
On the Satisfiability of Two-Variable Logic over

Data Words

Claire David, Leonid Libkin, and Tony Tan

School of Informatics, University of Edinburgh

Abstract. Data trees and data words have been studied extensively
in connection with XML reasoning. These are trees or words that, in
addition to labels from a finite alphabet, carry labels from an infinite
alphabet (data). While in general logics such as MSO or FO are unde-
cidable for such extensions, decidablity results for their fragments have
been obtained recently, most notably for the two-variable fragments of
FO and existential MSO. The proofs, however, are very long and non-
trivial, and some of them come with no complexity guarantees. Here we
give a much simplified proof of the decidability of two-variable logics for
data words with the successor and data-equality predicates. In addition,
the new proof provides several new fragments of lower complexity. The
proof mixes database-inspired constraints with encodings in Presburger
arithmetic.

1 Introduction

The classical theory of automata and formal languages deals primarily with finite
alphabets. Nonetheless, there are several models of formal languages, regular or
context free, that permit an infinite alphabet, e.g., [3, 6, 14, 17]. Most of the
models, however, lack the usual nice decidability properties of automata over
finite alphabets, unless strongs restrictions are imposed.

Recently the subject of languages over infinite alphabets received much at-
tention due to its connection with the problems of reasoning about XML [2, 4, 5,
8, 9]. The structure of XML documents is usually modeled by labeled unranked
trees [15, 21, 25], and thus standard automata techniques can be used to reason
about the structure of XML documents. However, XML documents carry data,
which is typically modeled as labeling nodes by letters from a different, infinite
alphabet.

Thus, one needs to look for decidable formalisms in the presence of a second,
infinite alphabet. Such formalisms are hard to come by, and tend to be of very
high complexity. Nonetheless, some significant progress has been made recently
[4]. Namely, it was shown that the restriction of first-order logic to its two-
variable fragment, FO2, remains decidable over trees with labels coming from
an infinite alphabet (we refer to them as data trees). This is the best possible
restriction in terms of the number of variables: the three-variable fragment FO3

is undecidable [4].

The result is true even if the sentence is preceded by a sequence of existential
monadic second-order quantifiers, i.e., for logic ∃MSO2. The 30-page long proof
of this decidability result, however, was very nontrivial relying on a complicated
automaton model and over 20 combinatorial reduction lemmas, and gave no
insight into the complexity of fragments nor the possibility of extending it to
more expressive logics.

However, we do want to have tools to reason about languages over infinite
alphabets, so there is a search for easier tools. One direction is to look for re-
strictions, both in terms of structures and logics [2, 10]. As for restrictions, the
most natural idea appears to be to look for tools over words, rather than trees.
This has been done in [5, 8], which provided decidable formalisms for data words,
i.e., words labeled by both a finite and an infinite alphabet. In fact, [5] showed
that the two-variable logic is decidable. Specifically, it showed that in the pres-
ence of both ordering and successor relations on the domain, the logic ∃MSO2

is decidable; no upper bound on the complexity is known, however. The proof,
however, is again highly nontrivial and not particularly modular.

Our main goal is to give a much simpler and completely self-contained proof
of the decidability of satisfiability of the two-variable logic over data words. We
do it for the case when the successor relation is available on the domain (as with
the successor relation, the logic ∃MSO2 can already define all regular languages).
The proof avoids most of the complicated combinatorics of the proofs of [4, 5],
instead relying on two key ideas: reducing the problem to resoning about some
specific constraints (similar to those used in database theory [1]), and using tools
based on Presburger arithmetic to reason about those.

Organization In Section 2 we give the key definitions of data words and logics
on them and state the main result. In Section 3 we provide additional definitions
and notations. In Section 4 we provide the machinery needed for the main proof.
In Section 5 we present the proof of the decidability result. In conclusion, we
analyse the complexity of the our decision procedures.

2 Data words and the main result

2.1 Data words

Let Σ be a finite alphabet and D be an infinite set of data values. To be concrete,
we assume that D contains N, t he set of natural numbers. A data word is simply
an element of (Σ×D)∗. We usually write w =

(

a1

d1

)

· · ·
(

an

dn

)

for data words, where
ai ∈ Σ and di ∈ D. We define the Σ projection of w as Proj(w) = a1 · · · an.

An a-position is a position labeled with the symbol a. The set of data values
found in a-positions of a data word w is denoted by Vw(a), while the number of
a-positions in w is denoted by #w(a).

The following notion is used throughout the paper. For a set S ⊆ Σ,

[S]w =
⋂

a∈S

Vw(a) ∩
⋂

b/∈S

Vw(b).

That is, [S]w is the set of data values that are found in a-positions for all
a ∈ S but are not found in any b-position for b 6∈ S. Note that the sets [S]w’s
are disjoint, and that Vw(a) =

⋃

a∈S [S]w for each a ∈ Σ.
We say that a data word is locally different, if every position has a different

data value than its left- and right-neighbors.

