
the results to rational arithmetic in the next section.

Commercial query languages also use grouping with
aggregation; for example, one may ask ask for the av-
erage salary in each department. The use of group-
ing i1s modeled by nesting of sets. At first glance, 1t
seems that sets of sets must be produced to answer this
query. That is, the restriction that ¢{s and ss in Figure
1 be record types is eliminated. However, such a nested
language has the conservative extension property [24],
which says that every query can be written using the
height of set nesting not exceeding that of its input and
output types. In particular, it means that every query
whose input and output types are flat relations, can
be written in RA®8"(IN) (that is, without using nest-
ing), even if it uses grouping. Thus, RA*#(N) is a
good candidate for modeling relational languages with
aggregates.

Abbreviate b x ... x b, m times, as b”. Then a o-
structure is represented as an object of type {bPt} x
...x{bP'} where o has [ relations of arities p1, ..., p;.
We denote this type by op,. Types of this form are
called relational. A query in RA®E(N) is relational if
both its input and output types are.

We assume without loss of generality that the output
of a relational query is one set of m-tuples. Then such
a query is a mapping from o-structures over D into
finite subsets of D™. It can be easily seen that for any
such query @, an element d € D occurs in a tuple in
Q(A) for some structure A with carrier A only if d € A.
Thus, we define ¢g(z1,...,2,) by letting A E ¢g(@)
iff @ € Q(A). We then say that @ is Gaifman-local if

so is the associated formula 1g.

We now prove the main result of the section:

Theorem 5.1 Every relational query in RA'(N) is
Gaifman-local.

Proof sketch: Consider a relational query @ : op, —
{b™}. Extend ¢ with one binary relational symbol 5|
and let p be a function on natural numbers. Define a
query Qp : o X {b x b} — {b™} as follows. Its input
is a pair: a o-structure A and a binary relation S. Let
C be the set of elements in S, that is, the union of its
first and second projections. Then @, is defined by

Q(A)

Qp(A, S) :{ ) if (+q,p) holds

otherwise,
where (xq ) is the following condition:

CNA=0, and
card(C) > p(card(A)), and

S 1s a linear order

(*Q,p)

Lemma 5.2 If Q, s Gaifman-local, then so is Q).

Proof sketch: Let Q) be local, and let r = Ir((),). Con-
sider @, its input (which is a structure .A), and let
an~f b, where @ and b are m-vectors of elements of
A. Let n = card(A) and let n’ > p(n). Let C be an
n’-element, subset of D such that C N A = 0. Let S
be an arbitrary linear ordering on C. We define Ag as



In fact, d can be taken to be 3"~ 1r + (3772 = 1)/2 for
n>1andd=r forn=1. m]

Now the proof of Theorem 4.1 follows. It is
enough to consider a sentence ¥ which is equivalent
to Joy ... Jepp(wy, ..., 2y), where ¢(¥) is strongly
Gaifman-local. Assume that r witnesses strong local-
ity of ¢: that is, NA(a@) = NTB(I_;) implies A | ¢(d)
iff B = 1/)(5) Let d be given by Corollary 4.3. We
claim that hlr(¥) < d. Indeed, assume A Sy B. Let
A U, Then A = ¢(d) for some @ € A”. By Corol-
lary 4.3, A =, B, and thus we find b € B" such
that NTB(I_;) ~ NA(@). From strong Gaifman-locality

of ¢ we see B | 1/)(5) and thus B |= ¥. The converse
(that is, B = ¥ implies A = ¥) is similar. Hence,

hir(¥) < d, which completes the proof. a

Combining the proof above with Gaifman’s theorem,
we see that for an arbitrary first-order sentence ¥, we
have the bound hlr(¥) < 2 - 39 . 79(¥)=1 "\which is
much worse than 39(Y) that is given by [15]. However,
it 1s not the bound itself, but its existence that is used
in most applications. Also, the above proof reveals the
close connection between Gaifman’s and Hanf’s theo-
rems.

Another corollary of Theorem 4.1 is that the two parts
of Gaifman’s theorem are not independent:

Corollary 4.4 Let L be a logic that is closed under
first-order operations. Assume that every sentence in
L is strongly Gaifman-local. Then every formula in L
1s Gaifman-local. a

5 An application: expressiveness of a
query language with aggregate func-
tions

Most of traditional database theory deals with query
languages that have well studied logical counterparts.
For example, relational algebra has the power of first-
order logic and Datalog with negation has the power
of least-fixpoint logic (under inflationary semantics),
see [1]. However, real query languages use some fea-
tures that are not adequately captured by these log-
ical formalisms. One of them is dealing with inter-
preted functions, and it was addressed recently [6]. The
other is aggregation, which received a lot of attention in
connection with studying bag semantics of query lan-
guages, cf. [9, 17, 18, 25]. Aggregation allows queries

about a column in a relation as a whole, for example,
the sum of all elements in a column.

