A Relational Algebra for Complex Objects Based on Partial
Information*

Leonid Libkinf

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

We study an approach to relational databases which
treats relations not as subsets of a Cartesian product
but as subsets of some domain — a partially ordered
space of descriptions. This approach permits general-
izations of relations that admit null values and variants.
In previous work it was shown how to define the notion
of a relation scheme in such a setting. Here we provide
a characterization of a scheme that is more general,
and show that operations analogous to projection, se-
lection and join retain the desired properties. Schemes
also allow us to develop dependency theory for such
generalized relations. An extension of this model is de-
scribed which admits a set constructor and is therefore
useful for the study of higher-order relations and their
generalizations.

1 Introduction

It has recently been discovered [5] that a repre-
sentation of the underlying principles of relational
database theory can be found in the theory of do-
mains which is the basis of the denotational se-
mantics of programming languages. This repre-
sentation does not take into account the details of

*This paper was published in the Proceedings of the 3rd
Symposium on Mathematical Fundamentals of Database
and Knowledge Base Systems, Rostock, Germany, May
1991, Springer Lecture Notes in Computer Science, 495
(1991), 29-43.

tSupported in part by NSF Grants IRI-86-10617 and
CCR-90-57570 and ONR Grant NOOQO14-88-K0634.

the data structure and, therefore, allows us to ex-
tend the main principles of relational databases to
much more general constructions. Use of domain
theory in the generalization of relational databases
may also help to establish the connection between
data models and types, i.e. to represent database
objects (not necessarily relational databases) as
typed objects in programming languages.

There have been made a number of attempts to
generalize relational databases giving up the first-
normal-form assumption, see [1, 4, 6, 9, 10, 13,
16, 17, 18, 20]. They can be divided into two cat-
egories. The first one consists of models that do
not contain sets. Usually it means that they admit
null-values and/or record structures, the latter in-
cluding also case, or discriminated union. In this
case [5] provides us with the idea how to develop
the relational theory. We will discuss in details
the main definition of scheme which was used to
introduce projections. The definition of scheme
along with the idea to represent database objects
as antichains in domains is the main tool to gener-
alize relational databases that was used in [5]. But
the definition of scheme in that paper was chosen
rather arbitrarily in order to make certain proper-
ties of the first-normal-form relational databases
generalize smoothly.

Another definition of scheme will be introduced
which seems to be more natural and then it will
be proved that the main results of [5] remain cor-
rect if we substitute the definition of scheme. We
will also show that the definition of [5] assumes
that a database is like-first-normal-form, that is,
the domains in which the two definitions coincide,

behave like domains of relations that do not admit
relation-valued attributes.

For the structures that do not contain sets we
will discuss the concept of the complement of a
scheme. This concept is necessary in order to
introduce multivalued dependencies. Multivalued
dependencies having been introduced, we may try
to define join to generalize the result that estab-
lishes connection between joins and multivalued
dependencies [24, 16]. The concept of join for the
domain model was introduced in [5] as a supre-
mum in the Smyth powerdomain ordering [22].
We will show that in a certain type of domains
multivalued dependencies are in one-to-one corre-
spondence with the decompositions of relations.

The model proposed in [5] does not admit con-
structions containing sets. However, they are nec-
essary in order to describe some models which
are being widely studied now, namely nested re-
lations [6, 13, 16, 17, 18, 20] and complex objects
[1, 13] which play an essential role in the theory of
object-oriented databases [2]. By complez objects
we mean objects constructed from the basis ones
by using the operations of forming records (includ-
ing discriminated union) and sets, i.e. record, vari-
ant and set constructors. This concept will cover
all the structures that do not contain sets, and also
nested relations and complex objects as they were
defined in [1]. However, constructions containing
sets can not be modeled by domains. In fact, we
can not guarantee directedness. In this paper we
will introduce a new concept generalizing domains
(i.e. locally behaving as domains) which allows us
to model complex objects. The schemes will be
defined recursively.

When the concept of scheme is defined, we can
easily define projection onto this scheme and se-
lection. This is the crucial step in extending the
ideas of relational algebra to generalized relations
and complex objects.

This paper can be viewed as an extension of
ideas of [5], that is, as the further development of
domain-theoretic model of databases. The main
contribution of [5] is the idea that relations can

be generalized as finite antichains in domains. For
such generalized relations a concept of scheme was
introduced which allowed the development of some
dependency theory (in fact, the analogy of func-
tional dependency was introduced). A generaliza-
tion of the join operation was also given.

In this paper we first examine the concept of
scheme and give a new definition of scheme which
expresses the fact that projections of complete de-
scriptions onto a scheme are maximal among all
possible projections. This definition is more gen-
eral than that of [5] and, although the two defi-
nitions coincide if we speak of the domains of flat
records (that is, of usual relations), there are some
important cases when we need this new, more gen-
eral definition. Moreover, the new definition satis-
fies almost all properties that were proved in [5].
When the concept of scheme is defined, we can
introduce the operations of relational algebra for
the generalized relations and prove some results
about these operations. Then we define comple-
ments of schemes and use them to introduce mul-
tivalued dependencies for our domain model. The
approach of [5] did not provide tools to work with
complex objects or nested relations since they may
contain sets whose sizes are not bounded a priori.
We will extend the ideas of [5] to handle such con-
structions.

The paper is organized in five sections. The next
section contains necessary definitions from domain
theory [8, 21] and shows how relational databases
can be represented and generalized in domains.
The third section deals with schemes in domains.
Two ways to introduce this concept will be dis-
cussed and the properties of schemes will be stud-
ied. In particular, we will characterize domains in
which the two definitions coincide. Section 4 deals
with structures that do not contain sets. We char-
acterize schemes in these structures and introduce
projection, selection and join. Having done this,
we develop some dependency theory in section 5.
Section 6 deals with the extension of our approach
to complex objects. We will generalize the concept
of domain in order to model these structures and
then recursively defined schemes.

2 Powerdomain model of rela-
tional databases : Generalized
relations

In denotational semantics of programming lan-
guages expressions denote values, and the domains
of values are partially ordered. A database is a col-
lection of objects having descriptions and mean-
ings. The meaning is the set of all possible objects
described by a description. The meaning having
been defined as sets, we can order descriptions by
saying that a description d; is better than a de-
scription dy if it describes less objects, i.e. if it is
a more precise description.

Let [d] stand for the meaning of d. Suppose that
d1 and ds are the records in a relational database
and

d; = {Dept = 'CIS', Office = '176'},

dy = {Name = 'Howard’, Dept = 'CIS’, Office =
'176'}.