2.2 Logics over data words

For the purpose of logical definability, we view data words of length n as struc-
tures

w = 〈{1, . . . , n},+1, {a(·)}a∈Σ,∼〉, (1)

where {1, . . . , n} is the domain of positions, +1 is the successor relation (i.e.,
+1(i, j) iff i + 1 = j), the a(·)’s are the labeling predicates, and i ∼ j holds iff
positions i and j have the same data value.

We let FO stand for first-order logic, MSO for monadic second-order logic
(which extends FO with quantification over sets of positions), and ∃MSO for ex-
istential monadic second order logic, i.e., sentences of the form ∃X1 . . . ∃Xm ψ,
where ψ is an FO formula over the vocabulary extended with the unary predi-
cates X1, . . . , Xm. We let FO2 stand for FO with two variables, i.e., the set of
FO formulae that only use two variables x and y. The set of all sentences of the
form ∃X1 . . . ∃Xm ψ, where ψ is an FO2 formula is denoted by ∃MSO2.

To emphasize that we are talking about a logic over data words we
write (+1,∼) after the logic: e.g., FO2(+1,∼) and ∃MSO2(∼,+1). Note that
∃MSO2(+1) is equivalent in expressive power to MSO over the usual (not data)
words, i.e., it defines precisely the regular languages [24].

It was shown in [5] that ∃MSO2(+1, <,∼) is decidable over data words. In
terms of complexity, the satisfiability of this logic is shown to be at least as hard
as reachability in Petri nets. Without the +1 relation, the complexity drops to
Nexptime-complete; however, without +1 the logic is not sufficiently expressive
to capture regular relations on the data-free part of the word.

Our main goal is to give a transparent and self-contained proof of the follow-
ing:

Theorem 1. The satisfiability problem is decidable for ∃MSO2(∼,+1) over data
words. Moreover, the complexity of the decision procedure is elementary.

The result itself can already be infered from the decidability proof of the logic
with local navigation over data trees given in [4], which yields a 4-exponential
complexity bound. However this proof does not give any hints in understanding
the difficulty of the problem : it is a 30-page proof long, and goes via more than a
dozen combinatorial reduction lemmas. Our proof yields a 5-exponential bound.

Neither of these bounds are of course even remotely practical. The primary
goal of these results is to delineate the boundary of decidability, so that later
we could search for efficient subclasses of decidable classes of formulae. And
for such a search, it is crucial to have simple and well-defined tools for proving
decidability; providing such tools is precisely our goal here.

Indeed a few fragments of lower complexity are already provided here. Fur-
thermore, in [9] a fragment whose satisfiability is decidable in NP is obtained. 1

With our proof we gain some insight on how the complexity “moves up contin-
uously” from NP to 5 exponential. Such insight is lacking in [4].

3 Additional notations

3.1 Disjunctive constraints for data words

We consider two types of constraints on data words, which are slight generaliza-
tions of keys and inclusion constraints used in relational databases [1]. They are
defined as the following logical sentences.

1. A disjunctive key constraint (dk) is a sentence of the form:

∀x ∀y
((

∨

a∈Σ′

a(x) ∧
∨

a∈Σ′

a(y) ∧ x ∼ y
)

→ x = y
)

,

where Σ′ ⊆ Σ. We denote such sentence by V (Σ′) 7→ Σ′.
2. A disjunctive inclusion constraint (dic) is as sentence of the form:

∀x ∃y
(

∨

a∈Σ1

a(x) →
∨

b∈Σ2

b(y) ∧ x ∼ y
)

,

where Σ1, Σ2 ⊆ Σ. We denote such sentence by V (Σ1) ⊆ V (Σ2).

For a set C of dk’s and dic’s, the data word w satisfies C, written as w |= C, if w
satisfies all sentences in C.

In [9] the constraints considered are when the cardinalities |Σ′|, |Σ1|, |Σ2|
are all one, which are simply known as key and inclusion constraint.

3.2 Existential Presburger formulae

Atomic Presburger formulae are of the form: x1 + x2 + · · ·xn ≤ y1 + · · · + ym,
or x1 + · · ·xn ≤ K, or x1 + · · ·xn ≥ K, for some constant K ∈ N. Existential
Presburger formulae are Presburger formulae of the form ∃x̄ ϕ, where ϕ is a
Boolean combination of atomic Presburger formulae.

We shall be using Presburger formulae defining Parikh images of words. Let
Σ = {a1, . . . , ak}, and let v ∈ Σ∗. By Parikh(v) we mean the Parikh image of v,
i.e., (#v(a1), . . . ,#v(ak)), i.e., k-tuple of integers (n1, . . . , nk) so that ni is the
number of occurrences of ai in v.

