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1

Embedded Finite Models and Constraint

Databases

1.1 Introduction

The goal of this chapter is to answer two questions:

1. How does one store an infinite set in a database?

2. And what does it have to do with finite model theory?

Clearly, one cannot store an infinite set, but instead one can store a finite
representation of an infinite set and write queries as if the entire infinite set
were stored. This is the key idea behind constraint databases, which emerged
relatively recently as a very active area of database research. The primary
motivation comes from geographical and temporal databases: how does one
store a region in a database? More importantly, how does one design a query
language that makes the user view a region as if it were an infinite collection
of points stored in the database?

Finite representations used in constraint databases are first-order formu-
lae; in geographical applications, one often uses Boolean combinations of linear
or polynomial inequalities. One of the most challenging questions in the de-
velopment of the theory of constraint databases was that of the expressive
power: what are the limitations of query languages for constraint databases?
These questions were easily reduced to those on the expressiveness of query
languages over ordinary finite relational databases, with the additional con-
dition that databases may store numbers and arithmetic operations may be
used in queries. This is exactly the setting of embedded finite model theory.

It turned out that the classical techniques for analyzing the expressive
power of relational query languages no longer work in this new setting. In
the past several years, however, most questions on the expressive power have
been settled, by using new techniques that mix the finite and the infinite, and
bring together results from a number of fields such as model theory, algebraic
geometry and symbolic computation.
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In this chapter we present a variety of results on embedded finite mod-
els and constraint databases. The core part of this chapter deals with new
techniques for analyzing expressive power in the mixed setting. These tech-
niques, that come in the form of collapse results, reduce many questions over
constraint databases or embedded finite models to the classical finite model
theory setting.

Organization

In Section 1.2, we describe the setting of embedded finite models, and ex-
plain connections with relational database theory. Section 1.3 contains a brief
introduction into constraint databases.

Section 1.4 gives an overview of collapse results; it also defines different
semantics of logical formulae, and introduces the notion of genericity. Sections
1.5 and 1.6 describe collapse results for different semantics and different no-
tions of genericity. In Section 1.7 we look into connections between collapse
results and various model-theoretic notions, and in Section 1.8 we describe a
close relationship between collapse results and the notion of VC dimension,
which is of interest in model theory and machine learning. Section 1.9 presents
results on the expressive power of query languages over constraint databases
that use two different techniques: reduction to the case of embedded finite
models, and the analysis of topological structure of constraint databases.

Sections 1.10 and 1.11 deal with topics motivated by database consid-
erations. Section 1.10 studies query safety, which means guaranteeing finite
output for relational databases, and some geometric properties for constraint
databases. Section 1.11 briefly analyzes the problems of aggregate operators
and higher-order features in constraint databases.

1.2 Relational Databases and Embedded Finite Models

In classical finite model theory, we work with finite structures and deal with
sentences like

∃x∃y∀z(¬E(z, x) ∨ ¬E(z, y))

saying that the diameter of an (undirected) graph with edge-set E is at least
3. In embedded finite model theory, we still work with finite structures but
deal with sentences like

∃x∃y (E(x, y) ∧ (y = x · x+ 1))

saying that there is an edge (x, y) in a graph with y = x2 + 1. It is assumed
here that the nodes of a graph come from some domain that is equipped with
arithmetic operations such as addition and multiplication; for example, the
nodes could be natural, rational, or real numbers.

To illustrate the difference, consider as an example a relational signature
of directed graphs, consisting of a single edge-predicate E. Suppose we want
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to find the composition of E with itself; that is, find pairs (a, b) in a directed
graph that are connected by a path of length at most 2. This is done by
writing a formula

ϕ(x, y) ≡ ∃z (E(x, z) ∧ E(z, y)).

This formula gives us a conjunctive query; it can be written in a variety of
relational database languages: as

q(x, y) :- E(x, z), E(z, y)

in datalog, or
π#1,#4 (σ#2=#3 (R ×R) )

in relational algebra, or

SELECT R1.Source, R2.Destination

FROM R R1, R R2

WHERE R1.Destination=R2.Source

in SQL.
Now suppose that the nodes of the graph are natural numbers, and we are

only willing to consider paths E(x, z), E(z, y) in which x, y, z are related by
some condition: for example, x + y = z. It is straightforward to rewrite the
above query in first-order logic as

ϕ′(x, y) ≡ ∃z (E(x, z) ∧ E(z, y) ∧ (x+ y = z)),

or in SQL:

SELECT R1.Source, R2.Destination

FROM R R1, R R2

WHERE R1.Destination=R2.Source

AND R1.Source + R2.Destination = R2.Source

But what about relational algebra? The most natural way seems to be:

π#1,#4 (σ(#2=#3)∧(#1+#4=#2) (R ×R) );

however, relational algebra does not allow arithmetic operations in its selection
predicates.

At the first glance, this is easy to remedy: just add arithmetic predicates
to the selection conditions. While this seems to be easy, there appear to be
two serious problems.
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Expressive Power We know that first-order logic, and thus relational al-
gebra, cannot express most recursive and counting queries, such as the
transitive closure of a relation, or the parity of a set. However, this was
proved under the assumption that only equality and order comparisons
are allowed on nodes of graphs. How does one prove the analogous result
(if it is true) if nodes are numbers, and arithmetic operations are used in
formulae?
It appears that the standard techniques for proving expressivity bounds
are not directly applicable in this case. Tools based on locality cannot tell
us anything meaningful due to the presence of order; 0-1 laws are inappli-
cable altogether, and games become unmanageable as the duplicator must
maintain partial isomorphism not only for the graph edges, but also for
all the arithmetic predicates as well. It thus seems that entirely different
techniques are needed to solve the problem of the expressive power in this
setting.

Query Evaluation It is clear that the query ϕ′ above can be evaluated by
the usual bottom-up technique: we first construct R×R, then select all the
tuples (a, b, c, d) with b = c and a+ d = b, and then project out the first
and the last components. However, what if the condition is not x+ y = z
but z being a perfect square? The query will then be rewritten as

ϕ′′(x, y) ≡ ∃z (E(x, z) ∧ E(z, y) ∧ (∃u (z = u · u))),

and the selection condition will have to evaluate ∃u (z = u · u) with u
ranging over the infinite set of natural numbers! In this particular case, it
appears that the evaluation is possible: one does not have to check all u ∈
N, but only u ≤ z. However, one can have more complex conditions, for
example: ∃x1 . . . ∃xk p(x1, . . . , xk) = 0, where p is some polynomial with
integer coefficients. The truth value of this sentence cannot be determined
algorithmically, as this would imply solving Hilbert’s 10th problem. Thus,
it is not always possible to evaluate queries with arithmetic conditions. In
general, one would encounter this problem dealing with any undecidable
theory.
To give another example of potential problems with query evaluation,
consider the following query ψ(x) saying that x2 belongs to S:

∃y S(y) ∧ (x · x = y).

This query is clearly evaluable, but its output depends on whether one
works with real numbers, or integers, for example: over the reals, the
output is {−√

a,
√
a | a ∈ S}, but over the integers one has to select

integers from this set. Thus, the output is different depending on the
range of quantifier ∃y: whether it is R or Z. Also, it is is not immediately
clear how a query processor can look at the query above, and transform
the declarative specification involving a quantifier over an infinite set into
a finite evaluable query like {−√

a,
√
a | a ∈ S}.
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To deal with these problems, we now have to give a formal definition of
the setting. Intuitively, we deal with finite relational structures whose ele-
ments come from some interpreted domain with some interpreted operations.
Formally, the object of our study is the following:

Definition 1.1. Let M = 〈U,Ω〉 be an infinite structure on a set U , where the
signature Ω contains some function, predicate, and constant symbols. Let SC
be a relational signature {R1, . . . , Rl} where each relation symbol Ri has arity
pi > 0. Then an embedded finite model (that is, an SC -structure embedded
into M) is a structure

D = 〈A,RD
1 , . . . , R

D
l 〉,

where each RD
i is a finite subset of Upi , and A is the union of all elements

that occur in the relations RD
1 , . . . , R

D
l . The set A is called the active domain

of D, and is denoted by adom(D). �

Examples of structures M that will be used most often are real and natural
numbers with various arithmetic operations, for example, 〈N,+, ·〉, the real
ordered field 〈R,+, ·, 0, 1, <, 〉 or the real ordered group 〈R,+,−, 0, 1, <〉.

The notation SC comes from the database name schema for the relational
vocabulary of a finite structure.

In the setting where we mix finite and infinite structures, first-order logic
(FO) must be defined carefully. Note that we have two different universes that
can be quantified over: the universe U of the infinite structure M, and the
active domain A of the finite structure D.

Definition 1.2. Given a structure M = 〈U,Ω〉 and a relational signature SC ,
first-order logic (FO) over M and SC, denoted by FO(SC ,M), is defined as
follows:

• Any atomic FO formula in the language of M is an atomic FO(SC ,M)
formula. For any p-ary symbol R from SC and terms t1, . . . , tp in the
language of M, R(t1, . . . , tp) is an atomic FO(SC ,M) formula.

• Formulae of FO(SC ,M) are closed under the Boolean connectives (∨, ∧,
and ¬).

• If ϕ is a FO(SC ,M) formula, then the following:

∃x ϕ ∀x ϕ ∃x∈adom ϕ ∀x∈adom ϕ

are FO(SC ,M) formulae.

The class of first-order formulae in the language of M will be denoted by
FO(M) (that is, the formulae built up from atomic M-formulae by Boolean
connectives and quantification ∃, ∀). The class of formulae not using the sym-
bols from Ω will be denoted by FO(SC ) (in this case all four quantifiers are
allowed).
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The notions of free and bound variables are standard. For the semantics,
given a FO(SC ,M) formula ϕ(x1, . . . , xn), and ~a = (a1, . . . , an) ∈ Un, we
define the relation (M, D) |= ϕ(~a). When M is understood, we usually write
just D |= ϕ(~a). The notion of satisfaction is standard, with only the case

of quantification requiring explanation. Let ϕ(x, ~y) be a formula, and ~b be a
tuple of elements of U , of the same length as ~y. Then:

(M, D) |= ∃x ϕ(x,~b) ⇔ (M, D) |= ϕ(a,~b) for some a ∈ U

(M, D) |= ∀x ϕ(x,~b) ⇔ (M, D) |= ϕ(a,~b) for all a ∈ U

(M, D) |= ∃x∈adom ϕ(x,~b) ⇔ (M, D) |= ϕ(a,~b) for some a ∈ adom(D)

(M, D) |= ∀x∈adom ϕ(x,~b) ⇔ (M, D) |= ϕ(a,~b) for all a ∈ adom(D).

The quantifiers ∃x ∈ adom ϕ and ∀x ∈ adom ϕ are called active-domain
quantifiers. Note that they are definable with the unrestricted quantifiers ∃
and ∀, as adom(D) is definable by a FO formula. However, we find it more
convenient to have them explicitly in the syntax so that we can use both
restricted and unrestricted quantifiers in the same formula.

Definition 1.3. By FOact(SC ,M) we denote the fragment of FO(SC ,M) that
only uses quantifiers ∃x ∈ adom and ∀x ∈ adom. Formulae in this fragment
are called the active-domain semantics formulae.

Sometimes we shall also refer to the standard interpretation of the unre-
stricted quantifiers ∃ and ∀ as the natural semantics of first-order formulae,
and to the class FO(SC ,M) as the class of natural semantics formulae.

Our goal is to study FO(SC ,M). In particular, we show that the solutions
to the crucial problems of expressive power and query evaluation depend heav-
ily on the model-theoretic properties of M. In fact, we shall see the full range
of expressivity – from all computable properties to just FOact(SC )-definable
– for different structures M. Of course it is highly undesirable to have a query
language that expresses all computable queries, since in the database setting
we want to keep the complexity low, and we want queries to be optimizable.
The latter situation is much more attractive, since essentially one deals with
the familiar relational calculus on finite databases.

1.3 Constraint Databases

The field of constraint databases (CDB) was initiated in 1990, and since then
has become a well-established topic in the database field. It grew out of the
research on Datalog and Constraint Logic Programming (CLP). The original
motivation was to combine work in these two areas, with the goal of obtain-
ing a database-style, optimizable version of constraint logic programming.
The key idea was that the notion of a tuple in a relational database could be
replaced by a conjunction of constraints from an appropriate language (for
example, linear arithmetic constraints), and that many of the features of the
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relational model could be extended in an appropriate way. In particular, stan-
dard query languages such as those based on first-order logic and Datalog
could be extended, at least in principle, to such a model.

The primary motivation for constraint databases comes from the field of
spatial and spatio-temporal databases, and geographical information systems
(GIS). One wants to store an infinite set – say, a region on the plane – in a
database and query it as if all the points (infinitely many) were stored. This
is clearly impossible. However, it is possible to store a finite representation
of an infinite set, and make this completely transparent to the user, who still
can access the data as though infinitely many points were stored.

To illustrate how infinite geometric objects can be represented with differ-
ent classes of constraints, we use the following examples:

Fig. 1.1. An example of two-variable polynomial constraints

Fig. 1.2. An example of two-variable linear arithmetic constraints

Consider Figure 1.1. This figure can be described, using polynomial in-
equalities with integer coefficients:

(x2/25 + y2/16 = 1) ∨ (x2 + 4x+ y2 − 2y ≤ 4)

∨ (x2 − 4x+ y2 − 2y ≤ −4) ∨ (x2 + y2 − 2y = 8 ∧ y < −1) .

The first equality describes the outer ellipse of the figure, the second and third
disjuncts describe the “eyes”, and the last disjunct describes the “mouth”.

If we restrict ourselves to inequalities involving linear functions, the face
in Figure 1.1 can no longer be defined. It can, however, be approximated as
follows:

(−5 ≤ x ≤ 5 ∧ y = −4) ∨ (−5 ≤ x ≤ 5 ∧ y = 4)

∨ (x = 5 ∧ −4 ≤ y ≤ 4) ∨ (x = −5 ∧ −4 ≤ y ≤ 4)

∨ (−3 ≤ x ≤ −1 ∧ 0 ≤ y ≤ 2) ∨ (1 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2)

∨ (3y = −x− 6 ∧−2 ≤ y ≤ −1) ∨ (3y = x− 6 ∧ −2 ≤ y ≤ −1) .
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The first four disjuncts describe the outer rectangle. The next two disjuncts
describe the “eyes”, with the last two describing the “mouth”.

What makes the sets depicted in Figures 1.1 and 1.2 special is that they
are definable by FO formulae over some structures, in this case, the real field
and the real ordered group.

Definition 1.4. Given a structure M = 〈U,Ω〉, a set X ⊆ Un is called M-
definable (or definable over M, or just definable if M is understood) if there
exists a FO formula ϕ(x1, . . . , xn) in the language of M such that

X = {(a1, . . . , an) ∈ Un | M |= ϕ(a1, . . . , an)}.

We now consider two classes of definable sets especially relevant in the
context of constraint databases.

Definition 1.5. We use abbreviations R for the real field (that is,
〈R,+, ·, 0, 1, <〉) and Rlin for the real ordered group (〈R,+,−, 0, 1, <〉). Sets
definable over R are called semi-algebraic and sets definable over Rlin are
called semi-linear.

A remarkable property of both Rlin and R is that they admit quantifier-
elimination; that is, every formula is equivalent to a quantifier-free one. For
Rlin this is a simple consequence of Fourier-Motzkin elimination; for R, this
is the celebrated result of Tarski’s.

Thus, every semi-algebraic set in Rn is a Boolean combination of sets given
by polynomial equalities and inequalities of the form

p(x1, . . . , xn) {=, >,<} 0,

where p is a polynomial (with rational or integer coefficients). Similarly, a
semi-linear set in Rn is a Boolean combination of sets given by linear equalities
and inequalities of the form

a1 · x1 + . . .+ an · xn {=, >,<} b,

where the ais and b are rational or integer coefficients. That is, a semi-linear
set is a Boolean combination of half-spaces and hyperplanes in Rn.

The set shown in Figure 1.1 is semi-algebraic, and the set shown in Figure
1.2 is semi-linear. In general, the majority of geographical applications repre-
sent regions by linear constraints; that is, regions are semi-linear sets. If linear
constraints are not sufficient, one can use polynomial constraints instead.

We are now ready to present a mathematical model of constraint
databases.

Definition 1.6. Let M = 〈U,Ω〉 be an infinite structure on a set U , and let
SC be a relational signature {R1, . . . , Rl} where each relation Ri has arity
pi > 0. Then a constraint database of schema SC is a tuple
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D = 〈RD

1 , . . . , R
D

l 〉,

where each RD

i is a definable subset of Upi . The superscript D is omitted if
it is clear from the context. �

Thus, the only difference between the definition of a constraint database
and an embedded finite model is that in the former we interpret the SC -
predicates by definable sets, and in the latter – by finite sets.

The definition of FO(SC ,M) is the same for constraint databases as it is for
embedded finite models, except that we do not use the restricted quantification
∃x∈adom and ∀x∈adom . The quantifiers are thus interpreted as ranging over
the entire infinite set U . As linear and polynomial constraints play a special
role in the theory of constraint databases, we introduce a special notation for
them.

Definition 1.7. If M is the real field, we write FO + Poly(SC ) for
FO(SC ,R), or just FO + Poly if SC is clear from the context. If M is the real
ordered group, we write FO + Lin(SC ) (or just FO + Lin) for FO(SC ,Rlin).

The notation FO + Poly stands for FO with polynomial constraints,
and FO + Lin for FO with linear constraints. An example of definability
in FO + Poly is the property that all points in a relation S lie on a com-
mon circle: ∃a∃b∃r (∀x∀y S(x, y) → (x − a)2 + (y − b)2 = r2). In general,
FO + Poly can define many useful topological concepts such as closure, in-
terior and boundary. These are definable in FO + Lin as well. For example,
the FO + Lin query α(x, y):

∀ǫ > 0∃x′∃y′
(

S(x′, y′) ∧ (x− ǫ < x′ < x+ ǫ) ∧ (y − ǫ < y′ < y + ǫ)
)

tests if the pair (x, y) is in the closure of a set S ⊆ R2.
In FO + Poly one can also define the convex hull of a set. To see how this

is done in the two-dimensional case, assume that a semi-algebraic set S ∈ R2

is given. Then ϕ(x, y) given by

∃x1, y1, x2, y2, x3, y3 ∃λ1, λ2, λ3













S(x1, y1) ∧ S(x2, y2) ∧ S(x3, y3)
∧ λ1 ≥ 0 ∧ λ2 ≥ 0 ∧ λ3 ≥ 0
∧ λ1 + λ2 + λ3 = 1
∧ (x = λ1 · x1 + λ2 · x2 + λ3 · x3)
∧ (y = λ1 · y1 + λ2 · y2 + λ3 · y3)













is true on (x, y) iff (x, y) ∈ conv(S). In general, to definite the convex hull of a
set S in Rn, one uses Carathéodory’s theorem stating that ~x is in the convex
hull of S ⊆ Rn iff ~x is in the convex hull of some n+ 1 points in S, and codes
this by an FO formula just as we did above for the case of R2.

We note again that these examples demonstrate the crucial property of
constraint databases: query languages based on FO view the database as if
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it were infinitely many tuples stored in memory. We refer to the database
relations in exactly the same way we do for the usual relational databases.

Now that we defined constraint databases and saw some examples of query-
ing, we consider the same issues we addressed in the context of embedded finite
models: expressive power and query evaluation.

Expressive power We saw that FO + Poly is a rather expressive language
to talk about properties of semi-algebraic sets, and that many topologi-
cal properties of semi-linear sets can already be expressed in the weaker
language FO + Lin. We next turn to a very basic topological property:
connectivity. Suppose we are given a semi-algebraic or semi-linear set S,
and we want to test if it is topologically connected. Can we do this in
FO + Poly or FO + Lin?
At first, it seems that the answer is “no.” Indeed, it appears that topolog-
ical connectivity is rather close to graph connectivity: take an undirected
graph G and embed it in R3 without self-intersections. Then the embed-
ding is topologically connected iff G is a connected graph. However, we
only know that FO cannot express graph connectivity; there is nothing
yet that tells us that similar bounds exist for FO + Lin and FO + Poly.

Query Evaluation Suppose we are given an FO(SC ,M) query ϕ(~x) and
a constraint database D over M. How does one evaluate ϕ on D? The
answer to this is very simple – one just puts the definition of relations in
D into ϕ. For example, if ϕ(x) ≡ ∃y (S(x, y) ∧ (p1(x, y) > 0)) and S is
given by p2(x, y) < 0, where p1, p2 are polynomials, then by putting the
definition of S into ϕ we obtain a new formula ϕD(x) ≡ ∃y ((p2(x, y) <
0) ∧ (p1(x, y) > 0)). As this is an FO formula, it gives us a constraint
database.
This may look a little bit like cheating, and of course it is. For example,
how does one check that D |= ϕ(1)? To do so, one must be able to check if
ϕD(1) is true in R; in general, one must be able to check if ϕD(~a) is true
in a given structure M, where ϕD is the result of substituting definitions
of relations in SC in the query ϕ.
This can only be done if the FO theory of the underlying structure M is
decidable. This property certainly holds for Rlin and R (in fact, they sat-
isfy a much stronger property of having quantifier-elimination); however,
for many structures this property does not hold (for example, 〈N,+, ·〉).

We shall see in the remainder of this chapter that the correspondence
between the problems of topological connectivity of constraint databases and
graph connectivity in the embedded setting is not an accident: in fact, the ma-
jority of expressivity bounds for constraint databases are obtained by rather
simple reductions to embedded finite models.
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1.4 Collapse and Genericity: An Overview

The next five sections will deal primarily with the setting of embedded finite
models. In this short section, we give an overview of the main results.

Many results on expressive power use the notion of genericity which
comes from the classical relational database setting. Informally, this no-
tion is sometimes stated as data independence principle: when one evalu-
ates queries on relational databases, exact values of elements stored in a
database are not important. For example, the answer to the query: “Does
a graph have diameter 2?” is the same for the graph {(1, 2), (1, 3), (1, 4)}
and for the graph {(a, b), (a, c), (a, d)}, which is obtained by the mapping
1 7→ a, 2 7→ b, 3 7→ c, 4 7→ d.

In general, generic queries commute with permutations of the domain.
Queries expressible in FO(SC ,M) need not be generic: for example, the query
given by ∃x S(x) ∧ x > 1 is true on S = {2} but false on S = {0}. However,
as all queries definable in standard relational languages – relational calculus,
Datalog, etc. – are generic, to reduce questions about FO(SC ,M) to those in
ordinary finite-model theory, it suffices to restrict one’s attention to generic
queries.

We now define genericity of Boolean queries (which are just classes of SC -
structures) and non-Boolean queries (which map a finite SC -structure to a
finite subset of Um, m > 0). We also define genericity in the ordered as well as
unordered setting. The reason for considering the ordered setting separately
is twofold: first, most structures of interest in applications are ordered, and
second, in several proofs we need to introduce the order relation to obtain the
desired results.

Given a function π : U → U , we extend it to finite SC -structures D by
replacing each occurrence of a ∈ adom(D) with π(a).

Definition 1.8. • A Boolean query Q is totally generic (order-generic) if
for every partial injective function (partial monotone injective function,
resp.) π defined on adom(D), Q(D) = Q(π(D)).

• A non-Boolean query Q is totally generic (order-generic) if for every par-
tial injective function (partial monotone injective function, resp.) π de-
fined on adom(D) ∪ adom(Q(D)), π(Q(D)) = Q(π(D)).

Order-genericity of course assumes that U is linearly ordered. Clearly, total
genericity is stronger than order-genericity. Examples of totally generic queries
are all queries definable in relational algebra, Datalog, the While language,
and in fact in almost every language studied in relational database theory. As a
concrete example, consider the parity query. Since for any injective π : U → U
it is the case that card(X) = card(π(X)), parity is totally generic.

Examples of order-generic queries include queries definable in relational
calculus and datalog with order (that is, order comparisons are allowed in
selection predicates and Datalog rules).
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Approaches to Proving Expressivity Bounds

How can one prove bounds on FO(SC ,M)? Probably, by reducing the prob-
lem to something we know about. And we know a lot about FO over finite
structures, ordered or unordered. In our terms, this is either FOact(SC , 〈U, ∅〉),
which we denote by FOact(SC ) (that is, there are no operations on U , and
everything is restricted to the active domain), or FOact(SC , 〈U,<〉), which
will be denoted by FOact(SC , <) (that is, the only predicate on U is the order
<).

To reduce the expressivity of FO(SC ,M) to FOact(SC , <) or FOact(SC ),
we have to deal with two problems: unrestricted quantification over U , and the
presence of M-definable constraints in formulae. Figure 1.3 illustrates possible
approaches to the problem.

