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all degrees from 0 to n. Thus, if '(x; y) is a L�1!(C)formula in the language of graphs, and m is such that'[G] is the transitive closure of G whenever G has atmost m vertices, then m cannot exceed g('; 1).7 Locality theorems for structures ofsmall degreeThe study of local queries was initiated by Gaifman'slocality theorem for �rst-order logic [11], which saysmore than just Gaifman-locality of open formulae.De�ne a r-local formula around ~x, '(r)(~x), to be aFO formula in which all quanti�cation is of the formQy 2 Sr(~x). Thus, the validity of '(~a) in A onlydepends on NAr (~a). By r-local sentences we meansentences of the form 9~x:'(r)(~x). Gaifman's theoremsays that every FO formula  (~x) is a Boolean combi-nation of r-local formulae around ~x and r-local sen-tences, with r � 7qr( ) ([25] shows that one can use3 � 4qr(')). This leads to two questions. First, is itpossible to prove an analog of this result for count-ing logics? Second, can we use the bounds on localityrank to improve the bound r for r-local formulae andsentences corresponding to a given FO formula?We answer these questions here for structures of smalldegree, by proving an analog of Gaifman's theoremfor FO(Qu), and by showing that bounds 2qr can beused for both FO and FO(Qu). First, we prove tworesults that establish winning conditions for duplicatorin (bijective) Ehrenfeucht-Fra��ss�e game. These applyto arbitrary structures.We use the notation A�w(r;n)B forfntpAr (~x) j ~x 2 Ang = fntpBr (~y) j ~y 2 Bng:That is, A�w(r;n)B means that A and B realize allthe same neighborhood types of r-neighborhoods ofn-vectors, but unlike the � relation, it says nothingabout the number of realizers.Lemma 7.1 a) Let m be a positive integer. Thenthere exists a number n > 0 such that ntpA2m(~a) =ntpB2m(~b) and A�w(2m;n)B imply (A;~a) �m (B;~b).b) Assume that A�2mB and ~a �A;B2m ~b. Then(A;~a) �bijm (B;~b). 2Using Lemma 7.1, we prove the following.Theorem 7.2 Let k be a positive integer. Let '(~x) bea �rst-order formula. Then over STRUCTk[�], '(~x)

is equivalent to a Boolean combination of r-local �rst-order formulae around ~x and r-local sentences, wherer � 2qr('). 2Theorem 7.3 Let k be a positive integer. Let  (~x)be a FO(Qu) formula. Then over STRUCTk[�],  (~x)is equivalent to a Boolean combination of r-local �rst-order formulae around ~x and sentences of the formQKx1; : : :xm('(r)1 (x1); : : : ; '(r)m (xm));where each '(r)i (x) is an r-local �rst-order formulaaround x, QK is a unary quanti�er, and r � 2qr( ). 28 ConclusionIn this paper, we de�ned a logic L�1!(C) that sub-sumes a number of counting extensions of FO (suchas FO(C) and FO(Qu)) and has enormous countingpower; at the same time, its formulae are local. Thiscan be interpreted as showing independence of count-ing from recursive computation over unordered struc-tures. Note that adding both �xpoints and count-ing to FO was studied rather extensively (see, e.g.,[5, 13, 14, 27]) in connection with capturing PTIMEover unordered structures. We proved tight boundson locality rank for a variety of counting logics, de-scribed outputs of local queries, and proved an analogof Gaifman's theorem for FO(Qu). Continuing theline that started in [10, 26, 28], we gave new winningstrategies for the duplicator based on the ideas of lo-cality.We now brie
y discuss applications and new direc-tions. Gaifman-locality, as de�ned here, and the BDP,were introduced in connection with the study of ex-pressive power of real-life database query languagesthat extend FO with grouping and aggregation con-structs, see [7, 24]. A rather complex encoding of suchlanguages in FO(C) is possible, but it can be signi�-cantly simpli�ed by using L�1!(C) instead of FO(C).Over ordered structures, FO(C) captures complexityclass TC0 (the class of problems accepted by constant-depth polynomial-size unbounded fan-in threshold cir-cuits, under DLOGTIME-uniformity [3]). A conjec-ture in [22] that FO(C) order-independent properties,over ordered structures, are Gaifman-local, was dis-proved very recently by L. Hella. Nevertheless, weplan to work on de�ning the appropriate notions of lo-cality in the ordered setting. This may shed light notonly on complexity-theoretic problems, but also on ex-pressiveness of database languages: in the presence of



with C and U interpreted as single element each, atthe distance 2k+1 � 2. Then G1�2k�2G2 is veri�edeasily, and further G1 j= � while G2 j= :�. Thus,hlr(�) > 2k � 2. Since rk(�) = k + 1, we concludeHanf rankL(n) � 2n�1�1. For the proof of the upperbound, see [23]. 26 Outputs of local queriesRecall that #ntpd(A) is the cardinality of fntpAd (a) ja 2 Ag; that is, the number of di�erent isomorphismtypes of d-neighborhoods of points realized in A, anddeg(A) is the number of di�erent degrees realized inA. Fact 2.7 relates deg('[A]) and #ntpd(A) when'(x; y) is a Gaifman-local graph query. Its proof in [7]relied on an analog of Lemma 3.8, which establishesa permutation of elements of the carrier. To extendthe result to arbitrary local queries, one needs an ana-log of Lemma 3.8 that establishes a permutation ofvectors over the carrier. It turns out that Lemma 4.3provides such a tool, and allows us to solve an openproblem from [7]. Below, formulae '(~x) could be ofany Gaifman-local logic (e.g., FO(C);L�1!(C)), andall free variables are of the �rst sort.Theorem 6.1 Let '(x1; : : : ; xm) 2 SP(r), m >1. Then, for any structure A, deg('[A]) � m �#ntp2m�1r(A).Proof sketch: First, we show that for any structure A,whenever ~a �A2kr ~b, there exists a bijection f : Ak !Ak such that, for any ~x 2 Ak, ~a~x �r ~bf(~x). Theproof is by induction on k. For k = 1, this followsfrom Lemma 4.3. Assume ~a �2k+1r ~b. Then, by thehypothesis, there exists a bijection g : Ak ! Ak suchthat ~a~x �2r ~bg(~x) for any ~x 2 Ak. By Lemma 4.3,there exists a bijection �~x : A ! A such that forevery x0 2 A, ~a~xx0 �r ~bg(~x)�~x(x0). We now de�nea new bijection f : Ak+1 ! Ak+1 as follows: for ~z 2Ak+1, let ~x be its �rst k components, and x0 the lastcomponent. Then f(~z) = g(~x)�~x(x0). It follows that~a~z �r ~bf(~z), and it is routine to verify that f is abijection.Let a �A2m�1r b. Then a �A2m�1r b, and the claimabove shows that there exists a bijection f : Am�1 !Am�1 such that a~x �Ar bf(~x) for each ~x. Since ' 2SP(r), we obtain A j= '(a~x) i� A j= '(bf(~x)). Thus,degree1(a) = degree1(b) in '[A], and hence the numberof di�erent values of degree1(x); x 2 A, is at most#ntp2m�1r(A). Thus, deg('[A]) � m �#ntp2m�1r(A).2

