an order, proving bounds for a language with aggre-
gates hinges on separation of TC" from other classes.
Interestingly, there are other cases where expressive-
ness problems for database query languages cannot be
resolved without separating complexity classes [2].

The idea of putting the unrestricted numerical do-
main on the side was influenced by the development of
metafinite model theory [12]. We hope that this work
may help formulate analogs of locality theorems in the
metafinite context.
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all degrees from 0 to n. Thus, if ¢(z,y) is a £5,,(C)
formula in the language of graphs, and m is such that
¢[G] is the transitive closure of GG whenever G has at
most m vertices, then m cannot exceed g(¢p, 1).

7 Locality theorems for structures of
small degree

The study of local queries was initiated by Gaifman’s
locality theorem for first-order logic [11], which says
more than just Gaifman-locality of open formulae.
Define a r-local formula around Z, ¢")(), to be a
FO formula in which all quantification is of the form
Qy € Sp(Z). Thus, the validity of ¢(d) in A only
depends on N;“(Ei). By r-local sentences we mean
sentences of the form 37.¢(")(#). Gaifman’s theorem
says that every FO formula (%) is a Boolean combi-
nation of r-local formulae around # and r-local sen-
tences, with # < 79 ([25] shows that one can use
3 - 4‘"@)). This leads to two questions. First, is it
possible to prove an analog of this result for count-
ing logics? Second, can we use the bounds on locality
rank to improve the bound r for r-local formulae and
sentences corresponding to a given FO formula?

We answer these questions here for structures of small
degree, by proving an analog of Gaifman’s theorem
for FO(Qu), and by showing that bounds 29" can be
used for both FO and FO(Qy). First, we prove two
results that establish winning conditions for duplicator
in (bijective) Ehrenfeucht-Fraissé game. These apply
to arbitrary structures.

We use the notation A:EL;‘,H)B for
[ty (®) | 7 € A"} = {atn(5) | 7€ B,

That is, .ASU;«’”)B means that 4 and B realize all
the same neighborhood types of r-neighborhoods of
n-vectors, but unlike the & relation, it says nothing
about the number of realizers.

Lemma 7.1 a) Let m be a positive integer. Then
there cxists a number n > 0 such that ntpst.(d) =

ntszm(l_;) and AS{om o\ B imply (A, @) =, (B, E)

b) Assume that AS,nB and @ %54,,;6 b.  Then
(A, @) =9 (B, b). ]

Using Lemma 7.1, we prove the following.

Theorem 7.2 Let k be a positive integer. Let ¢(Z) be
a first-order formula. Then over STRUCT[o], ¢(¥)

1s equivalent to a Boolean combination of r-local first-
order formulae around & and r-local sentences, where
r < 20(@) a

Theorem 7.3 Let k be a positive integer. Let (%)
be a FO(Qu) formula. Then over STRUCT[o], ¥(%)
1s equivalent to a Boolean combination of r-local first-
order formulae around ¥ and sentences of the form

Qrrr, . am(@ (1), o) (m),
(r)

where each ¢; '(x) is an r-local first-order formula

around x, Qx is a unary quantifier, and r < 29", 0O

8 Conclusion

In this paper, we defined a logic £¥ (C) that sub-
sumes a number of counting extensions of FO (such
as FO(C) and FO(Qy)) and has enormous counting
power; at the same time, its formulae are local. This
can be interpreted as showing independence of count-
ing from recursive computation over unordered struc-
tures. Note that adding both fixpoints and count-
ing to FO was studied rather extensively (see, e.g.,
[5, 13, 14, 27]) in connection with capturing PTIME
over unordered structures. We proved tight bounds
on locality rank for a variety of counting logics, de-
scribed outputs of local queries, and proved an analog
of Gaifman’s theorem for FO(Qy). Continuing the
line that started in [10, 26, 28], we gave new winning
strategies for the duplicator based on the ideas of lo-
cality.

We now briefly discuss applications and new direc-
tions. Gaifman-locality, as defined here, and the BDP,
were introduced in connection with the study of ex-
pressive power of real-life database query languages
that extend FO with grouping and aggregation con-
structs, see [7, 24]. A rather complex encoding of such
languages in FO(C) is possible, but it can be signifi-
cantly simplified by using £%,,(C) instead of FO(C).

Over ordered structures, FO(C) captures complexity
class TCY (the class of problems accepted by constant-
depth polynomial-size unbounded fan-in threshold cir-
cuits, under DLOGTIME-uniformity [3]). A conjec-
ture in [22] that FO(C) order-independent properties,
over ordered structures, are Gaifman-local, was dis-
proved very recently by L. Hella. Nevertheless, we
plan to work on defining the appropriate notions of lo-
cality in the ordered setting. This may shed light not
only on complexity-theoretic problems, but also on ex-
pressiveness of database languages: in the presence of



with C' and U interpreted as single element each, at
the distance 2¢t1 — 2. Then G154, _»Go is verified
easily, and further Gy = ® while G5 | —®. Thus,
hir(®) > 2% — 2. Since rk(®) = k + 1, we conclude
Hanf rankg(n) > 2"~ — 1. For the proof of the upper
bound, see [23]. O

6 Outputs of local queries

Recall that #ntp,(A) is the cardinality of {ntp7(a) |
a € A}; that is, the number of different isomorphism
types of d-neighborhoods of points realized in A, and
deg(A) is the number of different degrees realized in
A. TFact 2.7 relates deg(p[A]) and #ntpy(A) when
o(z,y) is a Gaifman-local graph query. Tts proof in [7]
relied on an analog of Lemma 3.8, which establishes
a permutation of elements of the carrier. To extend
the result to arbitrary local queries, one needs an ana-
log of Lemma 3.8 that establishes a permutation of
vectors over the carrier. It turns out that Lemma 4.3
provides such a tool, and allows us to solve an open
problem from [7]. Below, formulae ¢(Z) could be of
any Gaifman-local logic (e.g., FO(C), £ ,(C)), and

all free variables are of the first sort.

Theorem 6.1 Let ¢(xy1,...,2m) € SP(r), m >
1. Then, for any structure A, deg(¢[A]) < m -

#ntpom_1,(A).

