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2 � Wenfei Fan and Leonid Libkin1. INTRODUCTIONAlthough a number of dependen
y formalisms were developed for relational databases, fun
-tional and in
lusion dependen
ies are the ones used most often. More pre
isely, only two sub-
lasses of fun
tional and in
lusion dependen
ies, namely, keys and foreign keys, are 
ommonlyfound in pra
ti
e. Both are fundamental to 
on
eptual database design, and are supported bythe SQL standard [30℄. They provide a me
hanism by whi
h one 
an uniquely identify a tuplein a relation and refer to a tuple from another relation. They have proved useful in updateanomaly prevention, query optimization and index design [1; 37℄.XML (eXtensible Markup Language [6℄) has be
ome the prime standard for data ex
hange onthe Web. XML data typi
ally originates in databases. If XML is to represent data 
urrentlyresiding in databases, it should support keys and foreign keys, whi
h are an essential part ofthe semanti
s of the data. A number of key and foreign key spe
i�
ations have been proposedfor XML, e.g., the XML standard (DTD) [6℄, XML Data [27℄ and XML S
hema [36℄. Keysand foreign keys for XML are important in, among other things, query optimization [34℄, dataintegration [21℄, and in data transformations between XML and database formats [28℄.XML data usually 
omes with a DTD1 that spe
i�es how a do
ument is organized. Thus, aspe
i�
ation of an XML do
ument may 
onsist of both a DTD and a set of integrity 
onstraints,su
h as keys and foreign keys. A legitimate question then is whether su
h a spe
i�
ation is
onsistent, or meaningful: that is, whether there exists a (�nite) XML do
ument that bothsatis�es the 
onstraints and 
onforms to the DTD.In the relational database setting, su
h a question would have a trivial answer: one 
an writearbitrary (primary) key and foreign key spe
i�
ations in SQL, without worrying about 
on-sisten
y. However, DTDs (and other s
hema spe
i�
ations for XML) are more 
omplex thanrelational s
hema: in fa
t, XML do
uments are typi
ally modeled as node-labeled trees, e.g.,in XSL [15℄, XQL [35℄, XML S
hema [36℄, XPath [16℄ and DOM [3℄. Consequently, DTDs mayintera
t with keys and foreign keys in a rather nontrivial way, as will be seen shortly. Thus, weshall study the following family of problems, where C ranges over 
lasses of integrity 
onstraints:XML SPECIFICATION CONSISTENCY (C)INPUT: A DTD D, a set � of C-
onstraints.QUESTION: Is there an XML do
ument that 
onforms to D and satis�es �?In other words, we want to validate XML spe
i�
ations stati
ally. The main reason is twofold:1Throughout the paper, by a DTD we mean its type spe
i�
ation; we ignore its ID/IDREF 
onstraints sin
etheir limitations have been well re
ognized [7; 19℄. We shall only 
onsider �nite XML do
uments (trees).Journal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 3�rst, 
omplex intera
tions between DTDs and 
onstraints are likely to result in in
onsistentspe
i�
ations, and se
ond, an alternative dynami
 approa
h to validation (simply 
he
k a do
-ument to see if it 
onforms to the DTD and satis�es the 
onstraints) would not tell us whetherrepeated failures are due to a bad spe
i�
ation, or problems with the do
uments.The 
on
ept of 
onsisten
y of spe
i�
ations was studied for other data models, su
h as obje
t-oriented [12; 13℄ and extended relational (e.g., with support for 
ardinality 
onstraints [26℄).We shall study the following four 
lasses of 
onstraints de�ned in terms of XML attributes:|CK ;FK : a 
lass of keys and foreign keys;|CUnaryK ;FK : unary keys and foreign keys in CK ;FK , i.e., those de�ned in terms of a single attribute;|CUnaryK:;IC : unary keys, unary in
lusion 
onstraints and negations of unary keys;|CUnaryK:;IC:: unary keys, unary in
lusion 
onstraints and their negations.Keys and foreign keys of CK ;FK are a natural generalization of their relational 
ounterpart,and are 
apable of 
apturing those relational 
onstraints. A foreign key is a 
ombination oftwo 
onstraints: an in
lusion 
onstraint and a key. The CUnaryK ;FK 
onstraints are a spe
ial 
aseof CK ;FK 
onstraints, whi
h involve a single attribute. These unary keys and foreign keys aresimilar to but more general than XML ID and IDREF spe
i�
ations. The study on simple
onstraints de�ned with XML attributes is a �rst step towards understanding the intera
tionbetween integrity 
onstraints and s
hema spe
i�
ations for XML. As will be seen shortly, theanalyses of these simple 
onstraints are already very intri
ate in the presen
e of DTDs.As generalizations of CUnaryK ;FK 
onstraints, CUnaryK:;IC and CUnaryK:;IC: both allow the presen
e of unaryin
lusion 
onstraints independent of keys. In addition, CUnaryK:;IC in
ludes negations of unary keys,and CUnaryK:;IC: further permits negations of unary in
lusion 
onstraints. Negation is 
onsideredmainly for the study of impli
ation of CUnaryK ;FK 
onstraints, whi
h is the 
omplement of a spe
ial
ase of the 
onsisten
y problem for CUnaryK:;IC (resp. CUnaryK:;IC:): given any DTD D and any �niteset � of unary keys and in
lusion 
onstraints, is it the 
ase that all XML trees satisfying � and
onforming to D also satisfy some other unary key (resp. unary key or in
lusion 
onstraint)?This question is important in, among other things, data integration. For example, one maywant to know whether a 
onstraint ' holds in a mediator interfa
e, whi
h may use XML as auniform data format [4; 33℄. This 
annot be veri�ed dire
tly sin
e the mediator interfa
e doesnot 
ontain data. One way to verify ' is to show that it is implied by 
onstraints that areknown to hold [21℄.These problems, however, turn out to be far more intriguing than their 
ounterparts in rela-tional databases. In the XML setting, DTDs do intera
t with keys and foreign keys, and thisintera
tion may lead to problems with XML spe
i�
ations. Journal of the ACM