FOact(SC ,M) =============

natural-active
collapse

FO(SC ,M)

FOact(SC , <)

active
generic
collapse

w

w

w

w

w

w

w

w
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natural
generic
collapse

w

w

w

w

w

w

w

w

w

Fig. 1.3. Approaches to proving bounds for FO(SC ,M)

We need to go from the upper right corner to the lower left corner. One
possibility is to move left first and then down. To move left, we must prove that
for a given M, FO(SC ,M) and FOact(SC ,M) have the same power. That is,
all unrestricted quantification can be eliminated. This will be called natural-
active collapse. To move down, we would have liked to prove FOact(SC ,M) =
FOact(SC , <), but this is impossible due to the following.

Lemma 1.9. FOact(SC , <) only defines order-generic queries. �

On the other hand, queries definable in FOact(SC ,M) need not be generic.
Thus, we attempt to prove the next best thing: that all generic queries in
FOact(SC ,M) and FOact(SC , <) are the same. This is called active generic
collapse.

Another possibility is to go from the right upper corner down first. For
the same reasons as before, we have to restrict ourselves to generic queries,
and attempt to prove that any generic query in FO(SC ,M) is definable in
FO(SC , <). This is called natural generic collapse. Then, to go left, we have
to prove the natural-active collapse over a very simple structure 〈U,<〉.

Let us now summarize the definitions of collapse results we will be proving
here.
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Definition 1.10. We say that a structure M admits:

• natural-active collapse if FO(SC ,M) = FOact(SC ,M) for any SC ;

• active generic collapse if, for any SC , the classes of order-generic queries
in FOact(SC ,M) and FOact(SC , <) are the same (assuming M is or-
dered);

• natural generic collapse if, for any SC , the classes of order-generic queries
in FO(SC ,M) and FO(SC , <) are the same (assuming M is ordered).

We shall also consider collapse results for totally generic queries, but they
will of lesser importance. The next three sections deal with collapse results:
Section 1.5 discusses the active generic collapse, Section 1.6 the natural-active
collapse, and Section 1.6.7 the natural generic collapse.

1.5 Active-Generic Collapse

Our goal is to prove the active generic collapse over any ordered structure. We
do it by proving a Ramsey property, defined below, and then showing that it
implies the collapse.

We start with a simple example that illustrates the main idea of the proof.
Suppose we have a sentence Φ of FO + Poly:

∀x∈adom ∀y∈adom S(x, y) → (¬(x = y2) ∧ ¬(y = x2)).

In general, given a sentence, one cannot decide whether it defines a generic
query. So assume for a moment that a given sentence happens to express a
generic query. How does one show then that this query is definable in FO with-
out polynomial constraints (for example, how does one prove that this query
is not parity)? Clearly, one needs a systematic way of finding counterexam-
ples for each non-FO query. This is provided by the following observation. Let
X = {33i | i > 0} ⊂ N. Then, for any x, y ∈ X , we have x 6= y2, because
3j = 2 · 3i does not hold for any i, j > 0. Thus, if adom(S) ⊂ X , then S |= Φ.
Now, assume that Φ expresses a generic query Q. Given any finite relation
S, we can find a monotone embedding π of its active domain into X . Thus,
Q(S) = Q(π(S)) by genericity, and we know that Q(π(S)) is true. Hence,
Q(S) is true for all S, and thus Φ cannot express a non first-order generic
query.

This is the basic idea behind the proof of the active generic collapse: we
first show that for each formula, its behavior on some infinite set is described
by a first-order formula. This is called the Ramsey property. We then show
how genericity and the Ramsey property imply the collapse.
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1.5.1 Ramsey properties

Definition 1.11. Let M = 〈U,Ω〉 be an ordered structure. We say that a
FOact(SC ,M) formula ϕ(~x) has the Ramsey property if the following is true:

Let X be an infinite subset of U . Then there exists an infinite set
Y ⊆ X and a FOact(SC , <) formula ψ(~x) such that for any instance
D of SC with adom(D) ⊂ Y , and for any ~a over Y , it is the case that
D |= ϕ(~a) ↔ ψ(~a).

We speak of the total Ramsey property if ψ is an FOact formula in the
language of SC (note the absence of order).

In the rest of this section, we prove the Ramsey property. Fix an ordered
structure M = 〈U,Ω〉 and a schema SC . The following simple lemma will
often be used as a first step in proofs of collapse results. Before stating it,
note that for any FO(SC ,M), subformulae (x = y) can be viewed as both
atomic FO(SC ) and atomic FO(M) formulae. For the rest of the chapter, we
choose to view them as atomic FO(M) formulae; that is, atomic FO(SC ) are
only those of the form R(· · · ) for R ∈ SC .

Lemma 1.12. Let ϕ(~x) be an FO(SC ,M) formula. Then there exists an
equivalent formula ψ(~x) such that every atomic subformula of ψ is either an
FO(SC ) formula, or an FO(M) formula. Furthermore, it can be assumed that
none of the variables ~x occurs in an FO(SC )-atomic subformula of ψ(~x). If
ϕ is an FOact(SC ,M) formula, then ψ is also an FOact(SC ,M) formula.

Proof. Introduce m fresh variables z1, . . . , zm, where m is the maximal
arity of a relation in SC , and replace any atomic formula of the form
R(t1(~y), . . . , tl(~y)), where l ≤ m and the tis are M-terms, by ∃z1 ∈
adom . . . ∃zl ∈ adom

∧

i(zi = ti(~y)) ∧ R(z1, . . . , zl). Similarly use existential
quantifiers to eliminate ~x-variables from FO(SC )-atomic formulae. �

The key in the inductive proof of the Ramsey property is the case of
FO(M)-subformulae. For this, we first recall the infinite version of Ramsey’s
theorem, in the form most convenient for our purposes.

Theorem 1.13 (Ramsey). Given an infinite ordered set X, and any parti-
tion of the set of all ordered m-tuples x1 < . . . < xm of elements of X into l
classes A1, . . . , Al, there exists an infinite subset Y ⊆ X such that all ordered
m-tuples of elements of Y belong to the same class Ai. �

Lemma 1.14. Let ϕ(~x) be an FO(M)-formula. Then ϕ has the Ramsey prop-
erty.

Proof. Consider a (finite) enumeration of all the ways in which the variables ~x
may appear in the order of U . For example, if ~x = (x1, . . . , x4), one possibility
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is x1 = x3, x2 = x4 and x1 < x2. Let P be such an arrangement, and ζ(P )
a first-order formula that defines it (x1 = x3 ∧ x2 = x4 ∧ x1 < x3 in the
above example). Note that there are finitely many such arrangements P ; let
P be the set of all of those. Each P induces an equivalence relation on ~x, for
example, {(x1, x3), (x2, x4)} for P above. Let ~xP be a subtuple of ~x containing
a representative for each class (e.g., (x1, x4)) and let ϕP (~xP ) be obtained
from ϕ by replacing all variables from an equivalence class by the chosen
representative. Then ϕ(x) is equivalent to

∨

P∈P

ζ(P ) ∧ ϕP (~xP ) .

We now show the following. Let P ′ ⊆ P and P0 ∈ P ′. Let X ⊆ U be an
infinite set. Assume that ψ(~x) is given by

∨

P∈P′

ζ(P ) ∧ ϕP (~xP ).

Then there exists an infinite set Y ⊆ X and a quantifier-free FO(<) formula
γP0

(~x) such that ψ is equivalent to

γP0
(~x) ∨

∨

P∈P′−{P0}

ζ(P ) ∧ ϕP (~xP )

for tuples ~x of elements of Y .
To see this, suppose that P0 hasm equivalence classes. Consider a partition

of tuples of Xm ordered according to P0 into two classes: A1 of those tuples
for which ϕP0(~xP0) is true, and A2 of those for which ϕP0(~xP0) is false. By
Ramsey’s theorem, for some infinite set Y ⊆ X either all ordered tuples
over Y m are in A1, or all are in A2. In the first case, ψ is equivalent to
ζ(P0)∨

∨

P∈P′−{P0}
ζ(P )∧ϕP (~xP ), and in the second case ψ is equivalent to

¬ζ(P0) ∨
∨

P∈P′−{P0}
ζ(P ) ∧ ϕP (~xP ), proving the claim.

The lemma now follows by applying this claim inductively to every par-
tition P ∈ P , passing to smaller infinite sets, while getting rid of all the
formulae containing symbols other = and <. At the end we have an infinite
set over which ϕ is equivalent to a quantifier-free FO(<) formula. �

Now a simple inductive argument proves:

Proposition 1.15. Let M be any ordered structure. Then every
FOact(SC ,M) formula has the Ramsey property.

Proof. By Lemma 1.12, we assume that every atomic subformula is an
FOact(SC ) formula or an FO(M) formula. The base cases for the induction
are those of FOact(SC ) formulae, where there is no need to change the formula
or find a subset, and of FO(M) atomic formulae, which is given by Lemma
1.14.
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Let ϕ(~x) = ϕ1(~x) ∧ ϕ2(~x), and X ⊆ U infinite. First, find ψ1, Y1 ⊆ X
such that for any D and ~a over Y1, D |= ϕ1(~a) ↔ ψ1(~a). Next, by using the
hypothesis for ϕ2 and Y1, find an infinite Y2 ⊆ Y1 such that for any D and ~a
over Y2, D |= ϕ2(~a) ↔ ψ2(~a). Then take ψ = ψ1 ∧ ψ2 and Y = Y2.

The case of ϕ = ¬ϕ′ is trivial.
For the existential case, let ϕ(~x) = ∃y∈adom ϕ1(y, ~x). By the hypothesis,

find Y ⊆ X and ψ1(y, ~x) such that for any D and ~a over Y and any b ∈ Y
we have D |= ϕ1(b,~a) ↔ ψ1(b,~a). Let ψ(~x) = ∃y ∈ adom .ψ1(y, ~x). Then, for
any D and ~a over Y , D |= ψ(~a) iff D |= ψ1(b,~a) for some b ∈ adom(D) iff
D |= ϕ1(b,~a) for some b ∈ adom(D) iff D |= ϕ1(~a), thus finishing the proof.
�

It is clear from the proof of Proposition 1.15 that only the case of atomic
FO(M) formulae requires the introduction of the order relation. Thus, if
atomic FO(M) formulae had the total Ramsey property over M, so would
all FOact(SC ,M) formulae. In general, this cannot be guaranteed for arbi-
trary M (consider, for example, 〈U,<〉). However, there is an important class
of structures on the reals for which this statement can be shown.

We say that M = 〈R, Ω〉 is analytic if Ω consists of real-analytic functions.
For example, 〈R,+, ·〉 is analytic.

Lemma 1.16. Let F = {fi(~x)}i∈I be a countable family of real-analytic func-
tions, where ~x = (x1, . . . , xl). Assume that none of the functions in F is iden-
tically zero. Let X ⊆ R be a set of cardinality of the continuum. Then there
is a set Y ⊆ X of cardinality of the continuum such that for any tuple ~c of l
distinct elements of Y , none of fi(~c), i ∈ I, equals zero.

The proof of this result, which we omit here, is a Zorn’s lemma argument
based on the fact that a non-zero real analytic function can have at most
countably many zeros. �

Proposition 1.17. Let M = 〈R, Ω〉 be analytic. Then every FOact(SC ,M)
formula has the total Ramsey property.

Proof sketch. We only need to modify the proof of Lemma 1.14, to show the
total Ramsey property of atomic FO(M) formulae. This can be done by using
Lemma 1.16 in place of Ramsey’s theorem. �

1.5.2 Collapse results

We now show how the Ramsey property implies the active generic collapse.
Recall (see Section 1.4) that an m-ary query, m > 0, is a mapping from
finite SC -structures on U to finite subsets of Um. We start with the following
observation.

Lemma 1.18. If Q is an order-generic query on SC-structures over an infi-
nite set U , then adom(Q(D)) ⊆ adom(D) for every SC-structure D.



1.5 Active-Generic Collapse 17

Proof. First note that for any finite subsets Y ⊂ X of an infinite ordered set
U , any x ∈ X − Y , and any number n > 0, we can find monotone injective
maps π1, . . . , πn defined on X such that for all i, j, πi(Y ) = πj(Y ), but all
π1(x), . . . , πn(x) are distinct. This is true because U has either an infinitely
descending or an infinitely ascending chain; in each case it is easy to construct
the πis.

Now suppose that Z = adom(Q(D))−adom(D) is nonempty for an order-
generic query Q. Let X = adom(Q(D)) ∪ adom(D), Y = adom(D) and n =
card(Z) + 1. Construct π1, . . . , πn as above. Now for any i, j: πi(Q(D)) =
Q(πi(D)) = Q(πj(D)) = πj(Q(D)); hence π1(Z) = . . . = πn(Z). In particular,
for every x ∈ Z, πi(x) ∈ π1(Z), whence card(π1(Z)) = card(Z) ≥ n. This
contradiction proves the lemma. �

Lemma 1.19. Assume that every FOact(SC ,M) formula has the Ramsey
property. Then M admits the active generic collapse.

Proof. Let Q be an order-generic query definable in FOact(SC ,M). By the
Ramsey property, we find an infinite X ⊆ U and an FOact(SC , <)-definable
Q′ that coincides with Q on X . We claim they coincide everywhere. Let D be
a SC -structure. Since X is infinite, there exists a partial monotone injective
map π from adom(D) into X . Since Q′ is FOact(SC , <)-definable, it is order-
generic, and thus Q and Q′ do not extend active domains. Hence, π(Q(D)) =
Q(π(D)) = Q′(π(D)) = π(Q′(D)) from which Q(D) = Q′(D) follows. �

We now put Proposition 1.15 and Lemma 1.19 together:

Theorem 1.20. Every ordered structure admits the active generic collapse.
�

Thus, no matter what functions and predicates in M, first-order logic
cannot express more generic active-semantics queries over it than just
FOact(SC , <). In particular, we have the following.

Corollary 1.21. Let M be an arbitrary structure. Then queries such as par-
ity, majority, connectivity, transitive closure, and acyclicity are not definable
in FOact(SC ,M).

Proof. Assume otherwise, and extend M to M< by adding the symbol < to
be interpreted as a linear order. Then FOact(SC ,M<) defines one of those
queries, for appropriate SC . Since all the queries listed above are order-
generic, we obtain from Theorem 1.20 that FOact(SC , <) defines them, which
is not the case. �

We conclude by showing a stronger collapse result over analytic structures.

Corollary 1.22. If M = 〈R, Ω〉 is analytic, then any totally generic query
definable in FOact(SC ,M) is definable in FOact(SC ). �

Indeed, this is a stronger version of collapse, as there exist totally generic
queries in FOact(SC , <)−FOact(SC ) (even for very simple vocabularies SC ).
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1.6 Natural-Active Collapse

So far we have dealt with formulae that only use the restricted quantification
∀x ∈ adom and ∃x ∈ adom . We next move to unrestricted quantification,
where quantifiers are allowed to range over the infinite universe of a structure
M. Our ultimate goal is to prove the natural-active collapse: FO(SC ,M) =
FOact(SC ,M). We start by showing that there is a reason to believe that this
may hold for some structures M, although not for all of them. We then review
some notions from model theory that help us distinguish good structures (for
which the collapse holds) from bad ones (for which it does not). After that, we
give a gentle introduction to the main ideas of the proof of the natural-active
collapse, considering a simple case of linear constraints (that is, FO + Lin)
and one unrestricted existential quantifier to eliminate. After that, we present
a general proof and an algorithm, and revisit the collapse for generic queries.

1.6.1 Collapse: failure and success

We have seen that the active generic collapse holds for every ordered structure
Does this extend to the natural-active collapse? To give a negative answer,
consider the structure N = 〈N,+, ·〉. (We may include an order relation < as
well, but it is definable: x < y iff ¬(x = y) ∧ ∃z (y = x+ z).) Let SC consist
of a single unary predicate S. From the active generic collapse, we know that
parity is not definable in FOact(SC ,N). However,

Proposition 1.23. Parity is definable in FO(SC ,N). Consequently, N does
not admit the natural-active collapse.

Proof. Let p1, p2, . . . enumerate the prime numbers. Consider three predicates
on N: P0(x) holds iff x is prime, P1(x, y) holds iff y equals px, and P2(x) holds
iff x is the product of an even number of distinct primes. Note that P0, P1

and P2 are recursive, and thus definable over N. The way of expressing parity
is then the following: given a set S = {x1, . . . , xn} with x1 < . . . < xn, we
code it as cS = px1

· . . . · pxn
. Suppose we have a formula ϕ(c) which holds iff

c = cS . Then parity is expressed as

¬∃xS(x) ∨ ∃c (ϕ(c) ∧ P2(c)).

Thus, it remains to show how to express ϕ. It can be defined by the following
formula:

∀p P0(p) →
(

(∃y(c = p · y)) → ¬∃y(c = p · p · y)
∧ (∃y(c = p · y)) ↔ ∃x (S(x) ∧ P1(x, p))

)

It says that for every prime p that divides c, c is not divisible by p2, and p is
of the form px for some x ∈ S, which forces c to be cS . This completes the
proof. �
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One may observe that there is nothing specific for parity in the proof
above. In particular, the coding scheme can be easily extended to finite SC -
structures for any SC , and the fact that every recursive predicate on N is
definable in N allows us to state:

Proposition 1.24. For any SC, every computable property of finite SC-
structures is definable in FO(SC ,N). �

In fact, FO(SC ,N) can even express properties that are not computable.
Thus, we have witnessed a rather dramatic failure of the natural-active

collapse. Is there then something that gives us hope of recovering it for some
structures? Let us first look at the simplest possible M: 〈U, ∅〉. It turns out
that in this case the collapse can be proven rather easily.

Theorem 1.25. For every schema, FO(SC ) = FOact(SC ).

Proof. We consider the case of nonempty finite structures. If an FOact(SC )
formula ψ(~x) equivalent to an FO(SC ) formula ϕ(~x) is found in this case,
then for arbitrary finite SC -structures, a formula equivalent to ϕ is given by
(∃x∈adom (x = x) ∧ ψ(~x)) ∨ (¬∃x∈adom (x = x) ∧ ϕ∅(~x)), where ϕ∅(~x) is a
quantifier-free formula equivalent to the formula obtained from ϕ by replacing
each occurrence of a predicate from SC by false.

Now the proof is by induction on the structure of the formula. The cases
of atomic formulae and Boolean connectives are obvious. For the existential
case, we define a transformation [γ]x that eliminates all free occurrences of
variable x from quantifier-free formulae:

• If γ is (x = x), then [γ]x = true;

• If γ is (x = y) or R(. . . , x, . . .), then [γ]x = false;

• If γ is any other atomic formula, then [γ]x = γ;

• If γ = γ1 ∨ γ2, then [γ]x = [γ1]
x ∨ [γ2]

x;

• If γ = ¬γ′, then [γ]x = ¬[γ′]x;

Let ϕ(~z) = ∃xα(x, ~z) where z = (z1, . . . , zn). By the hypothesis, α is
equivalent to an FOact(SC ) formula α′(x, ~z). Assume without loss of generality
that α′ is of the form Qy1 ∈ adom . . .Qym ∈ adom β(x, ~y, ~z), where β is
quantifier-free.

Define ϕ0(~z) ≡ ∃x∈ adom α′(x, ~z), ϕi(~z) ≡ α′(zi, ~z) and ϕ∞(~z) ≡ Qy1 ∈
adom . . .Qym∈adom [β(x, ~y, ~z)]x. Let

ϕ′(~z) ≡ ϕ0 ∨ (

n
∨

i=1

ϕi) ∨ ϕ∞.

We now show thatD |= ϕ(~a) ↔ ϕ′(~a) for every nonemptyD and every ~a ∈ Un.

First note that for every ~b ∈ adom(D)m, the following three statements are
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equivalent: (i) D |= [β(x,~b,~a)]x; (ii) for some c 6∈ adom(D) and not in ~a,

D |= β(c,~b,~a), (iii) for all c 6∈ adom(D) and not in ~a, D |= β(c,~b,~a). Indeed,
these equivalences hold for atomic formulae, and they are preserved under
Boolean connectives.

Since all quantified variables yi range over the active domain, we then
obtain that D |= ϕ∞(~a) iff for some c 6∈ adom(D) and not in ~a, D |= α′(c,~a).
This implies the required equivalence D |= ϕ(~a) ↔ ϕ′(~a). �

Thus, the natural-active collapse is a meaningful concept: there are struc-
tures that admit it. On the other hand, we know that there are restrictions
on structures that admit the collapse. We next discuss such restrictions.

1.6.2 Good structures vs. bad structures: o-minimality

We start with a minimal requirement a structure M must satisfy to admit
the natural-active collapse. Suppose we have an FO(M) formula, that is, a
formula that does not use symbols from SC . What does it mean for it to be
equivalent to an FOact(SC ,M) formula? In the absence of a finite structure,
this means being equivalent to a quantifier-free FO(M) formula. Thus, to
admit the collapse, a structure M must admit quantifier-elimination: that is,
for every formula ϕ(~x) of FO(M), there is a quantifier-free FO(M) formula
ψ(~x) such that M |= ∀~x ψ(~x) ↔ ϕ(~x).

Classical model theory provides us with many examples of such structures;
some of them were mentioned already in the introduction, a few are listed
below.

• 〈U,<〉 where < is a dense order without endpoints on U .

• 〈R,+,−, 0, 1, <〉 – this is a consequence of Fourier elimination.

• 〈R,+, ·, 0, 1, <〉 – this is, of course, Tarski’s classical result on quantifier-
elimination for real closed fields.

• 〈N,+, <, 0, 1, (≡k)k>0〉 where x ≡k y iff x = y(modk) – this is Presburger
arithmetic.

However, quantifier-elimination alone is not sufficient to guarantee the
collapse. Indeed, any structure M admits a definitional expansion to some M′

that has quantifier-elimination (simply by adding new symbols for all definable
predicates). Thus, if we take such an expansion N′ of N = 〈N,+, ·〉, we still
have that all computable properties of finite SC -structures are definable in
FO(SC ,N′), but FOact(SC ,N′) cannot define parity.

To impose additional restrictions, we consider the model-theoretic notion
of o-minimality. An ordered structure M = 〈U,Ω〉 is o-minimal if every de-
finable set is a finite union of points and open intervals. Here, definable sets
are those of the form {x ∈ U | M |= ϕ(x)} where ϕ is a first-order formula in
the language of Ω and constants for elements of U .
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An interval is given by its endpoints, a and b, and it is either an open
interval (a, b) = {c | a < c < b}, or closed [a, b] = {c | a ≤ c ≤ b}, or one
of the half-open half-closed versions [a, b) or (a, b]; by considering +∞ and
−∞ as endpoints, we also have unbounded versions of the above: {c | c < b},
{c | c ≤ b}, {c | c > a}, {c | c ≥ a}. Also, an equivalent definition of o-
minimality is that every definable set is a finite union of intervals.

Let us list some important examples of o-minimal structures.

• 〈Q, <, (q)q∈Q〉 is o-minimal. Indeed, every first-order formula ϕ(x) is equiv-
alent to a quantifier-free one, which is then a Boolean combination of
finitely many formulae of the form x = q or x < q. Let q1 < . . . < qk be
the finite set of all constants that occur in such formulae. Consider then
intervals (−∞, q1), {q1}, (q1, q2), {q2}, . . . , {qk}, (qk,∞). It is clear that the
set defined by ϕ is a union of some of those.

• A more complex example is that of the real field: 〈R,+, ·, 0, 1, <〉. Con-
sider a formula ϕ(x). Since the real field has quantifier-elimination, ϕ(x)
is equivalent to a Boolean combination of formulae of the form p(x) > 0,
where p is a polynomial with real coefficients. Consider all such polyno-
mials which are not identically zero, and let q1 < . . . < qk be the finite set
of all the roots of these polynomials (each can have only finitely many).
We thus again obtain that the set defined by ϕ(x) is a union of some in-
tervals among (−∞, q1), {q1}, (q1, q2), {q2}, . . . , {qk}, (qk,∞), as no poly-
nomial used in the representation of ϕ(x) can change sign on such an
interval.

• The same quantifier-elimination argument shows that the real ordered
group 〈R,+,−, 0, 1, <〉 is o-minimal.

• There are other interesting examples of o-minimal structures, where prov-
ing o-minimality is very hard. The most notable one is that of the expo-
nential field: 〈R,+, ·, ex〉. Others include the expansion of the real field
with the Gamma-function, or restricted analytic functions.

We shall present more properties of o-minimal structures before proving
the natural-active collapse in Section 1.6.5.