First results on expressive power of aggregation ap-
peared in [9], but they were based on an assumption
of strict containment of some complexity classes. The
first definitive proof appeared in [25], where an at-
tempt was made to show that the relational language
extended with aggregate functions has the bounded de-
gree property for purely relational queries. Although
this question was unanswered in [25], that paper did
prove that connectivity and parity tests are not defin-
able with the help of aggregation. The BDP was proved
very recently [10], though the proof is far from satis-
factory. It relies on a particular syntactic presentation
of the language, and starts by proving a complicated
normal form result that gets aggregation “out of the
way”. (Note that the idea itself seems to be essential
for proving expressivity bounds for logics that count,
see [5].) However, the intuition behind the proof of the
normal form is far from obvious, and the proof does
not extend to show locality of relational queries with
aggregates.

In this section we prove, via an encoding in FO +
COUNT, that every relational query in a language with
aggregates 1s Gaifman-local. Our technique has simple
intuition behind it: all the counting happens “on the
side” and does not affect locality. The proof depends
less on a particular presentation of the language, be-
cause 1t only changes the encoding part.

Let us present the language, called RAS(IV), follow-
ing [8, 18]. Assume the existence of two base types:
type N of natural numbers, and an unspecified base
type b whose domain is a countably infinite set D. A
record type is of the form t; x ... x t,, n > 1, where
each ¢; is N or b; the semantics is n-tuples such that
the ith component 1s of type ¢;. We also consider the
set type {t}, where ¢ is restricted to be a record type;
its objects are finite sets of objects of type t. Expres-
sions of RA*8'(N) are defined in Figure 1. Here s and
t are record types, and 7' ranges over both record and
set types.

The semantics is as follows (see [8, 18, 25] for detailed
exposition): +, =, *, div, mod are the standard opera-
tions on natural numbers; K0 and K1 return 0 and
1 respectively; = is the equality test on base types b
and N (true is represented by {0} and false by {}); <
is the usual order on the naturals; the semantics for
identity, composition, tupling and projection is stan-
dard; K{} always returns the empty set; emply tests
if a set 1s empty; n forms singleton sets; U is set union,



Now Theorem 3.1 follows: Let ¢(z1,...,#,) be given,
and let d = hlr(¥(™). Let r = 3d + 1. We claim that
Ir(¢) < r. Suppose A is a o-structure, and @ =, b in
A. By Lemma 3.11, we have a permutation 7 : A — A
such that dzr =4 Eﬂ'(l‘) for every x € A. Thus, by

Lemma 3.14, we have N:;t[a](x) = N:;‘[E](ﬂ'(x)), and
now from proposition 3.7 we get that A[d@] S4 A[b].

Since d = hlr(¥("), we have by Lemma 3.10:

Ak y(a)
& Al E v
& AR v
& AEY(O®)

which finishes the proof of locality of ¢(-). a

The proof above also shows that Ir(z)) < 3-hlr(¥()41.
In the case of first-order formulae, ¥(") increases the
quantifier rank by n, and we obtain a new bound that
improves Gaifman’s (79%) — 1)/2.

Corollary 3.15 Let ¢(xy,...,z,) be a first-order for-
mula. Then Ir(p) < 39+ 4 1 O

Note that this improves the locality rank implied by
Gaifman’s theorem, not the bound on the size of neigh-
borhood in an explicitly constructed formula used in
Gaifman’s proof.

4 Strong Gaifman’s locality implies

Hanf’s locality

The main result of the section is:

Theorem 4.1 Let £ be a logic that is closed under
first-order operations. Assume that every sentence in
L s strongly Gaifman-local. Then every sentence in L
1s Hanf-local.

From this and Gaifman’s theorem, the theorem by
Fagin, Stockmeyer and Vardi follows immediately
(though not the bound produced by the proof in [15]).
We also believe that the proof| sketched below, is sim-
pler than that in [15] and shows clearly why this result
is indeed a form of locality, as claimed in [15].

Recall that A =, B is equivalent to the existence of a
bijection 7 : A — B such that N7'(x) = N¥(x(x)) for
all . Now we say that A and B are (n, d)-equivalent,

denoted A =, 4 B, if there is a bijection 7 : A" —
B" such that for any n-vector @ from A, Nz(@) =
N (n(@)).

Our main technical tool is the proposition below. A
similaridea was used in [26] to show that d-equivalence,
for large enough d, guarantees a win for duplicator in
the r-round bijective Ehrenfeucht-Fraisse game. Propo-
sition 4.2 can also simplify the proof in [26].

Proposition 4.2 Let n > 0 and d > 0. Then
A Sy 3441 B implies A Sp4q.4 B.

Proof sketch: Suppose A S, 3441 B. Then there ex-
ists a bijection p : A®™ — B™ such that N?ﬁl{-l(a) =~
N?)Bd_l_l(p(c_i)). In particular, card(A)” = card(B)" and
thus card(A) = card(B).

We now construct a bijection 7 : A"t — B"T! ag
follows. With each vector @ € A™, associate a bijection
fa : A — B, and define w(dxz) as u(a@)fz(x). (Recall
that dx is an n + l-vector whose first n components
are those of @ and the last one is #.) To define fz,
let b = p(d@), and fix an isomorphism A : Né‘im(ﬁ) —
N?ﬁl+1(i”)~ Since h maps Sﬁl_l_l(c_i) onto Sﬁl+1(5), we
have card(A — Sﬁl_l_l(c_i)) = card(B — SZBd+1(E)).