Assume that there are no attributes except for
name, department and office. Then the meaning
of dy is the set of all possible records that refer to
CIS people in office 176, in particular, ds. There-
fore, ds is better than d; because [da] C [d1].

The above ordering corresponds to the usual one
in the theory of databases with incomplete infor-
mation, in fact, to the ordering of tuples of Codd
tables [10]. This approach is based on the assump-
tion that we do not distinguish two different occur-
rences of null values in contrast to the approach
of [4]. The same idea of ordering was used for
complex objects in [1].

Suppose that the records in a relational database
are described as functions from £ to V| where
L is a set of attributes (in the above example
L = {Name, Dept, Office}) and V, is a domain
of values which is partially ordered. Then the
records are also partially ordered by di < do iff
dy (1) < dy(l) for all | € £ where dy,dy: L — V).

Let V, = VU {L} where L corresponds to in-
complete information and Vo € V : L < v while

all elements of V are incomparable. The set of
functions from £ to V,, denoted by £ — V|, is
ordered according to the above rule. For exam-
ple, if di and ds are as in the above example, £
= {Name, Dept, Office} and V contains names of
departments, people and numbers of offices, then
di,do € L — V] since

d; = {Name = L, Dept = 'CIS’, Office = '176'}.

Obviously dy < ds.

Let D = L — V. Then the ordering of D satisfies
the following properties:

1) Ewery nonempty subset of D has a greatest
lower bound;

2) Ewvery directed subset of D has a least upper
bound;

3) The set K(D) of compact elements of D forms
a countable basis of D.!

A poset (partially ordered set) satisfying 1)-3) is
called a Scott-domain [8, 21]. We do not use any
other kind of domain, and we will write simply
domain instead of Scott-domain.

Least upper and greatest lower bounds will be de-
noted by V and A respectively. 1z and |z are the
principal filter and ideal of z € D, i.e. the set of
all elements of D which are greater (less) than z.
Given a domain D, every element of D is bounded
above by some element of D% the set of maxi-
mal elements of D [8, 21]. Elements of D™ are
thought of as being complete descriptions. There-
fore [d] = td N D™,

A domain is called distributive iff every |z is a dis-
tributive lattice. We will call a domain qualitative
iff every | is a Boolean lattice?.

A number of ways have been described in [5] to
construct domains representing certain kinds of
data structures. Consider the domain £ — V.
Its elements are records whose attributes are ele-
ments of £ and values are taken from V. It means

1A subset of a poset is called directed if all its finite
subsets have least upper bounds. An element a is called
compact if a < \/ X implies a < z for some z € X for
any directed X. A subset K C D is called a basis if every
element of D is a supremum of some elements from K [3].

2Tt is not hard to show that this definition is equivalent
to the usual definition of a qualitative domain [7].

that there are a countable number of values and a
special symbol L corresponding to incomplete in-
formation. The ordering of V, is given by letting
1 be less than any other value. The relations are
finite sets of records, i.e. finite subsets of £L — V.
However, not every finite subset of L — V| corre-
sponds to a relation. If we have a subset contain-
ing both d; and dy from our example, dy is less
informative than d; and should be removed. Less
informative here means that di < dy. Therefore,
relations correspond to finite subsets of domains
that do not contain comparable elements, i.e. to
antichains. This gives us the main idea of the gen-
eralization of relational databases proposed in [5]:
Generalized relations are antichains in domains.

Example 1 Let £ and V be as in the above ex-
amples. Let

ds = {Name = 'Katherine’, Dept = 'SL/, Office =
'628'},

d4 = {Name = 'Katherine’, Dept = 'SL/, Office = 1},

(d4 shows that the person has not been assigned
an office yet). Then {ds,d3} is a generalized rela-
tion but both {dy,d2} and {ds,ds} are not since
di1 < dy and dy < ds. O

We will call finite antichains in domains relations.
By relations without incomplete information we
mean finite antichains of maximal elements, i.e.
relations containing only complete descriptions.

We have shown so far how to order records of re-
lations. The next problem is to order relations
themselves, i.e. to order finite antichains of do-
mains. In domain theory three ways to do this
have been proposed:

AC’ B if Vac AIbeB:a<b
AC'B iff WweBJIacA:a<b
AC'Biff AC’B and AC'B

called respectively Hoare, Smyth and Egli-Milner
orderings®. Sets of finite antichains of a domain

3The orderings C° and C* are known from lattice the-
ory [3].

ordered by C” or CF are distributive lattices (how-
ever, they are not complete).

The ordering T’ was used in the theory of relations
with incomplete information to construct so-called
representation systems, see [10]. When applied to
an element of domain and a relation, this ordering
expresses the notion of “x-belong” used for repre-
sentation relations with null values by extended
relations, see [25]. It was also used to order com-
plex objects in [1].

A downward closed subset of a domain D which is
closed under existing joins is called a strong ideal*.
If Z C D is a strong ideal, then pz defined by

pz(x):\/{y:ygx and y € 7}

is a projection, i.e. it satisfies the following prop-
erties: for all z,y € D : pr(z) < =, pr(pz(z)) =
pr(z) and x < y implies pz(z) < pz(y). Moreover,
pz is the unique projection on D with image Z.

Strong ideals can be equivalently described via
projections onto them or their sets of maximal
In the other words, there are one-to-
one correspondences between sets of strong ideals
T C D, projections p7 and antichains of maximal
elements of 7.

elements.

Example 2 Let £, V and d;’s be as in the above
examples. Let

7Z; = {{Name = v,Dept = L,Office= 1L}|ve V, }.
Then Z; is a strong ideal and for any
d = {Name = vy, Dept = vy, Office = v3}
its projection onto Z; is
pz,(d) = {Name = vy, Dept = L, Office = L}.

The set of maximal elements of Z; is {{Name =
v,Dept = L, Office = L}|v € V}.

Let Zo = |d where d € L — V. Then 7, is a
strong ideal with unique maximal element d and
forany d' € L=V, : pr,(d)=dANd. 0

“The term strong ideal was used in [5]. A more precise
name would be downward closed subdomain, suggested by
Carl Gunter. However, we follow the terminology of [5]
here.

We need more for the analogy of projection in rela-
tional algebra than being a projection onto strong
ideal. In fact, this ideal must satisfy some ad-
ditional properties. In domain £ — V| schemes
correspond to subsets of L, i.e. a projection
onto scheme corresponding to S C L is given
by ps(z) = 2’ where 2'(l) = z(l) if | € S and
z'(l) = L otherwise. These projections will be
called canonical. It is a natural requirement for
the definition of scheme and projection in an ar-
bitrary domain that the projections be canonical
for domain £ — V. One can easily see that for
every ¢ € L — V| the ideal |z is strong while the
projection p|, is not canonical.