With alphabet letters, we associate variables xa1
, . . . , xak

. Given a Pres-
burger formula ϕ(xa1

, . . . , xak
), we say that a word v ∈ Σ∗ satisfies it, written

as v |= ϕ(xa1
, . . . , xak

) if and only if ϕ(Parikh(v)) holds. It is well-known that for
every regular language L, one can construct an existential Presburger formula
ϕL(xa1

, . . . , xak
) so that a word v satisfies it iff it belongs to L [20]; moreover,

the formula can be constructed in polynomial time [23].

1 This fragment is context free languages with the constraints on the data values of
the forms: ∀x∀y a(x) ∧ a(y) ∧ x ∼ y → x = y, and ∀x∃y a(x) → b(y) ∧ x ∼ y.

3.3 Presburger automata

A Presburger automaton is a pair (A, ϕ), where A is a finite state automaton and
ϕ is a existential Presburger formula. A word w is accepted by (A, ϕ), denoted
by L(A, ϕ) if w ∈ L(A) (the language of A) and ϕ(Parikh(w)) holds.

Theorem 2. [23] The emptiness problem for presburger automata is decidable
in NP.

3.4 Profile automata for data words

Given a data word w =
(

a1

d1

)

· · ·
(

an

dn

)

, the profile word of w, denoted by Profile(w),
is the word

Profile(w) = (a1, L1, R1), . . . , (an, Ln, Rn) ∈ (Σ × {∗,⊤,⊥}× {∗,⊤,⊥})∗

such that for each position i = 1, . . . , n, the values of Li and Ri are either ⊤,
or ⊥, or ∗. If Li = ⊤ and i > 1, it means that the position on the left, i − 1,
has the same data value as position i; otherwise Li = ⊥. If i = 1 (i.e., there is
no position on the left), then Li = ∗. The meaning of the Ri’s is similar with
respect to positions on the right of i.

Definition 1. A profile automaton A is a finite state automaton over the alpha-
bet Σ×{∗,⊤,⊥}×{∗,⊤,⊥}. It defines a set Ldata(A) of data words as follows:
w ∈ Ldata(A) if and only if A accepts Profile(w) in the standard sense.

A profile automaton A and a set C of disjunctive constraints define a set of
data words as follows.

L(A, C) = {w | w ∈ Ldata(A) and w |= C}.

3.5 A normal form for ∃MSO2(∼, +1)

Decidability proofs for two-variable logics typically follow this pattern: first,
in an easy step, a syntact normal form is established; then the hard part is
combinatorial, where decidability is proved for that normal form (by establishing
the finite-model property, or by automata techniques, for example).

A normal form for ∃MSO2(∼,+1) was already given in [4], and we shall use
it with just a small modification. In [4] it was shown that every ∃MSO2(∼,+1)
formula over data words is equivalent to a formula

∃X1 . . .∃Xk(χ ∧
∧

i

ϕi ∧
∧

j

ψj)

where

1. χ describes the behavior of a profile automaton (i.e., it can be viewed as an
FO2(+1) formula over the extended alphabet Σ × {∗,⊤,⊥}× {∗,⊤,⊥});

2. each ϕi is of the form ∀x∀y(α(x) ∧ α(y) ∧ x ∼ y → x = y), where α is a
conjunction of labeling predicates, Xk’s, and their negations; and

3. each ψj is of the form ∀x∃y α(x) → (x ∼ y ∧α′(y)), with α, α′ as in item 2.

The number of the unary predicates X ’s is single exponential in the size of the
original input sentence.

If we extend the alphabet to Σ×2k so that each label also specifies the family
of the Xi’s the node belongs to, then formulae in items 2 and 3 can be encoded
by disjunctive constraints: formulae in item 2 become dk’s V (Σ′) 7→ Σ′, and
formulae in item 3 become dic’s V (Σ1) ⊆ V (Σ2), where Σ′, Σ1, Σ2 ⊆ Σ × 2k.

Indeed, consider, for example, the constraint ∀x∀y(α(x) ∧ α(y) ∧ x ∼ y →
x = y). Let Σ′ be the set of all symbols (a, b̄) ∈ Σ × 2k consistent with α. That
is, a is the labeling symbol used in α (if α uses one) or an arbitrary letter (if α
does not use a labeling predicate), and the Boolean vector b̄ has 1 in positions
of the Xis used positively in α and 0 in positions of Xj ’s used negatively in α.
Then the original constraint is equivalent to V (Σ′) 7→ Σ′. The transformation
of type-2 constraints into dic’s is the same. The details of this straightforward
construction can be found in the Appendix.

Hence, [4] and the above, imply the following. Let SAT-profile be the
problem:

Problem: SAT-profile

Input: a profile automaton A and
a collection C of disjunctive constraints

Question: is there a data word w ∈ Ldata(A) such that w |= C?