Consider an arbitrary type 7 of a d-neighborhood of a
single point. Assume that a € Sﬁl_l_l(c_i) realizes 7 in A.
Since h 1s an isomorphism of 3d + 1-neighborhoods, we
see that S9'(a) C S?j“d_l_l(c_i) and thus h(a) € SzBd+1(b)
realizes 7. Thus, the number of elements in Sﬁl_l_l(c_i)
and SzBd+1(E) that realize 7 is the same. Note that
A S, 3441 B implies A 54 B. Therefore,
card({a € A — Sﬁl_l_l(c_i) | Ta(A, @) = 7})

-

= card({b€ B — SzBd+1(b) | Ta(B,b) = 71})
for any 7. Thus, we can find a bijection g : A —
Sﬁl_l_l(c_i) — B_SzBd+1(b) such that N7'(a) = N5(g(a))
for any a € A — Sﬁl_l_l(c_i). We now define f; by

if € Sgly,1(@)

[
ORI I g S

It is now easy to see that w defined by w(dz)
(@) fa(x) is a bijection that satisfies N7'(do)
Nf(ﬂ'(c_io)). Hence, A S=,41,4 B.

O R

Immediately from here we obtain:

Corollary 4.3 For any r > 0 and any n > 1 there
exists a number d such that A =4 B implies A =, B.



folk,2d) - (2Fo(k,2d + 1) + 1), that is, it depends on
k,d and o only. Since d only depends on ¢, we have
the BDP. |

This simple sketch contains all the main components
of the proof of Theorem 3.1. These are: characteri-
zation of d-equivalence in terms of maps preserving d-
neighborhoods, going from open formulae to sentences
by adding extra unary predicates, and the fact that for
each 7, &,-equivalence of n + 1-tuples can be guaran-
teed by asg-equivalence of n-tuples for sufficiently large
d that depends on r only.

Now we sketch the proof of Theorem 3.1. Recall
that (™) is o extended with n new unary symbols
Up,...,Us. Let ¢(21,...,2,) be aformula with n free
variables. By W(") we denote a sentence in £ that
is equivalent to Vay .. Vo, .(Ui(z1) A ... AUp () —
P(x1,...,2,); it exists since £ is closed under first-
order operations.

Lemma 3.10 For any A and any n-vector @, A
U(@) iff Ald] £ w0 0

Let d be an n-vector. By dx we denote the n+ 1-vector
whose first n components are those of @ and the last
one is .

Lemma 3.11 Let A be a o-structure. Suppose r > 0
and @ 3,41 b. Then there exists a permutation m on A
such that, for allx € A, it is the case that dx s, bw(x).

Proof sketch:  We wuse the notation A~ for
h™lo...oh™'. A usual, " is h iterated m times.
—_—

m times

Claim 3.12 Let A € STRUCT[o] and let @ ~eq b. As-

-

sume that h : Ng(d) — Ng(b) is an isomorphism. Then

-

for every & € Sq(b) — Sq(d), there exists a number
m(z) > 0 such that

a) h=™)(2) € Sq(a@) — Sq(b);

b) If m(x) > 1, then for every 0 < k < m(x),
h=k(z) € Sa(@) N Sa(b).
Proof of Claim 3.12: Let = € Sd(E). Let z1 =
h=Y(z1) € Sa(@). If 21 & Sd(E), then m(z) = 1 and
we are done. Otherwise, #, € Sz(@) N Sd(E). Consider
o = h™H(z1). Again, if 25 & Sd(E), then m(z) = 2
and we are done; otherwise, zo € Sg(d@) N Sd(E).

Continuing this process we build a sequence zq, s, . ..
with #;41 = h=1(z;). There are two possibilities. First,
for some z; € Sd(ﬁ)ﬂSd(E), Tig1 & Sd(E). Then m(z) =
t+ 1 and the claim is proved. Otherwise, we have that
h=i(z) € Sa(@) N Sa(b) for all i € M. Since A is finite,
find lexicographically least pair (7,7) with ¢ < j such
that h=i(z) = h™/(z) (where we assume h°(z) to be
). Since all h=*(x) € S4(@), i > 0 implies that we can
apply h and get h'~i(x) = h*~J(z), which contradicts
minimality of (i,5). Thus, i = 0 and # = h™/(z) and
J 1s the minimum such. But this is impossible since
j >0, h=(x) € Sq4(@), but = € Sy4(b) — S4(&@). This

proves the claim.

Reversing Claim 3.12, we see that for every » € Sq(d)—
Sa(b) there exists a number k(z) such that hk(x)(x) €
Sq(b) — Sq(@) and, for every 1 < j < k(z), hi(z) €

Sa(b) N Sq(@). Now, using Claim 3.12 and its converse,
we prove

Claim 3.13 Let A € STRUCT[o] and let @ g b.