The slide condition was introduced in [5] in order
to give a definition of scheme. A strong ideal Z is
said to satisfy the slide condition if for any = € D
and y € Z, pr(z) < y implies that zVy exists. This
property obviously holds for canonical projections
inl—=YV,.

An antichain S C D was called a scheme in [5]
if |S = U,cg {7 is a strong ideal satisfying the
slide condition. It can be easily concluded from
the results of [5] that all schemes of £ — V| are
determined by canonical projections. In [5] the
main properties of schemes were studied and the
schemes were used to develop some dependency
theory.

In the next sections we discuss in detail the con-
cept of scheme and introduce an alternative def-
inition which will allow us to prove most of the
results from [5] and further develop the ideas of
that paper. This will allow us to introduce the
main operations of the relational algebra for gen-
eralized relations, the latter being generalizations
of relations admitting null values, records and dis-
criminated unions. Then we show how to gener-
alize our main concepts for structures containing
sets, i.e. complex objects.

3 Schemes in domains

The main aim of this section is to discuss the defi-
nition of scheme in domains. The relations having
been interpreted as antichains in Scott-domains,
the concept of scheme is necessary in order to in-
troduce an operation analogous to projection in
the relational algebra.

In the domain £ — V| schemes correspond to the
subsets of £ and projections to the canonical pro-
jections. It is natural to define the concept of
scheme such that, being applied to £ — V, , it will
give rise exactly to canonical projections. Also,
schemes should be significant parts of a domain
which reflect the structure of the whole domain. It
means that if the elements of a domain are treated
as database objects (for example, records of rela-
tions) then projection into an ideal generated by
a scheme should correspond to loosing some piece
of information and the same pieces of information
are lost for all the elements of the domain. This
means that projections generated by schemes are
in a way homogeneous.

If we have two maximal elements of a domain
(complete descriptions) and they are projected
into a scheme (i.e. the same pieces of informa-
tion are ignored) then the projections can not be
comparable. This observation leads us to the fol-
lowing definition.

Definition Let D be a domain and S an antichain
in D such that |S is a strong ideal. Then S is
called a scheme in D if projection p g(x) of any
element of z € D™ is a maximal element in |S.

It is not hard to see that it is enough to require
that projection of two maximal elements of D be
incomparable instead of requiring that they be
maximal in the corresponding ideal. We need
some more concepts.

Definition Let S C D be a scheme. Then |S is
called a scheme-ideal and p g is called a scheme-
projection. We will write pg instead of p|g.

In the reasonings that led us to the above defini-

tion we took into account only how we loose infor-
mation projecting into a scheme. In [5] another
aspect of the problem was considered : what can
be said about the lost information? Can we con-
sider it independently and “add” to another object
(element of domain)?

The idea of [5] was that, given a scheme, there is
its complement (as there is a complement £ 1 S
for every S C L for the domain £ — V), and
projecting into scheme S is simply loosing infor-
mation corresponding to the complement of S °.
Assuming that the pieces of information contained
in projections into the scheme and its complement
are independent, we can combine them. To be
more precise, if we have an object and its pro-
jection into a scheme is less than an element of
this scheme, we can add lost information to the
latter element. This is the idea of P.Buneman’s
definition of scheme. Since we have already used
the word “scheme”, we will use term semi-factor
proposed in [12].

Definition [5, 12] Let D be a domain and S an
antichain such that |S is a strong ideal. Then
S is called a semi-factor if |S satisfies the slide
condition, that is, given £ € D and y € |S such
that pg(z) < y, then z V y exists. |.S is called
a semi-factor ideal, and pg is called a semi-factor
projection.

Every semi-factor is a scheme; the converse is not
true in general. If it were true, it would mean
(informally) that for all the schemes their comple-
ments exist, because we could consider the para-
graph before the definition of semi-factor as an
informal proof. In a certain class of domains this
can be formally proved, and we will finish this sec-
tion with such a result.

Example 3 Let dy, d3 be as in the examples 1 and
2. Let

ry = {Name = 'Howard’, Dept = L, Office = L},

ry = {Name = L, Dept = 'CIS’, Office = '176'},

r3 = {Name = 'Katherine', Dept = 'SL’, Office = 1},

°In fact, it was not stated in [5] explicitly, but it seems
to be the most natural interpretation of the slide condition.

ry = {Name = L, Dept = L, Office = '628'}.

Let D = {dy,ds,r1,7r9,73,74, L} where L is the
tuple with all null values. The diagram of D is
shown below:

do ds

1 T2 T3 T4

This domain has no semi-factors but {L} and
D™ while it has eight proper schemes: {r,r3},
{7“2,7'3}, {7’1,’1“4}, {7“2,7'4}, {dQvTi’)}v {d2a7'4}a
{dg,’f'l}, {dg,’f'g}. O

In order to justify both definitions we must prove
that they describe exactly canonical projections
when applied to the domain £ — V.

Proposition 1 S is a scheme (or a semi-factor)
of L = V| iff ps is a canonical projection. O

If £ is finite, £ — V| is isomorphic to V', where
n = [{J. Therefore, in direct products of flat do-
mains all schemes are semi-factors. Theorem 3
below will generalize this fact.

We shall mostly use schemes rather than semi-
factors because the definition of schemes is more
general and does not make use of any addi-
tional assumptions, and, as we are going to show,
schemes satisfy almost all properties that were
proved in order to justify the definition of semi-
factor in [5]. In the rest of the section we establish
some necessary properties of schemes and state a

result characterizing qualitative domains in which
the concepts of scheme and semi-factor coincide.

Let A,B C D be two sets. We define AV B as
pointwise supremum, i.e. AVB ={aVb: a €
A, b e B}.

Proposition 2 Let D be a distributive domain.
Then

1) If A, B are scheme-ideals, then so is AV B;
2) The set of scheme-ideals over D is a complete
lattice. O

The same results have been proved for semi-factors
in [5]. Notice that scheme-ideals may not be closed
under intersection in contrast to the case of semi-
factor ideals. Proposition 2(2) says that schemes
ordered by C’ form a lattice if D is distributive.
A question arises : what can be said about other
powerdomain orderings C! and C!? The follow-
ing result shows that these orderings coincide for
schemes in any domain. The same result for semi-
factors was proved in [5].