Then:

Lemma 1. Given an ∃MSO2(∼,+1) sentence ϕ, one can construct, in triple
exponential time, an instance (A, C) of SAT-profile over a new alphabet Σ so
that SAT-profile(A, C) returns true iff ϕ is satisfiable. However, the size of
(A, C) and Σ is double exponential in the size of ϕ.

Thus, our main goal now is to prove:

Theorem 3. SAT-profile is decidable with elementary complexity.

The main result, Theorem 1, is an immediate consequence of Theorem 3 and
Lemma 1.

4 Some preliminary results

Proposition 1. For every data word w, the following holds.

1. w |= V (Σ′) 7→ Σ′ if and only if #w(a) = |Vw(a)| for each a ∈ Σ′ and
[S]w = ∅, whenever |S ∩Σ′| ≥ 2.

2. w |= V (Σ1) ⊆ V (Σ2) if and only if [S]w = ∅, for all S such that S ∩Σ1 6= ∅
and S ∩Σ2 = ∅.

Proof. Part 1 is trivial. For part 2, note that
⋃

a∈Σ1
Vw(a) ⊆

⋃

b∈Σ2
Vw(b) if

and only if
(
⋃

a∈Σ1
Vw(a)

)

∩
⋂

b∈Σ2
Vw(b) = ∅, which, of course, is equivalent to

[S]w = ∅, whenever S ∩Σ1 6= ∅ and S ∩Σ2 = ∅. 2

Lemma 2. For every set C of disjunctive constraints, one can construct, in
single-exponential time, a Presburger formula ϕC(xa1

, . . . , xak
) such that for ev-

ery data word w, we have w |= C if and only if ϕC(Parikh(Proj(w))) holds.

Proof. Let S1, . . . , Sm be the enumeration of non-empty subsets of Σ, where
m = 2|Σ| − 1. The formula ϕC is of the form ∃zS1

· · · ∃zSm
ψ, where ψ is the

conjunction of the following quantifier-free formulas:

P1. xa ≥
∑

S∋a zS , for every a ∈ Σ;
P2. if V (Σ′) 7→ Σ′ ∈ C, we have the conjunction:

∧

|S∩Σ′|≥2

zS = 0 ∧
∧

a∈Σ′

xa =
∑

a∈S

zS

P3. if V (Σ1) ⊆ Σ2 ∈ C, we have the conjunction:

∧

S∩Σ1 6=∅ and S∩Σ2=∅

zS = 0

We claim that for every data word w, w |= C if and only if ϕC(Parikh(Proj(w)))
holds.

Let w be a data word such that w |= C. We need to show that
ϕC(Parikh(Proj(w))) holds. As witnesses for zS, for each S ⊆ Σ, we pick
zS = |[S]w|. Now we need to show that all the conjuctions P1–P3 above are sat-
isfied. P1 is definitely satisfied, as for each a ∈ Σ,

∑

S∋a zS = |Vw(a)| ≤ #w(a).
P2 and P3 follow from Proposition 1.

– If w |= V (Σ′) 7→ Σ′, then #w(a) = |Vw(a)| for each a ∈ Σ and [S]w = ∅,
whenever |S ∩Σ′| ≥ 2. So, P2 is automatically satisfied.

– If w |= V (Σ1) ⊆ V (Σ2), then [S]w = ∅, for all S such that S ∩ Σ1 6= ∅ and
S ∩Σ2 = ∅. Obviously then P3 is satisfied.

Now suppose that v is a word such that ϕC(Parikh(v)) holds. We can assign
data values to v such that the resulting data word w satisfies every constraints in
C. Let zS = mS be some witnesses of that ϕC(Parikh(v)) holds. Let K =

∑

S mS .
We are going to assign the data values {1, . . . ,K} to v as follows. Define a
function

ξ : {1, . . . ,K} → 2Σ − {∅},

such that |ξ−1(S)| = mS . We then assign the a-positions in v with the data
values

⋃

a∈S ξ
−1(S), for each a ∈ Σ, resulting in a data word w. Such assign-

ment is possible since
∑

a∈S |ξ−1(S)| =
∑

a∈S mS ≤ #v(a). By definition of the
function ξ, we obtain that [S]w = ξ−1(S). That w |= C follows immediately from
Proposition 1. 2

Lemma 2 immediately implies the decidability of a slightly simpler version
of SAT-profile. Consider the following problem:

Problem: SAT-automaton

Input: a finite state automaton A and
a collection C of disjunctive constraints

Question: is there a data word w such that Proj(w) ∈ L(A) and w |= C?

By Lemma 2, we can construct in exponential time a Presburger formula ϕC of
exponential size such that for all data words w we have, w |= C if and only if
ϕC(Parikh(Proj(w))). Combining it with Theorem 2, we immediately obtain the
decidability of the above problem:

Corollary 1. SAT-automaton is decidable with elementary complexity.

The following lemma is crucial in our proof of Theorem 3.