1.6.3 Collapse theorem and corollaries

Our goal now is to show the following.

Theorem 1.26 (Natural-Active Collapse). Let M = 〈U,Ω〉 be an o-
minimal structure that admits quantifier elimination. Then it admits the
natural-active collapse.

Furthermore, if the theory of M is decidable and the quantifier elimination
procedure is effective, then there is an algorithm that for every FO(SC ,M)
formula constructs an equivalent FOact(SC ,M) formula. �
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The proof of this theorem will be presented in Section 1.6.5, after we
present the main ideas in the simpler case of linear constraints, that is, M

being 〈R,+,−, 0, 1, <〉.
We first state some corollaries of this result. Since the real field and the

real-ordered group are o-minimal and admit quantifier elimination, we con-
clude that they also admit the natural-active collapse.

Corollary 1.27. Every natural-semantics FO + Lin (FO + Poly) formula is
equivalent to an active-domain semantics FO + Lin (FO + Poly, resp.) for-
mula. �

Combining this with the active generic collapse, we obtain:

Corollary 1.28. Let Q be an order-generic query expressible in FO + Poly

or FO + Lin. Then Q is expressible in FOact(SC , <). In particular, queries
such as parity, majority, connectivity, transitive closure, and acyclicity are
not definable in FO + Poly. �

Thus, the expressive power of FO + Poly and FO + Lin is remarkably
constrained – they cannot express more generic queries than FO queries over
ordered finite structures, despite the fact that they possess great expressive
power for nongeneric queries, as we saw in Section 1.3.

Before we present the proof, we give a simple example of a transformation
from FO(SC ,M) to FOact(SC ,M). Let SC contain one binary predicate S,
and M be the real field (that is, we deal with FO + Poly). Consider the
sentence

Φ ≡ ∃a∃b∀x∀y (S(x, y) → a · x+ b = y)

saying that S lies on a line. Note that this can be reformulated as follows: S
lies on a line iff every triple of elements of S is collinear. Given three points
(x1, y1), (x2, y2), (x3, y3) in R2, there is a quantifier-free FO + Poly formula
χ(x1, x2, x3, y1, y2, y3) testing if these points are collinear. Indeed, such points
are collinear iff either x1 = x2 = x3, or y1 = y2 = y3, or two points coincide,
or, in the case when all three points are different, they can be ordered either
as xi1 < xi2 < xi3 , yi1 < yi2 < yi3 , or xi1 < xi2 < xi3 , yi1 > yi2 > yi3 ,
and (xi2 − xi1 )(yi3 − yi2) = (xi3 − xi2)(yi2 − yi1). We now express Φ by an
equivalent active-domain formula

∀x1, x2, x3, y1, y2, y3∈adom

(

S(x1, y1) ∧ S(x2, y2) ∧ S(x3, y3) →
χ(x1, x2, x3, y1, y2, y3)

)

.

Of course, this transformation is very ad-hoc, and takes into account the
semantics of the original formula Φ. In what follows, we present a more general
transformation.
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1.6.4 Collapse algorithm: the linear case

The general proof of the natural-active collapse is by induction on the for-
mulae. The cases of atomic formulae and Boolean connectives are simple: for
atomic formulae, there is no need to change anything, and then one just prop-
agates the connectives. The only hard case is that of the unrestricted quan-
tification ∃xϕ. We now consider an FO + Lin sentence Φ ≡ ∃zϕ(z), where

ϕ(z) ≡ Qy1∈adom . . .Qym∈adom α(z, ~y),

where each Q is either ∃ or ∀. (Of course we could have considered an open
formula Φ(~x) with free variables, as we shall do in the next section. However,
our goal here is to present the ideas of the proof, so we make the assumption
that there are no free variables. It will turn out that they do not add to the
complexity of the proof, but they make notation heavier.)

Using Lemma 1.12, we can further assume that α is a Boolean combination
of formulae of the form:

1. atomic SC -formulae Rj(~u) where Rj ∈ SC and ~u only has variables from
~y;

2. linear constraints involving z: z θ
∑m

i=1 ai · yi + b, where θ is = or <;

3. linear constraints not involving z:
∑m

i=1 ai · yi + b θ 0.

Let f1(~y), . . . , fp(~y) enumerate the (finitely many) functions that occur as
right hand sides

∑m
i=1 ai · yi + b of linear constraints in 2) above (that is,

those involving z). We also assume that one of the functions fi is the function
f(~y) = y1.

Fix an SC -structure D, and let A = adom(D). Let

B0 = {fi(~a) | i = 1, . . . , p,~a ∈ Am}

Note that A ⊆ B0. Assume that B0 = {b1, . . . , bk} with b1 < . . . < bk.

66b1 bi bi+1 bk

z1 z2

• • • •

Fig. 1.4. Illustration to the natural-active collapse for the linear case

If z1 ∈ (bi, bi+1) satisfies ϕ, then any other z2 from this interval satisfies
ϕ. Indeed, the variable z is only used in atomic subformulae of the form
2), that is, z θ fj(~y). Thus, for any instantiation ~a for ~y from the active
domain A, we have D |= α(z1,~a) ↔ α(z2,~a), since the sign of z1 and z2 with
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respect to all fj(~a) is the same. Since all variables ~y range over A, this implies
D |= ϕ(z1) ↔ ϕ(z2). Similarly, we note that for any z1, z2 < b1, or for any
z1, z2 > bk, it is also the case that D |= ϕ(z1) ↔ ϕ(z2).

Thus, if ϕ is witnessed by an element in an interval (bi, bi+1), or (−∞, b1),
or (bk,∞), it is witnessed by every element of the interval. Hence, if we define

B1 = {b+ b′

2
| b, b′ ∈ B0} ∪ {b− 1 | b ∈ B0} ∪ {b+ 1 | b ∈ B0},

we conclude that D |= ∃zϕ(z) iff D |= ϕ(b) for some b ∈ B1.
A nice property of B1 is that it is definable in FO + Lin under the active-

domain semantics. In fact, using the definition of B1, we just rewrite ∃zϕ(z)
to an equivalent active-domain semantics sentence:

∃~u∈adom ∃~v∈adom



















(

∨p
i=1

∨p
j=1(ϕ([

fi(~u)+fj(~v)
2 / z]))

)

∨
(

∨p
i=1 ϕ([(fi(~u) − 1) / z])

)

∨
(

∨p
i=1 ϕ([(fi(~u) + 1) / z])

)



















where f1, . . . , fp are all the linear functions used in constraints of the form
z = fi(~y) or z < fi(~y) in the formula ϕ, as well as the function f(~y) = y1.

Note that the proof of the existence of a sentence equivalent to Φ is con-
structive. Furthermore, the simple proof sketched in this section has the main
ingredients of the general proof. To eliminate an unrestricted quantifier from
ϕ(~x) ≡ ∃zα(z, ~x), we define some partition of U into a finite union of intervals
⋃

i Ii(~x), such that:

• if ϕ(~a) is witnessed by c ∈ Ii(~a), then it is witnessed by any c′ ∈ Ii(~a);

• each interval Ii(~x) is definable by an FO(SC ,M) formula, parametrically
in ~x, and so is a representative of each such interval, and

• the maximum number of intervals Ii(~x) is uniformly bounded for all ~x.

1.6.5 Collapse algorithm: the general case

We start by listing some important properties of o-minimal structures. The
key is the uniform bound on the number of intervals in definable sets.

Theorem 1.29 (Uniform Bounds). If M is o-minimal, and γ(~y, x) is a
first-order formula in the language of M, then there is an integer Kγ such
that, for each tuple ~a from U , the set {x | M |= γ(~a, x)} is composed of fewer
than Kγ intervals. �
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This is a very strong and deep result. O-minimality simply tells us that for
every γ(~y, x) and every ~a, the set γ(M,~a) = {x | M |= γ(~a, x)} is a finite union
of intervals. It is conceivable that the number of intervals in γ(M,~a) depends
on ~a in such a way that there is no bound on this number when ~a ranges over
U . The Uniform Bounds theorem tells us that such a situation is impossible:
there is an an upper bound on the number of intervals that depends only on
γ, and not on ~a. As a side remark, the uniform bounds theorem also implies
that a structure elementary equivalent to an o-minimal one is o-minimal itself.

We note, however, that for many familiar o-minimal structures, such as
the real field or the real ordered group, the Uniform Bounds theorem is triv-
ial. Indeed, for the real field, the proof of o-minimality based on quantifier-
elimination (given in Section 1.6.2) immediately yields uniform bounds, as the
number of intervals is determined by the number of polynomials used in the
formula, and their degrees (recall that the number of intervals is determined
by the total number of roots of all nonzero polynomials used in the formula).

For every γ(~y, x) in the language of M and constants, and every ~a over
M, by the ith interval of γ(~a, ·) we shall mean the ith interval of γ(M,~a), in
the usual ordering on U . We shall use the following simple facts.

• For every formula γ(~y, x), and every i, there exists a first-order formula
denoted by γ̂i(~y, x) such that M |= γ̂i(~a, c) iff c is in the ith interval of
γ(~a, ·). In what follows, we always assume that the distinguished variable
x is the last one.

• If the quantifier-elimination procedure is effective, and atomic sentences
of M are decidable, then Kγ is computable for each γ. Indeed, for each
i, write a sentence Γi ≡ ∃x∃~y γ̂i(~y, x) and check if it is true in M, using
quantifier-elimination and recursiveness of M. Eventually, we find i such
that Γi is false; this follows from Theorem 1.29. Thus, Kγ can be taken
to be this i.

• Since intervals are first-order definable, we can use them in formulae.
For example, given a formula γ(~y, x), a number i, and another formula
β(~z, x), we can write a first-order formula α(~y, ~z, x) saying that every
x from the ith interval of γ(~y, ·) satisfies β(~z, x). This of course is just
∀x (γ̂i(~y, x) → β(~z, x)), but we shall occasionally use the interval notation
in formulae, to simplify the presentation.

Natural-active collapse: eliminating one existential quantifier

This is the key case in proving the collapse, as the proof is by induction on
the formulae, and this is the only case where there is a need to do something.
We consider an FOact(SC ,M) formula

α(~x, z) ≡ Qy1∈adom . . .Qym∈adom β(~x, ~y, z) ,

where β(~x, ~y, ~z) is quantifier-free, and has the following properties:
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• every atomic subformula of β is either an FO(SC) formula, or an FO(M)
formula (where equalities are considered to be FO(M) formulae);

• there exists at least one FO(M) atomic subformula of β, and at least one
~y-variable (that is m > 0), and

• z does not occur in atomic FO(SC ) subformulae.

Let F be the collection of all FO(M) atomic subformulae of β, and their
negations.

For formulae σ(~x, ~y, z), ρ(~x, ~y, z) and τ(~x, ~y, z) from F , i ≤ Kρ, and j ≤
Kτ , we let σρτ

ij (~x, ~y, ~s,~t), where card(~s) = card(~t) = card(~y), be the formula
defined as follows:

σρτ
ij (~x, ~y, ~s,~t) ≡ ∀u

(

(ρ̂i(~x,~s, u) ∧ τ̂j(~x,~t, u)) → σ(~x, ~y, u)
)

.

Let ϕ(~x) be ∃z α(~x, z).

Lemma 1.30. Let D be a nonempty finite SC -structure over M. Let
ϕ, α, β,F be as above. Let ~a be a tuple over U . Then D |= ϕ(~a) if and only if

there exist ~b,~c ∈ adom(D)m, two formulae ρ(~x, ~y, z) and τ(~x, ~y, z) in F and

i ≤ Kρ, j ≤ Kτ such that for the ith interval of ρ(~a,~b, ·) and the jth interval
of τ(~a,~c, ·), denoted by I0 and I1 respectively, the following three conditions
hold:

1. I0 ∩ I1 6= ∅.
2. For all ~e ∈ adom(D)m, and all c, c′ ∈ I0 ∩ I1, we have M |= σ(~a,~e, c) ↔
σ(~a,~e, c′) for all σ ∈ F .

3. D |= α′(~b,~c,~a), where α′(~s,~t, ~x) is obtained from α(~x, z) by replacing each
subformula σ(~x, ~y, z) from F by σρτ

ij (~x, ~y, ~s,~t).

Proof. For the only if part, assume that D |= ϕ(~a). That is, D |= ∃zα(~a, z).
Let d witness this; that is, D |= α(~a, d). For every ~e over adom(D), of the
same length as ~y, and every atomic FO(M) subformula ρ(~x, ~y, z) of β, we
define Id(~e, ρ) to be the maximal interval of ρ(M,~a, ~e) = {c | M |= ρ(~a,~e, c)}
containing d, in the case when M |= ρ(~a,~e, d), or the the maximal interval
of ¬ρ(M,~a, ~e) containing d, in the case when M |= ¬ρ(~a,~e, d). Let Id be the
collection {Id(~e, ρ) | ~e ∈ adom(D)|~y|, ρ ∈ F}. Since for each ~e and ρ we have
d ∈ Id(~e, ρ), we obtain that

⋂ Id 6= ∅.
Now note that for any finite collection of intervals I1, . . . , Ip, there are

two indices i and j such that
⋂p

l=1 Il = Ii ∩ Ij . Then there are two intervals,

I0 and I1 in Id such that I0 ∩ I1 =
⋂ Id. Let ~b be such that I0 is the ith

interval of ρ(~a,~b,M), and ~c be such that I1 is the jth interval of τ(~a,~c,M),
where ρ, τ ∈ F (that is, ρ, τ are either atomic FO(M) subformulae of ϕ, or
negations of such atomic subformulae).
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Let ~e ∈ adom(D)|~y|. Pick any σ ∈ F and any c, c′ ∈ I0∩I1. Since I0∩I1 =
⋂ Id, we obtain that c, c′ ∈ I0 ∩ I1 ⊆ Id(~e, σ), which implies M |= σ(~a,~e, c) ↔
σ(~a,~e, c′). This proves conditions 1 and 2 in the Lemma.

To prove condition 3, notice that for every FO(M) atomic subformula
σ(~x, ~y, z) of ϕ, and for every ~e ∈ adom(D)|~y|, we have

σ(~a,~e, d) ↔ ∀u ∈ I0 ∩ I1 σ(~a,~e, u) ,

since I0 ∩ I1 =
⋂ Id.

Now, for any subformula γ(~x, ~y, z) of α(~x, z), let γ′(~s,~t, ~x, ~y) be the result
of replacing each σ(~x, ~y, z) from F by σρτ

ij (~x, ~y, ~s,~t).
We can now restate the above equivalence as:

(∗) D |= σ(~a,~e, d) ↔ σ′(~a,~e,~b,~c)

for every ~e ∈ adom(D)|~y| (where ~b and ~c are the tuples necessary to define
I0 ∩ I1 above), where σ(~x, ~y, z) is atomic or negated atomic (i.e. σ ∈ F).

The above equivalence is preserved under Boolean combinations and active
quantification over variables from ~y in σ. Hence we obtain (∗) for every σ that
is a subformula of α. Finally, this gives us

D |= α(~a, d) ↔ α′(~a,~b,~c) .

Since D |= α(~a, d), we conclude D |= α′(~a,~b,~c), proving 3).

To prove the if part, assume that there exist ~b,~c ∈ adom(D)m, ρ, τ ∈ F ,
and i ≤ Kρ, j ≤ Kτ such that for I0, I1 defined as in the statement of the
Lemma, conditions 1, 2, and 3 hold. Let d be an arbitrary element of I0 ∩ I1.
We claim that D |= α(~a, d), thus proving D |= ϕ(~a).

Indeed, for every FO(M) atomic subformula σ(~x, ~y, z) of α, we have

σ(~a,~e, d) ↔ ∀u ∈ I0 ∩ I1 σ(~a,~e, u) ,

for every ~e over adom(D) – this follows from 2. That is, σ(~a,~e, d) ↔
σρτ

ij (~a,~e,~b,~c). As before, since this equivalence is preserved under Boolean
combinations with FO(SC ) atomic formula, and under active-domain quan-
tification over variables from ~y, we obtain

D |= α(~a, d) ↔ α′(~b,~c, a) ,

thus proving D |= α(~a, d). The lemma is proved. �

The transformation algorithm

The algorithm that converts natural-semantics formulae into active-semantics
formulae works by induction on the structure of the formulae. In the case of
atomic formulae, there is no need to change anything. For Boolean connectives,
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suppose ϕ ≡ χ ∨ ψ. Let χact and ψact be FOact(SC ,M) formulae equivalent
to χ and γ. Then χact ∨ψact is an FOact(SC ,M) formula equivalent to ϕ. We
deal with negation and conjunction similarly.

The only nontrivial case is that of an existential quantifier ∃zα(~x, z).
To handle it, we use Lemma 1.30. For now, assume that we deal with
nonempty SC -structures. By the induction hypothesis, we assume that α is
an FOact(SC ,M) formula. We first put α in the form required by Lemma 1.30
by taking conjunction with a true sentence ∃y∈adom(y = y) (since adom is
nonempty) to ensure that there are quantifiers and atomic FO(M) formulae,
and then using Lemma 1.12 to separate FO(M) and FO(SC ) formulae, and
finally putting α in prenex form. Once α is in the right form, we apply Lemma
1.30, noticing that it translates into a first-order description. The step-by-step
process of doing so is described in the algorithm Natural-Active shown on
the next page. Note that every occurrence of an unrestricted quantifier ∀ or
∃ is of the form ∀yγ or ∃xγ where γ is an FO(M) formula. Since M has
quantifier-elimination, this means that every occurrence of unrestricted quan-
tification can be eliminated.

Summing up, we have the following.

Proposition 1.31. Let M be o-minimal and admit quantifier-elimination. Let
ϕ(~x) be any FO(SC ,M) first-order formula, and let ϕact be the output of
Natural-Active on ϕ. Then, for every nonempty finite SC-structure D,
D |= ∀~x ϕ(~x) ↔ ϕact(~x). Furthermore, if M is recursive and the quantifier-
elimination procedure is effective, then there is an effective procedure yielding
such an ϕact on input ϕ. �

To conclude the proof of Theorem 1.26, we have to deal with the case
of adom(D) being empty. Let ϕ(~x) be an FO(SC ,M) formula. Let ϕ′

∅(~x) be
obtained from ϕ by replacing each occurrence of R(· · · ), where R ∈ SC , by
false. Note that ϕ′

∅ is an FO(M) formula. Let ϕ∅ be a quantifier-free formula
equivalent to ϕ′

∅. A simple induction on formulae shows that for the empty
SC -instance, ∅SC , it is the case that ∅SC |= ϕ(~a) iff M |= ϕ∅(~a), for every ~a.
Thus, an FOact(SC ,M) formula

ϕ′(~x) ≡ [(∃x∈adom (x = x)) ∧ ϕact(~x)]

∨[(¬∃x∈adom (x = x)) ∧ ϕ∅(~x)] ,

has the property that D |= ∀~x ϕ(~x) ↔ ϕ′(~x), for arbitrary D. This concludes
the proof of Theorem 1.26. �

1.6.6 Collapse without o-minimality

We have seen that quantifier-elimination is necessary for the natural-active
collapse. What about o-minimality? It turns out that there are non-o-minimal
structures that admit the collapse. Consider the structure Z = 〈Z,+, <〉. It
is not o-minimal: for example, the formula ϕ(x) given by ∃y (y + y = x)
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Algorithm Natural–Active

Input: FO(SC ,M) formula ϕ(~x)
Output: FOact(SC ,M) formula ϕact(~x)

1. If ϕ is an atomic formula, then ϕact = ϕ.
2. If ϕ = ψ ∗ χ, then ϕact = ψact ∗ χact where ∗ ∈ {∨,∧}; if ϕ = ¬ψ, then

ϕact = ¬ψact.
3. If ϕ = ∃x∈adom ψ, then ϕact = ∃x∈adom ψact.
4. Let ϕ(~x) = ∃z α0(~x, z).

4.1 Let α(~x, z) be a formula equivalent to α0
act which is of the form

Qy1∈adom . . .Qym∈adom β(~x, ~y, z),

where β(~x, ~y, ~z) is quantifier-free, and has the following properties: every
atomic subformula of β is either a FO(SC ) formula, or a FO(M) formula;
there exists at least one FO(M) atomic subformula of β, m > 0, and z does
not occur in FO(SC ) subformulae.

4.2 Let F be the collection of all atomic FO(M) subformulae of α, and their
negations.

4.3 Let K = maxγ∈F Kγ .
4.4 For every pair of formulae ρ, σ ∈ F , and every i, j < K, define χρσ

ij (~x,~s,~t)

to be the quantifier-free FO(M) formula equivalent to ∃u
(

ρ̂i(~x,~s, u) ∧

σ̂j(~x,~t, u)
)

. Note that | ~s |=| ~t |= m.

4.5 For each ρ, σ ∈ F , each i, j < K, and each τ ∈ F , define τρσ
ij (~x, ~y,~s,~t) as a

quantifier-free formula equivalent to

∀u
(

ρ̂i(~x,~s, u) ∧ σ̂j(~x,~t, u) → τ (~x, ~y, u)
)

4.6 For each ρ, σ ∈ F , each i, j < K, define αρσ
ij (~x,~s,~t) as α in which every

FO(M) atomic subformula τ (~x, ~y, z) ∈ F is replaced by τρσ
ij (~x, ~y,~s,~t).

4.7 Let sameβ(~x, ~r, u, v) be
∧

(ρ(~x, ~r, u) ↔ ρ(~x, ~r, v)), where the conjunction is
taken over all the FO(M) atomic subformulae ρ of β.

4.8 For each ρ, σ ∈ F , each i, j < K, define ηρσ
ij (~x,~s,~t, ~r) as a quantifier-free

formula equivalent to

∀u, v
(

(ρ̂i(~x,~s, u) ∧ σ̂j(~x,~t, u) ∧ ρ̂i(~x,~s, v) ∧ σ̂j(~x,~t, v)) → sameβ(~x, ~r, u, v)
)

4.9 For each ρ, σ ∈ F , each i, j < K, define π
ρσ
ij (~x,~s,~t) as ∀~r ∈

adom η
ρσ
ij (~x,~s,~t, ~r).

4.10 Output, as ϕact(~x), the formula

∃~s∈adom ∃~t∈adom
∨

ρ,σ∈F

∨

i,j<K

(χρσ
ij (~x,~s,~t) ∧ πρσ

ij (~x,~s,~t) ∧ αρσ
ij (~x,~s,~t)).
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defines the set of even numbers. The same example though shows that the
natural-active collapse fails over Z: the Boolean query ∃x (S(x)∧ϕ(x)) is not
expressible in FOact({S},Z), since ϕ cannot be expressed by a quantifier-free
formula.

However, it is well-known that Z admits quantifier-elimination in an ex-
tended signature. Let x ∼k y iff x = y(modk). These relations are definable
over Z, and the structure Z0 = 〈Z,+, <, 0, 1, (∼k)k>0〉 does admit quantifier-
elimination. We thus have an example of a structure that has quantifier-
elimination, is not o-minimal, and

Proposition 1.32. Z0 admits the natural-active collapse.

Proof sketch. The proof is again by induction, and we consider the only non-
trivial case of existential quantification. To simplify the notation, assume that
we have a sentence Φ ≡ ∃zϕ(z) where

ϕ(z) ≡ Qy1∈adom . . .Qym∈adom α(z, ~y),

where each Q is either ∃ or ∀.
Using Lemma 1.12, we can assume that α is a Boolean combination of:

1. atomic SC -formulae with free variables among ~y;

2. linear constraints f(z, ~y) θ 0, where f is a linear function and θ is a =, or
<, or ≤ comparison;

3. constraints of the form f(z, ~y) ∼c p for c ∈ N and 0 ≤ p < c, where again
f is a linear function.

Let c be the maximum number for which one of ∼c relations occurs in α. Let
χi(x) enumerate all satisfiable formulae of the form

∧

1<b≤c

x ∼b pb,

where pb < b, and similarly let χm
i (~y) enumerate all satisfiable conjunctions

χi1(y1) ∧ . . . ∧ χim
(ym). Then ϕ(z) is equivalent to:

∃z
(

∨

i

χi(z) ∧Qy1∈adom . . .Qym∈adom
(

∨

j

χm
j (~y) ∧ α(z, ~y)

)

)

.

Note that if we know all the residues for z and ~y modulo all the positive
integers not exceeding c, then we can infer the truth value of each constraint
of the form f(z, ~y) ∼b p for every b ≤ c and pb < b. Thus, we can assume
without loss of generality that constraints of the form f(z, ~y) ∼b p do not
appear in α, unless f is identically z or one of yis.