Corollary 6.2 Let '(x1; : : : ; xm), m > 1, be aL�1!(C) formula, with all free variables of the �rstsort. Then deg('[A]) � m � #ntp2rk(')+m�1 (A) forany structure A. 2Combining Propositions 6.1 and 4.2, we answer theopen question from [7].Corollary 6.3 If '(x1; : : : ; xm) is a local query, m >1 and lr(') = r > 0, then for any structure A,deg('[A]) � m �#ntp2mr+2m�1 (A).Proof: In the proof of Proposition 6.1 we showedthat a �A2kd b implies that there exists a bijectionf : Ak ! Ak such that a~x �Ad bf(~x). Let d = 2r + 1.Assume a �A2mr+2m�1 b. Then we have a bijectiong : Am�1 ! Am�1 such that a~x �A2r+1 bg(~x), andby Proposition 4.2, a~x �Ar bg(~x) for any ~x. By lo-cality of ', A j= '(a~x) i� A j= '(bg(~x)), and thusdegree1(a) = degree1(b) in '[A]; hence, as in theproof of Proposition 6.1, we conclude that deg('[A]) �m �#ntp2mr+2m�1 (A). 2If A 2 STRUCTk[�], there is a bound on #ntpr(A)that depends only on k; r and �. Indeed, jSAr (a) j isat most of the order of kr , and the number of di�erentstructures (of a �xed signature) of size n is at mostexponential in p(n), where p is a polynomial. Thus,Corollary 6.4 For every relational signature �, ev-ery positive integer r, there exist integers c and d suchthat, if '(~x) is a �-formula and lr(') � r, then forany structure A 2 STRUCTk[�], we havedeg('[A]) � ckd : 2This proves that local formulae have the BDP. Fromcounting neighborhoods, of a �xed radius r when de-grees are bounded by k, one can obtain that for everyrelational signature �, L�1!(C) �-formula '(~x) withall free variables of the �rst sort, and k > 0, thereexist constants a; b; c such that for A 2 STRUCTk[�],deg('[A]) � abcrk(') def= g('; k). This can be usedto derive lower bounds on the rank of L�1!(C) (andthus FO, FO(C) and FO(Qu)) formulae that computecertain queries, as well as upper bounds on the size ofstructures on which a given formula has certain be-haviour. For example, consider the transitive closurequery. If its input is an n-element successor relation(whose degrees are either 0 or 1), the output realizes



5 How far do local queries see?Here we use the techniques from the previous sectionto �nd precise bounds on locality rank, and on Hanflocality rank for various counting logics.Assume that we deal with graphs, i.e, the signa-ture has one binary relation symbol E. Consider thefamily of FO formulae: d0(x; y) = E(x; y) _ E(y; x)and dk+1(x; y) = 9z:dk(x; z) ^ dk(z; y). Note thatrk(dk) = qr(dk) = k. In a graph G, G j= dk(a; b)i� the distance from a to b in G is at most 2k. Thisimplies lr(dk) � 2k�1.Thus, the locality rank is necessarily exponential inthe quanti�er-rank of a �rst-order formula. For a logicL, we de�neLoc rankL(n) = maxflr(') j ' 2 L; rk(') = ng:Then 2n�1 � Loc rankL(n) � 2n, if L is FO, orFO(C), or FO(Qu), or L�1!(C). Can the precise valueof the function Loc rank be calculated? We do it be-low, by modifying slightly both the family fdk(x; y)gand the separation property.Theorem 5.1 Let L be FO, or FO(C), or FO(Qu),or L�1!(C). Then, for any n > 0,Loc rankL(n) = 2n � 1:Proof sketch: We sketch the proof of the lower bound.We assume a signature that consists of one binary re-lation E and one unary relation U and de�ne �0(x) =U (x) and �k+1(x) = 9z:dk(x; z)^�k(z). This formulasays that there exists an element of U at the distanceat most 2k � 1 from x. It is easy to see that lr(�k) �2k � 1 and rk(�k) = k; hence Loc rankL(n) � 2n � 1.For the proof of the upper bound, see [23]. 2The reason why the separation property itself couldnot be used to prove this theorem, is the following.It is possible to �nd, for any n, a formula �n(x) suchthat �n 2 SP(2n) but �n 62 SP(r) for any r < 2n. Infact, the formulae we �n(x) we introduced in the proofto show the lower bound, are such.While qr(dk) = k, the number of quanti�ers in dkis 2k � 1, so one may conjecture that lr(') is polyno-mial (or even linear) in the total number of quanti�ers.This conjecture is refuted by the result below, whichshows that alternation gives us another way of gettingexponential locality rank.