Lemma 3. Let v be a word over Σ. Suppose that for each a ∈ Σ, we are given
a set Va of data values such that

– if Va = ∅, then #v(a) = 0; and
– #v(a) ≥ |Va| ≥ |Σ| + 3 otherwise.

Then we can assign a data value to each position in v such that the resulting
data word w is locally different and for each a ∈ Σ, Va = Vw(a).

Proof. Let v = a1 · · · an. First we assign data values in the following manner:
Let a ∈ Σ. Assign each of the data values from Va in |Va| number of a-positions
in v. One position gets one data value. Since #a(v) ≥ |Va|, such assignment is
possible, and moreover, if #a(v) > |Va|, then some a-positions are without data
values. We do this for each a ∈ Σ.

Let w =
(

a1

d1

)

· · ·
(

an

dn

)

be the resulting data word, where we write di = ♯ to
denote that position i is still without data value. In the data word w, for each
a ∈ Σ, we already have Vw(a) = Va.

However, by assigning data values just like that, the data word w may not
be locally different. There may exists i ∈ {1, . . . , n− 1} such that di = di+1 and
di, di+1 6= ♯. We call such a position a conflict position. Now, we show that we
can always rearrange the data values in w such that the resulting data word has
no conflict positions. Suppose position i is a conflict position labeled a. Since
there are only |Σ| symbols, the data value di can only occur at most |Σ| times
in w. Since |Va| ≥ |Σ| + 3 > |Σ|, there exists a position j such that

– aj = a and dj 6= ♯;
– dj−1, dj+1 6= di.

Now there are ≥ |Σ|+ 3 − |Σ| = 3 such positions. From all such positions, pick
one position j whose data value dj 6= di−1, di+1. We can then swap the data
values di and dj , resulting in less number of conflict positions inside w. We can
repeat this process until there is no more conflict positions inside w.

The final step is to assign data values for the positions in w which do not
have data value. This is easy. Since for each a ∈ Σ, |Va| ≥ |Σ|+3 ≥ 3, if the data
value di = ♯, then we can choose one data value from Vai

which is different from
its left- and right-neighbors. This still ensures that we get a a locally different
data word at the end. This completes the proof. 2

5 Proof of Theorem 3

For the sake presentation, we divide it into a few subsections. In Subsection 5.1,
we present our algorithm for deciding SAT-profile over locally different data
words. Then, we explain how our algorithm can be extended to the general case
in Subsection 5.2.

5.1 Satisfiability over locally different data words

In this subsection we give elementary algorithm to decide the problem SAT-

locally-different define below. This problem is still a more restricted version
of SAT-profile, but more general than SAT-automaton.

Problem: SAT-locally-different

Input: a finite state automaton A and
a collection C of disjunctive constraints

Question: is there a locally different data word w such that
Proj(w) ∈ L(A) and w |= C?

We further divide the proof for satisfiability SAT-locally-different into
two cases:

– First, we show how to decide SAT-locally-different over data words
with “many” data values.

– Second, we settle SAT-locally-different in the general case.

We say that a data word w has “many” data values if for all S ⊆ Σ, the
cardinality |[S]w| is either 0 or ≥ |Σ|+3. Notice that if a data word w has many
data values, then either |Vw(a)| = 0 or |Vw(a)| ≥ |Σ| + 3 for all a ∈ Σ.

The case of data words with many data values. By Lemma 2, we can
construct a Presburger formula ϕC such that for every data word w,

w |= C if and only if ϕC(Parikh(Proj(w))) holds.

So, for every data word w, w ∈ L(A, C) if and only if Proj(w) ∈ L(A, ϕC).
Recall that the formula ϕC is of the form: ∃zS1

· · · ∃zSm
ψC, where S1, . . . , Sm

is the enumeration of non-empty subsets of Σ and the intention of each zSi
is to

represent |[Si]w| for data words w for which ϕC(Parikh(Proj(w))) holds.

The idea is as follows: given a set F ⊆ 2Σ −{∅}, we can decide the existence
of a locally different data word w ∈ L(A, C) such that |[S]w| = 0, if S ∈ F and
|[S]w| ≥ |Σ| + 3, if S /∈ F .

Now, to decide the existence of a locally different data word with many data
values in L(A, C), we do the following.

1. Guess a set F ⊆ 2Σ − {∅}.
2. Construct the formula ϕC from C according to Lemma 2.

Let ϕC be in the form of ∃zS1
· · · ∃zSm

ψC.
3. Define the formula ϕC,F as:

∃zS1
· · · ∃zSm

(

ψC ∧
∧

Si∈F

zSi
= 0 ∧

∧

Si /∈F

zSi
≥ |Σ| + 3

)

4. Test the emptiness of L(A, ϕC,F).

To show that such algorithm is correct, we claim the following.

