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1 Introduction

It was proved in [1] that lower and upper powerdomain constructions commute on all domains. In
that proof, domains were represented as information systems. In [2] a rather complicated algebraic
proof was given which relied on universality properties of powerdomains proved in the previous works
of the author of [2]. Here we give an elementary algebraic proof that upper and lower powerdomain
constructions commute. The proof is essentially a reduction of the problem to establishing a 1-1
correspondence between certain disjunctive and conjunctive normal forms.

2 Definitions

A subset X of a partially ordered set is called directed if a common upper bound exists for any two
elements of X, i.e. given z1,z0 € X, there exists x € X such that x > x1,z29. A poset is called
complete (abbreviated — cpo) if every directed subset has a least upper bound. An element of a cpo is
called compact if it can not be below a least upper bound of a directed set X without being below an
element of X. A cpo is called algebraic if every element is the least upper bound of compact elements
below it, see [3].

A domain in this paper is an algebraic cpo with bottom. Given a domain D, < denotes its order and
KD is the set of its compact elements. Given A, B C D, lower and upper powerdomain orderings are
given by

AC’B&Vae AIBeB: a<b

AC'BevVbeBlacA: a<b

A subset of an ordered set is called an antichain if no two elements in it are comparable. If (X, <)
is an ordered set and Y C X, then max<Y and min< Y are sets of maximal and minimal elements
of Y. We will use just maxY and minY if the ordering is understood. Ay, (X) stands for the
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set of all finite antichains of X. The lower and upper powerdomains are defined to be the ideal
completions of (Ay;,(KD), C’) and (Afin (KD), C*) respectively. They are denoted by P*(D) and
PHD). (Apin(KD),C") and (A, (KD), ) are posets of compact elements of P’(D) and P#(D) [3].

Remark: A traditional definition of the powerdomain construction is the ideal completion of Py, (KD),
the set of all finite subsets of KD. The two can be easily shown to be equivalent. We prefer to work
with antichains because C? and C# are partial orders on Ayin (KD) but only preorders on Py, (KD).

Our goal is to prove
Theorem For any domain D, P¥(P*(D)) and P’(P!(D)) are isomorphic.

The proof is constructive, i.e. an isomorphism and its inverse are explicitly described.

3 Proof

To prove that two domains D7 and D, are isomorphic, i.e. that there exists a pair of continuos mutually
inverse maps between D; and D, it is enough to prove that KD; and K D> are isomorphic as posets,
i.e. that there exists a pair of monotone mutually inverse maps between KD and KD».

A compact element of P!(P*(D)) is a finite antichain, w.r.t. C’, of finite antichains of compact
elements of D, and a compact element of P”(P¥(D)) is a finite antichain, w.r.t. CF, of finite antichains
of compact elements of D. Given a finite set of finite sets A = {Ay,..., A,} where A; = {a},... ,a};i},
let F 4 be the set of functions f : {1,...,n} — NI such that for any i: 1 < f(i) < k;. For f € Fu, let
f(A) = {a;(i) 'i=1,...,n}. If all A;’s are subsets of D, define two maps ¢ and 1 as follows:

#(A) = min -, (max f(A))

f€FA=
A) = in f(A
$(A) = maxc; (min f(A))
Now, we claim that ¢ maps KP!(P"(D)) to KP’(P¥(D)) and ¢ maps KP’(P!(D)) to KP!(P’(D))
and, moreover, these maps establish the desired isomorphism, i.e. they are mutually inverse and
monotone. The first claim follows immediately from the definitions of ¢ and . To complete the

proof, it is enough to show that ¢ is monotone and ¢ o 9 = id. The proof of monotonicity of ¢ and
1 o ¢ = id is dual. We start with two easy observations:

Lemma Let Y1,Ys be finite subsets of an arbitrary poset X. Then
1) Y1 Y, iff max V] C° max Yy;
2) Yy C* Y, iff minY; Cf min Ys. O

Claim 1: ¢ is monotone.