Theorem 5.2 For each n > 3, there is a prenex �rst-order formula  n(x; y) whose pre�x consists of n quan-ti�ers, such that lr( n) � 2bn2 c�1.Proof sketch: We �x the language to be hE;U1; U2i,where E is binary and U1; U2 are unary. Assume thatn is even and k = n=2. Construct the structure Anas follows: U1 and U2 are interpreted as two disjointsets whose union is A, each of cardinality 2k. The bi-nary predicate E is interpreted as a successor relationon U1 and U2; that is, A can be viewed as a pair ofsuccessor relations of the same length. We use A1n forAn restricted to U1, and likewise for A2n.We now de�ne  n(x; y) as a formula such that An j= n(a; b) i� a 2 U1; b 2 U2 and (A1n; a) �k (A2n; b).This formula  n can be chosen to be of the form8x19y18x29y2 : : :8xk9yk: '0nwhere '0n is quanti�er free. Intuitively, '0n statesthat if x1; : : : ; xk are the moves by the spoiler, andy1; : : : ; yk are the duplicator's responses, then (~x; x)and (~y; y) de�ne a partial isomorphism.Next, consider a; a0 2 U1 as the distance 2k�1 and2k�1 + 1 from the start node, respectively. Let b 2U2 be at the distance 2k�1 + 1 from the start node.Note that for r = 2k�1 � 1, NAnr (a; b) �= NAnr (a0; b).Since (A1n; a0) �= (A2n; b), they agree on all formulae;thus, An j=  n(a; b). De�ne 
(z) = 9v(dk�1(v; z) ^8u :E(u; v)); qr(
) = k. Then A1n j= 
(a) and A2n j=:
(b); hence An j= : n(a; b), which implies lr( n) >r, that is, lr( n) � 2n2�1. 2Similarly to Loc rank(n), de�ne Hanf rankL(n) =maxfhlr(�) j 	 2 L; rk(	) = ng.Theorem 5.3 Let L be FO, or FO(C), or FO(Qu).Then, for any n > 1,Hanf rankL(n) = 2n�1 � 1:Proof sketch: Consider structures of the signaturehE;U;Ci, where E is binary and U;C are unary. Let�k = 9x:�k(x) ^ C(x), where �k is de�ned as in theproof of Theorem 5.1. That is, �k says that there aretwo nodes in a graph that are at a distance at most2k � 1 and they belong to C and U respectively. Wenow construct two graphs, G1 being a union of twocycles of length 2k+1 � 2, with C and U containingone element each, at the distance 2k � 1 in one ofthe cycles. Graph G2 is one cycle of length 2k+2 � 4,



I = ff1; : : : ; ngg), the converse is not true, and theweaker notion �r allows the duplicator more freedomin the game, as will be shown later. We now use thede�nition of the separation property to prove the fol-lowing key lemma.Lemma 4.3 Let r > 0, A�rB, and ~a �A;B2r ~b. Thenthere exists a bijection f : A! B such that, for everyx 2 A, ~ax �A;Br ~bf(x).Proof sketch: Assume I = fI1; : : : ; Img is a parti-tion of f1; : : : ; ng that witnesses ~a �A;B2r ~b. That is,~aIj �A;B2r ~bIj for each j � m, and d(~aIj ; aIk) > 2r andlikewise for ~b. Let hj : NA2r(~aIj ) ! NB2r(~bIj ) be anisomorphism, and let h0j be its restriction to NAr (~aIj ).Let � be an isomorphism type of an r-neighborhoodof a single point. If x 2 SAr (~aIj ) realizes � , then sodoes h0j(x) 2 SBr (~bIj ). Thus, if mAj (�;~a) is the num-ber of elements of SAr (~aIj ) that realize � , and likewisefor mBj (�;~b), then mAj (�;~a) = mBj (�;~b). Next, de�nemA0 (�;~a) to be the number of elements in A � SAr (~a)that realize � , and likewise for mB0 (�;~a). Since A�rB,the number of elements realizing � in A and B is thesame, and hence mA0 (�;~a) = mB0 (�;~a). Thus, sincejA j=jB j, there exists a bijection g : A � SAr (~a) !B � SBr (~b) such that x �A;Br g(x) for every x.We now de�ne f to be h0j on SAr , j = 1; : : : ;m, andg on A � SAr (~a) = A �Smj=1 SAr (~aIj ). It is routine toverify that f is the required bijection. 2Applications of the separation property UsingLemma 4.3, one can modify the inductive proof ofTheorem 3.7, to show the following.Theorem 4.4 Let '(~x;~|) be a L�1!(C) formula.Then ' 2 SP(2rk(')).Proof sketch: Assume, in view of Theorem 3.5, that' is a L�1!(C) formula. For the base case of atomicformulae of rank 0, observe that ~a �1 ~b implies~a �0 ~b,which means that (~a;~|) and (~b;~|) satisfy all the sameatomic L�1!(C) formulae. The cases of the Booleanconnectives and second-sort quanti�cation are trivial.The remaining case is '(~x;~|) � 9iz: (~x; z;~|). Letm = rk( ) and r = 2m; then  2 SP(r). We mustshow ' 2 SP(2r). Assume that in a structure A,~a �A2r ~b. Since A�rA, by Lemma 4.3, we �nd apermutation f on A such that ~ax �r ~bf(x). Now

assume A j= '(~a;~|). Then there exists i distinct ele-ments c1; : : : ; ci 2 A such that A j=  (~a; cl; ~|) for eachcl; l = 1; : : : ; i. Let dl = f(cl). Then all dls are dis-tinct, we obtain ~acl �Ar ~bdl, and then A j=  (~b; dl; ~|)for each dl since  2 SP(r). Hence, A j= '(~b;~|). 2Corollary 4.5 Let ' be a FO, or FO(C), or FO(Qu),or L�1!(C) formula. Then ' 2 SP(2rk(')) and lr(') �2rk('). 2The result below also follows from Lemma 4.3.Theorem 4.6 Assume that A, B are two structuresof the same relational signature and A�2n�1B. Thenthe duplicator has a strategy in the n-move bijectivegame that guarantees that after i � n moves, if ~a =(a1; : : : ; ai) and ~b = (b1; : : : ; bi) are points played onA and B respectively, then ~a �A;B2n�i ~b.Proof sketch: For the �rst move, the duplicatorchooses a bijection f : A ! B that guaranteesx �A2n�1 f(x) for all x, and hence x �A2n�1 f(x). Thisis possible since A�2n�1B. For each following move,the bijection for the duplicator is provided by Lemma4.3. 2Since (a1; : : : ; an) �A;B1 (b1; : : : ; bn) implies thatf(ai; bi) j i = 1; : : : ; ng is a partial isomorphismA! B, we obtain the following.Corollary 4.7 Let A;B 2 STRUCT[�], andA�2n�1B. Then A �bijn B. Consequently, A and Bagree on all FO1, FO(C), and FO(Qu) sentences ofquanti�er rank up to n. 2Recall [10] that structures A and B are (d;m)-equivalent, if for every isomorphism type � of a d-neighborhood of a point, and for nA =j fa 2 A jntpAd (a) = �g j and nB =j fb 2 B j ntpBd (b) = �g j,either nA = nB < m, or nA; nB � m. The result be-low uses the separation property to improve (3k�1;m)-equivalence (from [10]) to (2k�1;m)-equivalence.Proposition 4.8 For every relational signature �and every positive integers k and c, there exists a pos-itive integer m such that A �k B, whenever A;B 2STRUCTc[�] are (2k�1;m)-equivalent. 21Neil Immerman's forthcomingbookDescriptive Complexityproves the same bound for Hanf's condition for FO.



