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Abstract

We study the expressive power of counting logics in the
presence of auziliary relations such as orders and pre-
orders. The simplest such logic, first-order with count-
ing, captures the complexity class TC® over ordered
structures. We also consider first-order logic with ar-
bitrary unary quantifiers, and infinitary extensions.

The main result of the paper is that all the counting log-
ics above, in the presence of pre-orders that are almost-
everywhere linear orders, exhibit a very tame behavior
normally associated with first-order properties of un-
ordered structures. This is in sharp contrast with the
expressiveness of these logics in the presence of linear
orders: such a tame behavior is not the case even for
first-order logic with counting, and the most powerful
logic we consider can express every property of ordered
structures. The results attest to the difficulty of proving
separation results for the ordered case, in particular,
to proving the separation of TC® from NP. To prove
the main results, we use locality techniques from finite-
model theory, modifying the main notions of locality
along the way.

1 Introduction

The main motivation for studying the expressive power
of logics on finite structures comes from applications
in Complexity Theory and Databases. Many com-
plexity classes have logical characterizations in terms
of expressiveness of various extensions of first-order
logic (FO) on finite structures, and most traditional
database query languages have well-understood logi-
cal counterparts. As the expressiveness of FO is quite

limited — most notably, FO cannot express nontrivial
counting properties and recursive computation, — vari-
ous extensions are considered in the literature. In this
paper, we study logics that extend first-order with a
counting mechanism. Typically, this is done by adding
counting quantifiers or terms [8, 11, 14, 20, 29].

Several extensions of FO capture familiar complexity
classes over finite structures, and most of the capture
results assume that the structures are ordered. The in-
tuition behind the introduction of a linear order is that
it allows us to simulate encodings of structures on the
tape of a Turing machine. While for order-invariant
properties it does not matter in which order elements
appear on the tape (indeed, properties like connectivity
of graphs to do not depend on how graphs are repre-
sented), they do appear in some order, and one must be
able to use this order in logical formulae. Among the
best known characterizations of this kind are charac-
terization of PTIME as FO + LFP (least-fixpoint oper-
ator) [19, 35], PSPACE as FO + PFP (partial-fixpoint)
[35], TC" as FO(C) (FO with counting quantifiers) [2],
all over ordered structures.

Even though the particular ordering does not change
the result of formula, the mere presence of an order
gives many logics extra power. For example, while
FO+LFP and FO+PFP capture PTIME and PSPACE
over ordered structures, they possess the 0-1 law over
unordered structures [21], meaning that such a simple
PTIME property as parity cannot be expressed. The
lower bound of Cai, Fiirer and Immerman [4] shows
that there are PTIME properties of unordered struc-
tures not definable even in FO+LFP extended with
counting quantifiers. A similar phenomenon is ob-
served for other logics, e.g., FO and FO(C) [3, 30].

Our main goal is to study the impact of auxiliary re-



lations, such as orderings, on the expressive power of
counting. The primary motivation comes from com-
plexity theory: while good expressivity bounds exists
for counting logics, e.g., FO(C), over unordered struc-
tures [8, 23, 24], no nontrivial bounds are known for
the ordered case. As we mentioned, FO(C), over or-
dered structures, captures TC®, the class of problems
solvable by polynomial-size, constant-depth threshold
circuits, under DLOGTIME-uniformity, see [2]. This is
an important complexity class: problems such as inte-
ger multiplication and division, and sorting belong to
it; TC® has also been studied in connection with neu-
ral nets, cf. [31]. Despite many efforts, the separation
TC® ¢ NP has not been proved, and it appears that
there are very serious obstacles to proving it using tra-
ditional approaches to circuit lower bounds, see [1, 32].
One might thus hope that the approach based on prov-
ing expressivity bounds for logics may circumvent the
problems raised by [32].

The results we prove apply to a variety of logics, start-
ing with FO and FO(C), and ending with a logic
L% (C) proposed in [24]. This logic subsumes FO(C)
and all other known pure counting extensions of FO.
(When we speak of counting extensions of FO, we mean
extensions that only add a counting mechanism, as op-
posed to those — extensively studied in the literature,
see [29] — that add both counting and fixpoint.)

We will show a dichotomy of the following kind: with
auxiliary relations that are almost-everywhere linear
orders, L% ,(C) and other counting logics exhibit a
very tame behavior, normally associated with FO de-
finable properties. However, when the order is added,
this tameness is lost. For example, £ (C) expresses
every property of ordered structures. These results fur-
ther attest to the difficulty of proving separation of TC®
from other classes.