To eliminate ∃z from the formula above, we proceed just as in the case of
FO + Lin. Let g1(~y), . . . , gl(~y) enumerate all the linear functions that occur
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in constraints of the form zθgi(~y), and the function g(~y) = y1. Fix a finite
set A, and define a set B0 as {gi(~a) | i ≤ l,~a ∈ Am}. Note that A ⊆ B0. Let
b1 < . . . < bk list the elements of B0.

Suppose we have a SC -structure D with adom(D) = A, and suppose that
ϕ(z0) holds. Assume that bi < z0 < bi+1. Then the same argument as in the
proof of the collapse for FO + Lin shows that any other z′0 ∈ (bi, bi+1) that
agrees with z0 on all χjs, also satisfies ϕ. This shows the following: if there
is a z0 satisfying ϕ, then there is one such that |z0 − bi| ≤ c for some bi. In
particular, if D |= Φ, then there exists z0 ∈ B1 such that D |= ϕ(z0), where
B1 = {b + p, b− p | b ∈ B0, 0 ≤ p ≤ c}. Just as in the case of FO + Lin, this
set B1 is definable in FO(SC ,Z0). Thus, under the assumption that α only
uses ∼k relations to compare a variable with a constant, we can rewrite Φ to

∃~u∈adom
∨

−c≤b≤c

l
∨

i=1

ϕ((gi(~u) + b) / z),

thus eliminating an unrestricted quantifier ∃z. Notice that unlike in the case
of FO + Lin, we need m additional active-domain quantifiers (instead of 2m),
as the proof does not require witnesses which are middles of some intervals
(bi, bi+1). �

1.6.7 Natural-generic collapse

The natural generic collapse says that order-generic queries in FO(SC ,M) can
be expressed in FO(SC , <). We now derive this collapse result as a corollary
to the two collapses shown so far.

Corollary 1.33 (Natural Generic Collapse). Let M = 〈U,Ω〉 be an o-
minimal structure. Then it admits the natural generic collapse.

Proof. Let Q be an order-generic query definable in FO(SC ,M). Consider a
definitional expansion M′ of M by extending Ω with new symbols for all M-
definable predicates. Such M′ admits quantifier-elimination, and then by the
natural-active collapse we obtain that Q is definable in FOact(SC ,M′). From
the active generic collapse, we conclude that Q is definable in FOact(SC , <)
(and thus in FO(SC , <)). �

While the active generic collapse holds for all ordered structures, and for
the natural-active collapse the bounds of Theorem 1.26 are the best currently
known, Corollary 1.33 was extended to a larger class of structures. The proof
of the result is rather involved, but we shall present the statement below.

The new condition on the structures uses the Vapnik-Chervonenkis di-
mension, a central concept in computational learning theory. Suppose S is an
infinite set, and C ⊆ 2S is a family of subsets of S. Let F ⊂ S be finite; we
say that C shatters F if the collection {F ∩ C | C ∈ C} is 2F . The Vapnik-
Chervonenkis (VC) dimension of C, VCdim(C), is the maximal cardinality of



32 1 Embedded Finite Models and Constraint Databases

a finite set shattered by C. If arbitrarily large finite sets are shattered by C,
we let VCdim(C) = ∞.

This applies to first-order structures as follows. Let M = 〈U,Ω〉, and let
ϕ(~x, ~y) be a formula in the language of M with |~x| = n, |~y| = m. For each

~a ∈ Un, define ϕ(~a,M) = {~b ∈ Um | M |= ϕ(~a,~b)}, and let Fϕ(M) be
{ϕ(~a,M) | ~a ∈ Un}. Families of sets arising in such a way are called definable
families.

Definition 1.34. M is said to have finite VC dimension if every definable
family in M has finite VC dimension. �

Examples of structures that have finite VC dimension include:

• Every o-minimal structure;

• 〈N,+, <〉 and 〈Z,+, <〉;
• every linear order;

• ordered Abelian groups (that is, Abelian groups in which addition is mono-
tone with respect to the order).

In particular, the class is a proper extension of the class of all o-minimal
structures. The following is a deep result that we present here without a proof:

Theorem 1.35. Let M be an ordered structure that has finite VC dimension.
Then M admits the natural generic collapse. �

We shall discuss the relationship between VC dimension and various forms
of collapse in Section 1.8.

The diagram in Figure 1.3 summarizes what has been achieved towards
proving the collapse results.

FOact(SC ,M) =========================

o-minimal and

quantifier elimination:

natural-active
collapse

FO(SC ,M)

FOact(SC , <)

all ordered

structures:

active-generic
collapse

w

w

w

w

w

w

w

w

w

========================== FO(SC , <)

finite

VC dimension:

natural-generic
collapse

w

w

w

w

w

w

w

w

w

Fig. 1.5. Summary of the collapse results
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1.7 Model theory and collapse results

While most collapse results proved so far apply to o-minimal structures, we
have seen a couple of examples outside of the o-minimal world. So it is natural
to ask what really causes the natural-active or other forms of collapse: are
there some properties of the underlying structure that cause it to happen?

The goal of this section is to give a partial answer to this question. We
start by presenting a technical condition, called pseudo-finite homogeneity,
that ensures a form of collapse that is closely related to the natural-active
collapse. We then describe a couple of model-theoretic conditions that are
often easy to verify, and that imply pseudo-finite homogeneity, and thus the
collapse. We will see a number of examples of collapse outside of the o-minimal
context that are implied by those conditions.

We start with the following definition.

Definition 1.36. We say that a structure M admits the restricted quanti-
fier collapse if for every SC , every FO(SC ,M) formula is equivalent to an
FO(SC ,M) formula in which SC-relations do not appear in the scope of un-
restricted quantifiers.

For example, in the formula ∃x∈adom∀y∈adom (S(x, y) → ∀z∃u x2+y =
z2 + u), the SC -relation S only appears in the scope of two active-domain
quantifies ∃x ∈ adom and ∀y ∈ adom . However, for the formula ∃u∃v (∀x ∈
adom∀y∈adom S(x, y) → y = u · x+ v) this is not the case, as S appears in
the scope of the quantifiers ∃u and ∃v.

Note that if M admits the restricted quantifier collapse, and if M′ is the
expansion of M with all definable predicates, then every FO(SC ,M) formula is
equivalent to an FOact(SC ,M′) formula. In particular, if M admits quantifier-
elimination, then the restricted quantifier collapse implies the natural-active
collapse. Furthermore, the restricted quantifier collapse always implies the
natural generic collapse. Thus:

restricted
quantifier

collapse
+ QE =

natural-
active

collapse
⇒

restricted
quantifier

collapse
⇒

natural
generic

collapse

Remark. Although we provide all the necessary model-theoretic definitions
here, the reader needs some infinite model theory background to understand
the proofs in this section. In particular, many proofs using techniques from
classical, infinite model theory, are only sketched. We still encourage the reader
without such a background to read this section (perhaps skipping the proofs)
to see many new examples of collapse results.

We shall also assume that we deal with structures in a finite or countable
language; this assumption can easily be avoided at the expense of some addi-
tional arguments involving infinite cardinals, which we prefer not to deal with
here.
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1.7.1 Pseudo-finite homogeneity

We start with a few definitions from model theory. For a structure M, its
theory is denoted by Th(M). Two structures M1 and M2 of the same language
are elementarily equivalent (written M1 ≡ M2) if their theories are the same;
that is, if they satisfy the same FO-sentences. For a subset A of M, and an n-
tuple ~a, the n-type of ~a over A (or just type, if n is understood), tpM(~a/A), is
the set of all formulae in n free variables, in the language of M plus constants
for the elements of A, that are satisfied by ~a.

A model M is called ω-saturated if every consistent 1-type over a finite
subset of M is realized in M. It is known that for every M, there exists an
ω-saturated elementary extension M′.

Let L(SC ,M) be the language that is the expansion of L(M), the language
of M, with all the relation symbols in SC . A structure in this language is a
pair (M′, D) where M′ is a structure in the language of M and D is an
interpretation of SC symbols over M′ (not necessarily finite). Let F(SC ,M)
be the theory of all L(SC ,M) structures (M′, D) where M′ |= Th(M) and
D is finite. We now call a SC -structure D on M pseudo-finite if (M, D) |=
F(SC ,M).

Definition 1.37. We say that M has ω-pseudo-finite homogeneity property,
or ω-PFH for short, if for any model M′ of Th(M), any two pseudo-finite
SC-structures D1, D2 on M′, and any bijective and L(M)-elementary map
h : D1 → D2 such that (M′, D1, D2, h) is ω-saturated, it is the case that for
every a ∈ M′, there exists b ∈ M′ such that h ∪ {(a, b)} is elementary.

Theorem 1.38. If M has ω-PFH, then it admits the restricted quantifier col-
lapse.

Proof sketch. Let ϕ be an FO(SC ,M) sentence. Assume that ϕ is not equiv-
alent to any restricted quantifier sentence. Let αi enumerate all restricted
quantifier FO(SC ,M) sentences; then for every αi we can find a model
(Mi, D

1
i , D

2
i ) such that Mi ≡ M, D1

i |= ϕ, D2
i |= ¬ϕ, and D1

i , D
2
i agree

on αi. By compactness, we have a model (M′, D1, D2) such that D1, D2 agree
on all FOact(SC ,M) sentences, D1 |= ϕ and D2 |= ¬ϕ.

A standard model-theoretic argument shows that we can further assume
that there is a partial L(SC ,M)-isomorphism h : D1 → D2 that is also an
elementary map in the language of M, and that furthermore, (M, D1, D2, h)
is ω-saturated. By ω-PFH, for any k > 0, h can be extended k times back and
forth to an L(M)-elementary map, which is a partial L(SC ,M)-isomorphism
since its domain includes adom(D1) and range includes adom(D2). Thus, h
is an L(SC ,M)-elementary map, which contradicts D1 |= ϕ and D2 |= ¬ϕ. �

The notion of pseudo-finite homogeneity may not be a very easy one to
check for a given structure; however, other model-theoretic properties imply
it, and thus they imply the restricted quantifier collapse. We shall see two
examples below.
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1.7.2 Finite cover property and collapse

Similarly to the definition of ω-saturation, we can define ω1-saturated struc-
tures by requiring that types over countable sets (rather than just finite sets)
be realized. By requiring that the structure (M′, D1, D2, h) in the definition
of PFH be ω1-saturated, we obtain a stronger notion of ω1-PFH.

We now say that M has the pseudo-finite saturation property, or PFS for
short, if for any model M′ of the theory of M and any pseudo-finite set A in M′

such that (M′, A) is ω1-saturated, every consistent 1-type over A is realized
in (M′, (a)a∈A). This property is easier to connect to other model-theoretic
properties, and furthermore:

Proposition 1.39. Pseudo-finite saturation implies ω1-PFH, and thus it im-
plies the restricted quantifier collapse.

Proof. Let (M′, D1, D2, h) be ω1-saturated, where D1, D2 are pseudo-finite.
Let a ∈ M′, A = adom(D1), and let p = tpM′(a/A). Let h(p) = {ϕ(x, h(~a)) |
ϕ(x,~a) ∈ p}. Then h(p) is a type over adom(D2); by pseudo-finite saturation
it is realized by some b ∈ M′, and thus h ∪ {(a, b)} is elementary. �

One known result about pseudo-finite saturation is that it holds for struc-
tures that do not have the finite cover property. Recall that a structure M

has the finite cover property if there is a formula ϕ(x, ~y) such that for every
n > 0, one can find tuples ~a1, . . . ,~an such that ∃x∧

j 6=i ϕ(x,~aj) holds for each
i ≤ n, but ∃x∧

j≤n ϕ(x,~aj) does not hold. Since every M that does not have
the cover property has pseudo-finite saturation, it also admits the restricted
quantifier collapse.

In model theory, a number of examples of structures without the finite
cover property have been collected; for example, every structure whose theory
is categorical in every uncountable power is such. Some of the best known
examples are:

• The complex numbers field 〈C,+, ·〉 (in fact, any algebraically closed field
of characteristic p, where p is zero or prime).

• 〈N, π〉, where π : N → N is a permutation without finite cycles.

• 〈N, succ〉.

Corollary 1.40. The three structures above admit the restricted quantifier
collapse. �

As another example, we consider the first-order theory of finitely many
successor relations. It is a decidable theory (in fact, even the monadic second-
order theory is decidable, by a classical result by Büchi) with many applica-
tions in computer science. Let Σ be a finite alphabet, and let Σ∗ be the set of
all finite strings over Σ, with ǫ being the empty string. For each a ∈ Σ, let fa

be the unary function that appends a at the end of its argument: fa(x) = x ·a.
We now have the following:
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Proposition 1.41. For any finite Σ, the structure 〈Σ∗, ǫ, (fa)a∈Σ〉 admits
the restricted quantifier collapse.

Proof sketch. We show that M = 〈Σ∗, ǫ, (fa)a∈Σ〉 does not have the finite
cover property. We need a bit of preparation. Our proof will use the following
known result: M does not have the finite cover property if (a) no formula
α(~x, ~y) defines an infinite linear order on M, and (b) for every α(~x, ~y), there
is a formula β(~x) such that β(~x) holds iff the number of ~y for which α(~x, ~y)
holds, is infinite1.

Let ga(x) be the following definable function: if the last symbol of x
is a, then g removes it, otherwise ga(x) = x. Then it is easy to see that
〈Σ∗, ǫ, (fa)a∈Σ〉 has quantifier-elimination in the language 〈(fa, ga)a∈Σ , ǫ〉. Us-
ing this, one easily concludes (a).

To show (b), define the distance between two strings x and y, d(x, y), as
the minimal length of a term t built from fa, ga, ǫ such that t(x) = y. If one
thinks of Σ∗ as an infinite |Σ|-ary tree, then d(u, v) is simply the distance in
this tree. We define d(~x, ~y) as the minimal distance between a component of
~x and a component of ~y. Note that for each fixed i, d(~x, ~y) < i is definable.

Given a formula α(~x, ~y), assume without loss of generality that it is a
Boolean combination of formulae v = t(u), where v, u are variables among
~x, ~y and ts are terms. Let k be the maximum length of a term in α. Define
γ(~x) as

∀~y α(~x, ~y) →
∧

i

(d(yi, ~x) < m(k + 2)) ∧ (d(yi, ǫ) < m(k + 2)),

where m is the length of ~y. We claim that γ(~x) holds iff the number of ~y such
that α(~x, ~y) holds is finite. Then we take β ≡ ¬γ.

One direction is trivial. Assume γ(~x) does not hold; then one can find
~y for which α(~x, ~y) holds, and divide ~y into two parts, ~y1 and ~y2, such that
d(~y2, (~y1, ~x, ǫ)) > k+1. Let now s be a sufficiently long string; define s·~y2 as the
result of adding s as a prefix to all strings in ~y2. It is clear that α(~x, (~y1, s ·~y2))
still holds, which completes the proof since s is arbitrary. �

The results of this section have some limitations; in particular, all struc-
tures with the pseudo-finite saturation property are stable, which means that
one cannot define infinite linear orders in them. To deal with ordered struc-
tures (which are the ones most typically used in applications), we present a
different model-theoretic notion that implies ω-PFS.

1The reader familiar with this subject will notice that our condition (b) is not
sufficient to conclude that M does not have the finite cover property: instead, one
would need to show a stronger property (b’): namely, for any formula α(~x, ~y, ~z)
such that α(M, ~z) is an equivalence relation E~z for every ~z, there is a formula β(~z)
such that β(~z) holds iff E~z has finitely many equivalence classes. However, using
quantifier-elimination for M, one can show that M eliminates imaginaries and thus
each equivalence relation is of the form {(~u, ~w) | f(~u) = f(~v)} for some definable
function f . Therefore, (b) implies (b’).
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1.7.3 Isolation and collapse

Let M be a structure, A its subset, and p a 1-type over A. Let p′ be a subset
of p. We say that p′ isolates p if p is the only type over A that contains p′.

Definition 1.42. We say that M has the isolation property if for every model
M′ of the theory of M, any pseudo-finite set A in M′, and any element a,
there is a finite set A′ ⊆ A such that tpM′(a/A′) isolates tpM′(a/A).

This gives us a number of new examples of structures that admit the
restricted quantifier collapse, thanks to the following:

Proposition 1.43. If M has the isolation property, then it has ω-PFH (and
thus admits the restricted quantifier collapse).

Proof. Assume we have an ω-saturated (M′, D1, D2, h), where D1, D2 are
two pseudo-finite SC -structures, and h is elementary. Let a ∈ M′. Let
Ai = adom(Di); then A1, A2 are pseudo-finite sets. Let p = tpM′(a/A1);
by isolation, there is a finite set A′

1 ⊆ A1 such that p′ = tpM′(a/A′
1) isolates

p.
For each ϕ ∈ p, let ϕh be ϕ in which every c ∈ A1 is replaced by h(c). Since

h is elementary, any finite conjunction of formulae ϕh, ϕ ∈ p, is satisfiable in
M′, and thus by compactness h(p) = {ϕh | ϕ ∈ p} is consistent. Furthermore,
a straightforward compactness argument shows that h(p′) isolates h(p). Since
A′

1 is finite, h(p′) is countable, and thus by saturation it is realized by an
element b ∈ M′. Since h(p′) isolates h(p), b is of type h(p), which shows that
h ∪ {(a, b)} is elementary. �

As the simplest example of the isolation property, consider the theory of
linear order, whose models are ordered sets 〈U,<〉. Let M be such a structure,
and let A be a pseudo-finite set. For any a ∈ U , and any finite set A0, either
there are two consecutive elements of A0, say b < c, such that (b, c) ∩A0 = ∅
and b ≤ a ≤ c, or a > m, where m is the maximal element of A0, or a < m′,
where m′ is the minimal element of A0. As this condition is FO-definable, it
must be true for the pseudo-finite set A. We claim that tpM(a/A) is isolated
by tpM(a/A′), where A′ = {b, c}, or A′ = {m}, or A′ = {m′}, depending on
which of the three cases is true. We prove this for the case of b ≤ a ≤ c; the
other cases are similar.

To show that tpM(a/A′) isolates tpM(a/A), we must prove that for any
a′, (M, a, b, c) ≡ (M, a′, b, c) implies (M′, a, (d)d∈A) ≡ (M′, a′, (d)d∈A). This is
easy to see by an Ehrenfeucht-Fräıssé game argument. By the assumption, the
duplicator has a winning strategy on ([b, c], a) and ([b, c], a′). For the winning
strategy on (M′, a, (d)d∈A) and (M′, a′, (d)d∈A), the duplicator uses the above
strategy for moves in the interval [b, c], and copies spoiler’s moves elsewhere.

What about more complex examples? First, it is easy to extend the ex-
ample above to the case of ordered sets with some additional unary relations.
That is:
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Corollary 1.44. Let M be a structure with one binary relation, interpreted
as a linear ordering, and finitely many unary relations. Then M admits the
restricted quantifier collapse. �

As our next example, we revisit the theory of k successor relations, that
is, 〈Σ∗, ǫ, (fa)a∈Σ〉. This structure is the infinite k-ary tree in which we only
have successor relations available. Most often it is considered in the context of
monadic second-order logic, which can define the prefix relation in addition to
the successor relations. So we now consider an extension, 〈Σ∗, ǫ, (fa)a∈Σ ,≺〉,
where x ≺ y means that x is a prefix of y. The question is: does this structure
admit the collapse?

The technique of Section 1.7.2 does not work here, since 〈Σ∗, ǫ, (fa)a∈Σ ,≺〉
does have the finite cover property: structures that do not have it, cannot
define an infinite linear order; on the other hand, it is easy to define the
lexicographic ordering in the presence of ≺. This turns out to be one of the
examples where isolation does the job.

Proposition 1.45. M = 〈Σ∗, ǫ, (fa)a∈Σ ,≺〉 admits the restricted quantifier
collapse.

Proof. Let x � y mean x ≺ y or x = y. Let x ⊓ y be the longest common
prefix of strings x and y, and let x− y be defined as follows: if x = y · z, then
x−y = z; if y 6� x, then x−y = ǫ. Let L ⊆ Σ∗ be a star-free language. Define
PL to be the set of pairs of strings (x, y) such that y � x and x − y ∈ L. It
is not hard to show that PL is definable in 〈Σ∗, ǫ, (fa)a∈Σ ,≺〉 (using the fact
that star-free languages are exactly those definable over strings considered as
finite models).

Before we prove the collapse, we collect a few more properties of M. The
following is true for any finite (and hence pseudo-finite) set A in any structure
M′ elementarily equivalent to M. The meet of all elements of A equals to
the meet of some two elements of A. Moreover, for any c ∈ M′, c ⊓ A, the
longest prefix of c that is also a prefix of some element of A, equals c ⊓ a for
some a ∈ A. Furthermore, there exist four not necessarily distinct elements
a1, a2, a3, a4 ∈ A such that a1 ⊓ a2 � c ⊓A � a3 ⊓ a4, and there are no a′, a′′

such that a1 ⊓ a2 ≺ a′ ⊓ a′′ ≺ a3 ⊓ a4.
We shall use the following known result on definability in M. Every formula

ϕ(~x) is equivalent to a disjunction of the formulae αi(~x)∧βi(~x) such that the
following is true. Each αi(~x) is a quantifier-free formula that specifies, for each
xi, xj , xk, xl, whether xi ⊓ xj = ǫ, and whether xi ⊓ xj ≺ xk ⊓ xl. Each βi(~x)
is a conjunction of the formulae PL(xi ⊓ xj , xk ⊓ xl) where αi(~x) implies that
there are no elements of the form xp⊓xq such that xi⊓xj ≺ xp⊓xq ≺ xk ⊓xl.

We now show that M has the isolation property, and thus admits the
restricted quantifier collapse. Let M′ be elementarily equivalent to M, A a
pseudo-finite set, and c ∈ M′. Find (at most) four elements a1, a2, a3, a4 ∈ A
such that a1 ⊓ a2 � c ⊓ A � a3 ⊓ a4, and there are no a′, a′′ such that
a1 ⊓ a2 ≺ a′ ⊓ a′′ ≺ a3 ⊓ a4. Then the above result characterizing definability
in M easily implies that tpM′(c/{a1, a2, a3, a4}) isolates tpM(c/A). �
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The notion of isolation could as well be called ω-isolation: a type over
a set is isolated by a type of a subset of cardinality < ω. We could then
introduce a notion of λ-isolation for any cardinal λ. The cardinal λ of interest
to us here is ω1; the notion of ω1-isolation says that tpM(a/A), for A pseudo-
finite, is isolated by tpM(a/A′), where A′ ⊆ A is finite or countable. Just as
ω-isolation implies ω-PFH and the restricted quantifier collapse, ω1-isolation
implies ω1-PFH, and thus the collapse. We shall now use ω1-isolation to give
an alternative proof of the restricted quantifier collapse for Z = 〈Z,+, <〉. We
already know this result: Proposition 1.32 showed the natural-active collapse
for Z0, which is an expansion of Z that has quantifier-elimination. But we
provide the proof below to illustrate the power of model-theoretic techniques.

Proposition 1.46. Z admits the restricted quantifier collapse.

Proof. Let M be a model of Th(Z), and A a pseudo-finite set in M. Since A is
pseudo-finite, for any a, either there exist a1 < a2 ∈ A such that a1 ≤ a ≤ a2

and (a1, a2) ∩ A = ∅, or a > m, where m is the maximal element of A, or
a < m′, where m′ is the minimal element of A. We assume, without loss of
generality, that we deal with the first case.

Let f(~y) be a linear function with integer coefficients. For any finite set

A, and an element a, we have a uniquely defined tuple ~bA,f
− of elements of

A such that f(~bA,f
− ) ≤ a, and for any other tuple ~c of elements of A, either

f(~c) > a, or f(~c) < f(~bA,f
− ), or f(~c) = f(~bA,f

− ) and ~c is above ~bA,f
− in the

lexicographic ordering. In other words, ~bA,f
− is the lexicographically smallest

tuple of elements of A on which f reaches its maximum value which does not
exceed a. Since the above can be stated in FO, such a tuple ~bA,f

− is uniquely
determined for a pseudo-finite set A.

Similarly, define ~bA,f
+ to be the lexicographically smallest tuple of elements

of A on which f reaches its minimum value which lies above a. Again, this is
well-defined for a pseudo-finite set A.

We now let A′ be the set that has a1, a2 and all the components of all
~bA,f
− and ~bA,f

+ as f ranges over all linear functions with integer coefficients.
Since such tuples are unique for each f , the set A′ is countable. We claim that
tpZ(a/A′) isolates tpZ(a/A).