Proof sketch: First, we show that for any structure A,
whenever d N?kr I;, there exists a bijection f : A* —
A% such that, for any # € A*, @& ~, Ef(i") The
proof is by induction on k. For k£ = 1, this follows
from Lemma 4.3. Assume @ ~qr41, b. Then, by the
hypothesis, there exists a bijection ¢ : A* — A* such
that @z ~s, Eg(i") for any £ € AF. By Lemma 4.3,
there exists a bijection 7z : A — A such that for
every xgp € A, d¥zy ~, Eg(f)wf(l‘o). We now define
a new bijection f : A*t1 — A*+T a5 follows: for 7 €
ARFL let Z be its first k components, and z the last
component. Then f(2) = ¢g(#)7wz(xg). Tt follows that
a7 ~, I;f(,?), and it is routine to verify that f is a
bijection.

Let a %g‘m_lr b. Then a N?m—lr b, and the claim
above shows that there exists a bijection f: A1 —
AM=1 such that a# ~2* bf() for each #. Since p €
SP(r), we obtain A |= ¢(aZ) iff A |= ¢(bf(Z)). Thus,
degree,(a) = degree,(b) in p[A], and hence the number
of different values of degree,(z),z € A, is at most

#ntpom-1,(A). Thus, deg(p[A]) < m - #ntpym-1,(A).
O

Corollary 6.2 Let o(zy,...,2m), m > 1, be a
L, (C) formula, with all free variables of the first
sort. Then deg(p[A]) < m - #ntpomertm—1 (A) for
any structure A. a

Combining Propositions 6.1 and 4.2, we answer the
open question from [7].

Corollary 6.3 If o(x1,...,2m) is a local query, m >
1 and Ir(p) = r > 0, then for any structure A,

deg(p[A]) < m - #ntpym,pom—r (A).

Proof: In the proof of Proposition 6.1 we showed
that a %;‘k b implies that there exists a bijection
[ A¥ — A¥ such that a¥ ~4 bf(Z). Let d = 2r + 1.
Assume a %é“mr_l_zm_l b. Then we have a bijection
g : Am™1 — A™1 gquch that af ~§‘T+1 bg(¥), and
by Proposition 4.2, aZ ~ bg(Z) for any #. By lo-
cality of ¢, A E ¢(a®) iff A = ¢(bg(Z)), and thus
degree;(a) = degree;(b) in ¢[A]; hence, as in the
proof of Proposition 6.1, we conclude that deg(p[A]) <
m - #ntpym, pom-1(A). =

If A € STRUCT[o], there is a bound on #ntp,.(.A)
that depends only on k,r and ¢. Indeed, | S (a) | is
at most of the order of £”, and the number of different
structures (of a fixed signature) of size n is at most
exponential in p(n), where p is a polynomial. Thus,

Corollary 6.4 For cvery relational signature o, ev-
ery positive integer r, there exist integers ¢ and d such
that, if ©(¥) is a o-formula and Ir(p) < r, then for
any structure A € STRUCT[o], we have

deg(p[A]) < . O

This proves that local formulae have the BDP. From
counting neighborhoods, of a fixed radius r when de-
grees are bounded by k, one can obtain that for every
relational signature o, L%, (C) o-formula ¢(#) with
all free variables of the first sort, and k& > 0, there
exist constants a, b, ¢ such that for A € STRUCT[a],

deg(p[A]) < abcrk(w def g(p, k). This can be used
to derive lower bounds on the rank of £% (C) (and
thus FO, FO(C) and FO(Qy)) formulae that compute
certain queries, as well as upper bounds on the size of
structures on which a given formula has certain be-
haviour. For example, consider the transitive closure
query. If its input 1s an n-element successor relation

(whose degrees are either 0 or 1), the output realizes



5 How far do local queries see?

Here we use the techniques from the previous section
to find precise bounds on locality rank, and on Hanf
locality rank for various counting logics.

Assume that we deal with graphs, i.e, the signa-
ture has one binary relation symbol E. Consider the
family of FO formulae: do(xz,y) = E(z,y) V E(y, z)
and dpyi(2,y) = Jz.di(z,2) A di(z,y). Note that
rtk(dy) = ar(dy) = k. In a graph G, G | di(a,b)
iff the distance from a to & in G is at most 2¥. This
implies Ir(dy) > 281,

Thus, the locality rank is necessarily exponential in
the quantifier-rank of a first-order formula. For a logic

L, we define
Loc_rank;(n) = max{lr(¢) | ¢ € L, rk(p) = n}.

Then 27~! < Locrankg(n) < 27 if £ is FO, or
FO(C), or FO(Qu), or L%, (C). Can the precise value
of the function Loc_rank be calculated? We do it be-
low, by modifying slightly both the family {dy(x,y)}

and the separation property.

Theorem 5.1 Let £ be FO, or FO(C), or FO(Qu),
or L, ,(C). Then, for any n >0,

Locrankg(n) = 2" — 1.

Proof sketch: We sketch the proof of the lower bound.
We assume a signature that consists of one binary re-
lation F and one unary relation U and define ag(z) =
U(x) and apy1(2) = Fz.dip(x, 2) Aag(z). This formula
says that there exists an element of U at the distance
at most 28 — 1 from z. It is easy to see that Ir(az) >
2% — 1 and rk(a) = k; hence Loc_rankg(n) > 2" — 1.
For the proof of the upper bound, see [23]. a

The reason why the separation property itself could
not be used to prove this theorem, is the following.
Tt is possible to find, for any n, a formula a, () such
that «, € SP(2") but «, ¢ SP(r) for any r < 2". In
fact, the formulae we o, (#) we introduced in the proof
to show the lower bound, are such.

While qr(di) = k, the number of quantifiers in dj
is 28 — 1, so one may conjecture that Ir(¢) is polyno-
mial (or even linear) in the total number of quantifiers.
This conjecture is refuted by the result below, which
shows that alternation gives us another way of getting
exponential locality rank.