As our definition of tame behavior we shall use the
bounded number of degrees property, or BNDP, first in-
troduced in [26]. We define it first for mappings @ from
graphs to graphs. Such a mapping @ is said to have the
BNDP, if there exists a function fg : N = N such that
whenever the degrees of all nodes in a graph G are at
most k, then in Q(G) one finds at most fo(k) different
degrees. Note a certain asymmetry in this definition:
while the assumption is that the degrees in G are below
k, the conclusion is that the number of different degrees

in Q(G) is below fg(k).

It is known that over unordered structures FO defin-
able graph queries have the BNDP. This was proved in
[26], using Gaifman’s locality theorem. More recently,
this property was shown to hold in FO(C) [23] and

L:.,(C) [24] (again, over unordered structures) and
very recently it was proved for FO in the ordered case
[13], assuming that queries are order-invariant.

Informally, our main result can be then stated as fol-
lows: In the presence of relations which are almost-
everywhere linear orders, invariant queries definable in
L%, (C) and other counting logics have the bounded
number of degrees property.

The BNDP gives us easy proofs of expressivity bounds.
For example, it is easy to see that transitive closure
trel violates the BNDP: if one starts with a graph of
a successor relation on an n-element set (i.e., a chain
in which all degrees are bounded by 1), in its transi-
tive closure one finds n + 1 different degrees, showing
that f;..; cannot exist. Thus, there are LOGSPACE
problems that cannot be expressed in £} (C) in the
presence of auxiliary relations that coincide with linear
orders almost everywhere. Note that in a rather ad-hoc
way (the proof only works for ¢rcl) the inexpressibility
of trel in FO(C) in the presence of such auxiliary re-
lations was proved very recently [27]; from the results
here, this will follow as an easy corollary. The paper
[27] then raised a natural question: is it possible that
FO(C) has the same power on ordered structures as
it has on structures equipped with almost-linear-order
preorder relations? A positive answer would imply that
the lower bounds of [27] apply to TC®. However, we
shall show (as a corollary of the main result) that the
answer to the above question is negative.

To prove the main result, we exploit the locality tech-
niques in finite-model theory. Originated in the work
by Hanf [15] and Gaifman [10], they were recently a
subject of renewed attention [5, 9, 13, 26, 23, 24, 28, 34].
The BNDP is typically proved by showing that a logic
satisfies an analog of either Hanf’s or Gaifman’s theo-
rem [23]. However, those fail for £% ,(C) in the pres-
ence of several classes of preorders. Nevertheless, we
prove a statement, weaker than Gaifman’s theorem, for
counting logics in the presence of auxiliary relations,
and show that it implies the BNDP.

Organization In Section 2, we give formal defini-
tions of various counting extensions of FO, notions of
locality, and definability with auxiliary relations. We
also give an example that shows how the presence of
auxiliary relations affects expressiveness.

In Section 3, we state the main result and its corol-
laries, in particular, the above mentioned dichotomy:
there is an enormous gain in expressiveness of counting
logics, by going from auxiliary relations which almost-



everywhere linear orders, to linear orders. We also give
an example of failure of Gaifman’s locality theorem for
FO(C) in the presence of almost-everywhere linear or-
ders.

In the remainder of the paper, we prove the main result.
In Section 4, we present two notions of locality that
are weaker than the notion corresponding to Gaifman’s
theorem. We explain the connections between those
notions and the BNDP, and show that the main theo-
rem reduces to proving weak semi-locality of a logic. In
Section 5, we prove weak semi-locality of £, (C) in
the presence of almost-everywhere linear orders, com-
bining the bijective games of [16] and a strategy for the
duplicator inspired by [33].

Concluding remarks are given in Section 6. All proofs
can be found in the full version [25].

2 Notations

Finite Structures and Logics All structures are
assumed to be finite. A relational signature o is a
set of relation symbols {Ry, ..., R;}, with associated
arities p; > 0. For directed graphs, the signature
consists of one binary predicate. A o-structure is
A = (A R{A,... R{"), where A is a finite set, and
R C APi interprets R;. The class of finite o-structures
is denoted by STRUCT[o]. When there is no confusion,
we write R; in place of RZA. Isomorphism is denoted
by 2. The carrier of a structure A is always denoted
by A.

We abbreviate first-order logic by FO, and omit the
standard definitions. FO with counting, denoted by
FO(C), is a two-sorted logic, with second sort being
interpreted as an initial segment of natural numbers.
That is, a structure A is of the form
({v1,...,un},{1,...,n},<,BIT,1,n, R{,..., R{).