Claim 4 For every word v ∈ Σ∗, v ∈ L(A, ϕC,F) for some F ⊆ 2Σ if and only
if there exists a locally different data word w ∈ L(A, C) with many data values
such that Proj(w) = v.

Proof. If v ∈ L(A, ϕC,F) for some F , then there exist witnesses zSi
= mSi

such
that ϕC,F(Parikh(v)) holds. By the construction of ϕC,F , we have mSi

= 0, if
Si ∈ F and mSi

≥ |Σ|+3, if Si /∈ F . As in the proof of Lemma 2, we can assign
data values to each position of v, resulting in a data word w such that for each
S ⊆ Σ, |[S]w| = mS which is either ≥ |Σ| + 3 or 0. This means that |Vw(a)|
is either ≥ |Σ| + 3 or 0. (If |Vw(a)| = 0, it means that the symbol a does not
appear in v.) By Theorem 3, we can rearrange the data values in w to obtain a
locally different data word. This data word is in L(A, C).

The converse is straightforward. if w ∈ L(A, C) has many data values, then
v = Proj(w) immediately satisfies ϕC,F , where F = {Si | |[Si]w| = 0}. Thus,
v ∈ L(A, ϕC,F). 2

The general case of SAT-locally-different. The algorithm is more or less
the same as above. The only extra care needed is to consider the case if there
exists a locally different data word w ∈ L(A, C) such that |[S]w| ≤ |Σ| + 2, for
some S ⊆ Σ.

As before, the idea is to decide, given a set F ⊆ 2Σ − {∅}, whether there
exists a locally different data word w ∈ L(A, C) such that [S]w ≤ |Σ| + 2, if
S ∈ F and ≥ |Σ|+3, otherwise. Again, we reduce the problem to the emptiness
of a Presburger automaton.

The main difference is the way to deal with the S ∈ F , as S ∈ F does not
always imply that [S]w is empty but only that its cardinality is bounded by the
constant |Σ|+2. For all these S ∈ F , we can assume that the data [S]w consists
of constants, since |[S]w| ≤ |Σ|+ 2. We denote such sets of constants by ΓS , for
all S ∈ F . Then we embed those constants into the finite alphabet Σ and extend
the automaton A to handle the constraints on those constants.

The details of the algorithm are as follows. It consists of four main steps.

1. The guessing of the set F and the constants ΓS.
a) Guess a set F ⊆ 2Σ − {∅}.
b) For each S ∈ F , guess an integer mS ≤ |Σ|+2 according to the following

rule.
– If V (Σ′) 7→ Σ′ ∈ C, then mS = 0, if |S ∩Σ′| ≥ 2.
– If V (Σ1) ⊆ V (Σ2) ∈ C, then mS = 0, if S ∩Σ1 6= ∅ and S ∩Σ2 = ∅.

c) For each S ∈ F , fix a set ΓS = {αS
1 , . . . , α

S
mS

} of constants such that
ΓS ’s are disjoint, and ΓS ∩ N = ∅. Let ΓF =

⋃

S∈F ΓS .

2. Embedding the constants of ΓS ’s into A.
Construct a finite state automaton A′ (from the automaton A) over the
alphabet Σ ∪ Σ × ΓF as follows. A′ accepts the word v = b1 · · · bn over
Σ ∪Σ × ΓF if and only if the following holds.

– A symbol (a, d) ∈ Σ × ΓF can appear in v if and only if a ∈ S and
d ∈ ΓS .

– Let u = a1 · · · an be a word over Σ such that

ai =

{

bi if bi ∈ Σ,
c if bi = (c, d) ∈ Σ × ΓF

Then, u ∈ L(A).
– For i = 1, . . . , n− 1, if bi = (ai, di) ∈ Σ × ΓF and bi+1 = (ai+1, di+1) ∈
ΓF , then di 6= di+1.

– If V (Σ′) 7→ Σ′ is in C, then for each a ∈ Σ′ and α ∈ ΓS , where a ∈ S,
the symbol (a, αS) appears exactly once in v.

Note that A′ is defined from A with the parameters: F and {ΓS | S ∈ F}.
The construction is straightforward and can be found in Appendix.

3. Constructing the Presburger formula for C.
a) Construct the formula ϕC from C according to Lemma 2.

Let ϕC be in the form of ∃zS1
· · · ∃zSm

ψC.
b) Denote by ϕC,F the formula:

∃zS1
· · · ∃zSm

(

ψC ∧
∧

Si∈F

zSi
= 0 ∧

∧

Si /∈F

zSi
≥ |Σ| + 3

)

4. The decision step. Test the emptiness of L(A′, ϕC,F).

The correctness of the algorithm follows from Claim 5 below.

Claim 5 There exists a locally different data word w ∈ L(A, C) if and only if
there exist a set F ⊆ 2Σ and {ΓS | S ∈ F and |ΓS | ≤ |Σ| + 2} such that
L(A′, ϕC,F) 6= ∅, where A′ and ϕC,F are as defined in our algorithm and the
constants ΓS’s respect Step 1.b) above.