Theorem 5.2 For each n > 3, there is a prenez first-
order formula 1, (%, y) whose prefiz consists of n quan-
tifiers, such that Ir(¢,,) > 21311,

Proof sketch: We fix the language to be (£, Uy, Us),
where E is binary and Uy, U; are unary. Assume that
n is even and k = n/2. Construct the structure A,
as follows: U; and Us are interpreted as two disjoint
sets whose union is A, each of cardinality 2*. The bi-
nary predicate £ is interpreted as a successor relation
on Uy and Us; that is, A can be viewed as a pair of
successor relations of the same length. We use Al for
A, restricted to Uy, and likewise for ./4,21.

We now define ¢, (z,y) as a formula such that A, |
Yn(a,b) iff @ € Up,b € Uy and (AL, a) = (AZ)0).

This formula ), can be chosen to be of the form
YV, y Vs dys .. Ve dyg. o,

where ¢! is quantifier free. Intuitively, ¢! states
that if xq,...,x; are the moves by the spoiler, and
Y1, ...,y are the duplicator’s responses, then (#,x)
and (¥, y) define a partial isomorphism.

Next, consider a,a’ € U; as the distance 2F~! and

28=1 1 1 from the start node, respectively. Let b €
U; be at the distance 28=1 4+ 1 from the start node.
Note that for r = 2F=1 — 1, NA=(a,b) = NA~(d',b).
Since (Al a') = (A2,b), they agree on all formulae;
thus, A, = ¥n(a,b). Define v(z) = Jo(dp_1(v,2) A
Vu = E(u,v)); qr(y) = k. Then AL & y(a) and A2
—v(b); hence A,, = —n(a,b), which implies Ir(y,) >
r, that is, Ir(¢,) > 2271, a

Similarly to Loc_rank(n), define Hanf rank;(n) =
max{hlr(®) | ¥ € £, rk(¥) = n}.

Theorem 5.3 Let £ be FO, or FO(C), or FO(Qu).
Then, for any n > 1,

Hanf rank;(n) = on-l 1.

Proof sketch: Consider structures of the signature
(E,U,C, where F is binary and U, C are unary. Let
& = Jw.ap(x) A C(x), where oy, is defined as in the
proof of Theorem 5.1. That is, ®; says that there are
two nodes in a graph that are at a distance at most
2% — 1 and they belong to C' and U respectively. We
now construct two graphs, GG; being a union of two
cycles of length 2¥¥! — 2 with C' and U containing
one element each, at the distance 2¥ — 1 in one of
the cycles. Graph G is one cycle of length 2F+? — 4,



T = {{1,...,n}}), the converse is not true, and the
weaker notion ~, allows the duplicator more freedom
in the game, as will be shown later. We now use the
definition of the separation property to prove the fol-
lowing key lemma.

Lemma 4.3 Let r > 0, AS, B, and @ N;T’B b. Then
there exists a bijection f : A — B such that, for every
€A, dx ~ABbf(x).

Proof sketch: Assume T = {I;,..., I} is a parti-
tion of {1,...,n} that witnesses a N;T’B b. That is,
az z;jB b]Z for each 7 < m, and d(c—l']z,a%) > 2r and
likewise for b. Let h; : Nﬁ(é’%) — NZBT(I)JZ) be an

j
isomorphism, and let h? be its restriction to N;“(Ei]z).

Let 7 be an isomorphism type of an r-neighborhood
of a single point. If « € S;“(Ei]z) realizes 7, then so

does h?(x) € SF(EJI) Thus, if m;“(r, d) is the num-
ber of elements of S;“(Ei]z) that realize 7, and likewise

for m]»B(T, E), then m;“(r, d) = m]»B(T, E) Next, define
mgt(r, @) to be the number of elements in A — SA(@)
that realize 7, and likewise for m5(r, @). Since A=, B,
the number of elements realizing 7 in A and B is the
same, and hence mgt(r,@) = mB(r,d@). Thus, since
| A|=| B |, there exists a bijection g : A — SA(d) —
B - STB(I_;) such that x ~% g(z) for every .

We now define f to be h? on SA j=1,...,m, and
gon A— SAd) = A— U;n:l S;“(Ei]z). It is routine to
verify that f is the required bijection. a

Applications of the separation property Using
Lemma 4.3, one can modify the inductive proof of
Theorem 3.7, to show the following.

Theorem 4.4 Let o(%;7) be a L5, ,(C) formula.
Then ¢ € SP(2(#)),

Proof sketch: Assume, in view of Theorem 3.5, that
pis a LS, (C) formula. For the base case of atomic
formulae of rank 0, observe that @ ~ Eimplies a = E,
which means that (@;7) and (E,j) satisfy all the same
atomic £2_,(C) formulae. The cases of the Boolean
connectives and second-sort quantification are trivial.
The remaining case is ¢(#;)) = Jiz.(Z,2;7). Let
m = rk(¢) and r = 2™; then ¢ € SP(r). We must
show ¢ € SP(2r). Assume that in a structure A,
a ~4 b. Since A=, A, by Lemma 4.3, we find a

permutation f on A such that dzr ~, Ef(x) Now

assume A = ¢(d; ). Then there exists ¢ distinct ele-
ments ¢1, . ..,¢ € A such that A |= ¢(d, ¢, ) for each
e, =1,...,4 Let dy = f(er). Then all d;s are dis-
tinct, we obtain dc; ~A bd;, and then A E 1/)(5, di, 7
for each d; since ¢ € SP(r). Hence, A = go(g,j). |

Corollary 4.5 Let ¢ be a FO, or FO(C), or FO(Qu

);
or L, ,(C) formula. Then ¢ € SP(?”‘(@)) and Ir(p) <
ork(e) O

The result below also follows from Lemma 4.3.

Theorem 4.6 Assume that A, B are two structures
of the same relational signature and ASq._1B. Then
the duplicator has a strategy in the n-move bijective
game that guaraniees that after i < n moves, if d =
(ar,...,a;) and b= (b1, ...,b;) are points played on

. - AB T
A and B respectively, then @ ~7.7, b.