Assume that h : Ng(d) — Nd(l_;) is an isomorphism,
and define m(x) as in Claim 3.12. Now define w :

- -

Sa(@) U Sq(b) — Sq(@) U Sa(b) as follows:
B h(z) if x € Sq(d)
wa) = { h=m@) (z)  if w € Sq(b) — Sa(@)
Then p is a permutation on Sq(d) U Sd(E). a

We are now ready to finish the proof of the lemma.
Let @ X3r41 I;and let A : N3r+1(a) — N37‘+1(E) be
an isomorphism. Let d = 2r 4+ 1. Then h 1s also
an isomorphism between Ng(d) and Nd(g). Define
p: Sa(@) U Sa(b) — Sq(@) U Sa(b) as in Claim 3.13,
and then define a permutation 7 on A by

r(z) = {ﬂ(x) if @ € Sa(@) U Su(B)

x  otherwise

It can now be shown that dz =, I;ﬂ'(l‘) for all z. This
finishes the proof of Lemma 3.11. a

Lemma 3.14 Suppose that in A we have dx =, Ey.
Then

NAP(y)

r

NAE(g) =
Proof: Since carrier of both A[d@] and A[b] is A, and
U;s are unary, we have 5;4[&](1‘) = Sf[b](x) = S;“(x)
and similarly for y. Let h : NA(dz) — N;“(Ey) be an
isomorphism; in particular, it maps S () onto S (y).
Then one can show that A is an 1somorphism between

th[a](x) and th[b](y). m]



Furthermore, using locality, we can extend the above
results to more complex auxiliary data. Consider a
class of structures C C STRUCT[¢”] for some relational
vocabulary ¢’. Define a function s¢ : N — N by let-
ting sc(n) be the maximal possible degree in some n-
element structure A € C. We say that C is of moderate
degree (see [15]) if s¢(n) < logo(l) n. That is, there is
a function § : N — N such that lim,_ 6(n) = 0 and
sc(n) < log®™) n.

The following was shown in [10].

Proposition 3.5 (see [10]) Let ¢ be a local graph
query, of localilty rank r. Then for any structure A,
the number of distinct in-degrees in the graph Y[A]
ts at most the number of non-isomorphic 3r + 1-
neighborhoods realized in A. The same is true for out-
degrees. a

Now omne can use this proposition and calculate that,
for structures of moderate degree, one cannot construct
a graph that has n distinct in-degrees (where n is the
number of nodes) for all n. This, and locality of FO +
COUNT, moves us one step closer to separating TC"
from DLOGSPACE:

Corollary 3.6 Transitive closure and deterministic
transitive closure are not definable in FO 4+ COUNT
i the presence of relations of moderate degree. a

However, the order relation adds all degrees from 0 to
the cardinality of the input. Thus, we need a break-
through like Schwentick’s theorem [28] to generalize
Corollary 3.4 to the ordered case.

Proof of Theorem 3.1

Before giving the proof of Theorem 3.1, we sketch a di-
rect proof that Hanf’s locality implies the graph BDP.
The proof below completely avoids Lemma 3.11, which
is the main technical tool for proving Theorem 3.1,
and the proof that every local formula has the BDP
[10]. We start by presenting a simple criterion for d-
equivalence.

Proposition 3.7 A Sy B iff there is a bijection 7 :
A — B such that for any a € A,

NG (m(a)).

Proof: Let 7,..., 7, be the collection of all isomor-
phism types of d-neighborhoods realized in A and B.

N(f(a) ~

Let Ay ={a€ A | ra(A,a) =7} and B; = {b € B |
4(B,b) = 7}, Then {A;}iz1,m and {B;}i=1m, form
partitions of A and B respectively. Assume A S, B.
Then card(A;) = card(B;) for every i = 1,...,m, and
the required 7 is defined as the union of bijective maps
between A; and B; for all i. Conversely, if 7 satis-
fying Ni'(z) = N¥(x(z)) exists, let 7 be an isomor-
phism type and let ai,...,a; be the elements of A
such that r4(A,a;) = 7. Then 74(B,7(a;)) = 7, and
#a[A, 7] < #4[B,7]. A symmetric argument shows the
reverse inequality. a

Proof of Corollary 3.2 for graph queries
(sketch). We start with a simple observation:

Lemma 3.8 For any signature o, there exist func-
tions fo, Fy : N x N — N such that for any A €
STRUCT[c],

card({r | Ja € A.rg(A,a) = 1}) < fr(k,d) and

Ya € A: card(Sj‘(a)) < Fy(k,d).

Given a signature o, by 0(") we denote o extended with
n new unary symbols Uy, ... U,. Given a structure A
and an n-vector @, by A[d@] we denote the (™) struc-
ture that extends .4 by interpreting U;s as singletons
containing the components of a.

Lemma 3.9 Let amdaq b in A, and let d(a,b) > 2d+1.
Assume that & Sagy1(a,b). Then Ala,z] Sq Alb, z].

Proof: Let h be an isomorphism between Nag(a) and
Ng(h). We define # : A — A by wn(z) = z for z ¢
Sa(a,b), 7(z) = h(z) for z € Sq(a) and 7(z) = h=1(2)
for z € Sq(b). Then Nf[a’x](z) = Nf[b’x](ﬂ'(z)) for
every z, and thus Ala, 2] S4 Alb, z]. ]

Now the graph BDP follows: Consider a formula
Y(x,y) and define ¥ as a sentence equivalent to
VaVy.Ui(z) A Us(y) — ¢(z,y), where Uy and Us are
two new unary symbols. Let d = hlr(¥). Then for any
a rzq b and ¢ & Sag41(a,b) we have

A= (a,c)
< Ala,c] E ¥
& Al =
& AEY(bc)

Thus, for any a maq b, we have |out-deg(a) —
out-deg(b)|< Fy(k,2d + 1) where A € STRUCT}[o].