L!1! L�1!(C)on expresses expressesordered every everystructures property propertyon cannot does not haveunordered count: recursion mechanism:structures has 0-1 law is localrelationship subsumes subsumesto other logics �xpoint logics counting logicsFigure 2: L!1! and L�1!(C): A comparisonSince j S2r+1(~a) j=j S2r+1(~b) j, there exists a bijec-tion g : A � S2r+1(~a) ! A � S2r+1(~b) such thatntpAr (x) = ntpAr (g(x)) for all x 2 A � S2r+1(~a).We now de�ne �(x) to be h(x) if x 2 S2r+1(~a)and g(x) if x 62 S2r+1(~a). Clearly, � is a permu-tation. If x 2 S2r+1(~a), then Sr(~ax) � S3r+1(~a)and Sr(~bh(x)) � S3r+1(~b); hence ~ax �r ~b�(x), be-cause h is an isomorphism. If x 62 S2r+1(~a), then fory = �(x) we have d(y;~b) > 2r + 1 and x �r y. Thus,Nr(~ax) and Nr(~by) are disjoint unions of isomorphicr-neighborhoods, and hence isomorphic. 2Now the proof of the theorem proceeds is by inductionon the L�1!(C) formulae. We prove the only nontrivialcase  (~y;~|) = 9ix '(x; ~y;~|) here (assuming i is in ~|).Let n = rk('); then r = lr(') � (3n � 1)=2. It su�cesto show lr( ) � 3r + 1. Assume ~a �3r+1 ~b and �xan arbitrary ~|0. Let A j=  (~a;~|0). Then for at least idistinct c1; : : : ; ci we haveA j= '(cl;~a;~|0), l = 1; : : : ; i.From Lemma 3.8, get a permutation � : A ! A suchthat ~ax �r ~b�(x), and let dl = �(cl). Since lr(') = rand ~acl �r ~bdl, we get A j= '(dl;~b;~|0) for l = 1; : : : ; i.As all dls are distinct, A j=  (~b;~|0). The converse isidentical. 2Corollary 3.9 FO(Qu), FO(C) and FO formulaeare Gaifman-local, and lr(') � (3qr(')�1)=2. Further-more, L�1!(C) (and thus FO(Qu), FO(C) and FO)formulae without free second-sort variables have thebounded degree property. 2Thus, L�1!(C) is indeed a good counterpart of L!1!if we want to address the issue of inexpressibilityof recursive queries in counting logics: while L!1!subsumes �xpoint logics but cannot express nontriv-ial counting properties, L�1!(C) subsumes a numberof counting logics, but lacks a recursion mechanism.

Both logics express every property of ordered �nitestructures.4 Quantitative analysis of localityWe introduce a new tool for providing a �ner analysisof locality of counting logics. On the surface, it is veryclose to Gaifman-locality. However, the new de�nitionaccounts precisely for what is happening in a bijectivegame played on structures A�dB, and for the increaseof locality rank of a formula with the addition of a newquanti�er.Let ~x = (x1; : : : ; xn), and let I = fI1; : : : ; Img be apartition of f1; : : : ; ng. The subvector of ~x that con-sists of the components whose indices are in Ij is de-noted by ~xIj .De�nition 4.1 1) Let I be a partition fI1; : : : ; Imgof f1; : : : ; ng. Let r > 0. Given two structures, Aand B, and ~a 2 An;~b 2 Bn, we say that ~a and ~b are(I; r)-similar if the following hold:� ntpAr (~aIj ) = ntpBr (~bIj ) for all j = 1; : : : ;m;� d(~aIj ;~aIk) > r for all k 6= j;� d(~bIj ;~bIk) > r for all k 6= j.We call ~a and ~b r-similar, and write ~a �A;Br ~b, if thereexists a partition I such that ~a and~b are (I; r)-similar.If A = B, we write ~a �Ar ~b.3) A formula ' has the r-separation property if ~a �Ar ~bimplies A j= '(~a) $ '(~b). To extend this to two-sorted logics, we require '(~a;~|0) $ '(~b;~|0) for every~|0 � N. A formula has the separation property i� ithas the r-separation property for some �nite r. Wewrite SP(r) for the class of formulae that have the r-separation property. 2Proposition 4.2 1) A formula has the separationproperty i� it is Gaifman-local.2) If ' 2 SP(r), then lr(') � r.3) ~a �r ~b implies ~a �r ~b and ~a �2r+1 ~b implies ~a �r ~b.2Thus, the essence of the new notion of locality isthe same as Gaifman's. However, while ~a �r ~b im-plies ~a �r ~b (just by considering a one-set partition