4 � Wenfei Fan and Leonid LibkinExamples. To illustrate the intera
tion between XML DTDs and key/foreign key 
onstraints,
onsider a DTD D1, whi
h spe
i�es a (nonempty) 
olle
tion of tea
hers:<!ELEMENT tea
hers (tea
her+)><!ELEMENT tea
her (tea
h, resear
h)><!ELEMENT tea
h (subje
t, subje
t)>It says that a tea
her tea
hes two subje
ts. Here we omit the des
riptions of elements whosetype is string (e.g., PCDATA in XML).Assume that ea
h tea
her has an attribute name and ea
h subje
t has an attribute taught by.Attributes are single-valued. That is, if an attribute l is de�ned for an element type � in aDTD, then in a do
ument 
onforming to the DTD, ea
h element of type � must have a uniquel attribute with a string value. Consider a set of unary key and foreign key 
onstraints, �1:tea
her:name ! tea
her;subje
t:taught by ! subje
t;subje
t:taught by � tea
her:name:That is, name is a key of tea
her elements, taught by is a key of subje
t elements and itis also a foreign key referen
ing name of tea
her elements. More spe
i�
ally, referring to anXML tree T , the �rst 
onstraint asserts that two distin
t tea
her nodes in T 
annot have thesame name attribute value: the (string) value of name attribute uniquely identi�es a tea
hernode. It should be mentioned that two notions of equality are used in the de�nition of keys: weassume string value equality when 
omparing name attribute values, and node identity whenit 
omes to 
omparing tea
her elements. The se
ond key states that taught by attributeuniquely identi�es a subje
t node in T . The third 
onstraint asserts that for any subje
tnode x, there is a tea
her node y in T su
h that the taught by attribute value of x equalsthe name attribute value of y. Sin
e name is a key of tea
her, the taught by attribute of anysubje
t node refers to a unique tea
her node.Obviously, there exists an XML tree 
onforming to D1, as shown in Figure 1. However, thereis no XML tree that both 
onforms to D1 and satis�es �1. To see this, let us �rst de�ne somenotations. Given an XML tree T and an element type � , we use ext(�) to denote the set of allthe nodes labeled � in T . Similarly, given an attribute l of � , we use ext(�:l) to denote the setof l attribute values of all � elements. Then immediately from �1 follows a set of dependen
ies:jext(tea
her:name)j = jext(tea
her)j;jext(subje
t:taught by)j = jext(subje
t)j;jext(subje
t:taught by)j � jext(tea
her:name)j;Journal of the ACM



On XML Integrity Constraints in the Presen
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teachers

teacher teacher

@name
"Joe"

teach

subject

research

"Web DB"subject

@taught_by
"Joe"

"XML" @taught_by
"Joe"