Here the relations R are defined on the domain
{v1,...,v,}, while on the numerical domain {1,...,n}
one has 1,n,< and the BIT predicate available
(BIT(i,j) iff the ith bit in the binary representation
of j is one). This logic also has counting quantifiers
Jiz.p(x), meaning that that are at least i elements x
that satisfy ¢(x); here i refers to the numerical domain
and z to the domain {vy,...,v,}. These quantifiers
bind = but not ¢. Ternary predicates + and * are de-
finable on the numerical domain [8], as is the quantifier
Jliz meaning the existence of exactly i elements satisfy-
ing a formula. For example, 3i35 [(j+7) = iATliz.o(z)]

tests if the number of z satisfying ¢ is even; this prop-
erty is not definable in FO alone. We separate first-
sort variables from second-sort variables by semicolon:

(& 7)-

There are several counting extensions of FO that are
more powerful than FO(C); among them FO(Q,),
which is FO extended with all unary quantifiers. We
refer the reader to [16] for the definition of FO(Q,)
and its properties. Here, we mostly work with an even
more powerful logic, defined below.

We denote the infinitary logic by Lo ; it extends FO
by allowing infinite conjunctions A and disjunctions
V. Then L, (C) is a two-sorted logic, that extends
infinitary logic Loop. Its structures are of the form
(A,N), where A4 is a finite relational structure, and
N is a copy of natural numbers. Assume that every
constant n € N is a second-sort term. To L., add
counting quantifiers Jiz for every i € N, and counting
terms: If ¢ is a formula and Z is a tuple of free first-
sort variables in @, then #Z.¢ is a term of the second
sort, and its free variables are those in ¢ except Z.
Its interpretation is the number of tuples @ over the
finite first-sort universe that satisfy . That is, given
a structure A, a formula ¢(Z,7;7), b C A, and 75 C N,
the value of the term #&'.¢ (&, b; 7o) is the cardinality of
the (finite) set {@ C A | A = ¢(@,b; jo)}. For example,
the interpretation of #x.E(z,y) is the in-degree of node
y in a graph with the edge-relation E.

As this logic is too powerful (it expresses every property
of finite structures), we restrict it by means of the rank
of a formulae and terms, denoted by rk. It is defined as
quantifier rank (that is, it is 0 for atomic formulae,
rk(V; i) = max; rk(p;), rk(=p) = rk(p),rk(Jzyp) =
rk(Jizp) = rk(p) + 1) but it does not take into account
quantification over N: rk(Jip) = rk(yp). Furthermore,

rk(#2.0) = k() + |2].

Definition 1 (see [24]) The logic L%, ,(C) is defined
to be the restriction of Loow(C) to terms and formulae
of finite rank.

It is known [24] that £%_, (C) formulae are closed under
Boolean connectives and all quantification, and that
every predicate on Nx ... x N is definable by a £ (C)
formula of rank 0. Thus, we assume that +, %, —, <,
and in fact every predicate on natural numbers is avail-
able. Known counting expansions of FO are contained
in £%__,(C). That is, for every FO, FO(C), or FO(Qu)
formula, there exists an equivalent £%_ (C) formula of
the same rank. A counting logic of [3] can also be em-
bedded into £} (C).



Definability with auxiliary relations An m-ary
query on o-structures, (), is a mapping that associates
to each A € STRUCT][o] a structure (A, S), where S C
A™m. We write @ € Q(A) if @ € S, where (A,S) =
Q(A). A query @ is definable in a logic £ if there
exists an £ formula ¢(z1,...,2,) such that Q(A) =

Pl A E (A (@] AE p@).

Let o' be a relational signature disjoint from o. If A is a
o-structure on a universe A, and A’ is a o’-structure on
A, we use the notation (A, A") for the o U o'-structure
on A which inherits the interpretation of o relational
symbols from A, and the interpretation of ¢’ symbols
from A'.

Let C be a class of o'-structures, with ¢ and o' be-
ing disjoint. Let A € STRUCT[o]. A formula ¢(Z)
in the language of o U ¢’ is called C-invariant on A
if for any two C structures A’ and A" on A we have
o[(A, A)] = ¢|(A, A")]. Associated with such a for-
mula is the following m-ary query (where m =|Z|):

Qy(A) = { ¢[(A,A")], ¢ is C-invariant on A

0, otherwise.

where A’ is any structure from C on A. We use the
notation (£ 4+ C), to denote all queries defined in such
a way when ¢ ranges over formulae of L.

A formula ¢ is C-invariant if it is C-invariant on every
structure. With such a ¢, we associate a query @,
given by Q,(A) = ¢[(A, A")] where A’ is a structure
from C on A. The class of all such queries is denoted
by £ + C. Clearly,

L+C C (L+C)w

We thus shall aim to establish expressivity bounds for

(L+C)uw.

When C is the class of order relations, we shall write <
instead of C. The capture results for complexity classes
deal with the classes of queries of the form £+ <; for
example, uniform TC® equals FO(C)+ < [2]. While
queries in £+ < are independent of a particular order
relation used, the mere presence of such a relation can
have an impact on the expressivity of a logic.