Theorem 1 Let D be an arbitrary domain and
A, B two schemes. Then A C" B iff A C! B iff
AC’ B. O

Direct product (x) and separated sum (+) are two
important operations over domains. Direct prod-
uct is defined as usual. Given two domains D; and
Dy, D = Dy + D> is defined as follows : the set of
its element is (Dy x {1}) U (D x {2}) U {L}, the
ordering is inherited from the orderings of D; and
Dy and L is the new bottom element. For exam-
ple, a subdomain {ds,d3,r9,73, L} of the domain
in example 3 (see the picture above) is isomorphic
to D1 +Dy where Dy = {dQ, 7’2} and Dy = {d3,’l“3}.
This construction corresponds to case, or discrim-
inated union, while direct product corresponds to
forming records. It is, therefore, important to de-
scribe schemes in products and sums.

Theorem 2 Let D =Dy XDy (or D =D1+D»).
Then S is a scheme in D iff S = S; x Sy (or

S = 81+ S2) for some schemes S1 and Sy in Dy
and Do, respectively. O

In another paper I shall go further into mathe-
matics of schemes; for our current purposes we do
not need any more. We finish this section by the
result describing qualitative domains in which the
concepts of scheme and semi-factor coincide.

Theorem 3 (see also [12]). Let D be a qualitative
domain. Every scheme of D is a semi-factor iff

D~ H D;
i€l
where each D; has no proper scheme; the schemes

of D are in 1-1 correspondence with subsets of I.
O

4 Relational algebra for general-
ized relations

In this section we find the analogies of the main
operations of relational algebra for generalized re-
lations. Schemes introduced in the previous sec-
tion will be used to define projections. The projec-
tions having been defined, we can introduce selec-
tion. The join operation will be borrowed from [5].

In order to construct generalized relations we can
use the idea of [1]: starting with basic objects we
use constructors such as record and variant (in this
section we do not use set). Basic objects are ele-
ments of given domains, i.e. domains correspond-
ing to basic types such as integers, characters etc.
Generalized records are elements of domains ob-
tained from the basic ones by using operation X
for record constructor and + for variant construc-
tor. Generalized relations are finite sets of gener-
alized records.

Let B be a set of domains. We now can re-
cursively define domains of generalized records
(equivalently, their types).

Definition (Database Domains)
1) Any D € B is a database domain;

2) (record constructor) If Dy, ..., D, are database
domains, then D; x...x D, is a database domain;
3) (variant constructor) If Dy, ..., D, are database
domains, the Dy + ...+ D, is a database domain.

Example 4 Let B contain three domains: D,
whose elements are people’s names, N, =
{Ll,n1,n9,...} representing natural numbers, and
Bool = {1,0,1} representing booleans (in the
above domains | < n; for all ¢ and L < 0,1).
Suppose a database contains records with variants
that have name and age fields for each person. If
a person is a faculty member, the record contains
his/her salary, and if he/she is a a student, it con-
tains a subrecord indicating whether a student is
supported and the amount of support. Below are
the examples of such records:

ry = {Name = 'John’, Age = '35’ Status =
(Faculty = {Salary = '40,000'})},

ro = {Name = 'Mary’, Age = '22', Status =
(Student = {Supported = '0’, Amount = '0'})},
rg = {Name = 'Peter’, Age = '24', Status =
(Student = {Supported = '1’, Amount =
'12,000'})}.

These records are elements of a database domain
'DXNLX(NL—F(BOOIXNL)). O

Definition A generalized record is an element of a
database domain. A generalized relation is a finite
antichain in a database domain®. As we stated
before, we will often omit the word “generalized”.

For example, 1,79, 73 defined above are general-
ized records and R = {ry,r9, 3} is a (generalized)
relation.

It is not hard to describe a type system using
the given definition of database domains as it was

STherefore a generalized relation consists of objects of
the same type as it is in the case of relational databases if
a database is just a relation. It is not, however, a restric-
tion for if we have objects of different types we can always
use either variant or record constructor and consider these
objects as having the same type.

done in [14, 15]. Suppose we have basic types 7

whose domains of values D) are exactly domains
from B. Let £ be a set of labels. Denote the do-
main of values of type 7 by [7]. Thenif 7,..., 7,
are types, then so are {ly = 7,...,l, = 7,} and
(h = 71y oy ly =), where Iy, ..., I, € L, and

K= m,.. =] =[m] x ... x [m],

[[<l1 = Ti,...0ln :>Tn>]] = [[Tl]]—{—...—l-[[Tnﬂ.

Since domains are closed under direct product
and separated sum, all database domains are do-
mains. Therefore, we can speak of schemes in the
database domains. There exists another way to
define schemes using our recursive definition of
database domains. Schemes in domains from B
are just schemes as they were defined in the previ-
ous section; schemes in Dy X...xD,, are S1X...S,
and schemes in D1 + ...+ D, are S71+ ...+ S
where S; is a scheme in D;. According to theorem
2 these two definitions are equivalent.

Now we can define the operations of relational al-
gebra for generalized relations. We will need one
more definition: by minX and maxX we will mean
the sets of minimal and maximal elements of an
ordered set X, respectively.

1. Union. Let D be a domain and R, Ry two
relations. Then their union RyURy is max(R; U
Ry).

We need the max operation because R; U Ry may
fail to be an antichain, but R;{URy always is.
R1UR5 can be interpreted as the set of the most
informative elements from R; and Rs.

2. Difference. Let D be a domain and Ry, Ry two
relations. Then Ry L Ry is the usual set difference.
Since Ry L. Ry C Ry, it is a relation.

Intersection can be expressed as Ri N Ry = Ry L
(R1 L Ry).

3. Cartesian (direct) product. Let D1, Dy be two
domains and Ry, Ry relations in Dy, Dy respec-
tively. Then R; X Ry is a relation in D; x Dy
defined as {(ry,79)|r1 € Ry,7m9 € Ro}.

4. Projection. Given a (database) domain D, we
define projection as projection into a scheme-ideal
S in D. If D is L — V), then projections thus
defined coincide with projections in relational al-
gebra.

If R C D is a relation and S is a scheme, pg(R)
may fail to be an antichain. Therefore, we need
two operations of projection:

P2 (R) = minps(R), ple®(R) = maxps(R).
If R is a one-element relation, these two projec-
tions coincide and we will write simply pg(R). The
above defined operations also coincide for relations

without incomplete information, i.e. subsets of
fDmaz.

5. Selection. We can also define selection using
the concept of scheme. First we have to define
conditions. As usually, if ¢;, ¢ are conditions,
then so are ¢ V ¢o,c1&co and —c¢i. Schemes are
necessary to define conditions we start with. Let
S,S8" C D be schemes, a € [S, z € D. Then the
elementary conditions are ps(x)fa, ps(z)0ps (x),
where 0 € {<, <, =,#,>,>}.