� rk(8x ') = rk(9x ') = rk(9ix ') = rk(') + 1.� rk(8i ') = rk(9i ') = rk(').De�nition 3.1 L�1!(C) consists of those formulae inL1!(C) that have �nite rank. 2Lemma 3.2 1) L�1!(C) formulae are closed underBoolean connectives and all quanti�cation.2) Every predicate on N � : : : � N is de�nable by aL�1!(C) formula of rank 0. 2Thus, we assume that +; �;�;�, and in fact everypredicate on natural numbers is available. To givean example, we can express properties like: thereis a node in the graph whose indegree i and outde-gree j satisfy p2i > pj where pi stands for the ithprime. This is done by 9x9i9j:(i = #y:E(y; x))^ (j =#y:E(x; y))^P (i; j) where P is the predicate on N forthe property p2i > pj.Known expansions of FO with counting properties arecontained in L�1!(C):Proposition 3.3 For every FO, FO(C), or FO(Qu)formula, there exists an equivalent L�1!(C) formulaof the same rank. 2It can also be shown that counting logics de�ned in [4]are embeddable into L�1!(C).De�nition 3.4 The logic L�1!(C) is de�ned asL�1!(C) where counting terms #~x:' are not allowed.2On the surface, L�1!(C) is a lot simpler than L�1!(C),mainly because counting terms for vectors, #~x:', arevery convenient for de�ning complex counting proper-ties. Also, L�1!(C) permits easier proofs by inductionon the formulae; usually counting terms make suchproofs much more complex. But it turns out that thepower of L�1!(C) and L�1!(C) is identical. This issomewhat reminiscent of a result in [20] that showshow unary generalized quanti�ers can be modeled bycounting quanti�ers in Lk1!.Theorem 3.5 There is a translation ' ! '� ofL�1!(C) formulae into L�1!(C) formulae such that 'and '� are equivalent and rk(') = rk('�).

In particular, for every FO, or FO(C), or FO(Qu)formula, there exists an equivalent L�1!(C) formulaof the same rank.One can use the counting expressive power of L�1!(C)if one needs to show de�nability of some properties.At the same time, one can use L�1!(C) for provingexpressivity bounds.De�nability over ordered structures By or-dered structures, we mean that one of the relationson the �nite model is < interpreted as a linear or-dering. With <, one can say that a given element ofA is �rst, second, etc, element of A. Then unlimitedcounting power allows us to code �nite structures withnumbers, and we can easily show:Proposition 3.6 Every property of �nite orderedstructures is de�nable in L�1!(C). 2Thus, the situation is similar to L!1! which also ex-presses every property of �nite ordered structures.But as with L!1!, we will show that without an or-der, the power of L�1!(C) is severely limited.Locality of L�1!(C) We give a simple and directproof that L�1!(C) is Gaifman-local. We do not needto establish a Hanf-type locality result �rst, and wealso improve the bound for locality rank.Theorem 3.7 Every L�1!(C) formula is Gaifman-local; furthermore, lr(') � 3rk(')�12 .Proof sketch: We start with a lemma, that was provedin a rather complicated way in [22]; a simple proof issketched below.Lemma 3.8 Assume that in A, ~a �3r+1 ~b. Thenthere exists a permutation � : A ! A such that~ax �r ~b�(x) for every x 2 A.Proof sketch of the lemma: Let � be an isomorphismtype of an r-neighborhood around a single point. Sincewe have an isomorphism h : N3r+1(~a) ! N3r+1(~b),we get that the number of points c in S2r+1(~a) andS2r+1(~b) with ntpAr (c) = � is the same; and thusj fc 2 A� SA2r+1(~a) j ntpAr (c) = �g j= j fc 2 A� SB2r+1(~b) j ntpAr (c) = �g j :



A�dB. The minimum d for which this holds is calledHanf locality rank of �, and is denoted by hlr(�).b) (see [17]) A formula '(~x) is called Hanf-local ifthere exist a number d � 0 such that (A;~a)�d(B;~b)implies A j= '(~a) i� B j= '(~b).It is known [10] that A�dB implies A�rB for r � d;in particular, if A�dB, then jA j=jB j.Fact 2.5 a) (see [10]) If A�3nB, then A �n B. Inparticular, A and B agree on all FO sentences of quan-ti�er rank up to n.b) (see [26]; bound from [17]) Let n > 0. ThenA�(3n�1�1)=2B implies A �bijn B.c) (see [17, 22]) Every Hanf-local formula (without freesecond-sort variables, if one deals with a two-sortedlogic) is Gaifman-local. 2Next, we review results on outputs of local queries.With each formula '(x1; : : : ; xn) in the language �,we associate a query that maps A 2 STRUCT[�] into'[A] = f~a 2 An j A j= '(~a)g.If A 2 STRUCT[�], and Ri is of arity pi, thendegreej(RAi ; a) for 1 � j � pi is the number of tuples~a in RAi having a in the jth position. In the case of di-rected graphs, this gives us the usual notions of in- andout-degree. By deg set(A) we mean the set of all de-grees realized inA, and deg(A) stands for the cardinal-ity of deg set(A). We use the notation STRUCTk[�]for fA 2 STRUCT[�] j deg set(A) � f0; 1; : : :; kgg.De�nition 2.6 (Bounded Degree Property)(see [24, 7, 22]) A query q, that is, a function thatmaps A 2 STRUCT[�] to an m-ary relation on A,m � 1, is said to have the bounded degree property,or BDP, if there exists a function fq : N ! N suchthat deg(q(A)) � fq(k) for every A 2 STRUCTk[�].2The intuition is that if A locally looks simple, thenq(A) has a simple structure as well. The BDP is veryeasy to use for proving expressivity bounds [24]. Itis known [7] that every Gaifman-local query has theBDP. A simple proof of this can be given for formulae'(x; y), whose outputs '[A] are directed graphs. Let#ntpd(A) stand for j fntpAd (a) j a 2 Ag j { the numberof di�erent isomorphism types of d-neighborhoods of