Proof. We prove “only if” part first. Let w ∈ L(A, C) be a locally different data
word. The set F is defined as follows.

– S ∈ F , if the cardinality |[S]w| ≤ |Σ| + 2.
– S /∈ F , if the cardinality |[S]w| ≥ |Σ| + 3.

Without loss of generality, we assume that [S]w = ΓS , for S ∈ F . Let w =
(

a1

d1

)

· · ·
(

an

dn

)

. We construct the word v = b1 · · · bn as follows. For each i = 1, . . . , n,
bi = (ai, di), if di is in some ΓS , otherwise bi = ai.

The rest of data values are in [S]w, for some S /∈ F . So, zS = |[S]w| ≥ |Σ|+3
serves as witnesses for S /∈ F , and zS = 0, for S ∈ F . Thus, v ∈ L(A′, ϕC,F).

Now we prove the “only if” part. Suppose there exist some ΓS ’s and a word
v over the alphabet Σ ∪ (Σ ×

⋃

S∈S ΓS) such that v ∈ L(A′, ϕC,F).
Let v = b1 · · · bn. If bi = (a, α) ∈ Σ × ΓS , then we simply view α as the data

value in that position. For the other positions, where bi = a ∈ Σ, we assign the
data values as before in Lemma 2.

Let zS = mS be the witnesses that v ∈ L(A′, ϕC,F) holds. Let K =
∑

S mS .
Define the following function:

ξ : {1, . . . ,K} → 2Σ − {∅},

where |ξ−1(S)| = mS .
For each a ∈ Σ, we assign the a-positions in v with the data values from

⋃

a∈S ξ
−1(S). If necessary, we can apply Theorem 3 to obtain a locally differ-

ent data word. The data values from ΓS does not prevent us from applying
Theorem 3, since ΓF ∩ {1, . . . ,K} = ∅. 2

5.2 Satisfiability over general data words

Now we extend our idea above to prove Theorem 3. For that we need some
auxiliary terms. Let w =

(

a1

d1

)

· · ·
(

an

dn

)

be a data word overΣ. A zone is a maximal
interval [i, j] with the same data values, i.e. di = di+1 = · · · = dj and di−1 6= di

(if i > 1) and dj 6= dj+1 (if j < n). Obviously each two consecutive zones have
different data values. The zone [i, j] is called an S-zone, if S is the set of labels
occuring in the zone.

The zonal partition of w is a sequence (k1, . . . , kl), where 1 ≤ k1 < k2 <
· · · < kl ≤ n such that [1, k1], [k1 + 1, k2], . . . , [kl + 1, n] are the zones in w. Let
the zone [1, k1] be an S1-zone, [k1 + 1, k2] an S2-zone, [k2 + 1..k3] an S3-zone,
and so on. The zonal word of w is a data word over Σ ∪ 2Σ defined as follows.

Zonal(w) = a1 · · · ak1

(

S1

dk1

)

ak1+1 · · ·ak2

(

S2

dk2

)

· · · akl+1 · · · an

(

Sl

dn

)

.

That is, the zonal word of a data word is a word in which each zone is succeeded
by a label S ∈ 2Σ , if the zone is an S-zone.

Moreover, it is sufficient to assume that only the positions labeled with sym-
bols from 2Σ carry data values, i.e., data values of their respective zones. Since
two consecutive zones have different data values, two consecutive positions (in
Zonal(w)) labeled with symbols from 2Σ also have different data values.

Furthermore, if w is a data word over Σ, then for each a ∈ Σ,

Vw(a) =
⋃

a∈S

V
Zonal(w)(S).

Proposition 2 below shows that disjunctive constraints for data words over the
alphabet Σ can be converted into disjunctive constraints for the zonal data words
over the alphabet Σ ∪ 2Σ .

Proposition 2. For every data word w over Σ, the following holds.

– For Σ′ ⊆ Σ, w |= V (Σ′) 7→ Σ′ if and only if

K1. Zonal(w) |= V (Q) 7→ Q, where Q = {S | S ∩Σ′ 6= ∅};
K2. in Zonal(w) every zone contains at most one symbol from Σ′.

(By a zone in Zonal(w), we mean a maximal interval in which every
positions are labeled with symbols from Σ.)

– For Σ1, Σ2 ⊆ Σ, w |= V (Σ1) ⊆ V (Σ2) if and only if Zonal(w) |= V (Q1) ⊆
V (Q2), where Q1 = {S | S ∩Σ1 6= ∅} and Q2 = {S | S ∩Σ2 6= ∅}.

Now, given a profile automaton A over the alphabet Σ, we can construct
effectively an automaton Azonal such that for all data word w,

Profile(w) ∈ L(A) if and only if Proj(Zonal(w)) ∈ L(Azonal).