Hence, the number of outdegrees in [.A] is at most



possible in- and out-degrees that are realized in GG, and
deg(G) is the cardinality of deg_set((). These notions
generalize to arbitrary o-structures: Given a relation
R; in A, degree;(R;, a) is the number of tuples in R;
whose jth component is a. Then deg_set(.A) is the set
{degree; (R, a) | R, € Aja € A, j < pi}, and deg(A)
is its cardinality. The class of o-structures A with

deg_set(A) C{0,1,...,k} is denoted by STRUCT[o].

Definition 2.8 (see [10]) A formula ¥(z1,...,2m)
has the bounded degree property (BDP), if there is
a function f: N — N such that deg(¢Y[A]) < f(k) for
any A € STRUCT[o]. O

The BDP was introduced and proved for first-order
queries from graphs to graphs (that is, formulae ¢ (z, y)
in the language og) in [25]. It was also shown there
that the BDP proves many inexpressibility results ef-
fortlessly. For example, to prove that (deterministic)
transitive closure [12; 21] is not first-order, consider the

following C,, € STRUCT [og]:

where 7 is the number of nodes. Since the degree-set of
its (deterministic) transitive closure has n elements, it
violates the BDP and thus is not first-order definable.
Another example in [25] is testing for balanced binary
trees (that is, all paths from the root to the leaves
are of the same length; note that this involves both
recursive computation and counting). Assume this test
is definable, and assume (' is an input graph. For every
two nodes a, b in G, having two successors each, ai, as
and by, bo, we define a new graph G5 3 by making b1, b2
the successors of a and ay, as the successors of b. If G
were a balanced binary tree, then Gy is a balanced
binary tree iff @ and b have the same distance to the
root. Thus, we see that there is a first-order query
that, when its input is a balanced binary tree G €
STRUCT3[og] of length n, returns the set of cliques
of elements at the same distance from the root, that
is, a graph with n + l-element degree-set. This again
violates the BDP.

Theorem 2.9 (Dong-Libkin-Wong [10])
FEvery Gaifman-local formula has the bounded degree
property. O

Thus, from Gaifman’s theorem, we obtain:

Corollary 2.10 FEvery first-order formula has the
bounded degree property. a

We saw that simple forms of recursion (deterministic
transitive closure) violate the BDP. So does the sim-
plest form of second-order quantification: monadic X1
is not local. The BDP was introduced in connection
with studying expressive power of database languages
with aggregation [18, 25], where it was asked if such
languages have it. The positive answer given recently
[10] also implies that first-order logic with Rescher and
Hartig quantifiers has the BDP, but it was not known
(although conjectured) if any of these is Gaifman-local.

3 Hanf’s locality implies Gaifman’s lo-
cality

The main result of this section is:

Theorem 3.1 Let £ be a logic that is closed under
first-order operations. Assume that every sentence in
L 1s Hanf-local. Then every formula in L 1s Gaifman-
local.

Before we sketch the proof of this theorem, we list some
corollaries. We immediately obtain

Corollary 3.2 Let L be a logic closed under first-order
operations. Assume that every sentence in L is Hanf-
local. Then L has the bounded degree property. a

Corollary 3.3 FO(Qu) and FO + COUNT have the
bounded degree property. a

More precisely, every FO + COUNT formula without
free second-sort variables has the BDP. This generalizes
a number of known results. For example, the bounded
degree property of first-order logic with Hartig and
Rescher quantifiers (proved in [10] by a lengthy and
quite involved argument) follows straightforwardly. We
also obtain a theorem by Etessami [13] that determinis-
tic transitive closure is not definable in #O 4+ COUNT
in the presence of a successor relation. Note that this is
a step towards separating TC" from DLOGSPACE, be-
cause FO + COUNT plus order captures uniform TC°
[4] and FO with deterministic transitive closure and
successor captures DLOGSPACE [12, 21]. Corollary
3.3 allows us to make the next incremental step:

Corollary 3.4 Let k € N and let Sy be any family
of relations whose degrees do not exceed k. Then de-
terministic transitive closure is not definable in FO +

COUNT + S;. |



A, B € STRUCT[c] and for every two m-ary vec-
tors d, b of elements of A and B respectively,

NA@) = NE(b) implies A l= (@) iff B = (D).

e A sentence W s strongly Gaifman-local if ¢
15 equivalent to a Boolean combination of sen-
tences of the form 3G.40(), where (i) is strongly
Gaifman-local formula.

Now we immediately see:

Proposition 2.3 Every  first-order  formula  is
Gaifman-local, and every first-order sentence 1is
strongly Gaifman-local. Moreover, for every (%) of
quantifier rank n, lr(¢) < (7" = 1)/2. a

Note that not every first-order formula is strongly
Gaifman-local.  Consider ¢(z) = (Vy.—R(y,z)) A
dzVy.—R(z,y). Assume that it is strongly local, fix
7 as in the definition and consider two graphs: Gy is
a chain of length r 4+ 1, and G is obtained from G
by adding a loop on the end-node of GG;. Let a; be
the start node of G;. Then NSt (a;) = N2(az), but
G1 E ¢(a1) and G2 = —¢(az).