Proof sketch: For the first move, the duplicator
chooses a bijection f A — B that guarantees
x %é“n_l f(z) for all z, and hence x ~§4n_1 f(z). This
is possible since AS,,._1B. For each following move,
the bijection for the duplicator is provided by Lemma
4.3. |

Since (a1,...,an) Nf’B (b1,...,b,) implies that
{(ai,b;) | ¢ = 1,...,n} is a partial isomorphism
A — B, we obtain the following.

Corollary 4.7 Let A,B € STRUCT[s], and
ASqyuoiB. Then A =29 B. Consequently, A and B
agree on all FO', FO(C), and FO(Qu) sentences of

quantifier rank up to n. a

Recall [10] that structures A and B are (d,m)-
equivalent, if for every isomorphism type 7 of a d-
neighborhood of a point, and for ng =| {a € A |
ntp4(a) = 7} | and npg =| {b € B | ntp5(b) = 7} |,
either ng = np < m, or ng,ng > m. The result be-
low uses the separation property to improve (35~ m)-
equivalence (from [10]) to (2571, m)-equivalence.

Proposition 4.8 For every relational signature o
and every positive integers k and ¢, there exists a pos-
itive integer m such that A =; B, whenever A, B €
STRUCT.,[o] are (2¥~1, m)-equivalent. O

INeil Immerman'’s forthcoming book Descriptive Complexity
proves the same bound for Hanf’s condition for FO.
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Figure 2: £%  and L% ,(C): A comparison
Since | Sar41(@) |=] SZT+1(E) |, there exists a bijec-
tion ¢ : A — Spp11(d) — A — Sap11(b) such that

ntpt(x) = ntpf(g(x)) for all # € A — Saq1(a).
We now define w(z) to be h(z) if # € Sary1(d)
and g(x) if © & Sar41(@). Clearly, 7 is a permu-
tation. If € Sar41(d), then S,(dz) C Szr41(d)
and ST(Eh(x)) C 53r+1(5); hence dz =, Eﬂ'(l‘), be-
cause h is an isomorphism. If € Ss,41(d), then for
y = m(x) we have d(y, E) > 2r+ 1 and « ~, y. Thus,
N, (dz) and Nr(gy) are disjoint unions of isomorphic
r-neighborhoods, and hence isomorphic. a

Now the proof of the theorem proceeds is by induction
on the £2 (C) formulae. We prove the only nontrivial
case ¥(¥;7) = iz w(x, ¥, )) here (assuming ¢ is in J).
Let n = rk(p); then r = Ir(p) < (3" —1)/2. Tt suffices
to show Ir(¢) < 3r + 1. Assume @ =3,41 b and fix
an arbitrary jp. Let A = 9(d; 7). Then for at least ¢
distinct e1, ..., ¢; we have A = w(er,d; 70), = 1,..., 4.
From Lemma 3.8, get a permutation 7 : A — A such
that dz ~, Eﬂ'(l‘), and let dj = w(¢;). Since Ir(p) = r
and d@c; a2, bd;, we get A E o(d;, b; Jo)forl=1,... ¢
As all djs are distinct, A = 1/)(3, Jo). The converse is
identical. ad

Corollary 3.9 FO(Qy), FO(C) and FO formulae
are Gaifman-local, and Ir(p) < (397¥)—1)/2. Purther-
more, L%, (C) (and thus FO(Qu), FO(C) and FO)
formulae without free second-sort variables have the
bounded degree property. a

Thus, £, (C) is indeed a good counterpart of £,
if we want to address the issue of inexpressibility
of recursive queries in counting logics: while £f
subsumes fixpoint logics but cannot express nontriv-
ial counting properties, £, (C) subsumes a number
of counting logics, but lacks a recursion mechanism.

Both logics express every property of ordered finite
structures.

4 Quantitative analysis of locality

We introduce a new tool for providing a finer analysis
of locality of counting logics. On the surface, it is very
close to Gaifman-locality. However, the new definition
accounts precisely for what is happening in a bijective
game played on structures A= B, and for the increase
of locality rank of a formula with the addition of a new
quantifier.

Let £ = (#1,...,2p), and let T = {I1,..., Iy} be a
partition of {1,...,n}. The subvector of # that con-
sists of the components whose indices are in [; is de-
noted by i"JI

Definition 4.1 1) Let T be a partition {Ir,...,In}
of {1,...,n}. Let r > 0. Given two structures, A
and B, and d € A”,EE B™, we say that @ and b are
(T, r)-similar if the following hold:

. ntp;“(c_ijz) = ntpf(l_)}z) forallj=1,... m;
. d(c—i]Z,Eik) >r forallk # j;

® d(EJI,E%) > forallk # 5.

We call @ and b r-similar, and write @ ~* I;, if there
exists a partition T such that d and b are (T, r)-similar.
If A = B, we write @ ~* b.

3) A formula ¢ has the r-separation property if d ~A b
implies A = ¢(d) — go(l_;) To extend this to two-
sorted logics, we require ¢(d; Jo) — go(l_;; Jo) for every
Jo C N. A formula has the separation property iff it
has the r-separation property for some finite r. We
write SP(r) for the class of formulae that have the r-

separation property. O

Proposition 4.2 1) A formula has the separation
property iff it 1s Gaifman-local.

2) If ¢ € SP(r), then Ir(p) < r.

3)d =y Eimplies a~, band @ ~opgl Eimplies a=, b.
O

Thus, the essence of the new notion of locality is
the same as Gaifman’s. However, while d@ =2, b im-

—

plies @ ~, b (just by considering a one-set partition



o rk(Vz ) = rk(Fz @) = rk(Fix ¢) = rk(p) + 1.
o rk(Vi ) =rk(3i ) = rk(y).

Definition 3.1 £, (C) consists of those formulae in
Loow(C) that have finite rank. ]

Lemma 3.2 1} £ (C) formulae are closed under
Boolean connectives and all quantification.

2) Every predicate on N x ... x N is definable by «a
L, (C) formula of rank 0. O

Thus, we assume that +,%, —, <, and in fact every
predicate on natural numbers is available. To give
an example, we can express properties like: there
is a node in the graph whose indegree ¢ and outde-
gree j satisfy p? > p; where p; stands for the ith
prime. This is done by 323¢35.(i = #y. E(y, ) A(j =
#y.E(x,y))AP(i,j) where P is the predicate on N for
the property p? > p;.