We give an example for FO(C). Assume that o has one
binary and unary relation, i.e. its structures are graphs
with a selected subset of nodes. Let Qg be the following
Boolean query [3]: given such a structure (A, E, X),
where A # (), E C A% and X C A, return true iff E
is an equivalence relation, and the number of distinct
sizes of E-classes equals | X|. It is known that @ is not
expressible in FO(C) [3]. However, it is expressible in

FO(C)+ <. Indeed, the equivalence relation zfy iff
the E-equivalence classes of z and y have the same
cardinality is definable in FO(C). Thus, in FO(C) one
defines the set of smallest (wrt <) elements of each
such class, and then compares, in FO(C), the size of
this set to X. The two are the same iff the value of Qg
is true. Note that any linear order suffices to express
this query.

Thus, FO(C) € FO(C)+ <. Since the latter captures
uniform TC?, this means that there are problems in
TC not definable in FO(C) over unordered structures.
It is also known that FO C FO+ <. We shall see later
that this continues to be true for other counting logics.

Bounded number of degrees property (BNDP)
If A € STRUCT[o], and R; is of arity p;, then
degreej(RiA,a) for 1 < j < p; is the number of tu-
ples @ in RA having a in the jth position. In the case
of directed graphs, this gives us the usual notions of
in- and out-degree. By deg_set(A) we mean the set
of all degrees realized in A, and deg_count(A) stands
for the cardinality of deg_set(A). We use the notation
STRUCT[o] for {A € STRUCT[o] | deg-set(A) C

0,1,...,k}}.

Definition 2 (see [26, 5, 23]) An m-ary query @,
m > 1, is said to have the bounded number of de-
grees property! , or BNDP, if there erists a function
fo : N = N such that deg_count(Q(A)) < fo(k) for
every A € STRUCT[o]. O

The BNDP is very easy to use for proving expressivity
bounds [26]. For example, it is very easy to verify that
(deterministic) transitive closure violates the BNDP.

Locality All existing proofs of the BNDP establish
first that a logic is local. We now define this concept.
Given a structure A, its Gaifman graph [7, 10, 9] G(A)
is defined as (A, E) where (a,b) is in E iff there is
a tuple & € R for some i such that both a and b
are in ¢ The distance d(a,b) is defined as the length
of the shortest path from a to b in G(A); we assume
d(a,a) = 0. If d = (aq,...,a,) and b= (b1, ..., bm),

3
-,

then d(@,b) = min;; d(a;,b;). Given @ over A, its

IThis property was formerly known as the bounded degree
property, or the BDP, see [5, 17, 24, 26, 27, etc]. However, many
found the name confusing, as the property refers to the number
of degrees in the output being bounded, rather than the degrees
themselves. Following a suggestion by Neil Immerman, we de-
cided to change the name from BDP to BNDP.



r-sphere SA(@) is {b € A | d(@b) < r}. Tts r-
neighborhood NA(@) is defined as a structure N:A(@)

(SA@), RAn SA@)P,...,RANSA@"P, a1, ..., a,)

in the signature that extends ¢ with n constant sym-
bols. That is, the carrier of N;A(@) is S;A(a@), the in-
terpretation of the o-relations is inherited from A, and
the n extra constants are the elements of d. If A is
understood, we write S,(@) and N,(@).

If A,B € STRUCT][o], and there is an isomorphism
NA(@) — NB(b) (that sends @ to b), we write @ ~45 b.
If A=B, we write @ ~A b,

Definition 3 (cf. [23]) An m-ary query Q is called lo-
cal if there exists a number r > 0 such that, for any
structure A and any d,b € A™

e Q(A) iff beQ(A).

The minimum such r is called the locality rank of @,
and is denoted by Ir(Q). O

S AT .
a=; b implies

It follows from Gaifman’s theorem [10] that every FO-
definable query is local; moreover, if () is definable by a
formula ¢ (%), then Ir(Q) < (797¥) —1)/2. Tt was shown
in [23, 24] that every FO(Qy), FO(C), and L% ,(C)-
definable query is local; furthermore, Ir(Q) < 2%(%)
[24].

Fact 1 (see [5]) FEwvery local query has the bounded
number of degrees property. O

Thus, without auxiliary relations, queries such as tran-
sitive closure cannot be expressed in FO(C) and even
in £, (C).

3 Main results

We need to define structures that are “as close as pos-
sible” to linear orders. We use the approach of [27]:
take a linear order, and replace a small portion of it at
the end by a preorder whose equivalence classes have
size 2. See Figure 1 for a picture.

Formally, let g : N — R be a nondecreasing function?.
Define <, as the class of binary relations (A, R) such
that there exists a partition A = B U C with |B| >
n — g(n) and the following properties:

20ne can deal with functions ¢ : N — N as well; however, as
in many examples we use log,, we prefer to have R as the range.

e R restricted to B is a linear order.

e R restricted to C' is a preorder where every equiv-
alence class has at most two elements.

e Foranybe Band ce C, (b,c) € R.
e Foranybe Bandce C, (¢,b) ¢ R

Proviso: When we deal with queries in £ + C and
(L +C)y, which are defined on structures (A, A'), A’ €
C, all locality concepts (neighborhoods, degrees, etc)
refer only to the o-structure 4, and not to the auxiliary
structure A’ from C.