"DB"Fig. 1. An XML tree 
onforming to D1where j � j is the 
ardinality of a set. Therefore, we havejext(subje
t)j � jext(tea
her)j: (1)On the other hand, the DTD D1 requires that ea
h tea
her must tea
h two subje
ts. Sin
e nosharing of nodes is allowed in XML trees and the 
olle
tion of tea
her elements is nonempty,from D1 follows: 1 < 2 jext(tea
her)j = jext(subje
t)j: (2)Thus jext(tea
her)j < jext(subje
t)j. Obviously, (1) and (2) 
ontradi
t with ea
h other andtherefore, there exists no XML tree that both satis�es �1 and 
onforms to D1. In parti
ular,the XML tree in Figure 1 violates the key subje
t:taught by ! subje
t.This example demonstrates that a DTD may impose dependen
ies on the 
ardinalities of 
ertainsets of obje
ts in XML trees. These 
ardinality 
onstraints intera
t with keys and foreign keys.More spe
i�
ally, keys and foreign keys also enfor
e 
ardinality 
onstraints that intera
t withthose imposed by DTD. This makes the 
onsisten
y analysis of keys and foreign keys for XMLfar more intriguing than that for relational databases. Be
ause of the intera
tion, simple keyand foreign key 
onstraints (e.g., �1) may not be satis�able by XML trees 
onforming to 
ertainDTDs (e.g., D1).As another example, 
onsider the DTD D2 given below:<!ELEMENT db (foo)><!ELEMENT foo (foo)>Observe that there exists no �nite XML tree 
onforming to D2. This demonstrates that there isneed for studying 
onsisten
y of XML spe
i�
ations even in the absen
e of integrity 
onstraints.Journal of the ACM