Known expansions of FO with counting properties are
contained in £*_ (C):

Proposition 3.3 For every FO, FO(C), or FO(Qu)
formula, there exists an equivalent Cr,(C) formula
of the same rank. a

It can also be shown that counting logics defined in [4]
are embeddable into £ (C).

Definition 3.4 The logic L£2,,(C) is defined as
L, (C) where counting terms #& .0 are not allowed.
O

On the surface, £_(C) is a lot simpler than £*__(C),
mainly because counting terms for vectors, #Z.¢p, are
very convenient for defining complex counting proper-
ties. Also, £2,,(C) permits easier proofs by induction
on the formulae; usually counting terms make such
proofs much more complex. But it turns out that the
power of £ (C) and L%, (C) is identical. This is
somewhat reminiscent of a result in [20] that shows
how unary generalized quantifiers can be modeled by
counting quantifiers in £ .

Theorem 3.5 There is a translation ¢ — ¢° of
L, (C) formulae into L2,,(C) formulae such that ¢
and ¢° are equivalent and rk(p) = rk(¢°).

In particular, for every FO, or FO(C), or FO(Qu)
formula, there exists an equivalent £°__(C) formula
of the same rank.

One can use the counting expressive power of £ (C)
if one needs to show definability of some properties.
At the same time, one can use L2, (C) for proving
expressivity bounds.

Definability over ordered structures By or-
dered structures, we mean that one of the relations
on the finite model 18 < interpreted as a linear or-
dering. With <, one can say that a given element of
A is first, second, etc, element of A. Then unlimited
counting power allows us to code finite structures with
numbers, and we can easily show:

Proposition 3.6 Every property of finite ordered
structures is definable in L%, (C). O

Thus, the situation is similar to L%,

presses every property of finite ordered structures.
But as with £% , we will show that without an or-
der, the power of £ (C) is severely limited.

which also ex-

Locality of £ ,(C) We give a simple and direct
proof that £ (C) is Gaifman-local. We do not need
to establish a Hanf-type locality result first, and we
also improve the bound for locality rank.

Theorem 3.7 Every L5, (C) formula is Gaifman-
local; furthermore, Ir(p) < %

Proof sketch: We start with a lemma, that was proved
in a rather complicated way in [22]; a simple proof is

sketched below.

Lemma 3.8 Assume that in A, @ =3,41 b. Then
there exists a permutation # : A — A such that
dx 2, br(x) for every x € A.

Proof sketch of the lemma: Let 7 be an isomorphism
type of an r-neighborhood around a single point. Since
we have an isomorphism h : Ng,41(d) — N3r+1(5),
we get that the number of points ¢ in Sa,41(d) and

SZT+1(E) with ntp;“(c) = 7 is the same; and thus

[{e € A= SA4 (@) | nip(c) = 7}
= e A— B () | ntpi(e) =7},



AS B, The minimum d for which this holds is called
Hanf locality rank of ®, and is denoted by hlr(®).

b) (see [17]) A formula ¢(¥) is called Hanf-local if

-

there exist a number d > 0 such that (A,3)S4(B,b)
implies A |= ¢(d) iff B E ¢(b).

Tt is known [10] that AS ;B implies A=, B for » < d;
in particular, if A= B, then |A|=|B|.

Fact 2.5 a) (see [10]) If AS3.B, then A =, B. In
particular, A and B agree on all FO sentences of quan-
tifier rank up to n.

b) (see [26]; bound from [17]) Let n > 0. Then
AS(gn-1_1)/2B implies A = B.

¢) (see [17, 22]) Every Hanf-local formula (without free
second-sort variables, if one deals with a two-sorted
logic) is Gaifman-local. a

Next, we review results on outputs of local queries.
With each formula ¢(z1,...,2,) in the language o,
we associate a query that maps .4 € STRUCT[¢] into

plAl={ae A" | A= p(a)}.

If A € STRUCT[o], and R; is of arity p;, then
degreej(R;“, a) for 1 < j < p; is the number of tuples
din RZA having a in the jth position. In the case of di-
rected graphs, this gives us the usual notions of in- and
out-degree. By deg_set(A) we mean the set of all de-
grees realized in A, and deg(A) stands for the cardinal-
ity of deg_set(A). We use the notation STRUCT;[o]
for {A € STRUCT]o] | deg_set(A) C {0,1,...,k}}.

Definition 2.6 (Bounded Degree Property)

(see [24, 7, 22]) A query q, that is, a function that
maps A € STRUCT][e] {o an m-ary relation on A,
m > 1, is said to have the bounded degree property,
or BDP, «f there exists a function f; : N — N such
that deg(q(A)) < f (k) for every A € STRUCT[o].
O

The intuition is that if A locally looks simple, then
q(A) has a simple structure as well. The BDP is very
easy to use for proving expressivity bounds [24]. Tt
is known [7] that every Gaifman-local query has the
BDP. A simple proof of this can be given for formulae
o(z,y), whose outputs ¢[A] are directed graphs. Let
#ntp,(A) stand for | {ntp4(a) | a € A} |- the number
of different isomorphism types of d-neighborhoods of

points realized in .A. The following result from [7]
implies the BDP.

Fact 2.7 Let p(z,y) be Gaifman-local and let d = 3 -
Ir(p) + 1. Then, for any structure A, deg(p[A]) <
2 #ntpy(A). 0

3 L ,(C) and its locality

The goal of this section is to define the logic £, ,(C),
which is to counting extensions of FO what £%  1is
to fixpoint extensions of FO. We then define a sim-
pler version of this logic, £, (C), and show that no

expressiveness 1s lost.