Theorem 1 Let g : N — R be a nondecreasing func-
tion that is not bounded by a constant. Then every
query in (L}, (C)+ <y,)w has the bounded number of
degrees property.

That is, with auxiliary structures arbitrarily close to
linear orders, the most powerful of counting logics,
L% (C), still exhibits the very tame behavior typical
for FO queries over unordered structures.

Corollaries With g as above, the (deterministic)
transitive closure, and, more generally, problems com-
plete for classes DLOGSPACE and above it under first-
order reductions, are not definable in any of the count-
ing logics we consider, even in the presence of relations
from <;,. That is,

Corollary 1 Let g N — R be a nondecreasing
function that is not bounded by a constant. Then
every query in (FO(Qu)+ <1,)us (FOC)+ <1,)u,
L:,(C)+ <y, FO(Qu)+ <i,, or FO(C)+ <;, has
the BNDP.

The following corollaries demonstrate the enormous
gain in expressiveness by going from “almost orders” to
orders. By a colored graph we mean a structure of the
signature (E,Uy,...,U,,) where E is binary, and U;s
are unary. That is, it is a graph with a few selected
subsets of nodes. A colored graph query is a binary
query @ on colored graphs; that is, it returns graphs.
The hardness of such a query is defined as the function
Ho : N — N where Hg(n) is max{deg_count(Q(A))}
with A ranging over structures with |A| = n and E
being a successor relation.

Recall that deg_count(-) is the cardinality of the set of
all degrees realized in a structure. That is, the hardness
shows how complex the output might look like if the



>n—g(n) elements

< g(n) elements

Figure 1. A relation from <;,

input is a successor relation with a few colored subsets.
Note that 0 < Hg(n) < n + 1. Since every property
of ordered structures is definable in £ (C) [24], we
obtain the following dichotomy result:

Corollary 2 e Let g: N — R be any nondecreasing
function that is not bounded by a constant. Let Q)
be a colored graph query in L}, (C)+ <;,. Then
there exists a constant C such that Hg(n) < C for
all n.

e For any function f: N — N such that 0 < f(n) <
n + 1, there exists a colored graph query @Q in
L5 (C)+ < such that Hg = f.

Thus, dropping a tiny portion of linear order (e.g.,
loglog...logn elements) accounts for the increase in
hardness from constant to arbitrary one!

FO(C) also admits this kind of dichotomy, as there ex-
ists a colored graph query @ definable in FO(C)+ <
such that Hg(n) > logn [17]. In particular, there are
problems in uniform TC? that cannot be expressed in
FO(C)+ <;,. Moreover, it is known that there are uni-
form ACP (that is, FO(BIT)+ <) queries that violate
the BNDP ([12], see also [6]). Hence, we obtain:

Corollary 3 AC® ¢ (L5, (C)+ <iy)w- =

Corollary 3 also answers an open question from [27].
While [27] showed that trcl ¢ FO(C)+ <, , it was left
open if FO(C)+ <;,= TC" for some function g as in
Theorem 1. Now we have:

Corollary 4 Let g : N — R be as in Theorem 1, and
L be FO(C), or FO(Qu), or L5, (C). Then L+ <;,
# L+ <. Furthermore, FO(C) C FO(C)+ <,.

Note that the presence of some form of counting is
essential in these results: it was shown recently [13]
that every query in FO+ < has the BNDP.

Outline of the proof of Theorem 1 All proofs
of the BNDP that are currently known derive it from
locality of queries. Unfortunately, we cannot use this
method as queries in (£}, (C)+ <;,)w need not be
local.

Proposition 1 Let g(n) < Tlolg"— be nondecreasing,
glogn :
and not bounded by a constant. %hen there exist non-

local queries in (L%, (C)+ <}, )w-

Proof sketch: We construct a query () definable by a
formula (), and a sequence of structures A,, n € N,
with an n-element universe, so that for each n large
enough, there are two points a, b in 4,, with isomorphic
r-neighborhoods, and (A, P) = ¢(a) A —~¢p(b) for any
P €<;,, where r increases with n.