6 � Wenfei Fan and Leonid LibkinContributions. The main 
ontributions of the paper are the following:(1) For the 
lass CK ;FK of keys and foreign keys, we show that both the 
onsisten
y and theimpli
ation problems are unde
idable.(2) These negative results suggest that we look at the restri
tion CUnaryK ;FK of unary keys andforeign keys (whi
h are most typi
al in XML do
uments). We provide a 
oding of DTDsand these unary 
onstraints by linear 
onstraints on the integers. This enables us to showthat the 
onsisten
y problem for CUnaryK ;FK (even under the restri
tion to primary keys, i.e., atmost one key for ea
h element type) is NP-
omplete. We further show that the problem isstill in NP for an extension CUnaryK:;IC , whi
h also allows negations of key 
onstraints.(3) Using a di�erent 
oding of 
onstraints, we show that the 
onsisten
y problem remains inNP for CUnaryK:;IC:, the 
lass of unary keys, unary in
lusion 
onstraints and their negations.Among other things, this shows that the impli
ation problem for unary keys and foreignkeys is 
oNP-
omplete.(4) We also identify several tra
table 
ases of the 
onsisten
y problem, i.e., pra
ti
al situationswhere the 
onsisten
y problem is de
idable in PTIME.The unde
idability of the 
onsisten
y problem 
ontrasts sharply with its trivial 
ounterpart inrelational databases. The 
oding of DTDs and unary 
onstraints with linear integer 
onstraintsreveals some insight into the intera
tion between DTDs and unary 
onstraints. Moreover, it al-lows us to use the te
hniques from linear integer programming in the study of XML 
onstraints.It should be mentioned that as XML S
hema and XML Data both subsume DTDs and theysupport keys and foreign keys whi
h are more general than those 
onsidered here, the unde-
idability and NP-hardness results 
arry over to these s
hema spe
i�
ations and 
onstraintlanguages for XML.Related work. Keys, foreign keys and the more general in
lusion and fun
tional dependen
ieshave been well studied for relational databases (
f. [1℄). In parti
ular, the impli
ation problemfor unary in
lusion and fun
tional dependen
ies is in linear time [17℄. In 
ontrast, we shallshow that the XML 
ounterpart of this problem is 
oNP-
omplete.The intera
tion between 
ardinality 
onstraints and database s
hemas has been studied forobje
t-oriented [12; 13℄ and extended relational data models [26℄. These intera
tions are quitedi�erent from what we explore in this paper be
ause XML DTDs are de�ned in terms ofextended 
ontext free grammars and they yield 
ardinality 
onstraints more 
omplex thanthose studied for databases.Key and foreign key spe
i�
ations for XML have been proposed in the XML standard [6℄,XML Data [27℄, XML S
hema [36℄ and in a re
ent proposal for XML keys [7℄. The need forJournal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 7studying XML 
onstraints has also been advo
ated in [38℄. DTDs in the XML standard allowone to spe
ify limited (primary) unary keys and foreign keys with ID and IDREF attributes.However, they are not s
oped: one has no 
ontrol over what IDREF attributes point to. XMLData and XML S
hema support more expressive spe
i�
ations for keys and foreign keys with,e.g., XPath expressions. However, the 
onsisten
y problems asso
iated with 
onstraints de�nedin these languages have not been studied. We 
onsider simple XML keys and foreign keys in thispaper to fo
us on the nature of the intera
tion between DTDs and 
onstraints. The impli
ationproblem for a 
lass of keys and foreign keys was investigated in [19℄, but in the absen
e of DTDs(in a graph model for XML), whi
h trivializes the 
onsisten
y analysis. For keys of [7℄, theimpli
ation problem was studied [8℄ in the tree model for XML, but DTDs were not 
onsideredthere. To the best of our knowledge, no previous work has 
onsidered the intera
tion betweenDTDs and keys and foreign keys for XML (in the tree model). This paper is a full version of[18℄, providing the details and the proofs omitted there.A variety of 
onstraints have been studied for semistru
tured data [2; 10; 20℄. In parti
ular,[20℄ also studies the 
onsisten
y problem; the spe
ial form of 
onstraints used there makes itpossible to en
ode 
onsisten
y as an instan
e of 
onjun
tive query 
ontainment. The intera
tionbetween path 
onstraints and database s
hemas was investigated in [9℄. These 
onstraintstypi
ally spe
ify in
lusions among 
ertain sets of obje
ts in edge-labeled graphs, and are not
apable of expressing keys. Various generalizations of fun
tional dependen
ies have also beenstudied [23; 25℄. But these generalizations were investigated in database settings, whi
h arequite di�erent from the tree model for XML data. Moreover, they 
annot express foreign keys.Appli
ation of 
onstraints in data transformations was studied in [28℄; usefulness of keys andforeign keys in query optimization has also been re
ognized [34℄.Organization. The rest of the paper is organized as follows. Se
tion 2 de�nes four 
lassesof XML 
onstraints, namely, CK ;FK , CUnaryK ;FK , CUnaryK:;IC and CUnaryK:;IC:. Se
tion 3 establishes theunde
idability of the 
onsisten
y problem for CK ;FK , the 
lass of keys and foreign keys. Se
tion 4provides an en
oding for DTDs and unary 
onstraints with linear integer 
onstraints, and showsthat the 
onsisten
y problems are NP-
omplete for CUnaryK ;FK and CUnaryK:;IC . Se
tion 5 further showsthat the problem remains in NP for CUnaryK:;IC:, the 
lass of unary keys, in
lusion 
onstraints andtheir negations. Se
tion 6 summarizes the main results of the paper and identi�es dire
tionsfor further work.2. DTDS, KEYS AND FOREIGN KEYSIn this se
tion, we �rst present a formalism of XML DTDs [6℄ and the XML tree model. Wethen de�ne four 
lasses of XML 
onstraints. Journal of the ACM



8 � Wenfei Fan and Leonid Libkin2.1 DTDs and XML treesWe extend the usual formalism of DTDs (as extended 
ontext free grammars [5; 11; 31℄) byin
orporating attributes.Definition 2.1. A DTD (Do
ument Type De�nition) is de�ned to be D = (E; A; P; R; r),where:|E is a �nite set of element types;|A is a �nite set of attributes, disjoint from E;|P is a mapping from E to element type de�nitions: for ea
h � 2 E, P (�) is a regularexpression � de�ned as follows:� ::= S j � 0 j � j �j� j �; � j ��where S denotes string type, � 0 2 E, � is the empty word, and \j", \;" and \�" denote union,
on
atenation, and the Kleene 
losure, respe
tively;|R is a mapping from E to P(A), the power-set of A; if l 2 R(�) then we say l is de�ned for� ;|r 2 E and is 
alled the element type of the root.We normally denote element types by � and attributes by l. Without loss of generality, assumethat r does not o

ur in P (�) for any � 2 E. We also assume that ea
h � in Enfrg is 
onne
tedto r, i.e., either � o