Hanf’s locality

Let 7 be an isomorphism type of a structure in the
language o1 (o extended with one constant). A point
a in a structure A d-realizes 7, written as 74(A,a) = 7,
if Ng(a) is of isomorphism type 7.

By #4[A, 7] we denote the number of elements of A
whose d-neighborhoods realize 7, that is, the cardinal-

ity of {a € A | 7q(A,a) = 7}.

We say that A, B € STRUCT[c] are d-equivalent, if for
any isomorphism type 7 we have #4[A, 7] = #4[B, 7].
This is denoted by A =4 B. If d > d’, then A 4 B
implies A S g B [15].

It was shown by Hanf [19] that two (finite or infinite)
models are elementary equivalent if their spheres of fi-
nite radius are finite and, for each d and each type 7,
either #4[A, 7] = #4[B, 7] < w, or both #4[A, 7] and
#4[B, 7] are infinite. This was recently modified for the
finite case as follows.

Theorem 2.4 (Fagin-Stockmeyer-Vardi [15])

Let n > 0. Then there exists an wnteger d > 0 such
that whenever A Sy B, then A and B agree on all
first-order sentences of quantifier rank up to n. a

It follows from the proof in [15] that d can be taken
to be 3771 see also [14]. This leads to the following
definition.

Definition 2.5 A sentence ¥ is Hanf-local if there ex-
1sts a number d such that any two d-equivalent struc-
tures agree on V. The minimum d for which this holds
15 called the Hanf locality rank of ¥, and s denoted by

hir(T).

Thus, Fagin-Stockmeyer-Vardi’s theorem says that ev-
ery first order sentence ¥ is Hanf-local, and hlr(¥) <
39(¥)=1  As we mentioned before, this notion of lo-
cality appears to be easier to prove, and several ex-
tensions of Theorem 2.4 are known. One such ex-
tension deals with unary quantifiers. Let ¢,"*Y be
a signature with k& unary symbols, and let K be a
class of o;""Y-structures. Then FO(Qx) extends
first-order logic formulae by adding the following for-
mation rule: if ¢(x1,%),..., ¥ (2, ¥r) are formulae,
then Qxz1...25.(Y1,...,¢1) is a formula with free
variables #1,...,7,. Its semantics is defined as fol-
lows: A E Qrey...op.(Y1(21,dy), ..., Yp(er, dy)) iff
the o;"""? structure whose ith relation is {a € A |
A = ;(a,d;)} is in K. Examples of unary quantifiers
include the usual 3 and V, as well as Rescher and Hartig

quantifiers. We use FO(Qy) for FO extended with all

unary quantifiers.

Fact 2.6 (see [26, 27]) Fvery FO(Qu) sentence is
Hanf-local. Moreover, hlr(¥) < 3ar(¥) a

FEtessami [13] studied first-order logic with counting
FO + COUNT, which is defined as a two sorted logic,
with second sort being the sort of natural numbers. On
natural numbers one has 1, max, < and the BIT pred-
icate available (BIT(Z, ) iff the ¢th bit in the binary
representation of j is one). It also has counting quan-
tifiers Jiw.o(x), meaning that ¢ has i satisfiers; these
quantifiers bind x but not i. Etessami noticed that
the technique of Nurmonen’s proof (which is based on
bijective Ehrenfeucht-Fraisse games [20]) applies to it:

Fact 2.7 (see [13]) Fvery FO + COUNT sentence is
Hanf-local. Moreover, hlr(¥) < 39r¥) a

Bounded degree property

We define the notions of degrees in the usual way. For
a graph G, its degree set deg_set(() is the set of all



2 Notions of locality

Notations

Unless explicitly stated otherwise, all structures are as-
sumed to be finite.

A relational signature o is a set of relation symbols
{R1, ..., R}, with an associated arity function. In
what follows, p; (> 0) denotes the arity of R;. We write
oy, for o extended with n new constant symbols. The
signature of graphs (that is, one binary predicate R) is
denoted by 0.

A o-structure is A = (A, Ry,..., R;), where A is a
finite set, and R; C APt interprets R;. The class of
finite o-structures is denoted by STRUCT[¢]. When
there is no confusion, we may write R; in place of R;.
Isomorphism of structures is denoted by =2. We shall
adopt the convention that the carrier of a structure A
is always denoted by A and the carrier of B i1s denoted
by B.

To make our results applicable to a number of lan-
guages, we assume that an abstract logic comes
equipped with the notion of formulae ¥(z1,...,2m)
with free variables z ...z, and sentences in the lan-
guage containing relation symbols, functions and con-
stants, and the notion of satisfaction |= between struc-
tures and sentences in appropriate vocabulary. We also
assume that these are closed under the usual Boolean
connectives V,— and first-order quantification. Note
that these notions can be made precise (cf. [11, 22]),
but we needn’t go into details here, since all logics we
consider are extensions of first-order, and the meaning
of all the notions above 1s clear.

With each formula ¢(x1,...,2y) in the logical lan-
guage whose symbols are in o, we associate a query
that maps a o-structure .4 into a m-ary relation ¢¥[A] =

(A {(ar,...,am) € A" A Y(ar,...,am)}).