The signature o consists of three unary relations Uy, Us
and C, and one binary relation E. We use P for the
auxiliary relation from <;,. Let I(n) = L%J.
In A,, U; has cardinality M, = I(n)(9(n) + 1) <
log(n — logn), and U, is its complement. The unary
relation C' is interpreted as a two-element subset of
Us. Let E' be defined on U; as a disjoint union of
g(n) + 1 successor relations of length I(n) each. For
each such successor relation Ef, i = 1,...,g(n) + 1, let
¢; be the node at the distance [I(n)/3] from the start
node, and d; be the node at the distance |2 - I(n)/3]

from the start node. Let C*» = {a,b}. We then define
BA = B U UL (a,0), (b.d)-

We next show that there exists a formula B(z,y)
in FO(C) such that B(z,y) implies z,y € C and
(An, P) |= B(a,b) and (A,, P) = =6(b, a) for any inter-
pretation of P as a relation from <;,. This will clearly



suffice, as a and b have isomorphic neighborhoods of

radius O(I(n)).

The formula [(z,y) is defined as C(z) A C(y) A
Fu,v.(E(x,u) A E(y,v) A v(u,v)) where v(u,v) holds
iff there is an E-path from u to v all of whose nodes
are in Pj, the linear order part of P. That 7 can be
expressed follows from two observations: first, there
are sufficiently many successor relations in E for one
of them to be totally contained in P, and second, on
that successor relation, one can use the order part of
P to code monadic second-order using counting, as it
was done in [17]. See [25] for details. O

Proposition 1 provides the first nontrivial example that
separates the notion of locality and the BNDP. Now
one needs a different technique to prove Theorem 1.
We introduce this technique in two steps. In the next
section, we consider two ways of weakening the notion
of locality, and we show that one of them, weak semi-
locality, implies the BNDP. In Section 5, we show how
the bijective games [16] can be used to prove weak semi-
locality of (L%, (C)+ <},)w queries.

4 'Weak locality

To define locality of a query, we considered the equiv-
alence relation @ ~sz! b iff NA(@) = N;“(l_;) We now
consider two refinements that lead to weaker notions
of locality. First, we write @ S22 b if @ ~2 b and

SA(@) N SA®) = 0.

For the other refinement, consider a partition 7 =
(I1, ;) of the set {1,...,n}. Given & = (z1,...,2zn),
we denote by #7 and #Z the subtuples of # that con-
sist of those components whose indices belong to I
or I, respectively. For example, if n = 4 and 7 =
({1,3},4{2,4}), then CUl = (21, :Ug) and 77 = (z2,74).
We then write @ e b for d, be A", if there exists a
partition Z = (11,12) of {1,...,n} such that

. al %Ab
o af =0k

o SA®@GT), SA@T), SA(T) are disjoint.

Clearly, @

-

Ab 1mphes a e, A (by taking I to be
empty), and @ e~y b 1mphes a =~

y,
AT,

Definition 4 An m-ary query QQ on o-structures is
called weakly local if there exists a number r S N such
that for any A € STRUCT[o] and any @,b € A™,

@ &3 Ab implies @ € Q(A) iff b € Q(A).

A query Q) is said to be weakly semi-local if there exists
a number r € N such that for any A € STRUCT|o] and
any @, b € A™, @ A b implies @ € Q(A) iff b € Q(A).

Proposition 2 FEvery local query is weakly semi-local,
and every weakly semi-local query is weakly local. There
exist queries that are weakly local but not weakly semi-
local, and there exist queries that are weakly semi-local
but not local. |

We study these notions because they are easier to prove
than the BNDP, and we will see that the BNDP can
be derived from them. The notion of weak locality is
particularly simple: the only difference between it and
locality is the disjointness of neighborhoods. However,
it only gives us a partial result:

Proposition 3 a) Let Q be a binary weakly local query
(i.e., the output is a graph). Then @ has the bounded
number of degrees property.

b) For every m > 2, there exists an m-ary weakly local
query that does not have the bounded number of degrees
property. O

Combined with the results of Section 5, that would be
sufficient to derive Theorem 1 for queries that return
graphs. However, for arbitrary queries, we need the
more involved notion of weak semi-locality:

Theorem 2 FEvery weakly semi-local query has the
bounded number of degrees property.

Proof sketch. For an m-ary query () on o-structures,
let r witness its weak semi-locality. For each k > 0,
we show how to find a number M = M (o, m,r, k) such
that, whenever A € STRUCT[o], NA(a) = NA(b)
and the isomorphism type of N (a) is realized at least
M times in A, then for each fixed i < m, degree;(a) =
degree;(b) in Q(A). From this we can calculate fg(k)
and derive the BNDP. See [25] for details. O

To incorporate the information about the function g,

we modify the definition as follows: @ w;‘fr bif @ s

§ and ‘SA( 7)U S, (b)‘ < g(|A]). Then a query Q is
g-weakly semi-local if there exists an r € N such that
@ «~7, bimplies @ € Q(A) iff b € Q(A). The following
is easily derived from Theorem 2.