urs in P (r), or it appears in P (� 0) for some � 0 that is 
onne
ted to r.As an example, let us 
onsider the tea
her DTD D1 given in Se
tion 1. In our formalism, D1
an be represented as (E1; A1; P1; R1; r1), whereE1 = ftea
hers; tea
her; tea
h; resear
h; subje
tgA1 = fname; taught bygP1(tea
hers) = tea
her; tea
her�P1(tea
her) = tea
h; resear
hP1(tea
h) = subje
t; subje
tP1(subje
t) = P1(resear
h) = SR1(tea
her) = fnamegR1(subje
t) = ftaught bygR1(tea
hers) = R1(tea
h) = R1(resear
h) = ;r1 = tea
hersSimilarly, we represent the DTD D2 given in Se
tion 1 as (E2; A2; P2; R2; r2), whereJournal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 9E2 = fdb; foogA2 = ;P2(db) = P2(foo) = fooR2(db) = R2(foo) = ;r2 = dbAn XML do
ument is typi
ally modeled as a node-labeled ordered tree. Given a DTD, wede�ne the notion of its valid do
uments as follows.Definition 2.2. Let D = (E; A; P; R; r) be a DTD. An XML tree T valid w.r.t. D (
on-forming to D) is de�ned to be T = (V; lab; ele; att; val; root), where|V is a �nite set of nodes (verti
es);|lab is a fun
tion that maps ea
h node in V to a label in E [A [ fSg; a node v 2 V is 
alledan element of � if lab(v) = � and � 2 E, an attribute if lab(v) 2 A, and a text node iflab(v) = S;|ele is a partial fun
tion de�ned on elements in V ; for any � 2 E, it maps ea
h elementv of type � to a (possibly empty) list [v1; :::; vn℄ of elements and text nodes in V su
h thatlab(v1) : : : lab(vn) is in the regular language de�ned by P (�);|att is a partial fun
tion from V � A to V su
h that for any v 2 V and l 2 A, att(v; l) isde�ned i� lab(v) = � , � 2 E and l 2 R(�);|val is a partial fun
tion from V to string values su
h that for any node v 2 V , val(v) isde�ned i� lab(v) = S or lab(v) 2 A;|root is the unique node in V su
h that lab(root) = r, 
alled the root of T .For any element v 2 V , the nodes v0 in ele(v) are 
alled the subelements of v. For any l 2 A, ifatt(v; l) = v0 then v0 is 
alled an attribute of v. In either 
ase we say that there is a parent-
hildedge from v to v0. The subelements and attributes of v are 
alled its 
hildren. An XML treehas a tree stru
ture, i.e., for ea
h v 2 V , there is a unique path of parent-
hild edges from rootto v. We write T j= D when T is valid w.r.t. D.Intuitively, V is the set of nodes of the tree T . The mapping lab labels every node of V witha symbol from E [A [ fSg. Text nodes and attributes are leaves. For an element x of type � ,the fun
tions ele and att de�ne the 
hildren of x, whi
h are partitioned into subelements andattributes a

ording to P (�) and R(�) in the DTD D. The subelements of x are ordered andtheir labels satisfy the regular expression P (�). In 
ontrast, its attributes are unordered andare identi�ed by their labels (names). The fun
tion val assigns string values to attributes andtext nodes. We 
onsider single-valued attributes. That is, if l 2 R(�) then every element oftype � has a unique l attribute with a string value. Sin
e T has a tree stru
ture, sharing ofnodes is not allowed in T . Journal of the ACM