First, define Lo (C), a two-sorted logic, that extends
infinitary logic Loo. Its structures are of the form
(A, N), where A is a finite relational structure, and
N is a copy of natural numbers. Assume that every
constant n € NN is a second-sort term. To L., add
the following:

Counting terms: If ¢ is a formula and & is a vector of
free first-sort variables in ¢, then ##.¢ is a term of
the second sort, and its free variables are those in ¢
except Z. Its interpretation is the number of @ over the
finite first-sort universe that satisfy ¢. That is, given
a structure A, a formula ¢(Z, #; 7) and vectors Eg A
and Jo C N, the value of the term ##.¢(#, E; Jo) is the
cardinality of the (finite) set {3 C A | A = »(d, b; jo)}.

Counting quantifiers: If ¢ 1s a formula and 7 € N, then
Jiz ¢ 1s a formula. Its free variables are those in ¢
except x.

The logic Leow(C) is enormously powerful: it can de-
fine every property of finite models, and every pred-
icate or function on N. The definition is also redun-
dant: for example, iz ¢ can be replaced by #x.¢ > 1.
However, we need counting quantifiers separately, as
will become clear soon.

Next, we restrict the logic by defining the rank of a
formula, rk(y). Tts definition is similar to that of quan-
tifier rank, and for FO, FO(C) and FO(Qy) formulae,
rk(¢) = ar(p). The difference is that we disregard
quantification over N, thus allowing arbitrary nest-
ing of such quantifiers. For each atomic ¢ or variable
or constant term, rank is 0. For other formulae and
terms, it 1s defined as follows.

o rk(#Z.0) = rk(v)+ | Z].
o tk(V i) = rk(Api) = max; rk(;).



from a fixed set {x1,..., 2} is denoted by £* . and
L4 1s the infinitary logic with finitely many vari-

ables: £2, = Uy, L5

The quantifier rank of a formula ¢, qr(yp) is the depth
of quantifier nesting in ¢. For FO(C), we do not count
quantifiers over the numerical domain.

Games We review some results on game charac-
terization of logics. The Ehrenfeucht-Fraissé game
(cf. [8]), is played by two players, called the spoiler and
the duplicator, on two structures A, B € STRUCT][s].
In each round ¢, the spoiler selects either a point
a; € A, or b; € B, and the duplicator responds by se-
lecting b; € B, or a; € A, respectively. The duplicator
wins after n rounds if the relation {(a;, ;) | 1 < i < n}
is a partial isomorphism A — B; otherwise the spoiler
wins. If the duplicator has a winning strategy in the
n-move game on A and B, we write A =, B. It is well
known (cf. [8]) that A =, B iff A and B agree on all

FO sentences of quantifier rank up to n.

A stronger version of the game, called bejective
Fhrenfeucht-Fraissé game, was introduced in [16].
Again, the spoiler and the duplicator play on two
structures A, B € STRUCT([o]. For the n-round game,
in each round ¢ = 1, ..., n, the duplicator selects a bi-
jection f; : A — B, and the spoiler selects a point
a; € A (if card(A) # card(B), then the spoiler wins).
The winning condition is the same: if after the last
round the relation {(a;, fi(a;)) | 1 < ¢ < n} is a par-
tial isomorphism 4 — B, then the duplicator wins;
otherwise the spoiler wins. If the duplicator has a
winning strategy in the n-move bijective game on A
and B, we write A ="V B. Bijective games character-
ize expressivity of FO(Qy) and FO(C) as follows.

Fact 2.1 ([9, 16]) Let A,B € STRUCT[s]. If
A =0 B, then A and B agree on all sentences of
FO(Qu) (or FO(C)) of quantifier rank up to n. a

We write (A, @) =, (B,b) (or (A, &) =L (B,b)) if the
duplicator has a winning strategy in the n-move (bi-
jective) game that starts with the position (d, E) This
condition implies that for a FO (or FO(Qy)) formula

©(%) of quantifier rank n, A = ¢(d@) iff B | go(l_;)

Locality Given a structure A, its Gaifman graph
[8, 11, 10] G(A) is defined as (A, E') where (a,b) is in
I iff there is a tuple ¢’ € RZA for some ¢ such that both

a and b are in ¢. The distance d(a,b) is defined as
the length of the shortest path from a to b in G(A);

we assume d(a,a) = 0. If @ = (a1,...,a,) and b=

(b1, ... bm), then d(@,b) = min;j d(a;,b;). Given @
over A, its r-sphere SA(@) is {b € A | d(a@,b) < r}. Its
r-neighborhood NA(@) is defined as a o, structure
(SA@), R nSPH@)P, . R N SA@™ s an)
That is, the carrier of NA(@) is S£(@), the interpreta-
tion of the o-relations is inherited from A, and the n
extra constants are the elements of @. If A is under-
stood, we write S, (@) and N, (d@).

Given a tuple @ of elements of A, and d > 0, by
ntp4 (@) we denote the isomorphism type of N7 ().

For example, ntp7 (@) = ntde(l_;) means that there is
an isomorphism N(d@) — NJA(E) that sends @ to b;

in this case we will also write @ %?’B b If A = B,

we write @ a7 b. Given tuples @ = (a1,...,an)
and b = (b1,...,by), and an element ¢, we write
@b for the tuple (ai,...,an,b1,...,by), and dc for
(a1,...,an,c).

Definition 2.2 (Gaifman-locality)

(cf. [22]) A formula ¢(Z;7) in a two-sorted logic is
called Gaifman-local «f there exists a number r > 0
such that, for any structure A and any Ei,l_; over A,

AEo@n iff AE o(b;7)

for allY¥ C N. The minimum such r is called the local-
ity rank of ¢, and is denoted by Ir(p). O

axrb  implies

Fact 2.3 a) (see [11]) Every FO formula ¢(&) is
Gaifman-local, and Ir(p) < (7‘"(@) - 1)/2.

b) (see [22]) Every FO(Qu) or FO(C) formula
o(x1,...,2n) (without free second-sort variables) is
Gaifman-local, and Ir(p) < 39@)H7 41 |

For A, B € STRUCT]c], we write A 8B if there exists
a bijection f : A — B such that ntp7 (a) = ntp5(f(a))
for every a € A. That is, every isomorphism type of a
d-neighborhood of a point has equally many realizers

-

in A and B. We write (A, d)S,4(B,b) if there is a
bijection f : A — B such that ntp%(dc) = ntpZ(bf(c))
for every ¢ € A.