Let R C D be a relation. i.e. an antichain in D. If
c¢: D — {T,F} is a condition, then the selection
is defined as 0.(R) = {z € R: c¢(z) = T}.

If we do not know what the basic domains from
B are and how D was constructed from them, the
above defined selection is all we can get. However,
if we know a concrete procedure of construction of
D (i.e. a term in signature (x,+) with variables
from B) then we can define more complex con-
ditions. For example, if the database domain is
D x D x D we may want to select those element
whose first and third projections coincide.

We can give the selection more power if we in-
troduce binary relations on domains from B. For
example, if P is a binary relation on D; € B and
1S = Dy, then we can introduce conditions like
(ps(z),a) € P. This is necessary because, for ex-
ample, domain of natural numbers is represented
in domain theory as N = {l,ng,ni,no,...}
where n; corresponds to the natural number 7, and

the ordering of N, is given by letting 1 be less
than all n;’s:

no N1 N2 N3 |

We can not conclude that 1 < 2 from this infor-
mation, therefore, we need a binary relation P on
N describing the ordering of natural numbers.

To define such powerful selection we first need the
definition of similar schemes and a 1-1 correspon-
dence between their scheme-ideals. In the above
example of D x D x D schemes D x {1} x{L} and
{1} x {L} x D should be similar and 1-1 corre-
spondence between their scheme-ideals associates
the first and the third projections of any record.
This gives us possibility to compare projections on
different schemes. As it was said earlier, we may
want, for example, to select records with coincid-
ing first and third projections.

Given a database domain D, it can be represented
as t(Di,...,D,) where ¢ is a term of signature
(x,+) and Dy,...,D, € B (e.g. the database
domain in example 4 is D x N x (N | + (Bool x
N,))). We now define similarity of two schemes
S, 8" and mapping ps_sg : .S — |5,

If S is a scheme in D € B, then S is similar to
itself and ¢g_, g is the identical mapping on |.S.

Let D = t(Dy,...,D,), where D; € B, i =
1,...,n. Suppose S,S’' are two schemes in D.
Let the last operation of ¢ be x, i.e. t(...,) =
t1(+y...y) X ... X tg(+,...,-) and the last opera-
tion of each t; is not x. Then § = S§; x ... x Si
and S’ = S} x ... x S} where S;, S} are schemes
in t;(Dy,...,Dy), see theorem 2. S is similar to
S’ iff there are such i and j that ¢; = t;, S; is
similar to S} in t;(Ds,...,Dy) = t;j(D1,...,Dy)
and S; = {Lyo, ..ont S = {Le,@i...00)
Il #i,p # j. ps_g maps a record z € |S with
only nonbottom ith component z; € |S; to the
record whose only nonbottom jth component is

@siﬁs; (sz‘)-

If the last operation of the term is +, then § =
Si+...+ S and 8" = S| +...+ S5, where S;, S! are
schemes in t;(Dy,...,Dy). Then S is similar to S’
iff each S; is similar to S} in ¢;(D,...,D,), and
for any x € |.S : pg 5/ (z) = Lpsiﬁsg(x) ifx € 5;.

Example 5 Let S = {1} x {L} x D and §' =
D x {L} x {L} be two schemes in D x D x D.
Then S and S’ are similar and pg_, s ({L, L,z}) =
{z,L,1}.

Schemes D + ({L} x D) and D + (D x {L}) are
similar in D + (D x D). 0

Now we can extend the list of possible elemen-
tary conditions by adding the conditions of form
w55 (ps(x))0ps (z) where S, S’ are two similar
schemes in a database domain D.

As we said before, one may also want to de-
fine some binary relations on basic domains. Let
PF k € I; be a family of binary relations on
D; € B, where I; is (possibly empty) set of in-
dices. We say that a scheme S of a database do-
main D = ¢(Dy,...,D,) is also a scheme in a basic
domain D; if S = t({L},...,S;,...,{L}) where
S; C D; is a scheme. In this case we can identify
elements of |.S and |.S;.

The third type of elementary conditions in-
cludes the conditions (pg(z),a) € PF and
(ps(z),ps(z)) € PF where S, 5" are schemes in
D; identified with S;, a € S; and k € I;.

With such extensions being added, selection cov-
ers usual selection in relational algebra.

Example 6. Consider a relation with variants
describing companies. Each record contain the
following information: name, total donations for
non-profit companies, gross revenue and costs for
profit companies. Below are the examples of
records:

r1 = {Name = 'X', Status = (Non L profit =
{Donations = 1,000, 000'})}

10

roy = {Name = 'Y’, Status = (Profit = {Revenue =
'2,000,000', Costs = '1,000,000'})}.

Let D be a domain of names. Then the above
records are elements of a database domain D X
(N, + (N. x N;)). Consider the following
schemes:

Si={lo} x (NL+({Ln }>x{Lin, 1)
Sy ={Llp} x ({Ln }+ (NLx{ln })),
Sz ={Llp} x ({Ln }+{Lin, I xNL)).

Then S, S, S5 are also schemes in N | and S5 is
similar to Ss.

Let P be a binary relation on IN; such that
(ni,n;) € Piffi <j, (L,z) € Pforallz € N|.
Consider the following conditions: ¢; = (pg, (z) #
N, T ¢y = ((pss(7),ps,(z)) € P). Let R be
a relation in the above database domain. Then
0c, (R) selects non-profit companies from R while
0c,(R) selects companies working well, that is,
whose gross revenue exceeds costs. O

6. Join. Join was introduced in [5] as the supre-
mum in Smyth powerdomain ordering, i.e., given
two relations (antichains) Ry, Ry C D, their join is
Ry U! Ry. It was proved that for domain £ — V|
the above defined operation coincides with the
usual join in relational algebra, see [5]. We will
write more convenient and customary symbol X
instead of LI".

There is another way to think of the join opera-
tion. Given two generalized relations Ry, Ry C D,
their join Ry X Ry is the set of minimal (in D)
elements which are greater than some element of
Ry and some element of Ry : Ry X Ry = min{x €
'D|3’I’1 ERi,7o€Ry : 71 <2x,79 < :E}

Several conditions were given in [23] that the anal-
ogy of the natural join in object-oriented model
should satisfy. Informally, they are: 1) if there
are no common attributes of two relations, the
result of join is isomorphic to their direct (Carte-
sian) product; 2) if two relations are defined over

"To be more precise, we should compare ps, () with an
element of |1, that is, with {Lp, Ly x {1}}.

the same sets of attributes, the result of join is
their intersection; 3) the join of two relations can
be obtained as the union of pairwise joins of its
elements(where these exist). Join is also known
to be associative in relational algebra, see [24].