points realized in A. The following result from [7]implies the BDP.Fact 2.7 Let '(x; y) be Gaifman-local and let d = 3 �lr(') + 1. Then, for any structure A, deg('[A]) �2 �#ntpd(A). 23 L�1!(C) and its localityThe goal of this section is to de�ne the logic L�1!(C),which is to counting extensions of FO what L!1! isto �xpoint extensions of FO. We then de�ne a sim-pler version of this logic, L�1!(C), and show that noexpressiveness is lost.First, de�ne L1!(C), a two-sorted logic, that extendsin�nitary logic L1!. Its structures are of the form(A;N), where A is a �nite relational structure, andN is a copy of natural numbers. Assume that everyconstant n 2 N is a second-sort term. To L1!, addthe following:Counting terms: If ' is a formula and ~x is a vector offree �rst-sort variables in ', then #~x:' is a term ofthe second sort, and its free variables are those in 'except ~x. Its interpretation is the number of ~a over the�nite �rst-sort universe that satisfy '. That is, givena structure A, a formula '(~x; ~y;~|) and vectors ~b � Aand ~|0 � N, the value of the term #~x:'(~x;~b;~|0) is thecardinality of the (�nite) set f~a � A j A j= '(~a;~b;~j0)g.Counting quanti�ers: If ' is a formula and i 2 N, then9ix ' is a formula. Its free variables are those in 'except x.The logic L1!(C) is enormously powerful: it can de-�ne every property of �nite models, and every pred-icate or function on N. The de�nition is also redun-dant: for example, 9ix ' can be replaced by #x:' � i.However, we need counting quanti�ers separately, aswill become clear soon.Next, we restrict the logic by de�ning the rank of aformula, rk('). Its de�nition is similar to that of quan-ti�er rank, and for FO, FO(C) and FO(Qu) formulae,rk(') = qr('). The di�erence is that we disregardquanti�cation over N, thus allowing arbitrary nest-ing of such quanti�ers. For each atomic ' or variableor constant term, rank is 0. For other formulae andterms, it is de�ned as follows.� rk(#~x:') = rk(')+ j~x j.� rk(W'i) = rk(V'i) = maxi rk('i).



from a �xed set fx1; : : : ; xkg is denoted by Lk1!, andL!1! is the in�nitary logic with �nitely many vari-ables: L!1! = Sk<! Lk1!.The quanti�er rank of a formula ', qr(') is the depthof quanti�er nesting in '. For FO(C), we do not countquanti�ers over the numerical domain.Games We review some results on game charac-terization of logics. The Ehrenfeucht-Fra��ss�e game(cf. [8]), is played by two players, called the spoiler andthe duplicator, on two structures A;B 2 STRUCT[�].In each round i, the spoiler selects either a pointai 2 A, or bi 2 B, and the duplicator responds by se-lecting bi 2 B, or ai 2 A, respectively. The duplicatorwins after n rounds if the relation f(ai; bi) j 1 � i � ngis a partial isomorphismA ! B; otherwise the spoilerwins. If the duplicator has a winning strategy in then-move game on A and B, we write A �n B. It is wellknown (cf. [8]) that A �n B i� A and B agree on allFO sentences of quanti�er rank up to n.A stronger version of the game, called bijectiveEhrenfeucht-Fra��ss�e game, was introduced in [16].Again, the spoiler and the duplicator play on twostructures A;B 2 STRUCT[�]. For the n-round game,in each round i = 1; : : : ; n, the duplicator selects a bi-jection fi : A ! B, and the spoiler selects a pointai 2 A (if card(A) 6= card(B), then the spoiler wins).The winning condition is the same: if after the lastround the relation f(ai; fi(ai)) j 1 � i � ng is a par-tial isomorphism A ! B, then the duplicator wins;otherwise the spoiler wins. If the duplicator has awinning strategy in the n-move bijective game on Aand B, we write A �bijn B. Bijective games character-ize expressivity of FO(Qu) and FO(C) as follows.Fact 2.1 ([9, 16]) Let A;B 2 STRUCT[�]. IfA �bijn B, then A and B agree on all sentences ofFO(Qu) (or FO(C)) of quanti�er rank up to n. 2We write (A;~a) �n (B;~b) (or (A;~a) �bijn (B;~b)) if theduplicator has a winning strategy in the n-move (bi-jective) game that starts with the position (~a;~b). Thiscondition implies that for a FO (or FO(Qu)) formula'(~x) of quanti�er rank n, A j= '(~a) i� B j= '(~b).Locality Given a structure A, its Gaifman graph[8, 11, 10] G(A) is de�ned as hA;Ei where (a; b) is inE i� there is a tuple ~c 2 RAi for some i such that both

a and b are in ~c. The distance d(a; b) is de�ned asthe length of the shortest path from a to b in G(A);we assume d(a; a) = 0. If ~a = (a1; : : : ; an) and ~b =(b1; : : : ; bm), then d(~a;~b) = minij d(ai; bj). Given ~aover A, its r-sphere SAr (~a) is fb 2 A j d(~a; b) � rg. Itsr-neighborhood NAr (~a) is de�ned as a �n structurehSAr (~a); RA1 \ SAr (~a)p1 ; : : : ; RAk \ SAr (~a)pk ; a1; : : : ; aniThat is, the carrier of NAr (~a) is SAr (~a), the interpreta-tion of the �-relations is inherited from A, and the nextra constants are the elements of ~a. If A is under-stood, we write Sr(~a) and Nr(~a).Given a tuple ~a of elements of A, and d � 0, byntpAd (~a) we denote the isomorphism type of NAd (~a).For example, ntpAd (~a) = ntpBd (~b) means that there isan isomorphism NAd (~a) ! NAd (~b) that sends ~a to ~b;in this case we will also write ~a �A;Bd ~b. If A = B,we write ~a �Ad ~b. Given tuples ~a = (a1; : : : ; an)and ~b = (b1; : : : ; bm), and an element c, we write~a~b for the tuple (a1; : : : ; an; b1; : : : ; bm), and ~ac for(a1; : : : ; an; c).De�nition 2.2 (Gaifman-locality)(cf. [22]) A formula '(~x;~|) in a two-sorted logic iscalled Gaifman-local if there exists a number r � 0such that, for any structure A and any ~a;~b over A,~a �Ar ~b implies A j= '(~a;~{) i� A j= '(~b;~{)for all ~{ � N. The minimum such r is called the local-ity rank of ', and is denoted by lr('). 2Fact 2.3 a) (see [11]) Every FO formula '(~x) isGaifman-local, and lr(') � (7qr(') � 1)=2.b) (see [22]) Every FO(Qu) or FO(C) formula'(x1; : : : ; xn) (without free second-sort variables) isGaifman-local, and lr(') � 3qr(')+n + 1. 2ForA;B 2 STRUCT[�], we writeA�dB if there existsa bijection f : A! B such that ntpAd (a) = ntpBd (f(a))for every a 2 A. That is, every isomorphism type of ad-neighborhood of a point has equally many realizersin A and B. We write (A;~a)�d(B;~b) if there is abijection f : A! B such that ntpAd (~ac) = ntpBd (~bf(c))for every c 2 A.De�nition 2.4 (Hanf-locality) a) (see [15, 10, 22])A sentence � is called Hanf-local if there exist a num-ber d � 0 such that A and B agree on � whenever
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 	� --- - - - -Figure 1: A local formula cannot distinguish (a; b) from (b; a).to the tightest condition that the duplicator needs tomaintain in an Ehrenfeucht-Fra��ss�e game (or a bijec-tive game [16]) in order to win. Based on the sepa-ration property, we calculate, in Section 5, the exactvalue of the maximum radius for all the formulae ofrank n. We do it for two forms of locality, based onHanf's and Gaifman's conditions, and we show thatin both cases the maximum radii are the same for allthe counting logics listed above.In Section 6, we consider open local formulae asqueries that map �nite structures to �nite structures.Extending a result from [7], we prove a bound on thenumber of di�erent degrees realized in the output ofa local query, and apply it to counting logics, therebyconnecting this measure of \complexity" of the outputwith the syntactic parameters of a query. In Section7, we prove analogs of Gaifman's theorem [11] for FOand FO(Qu) when structures are of small degree. Therestriction allows us to use the best possible boundsin the statements of those theorems. The proof relieson new locality-based conditions that provide winningstrategies for the duplicator. Concluding remarks aregiven in Section 8.Complete proofs are given in the full version [23].2 NotationsFinite Structures and Logics All structures areassumed to be �nite. A relational signature � isa set of relation symbols fR1, ..., Rlg, with associ-ated arities pi > 0. We write �n for � extendedwith n new constant symbols. A �-structure is A =hA;RA1 ; : : : ; RAl i, where A is a �nite set, andRAi � Apiinterprets Ri. The class of �nite �-structures is de-noted by STRUCT[�]. When there is no confusion,we write Ri in place of RAi . Isomorphism is denotedby �=. The carrier of a structure A is always denotedby A and the carrier of B is denoted by B.We abbreviate �rst-order logic by FO. FO with count-ing, denoted by FO(C), is a two-sorted logic, withsecond sort being the sort of natural numbers. That