Corollary 5 Let g : N — R be nondecreasing and not
bounded by a constant. Then every g-weakly semi-local
query has the BNDP. O



5 Games and weak semi-locality

The goal of this section is to prove the g-weak semi-
locality of queries in (L%, (C)+ <i,)w. We do this by
using bijective games of [16].

The game is played by two players, called the
spoiler and the duplicator, on two structures A,B €
STRUCT]o]. For the n-round game, in each round i =
1,...,n, the duplicator selects a bijection f; : A — B,
where B is the carrier of B, and the spoiler selects a
point a; € A (if card(A) # card(B), then the spoiler
immediately wins). The duplicator wins after n rounds
if the relation {(a;, fi(a;)) | 1 <i < n} is a partial iso-
morphism A — B; otherwise the spoiler wins. If the
duplicator has a winning strategy in the n-move bijec-
tive game on A and B, we write A =29 B. We write
(A, &) =b% (B, b)) if the duplicator has a winning strat-
egy in the n-move bijective game that starts with the
position (@, b). This condition implies that for a FO (or
FO(Q.)) formula ¢(%) of quantifier rank n, A |E ¢(a)
iff B = o(b) [16]. We extend this to Lk, (C). Note
that the lemma below follows from a slightly more gen-
eral result of [18], but it also has a simple direct proof,
see [25].

Lemma 1 Let o(x1,...,2m) be a LY, (C) formula in
the language of o, with all free variables of the first
sort. Let (A, Q) b (B b), where @ € A™.b € B™.

=rk(e
Then A |= ¢(a@) iff B |: o(b). O

The following is the key lemma, which is proved by a
technique reminiscent of that in [33], extended to deal
with bijective games.

Lemma 2 Let g : N = R be nondecreasing and not
bounded by a constant. For any A, m >0, d,b € A™,
andn >0, if d w;“m 5, then there exists a preorder
P on A such that P €<;, and

(A, Pd@) =l (A PD

Proof  sketch. Let » = 2" and @ w;"r b.
Let T = (Ii,I,) be a partition witnessing that.
We assume without loss of generality that I; is
nonempty and equals {1,...,1}, | < m. Let @ =
(ar, .. ), b = (by, ... ybr), and €= (a1, . am)
(bis1,--.,bm). Then *'*W*Ab' SA(a b’)ﬁSA(*):

and | SA@F3)| < g(1A)):

0,

We now construct P. Let A be SA(@') — {ai,...,a}.
Pick any ordering <; on S;A(@') such that a; <; as <

. <1 a; and further, for any a € SA(@') - {ai,...,a;}
we have a; <1 a, for each i = 1,...,[, and for any
a,a" € SAa@) —{ai,...,a}, d(a ' ,@') < d(a",ad) im-
plies a' <7 a'.

Let h be an isomorphism of NA(@) onto NA(B). De-
fine, on SA(H'), an ordering <, by letting b’ <y b iff
h=L(¥") <1 h=1(b"). Clearly, the initial fragment of
<o i8S (bl,....bl). and it respects the distance to b
d(b',b') < d(b",8") implies b’ <5 b'".

Let Py be an arbitrary linear ordering on A — S;“(c'[’l_)").
Intuitively, P is Py followed by a preorder obtained
by putting together <; and <2, and tying them by h.
Formally, (z,y) € P iff

-,

[ z,y ¢ SA@V) and (z,y) € Py, or

z & SA@DV) and y € SA@V),

z € SAMa@),y € SA@) and x <, y, or

x € SA(I_)") y € SA(E’) and ¢ <2 y, or

z € SA®@),y € SAW) and h(z) <5 y, or
| 2 € SAW),y € SA@) and & <5 h(y)

It easily follows from @ &2 72, 8 that P €<,

Our next claims give a winning strategy for the du-
plicator in the bijective game on A; = (A, P,@) and
A; = (AP, b). Note that the universe of both struc-
tures is the same, A, and in the game the spoiler se-

lects points in A, and the duplicator select bijections
f:A—> A

Define a binary relation H on SA(@'H) by letting
(z,y) € H iff x = h(y) or y = h(z). We show
that the duplicator can play in such a way that, if
Z=(zx1,...,2,) and ¥ = (y1,...,yn) are points played
on Az and A; respectively after n rounds, then there
exists a set J C {1,...,n} with the followmg proper-
ties. (1) If j € J, then (a:],y]) €H. (2)If j ¢ J, then
z; = yj. (3) @7 ~g g’ﬂ'J, where 77 is the subtuple
of # that consists of the component of # whose indices
are in J, and likewise for 777. (4) d4(@#’,%7) > 1, and

da(0'§?,#7) > 1, where d 4 is the distance in G(A), and
#7 consists of the components of # whose indices are
J

not in Z”.
This suffices to show that the dqulicator wins. For this
we need to establish @' ~g' b'@yj, and furthermore,
show that the mapping F' induced by these two tuples
preserves P. The latter is clear though as for any v =
F(u), either w = v or (u,v) € H, by construction and
thus P is preserved. To see that a'cF ~s b’cy, notice



that @27 ~q b'g” by (3), and by (4) and the definition
of & da(@z’,c8”) > 1, and du(b'§”’,e8’) > 1. Thus
no o-relation can have a tuple containing an element
of @#’ and an element of &/, or an element of b'g”’
and an element of ¢#/. This suffices to conclude that
a'ér ~g l_)”é’gj, and thus the duplicator wins the n-round

game, provided (1)-(4) hold.