Let us formalize the above properties.

1) Let Ry C Dy,Ry C Dy be two relations, and
Dl ﬂDQ = @ Let R’l = R1 X {J_Q} and R’Q =
Ry x {11} be two relations in Dy x Dy. Then
RIINR'QZR1XR2.

2) Let Ry, Ry C D™ be two relations. Then Ry X
Ry = Ri N Ry.

Formalizing property 3) we must keep in mind
that the union of pairwise joins may contain com-
parable elements while relations are antichains.
Therefore, after finding union of joins we have to
eliminate some elements in order to obtain an an-
tichain. According to [10], there is no “semanti-
cally correct” way to do it. Since joining relations
with null values may often yield counter-intuitive
results (cf. [10, 14]) we think that formalizing the
third property we have to eliminate nonminimal
elements, i.e. to leave the least informative ele-
ments among pairwise joins.

3) Let R,R" C D be two relations, and R =
{ri,...,rn}, R = {r},....rL,}. Then RX R' =
min(U({r:i} X {ri}:i=1,..,n,j=1,...,m)).

4) If R1, Ry, R3 C D are three relations, then Ry X
(R2 X R3) = (Rl X RQ) X R3,

Proposition 3 The above defined join operation
L* satisfies 1) - 4). O

It is known that in relational algebra join can be
expressed via projection, selection and Cartesian
product. This is not true for generalized relations.
However, if the underlying domain is the direct
product of domains then such a representation for
join exists. Let D = Dy x ... x D, and Ry, Ry
be two relations in D. For any x € D by x; we
mean its ¢th component, i.e. projection to D;.
Let R C D be a relation, and I(R) = {i|3r € R :

Ti7éJ—Di}- Let S; :{J_}X... XDk(z) X ... X{_L}
where k(i) = i if i < n and n L i otherwise and
Dy (s) 1s the ith factor among 2n factors. Then S; is
a scheme in D x D. Let S be the direct product of
such S;s that ¢ € I(R;) fori <nandiln ¢ I(R;)
for ¢ > n. Let ¢ be the conjunction of conditions
ps;(z) = ps, ., (z) for all i € I(Ry) N I(Ry). Then

R1 X RQ = pg’lm((]c(Rl X RQ))

We finish this section by showing that the above
defined operations form an algebra, that is, gen-
eralized relations are closed under union U, dif-
ference, Cartesian product, projections, selection
and join.

Theorem 4 Generalized relations are closed un-
der the operations U, L, x, p™" pMmat g X, 0

5 Dependency theory for gener-
alized relations

Having introduced the notion of scheme, we can
define functional dependencies. If 51,5 are
schemes in a domain D, then a functional depen-
dency is an expression of the form S§; — Ss. Usu-
ally in the theory of databases with incomplete
information dependencies are defined only on the
schemes projections on which do not contain tu-
ples with null values. This condition can be equiv-
alently expressed as: for any record in a relation
there is a record in a scheme which is less infor-
mative than the relation record. In other words,
if R is a relation and S is a scheme, then S C¥ R.

Now we can define satisfiability for functional de-
pendencies. Let R C D be a relation. We say
that R satisfies functional dependency S; — S
if S1,5, C' R and ps,(z) = ps,(y) whenever
ps, () = ps, (y) for every z,y € R.

Functional dependencies in distributive domains
have been investigated in [5] for the particular case
of semi-factors, and the following analogies of the
Armstrong axioms are due to [5], where F' is a set

11

of functional dependencies, Schemes(D) the com-
plete lattice of schemes over distributive domain
D (cf. proposition 2).

(a) If S1,52 € Schemes(D) and S; < Sy then
82 — Sl S F;

(b) If forany i € I : S — S; € F where S,S; €
Schemes(D) then S — \/,.; Si € F;

(C) IfS — 8 € Fand S, — S3 € F', where
S, 82,53 € Schemes(D) then S; — S5 € F.

The result of [5] proved for semi-factors is also true
for schemes:

Proposition 4 The Armstrong Azioms (a)—(c)
are consistent and complete for relations in dis-
tributive domains. O

Now our purpose is to introduce multivalued de-
pendencies for generalized relations. A multival-
ued dependency X —— Y, where X,Y are sets,
appeals to projection onto the set X UY. While
U corresponds to V for domain model, there is no
analogy for complement. More precisely, the poset
of schemes is a lattice if the domain is distributive,
but schemes may fail to have complements in con-
trast to the case of L — V. Thus, two problems
will be discussed in the rest of this section. The
first one is how we can define complements. The
complements having been defined, we introduce
multivalued dependencies and prove a decomposi-
tion theorem.

Consider the domain £ — V. Its schemes cor-
respond to subsets of £, with scheme-projections
being canonical projections. The complement of
a scheme corresponds to projecting onto the com-
plementary subset of L.

Suppose that we have defined the concept of com-
plement, p is a scheme-projection and p the pro-
jection corrsponding to the scheme’s complement.
What should the properties of p be? First, if we
have any element z € D, then p(z) A p(z) = L.
Suppose that x € D™, Then p(z) “forgets”

about information contained in p(x). The fact
that p is the complement of p means that all infor-
mation contained in x can be reconstructed from
p(z) and p(x), i.e. x = p(x) V p(x). That means
that in order to introduce complements, we have
to require that all principal ideals |z in D be
complemented lattices. Moreover, they must be
uniquely complemented since we want to speak
about the complement. The next result easily fol-
lows from [19].

Proposition 5 Any principal ideal of a domain
D is a uniquely complemented lattice iff D is a
qualitative domain. O

Let D be a qualitative domain and S C D be
a scheme. Consider the set Zg = {pg(z) : z €
D™ar} | where pg(z) is the complement of pg(z)
in |#. We would like Zg to be the complement of
S. However, it can be easily shown that Zg may
fail to be a scheme although |Zg is always a strong
ideal.

There is another elegant way to define complement
proposed by A. Jung [11]. Let S C D be a scheme
in any domain D . We define I§ as the set of
maximal elements of {x € D : pg(z) = L}. It also
can be shown that Z5 is not generally a scheme.
In order to be able to operate with complements,
we have to make two observations.

Proposition 6 Let D be a_qualitative domain
and S any scheme. Then |Is = |Tg, i.e. I§
O

is the set of mazimal elements of Zs.