Given a structure A, its Gaifman graph [12, 16, 15]
G(A) is defined as (A, E) where (a,b) is in E iff there
is a tuple i € R; for some i such that both a and b
are in 7. The distance d(a,b) is defined as the length
of the shortest path from a to b in G(A); we assume
d(a,a) = 0. Given a € A, its r-sphere S (a) is {b € A |
d(a,b) < r}. For a tuple £, define SA({) as UGE{S;“(a).
Given a tuple i = (t1,...,tpn), its r-neighborhood N;“(f)
1s defined as a o, structure

(SA@), Ry N SAMDP ... R N SAEY™ 1y, ... 1)
That is, the carrier of NA(%) is S2(Z), the interpreta-

tion of the o-relations is obtained by restricting them
from A to the carrier, and the n extra constants are
the elements of ¢. If the structure A is understood, we

shall write S, (f) and N, (f)

The quantifier rank of a formula, qr(v), is defined as
the maximum depth of quantifier nesting in .

Gaifman’s locality

Before presenting Gaifman’s theorem, note that for any
o-structure A, there is a first order formula v, (z,y)
such that A = v,(a,b) iff (a,b) € G(A). Thus, for ev-
ery fixed k, there are first order formulae dep(x,y),
dp(z,y) and dsg(z,y) such that A E dcg(a,b) iff
d(a,b) < k, and similarly for dj and ds ;. This means
that bounded quantification of the form V& € Si(¥)
and Jz € Si(¥) is expressible for every constant k. If
every quantifier in a formula is of this form, where ¥
are among its free variables, and k¥ < r, we call the
formula r-local.

Theorem 2.1 (Gaifman [16]) Every first-order for-

mula Y(xy, ..., ¢y) is equivalent to a Boolean combina-
tion of t-local formulae x(x;,,. .., x;,) and sentences of
the form

el A N

1 4,j <mi#j

(1) 3y ym ( d>2r (Y1, 7))

<.

K3

where ¢ is r-local.  Furthermore, r < 7901 ¢ <
(7 I=1_1)/2, m < n+qr(v), and, if 1) is a sentence,
only sentences (1) occur in the Boolean combination.
O

This theorem is a result about first-order logic on finite
structures. To abstract the notion of being local and
extend it to other logics, we introduce the following
definitions. For two vectors # and ¢ of the same length,

we write ¥ ~7 § if NAE) = NAY). Again, A is
omitted if it is understood.
Definition 2.2 e A formula Y(z1,...,2m), s

Gaifman-local if there exists r > 0 such that, for
every A € STRUCT[o] and for every two m-ary
vectors d, b of elements of A, d =, b implies
A E (@) iff A E 1/)(5) The minimum r for
which this holds s called the locality rank of v,
and is denoted by Ir(v)).

o A formula (xq1,...,2m), is strongly Gaifman-
local if there exists r > 0 such that, for every



these structures agree on sentences whose quantifier
rank is determined by the size of those neighborhoods.
The author and Wong [25] showed that if first-order
query operates on graphs, then the number of differ-
ent in- and out-degrees in the output is below a bound
given by the query and the maximal degree in the input
graph. That is, if locally the input looks simple, then
so does the output of a first-order query. We called
this the bounded degree property. It was generalized to
queries on arbitrary finite structures by Dong, Wong
and the author [10].

At a more intuitive level, the weakness of first-order
logic is often attributed to its inability to count (e.g,
parity of cardinality is not definable), and lacking a
mechanism for doing recursion (e.g., transitive closure
is not definable). Usually, the proofs of inexpressibil-
ity of properties that involve recursive computation
are harder than of those based on counting; and the
tools we mentioned are typically applied to that class
of problems.

Looking at various examples of showing expressivity
bounds, one can observe a certain difficulty of proof
vs. difficulty of application tradeoff. While the charac-
terization of logics via games was historically the first
results of this kind to be proved, it is often the hardest
technique to apply. Hanf’s technique seems to make life
easier: for example, it simplifies the proof that connec-
tivity is not monadic X1 [15] quite a lot, compared to
[3], but sometimes the combinatorial argument is not
completely trivial [7]. Proofs of applicability of Hanf’s
technique are usually not very hard, see [15, 13, 26, 27].
Further down the road one has Gaifman’s locality the-
orem, whose proof is harder than that of Hanf’s tech-
nique, but which leads to simpler and cleaner inex-
pressibility proofs (see [10]). However, no extension of
first-order logic is known to satisfy an analog of Gaif-
man’s theorem. Finally, we have the bounded degree
property, whose proof is based on Gaifman’s theorem,
and which leads to particularly simple inexpressibility
proofs, cf. [10, 25]. Very recently, with considerable
amount of effort, it was shown that the bounded de-
gree property holds for certain queries in a first-order
relational language extended with aggregate functions
[10] (this language has substantial counting power).

The goal of this paper is to study the relationship be-
tween the general notions of locality, and show their ap-
plications for proving various expressivity bounds. In
fact, our results confirm the intuition of the previous
paragraph that certain notions of locality are harder
than others, but are easier to apply. Our results are
not limited to first-order logic only: they are shown to

be applicable to logics with counting and generalized
unary quantifiers, as well as relational database query
languages with aggregation.