To prove that the duplicator can play as required, we
use a strategy somewhat similar to the one used in
[33] for ordinary (not bijective) games. Details can be
found in [25]. O

We now put these two lemmas together to show

Theorem 3 Let g be nondecreasing and not bounded
by a constant, and let () be an m-ary query in
(Lo (C)+ <1,)w- Then Q is g-weakly semi-local.

Proof: Let @ be definable by ¢(x1,..., %), where ¢
is a L} ,(C) formula in the language of o and an ex-
tra symbol S for the auxiliary preorder. Let A be a
o-structure, with Ei,g € A™ and ad w;‘an 5, where
n = rk(p). Assume that ¢ is <; -invariant on A.
Let Py be a preorder on A, such that Py €<;,. Let
i € Q(A) = ¢[(A,R)]. Choose P to be the pre-
order given by Lemma 2. Due to the invariance of
¢, @ € l(A,P)]; that is, (A, P) = (). By Lem-
mas 2 and 1, (A, P) = ¢(b), and again by invariance
(A, Po) = ¢(B). Thus, b € @[(A, Py)] = Q(A). This
proves g-weak semi-locality of Q). O

Corollary 6 Let 25 be the class of preorders in which
every equivalence class has size at most 2. Then every
query definable in L%, (C)+ 3o is weakly semi-local,
and has the BNDP. O

Proof of Theorem 1 Let Q be in (£}, (C)+ <},)w-
By Theorem 3, it is g-weakly semi-local. By Corollary
5, it has the BNDP. O

6 Conclusion

We have shown that queries definable in counting logics
FO(C), FO(Qu) and L% ,(C), in the presence of rela-
tions from the class <;  have the bounded number of
degrees property. In other words, even extremely pow-
erful counting logics in the presence of relations which
are almost-everywhere linear orders have a very tame
behavior. The situation changes drastically when <j,

is replaced by a linear order: for example, £, (C)+ <
expresses every query on ordered structures. Some mo-
tivation for this study stems from a result in [27] that
showed, in a rather ad hoc way, that transitive closure
is not definable in FO(C)+ <;,. As FO(C)+ < cap-
tures uniform TC?, one may wonder if the techniques
could extend from <}, to <. In fact, [27] did not re-
solve the problem whether FO(C)+ <, # FO(C)+ <,
thus leaving open the possibility that the two may co-
incide. We showed here that this is not the case. The
results in this paper provide further evidence that it is
very hard to separate TC® from other classes, e.g., NP.
Unlike previous results of this kind [32], we showed in-
herent limitations of the current techniques in descrip-
tive complexity, based on the structure of the auxiliary
relations.

The techniques of this paper cannot be straightfor-
wardly extended to prove separation results in the or-
dered case. The logic £}, (C) is very powerful, as it
expresses every property of natural numbers, and all
other known counting extensions of FO can be embed-
ded into it. We also relied on bijective games to prove
the main result. However, bijective games characterize
expressiveness of a logic which defines all queries on or-
dered finite structures. Thus, in the ordered case one
cannot use the generic techniques from [16, 23, 24, 28]
that apply to a variety of counting logics.

It was shown in [8] that if there is a proof of inexpress-
ibility of some property in FO(C)+ <, then there must
be a proof of that based on the counting games of [20].
The counting game is weaker than the bijective game;
on the other hand, it does not have the inherent limita-
tions of the latter in the ordered case. Thus, a possible
way of proving a separation result may be to modify the
locality techniques to work with the counting, rather
than bijective, games.

Another approach would be to modify the ordered con-
jecture of [22] to include counting. Namely, such a
modified conjecture would say that there is no un-
bounded class of ordered structures on which FO(C)
captures polynomial time. One reason to consider this
is that there are strong indications that for FO the con-
jecture holds [22]. With counting, however, one has
to be careful: by considering the class of linear orders
and adding unary quantifiers which test for polynomial
time properties of cardinalities, one obtains a counting
logic for which the conjecture fails. However, FO(C)
has rather limited arithmetic, and perhaps an attempt
to understand why it fails to capture polynomial time
on various classes of structures may lead to a better un-
derstanding of its structural properties which are not



shared by other counting logics.
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