Given a scheme S in a qualitative domain, we can
correctly define its complement as 7. As we men-
tioned above, the complement of a scheme may
not be a scheme. However, complements of semi-
factors are schemes, as the following result shows.

Proposition 7 The complement of a semi-factor
15 a scheme in any qualitative domain. O

12

If I§ is a scheme, we say that S has a complement

(which is Ig) and denote it by S.

Definition Let D be a qualitative domain and S
a scheme having the complement S. Let S’ be
a scheme. We say that a relation R C D satisfies
multivalued dependency S' —— S if for every z,y €
R with pg(z) = pg/(y) there exists z € R such
that pg(z) V ps(z) = psr(z) Vps(z) and psi(z) V
pg(z) =ps(y) V pg(y)-

If Dis L — V. we obtain the usual definition of
multivalued dependency in a relational database.
Notice that, like functional dependencies, multi-
valued dependencies should be considered only on
schemes the projections into which do not contain
null values. As it was shown above, it means that
a scheme is less than a relation in Smyth power-
domain ordering C!. Therefore in the above def-
inition the following should hold: S’V S C! R
and S’V S C! R. Tt can be easily concluded from
the above inclusions that R C D™, Therefore
we will consider only relations without incomplete
information when speaking of multivalued depen-
dencies.

The above introduced functional and multivalued
dependencies satisfy two well-known properties:

Proposition 8 Let D be a qualitative domain,
and S a scheme having complement S. Let S' be
a scheme, and R a relation without incomplete in-
formation, i.e. a finite subset of D™, Then

1) If R satisfies 8" — S then R satisfies S —— S;
2) If R satisfies S —— S, then R satisfies S" ——

S. O

We have defined so far multivalued dependencies
and the join operation. We also have shown that
the complement of a semi-factor in a qualitative
domain is a scheme. Now we are ready to formu-
late a decomposition theorem.

Theorem 5 Let D be a qualitative domain, and
R a relation without incomplete information (that
is, a finite subset of D™). Let S' be a scheme

and S a semi-factor of D. Then R satisfies multi-
valued dependency S" —— S iff R = [ps/Vps(R)] X
[ps \/pg(R)], where join X is LIF, 0

We did not indicate which operation of projection
— p™in or p™aT — was used because they coincide
for generalized relations without incomplete infor-
mation.

6 Extending relational algebra
to complex objects

The standard approach to constructing complex
objects is to apply record, variant and set con-
structors to basic types. The crucial point is that
we admit set constructor, i.e. given any type T,
there is a type {{7}} whose instances are finite
sets of objects of type 7. Thus, we can not use do-
mains anymore, because we may have an increas-
ing infinite chain of finite sets, which itself is not
directed. In order to develop a “domain-like” the-
ory for complex objects, we need to generalize the
concept of domain. This new concept should be
more general than that of domain. Moreover, the
new objects we are going to define must be closed
with respect to application of record, variant and
set constructors.

Due to the limitations set up for the papers in
this volume we are unable to present all details of
the extension of the algebra from section 4 to con-
structions containing sets. Instead, we will give
here the analogies of the main definitions which
were in the focus of the first three sections, that
is, the definitions of local domains, which are the
generalization of domains that we are going to use,
database domains, schemes and projections. No-
tice that the crucial steps in the defining algebra
for generalized relations were to define generalized
relations as finite antichains in domains, schemes
and projections. In this section these main steps
will be gone through in the case of complex ob-
jects.

If we allow a type {{r}}, then we allow an
infinite sequence of sets {z;} P {z1, 22} P

13

{x1,29,23} C" ..., where all z; € [r]. This se-
quence is a directed set but it does not have the
least upper bound among instances of type {{7}}.
For example, 7 may be a record type and the in-
stances of {{r}} are relations, i.e. finite sets of
records. If {{r}} is used as a constructor for an-
other record type, that is, if we deal with nested
relations, then we may have infinite increasing se-
quence of higher-order records. However, if we are
given any higher-order relation, i.e. a finite set of
higher-order records, and a directed set below this
relation, then this directed set has the least upper
bound. Therefore, the higher-order records range
over the poset which locally behaves as a domain.
The following definition captures this property.

Definition A poset D is called a local domain if
it satisfies the following properties:

1) D does not have infinite decreasing chains;

2) The set K (D) of compact elements of D forms
a countable basis of D;

3) For any finite antichain A C D, | A is a domain.

We changed the requirement that D be directed in
the definition of domain to the requirement that
D be locally directed, i.e. every finite antichain
should generate a domain. We also require that
D be a poset without infinite decreasing chains.
This condition guarantees that D is a complete
semilattice, that is, every nonempty subset of D
has the greatest lower bound. This condition is
not a severe limitation since usually domains of
basic types satisfy it and, as we are going to show
in this section, it is preserved when record, variant
and set constructors are applied (see theorem 6
below).

Definition (Database Domain) Let B be a set
of basic local domains. The database domains are
defined as follows:

1) Any local domain from B is a database domain;
2) If Dy, ..., D, are database domains, then so is
Dy X ... x Dy;

3) If Dy,...,D, are database domains, then so is
Dl + ...+ Dn;

4) If D is a database domain, then so is P(D)
which is the set of finite subset of D ordered by
Eba Le. <Pf(D)7 Eb>

14

A complex object (to be more precise, generalized
complex object) is defined as a finite antichain in
a local domain.

This definition is more general than that used
in [17, 18] where algebra, calculus and null values
for nested relations were discussed. The first gen-
eralization is that we start with arbitrary local do-
mains or domains. The variant constructor is also
allowed, and each attribute can be relation-valued,
that is, each domain used for forming records can
be obtained as P(D) for some D, while in [17, 18]
it is assumed that the nested relations must be in
partitioned normal formS?.

We need the following result about local domains.

Theorem 6 Any domain without infinite de-
creasing chains is a local domain. If Dy, Do are
local domains, then so are Dy x Dy, D1 + Dy and
P(Dl) O

Corollary 1 Any database domain is a local do-
main. O

We are ready to define scheme-ideals and scheme-
projections if B consists only of domains (which
are local domains). This is a natural assumption,
because elements of B are domains we start with,
i.e. domains of basic types like integers, characters
etc.

Definition (Projections and Ideals in

Database Domains)

1) Scheme-ideals and scheme-projections in ele-
ments of B are just those in domains D € B.

2) If 7y € Dy and Zo C Dy are scheme-
ideals in local domains Dy and Dy and p1, ps
are corresponding scheme-projections, then
71 X Iy is a scheme-ideal in Dy x Dy, with
p((z1,29)) = (p1(x1), p2(x2)) being the corre-
sponding scheme-projection.