is, a structure A is of the formhfv1; : : : ; vng; f1; : : : ; ng; <;BIT; 1; n;RA1 ; : : : ; RAl i:Here the relations RAi are de�ned on the domainfv1; : : : ; vng, while on the numerical domain f1; : : : ; ngone has 1; n;< and the BIT predicate available(BIT(i; j) i� the ith bit in the binary representationof j is one). This logic also has counting quanti�ers9ix:'(x), meaning that ' has at least i satis�ers; herei refers to the numerical domain and x to the do-main fv1; : : : ; vng. These quanti�ers bind x but noti. Ternary predicates + and � are de�nable on thenumerical domain [9], as is the quanti�er 9!ix mean-ing the existence of exactly i satis�ers. For example,9i9j [(j + j) = i ^ 9!ix:'(x)] tests if the number ofx satisfying ' is even; this property is not de�nablein FO alone. We separate �rst-sort variables fromsecond-sort variables by semicolon: '(~x;~|).Let �unaryk be a signature of k unary symbols, andlet K be a class of �unaryk -structures which is closedunder isomorphisms. Then FO(QK) extends theset of formulae of FO with the following additionalrule: if  1(x1; ~y1); : : : ;  k(xk; ~yk) are formulae, thenQKx1 : : : xk:( 1(x1; ~y1); : : : ;  k(xk; ~yk)) is a formula.Here QK binds xi in the ith formula, for eachi = 1; : : : ; k. A free occurrence of a variable yin  i(xi; ~yi) remains free in this new formula un-less y = xi. The semantics is de�ned as follows:A j= QKx1 : : : xk:( 1(x1;~a1); : : : ;  k(xk;~ak)) i�(A; 1[A;~a1]; : : : ;  k[A;~ak]) 2 K;where  i[A;~ai] = fa 2 A j A j=  i(a;~ai)g. In thisde�nition, ~ai is a tuple of parameters that gives the in-terpretation for those free variables of  i(xi; ~yi) whichare not equal to xi. Examples include the usual 9 and8, as well as Rescher and H�artig quanti�ers. We usethe notation FO(Qu) for FO extended with all unaryquanti�ers.We denote the in�nitary logic by L1!; it extends FOby allowing in�nite conjunctions V and disjunctionsW. The class of L1! formulae that only use variables



power of counting logics, and most were proved veryrecently. For example, [9] used the games of [19] toprove that an L-complete problem is not de�nable inFO(C); this implies that connectivity of �nite graphsis not de�nable in FO(C). In [18], nonde�nability ofconnectivity is shown for FO(Qu). More bounds wereobtained in [22], which used the results of [26] to provean analog of Gaifman's locality theorem [11] for thoselogics.Currently, most bounds for extensions of FO with var-ious counting quanti�ers can be derived from its localproperties, as shown in [17, 22, 26]; exceptions includethe bound of [5], a result in [4] on counting the sizesof equivalence classes, and the hierarchy result in [14].Locality of a logic gives us a general statement that itlacks a recursion mechanism, much in the same wayas 0-1 laws tell us that a logic cannot express non-trivial counting properties. One way in which localitytheorems are applied is the following. First, a formof locality based on Hanf's condition (see [10, 15]) isshown for a logic; this form is closely tied to a game-characterization of the logic. Then results of [17, 22]show that the logic also satis�es Gaifman's localitycondition [11] and the bounded degree property [24],which are much easier to apply to prove expressivitybounds. However, no direct proofs of those conditionshave been given so far for any of the extensions of FO.The basic idea of locality is shown in Figure 1. A for-mula, say '(x; y) is local, if it can only \see" from xand y as far as a neighborhood of radius r, where ronly depends on '. In the graph of a successor rela-tion, it means that pairs (a; b) and (b; a) are indistin-guishable by '(x; y), if the successor relation is longenough, and a; b are far away from the endpoints andeach other { this is because no point can be \seen"from both a and b, if we can only see up to the dis-tance r. In particular, transitive closure, that distin-guishes (a; b) from (b; a), is not de�nable in a locallogic. In general, recursive computation gives one ameans of verifying global properties of structures, andmost properties requiring such form of computationcan easily be shown to violate one of the forms of lo-cality.We now describe the three main themes of the paper,and outline the results.\ A General Framework for Counting. While thereare a number of counting extensions of �rst-orderlogic, we still lack a unifying framework for addingcounting to FO. For example, the extension withcounting quanti�ers [9, 19] puts limits on available