Definition 2.4 (Hanf-locality) a) (see [15, 10, 22])
A sentence @ is called Hanf-local if there exist a num-
ber d > 0 such that A and B agree on ® whenever
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Figure 1: A local formula cannot distinguish (a, b) from (b, a).

to the tightest condition that the duplicator needs to
maintain in an Ehrenfeucht-Fraissé game (or a bijec-
tive game [16]) in order to win. Based on the sepa-
ration property, we calculate, in Section 5, the ezact
value of the maximum radius for all the formulae of
rank n. We do it for two forms of locality, based on
Hanf’s and Gaifman’s conditions, and we show that
in both cases the maximum radii are the same for all
the counting logics listed above.

In Section 6, we consider open local formulae as
queries that map finite structures to finite structures.
Extending a result from [7], we prove a bound on the
number of different degrees realized in the output of
a local query, and apply it to counting logics, thereby
connecting this measure of “complexity” of the output
with the syntactic parameters of a query. In Section
7, we prove analogs of Gaifman’s theorem [11] for FO
and FO(Qy) when structures are of small degree. The
restriction allows us to use the best possible bounds
in the statements of those theorems. The proof relies
on new locality-based conditions that provide winning
strategies for the duplicator. Concluding remarks are
given in Section 8.

Complete proofs are given in the full version [23].

2 Notations

Finite Structures and Logics All structures are
assumed to be finite. A relational signature o is
a set of relation symbols {Ry, ..., R}, with associ-
ated arities p; > 0. We write o, for o extended
with n new constant symbols. A o-structure is A =
(A, R, ... R, where Ais afinite set, and Rt C AP
interprets R;. The class of finite o-structures i1s de-
noted by STRUCT[s]. When there is no confusion,
we write R; in place of RZA. Isomorphism is denoted
by 2. The carrier of a structure A is always denoted
by A and the carrier of B is denoted by B.

We abbreviate first-order logic by FO. FO with count-
ing, denoted by FO(C), is a two-sorted logic, with
second sort being the sort of natural numbers. That

is, a structure A is of the form

({vi,. o oa b {1, .. ,n}, <, BIT, Ln, R, ... R,
Here the relations RZA are defined on the domain
{v1,...,v,}, while on the numerical domain {1, ..., n}
one has 1,n,< and the BIT predicate available
(BIT(¢,4) iff the ith bit in the binary representation
of j is one). This logic also has counting quantifiers
Jix.p(x), meaning that ¢ has at least ¢ satisfiers; here
¢t refers to the numerical domain and z to the do-
main {v1,...,v,}. These quantifiers bind # but not
1. Ternary predicates + and * are definable on the
numerical domain [9], as is the quantifier 3léz mean-
ing the existence of exactly ¢ satisfiers. For example,
3435 [(7 + 7) = i A Fiz.p(x)] tests if the number of
z satisfying ¢ is even; this property i1s not definable
in FO alone. We separate first-sort variables from
second-sort variables by semicolon: ¢(Z; ).

Let ¢,"""Y be a signature of k unary symbols, and
let K be a class of o,"*"?-structures which is closed
under isomorphisms. Then FO(Qx) extends the
set of formulae of FO with the following additional
rule: if ¢y (21, 31), ..., ¥r(xr, ¥i) are formulae, then
Qrxy ... xp. (P11, 1), .-, Ye(xr, ¥)) is a formula.
Here (x binds @; in the ith formula, for each
¢t = 1,...,k. A free occurrence of a variable y
in ¢;(x;, %) remains free in this new formula un-
less y = x;. The semantics is defined as follows:

./4 ': QKl‘l . .l‘k.(l/)l(l‘l, 51), ey 1/)k(l‘k, Eik)) lﬁ
(Aa 1/)1[“4a C_il]’ .. 'a’l/)k[-Aa C_ik‘]) S ICa
where ¢;[A,d4;] = {a € A | A = ¢i(a,d;)}. In this

definition, @; is a tuple of parameters that gives the in-
terpretation for those free variables of v; (2, %;) which
are not equal to x;. Examples include the usual 3 and
Y, as well as Rescher and Hartig quantifiers. We use
the notation FO(Q,) for FO extended with «!l unary
quantifiers.

We denote the infinitary logic by Leow; it extends FO
by allowing infinite conjunctions A and disjunctions
\/. The class of L, formulae that only use variables



power of counting logics, and most were proved very
recently. For example, [9] used the games of [19] to
prove that an L-complete problem is not definable in
FO(C); this implies that connectivity of finite graphs
is not definable in FO(C). In [18], nondefinability of
connectivity is shown for FO(Qy). More bounds were
obtained in [22], which used the results of [26] to prove
an analog of Gaifman’s locality theorem [11] for those
logics.

Currently, most bounds for extensions of FO with var-
ious counting quantifiers can be derived from its local
properties, as shown in [17, 22, 26]; exceptions include
the bound of [5], a result in [4] on counting the sizes
of equivalence classes, and the hierarchy result in [14].
Locality of a logic gives us a general statement that it
lacks a recursion mechanism, much in the same way
as 0-1 laws tell us that a logic cannot express non-
trivial counting properties. One way in which locality
theorems are applied is the following. First, a form
of locality based on Hanf’s condition (see [10, 15]) is
shown for a logic; this form is closely tied to a game-
characterization of the logic. Then results of [17, 22]
show that the logic also satisfies Gaifman’s locality
condition [11] and the bounded degree property [24],
which are much easier to apply to prove expressivity
bounds. However, no direct proofs of those conditions
have been given so far for any of the extensions of FO.

The basic idea of locality is shown in Figure 1. A for-
mula, say ¢(x,y) is local, if it can only “see” from =
and y as far as a neighborhood of radius r, where r
only depends on ¢. In the graph of a successor rela-
tion, it means that pairs (a,b) and (b, a) are indistin-
guishable by ¢(z,y), if the successor relation is long
enough, and a, b are far away from the endpoints and
each other — this is because no point can be “seen”
from both a and b, if we can only see up to the dis-
tance r. In particular, transitive closure, that distin-
guishes (a,b) from (b, a), is not definable in a local
logic. In general, recursive computation gives one a
means of verifying global properties of structures, and
most properties requiring such form of computation
can easily be shown to violate one of the forms of lo-
cality.