For this, it is convenient to use Z0, the expansion of Z with ∼k, k > 1,
that admits quantifier-elimination. Suppose tpZ(a/A′) = tpZ(a′/A′); it then
suffices to show that Z0-atomic types of a and a′ over A are the same. As
tpZ(a/A′) specifies all a−a1 ∼k nk and a2−a ∼k n

′
k relations for all k > 1, and

all constants a1, a2 ∈ A′, a and a′ agree on all the formulae f(x, ~y)−g(x, ~y) ∼k

nk, where f, g are linear functions, ~y takes values in A, and 0 ≤ nk < k. By
quantifier elimination for Z0, we may assume that other atomic formulae are
of the form xθf(~y), where f is a linear function with integer coefficients, and

θ is one of <,>,=. Suppose that a > f(~b) holds for some ~b over A. Then

either f(~b) < f(~bA,f
− ), or f(~b) = f(~bA,f

− ) and ~bA,f
− is lexicographically smaller

than ~b. Since all the components of ~bA,f
− are in A′ and the types of a and a′
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over A′ are the same, we conclude that a′ > f(~bA,f
− ) and thus a′ > f(~b). The

cases of θ being > and = are similar. Hence, tpZ0
(a/A) = tpZ0

(a′/A), which
proves ω1-isolation. �

In conclusion, we remark that the techniques of the two previous subsec-
tions – using the finite cover property or isolation to prove the collapse – are
completely disjoint. While every structure that does not have the finite cover
property is stable, every structure with the isolation property is unstable; in
particular, one can define an infinite linear order on such a structure.

1.8 VC dimension and collapse results

In this section we consider the relationship between the VC (Vapnik-
Chervonenkis) dimension, a concept from statistics and learning theory, and
collapse results. We have seen one powerful result (Theorem 1.35): any struc-
ture whose definable families have finite VC dimension, admits the natural
generic collapse. It turns out that VC dimension is even closer related to
collapse results: namely,

natural-
active

collapse
⇒

restricted
quantifier

collapse
⇒ finite

VC dimension
⇒

natural-
generic

collapse,

as the result below demonstrates.

Theorem 1.47. Let M admit the restricted quantifier collapse. Then M-
definable families have finite VC dimension.

Proof. In the proof we shall use a complexity class AC0/poly defined as follows.
(We use a slightly nonstandard definition, in terms of FO-formulae rather than
circuits, as it is more convenient for our purposes.) Consider a class of finite
SC -structures C, and assume that adom(D) of size n is always of the form
{0, . . . , n− 1}. Such a class belongs to AC0/poly if there exists a vocabulary
SC ′ disjoint from SC , a function h from N to SC ′-structures, and a sentence
ΦC of FO(SC ∪ SC ′) such that (a) adom(h(n)) ⊆ {0, . . . , n− 1}, and (b) for
each SC -structures of size n, D ∈ C iff (D,h(n)) |= ΦC . In other words, we
use ΦC to decide if D ∈ C, and ΦC uses D as well as some polynomial-size
‘advice’ h(n). Some strong lower bounds have been proved for AC0/poly; they
imply, for example, that parity, and importantly for us, 3-colorability, are not
in AC0/poly.

Now assume that M admits the restricted quantifier collapse, and has infi-
nite VC dimension. We obtain a contradiction by showing that 3-colorability
is in AC0/poly.

To proceed, we need the following known (and nontrivial) result: if M has
infinite VC dimension, then there is a formula ϕ(~x, y) (where y is a single
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variable) that defines a family of infinite VC dimension. Take this formula
ϕ; then for each n, there is a set Yn ⊂ M of size n that is shattered by
{ϕ(~a,M) | ~a}.

Now expand the language of M with a binary relation E (to be interpreted
as a finite graph), and consider the sentence Ψ :

∃~x1∃~x2∃~x3

[

∀y∈adom





(ϕ(~x1, y) ∧ ¬ϕ(~x2, y) ∧ ¬ϕ(~x3, y))
∨ (¬ϕ(~x1, y) ∧ ϕ(~x2, y) ∧ ¬ϕ(~x3, y))
∨ (¬ϕ(~x1, y) ∧ ϕ(~x2, y) ∧ ϕ(~x3, y))



 ∧

∀y1∈adom∀y2∈adom E(y1, y2) → ¬





(ϕ(~x1, y1) ∧ ϕ(~x1, y2))
∨ (ϕ(~x2, y1) ∧ ϕ(~x2, y2))
∨ (ϕ(~x3, y1) ∧ ϕ(~x3, y2))





]

The fact that ϕ defines a family that shatters each Yn lets us model second-
order quantifiers over Yn; in particular, for any graph G with adom(G) ⊆ Yn,
G |= Ψ iff G is 3-colorable.

Since M admits the restricted quantifier collapse, we may assume that Ψ
is equivalent to a sentence Ψ ′ of the form

Qz1∈adom . . .Qzm∈adom α(~z)

where α is a Boolean combination of formulae E(zi, zj) and formulae βl(~z),
l ≤ k, over M.

For each βl having p free variables, introduce a new p-ary relation symbol
Rl. Let SC ′ = {Rl | l ≤ k}. Next, for each n, fix a bijection πn : {0, . . . , n−
1} → Yn. Let h(n) be a SC ′-structure on {0, . . . , n − 1} in which a tuple
(a1, . . . , ap) belongs to Rl iff βl(πn(a1), . . . , πn(ap)) holds in M. Finally, let
Ψ ′′ be Ψ ′ in which every subformula βl(~u) is replaced by Rl(~u). We then
conclude that for any graph G on nodes {0, . . . , n−1}, (G, h(n)) |= Ψ ′′ iff G is
3-colorable, which contradicts the fact that 3-colorability is not in AC0/poly.
This proves the theorem. �

A natural question, then, is the following: what kind of bounds on
FO(SC ,M) can one show for structures M of infinite VC dimension? Clearly
we cannot hope to prove the natural-active or the restricted quantifier col-
lapse; but is it possible to prove some meaningful bounds, and if so, how?

While our understanding of the limits of collapse results is by no means
complete, in the remainder of this section we give three examples of very
different behavior of FO over finite models embedded into structures with
infinite VC dimension.

• In some cases, there is no collapse at all. We have seen that any computable
query over finite SC -structures can be expressed in FO(SC ,N), and N has
infinite VC dimension. (To see this directly, assume as we did before that
a set X = {x1, . . . , xk} with x1 < . . . < xk is coded by 2x1 · 3x2 · . . . · pxk

k

where pk is the kth prime. Let ϕ(x, y) say that y in the set coded by x.
Then the family {ϕ(n,N) | n ∈ N} has infinite VC dimension.)
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• In another example, we get a collapse to a logic which is more powerful
than FO. Namely, we shall show in Section 1.8.1, that over the random
graph RG, FO(SC ,RG) collapses to active MSO, MSOact(SC ,RG). Recall
that MSO, monadic second-order logic, extends FO with quantification
over sets. In the active version MSOact, this set quantification is over
subsets of adom(D).

• In the last example, we do not know whether the natural-generic collapse
could be proved. Nevertheless, we succeed in showing that generic queries
can be evaluated in AC0. As AC0 is one of very few complexity classes
for which lower bounds have been proved, this suffices to conclude that
queries such as parity are not expressible. The structure for which this
result is proved (in Section 1.8.2), extends 〈Σ∗, fa,≺〉 from the previous
section by adding string length comparisons.

1.8.1 Random graph and collapse to MSO

In this section, we give an example of a nicely-behaved structure, with decid-
able theory and quantifier elimination, that does not admit the natural-active
collapse. This structure, however, admits a collapse to monadic second-order
logic, MSO.

The structure is the random graph RG = 〈U,E〉 on a countably infinite
set U : that is, any model that satisfies every sentence that is true in almost all
finite undirected graphs. Here ‘almost all’ is with respect to the uniform prob-
ability distribution: E(a, b) holds with probability 1/2, independently for each
pair (a, b). It is known that the set of all such sentences forms a complete the-
ory with infinite models, and that this theory is decidable and ω-categorical.
The latter means that up to isomorphism, there is only one countable model.

Other, non-probabilistic descriptions of RG exist. For example, let U =
{u0, u1, . . .}, and define E as follows: (ui, uj) ∈ E iff either the ithe bit on the
binary representation of j, or the jth bit in the binary representation of i, is
1.

The random graph satisfies the following extension axioms, for each n > 0:

∀x1, . . . , xn

∧

i6=j

xi 6= xj →
(

∧

M⊆{1,...,n}

∃z 6∈ ~x
(

∧

i∈M

E(z, xi)∧
∧

j 6∈M

¬E(z, xj)
)

)

In other words, let T be a finite subset of U and S ⊆ T . Then the extension
axioms say that there exists z 6∈ T such that for all x ∈ S, (z, x) ∈ E, and
for all x ∈ T − S, (z, x) 6∈ E. It is immediately clear from the extension
axioms that RG has infinite VC dimension; in fact, the family definable by
the formula E(x, y) shatters arbitrarily large finite sets.

Recall that MSO, monadic second-order logic, is a restriction of second-
order logic in which second-order variables range over sets. In the active-
domain fragment of MSO, they range over subsets of adom(D).
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Theorem 1.48. FO(SC ,RG) = MSOact(SC ,RG).

Proof. The idea is to use the extension axioms to model MSO queries. Consider
an MSOact formula

ϕ(~x) ≡ QX1⊆adom . . .QXm⊆adom Qy1∈adom . . .Qyn∈adom α( ~X, ~x, ~y),

where the Xis are second-order variables, the yjs are first-order variables, and
α is a Boolean combination of SC - and RG-formulae in variables ~x, ~y, and
formulae Xi(xj) and Xi(yj). Construct a new FO(SC ,RG) formula ϕ′(~x) by
replacing each QXi ⊆ adom with Qzi 6∈ adom ∪ ~x (which is FO-definable),
and changing every atomic subformula Xi(u) to E(zi, u). It is then easy to
see, from the extension axioms, that ϕ′ is equivalent to ϕ.

For the other direction, proceed by induction on the formulae. The only
nontrivial case is that of unrestricted existential quantification. Suppose we
have an MSOact(SC ,RG) formula ϕ(~x, z), with ~x = (x1, . . . , xn), of the form

Q ~X⊆adom Q~y∈adom α( ~X, ~x, ~y, z),

where α again is a Boolean combination of atomic SC - and RG-formulae, as
well as formulae Xi(u), where u is one of the first-order variables z, ~x, ~y. We
want to find an MSOact formula equivalent to ∃z ϕ.

Such a formula is a disjunction of ∃z ∈ adom ϕ ∨ ∨

i ϕ(~x, xi) ∨ ∃z 6∈
adom ϕ. The former is an MSOact(SC ,RG) formula. To eliminate z from the
latter, all we have to know about z is its connections to ~x and to the active
domain in the random graph; the former is taken care of by a disjunction
listing all subsets of {1, . . . , n}, and the latter by a second-order quantifier
over the active domain. For I ⊆ {1, . . . , n}, let χI(~x) be a quantifier-free
formula saying that no xi, xj with i ∈ I, j 6∈ I, could be equal. Introduce a
new second-order variable Z and define an MSOact formula ψ(~x) as

∃Z⊆adom
∨

I⊆{1,...,n}

(

χI(~x) ∧ Q ~X⊆adom Q~y∈adom αZ
I ( ~X,Z, ~x, ~y)

)

,

where αZ
I ( ~X,Z, ~x, ~y) is obtained from α by:

1. replacing each E(z, xi) by true for i ∈ I and false for i 6∈ I,

2. replacing each E(z, yj) by Z(yj), and

3. replacing each Xi(z) by false.

The extension axioms then ensure that ψ is equivalent to ∃z 6∈ adom ϕ. �

Thus, RG provides an example of a structure with quantifier-elimination
and decidable first-order theory that does not admit the natural-active col-
lapse. At the same time, one can establish meaningful bounds on the expres-
siveness of queries over RG: for example, each generic query in FO(SC ,RG)
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is in MSOact(SC ). (This does not immediately follow from the active-generic
collapse, as we do not include any order relation. One can show that the order
is not needed by modifying the proof of Lemma 1.14 using some special prop-
erties of RG.) Thus, every generic query in FO(SC ,RG) can be evaluated in
PSPACE (in fact, even in the polynomial hierarchy).

1.8.2 Complexity bounds for generic queries

We now revisit the structure 〈Σ∗, (fa)a∈Σ ,≺〉 from Section 1.7.3. Recall that
Σ here is a finite alphabet, Σ∗ is the set of all finite strings over Σ, fa is a
function that adds a at the end of its argument, and ≺ is the prefix relation.
We now extend it to a structure S = 〈Σ∗, (fa)a∈Σ ,≺, el〉, which adds a binary
predicate el interpreted as follows: el(x, y) iff |x| = |y|, where | | stands for
the length of a finite string.

Despite looking rather arbitrary, this structure naturally arises in the study
of logical properties of formal languages, and has a number of nice properties.
For example, subsets of Σ∗ definable in S are precisely the regular languages.
Moreover, in a certain sense, S is the most general structure whose definable
relations are precisely tuples of strings accepted by finite automata. That is,
any other structure on Σ∗ whose definable relations are tuples accepted by
finite automata, can be interpreted in S. The characterization of definable
relations via automata also implies the decidability of the theory of S.

Using the isolation property, we proved the restricted quantifier collapse
for 〈Σ∗, (fa)a∈Σ ,≺〉. However, it is impossible to prove the collapse for S as its
definable families may have infinite VC dimension. To see this, let Σ = {a, b},
and consider a formula ϕ(x, y) saying: there is a prefix of x that has the same
length as y and ends with an a:

∃z∃v
(

z � x ∧ el(z, y) ∧ fa(v) = z
)

For each n, let An = {bi | i ≤ n}, and let A be an arbitrary subset of An. Let
sA be a string of length n whose ith position is a iff bi ∈ A. Then for each
i ≤ n, ϕ(sA, b

i) holds iff bi ∈ A. This shows that arbitrarily large finite sets
can be shattered by families definable in S.

This still leaves open the possibility of proving the natural-generic collapse
for S; however, we do not know if it holds in S. Still, we can prove reasonably
good bounds for FO(SC ,S). For this, we need the complexity class AC0/poly
used in Theorem 1.47. As this class is a very modest extension of FOact(SC , <
), some good bounds can be derived.

Proposition 1.49. Every generic query in FO(SC ,S) can be evaluated in
AC0/poly. In particular, queries such as parity and connectivity are not ex-
pressible in FO(SC ,S).

Proof sketch. First, we explain the complexity model used here, which is
applicable to evaluation of generic queries. Given a SC -structure D with
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|adom(D)| = n, we code elements of the active domain by the numbers
0, . . . , n − 1 represented in binary, and then code tuples and relations in a
standard fashion, using special delimiter characters. Using this coding, one
shows that every generic sentence Φ can be evaluated in AC0/poly. This is
done in three steps:

1. First, we show that it suffices to restrict quantification to stings of length
at most mD, where mD = max{|x| | x ∈ adom(D)}. This is proved
by an Ehrenfeucht-Fräıssé game argument. More precisely, one shows the
following. Let Σ≤m = {x ∈ Σ∗ | |x| ≤ m}. Then, for each SC , there
is a fixed constant lSC , such that if the duplicator can win in k + lSC

moves on the restrictions of (S, D1) and (S, D2) to to (Σ≤mD1 , D1) and
(Σ≤mD1 , D2), then the duplicator can win in k moves on (S, D1) and
(S, D2).

2. Second, define an ordering < on Σ∗: x < y if either |x| < |y|, or |x| = |y|
and x is lexicographically less than y. Viewing Σ∗ as an infinite tree,
this amounts to traversing it, level by level, from left to right. Now, by
genericity, we may assume that adom(D) is an initial segment of this
ordering <.

3. Finally, we define an advice function f that for each n codes all the re-
lations of S on the first n′ elements of Σ∗ in the order <. Here n′ is the
number of all strings of length at most m, where m is the length of the nth
string in the <-order. For a given SC -structure D with |adom(D)| = n,
f codes all the relations of S on Σ≤mD . Assuming that adom(D) is an
initial segment of <, we conclude that the size of f(n) is polynomial in n.
By 1), we know that quantification over Σ≤mD suffices. As f(n) provides
all the information about S on Σ≤mD , we conclude that with f , a generic
query can be expressed in FO, and thus it belongs to AC0/poly. �

1.9 Expressiveness of Constraint Query Languages

In this section we return to constraint databases and study the expressive
power of standard query languages such as FO + Lin and FO + Poly. We
shall mostly deal with the fundamental topological property of connectivity,
which is also important in many applications of constraint databases as spatial
databases. That is, we deal with the following problem:

Problem: CONNECTIVITY

Input: an M-definable set S ⊆ Rk;
Output: True, if S is topologically connected, and false, otherwise.

The question is whether CONNECTIVITY is definable in FO(SC ,M) where
SC consists of just S. We shall mostly deal with the cases where M is the real
field or the real ordered group (and thus S is semi-algebraic or semi-linear);
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then by definability we mean definability in FO + Poly and FO + Lin. We
remarked in Section 1.3 that the problem looks akin to the problem of finite
graph connectivity, simply because any finite graph can be embedded into
R3 without self-intersections, and the result of the embedding is topologically
connected iff the original graph is connected. At that point, we did not know if
FO + Poly and FO + Lin define graph connectivity. Now we know that they
do not. However, we choose a different and less ad-hoc way to proceed, as the
results we present here give us more than nondefinability of connectivity, and
can be used for dimensions 1 and 2 as well.

In the next section, we shall see a reduction from topological connectiv-
ity to some definability problem for embedded finite models. In Section 1.9.2
we present a different technique, based on the topological structure of defin-
able sets. In Section 1.9.3 we study queries that separate FO + Poly from
FO + Lin.

1.9.1 Reductions to the finite case

Recall that MAJORITY is the following problem: “given two finite sets A
and B, is card(A) > card(B)?” We now prove the following.

Proposition 1.50. Assume that FO + Poly can define CONNECTIVITY

when the input is restricted to semi-linear sets. Then FO + Poly can define
MAJORITY.

Proof. Suppose we are given two finite sets A and B. Assume without loss of
generality that a, b > 0 for all a ∈ A and b ∈ B (if not, add maxa∈A |a|+ 1 to
all elements of A, and likewise for B; this can be defined in FO + Lin). Let
A = {a1, . . . , an} and B = {b1, . . . , bm}, where a1 < . . . < an and b1 < . . . <
bm. This is shown in Figure 1.6 for n = 6 and m = 4.

b1 b2 b3 b4

a1

a2

a3

a4

a5

a6

cj
ai

cj+1

ai+1

Fig. 1.6. Illustration to the proof of Proposition 1.50

Let C = B ∪ {0}. Assume that C = {c1, . . . , cm+1} where c1 = 0, and
ci = bi−1 for 1 < i ≤ m+ 1. For each 1 ≤ i < n and 1 ≤ j < m+ 1, define a
semi-linear set Xij in R2 as the union of the following 5 sets:
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X1
ij = {(x, y) | y = ai, cj ≤ x ≤ 2cj

3 +
cj+1

3 }
X2

ij = {(x, y) | x =
2cj

3 +
cj+1

3 , ai ≤ y ≤ ai+ai+1

2 }
X3

ij = {(x, y) | y = ai+ai+1

2 ,
2cj

3 +
cj+1

3 ≤ x ≤ cj

3 +
2cj+1

3 }
X4

ij = {(x, y) | x =
cj

3 +
2cj+1

3 , ai+ai+1

2 ≤ y ≤ ai+1}
X5

ij = {(x, y) | y = ai+1,
cj

3 +
2cj+1

3 ≤ x ≤ cj+1}.

This is shown in the right picture in Figure 1.6: the five sets corresponds to
the five segments of the thick line. We then define a set X as

{(x, 0) | a1 ≤ x ≤ an} ∪ {(x, an) | a1 ≤ x ≤ an} ∪
n−1
⋃

i=1

m
⋃

j=1

Xij .

This set is shown in the left picture in Figure 1.6 (in fact, we show lines as
straight, but it should be kept in mind that in every rectangle [cj , cj+1] ×
[ai, ai+1] it is given by Xij).

We next observe that X is definable in FO + Lin from A and B. In-
deed, C is definable, and then every Xij is definable, as follows from its def-
inition. (The main reason for going from (cj , ai) to (cj+1, ai+1) by “steps”
rather than a straight line was to achieve definability in FO + Lin.) Secondly,
card(B) ≥ card(A) iff the set X is connected – this is because the “line”
from (0, 0) reaches the ceiling iff card(B) ≥ card(A). Thus, X is connected iff
MAJORITY is false on A and B, which completes the proof. �

We immediately derive from this and the fact that FO + Lin suffices to
construct X from A and B:

Corollary 1.51. Neither FO + Lin nor FO + Poly can define CONNEC-

TIVITY. Furthermore, CONNECTIVITY is not definable in FO({S},M)
if M is an o-minimal expansion of the real field R. �

The reduction technique is not limited to the CONNECTIVITY problem.
We invite the reader to draw simple pictures that give similar reductions for
problems like homeomorphism of two 2-dimensional sets, existence of exactly
one (or at most one, or at least one) hole, or being simply connected.

1.9.2 Topological properties

In this section we give a different proof that topological connectivity is not
definable in FO + Poly. The proof relies on topological properties of semi-
algebraic sets, and on a criterion for indistinguishability of two sets in R2 by
certain FO + Poly queries.

Note that connectivity is a query about topological properties of its input.
Formally, a Boolean query Q on sets in Rk is called topological if it is invariant
under homeomorphisms: for any homeomorphism h : Rk → Rk and any S ⊆
Rk, Q(S) is true iff Q(h(S)) is true. Examples of topological queries are
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connectivity, having exactly one hole, having exactly k connected components.
Examples of nontopological queries are properties such as “being a line”,
“containing the origin” etc.

It turns out that the expressive power of FO + Poly with respect to topo-
logical queries on R2 can be nicely characterized. The characterization is based
on the fact that every semi-algebraic set S is locally conic around any point.
This is illustrated in Figure 1.7: there is a small neighborhood of a point ~x
such that the intersection of this neighborhood with the set S is isotopic to
the cone with center in ~x and the base that is the intersection of S with the
boundary of the neighborhood.

Fig. 1.7. Cones

More precisely, let Bǫ(~x) be {~y ∈ R2 | ‖ ~y − ~x ‖≤ ǫ} and B◦
ǫ (~x) = {~y ∈

R2 | ‖ ~y − ~x ‖= ǫ}. Then for each semi-algebraic set S and ~x ∈ R2, there is
ǫ > 0 such that S ∩Bǫ(~x) is isotopic to the cone with the center in ~x and the
base B◦

ǫ (~x)∩S. Furthermore, for any ǫ′ < ǫ, Bǫ′(~x)∩S is isotopic to the same
cone, so we can talk about the topological type of a cone of S around ~x. We
shall use tpS(~x) to denote the topological type of such a cone.

There are four cone types that are of special interest: the full cone, the
half-cone, the line, and the empty cone, shown in Figure 1.8. The first is the
cone type of a point in the interior of a set S. The second is the cone type of
a point on the boundary of a two-dimensional region. The third is the type
of a point in a one-dimensional segment of S. And the last one is the type
of a point outside of S, or of an isolated point of S. It turns out that for
any closed semi-algebraic set S ⊆ R2, these are the only cone types that can
be realized by infinitely many points – all other cone types have only finitely
many realizers.

.

Fig. 1.8. Four cone types

We write S ∼tp S′ if for every topological type T of a cone,

card({x ∈ S | tpS(x) = T }) = card({x ∈ S′ | tpS′(x) = T }).
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Note that this condition is somewhat reminiscent of that for Hanf-locality,
which says that each local neighborhood must have equally many realizers in
two structures.

Cone types characterize the expressive power of FO + Poly with respect
to topological queries as follows.

Theorem 1.52. Let Q be a topological FO + Poly query over the schema
with one binary relation, and let S ∼tp S′, where S, S′ are closed semi-
algebraic sets in R2. Then Q(S) is true iff Q(S′) is true. �

The proof of this result is rather involved. The main idea is as follows.
It is possible to define a set of elementary transformations on closed semi-
algebraic subsets of R2 such that these transformations preserve elementary
equivalence with respect to topological FO + Poly sentences, and such that
every two sets satisfying S ∼tp S

′ can be transformed to the same subset of
R2.

Another proof that connectivity is not in FO + Poly

Suppose that connectivity is tested by a (topological) FO + Poly query Q.
Consider S1 and S2 shown in Figure 1.9: S1 is a disk, and S2 is a disjoint
union of two disks. Both S1 and S2 realize the same cone types (the full, the
half, and the empty cones), and both have infinitely many realizers for each
of these types. Thus, S1 ∼tp S2, and by Theorem 1.52 we must have Q(S1) iff
Q(S2). Thus, Q cannot define connectivity, as S1 is connected, and S2 is not.