&It means that zero order attributes form a key, and each
nested subrelation of a less order must also be in partitioned
normal form. In our model it can be the case that there
are no zero order attributes.

3) If Zy C Dy and Z, C D, are two scheme-ideals
with the corresponding scheme-projections p;
and py, then Z7 + Zy is a scheme-ideal in
D1 + D9, and for the corresponding scheme-
projection p we have: p(z) = p;(z;) if z € Z;,
i=1,2.

Scheme-projections in P(D) are given by pro-
jections P({z1,...,zn}) = {p(z1),...,p(zn)}
where p is a scheme-projection in D. The
corresponding scheme-ideal is {P(X)|X €

Py(D)}

Notice that we have not defined the schemes since
a scheme-ideal in P(D) may not have the set of
maximal elements. However, it was the concept
of projection onto a scheme and not the one of
scheme which was crucial for defining the opera-
tions of projection and selection in algebra.

If elements of a database domains are records of a
nested relations, then the above defined scheme-
projections are projections in the recursive algebra
for nested relations of [6].

The definition of scheme-projections and ideals
does take into account the way the database do-
main has been constructed, i.e. a term in sig-
nature (X,+,P) over variables from B. Notice
that the grammar-based approach to defining such
terms and instances of the domains they corre-
spond to was studied in [9].

7 Conclusion

In this paper we have been studying the new ap-
proach to generalization of relational datamodel
that treats relations as subsets of domains, which
are partially ordered sets of descriptions [5]. This
approach allows us, for example, to model differ-
ent ways of working with null values and records
with variants.

In the paper we have described relational algebra
operations for such generalized relations and out-
lined the ways of their extending to complex ob-
jects. We did it by defining schemes in domains

15

and projections associated with the schemes. Join
was defined as the supremum in a powerdomain
ordering and it was shown to satisfy the analo-
gies of the properties of natural join in relational
algebra.

Functional and multivalued dependencies have
been introduced and decomposition theorem es-
tablishing the relationship between join and mul-
tivalued dependencies has been proved for the gen-
eralized relations. In the case of complex objects it
has been argued that domains can not serve as the
basis of the model, and local domains have been
defined to replace domains in the model and to
make it possible to work with set constructor for
complex objects. Recursive definitions of scheme-
ideals and projections have been given.

Some of the open problems to which we would like
to dedicate the further research are: construct-
ing calculus associated with introduced algebra for
generalized relations and complex objects; find-
ing analogies of the basic concepts of relational
database theory (for example, such as normaliza-
tion) in our domain model; investigation of the
different ways of treatment of null values from the
domain theory point of view; extending the basic
model in order to be able to operate with sets.

Acknowledgements This work was inspired by
the idea of Peter Buneman to attract domain the-
ory to generalize relational databases. I am very
grateful to Peter Buneman and Achim Jung for
very helpful discussions and suggestions. I also
would like to thank Carl Gunter, Anthony Kosky
and Val Tannen for their comments on this paper.

References

[1] F. Bancilhon, S. Khoshafin. A calculus for com-
plex objects. In PODS 1986.

C. Beeri. Formal models for object oriented
databases. In : Proc. of Int. Conf. on Deductive
and Object-Oriented Databases, Kyoto, December
1989.

[2]

G. Birkhoff. Lattice Theory. 3rd ed., AMS, Prov-
idence, RI, 1967.

[4]

[16]

[17]

J. Biskup. A formal approach to null values in
database relations. In : Advances in Database
Theory (H. Gallaire, J. Minker, J.M.. Nicolas,
Eds.), Plenum Press, New York, 1981, pp.299-
341.

P. Buneman, A. Jung, A. Ohori. Using powerdo-
mains to generalize relational databases. Theoret-
ical Computer Science, 1991, to appear.

L.S. Colby. A recursive algebra and query opti-
mization for nested relations. In SIGMOD 89.

J.-Y. Girard. The system F' of variable types :
fifteen years later. Theoretical Computer Science
45:159-192, 1986.

C. Gunter, D. Scott. Semantic domains. In
“Handbook on Theoretical Computer Science”, J.
van Leeuwen, ed., North Holland, 1990, pp. 633—
674.

M. Gyssens, J. Paredaens, D. Van Gucht. A
grammar-based approach towards unifying hier-
archical databases. In SIGMOD 89.

T. Imielinski, W. Lipski. Incomplete information
in relational databases. J. of ACM 31(4):761-791,
1984.

A. Jung. Personal communication. June 1990.

A. Jung, L. Libkin, H. Puhlmann. Decomposi-
tion of domains. In Proc. of the Conf. on Math.
Foundations of Programming Semantics - 91, to
appear. Available as Technical Report MS-CIS-
90-84, University of Pennsylvania, 1990.

Nested relations and Complez
Objects in Databases (S.Abiteboul, P.Fischer and
H.-J.Schek eds.) Springer LNCS, Vol. 361, 1989.

A. Ohori. A study on semantics, types and
languages for databases and object-oriented pro-
gramming. PhD Thesis, University of Pennsylva-
nia, 1989.

A. Ohori. Semantics of types for database ob-
jects. 2nd International Conference on Database
Theory, 1988.

J. Paredaens, P. De Bra, M. Gyssens, D. Van
Gucht. The Structure of the Relational Data-
model. Springer-Verlag, Berlin, 1989.

M.A. Roth, H.F. Korth, A. Silberschatz. FEx-
tended algebra and calculus for nested relational
databases. ACM TODS, 13(4):389-417, 1988.

M.A. Roth, H.F. Korth, A. Silberschatz. Null val-
ues in nested relational databases. Acta Informat-
ica, 26(7):615-642, 1989.

16

[19]

[20]

[21]
[22]

[23]

V.N. Salii. Lattices with Unique Complements.
AMS, Providence, RI, 1988.

H.-J. Schek, M. Scholl. The relational model
with relation-valued attributes. Inform. Systems,
11(2):137-147, 1986.

D.S. Scott. Domains for denotational semantics.
In ICALP, July 1982.

M.B. Smyth. Power domains. Journal of Com-
puter and System Sciences 16(1):23-36, 1978.

K. Tanaka, T.-S. Chang. On natural join in
object-oriented databases. In : Proc. of Int. Conf.
on Deductive and Object-Oriented Databases, Ky-
oto, December 1989.

J.D. Ullman. Principles of Database Systems.
Pittman, 2nd ed., 1982.

C. Zaniolo. Database relations with null val-
ues. Journal of Computer and System Sciences
28(1):142-166, 1984.