Organization and summary In Section 2, we in-
troduce the notations and describe the basic notions
of locality. We start by reviewing Gaifman’s theorem,
and note that it leads to two notions, called Gaifman’s
locality and strong Gaifman’s locality. The result of
[16] then says that first-order logic has both. We re-
view the modification of Hanf’s technique [19] for the
finite case [15], and define the notion of Hanf’s locality
property. We review the bounded degree property of
[10, 25] which is implied by Gaifman’s locality [10].

In Section 3, we show that Hanf’s locality implies
Gaifman’s locality and the bounded degree property.
We use these results to derive expressivity bounds
for various logics; we also mention some applications
in descriptive complexity. Section 3 begins with a
“warm-up” direct proof that Hanf’s locality implies the
bounded degree property for graph queries.

In Section 4, we show that strong Gaifman’s locality
implies Hanf’s locality. We do not yet know any ex-
tension of first-order that has strong Gaifman’s local-
ity property, so the main implication of this result is
a very simple and intuitive proof that first-order logic
has Hanf’s locality property.

In Section 5, we deal with relational query languages
with aggregate functions. Traditional query languages
often correspond to logical languages, and the equiv-
alence of relational algebra and first-order logic is the
best known example of such correspondence [1]. How-
ever, real query languages often use aggregates (for ex-
ample, a query may ask for the total number of employ-
ees in a department). Several attempts have been made
recently to analyze the expressive power of aggregation
(see [9, 17, 25] and a survey [18]). In particular, [18]
lists an open problem whether such a relational lan-
guage with aggregate functions has the bounded de-
gree property for purely relational queries. This was
proved very recently [10], but the proof is not com-
pletely satisfactory, as it relies on syntactic properties
of the language rather than its basic logical properties
and, more importantly, cannot be extended to show
that such queries are local. Here we give a much sim-
plified proof that implies Gaifman’s locality, not just
the bounded degree property. It is based on simulating
relational queries in logic with counting.

Complete proofs are given in the full version [23].
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Abstract

Most proofs showing limitations of expressive power
of first-order logic rely on FEhrenfeucht-Fraisse games.
Playing the game often involves a nontrivial combina-
torial argument, so it was proposed to find easter tools
for proving expressivity bounds. Most of those known
for first-order logic are based on its “locality”, that is
defined in different ways. In this paper we characterize
the relationship between those notions of locality. We
note that Gaifman’s locality theorem gives rise to two
notions: one deals with sentences and one with open
formulae. We prove that the former implies Hanf’s no-
tion of locality, which in turn implies Gaifman’s locality
for open formulae. Fach of these implies the bounded
degree property, which ts one of the casiest tools for
proving expressivity bounds. These results apply beyond
the first-order case. We use them to derive expressivity
bounds for first-order logic with unary quantifiers and
counting. Finally, we apply these results to relational
database languages with aggregate functions, and prove
that purely relational queries defined in such languages
satisfy Gaifman’s notion of locality. From this we de-
rive a number of expressivity bounds for languages with
aggregates.

1 Introduction

It is well known that first-order logic has limited
expressive power. Typically, inexpressibility proofs
are based on either a compactness argument, or
Ehrenfeucht-Fraisse games. In recent years, expressive
power of logics over finite models has been studied ex-
tensively. This increased interest is mostly due to a
number of applications in computer science. For ex-
ample, most database query languages have well known

logical counterparts: traditional relational calculus has
precisely the power of first-order logic, the language
Datalog, with added negation and evaluated inflation-
ary, corresponds to the least-fixpoint logic, and the
query language with while loops is equivalent to the
partial-fixpoint logic, cf. [1]. Another area of applica-
tion is descriptive complexity. It turns out that famil-
iar logics capture complexity classes over the classes of
(ordered) finite structures, cf. [21, 12].

Since compactness fails in the case of finite models
[12], to prove results about the limits of expressiveness
of first-order logic, one has to use Ehrenfeucht-Fraisse
games. Moreover, Ehrenfeucht-Fraisse games are of-
ten used as the basic step in other, more sophisticated
games for different logics, cf. [14]. For example, play-
ing the Ehrenfeucht-Fraisse game is one of the steps in
the Ajtai-Fagin game for monadic X1 [3]. Since play-
ing the game often involves an intricate combinatorial
argument, it was suggested by Fagin, Stockmeyer and
Vardi in [15] to build a library of winning strategies
for those games. Or, more generally, one would like to
have a collection of versatile and easily applicable tools
for proving expressivity bounds of first-order logic.

A number of results proving expressivity bounds ex-
plain the nature of the limitations of first-order by say-
ing that it can only express local properties. Intuitively,
one cannot grasp the whole structure; instead, to an-
swer a first-order query, one only looks at small por-
tions of the input.

Several proposals have been made to formalize the no-
tion of locality. Gaifman [16] proved that every first-
order formula i1s equivalent to a local one, in the sense
that only a small part of the input is relevant for eval-
uating a query. Fagin, Stockmeyer and Vardi [15],
modifying a result by Hanf [19] for the finite case,
proved that if a certain criterion relating the numbers
of small neighborhoods in two structures holds, then