S1 S2

Fig. 1.9. Proving that connectivity is not in FO + Poly

It is natural to ask whether Theorem 1.52 can be extended to schemas
with two or more relation symbols, in particular, to topological queries over
multiple regions on the plane. It turns out that the answer is negative.

Suppose that we have two relation symbols, S and T , and assume that S
is interpreted as the area shown in light grey, and T as the area shown in dark
grey. Figure 1.10 gives two instances of (S, T ): in instance I1 on the left, T
lies inside S, and in instance I2 on the right, S lies inside T .

We can see that I1 ∼tp I2, as both instances realize the same cone types.
At the same time, I1 and I2 can be separated by a topological FO + Poly

query. The latter statement is by no means trivial. An obvious way to separate
I1 from I2 would be by saying: “traversing any line from −∞ to +∞, we
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Fig. 1.10. Topological equivalence for multiple regions

first enter S and then T ”. However, it is easy to show that this property,
while expressible in FO + Poly, is not topological. Nevertheless, a rather
complicated construction yields a topological FO + Poly query that separates
I1 from I2.

1.9.3 Linear vs. polynomial constraints

All expressivity bounds proved so far, in the finite and infinite contexts, apply
to both FO + Lin and FO + Poly. In this section we show a few queries that
separate the two. As R and Rlin share many model-theoretic properties, in
particular, most properties that were crucial for proving collapse results, new
techniques are needed to separate them.

Most separation results are based on the simple observation that multipli-
cation is not definable in Rlin (indeed, by quantifier-elimination, every Rlin-
definable function is piece-wise linear). To show that an FO + Poly query
Q is not expressible in FO + Lin we then prove that adding Q to FO + Lin

would enable us to define multiplication.
We start with two examples, that can be stated for either finite or semi-

linear sets. For both queries, the input is a set S ⊆ R2. The queries are:

• conv(S), which returns the convex hull of S, and

• collinear(S), which returns the set of triples s1, s2, s3 ∈ S (that is, a subset
of R6) which are collinear.

We have already seen that conv(·) is an FO + Poly query. collinear(·) is
expressible in FO + Poly as well, as FO + Poly can test if any three given
points (x1, y1), (x2, y2), (x3, y3), are collinear.

Proposition 1.53. Neither conv nor collinear is expressible in FO + Lin,
even if their arguments are finite sets.

Proof sketch. The main idea is illustrated in Figure 1.11. Assume that collinear
is definable in FO + Lin. Suppose we are given four distinct points u, v, w, s
in R2. Then, in FO + Lin, we can test if the lines l(u, v) and l(w, s) passing
through u, v and w, s respectively, are parallel. Indeed, such lines are not par-
allel iff there is a point p such that both collinear(u, v, p) and collinear(w, s, p)
hold (Figure 1.11, (b)).
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(a) (b)
x z

y

1

u

v

w
s

p

Fig. 1.11. Inexpressibility of conv and collinear in FO + Lin

However, testing if two lines are parallel is sufficient to define multipli-
cation, as shown in Figure 1.11, (a). If the lines passing through (0, 1) and
(x, 0), and (0, y) and (z, 0) are parallel, then z = x · y. Thus, collinear is not
a FO + Lin query.

Finally, conv is not expressible, since three distinct points are collinear iff
one of them in the convex hull of two others. �

Note that the query convex(S), testing if an n-dimensional semi-linear set
S ⊆ Rn is convex, can be defined in FO + Lin, as S is convex iff for every two
points (x1, . . . , xn), (y1, . . . , yn) ∈ S, the point (1

2 (x1 + y1), . . . ,
1
2 (xn + yn)) is

in S. Another positive expressibility result is testing whether a semi-linear set
S ⊆ R2 is a line, since S is a line if either it is a vertical line, or it is the graph
of a function, and for any ~x, ~y, ~z ∈ S, ~x+(~y−~z) ∈ S. All these conditions are
FO + Lin-expressible.

We consider one more example: the query ExistsLine(S) is true iff the
set S ⊆ R2 contains the graph of a line, {(x, y) | ax + b = y} for some
a, b ∈ R. Along the same lines as the proof of Proposition 1.53, we can show
that ExistsLine is not definable in FO + Lin. Indeed, let u,w ≥ 0 and v > 1,
and consider the set Su,v,w ⊆ R2 defined as follows:

Su,v,w =















(x, y)

∣

∣

∣

∣

∣

∣

∣

∣

x ≤ 0, y ≤ 0
or 0 ≤ x ≤ 1, 0 ≤ y ≤ v
or 1 ≤ x ≤ u, v ≤ y
or u ≤ x,w ≤ y.















.

This set is shown in Figure 1.12. It is easy to see that ExistsLine(Su,v,w) is
true iff w ≤ u · v; thus, in FO + Lin + ExistsLine one can define, for example,
the set {(x, y) | y = x2, x > 1}, which is clearly not FO + Lin-definable.
Hence, ExistsLine is not an FO + Lin query.

However, not all results separating FO + Lin and FO + Poly are so sim-
ple. Consider the following FO + Poly query ψ(x1, x2, y1, y2):
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1

v
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u*v

1

v

u

u*v

w

w

Fig. 1.12. Proving that “contains a line” is not in FO + Lin

∀λ
(

(0 ≤ λ ≤ 1) → S(λ · x1 + (1 − λ) · x2, λ · y1 + (1 − λ) · y2)
)

,

saying that the segment between (x1, y1) and (x2, y2) is contained in S ⊆ R2.
By the same method we used for ExistsLine, one can show that this is not an
FO + Lin query. But now consider a slight modification of this query: suppose
we want to know if the segment connecting two points on the boundary of a set
S lies entirely in S. It turns out that this query is inexpressible in FO + Lin;
the proof of this fact, however, is far from obvious.

1.10 Query Safety

In the previous sections, we worked with different kinds of objects: arbitrary
FO(SC ,M) formulae (for which we proved results like the natural-active col-
lapse) and queries definable in FO(SC ,M) (for which we proved results like
the active generic collapse). Queries, unlike arbitrary formulae, are required
to have certain closure properties: they return finite outputs on embedded
finite models.

This notion of closure is well known in the classical relational database
theory under the name of safety: one is often interested in looking at only those
formulae in FOact(SC ) that return finite results. For example, assuming an
infinite domain U and one relation S, the formula ¬S(x) produces the infinite
set U−adom(D). It is known that for FOact(SC ), one can identify a recursive
subset of safe formulae; that is, the set of formulae that always return finite
results on finite SC -structures, and such that every formula with this property
is equivalent to one from this set.

In this section we consider the problem of safety in the context of embedded
finite models and constraint databases. For the former, we encounter a familiar
situation that the behavior of formulae depends greatly on the properties of
the underlying structures. For some structures, most notably Rlin and R
(linear and polynomial constraints) we give nice syntactic characterization.
The safety problem also arises in the context of constraint databases. Although
the flavor is quite different, we show that it reduces to the finite safety problem.
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1.10.1 Finite and infinite query safety

Recall that the output of an FO(SC ,M) formula ϕ(x1, . . . , xn) on a finite

SC -structure D is ϕ(D)
def
= {~a ∈ Un | D |= ϕ(~a)}.

Definition 1.54. An FO(SC ,M) formula ϕ(~x) is safe on a finite SC-
structure D if ϕ(D) is finite. A formula is safe it it is safe on every finite
structure. �

We now define the following problems:

Problem: SAFETY

Input: an FO(SC ,M) formula ϕ(~x);
Output: True, if ϕ is safe, and false, otherwise.
Problem: STATE-SAFETY

Input: an FO(SC ,M) formula ϕ(~x) and a finite SC -structure D;
Output: True, if ϕ is safe on D, and false, otherwise.

It is known that in general the SAFETY problem is undecidable even for
M = 〈U, ∅〉 and ϕ an FOact(SC ) formula. On the other hand, one can easily
show:

Proposition 1.55. Let M = 〈U, ∅〉. Then the STATE-SAFETY problem is
decidable.

Proof sketch. By Theorem 1.25, we can assume that ϕ is an FOact(SC ) for-
mula. Then it is safe on D iff every tuple in the output only contains ele-
ments of adom(D) (by genericity, if at least one tuple contains some element
c 6∈ adom(D), then any other c′ 6∈ adom(D) can be substituted for c). This
condition can be easily tested by considering a set c1, . . . , cm of distinct el-
ements not in adom(D), where m is the number of free variables in ϕ, and
checking all tuples in adom(D) ∪ {c1, . . . , cm}. �

We now turn to the safety problem for constraint databases. Consider a
situation when we have a linear constraint database D, but we want to write
queries against D in FO + Poly. The main reasons for considering this situa-
tion are the following. Linear constraints are used to represent spatial data in
many applications, they have several advantages over polynomial constraints:
the quantifier-elimination procedure is less costly, and numerous algorithms
have been developed to deal with figures represented by linear constraints. As
FO + Lin is more limited than FO + Poly (for example, it cannot define the
convex hull of a set), one may want to use FO + Poly to get extra expressive
power.

However, as soon as the class of constraints used in queries is more gen-
eral than the class used to define constraint database instances, we encounter
the safety problem again: the output of an FO + Poly query may fail to be
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semi-linear. More generally, if constraint databases are required to have cer-
tain geometric properties, then the safety problem is whether those geometric
properties are preserved by a given query language. Section 1.10.4 deals with
this problem.

1.10.2 Safe translations

The main goal of this section is to show that safety of formulae is greatly
affected by the properties of the underlying structure M. To state these results
formally, we use the following concept.

Definition 1.56. We say that there is a safe translation of FOact(SC ,M)
formulae, if there is a function ϕ → ϕsafe on FOact(SC ,M) formulae such
that for every ϕ,

1. ϕsafe is safe, and

2. if ϕ is safe for D, then ϕ(D) = ϕsafe(D).

A translation is canonical if ϕsafe(D) = ∅ whenever ϕ is not safe on D. A
translation is recursive if the function ϕ→ ϕsafe is recursive. �

It turns out that recursive safe translations need not exist even for struc-
tures with decidable theories.

Proposition 1.57. There exists a structure M that is recursive, has a decid-
able first-order theory, and for which there is no recursive safe translation of
FOact(SC ,M) formulae.

Proof sketch. Consider the structure M whose domain U is the disjoint union
of

• the set of Turing machines, appropriately coded as strings;

• the set of input strings to a Turing machine;

• the set of traces, i.e., full descriptions of a partial run of a Turing machine
on an input word.

The signature of M consists of one ternary relation P , which holds of a
triple (M,w, t) iff t is a trace for Turing machine M on input word w. The key
point is that there is no structure or ordering on the traces themselves: hence
one cannot determine in first-order logic whether or not a trace is maximal. In
fact, using a quantifier-elimination argument, one can show that the first-order
theory of M is decidable.

Let SC contain a single unary relation S. For any Turing machine M , let
ϕM (t) be the query ∃!w ∈ adom(w = w) ∧ ∃w ∈ adomP (M,w, t). That is, if
S = {w}, ϕM checks if t is a trace of M on w.
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Assume we have a recursive safe translation, and consider ϕM
safe(t). If we

could check the equivalence of ϕM
safe and ϕM , we would be able to enumerate

all machines that halt on every input, which is clearly impossible.
Next, to verify the equivalence of ϕM

safe and ϕM , we simply turn them into
FO(M) formulae ψM (w, t) and ψM

safe(w, t) by replacing each subformula of
the form S(z) by w = z. The resulting FO(M) formulae then are true for
(w, t) iff t is in the output of the corresponding query on input {w}. Thus,
∀w∀t (ψM (w, t) ↔ ψM

safe(w, t)) holds iff ϕM
safe and ϕM are equivalent. The

result now follows from the decidability of the theory of M. �

If one drops the condition that the theory of M be decidable, but insists on
computable functions and predicates in Ω, the situation is even worse: there
need not be any safe translations at all (recursive or not).

Proposition 1.58. There is a structure M = 〈N, P 〉, where P is a computable
predicate, such that there is no safe translation of FOact(SC ,M) formulae.

Proof. Let P be a ternary predicate defined as: P (i, j, k) iff the ith Turing
machine on the input j makes at least k moves (assuming some standard
encoding of machines and inputs). Consider the schema that consists of a
single binary relation S. Assume to the contrary that there is a safe translation
over M. Let ϕ(k) ≡ ∃i, j∈adom S(i, j)∧P (i, j, k), and let ψ(k) be ϕsafe. Note
that ψ is an active-domain formula in the language of S and P . We now show
how to use ψ to decide the halting problem.

Suppose we are given the ith machine Mi and the input j. We assume
without loss of generality that Mi makes at least one move on j. Define a
database D in which S consists of a single tuple (i, j). Since we know that
ψ is safe, we then compute the minimum number l such that D 6|= ψ(l). It
is computable since a) it exists, and b) for each k, it is decidable whether
D |= ψ(k).

Assume that D |= ϕ(l). Then Mi does not halt on j. Indeed, if Mi halts,
then ϕ(D) is finite, and hence ϕ(D) = ψ(D), but we have l ∈ ϕ(D) − ψ(D).
Assume that D 6|= ϕ(l). Then Mi makes k < l moves on j, and thus halts.
Hence, D |= ϕ(l) iff Mi halts on j. Since it is decidable whether D |= ϕ(l), we
get a contradiction. �

On the other hand, for some structures M, recursive safe translations can
be obtained.

Proposition 1.59. Let M be o-minimal, based on a dense order, admit ef-
fective quantifier-elimination, and have a decidable theory (for example, M

can be Rlin or R). Then there exists a recursive canonical safe translation of
FOact(SC ,M) formulae.

Proof sketch. Given an FOact(SC ,M) formula ϕ, let α(x) be a formula defining
the active domain of the output of ϕ. Let Ψ be an FOact(SC ,M) sentence
equivalent to
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¬∃x1, x2 ((x1 < x2) ∧ (∀x x1 < x < x2 → α(x)))

(it exists by the natural-active collapse). Define ϕsafe as ϕ∧Ψ . The proposition
then follows from the following easy claim: D |= Ψ iff ϕ(D) is finite. �

Corollary 1.60. Let M be as in Proposition 1.59. Then the state-safety prob-
lem over M is decidable. �

Thus, to obtain nice syntactic characterization of safe queries, we must
deal with structures having good properties (just as in the case of collapse
results).

1.10.3 Finite query safety: characterization

To give an idea of the characterization of safety we are about to provide, let us
modify slightly an example we used in Section 1.2: ϕ(x) ≡ (x > 1)∧∃y S(y)∧
(x · x = y). Assuming that the underlying structure is the real field R, the
output of this formula is contained in the output of ∃y S(y) ∧ (x · x = y),
which is {−√

a,
√
a | a ∈ S}. Thus, there is an upper bound on the output of

ϕ, which is given by applying certain functions to the active domain. This is
the central idea of the range-restriction we are about to define. But first we
introduce the notion of effective syntax for safe queries.

Definition 1.61. We say that a class Q of queries captures the class of safe
queries in FO(SC ,M) if every query in Q is safe and definable in FO(SC ,M),
and every safe FO(SC ,M) query is equivalent to a query in Q.

If there exists a recursively enumerable class Q of queries that captures
safe queries in FO(SC ,M), we say that the class of safe FO(SC ,M) queries
has effective syntax. �

Proposition 1.57 (more precisely, the construction presented in the proof
of Proposition 1.57) implies that there are structures M with decidable first-
order theory but without effective syntax for safe FO(SC ,M). Proposition
1.59, on the other hand, shows that there is an effective syntax for FO + Lin

and FO + Poly queries, as one can express, in the language, if the output of
a query is finite. This way of guaranteeing effective syntax is quite inelegant,
and tells us nothing about the structure of safe queries. Below we present a
much better description, based on the notion of definable functions.

Definition 1.62. Given M = 〈U,Ω〉, a function f : Uk → U is M-definable
(or just definable if M is understood) if its graph {(a1, . . . , ak, a) ∈ Uk+1 |
a = f(a1, . . . , ak)} is an M-definable set. �

From now on, we assume adom(D) 6= ∅. The case of empty SC -structures
can be dealt with easily, as in this case an FO(SC ,M) formula reduces to a
fixed FO(M) formula, whose finiteness can be tested in the o-minimal case.
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Definition 1.63. Given M = 〈U,Ω〉, a query in range-restricted form is a
pair Q = (F, ϕ(x1, . . . , xn)), where ϕ(~x) is an FO(SC ,M) formula, and F is
a finite collection of definable functions.

The semantics is defined as follows. First, for a set X, let

F (X) = {f(~a) | f ∈ F, ~a ∈ Xarity(f) }.

Then, for any finite SC-structure D, define

Q(D) = ϕ(D) ∩ (F (adom(D)))n.

That is, the finite set F (adom(D)) provides an upper bound on the output
of Q (every constant in Q(D) must be contained in F (adom(D))) and then
ϕ is evaluated within this set. Since F is finite, and every function in F is
definable, we obtain the following.

Lemma 1.64. Every query in range-restricted form over M is safe and de-
finable in FO(SC ,M). �

We now can state the main result of the section.

Theorem 1.65. Let M be any o-minimal structure based on a dense linear
order. Assume that there is at least one definable constant in M. Then there
is a function Make Safe that takes as input an FO(SC ,M) formula ϕ(~x), and
outputs a finite set F of definable functions such that the query Q = (F, ϕ) is
equivalent to ϕ on any finite SC-structure D on which ϕ is safe. Furthermore,
if M is decidable and has effective quantifier-elimination, then Make Safe is
recursive. �

The proof of this theorem will be given in the rest of this section. But first
we state some corollaries.

Corollary 1.66 (Range-restricted = Safe). Let M be as in Theorem 1.65.
Then the class of range-restricted queries captures the class of safe FO(M,SC )
queries. �

We now consider specifically the cases of polynomial and linear constraints.

Definition 1.67. a) A query in the linear range-restricted form is a pair Q =
(F, ϕ) where ϕ is a FO + Lin formula, and F is a finite collection of linear
functions (that is, functions of the form 〈~a, ~x〉 + b). The semantics is defined
in the same way as for range-restricted queries above.

b) A query in the polynomial range-restricted form is a pair Q =
(P, ϕ(x1, . . . , xn)) where ϕ is a FO + Poly formula, and P is a finite collec-
tion of multivariate polynomials with a distinguished variable z. The semantics
is defined as follows. For a set X, and p(z, ~y), let p(X) be the set of all roots
of polynomials of the form p(z,~a), where ~a is a tuple over X, provided such a
univariate polynomial is not identically zero. Let P (X) =

⋃

p∈P p(X). Then
Q(D) is defined as ϕ(D) ∩ (P (adom(D)))n. �
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Corollary 1.68. a) The class of queries in the linear range-restricted form
captures the class of safe FO + Lin queries.

b) The class of queries in the polynomial range-restricted form captures
the class of safe FO + Poly queries.

Proof. a) A function definable over Rlin is piece-wise linear. Thus it suffices
to apply Theorem 1.65, and take all the linear functions of which functions in
F are composed.

b) Similarly, we apply Theorem 1.65 and obtain a set F of semi-algebraic
functions. Each semi-algebraic function f(~y) is known to be algebraic. That
is, there exists a polynomial p(z, ~y) such that p(z, ~y) = 0 iff z = f(~y). The
result follows from this. �

Algebraic formulae and the proof of Theorem 1.65

We first give an analog of range-restriction using certain FO(M) formulae,
and then show how to derive a set F of definable functions from such a char-
acterization. The FO(M) formulae we shall use are algebraic formulae. They
have distinguished parameters, which we shall always denote by ~y and sepa-
rate from the single other variable by a semicolon. Assume that ~y is of length
m. An FO(M) formula γ(x; ~y) is called algebraic if for each ~b in Um there

are only finitely many a ∈ U that satisfy γ(a,~b). For example, the formula
γ(x; y) ≡ (x2 = y) is algebraic over R.

From the Uniform Bounds theorem (Theorem 1.29), we obtain the follow-
ing useful fact about algebraic formulae.

Lemma 1.69. Let M be o-minimal, and γ(x; ~y) algebraic. Then there exists

a number K such that for any ~b ∈ Um, the set {a ∈ U | M |= γ(~a;~b)} has
fewer than K elements. �

We now need a syntactic characterization of algebraic formulae over o-
minimal structures. Let Ξ = {ξ1(x; ~y), . . . , ξk(x; ~y)} be a collection of formu-
lae. Let

sameΞ(x, x′; ~y) ≡
k

∧

i=1

(ξi(x; ~y) ↔ ξi(x
′; ~y)).

Now define

βΞ(x; ~y) ≡ ∀x′, x′′
(

x′ < x < x′′ → (∃z x′ ≤ z ≤ x′′ ∧ ¬sameΞ(x, z; ~y))
)

.

Proposition 1.70. Let M be an o-minimal structure based on a dense order.
Then a formula γ(x; ~y) is algebraic iff there exists a collection of FO(M)
formulae Ξ such that γ is equivalent to βΞ .

Proof. Let Ξ be a collection of formulae, and assume that βΞ is not algebraic.
That is, for some ~b over U , βΞ(M;~b) = {a | M |= βΞ(a;~b)} is infinite. Since

M is o-minimal, βΞ(M;~b) is a finite union of points and intervals. Since < is
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dense, this means that there exist a0 < b0 ∈ U such that [a0, b0] ⊆ βΞ(M;~b).

We now consider the formulae ξ′i(x) = ξi(x;~b) for all ξi ∈ Ξ. Since both

ξ′i(M) = ξi(M;~b) and ¬ξ′i(M) = ¬ξi(M;~b) are finite unions of intervals and <
is dense, for every non-degenerate interval J , it is the case that either J∩ξ′i(M)
or J ∩ ¬ξ′i(M) contains an infinite (closed) interval. Using this, we construct
a sequence of intervals as follows: I0 = [a0, b0], I1 ⊆ I0 is an interval that is
contained either in I0 ∩ ξ′1(M) or in I0 ∩¬ξ′1(M). At the jth step, Ij ⊆ Ij−1 is
an interval that is contained either in Ij−1 ∩ ξ′j(M) or in Ij−1 ∩ ¬ξ′j(M). Let

I = Ik. Then, for any c, d ∈ I, M |= ξi(c,~b) ↔ ξi(d;~b).

Since I = [a′, b′] ⊆ [a0, b0] and M |= βΞ(c;~b) for all c ∈ I, we obtain that,

for every c ∈ (a′, b′), there exists d ∈ [a′, b′] such that M |= ¬sameΞ(c, d;~b).

That is, for some ξi ∈ Ξ, M |= ¬(ξi(c;~b) ↔ ξi(d;~b)), which is impossible by
construction of I. This proves that βΞ is algebraic.

For the converse, we let, for any γ(x; ~y), Ξ consist of just γ. That is,
βΞ(x; ~y) is

∀x′, x′′
(

x′ < x < x′′ → (∃z x′ ≤ z ≤ x′′ ∧ ¬(γ(x; ~y) ↔ γ(z; ~y)))
)

.

We claim that γ and βΞ are equivalent, if γ is algebraic. Fix any ~b of the
same length as ~y, and assume that γ(a;~b) holds. If βΞ(a;~b) does not hold,

then there exist a′ < a < a′′ such that for every c ∈ [a′, a′′], γ(c;~b) ↔ γ(a;~b)

holds; thus, γ(c;~b) holds for infinitely many c, contradicting algebraicity of

γ. Hence, βΞ(a;~b) holds. Conversely, assume that βΞ(a;~b) holds. If γ(a;~b)

does not hold, then there is an interval containing a on which γ(·;~b) does not

hold. Indeed, ¬γ(M;~b) is a finite union of intervals, whose complement is a
finite set of points, so the above observation follows from the density of the
ordering. We now pick a′ < a′′ such that γ(·;~b) does not hold on [a′, a′′]. Since

βΞ(a;~b) holds, we find c ∈ [a′, a′′] such that ¬(γ(a;~b) ↔ γ(c;~b)) holds; that

is, γ(c;~b) holds for c ∈ [a′, a′′], which is impossible. Thus, we conclude that

γ(a;~b) holds, proving that for any ~b, ∀x (γ(x;~b) ↔ βΞ(x;~b)). This finishes the
proof. �

Given an algebraic formula γ(x; ~y) and a set X ⊆ U , let γ(X) be the set

of all a that make true γ(a;~b), as ~b ranges over tuples of elements of X . Note
that if X is finite, then so is γ(X).