Such an automaton Azonal is called a zonal automaton of A. Moreover, if the dk
V (Σ′) 7→ Σ′ ∈ C, we can impose the condition K2 in Proposition 2 inside the
automaton Azonal.

This together with Proposition 2 imply that the instance (A, C) of SAT-

profile can be reduced to an instance of the following problem.

Problem: SAT-locally-different-for-zonal-words

Input: • a zonal automaton Azonal

• a collection Czonal of disjunctive constraints over the alphabet 2Σ

Question: is there a zonal word w such that
• Proj(w) ∈ L(Azonal) and w |= Czonal and
• in which two consecutive positions labeled with symbols from 2Σ

have different data values?

The proof in the previous subsection can then be easily adapted to SAT-

locally-different-for-zonal-words. The details can be found in the Ap-
pendix.

6 Analysis of the complexity

As a conclusion, we provide the complexity of our algorithms.

SAT-automaton : NExpTime

NP(if the alphabet Σ is fixed)
SAT-locally-different : NExpTime

NP(if the alphabet Σ is fixed)
SAT-profile : 2-NExpTime

NP(if the alphabet Σ is fixed)

In our algorithms, all three problems are reduced to the emptiness problem for
Presburger automata which is decidable in NP(Theorem 2).

In SAT-automaton the exponential blow-up occurs when reducing the dk’s
and dic’s in C to the existential Presburger formula ϕC (Lemma 2). This formula
ϕC has exponentially many variables zS , for every S ⊆ Σ. Of course, if the
alphabetΣ is fixed, then the reduction is polynomial, hence, the NP-membership
for SAT-automaton. It is the same complexity for SAT-locally-different.

For SAT-profile the additional exponential blow-up occurs when trans-
lating the dk’s and dic’s over the alphabet Σ to the dk’s and dic’s over the
alphabet 2Σ . Now combining this with Lemma 1, we obtain the 4-NExpTime

upper bound for the satisfaction of ∃MSO2(∼,+1).

References

1. S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases, Addison Wesley, 1995.
2. H. Björklund, M. Bojanczyk. Bounded depth data trees. In ICALP’07, pages

862–874.
3. L. Boasson. Some applications of CFL’s over infinte alphabets. Theoretical Com-

puter Science, LNCS vol. 104, 1981, pages 146–151.
4. M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin. Two-variable logic on data

trees and XML reasoning. J. ACM 56(3): (2009).
5. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin. Two-variable

logic on words with data. In LICS’06, pages 7-16.
6. P. Bouyer, A. Petit, D. Thérien. An algebraic characterization of data and timed

languages. CONCUR’01, pages 248–261.
7. S. Dal-Zilio, D. Lugiez, C. Meyssonnier. A logic you can count on. In POPL 2004,

pages 135–146.
8. S. Demri, R. Lazic. LTL with the freeze quantifier and register automata. ACM

TOCL 10(3): (2009).
9. W. Fan, L. Libkin. On XML integrity constraints in the presence of DTDs. J.

ACM 49(3): 368–406 (2002).
10. D. Figueira. Satisfiability of downward XPath with data equality tests. In

PODS’09, pages 197–206.
11. S. Ginsburg and E.H. Spanier. Semigroups, Presburger formulas, and languages.

Pacific J. Math., 16 (1966), 285–296.
12. E. Grädel, Ph. Kolaitis, M. Vardi. On the decision problem for two-variable first-

order logic. BSL, 3(1):53–69 (1997).
13. M. Jurdzinski, R. Lazic. Alternation-free modal mu-calculus for data trees. In

LICS’07, pages 131–140.
14. M. Kaminski, T. Tan. Tree automata over infinite alphabets. In Pillars of Com-

puter Science, 2008, pages 386–423.

15. L. Libkin. Logics for unranked trees: an overview. In ICALP’05, pages 35-50.
16. F. Neven. Automata, logic, and XML. In CSL 2002, pages 2–26.
17. F. Neven, Th. Schwentick, V. Vianu. Finite state machines for strings over infinite

alphabets. ACM TOCL 5(3): (2004), 403–435.
18. M. Otto. Two variable first-order logic over ordered domains. J. Symb. Log. 66(2):

685-702 (2001).
19. C. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–

768, 1981.
20. R. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.
21. Th. Schwentick. Automata for XML – a survey. JCSS 73 (2007), 289–315.
22. H. Seidl, Th. Schwentick, A. Muscholl. Numerical document queries. In PODS

2003, 155–166.
23. H. Seidl, Th. Schwentick, A. Muscholl, P. Habermehl. Counting in trees for free.

In ICALP 2004, pages 1136–1149.
24. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,

Vol. 3, Springer, 1997, pages 389–455.
25. V. Vianu. A web Odyssey: from Codd to XML. In PODS’01, pages 1–15.