We now describe the three main themes of the paper,
and outline the results.

Z A General Framework for Counting. While there
are a number of counting extensions of first-order
logic, we still lack a unifying framework for adding
counting to FO. For example, the extension with
counting quantifiers [9, 19] puts limits on available

arithmetic, while the extension with unary quantifiers
does not permit free numerical variables; as a result,
expressing some simple properties becomes a nontriv-
1al task, with the resulting formulae being unnecessar-
ily awkward. It appears that we need a general frame-
work that subsumes all these logics, and is at the same
time easy to study. We introduce such a logic, called
L:,(C), in Section 3. Tt is obtained by first adding
counting terms and quantifiers to the infinitary logic
Loow over two-sorted structures (the second sort being
interpreted as ), and then restricting it to formulae
of finite rank. The idea of putting the set of natu-
ral numbers “on the side” is influenced by metafinite
model theory of [12]. Similar extensions exists in the
literature [13, 14, 27], but they restrict the logic by
means of the number of variables, which still permits
fixpoint computation. In contrast, following [16, 17],
we restrict the logic by requiring that the rank of a
formula be finite (where the rank is defined as quan-
tifier rank, except that it does not take into account
quantifiers over N), thus putting no limits at all on the
available arithmetic. We give a simplified version of
L, (C), called £2 (C); it is obtained by disallowing
counting terms. This makes the logic easier to ana-
lyze, and we prove that no power is lost due to this
restriction.

Z Proving Locality. How does one prove that formulae
in a counting logic (e.g., FO(C), FO(Qu), L%, (C))
only express local properties, as shown in Figure 17
Currently, with the exception of FO, such results are
established via Hanf’s criterion [10, 15] that relates the
number of isomorphism types of small neighborhoods
in two structures. This criterion is closely tied to a
game characterization of a logic, and may not work
if such a characterization does not exist. Also, one
needs to adjust the implication results for two-sorted
logics. Here, we show that locality of L%, (C) and
other counting logics can be proved directly, without
this unnecessary detour.

/ Theory of Local Properties. There are a number of
issues in the theory of local properties that one has
to deal with once the locality of a logic is proved.
One is the question about the radius of a neighbor-
hood that determines the truth value of a formula.
For the example in Figure 1, one may ask how r de-
pends on ¢. It is known how to find FO formulae
with 7 being O(29(¥)). Here we show that O(29(¥))
is also the upper bound for many counting logics, in-
cluding FO(C),FO(Qu) and £, (C). To prove this,
we introduce a new form of locality, called the separa-
tion property, in Section 4. It corresponds, intuitively,
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Abstract

The expressive power of first-order logic over finite
structures is limited i two ways: 1t lacks a recur-
ston mechanism, and it cannot count. Quvercoming the
first limitation has been a subject of extensive study.
A number of firpoint logics have been introduced, and
shown to be subsumed by an infinitary logic L. This
logic 1s easier to analyze than firpoint logics, and it
still lacks counting power, as it has a 0-1 law. On
the counting side, there ts no analog of L%, . There
are a number of logics with counting power, usually
introduced via generalized quantifiers. Most known
erpressivity bounds are based on the fact that count-
g extensions of first-order logic preserve the locality
properties.

This paper has three main goals. First, we introduce a
new logic L7, (C) that plays the same role for count-
ing as L, does for recursion — ot subsumes a number
of extensions of first-order logic with counting, and has
nice properties that make it easy to study. Second, we
give a simple direct proof that L3, ,(C) expresses only
local properties: those that depend on the properties of
small neighborhoods, but cannot grasp a structure as
a whole. This s a general way of saying that a logic
lacks a recursion mechanism. Third, we consider a
finer analysis of locality of counting logics. In particu-
lar, we address the question of how local a logic is, that
18, how btg are those neighborhoods that local proper-
ties depend on. We get a uniform answer for a variety
of logics between first-order and L, (C). This is done
by introducing a new form of locality that captures the
tightest condition that the duplicator needs to main-
tain in order to win a game. We use this technique to
give bounds on outputs of L¥, (C)-definable queries.
We also specialize some of the results for structures of
small degree.

1 Introduction

The expressive power of first-order logic (FO) on finite
structures is rather limited. Two main limitations of
first-order logic are its inability to count and the lack of
a recursion mechanism. Since first-order logic over fi-
nite structures plays an important role in several areas
of computer science (e.g., databases and complexity),
various extensions have been proposed to deal with
these shortcomings.

On the recursion side, a beautiful theory has been de-
veloped over the past decade. Various fixpoint exten-
sions of first-order logic have been introduced, includ-
ing least, inflationary and partial fixpoint logics, as
well as transitive closure logics, cf. [1, 8]. Fixpoint log-
ics can all be embedded into £%, , infinitary logic with
finitely many variables, which is much easier to ana-
lyze. In particular, £ has a 0-1 law [21], which gives
a uniform derivation of the 0-1 law for all fixpoint log-
ies. It follows that £ = cannot express most counting
properties, such as parity of cardinality. The theory
extends nicely to the ordered setting, where transitive
closure and fixpoint logics capture familiar complexity
classes such as L, NL, PTIME and PSPACE (cf. [8]),
and LY expresses every property of finite structures

On the counting side;, much less is known. Vari-
ous extensions of first-order logic with counting ex-
ist, usually introduced by means of generalized quan-
tifiers [20]. Examples include Hartig (equicardinality),
Rescher (majority) quantifier, and counting quanti-
fiers Jizp(x, ), that assert the existence of at least
i elements x that satisfy ¢, see [9, 19]. We denote
the extension with counting quantifiers 3¢ by FO(C).
Alternatively, one can add counting terms [13, 14]. In
[16], FO(Qu), first-order logic extended with e/l unary
generalized quantifiers, is considered.

There are relatively few results on the expressive