We now define a query in the algebraic range-restricted form as a pair
Q = (γ(x; ~y), ϕ(x1, . . . , xn)), where ϕ is an FO(SC ,M) formula, and γ is
an algebraic FO(M) formula. The semantics is defined as Q(D) = ϕ(D) ∩
(γ(adom(D)))n. Clearly, Q is safe.

Proposition 1.71. Let M be any o-minimal structure based on a dense linear
order. Then there is a function Make Safe′ that takes as input an FO(SC ,M)
formula ϕ(x1, . . . , xn), and outputs an algebraic formula γ(x; ~y) such that the
query Q = (γ, ϕ) is equivalent to ϕ on all structures D for which ϕ is safe.
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Furthermore, if M has effective quantifier-elimination, then Make Safe′ is re-
cursive.

Proof. Let ψ(z) be a one-variable FO(SC ,M) formula that defines the ac-
tive domain of the output of ϕ. That is, it is the disjunction of all formulae
∃~x(i)ϕ(z, ~x(i)) where ~x(i) is ~x except the ith component, and (z, ~x(i)) is the
tuple in which z is inserted in the ith position. Note that ϕ is safe on D iff ψ
is.

Let M′ be a definable expansion of M that has quantifier-elimination, and
hence admits the natural active-collapse. We can thus assume that ψ is an
FOact(SC ,M′) formula. Let

ψ(z) ≡ Qw1∈adom . . .Qwl∈adom α(z, ~w)

where α(z, ~w) is quantifier-free, and all atomic subformulae R(· · · ) contain
only variables, excluding z. Let Ξ = {ξi(z, ~w) | i = 1, . . . , k} be the collection
of all FO(M′)-atomic subformulae of α. We may assume without loss of gen-
erality that the length of ~w is nonzero, and that Ξ is nonempty (just as we
did in the proof of the natural-active collapse).

Define sameΞ(a, b, ~w), as before, to be
∧k

i=1(ξi(a, ~w) ↔ ξi(b, ~w)), and de-
fine γ(x; ~w) to be βΞ(x; ~w). We let Make Safe(ψ) output γ. Note that γ is
actually an FO(M) formula, since M′ is a definable expansion.

Since γ is algebraic by Proposition 1.70, we must show that {a | D |=
ψ(a)} = {a ∈ γ(D) | D |= ψ(a)} for every nonempty database for which ψ is
safe.

Assume otherwise; that is, for some nonempty D for which ψ is safe, we
have D |= ψ(a) but a 6∈ γ(D). Let ~c1, . . . ,~cM be an enumeration of all tuples
of the length of ~w of elements of adom(D). Note that M > 0. Since a 6∈ γ(D),
we have that for each i = 1, . . . ,M , there exist a′i, a

′′
i such that a′i < a < a′′i

and M |= sameΞ(a, c,~ci) for all c ∈ [a′i, a
′′
i ].

Let b′ = max{a′i}, b′′ = min{a′′i }. We have b′ < a < b′′, and for each
~c (of length of ~w) over the active domain, we have ξi(a;~c) ↔ ξi(c,~c) for
every c ∈ [b′, b′′]. From this, by a simple induction on the structure of the
formula (using the fact that z does not appear in any atomic formula R(· · · )),
we obtain that D |= α(a,~c) ↔ α(c,~c) for every ~c over adom(D) and every
c ∈ [b′, b′′], and thus D |= ψ(a) ↔ ψ(c), which implies that ψ is not safe for
D. This contradiction proves correctness of Make Safe′, and the proposition.
�

To conclude the proof of Theorem 1.65, we have to show how to obtain
definable functions from algebraic formulae.

Proposition 1.72. Let M be o-minimal, such that there is at least one defin-
able constant. Let γ(x; ~y) be algebraic. Then there is a finite collection F of
definable functions f(~y) such that γ(X) ⊆ F (X) for any set X ⊆ U . More-
over, if M is decidable, then the set F can be found effectively.
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Proof. Let c be a definable constant over M. Given γ, let K be an integer
such that the set {a ∈ U | M |= γ(a,~b)} has fewer than K element for every
~b (see Lemma 1.69). For each i < K, define fi(~y) to be the ith element (in
the order <) that makes true γ(·, ~y), if it exists, and c, if there is no such
element. Let F = {fi | i < K}. Clearly, each fi is a definable function and
γ(X) ⊆ F (X). If M is decidable, then K can be found, and thus F can be
constructed effectively. �

We finally complete the proof of Theorem 1.65. Given an FO(SC ,M)
formula ϕ(~x), we first apply Proposition 1.71 to get an algebraic formula γ
giving a bound on the output (if it is finite), and then apply Proposition 1.72
to get a set functions F that puts a bound on the output of ϕ. If M is decidable
and quantifier-elimination is effective, then γ can be effectively found (as the
natural-active collapse is effective), and there is an algorithm for constructing
F from γ. �

1.10.4 Infinite query safety: reduction

The question of query safety over constraint database reduces to preserving
certain geometric properties of regions in Rk. If M = 〈U,Ω〉 is an infinite
structure, let DS(M) be the class of definable sets over M, that is, DS(M) =
⋃

n<ω DSn(M) and DSn(M) is the collection of definable subsets of Un. We
use SAlgn for semi-algebraic sets in Rn.

Let SC consist of an m-ary relation symbol S, and let ψ(x1, . . . , xn) be an
FO(SC ,M) formula. It defines a map from DSm(M) to DSn(M) as follows:
for any X ∈ DSm(M), ψ(X) = {~y | (M, X) |= ψ(~y)}.

Let now C be a class of objects in DS(M). We say that an FO(SC ,M)
formula ψ preserves C if for any X ∈ C, ψ(X) ∈ C. The safety question for
constraint databases is the following. Is there effective syntax for the class of
C-preserving queries?

We now show how this problem can be reduced to finite query safety for
embedded finite models.

Definition 1.73. The class C has a canonical representation in DS(M) if
there is a recursive injective function g : N → N with computable inverse, and
for each n, two functions coden : 2Un → 2Um

and decoden : 2Um → 2Un

,
where m = g(n), such that:

1. decoden ◦ coden(x) = x if x ∈ DSn(M);

2. |coden(x) |< ω if x ∈ C; decoden(x) ∈ C if x is finite;

3. coden is FO(M)-definable on DSn(M);

4. decoden is FO(M)-definable on finite sets.
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Intuitively, the canonical representation is a finite representation of C
within DS(M) that can be defined in first-order logic over M. For exam-
ple, one approach to obtaining a canonical representation of convex polytopes
would be to compute their vertices. This suffices to reconstruct the polytope,
and the vertices can be defined by a first-order formula.

Similarly to the finite case, we say that there is effective syntax for C-
preserving FO(SC ,M) formulae if there exists a recursively enumerable set of
C-preserving FO(SC ,M) formulae such that every C-preserving FO(SC ,M)
formula is equivalent to a formula in this set.

Theorem 1.74. Let M = 〈U,Ω〉 be o-minimal, based on a dense order, de-
cidable, and have effective quantifier-elimination. Suppose C is a class that
has a canonical representation in DS(M). Then there is effective syntax for
C-preserving FO(SC ,M) formulae.

Proof. Consider an enumeration of all safe FO(SC ,M) queries 〈ϕi〉 on finite
structures (from Proposition 1.71, we know that it exists). Let ϕ use an extra
relation symbol of arity m, and assume that n is such that g(n) = m (where
g comes from the definition of canonical representations). Let ϕi have l pa-
rameters, and again let k be such that g(k) = l. If n and k are found for a
given ϕi, we let ψ be:

decodek ◦ ϕi ◦ coden.

This produces the required enumeration. We have to check that every query
of the formdecodek ◦ ϕi ◦ coden preserves C, and for every C preserving ψ, we
can get ϕ such that decode ◦ ϕ ◦ code coincides with ψ. The first one is clear:
if we have X ∈ C, then coden(X) is finite, hence ϕi(coden(X)) is finite too,
and thus the output of decodek is in C.

For the converse, suppose we have a C-preserving query ψ : DSn(M) →
DSk(M). Define α as follows: α = codek ◦ ψ ◦ decoden. That is, α is a query
DSm(M) → DSl(M). Given this, notice that

decodek ◦ α ◦ coden = decodek ◦ codek ◦ ψ ◦ decoden ◦ coden = ψ

on DSn(M). Thus, it remains to show that α is safe. Let X ⊂ Um be finite.
Then decoden(X) ∈ C, decoden(X) ⊂ Un, and Y = ψ(decoden(X)) ∈ DSk(M)
is in C, too. Hence, codek(Y ) is finite. �

We now give two applications for semi-algebraic sets and FO + Poly. The
first one gives an example of a geometric class for which coding is easy.

Proposition 1.75. The class of convex polytopes has a canonical represen-
tation in SAlg. Consequently, the class of FO + Poly queries preserving the
property of being a convex polytope has effective syntax.

Proof. Given a convex polytope X in Rn, its vertices can be found as
V (X) = {~x ∈ Rn | ~x ∈ X,~x 6∈ conv(X − ~x)}, where conv(·) denotes the
convex hull. Thus, V (X) is definable in FO + Poly. We now define coden.
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To simplify the notation, we let it produce a pair of n-ary relations, but
it can be straightforwardly coded by one relation. If X = conv(V (X)),
then coden(X) = (V (X), ∅); otherwise, coden(X) = (Rn, X). The function
decoden : 2Rn × 2Rn → 2Rn

is defined as follows:

decoden(Y, Z) =

{⋃

(~y1,...,~yn+1)∈Y conv({~y1, . . . , ~yn+1}) if Y 6= Rn,

Z otherwise.

Clearly, decoden◦coden is the identity function for any semi-algebraic set; these
functions are also first-order definable. If X is a polytope, V (X) is finite, and
by Carathéodory’s theorem each point of X is contained in the convex hull
of at most n + 1 vertices of X . Hence, card(coden(X)) ≤ card(V (X))n+1. If
(Y, Z) is finite, then decoden(Y ) is conv(Y ), and thus a convex polytope. This
proves the proposition. �

The second example deals with the case of C being a class of semi-linear
sets. We now give two different approaches to showing the following.

Theorem 1.76. There is an effective syntax for the class of FO + Poly

queries preserving semi-linearity. �

One approach to showing this is to prove that the class of semi-linear sets
has a canonical representation in the class of semi-algebraic sets. This is true,
although the coding scheme is quite complex and not very intuitive. Another
way of showing this theorem is based on the proposition below.

Proposition 1.77. For any n > 0, there is an FO + Poly sentence over
SC containing one n-ary relation symbol, which tests if the input (which is a
semi-algebraic set S ⊆ Rn) is semi-linear. �

Then effective syntax for FO + Poly queries preserving semi-linearity can
be obtained simply by inserting tests for the input and output being semi-
linear, and returning the empty set if semi-linearity is not preserved. However,
the decision procedure is not much simpler than the canonical representation,
and we are thus very far from a usable language for FO + Poly-definable
queries preserving semi-linearity. But the very fact that such a language exists
is an interesting and nontrivial property of FO + Poly.

1.10.5 Deciding safety

Safety of FOact(SC ) formulae is already undecidable. However, there are some
nice syntactic subclasses of FOact(SC) for which safety is guaranteed. We now
consider one such subclass – conjunctive queries. The class of conjunctive
queries is defined as a {∃,∧}-fragment of FOact(SC ), that is, as the set of
formulae built from atomic formulae S(·), where S ∈ SC , using conjunction
and existential quantification only. Outputs of such formulae cannot extend
the active domain, and hence they are safe. We now consider a natural analog
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of conjunctive queries over embedded finite models. Although they are no
longer guaranteed to produce output containing only elements of the active
domain, safety remains decidable for underlying structures such as Rlin and
R.

A conjunctive query (CQ) is an FO(SC ,M) formula of the form

ϕ(~x) ≡ ∃~y∈adom α1(~x, ~y) ∧ . . . ∧ αk(~x, ~y) ∧ γ(~x, ~y),
where α1(~x, ~y), . . . , αk(~x, ~y), k ≥ 0 are formulae of the form S(~u), S ∈ SC and
~u a subtuple of (~x, ~y), and γ is an FO(M) formula.

Theorem 1.78. Let M be o-minimal, based on a dense order, decidable, and
admit effective quantifier-elimination. Then it is decidable if a given conjunc-
tive query in FO(SC ,M) is safe.

Proof. Given two formulae ϕ(~x) and ψ(~x), by containment ϕ ⊆ ψ we mean
ϕ(D) ⊆ ψ(D) for any finite D. From Proposition 1.71 we obtain that for any
FO(SC ,M) formula ϕ(~x), there exists an active-semantics CQ ψ(~x) such that
ϕ is safe iff ϕ ⊆ ψ. The theorem now follows from the lemma below.

Lemma 1.79. Let M be as in Theorem 1.78. Then containment is decidable
for conjunctive queries.

Proof. Suppose we are given CQs ϕ(~x) and ψ(~x). We claim that one can
effectively find a number k such that ϕ ⊆ ψ iff for every D with at most k
tuples, ϕ(D) ⊆ ψ(D). This clearly implies the result, as the latter condition
can be expressed as an FO(M) sentence.

To prove the claim, assume that ϕ(~x) is ∃~y ∈ adom
∧l

i=1 αi(~ui) ∧ γ(~x, ~y).
We claim that k can be taken to be l plus the length of ~y. Indeed, assume
there is ~a ∈ ϕ(D) − ψ(D). Let ~b witness D |= ϕ(~a); we then see that there is
a structure D′ that contains at most k tuples from D such that D′ |= ϕ(~a) (it

has to contain enough tuples to ensure that all elements of ~b are in adom(D′),

and that
∧l

i=1 αi(~ui) holds. But then D′ |= ¬ψ(~a), for otherwise we would
have D |= ψ(~a). Thus, any counterexample to containment is witnessed by a
≤ k-element structure. This finishes the proof Lemma 1.79 and the Theorem.
�

The proof can be extended to show a slightly more general result:

Corollary 1.80. It is decidable whether any Boolean combination of
FO + Lin or FO + Poly conjunctive queries is safe. �

Note, however, that safety of conjunctive queries is not decidable over
every structure.

Proposition 1.81. Let N = 〈N,+, ·〉. Then safety of conjunctive queries in
FO(SC ,N) is undecidable, for any SC .

Proof. Define ϕ(~x) to be p(~x) = 0 for some Diophantine equation. This is
a CQ in FO(SC ,M), and it is safe iff p(~x) = 0 has finitely many solutions.
However, this property of Diophantine equations is undecidable. �
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Some decidability results can be shown for constraint databases as well.
We give only one example here, for the case of queries preserving the property
of being a convex polytope.

Lemma 1.82. Let ϕ(x1, . . . , xn) be a union of FO + Poly conjunctive
queries that mention one m-ary relational symbol S. Then one can effectively
find two numbers k and l such that ϕ is preserving the property of being a
convex polytope iff for every convex polytope D in Rm with at most k vertices,
the output ϕ(D) is a convex polytope with at most l vertices in Rn. �

With this, one can show:

Proposition 1.83. It is decidable if a union of conjunctive FO + Poly

queries preserves the property of being a convex polytope.

Proof. Note that for each i, there is an FO + Poly query ψi for each i that
tests if a set D is a convex polytope with at most i vertices: it checks that the
set of vertices V (D) = {x ∈ D | x 6∈ conv(D − x)} has at most i elements,
and that D = conv(V (D)). In order to check if ϕ in FO + Poly is preserving
convex polytopes, one applies Lemma 1.82 to compute the numbers k and l,
and then writes a sentence saying that for every set V in Rm with at most
k elements, applying ϕ to conv(V ) yields a polytope with at most l vertices.
Since conv and ψl are definable, this property can be expressed as an FO(R)
sentence. The proposition now follows from the decidability of the theory of
R. �

1.10.6 Dichotomy theorem for embedded finite models

We now show a simple but powerful combinatorial structure theorem, saying
that over a well-behaved structure, outputs of safe queries cannot grow arbi-
trarily large in terms of the size of the input. We use the notation size(D) for
the size of a finite structure, measured here as the total number of tuples. It
can equivalently be measured as the cardinality of the active domain, or the
number of tuples multiplied by their arity, and all the results will hold.

Theorem 1.84 (Dichotomy Theorem). Let M be o-minimal and based
on a dense order. Let ϕ(~x) be an FO(SC ,M) formula. Then there exists a
polynomial pϕ : R → R such that, for any finite SC-structure D, either ϕ(D)
is infinite, or size(ϕ(D)) ≤ pϕ(size(D)).

Proof. Expand Ω by one constant (this does not violate o-minimality) and
apply Theorem 1.65. �

The dichotomy theorem can also be stated in terms of a function measuring
the growth of the output size. Define growthϕ : N → N ∪ {∞} as

growthϕ(n) = max{size(ϕ(D)) | size(D) = n}.
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Corollary 1.85. Let ϕ(~x) be an FO(SC ,M) formula for M as in Theorem
1.84. Then there exists a polynomial pϕ such that, for every n ∈ N, either
growthϕ(n) = ∞, or growthϕ(n) ≤ pϕ(n). �

As we have often seen in this chapter, the assumptions on the structure
are extremely important. Below we show that the Dichotomy Theorem fails
over some simple decidable structures on the natural numbers.

Proposition 1.86. Let M = 〈N,+, <, 1〉. Then there exists an FOact(SC ,M)
formula ϕ(x) such that growthϕ(n) = 2n for every n > 0.

Proof. Let SC consist of one unary relation S. We show that there exists an
FOact(SC ,M) sentence Ψ such that S |= Ψ iff S is of the form Sn = {2i | 1 ≤
i ≤ n}. This is done by letting Ψ be

(∃x∈adom x = 1 + 1 ∧ S(x))
∧ (∀x∈adom x = 1 + 1 ∨ x > 1 + 1)
∧ (∀x∈adom x = 1 + 1 ∨ ∃y∈adom y + y = x)
∧ (∀x∈adom (∀y∈adom y < x ∨ y = x) ∨ (∃y∈adom y = x+ x))

Now define ϕ(x) as Ψ ∧ ¬(x < 1) ∧ (∃y ∈ adom x < y ∨ x = y). Then, for S
not of the form Sn, we have ϕ(S) = ∅, and ϕ(Sn) = {1, 2, 3, . . . , 2n}. Since
card(Sn) = n, this implies growthϕ(n) = 2n for n > 0. �

The dichotomy theorem gives easy expressivity bounds based on the
growth of the output size. For example, even if we use exponentiation, we still
cannot express any queries with superpolynomial growth, since 〈R,+, ·, ex〉 is
o-minimal.

To give another application, consider the following problem: given a poly-
hedron P and ǫ > 0, find a triangulation of P of mesh < ǫ. That is, a tri-
angulation such that the diameter of each simplex (triangle in dimension 2)
is less than ǫ. Every polyhedron admits such a triangulation. The output of
such a query can be structured in several ways, for example, by storing the
information about the face structure of the triangulation. We only impose one
requirement that the vertices of the triangulation be computable.

Proposition 1.87. Let M = 〈R, Ω〉 be an o-minimal expansion of the real
field R. Then there is no FO(SC ,M) formula that finds a triangulation of
a given polygon with a given mesh. This continues to hold if we restrict to
convex polytopes on a plane.

Proof. Suppose such a formula exists; now consider a new query that does
the following. Its input is one binary relation containing a set X of points
~x1, . . . , ~xn on the real plane, and one unary relation containing a single real
number ǫ > 0. First, in FO + Poly, construct conv(X), and then find vertices
of a triangulation with mesh < ǫ. This is clearly a safe query, so by the
Dichotomy Theorem, there exists a polynomial p such that the number of
vertices of the triangulation is at most m = p(n+ 1) (n+ 1 is the size of the
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input). Let d be the maximal distance between the points ~xi, ~xj (and thus the
diameter of conv(X)). Since the segment [~xi, ~xj ] with d(~xi, ~xj) = d must be
covered by the simplexes of the triangulation, it is possible to find a number ǫ
such that it cannot be covered by fewer than m+1 triangles of diameter ǫ, and
hence the number of points in the triangulation is > m. This contradiction
proves the proposition. �

Analogs of the growth bounds result can be obtained in the constraint
database setting as well; we give one example below.

Proposition 1.88. Let ϕ(~x) be an FO + Poly formula that preserves the
property of being a convex polytope. Then there exists a polynomial pϕ such
that, whenever D is a convex polytope with n vertices, ϕ(D) has at most pϕ(n)
vertices. �

1.11 Database Considerations

In this section, we consider two aspects of embedded finite models and con-
straint databases motivated primarily by database considerations: adding ag-
gregate functions, and higher-order features.

1.11.1 Aggregate operators

Aggregation operators like COUNT, SUM, and AVG form an indispensable
part of database query languages for the relational data model. How can they
be used in the settings of embedded finite models and constraint databases?

We shall now briefly consider two aggregate operators. The average oper-
ator, present in all commercial database systems, returns the average value of
a column of a relation. The volume operator, used in geographical information
system, returns the volume (or area) of a set. Here we investigate the pos-
sibility of incorporating these operators into languages like FO + Poly and
FO + Lin.

Let ϕ(~x, ~y) be a formula in FO(SC ,M), with ~x and ~y being of length n and

m, respectively. We define, for ~a ∈ Un, ϕ(~a,D) to be {~b ∈ Um | D |= ϕ(~x, ~y)}.
Let Avg(C) be the average value of a finite set C ⊂ R; we let Avg(C) = 0

if C is empty or infinite. We say that the average operator Avg is definable
over M if for every vocabulary SC and every FO(SC ,M) formula ϕ(~x, y)
there exists an FO(SC ,M) formula ψ(~x, z) such that for every SC -structure
D, D |= ψ(~a, c) iff c = Avg(ϕ(~a,D)).

An easy application of collapse results shows:

Proposition 1.89. Let M = 〈R, Ω〉 be o-minimal, and such that the expan-
sion M = 〈R, Ω,+, ·〉 is o-minimal as well (for example, R,Rlin). Then the
average operator Avg is not definable over M. �
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We leave this as an exercise, but we shall soon prove a more general result.
Since Avg is not definable, one may consider several ways to overcome this.
One possibility is to approximate it, rather than define it precisely. What could
such an approximation be? Clearly, we cannot hope to define an ǫ-interval
around the value of Avg(ϕ(~a,D)), as then that value would be definable as
the center of the interval. Instead, we settle for a bit less: we want to produce
a formula defining a nonempty set that lies in that ǫ-interval.

We say that the average operator Avg
ǫ, ǫ > 0, is definable over M if for

every vocabulary SC and every FO(SC ,M) formula ϕ(~x, y) there exists an
FO(SC ,M) formula ψ(~x, z) such that for every SC -structure D, and every ~a,
the following two conditions hold:

1. D |= ∃z ψ(~a, z) (that is, ψ(~a,D) 6= ∅); and

2. if D |= ψ(~a, c), then |c− Avg(ϕ(~a,D))| < ǫ.

We say that the average operator Avg
ǫ
I , ǫ > 0, is definable over M if the

above is true whenever ϕ(~a,D) ⊆ I = [0, 1].
We now show the inexpressibility result for these queries. Recall that all

previous inexpressibility results (with the exception of the result on topological
queries) were proved by reductions to generic queries. Here we cannot easily
find such reductions, as approximating queries are extremely nongeneric: they
do not say anything about the behavior on the ǫ-interval, other than that some
point of the interval satisfies the formula. The proof below shows a way to
circumvent the problem of “extremely nongeneric” queries.

Theorem 1.90. Let M = 〈R, Ω〉 be o-minimal, and such that the expansion
M = 〈R, Ω,+, ·〉 is o-minimal as well. Then the average operators Avg

ǫ (for
any ǫ > 0) and Avg

ǫ
I (for 0 < ǫ < 1/2) are not definable over M.

Proof. Let SC consist of two unary relations, U1 and U2. Let c1, c2 > 1 be
two real numbers. We say that Φ is a (c1, c2)-separating sentence if for any
finite instance D of SC , it is the case that card(U1) > c1 · card(U2) implies
D |= Φ and card(U2) > c2 ·card(U1) implies D |= ¬Φ. Note that this definition
says nothing about the case when 1

c2
· card(U2) ≤ card(U1) ≤ c1 · card(U2),

and thus direct application of bounds on expressiveness of generic queries is
impossible.

Lemma 1.91. Let M be as in the theorem, c1, c2 > 1, and SC as above. Then
no (c1, c2)-separating sentence is definable in FO(SC ,M).

Proof of the lemma. Assume that there is a (c1, c2)-separating sentence Φ.
From the natural-active collapse, we conclude that there is an FOact(SC ,M′)
(c1, c2)-separating sentence Φ′ for some definable expansion M′ of M that
has quantifier-elimination. From the Ramsey property of active-semantics
formulae (Proposition 1.15) we obtain that there is an infinite set Y ⊆ U
and an FOact(SC , <)-sentence Ψ such that for every SC -structure D with
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adom(D) ⊂ Y , we have: D |= Φ′ iff D |= Ψ . Thus, it remains to show that
FOact(SC , <) cannot express a (c1, c2)-separating sentence Ψ , on instances
over an infinite set.