arithmetic, while the extension with unary quanti�ersdoes not permit free numerical variables; as a result,expressing some simple properties becomes a nontriv-ial task, with the resulting formulae being unnecessar-ily awkward. It appears that we need a general frame-work that subsumes all these logics, and is at the sametime easy to study. We introduce such a logic, calledL�1!(C), in Section 3. It is obtained by �rst addingcounting terms and quanti�ers to the in�nitary logicL1! over two-sorted structures (the second sort beinginterpreted as N), and then restricting it to formulaeof �nite rank. The idea of putting the set of natu-ral numbers \on the side" is in
uenced by meta�nitemodel theory of [12]. Similar extensions exists in theliterature [13, 14, 27], but they restrict the logic bymeans of the number of variables, which still permits�xpoint computation. In contrast, following [16, 17],we restrict the logic by requiring that the rank of aformula be �nite (where the rank is de�ned as quan-ti�er rank, except that it does not take into accountquanti�ers over N), thus putting no limits at all on theavailable arithmetic. We give a simpli�ed version ofL�1!(C), called L�1!(C); it is obtained by disallowingcounting terms. This makes the logic easier to ana-lyze, and we prove that no power is lost due to thisrestriction.\ Proving Locality. How does one prove that formulaein a counting logic (e.g., FO(C), FO(Qu), L�1!(C))only express local properties, as shown in Figure 1?Currently, with the exception of FO, such results areestablished via Hanf's criterion [10, 15] that relates thenumber of isomorphism types of small neighborhoodsin two structures. This criterion is closely tied to agame characterization of a logic, and may not workif such a characterization does not exist. Also, oneneeds to adjust the implication results for two-sortedlogics. Here, we show that locality of L�1!(C) andother counting logics can be proved directly, withoutthis unnecessary detour.\ Theory of Local Properties. There are a number ofissues in the theory of local properties that one hasto deal with once the locality of a logic is proved.One is the question about the radius of a neighbor-hood that determines the truth value of a formula.For the example in Figure 1, one may ask how r de-pends on '. It is known how to �nd FO formulaewith r being O(2qr(')). Here we show that O(2qr('))is also the upper bound for many counting logics, in-cluding FO(C);FO(Qu) and L�1!(C). To prove this,we introduce a new form of locality, called the separa-tion property, in Section 4. It corresponds, intuitively,



On Counting Logics and Local PropertiesLeonid LibkinBell Laboratories600 Mountain AvenueMurray Hill, NJ 07974, USAEmail: libkin@research.bell-labs.comAbstractThe expressive power of �rst-order logic over �nitestructures is limited in two ways: it lacks a recur-sion mechanism, and it cannot count. Overcoming the�rst limitation has been a subject of extensive study.A number of �xpoint logics have been introduced, andshown to be subsumed by an in�nitary logic L!1!. Thislogic is easier to analyze than �xpoint logics, and itstill lacks counting power, as it has a 0-1 law. Onthe counting side, there is no analog of L!1!. Thereare a number of logics with counting power, usuallyintroduced via generalized quanti�ers. Most knownexpressivity bounds are based on the fact that count-ing extensions of �rst-order logic preserve the localityproperties.This paper has three main goals. First, we introduce anew logic L�1!(C) that plays the same role for count-ing as L!1! does for recursion { it subsumes a numberof extensions of �rst-order logic with counting, and hasnice properties that make it easy to study. Second, wegive a simple direct proof that L�1!(C) expresses onlylocal properties: those that depend on the properties ofsmall neighborhoods, but cannot grasp a structure asa whole. This is a general way of saying that a logiclacks a recursion mechanism. Third, we consider a�ner analysis of locality of counting logics. In particu-lar, we address the question of how local a logic is, thatis, how big are those neighborhoods that local proper-ties depend on. We get a uniform answer for a varietyof logics between �rst-order and L�1!(C). This is doneby introducing a new form of locality that captures thetightest condition that the duplicator needs to main-tain in order to win a game. We use this technique togive bounds on outputs of L�1!(C)-de�nable queries.We also specialize some of the results for structures ofsmall degree.

1 IntroductionThe expressive power of �rst-order logic (FO) on �nitestructures is rather limited. Two main limitations of�rst-order logic are its inability to count and the lack ofa recursion mechanism. Since �rst-order logic over �-nite structures plays an important role in several areasof computer science (e.g., databases and complexity),various extensions have been proposed to deal withthese shortcomings.On the recursion side, a beautiful theory has been de-veloped over the past decade. Various �xpoint exten-sions of �rst-order logic have been introduced, includ-ing least, in
ationary and partial �xpoint logics, aswell as transitive closure logics, cf. [1, 8]. Fixpoint log-ics can all be embedded into L!1!, in�nitary logic with�nitely many variables, which is much easier to ana-lyze. In particular, L!1! has a 0-1 law [21], which givesa uniform derivation of the 0-1 law for all �xpoint log-ics. It follows that L!1! cannot express most countingproperties, such as parity of cardinality. The theoryextends nicely to the ordered setting, where transitiveclosure and �xpoint logics capture familiar complexityclasses such as L, NL, PTIME and PSPACE (cf. [8]),and L!1! expresses every property of �nite structures[6].On the counting side, much less is known. Vari-ous extensions of �rst-order logic with counting ex-ist, usually introduced by means of generalized quan-ti�ers [20]. Examples include H�artig (equicardinality),Rescher (majority) quanti�er, and counting quanti-�ers 9ix'(x; �), that assert the existence of at leasti elements x that satisfy ', see [9, 19]. We denotethe extension with counting quanti�ers 9i by FO(C).Alternatively, one can add counting terms [13, 14]. In[16], FO(Qu), �rst-order logic extended with all unarygeneralized quanti�ers, is considered.There are relatively few results on the expressive