Proof of claim 1: Let A, B = {By, ..., By} € KP’(P}(D)) and A C" B. We must prove ¢(A) Cf $(B).
In view of lemma, it is enough to show that for any f € Fj there exists g € F 4 such that g(A) C° f(B).
Since for each i = 1,...,n there exists j; such that A; C* Bj,, there is an element aéi € A; such that
a;i < b].;(ji). Let g(7) = p;. Then for this function g one has {ag(i) li=1,...,n} T {b;(i) Q=

1,...,m}, ie. g(A) C° f(B). Claim 1 is proved.



Let A € KP’(PY(D)) and B = {By,..., By} = ¢(A) € KP!(P"(D)). In view of lemma, to show that
1o ¢ =id, i.e. that ¢(B) = A, it suffices to prove

Claim 2: For any f € Fp there exists A; € A such that f(B) C! A;.

Claim 3: Every A; is in ¢(B).

Proof of claim 2: Let C be the collection of all sets f(A) where f € Fyu; C = {C1,...,Ck}. Then for
any g € F¢, there exists A; € A such that A; is contained in g(C) because, if this is not the case, for
any A; € A there exists j; < k; such that aj, € A; and, for any f € Fy4, g on f(A) picks an element
different from aj,. If we define fy such that fo(i) = ji, g may pick only elements of form a on fo(A),
a contradiction. Therefore, g(C) CF A; for some i.

Let f € F. Let H be the set of functions in F4 that correspond to elements of B = ¢(.A) or, in other
words, maxh(A) € B for h € H. Then, for any h' € F4 — H, there exists a function h € H such
that max h(A) C° max h'(A), i.e. h(A) T’ h'(A). Since h € H, maxh(A) € B, i.e. maxh(A) = B;. If
f (i) = j, then there is an element in h'(A) that is greater than b; Define a function g € F¢ to coincide
with f on those C;’s that are given by functions in H. On C; that corresponds to f € F4 — H, let g
pick an element which is greater than some bé where f(i) = j (we have just shown it can be done).
Then f(B) CF {c;(i) |i=1,...,k} = g(C). We know that there exists 4; € A such that ¢(C) C* 4;.
Thus, f(B) Cf A;. Claim 2 is proved.

Proof of claim 3: Prove that for any aé € A; there exists B; € B such that aé- € B;. Consider the set
F] of functions f € F4 such that f(i) = j. Ifforno f € Fy: aé € max f(A), then there exists A, € A

i
A »
A is an antichain w.r.t. Cf. Hence, a’ € max f(A) for at least one function in Fj. Since A is an
antichain, for any p # 4 there exists al) € A, which is not greater than any element of A;. Change f

to pick such an element for any p # 7. Then aé- is still in max f(A). There exists a function f' € Fyu

such that max f'(A) C’ max f(A) and max f'(A) € ¢(A). If f'(i) = j' # 4, then, since f'(A) T’ f(A)

and A; is an antichain, a§, < af for some p and g, where p # i. But this contradicts the definition of

f. Hence, f'(i) = j and aé- € max f'(.A) because aé € max f(A). Since max f'(A) = B, for some index
l, aé € B € B.

such that all elements of A, are greater than a’, i.e. A; Ct A, which contradicts our assumption that

Let B’ be the collection of elements of B that contain elements of A;. Then we can define a function
f € Fp on elements of B’ to pick all elements of A;. Each B;j € B — B’ either contains an element of
A; or contains an element which is greater than some ag, € A;. Let f pick any such element. Then
min f(B) = A;. Suppose A; & 1(B). Then A; C! ming(B) for some function g € Fp such that
min g(B) € %(B). By claim 2, g(B) C* A; for some A;. Hence, ming(B) C* A; and since A is an
antichain w.r.t. Cf, A; = A; = min g(B) € (B). This finishes the proof of claim 3 and the theorem.

References

[1] K.E. Flannery, J.J. Martin, Hoare and Smyth power domain constructors commute under com-
position, J. Comput. Syst. Sci. 40 (1990), 125-135.

[2] R. Heckmann, Lower and upper power domain constructions commute on all cpos, Inform. Pro-
cess. Letters 40 (1991), 7-11.



[3] C.A. Gunter and D.S. Scott. Semantic domains, In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, pages 633—-674. North Holland, 1990.