Assume it can; and let q be the quantifier rank of Ψ . We now consider two
instances over Y . In both instances D1 and D2 all elements of U1 precede U2

in the linear order <. In D1, card(U1) = ⌈c1(2q + 1)⌉ and card(U2) = 2q + 1;
in D2, card(U1) = 2q + 1 and card(U2) = ⌈c2(2q + 1)⌉. Since Ψ is a (c1, c2)-
separating sentence, we must have D1 |= Ψ and D2 |= ¬Ψ . It is then easy to
obtain a contradiction by showing that D1 |= Ψ iff D2 |= Ψ . This is done by
proving that the duplicator can win in a q-round Ehrenfeucht-Fräıssé game on
D1 and D2. This follows from the fact that for every n,m > 2q, the duplicator
can win a q-round game on two ordered sets of cardinalities n and m. Thus,
for D1 and D2, the duplicator picks a separate strategy for U1 and U2, and
whenever the spoiler plays in U1, the duplicator forgets about the moves in U2

and responds in U1 using the strategy for U1, and likewise in the case when
the spoiler plays in U2. �

Now assume Avg
ǫ
I is definable. Again, SC consists of two unary predicates,

U1 and U2. Let ∆ = (1−2ǫ)/16. Given two finite sets U1 and U2, we translate
them into intervals [0, ∆] and [1 − ∆, 1]. By translating a finite set X with
minX = c,maxX = d > c into an interval [a, b] we mean that we map it to the

set X ′ containing exactly the numbers of the form a+ (x−c)(b−a)
d−c

where x ∈ X ;

clearly X ′ ⊂ [a, b]. As the next step, we define U0
1 = U ′

1 ∪ {4∆− x | x ∈ U ′
1}

and U0
2 = U ′

2 ∪ {2 − 4∆ − x | x ∈ U ′
2}. One observes U0

1 ⊆ [0, 4∆] and
U0

2 ⊆ [1 − 4∆, 1].
The preceding shows that U0

1 and U0
2 are FO + Poly-definable. Thus, the

set C = U0
1 ∪ U0

2 ⊂ [0, 1] is definable in FO + Poly. Now easy calculations
show that

Avg(C) =
1

8
− ǫ

4
+

m

n+m
· 3 + 2ǫ

4

where n is the cardinality of U1 and m is the cardinality of U2.
We now define a sentence Φ by letting D |= Φ iff Avg

ǫ(C) = Avg
ǫ
I(C) >

1/2. Let c0 = 1+ 16ǫ
3−6ǫ

> 1. Assume m > c0 ·n. Plugging this into the equation
for Avg(C), we derive Avg(C) > 1/2 + ǫ; thus, in this case Avg

ǫ(C) > 1/2
no matter which ǫ-approximation of the average is picked, and thus D |= Φ.
Similarly, if we assume n > c0 · m, we derive Avg(C) < 1/2 − ǫ, and thus
Avg

ǫ(C) < 1/2 and D |= ¬Φ. Hence, Φ is a (c0, c0)-separating sentence, which
is definable in FO(SC , 〈R, Ω,+, ·〉). This contradiction proves the theorem. �

We now briefly consider the spatial aggregate operator volume. First, it is
easy to see that it is not definable in the languages FO + Lin and FO + Poly.
As was mentioned earlier, those languages have the following fundamental
closure property: on a semi-linear constraint database D, an FO + Lin query
returns a semi-linear set, and likewise, on a semi-algebraic constraint database,
an FO + Poly query returns a semi-algebraic set.
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This closure property can no longer be guaranteed if one allows volume
operators, that is, operators Vol that for every formula ϕ(~x, ~y), produce a
formula ψ(~x, z) ≡ Vol~y ϕ(~x, ~y) such that D |= ψ(~a, v) iff v = Vol(ϕ(~a,D)).
To see this for the semi-linear case, consider a semi-linear set S ⊆ R3 defined
by (x > 0) ∧ (0 < y < x) ∧ (0 < z < x). Let ϕ(x, y, z) be S(x, y, z). Then
Vol(y, z) ϕ(x, y, z) is true on a pair (a, v) with a > 0 iff v = a2, which
shows the failure of closure. In the case of semi-algebraic sets, one can define
functions such as lnx or arctan(x) with the help of volume. These functions
are not semi-algebraic.

Volume is not definable, but can it be approximated? The reason to think
that this may be the case is the following result. Suppose ϕ(~x, ~y) is an FO(R)
formula, defining a semi-algebraic set S ⊆ [0, 1]n+m. Then, for every ǫ > 0,
there is an FO(R) formula ψǫ(~x, z) such that, for every ~a ∈ [0, 1]n, R |=
∃z ϕ(~a, z), and for any 0 ≤ v ≤ 1 such that R |= ϕ(~a, v), we have |v−V | < ǫ,

for V being the volume of the set {~b ∈ [0, 1]m | R |= ϕ(~a,~b)}.
To achieve approximability of volume in FO + Poly, we only have to

replace FO(R) formulae by FO(SC ,R) (that is, FO + Poly) formulae. This
motivates the following definition. We say that, for ǫ > 0, the operator Vol

ǫ
I is

definable in FO + Poly if, for every SC and every FO + Poly formula ϕ(~x, ~y),
there exists a formula ψ(~x, z) such that, for any semi-algebraic constraint
database D, and every ~a ∈ [0, 1]n, the following holds:

1. D |= ∃z ψ(~a, z), and

2. if D |= ψ(~a, v), then 0 ≤ v ≤ 1 and |v − Vol(ϕ(~a,D) ∩ [0, 1]m)| < ǫ.

However, it turns out that this innocent looking move from FO(R) to
FO + Poly (that is, FO(SC ,R)) changes the picture completely.

Theorem 1.92. The operator Vol
ǫ
I is not definable in FO + Poly, for any

ǫ < 1/2.

Proof sketch. The proof is again by reduction to separating sentences; however,
the reduction is more involved than that for the Avg operator. In particular,
the reduction can only be carried out if the input constraint database is finite
and has an initial segment of natural numbers as its active domain. To prove
that FO + Poly cannot define a separating sentence on such structures, one
can no longer use games, and instead has to rely on circuit lower bounds. �

Note that the bound 1/2 is tight: for every ǫ > 1/2, Vol
ǫ
I is definable, as

the cases of volume being 0 or 1 can be tested in FO + Poly, and in all other
cases, 1/2 is an approximation.

1.11.2 Higher-order features

So far we have only dealt with first-order logic over embedded finite models
and constraint databases. As we showed a number of limitations of FO(SC ,M)
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in both contexts, it is natural to ask how to extend it to overcome those
shortcomings. The question arises in both the embedded and the constraint
settings. In the first case, the solution is rather easy, and essentially follows
the standard techniques of (finite) model theory, such as adding fixpoint op-
erators or second-order quantification. Still, one has to be careful to avoid
getting undecidable languages over nice structures, such as the real field. In
the constraint setting, the answer to this question is a bit trickier, but we shall
see that nice languages can still be obtained that express properties such as
topological connectivity.

In the embedded case, we deal here only with adding second-order quan-
tification, but the reader should see that one can similarly add fixpoint or
transitive closure operators, for example. In the case of constraint databases,
we specifically consider the case of topological connectivity, although other
topological queries inexpressible in FO + Poly could be considered as well.

Second-order logic over embedded finite models.

One can define this logic in the general way as SO(SC ,M) by extending
FO(SC ,M) with second-order quantifiers

∃S ϕ ∀S ϕ

where S is a relation symbol not in SC . The semantics is that for some S ⊆ Uk,
ϕ holds, where k is the arity of S (or for all S, in the case of the universal
quantifier). Alternatively, we can define the active-semantics version of the
above, where quantifiers are

∃S∈adom ϕ ∀S∈adom ϕ,

and the semantics changes in the way that S must be a subset of adom(D)k.
We shall denote the fragment of SO(SC ,M) in which all – first-order and
second-order – quantifiers range over the active domain, by SOact(SC ,M).

We start by noticing the following:

Proposition 1.93. The active generic collapse holds over every structure
M for second-order logic. That is, every order-generic query definable in
SOact(SC ,M) is definable in SOact(SC ).

Proof. Expand M to M< by adding a symbol < interpreted as a linear order (if
it is not there already). The proof now follows the proof for first-order logic,
by establishing the Ramsey property (the proof that the Ramsey property
implies the collapse does not change). As the proof of the Ramsey property
is by induction on the formulae, the only additional case to consider is that
of second-order quantification. It is almost the same as the case of first-order
quantification (see the proof of Proposition 1.15). Note that the order relation
< can be eliminated from SOact(SC , <) formulae, as it is definable in second-
order logic. �



72 1 Embedded Finite Models and Constraint Databases

Establishing the natural-active collapse is harder, as the most naive ap-
proach cannot possibly succeed.

Proposition 1.94. Every computable property of finite SC-structures is ex-
pressible in SO(SC ,R).

Proof. In second-order logic over R (in fact, even Rlin) one can define the set
of natural numbers by the formula ϕ(n):

∃P [P (0)∧(∀x (0 < |x| < 1 → ¬P (x)))∧(∀x > 0 (P (x) ↔ P (x−1)))] ∧ P (n).

Then, for any finite SC -structure over R, one can state in second-order logic
that there exists an isomorphic structure over N; in first-order logic over N

one can then test any property of this structure. �

At the same time, every generic query in SOact(SC ,R) is in SOact(SC )
and thus its complexity is in the polynomial hierarchy; hence SO(SC ,R) 6=
SOact(SC ,R).

To overcome this problem, we introduce a hybrid second-order logic
HSO(SC ,M) as a restriction of SO(SC ,M) in which all second-order quan-
tifiers range over the active domain (but first-order quantifiers can still range
over U). Then HSOact(SC ,M) is the restriction of HSO(SC ,M) in which all
first-order quantifiers range over the active domain.

Proposition 1.95. Let M be o-minimal and admit quantifier-elimination.
Then hybrid second-order logic has the natural-active collapse over M: that is,
HSO(SC ,M) = HSOact(SC ,M). Furthermore, if the theory of M is decidable
and quantifier-elimination is effective, then there is an effective transforma-
tion of HSO(SC ,M) formulae into equivalent HSOact(SC ,M) formulae. �

The proof of this result is very similar to the proof in the first-order case.
It is by induction on the formulae, with only the case of ∃zα being nontrivial.
In this case, one proves the exact analog of Lemma 1.30, by using essentially
the same proof, as the equivalences (∗) in that proof are preserved under the
addition of active-domain second-order quantifiers.

Thus, every generic query in HSO(SC ,R) is definable in SOact(SC ); that
is, the behavior of hybrid second-order logic is similar to that of first-order
logic, as one can apply known bounds from finite-model theory in the embed-
ded context.

Connectivity and constraint databases

While it was shown that topological connectivity is not definable in languages
such as FO + Lin and FO + Poly, it is a very useful query in many applica-
tions of spatial databases, and one would want to have a language capable of
expressing it. The situation is somewhat similar to first-order logic on finite
relational structures. As FO cannot express graph connectivity or transitive
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closure, one enriches the logic by adding fixpoint, or transitive closure opera-
tors, or second-order quantification, to give it enough power to express some
desirable queries.

A similar approach is unlikely to work for constraint databases. Adding
fixpoints straightforwardly to FO + Lin or FO + Poly, one loses the crucial
closure property. To see this, note that by iterating a semi-linear relation
x = 2y, one obtains relations x = 4y, x = 8y, . . ., x = 2ny, . . ., and thus one
can define the set of all powers of 2. This set is not semi-linear (nor semi-
algebraic), which shows that FO + Lin and FO + Poly are not closed under
fixpoint operators.

To remedy this, we take the simplest possible approach: if we need topolog-
ical connectivity, just add it to the language. In this way we obtain languages
FO + Poly+C and FO + Lin+C by extending the definition of the language
by the following: for every formula ϕ(~x, ~y), there is a new formula

ψ(~x) ≡ C~y ϕ(~x, ~y).

The semantics is as follows. Given a constraint database D, and a tuple ~a of
the same length as ~x, let ϕ(~a,D) = {~b | D |= ϕ(~a,~b)}. Then

D |= ψ(~a) iff ϕ(~a,D) is connected.

The main property of these languages is that they are closed; the proofs,
however, are quite different for the semi-algebraic and the semi-linear case.

Proposition 1.96. FO + Poly + C is closed; that is, on a semi-algebraic
constraint database, an FO + Poly + C query produces a semi-algebraic set.

Proof. The proof is by induction on the formulae. The only nontrivial case is
that of ψ(~x) ≡ C~y ϕ(~x, ~y). Assume that on D, ϕ defines a set S ⊆ Rn+m,
where n is the length of ~x and m is the length of ~y. Let S~a denote the set
{~b | (~a,~b) ∈ S} ⊆ Rm for ~a ∈ Rn. A result in algebraic geometry known as
the local triviality theorem states that for any semi-algebraic set S as above,
there is a partition Rn = Y1∪ . . .∪Yk such that each Yi is semi-algebraic, and
for ~a1,~a2 ∈ Yi, the sets S~a1

and S~a2
are homeomorphic. In particular, either

all sets S~a,~a ∈ Yi are connected, or none of them is. Hence, the result of ψ on
D is a union of some Yis, and thus semi-algebraic. �

The reason we cannot use the same proof for FO + Lin is that the local
triviality theorem fails over Rlin. In the proof above, we only used a part of
that theorem, which says that the fibers S~a have finitely many topological
types. But it also asserts that there are semi-algebraic homeomorphisms be-
tween sets S~a1

and S~a2
, ~a1,~a2 ∈ Yi. An analog of this statement does not hold

for semi-linear sets, and hence the local triviality theorem is not applicable
in the semi-linear case. (In fact, one can prove local triviality for o-minimal
expansions of the real field R.)

There are two ways of circumventing the problem. One, quite complex, is
to show that the first part of the local triviality theorem still holds for the
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case of semi-linear sets. But we can also give a simple direct proof of closure
of FO + Lin + C, which does not require the local triviality theorem.

Proposition 1.97. FO + Lin+C is closed; that is, on a semi-linear constraint
database, an FO + Lin + C query produces a semi-linear set.

Proof. The proof again is by induction on the formulae, and we only consider
the case of of ψ(~x) ≡ C~y ϕ(~x, ~y). Assume that on D, ϕ defines a semi-linear
set S ⊆ Rn+m. Since S is semi-linear, it has a representation of the form

k
∨

i=1

ψi, ψi ≡
li
∧

j=1

〈~aij , ~x〉 θ 〈~bij , ~y〉 + cij

where 〈·, ·〉 denotes inner product. Let Zi be the subset of Rn+m defined by ψi.
For every ~a ∈ Rn, the set Zi

~a is a convex polyhedron, and thus it is connected
(unless it is empty).

Let T1, . . . , Tr be an arbitrary collection of semi-linear sets in Rp. Define
a relation Ti ≈ Tj if cl(Ti)∩ Tj 6= ∅ or cl(Tj)∩ Ti 6= ∅, where cl(·) denotes the
closure of a set. Then T1 ∪ . . .∪ Tk is connected iff the undirected graph with
Tis as vertices and ≈ as the edge relation, is connected.

Using this, we conclude the proof as follows. Given an undirected graph
G on nodes 1, . . . , k, we write ~a→D G if

there is an edge (i, j) in G iff Zi
~a ≈ Zj

~a.

We have seen earlier that closure is FO + Lin-definable. Hence, there is an
FO + Lin formula αG(~x) such that D |= αG(~a) iff ~a →D G. This, and the
statement of the previous paragraph, imply that

∨

G connected

αG(~x)

is equivalent to ψ(~x), where the disjunction is taken over connected undirected
graphs on {1, . . . , k}. This proves closure, since the above is an FO + Lin

formula. �

Note that the formula produced in the proof of Proposition 1.97 may be
very large, as the number of connected graphs on a k-element set is exponential
in k. It turns out that a much more compact formula can always be obtained;
the proof of this, however, is much more involved than the simple proof we
showed above. See the bibliographic comments for more detail.

1.12 Bibliographic notes

Sections 1.2 and 1.3

For a general introduction to finite model theory, see [32] and previous chap-
ters of this book. A standard reference on database theory is [1], which also
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covers many topics of finite model theory. Constraint databases were intro-
duced in [50]; for a comprehensive treatment of this topic, see [56]. Mixing
the finite and the infinite in the database context is discussed in a number of
papers; see, for example, [26, 38]. The semi-algebraic “face” example is taken
from [23], the semi-linear one from [56].

Other approaches to combining the finite and the infinite in model theory
include metafinite structures [38] (which, in our terminology, can be described
as triples consisting of a finite structure D, an infinite structure M, and a
set of functions from adom(D) to tuples over M), recursive structures [44]
(infinite structures in which every relation is computable, and thus has a finite
description by means of a Turing machine), and automatic structures [21, 52]
in which predicates are given by finite automata, as opposed to arbitrary
Turing machines.

Section 1.4

The notion of genericity is standard in relational databases, see [47, 1]. Various
forms of collapse results were introduced in [11, 46, 62].

Section 1.5

The active generic collapse was proved independently in [11] and [60]. The
Ramsey property is from [11], and the proof given here follows closely the one
in [15]. Analytic signatures and total collapse are also discussed in [15]. For
a survey on Ramsey theory, see [37]. That there exist properties definable in
FOact(SC , <) but not FOact(SC ) is shown in [1] (the result is attributed to
Gurevich).

Section 1.6

Proposition 1.23 is a standard exercise on coding in first-order logic over
〈N,+, ·〉 (cf. [33]); in this form the result was explicitly stated in [42]. The
natural-active collapse without interpreted structure (Theorem 1.25) was
proved in [46]. An earlier weaker result [3] showed that unrestricted quan-
tification can always be replaced by quantification over some finite superset
of the active domain (“4 Russians Theorem”).

The concept of o-minimality was introduced by [63], and has been ex-
tensively studied in the model-theoretic literature; see [76] for an overview.
O-minimality of the exponential field is from [80]; [75] shows that it does not
have quantifier-elimination. The uniform bounds theorem (Theorem 1.29) is
from [64]. For general model-theoretic properties of structures, see standard
texts such as [27].

The natural-active collapse (Theorem 1.26) is from [15]. It was proved
earlier by nonconstructive means in [14]. The linear case, sketched in Section
1.6.4, was proved in [62]. (See also [72]). The material of Section 1.6.5 is from
[15], except for Proposition 1.32, which is from [35]. A version of the algorithm
for the natural-active collapse adapted to FO + Poly was presented in [58].
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A different proof of the natural-active collapse for FO + Poly was given
in [8]. It only applies to finite structures in which all relations are unary, but
achieves much better complexity bounds than the general algorithm presented
here.

The natural-generic collapse (Section 1.6.7) was the first collapse result
proved for polynomial constraints, see [11]. That proof used the technique
of nonstandard universes; here we derived the result as a corollary of the
natural-active collapse. Some extensions of this collapse results are known,
for example, for quasi-o-minimal structures [9] (which include all o-minimal
ones, as well as 〈N,+, <〉) and for a larger class of structures with finite VC
dimension (Theorem 1.35) [7].

More expressivity bounds were proved in [28] which showed that parity is
not definable in FO + Poly even if the input is a set of natural numbers such
that the distance between two consecutive elements is 1 or 2. It also extended
some expressivity bounds to algebraically closed fields.

Section 1.7

For general model-theoretic background, the reader is referred to [27, 45]. The
notion of pseudo-finite homogeneity was introduced in [9, 35]. Theorem 1.38 is
from [35], as are the notion of pseudo-finite saturation and Proposition 1.39.
The proof of Proposition 1.41 uses the fact that term algebras are stable, and
some conditions for showing that a structure does not have the finite cover
property; those can be found in [45, 65].

The isolation property, Proposition 1.43 and Corollary 1.44 are from [9].
Proposition 1.45 is from [20]. Proposition 1.46 is a special case of a more gen-
eral result (that shows the isolation property for quasi-o-minimal structures)
in [9]; see also [35].

Section 1.8

For more on VC dimension and its applications in learning theory, see [5, 22].
For applications in logic, and for the basic facts used in the proof of Theorem
1.47, see [57, 70, 76]. In particular, [57] shows that o-minimal structures have
finite VC dimension.

The class AC0/poly used in the Section is a standard complexity class
(a.k.a. non-uniform AC0), see, for example, [49]. Bounds for AC0/poly imply-
ing inexpressibility of queries such as parity and connectivity can be found in
[4, 36, 30].

Theorem 1.47 is from [20]. The material of Section 1.8.1 is partly from
[60] (which showed one direction of Theorem 1.48; the other direction is from
[18]). In [15] it is shown how to use the random ternary relation to express
even more queries (for example, parity), thereby refuting a conjecture from
[42] that tied such expressivity results to decidability of the theory of the
underlying structure. For basic information about the random graph (and
more generally, random structures, the reader is referred to [32, 45]).



1.12 Bibliographic notes 77

The material of Section 1.8.2, including Proposition 1.49, is from [19]
(which gives a slightly better complexity bound). The structure S was studied
in [24], where the connection with regular languages was shown, in [21], which
showed how to interpret automatic structures in it, and in [20], where further
model-theoretic properties, including infinite VC dimension, were proved.

Section 1.9

The material on reductions (Section 1.9.1) is from [42], which shows many
inexpressibility results for FO + Poly by reducing them to parity. Topological
properties (Section 1.9.2) of constraint databases were studied in [61, 54, 55,
69]. The conical local structure of semi-algebraic sets is described in texts
[23, 10]. Theorem 1.52 is from [54]. The failure of Theorem 1.52 for multiple
regions was shown by [40].

Section 1.9.3 is based on [78], which contains many examples of queries
expressible and inexpressible in FO + Lin. More examples of the power of
FO + Lin can be found in [2], which also conjectured that ExistsLine is not
expressible in FO + Lin. That was first proved in [13], but the proof was very
complicated; the simple proof given here is due to [68]. The result on the line
segment connecting two boundary points is due to [13].

Section 1.10

Safety is a central notion in relational database theory, see [1]. See [79] for
undecidability for first-order logic. Safety with scalar functions was studied
in [34]. The state-safety problem was introduced in [3, 6], where decidability
was proved for some structures (e.g., 〈N, <〉).

The concept of safe translation is from [16]. Proposition 1.57 is from [71]
(where a complete description of the structure and the proof of decidability
can be found). Propositions 1.58 and 1.59 are from [16]. Extensions to Datalog
are discussed in [66, 73].

Section 1.10.3 follows closely [16], except that here we present range-
restriction in terms of definable functions, rather than just algebraic formulae.
For properties of semi-linear and semi-algebraic functions used in the proof of
Corollary 1.68, see [59, 76].

The reduction from infinite safety to finite safety (Theorem 1.74), as well as
the canonical representation for convex polytopes, is from [16]. More examples
of canonical representations can be found in [16]. The first proof of Theorem
1.76 is based on applying Theorem 1.74 to canonical representations for semi-
linear sets, given in [77]. The other proof uses decidability of semi-linearity,
proved in [31].

The decidability result for safety of conjunctive queries over o-minimal
structures is from [16]; it uses decidability of containment proved in [48]. (See
also Chapter 2 of [56] which discusses some subtle points related to the de-
cidability result of [48].) Undecidability of finiteness of the set of solutions of



78 1 Embedded Finite Models and Constraint Databases

a Diophantine equation (which proves Proposition 1.81) is from [29]. Propo-
sition 1.83 is from [16]. All results in the Section on the dichotomy theorem
are from [16].

Section 1.11

Aggregation is a standard feature of database query languages [1, 74]. The
results dealing with the average operator are from [17]. How to play a game
on ordered sets is described in [43].

That volumes can be approximated for first-order formulae over the real
field was shown in [51, 53]. Theorem 1.92 showing that these results do not
extend to constraint databases is from [17].

Hybrid logics were introduced in [15], where collapse results were proved.
There exist higher-order logics capturing complexity classes over constraint
databases defined with order [39] and with linear constraints [41]. The mate-
rial on connectivity is from [12]. The local triviality theorem used in the proof
of Proposition 1.96 can be found in [23, 10, 76]. The proof of Proposition 1.97
in [12] is more involved and relies on special properties of cylindric decompo-
sitions [25] of semi-linear sets; the simple proof presented here is due to [81]
(the simplicity is achieved at the expense of exponential-size formulae).
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