10 � Wenfei Fan and Leonid LibkinFor example, Figure 1 depi
ts an XML tree valid w.r.t. the DTD D1 given in Se
tion 1.Our model is simpler than the models of XQuery [14℄ and XML S
hema [36℄ as DTDs supportonly one basi
 type (PCDATA or string) and do not have 
omplex type 
onstru
ts. Furthermore,we do not have nodes representing namespa
es, pro
essing instru
tions and referen
es. Thesesimpli�
ations allow us to 
on
entrate on the essen
e of the DTD/
onstraint intera
tion. Itshould further be noti
ed that they do not a�e
t the lower bounds results in the paper.We need the following notations throughout the paper: for any � 2 E [ fSg, ext(�) denotesthe set of all the nodes in T labeled � . For any node x in T labeled by � and for any attributel 2 R(�), we write x:l for val(att(x; l)), i.e., the value of the attribute l of node x. We de�neext(�:l) to be fx:l j x 2 ext(�)g, whi
h is a set of strings. For ea
h � element x in T and a listX = [l1; : : : ; ln℄ of attributes in R(�), we use x[X℄ to denote the list of X-attribute values of x,i.e., x[X℄ = [x:l1; : : : ; x:ln℄. For a set S, jSj denotes its 
ardinality.2.2 XML 
onstraintsWe next de�ne our 
onstraint languages for XML.We 
onsider three types of 
onstraints. Let D = (E; A; P; R; r) be a DTD, and T be an XMLtree valid w.r.t. D. A 
onstraint ' over D has one of the following forms:|Key: � [X℄! � , where � 2 E and X is a set of attributes in R(�). The XML tree T satis�es', denoted by T j= ', i� in T ,8 x y 2 ext(�) (l̂2X(x:l = y:l)! x = y):|In
lusion 
onstraint: �1[X℄ � �2[Y ℄, where �1; �2 2 E, and X; Y are nonempty lists ofattributes in R(�1); R(�2) of the same length. We write T j= ' i� in T ,8 x 2 ext(�1) 9 y 2 ext(�2) (x[X℄ = y[Y ℄):|Foreign key: a 
ombination of two 
onstraints, namely, an in
lusion 
onstraint �1[X℄ � �2[Y ℄and a key �2[Y ℄ ! �2. We write T j= ' i� T satis�es both the key and the in
lusion
onstraint.That is, a key � [X℄ ! � indi
ates that the set X of attributes is a key of elements of � , i.e.,two distin
t � nodes in T 
annot have the same X-attribute values; an in
lusion 
onstraint�1[X℄ � �2[Y ℄ says that the list of X-attribute values of every �1 node in T must mat
h thelist of Y -attribute values of some �2 node in T ; and an foreign key �1[X℄ � �2[Y ℄, �2[Y ℄ ! �2indi
ates that X is a foreign key of �1 elements referen
ing key Y of �2 elements.Journal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 11Over a DTD D, the 
lass CK ;FK of 
onstraints 
onsists of all the keys and foreign keys overD. They are 
alled multi-attribute keys and foreign keys as they may be de�ned in terms ofmultiple attributes.To illustrate keys and foreign keys of CK ;FK , let us 
onsider a DTD D3 = (E3; A3; P3; R3; r3),whereE3 = fs
hool; student; 
ourse; enroll; name; subje
tgA3 = fstudent id; 
ourse no; deptgP3(s
hool) = 
ourse�; student�; enroll�P3(
ourse) = subje
tP3(student) = nameP3(enroll) = P3(name) = P3(subje
t) = SR3(
ourse) = fdept; 
ourse nogR3(student) = fstudent idgR3(enroll) = fstudent id; dept; 
ourse nogR3(s
hool) = R3(name) = R3(subje
t) = ;r3 = s
hoolTypi
al CK ;FK 
onstraints over D3 in
lude:(1) student[student id℄ ! student,(2) 
ourse[dept; 
ourse no℄ ! 
ourse,(3) enroll[student id; dept; 
ourse no℄ ! enroll,(4) enroll[student id℄ � student[student id℄,(5) enroll[dept; 
ourse no℄ � 
ourse[dept; 
ourse no℄.The �rst three 
onstraints are keys in CK ;FK , and the pairs (4, 1) and (5, 2) are foreign keys inCK ;FK . The last two 
onstraints are in
lusion 
onstraints.It is worth mentioning that two notions of equality are used to de�ne keys: string value equalityis assumed in x:l = y:l (when 
omparing attribute values), and x = y is true if and only if xand y are the same node (when 
omparing elements). This is di�erent from the semanti
s ofkeys in relational databases. Note that a foreign key requires the presen
e of a key in additionto an in
lusion 
onstraint.The 
lass of unary keys and foreign keys for XML, denoted by CUnaryK ;FK , is a sublanguage of CK ;FK .A CUnaryK ;FK 
onstraint is a CK ;FK 
onstraint de�ned with a single attribute. More spe
i�
ally, a
onstraint ' of CUnaryK ;FK over the DTD D is either Journal of the ACM



12 � Wenfei Fan and Leonid Libkin|key: �:l! � , where � 2 E and l 2 R(�); or|foreign key: �1:l1 � �2:l2 and �2:l2 ! �2, where �1; �2 2 E, l1 2 R(�1), and l2 2 R(�2).For example, the 
onstraints of �1 given in Se
tion 1 are CUnaryK ;FK 
onstraints over the DTD D1.We shall also 
onsider the following types of unary 
onstraints over D:|in
lusion 
onstraint : �1:l1 � �2:l2; unlike a foreign key, it does not require the presen
e of akey;|the negation of an in
lusion 
onstraint: � = �1:l1 6� �2:l2; for an XML tree T , T j= � i� thereis a �1 element x in T su
h that for all �2 element y in T , x:l1 6= y:l2;|the negation of a key: ' = �:l 6! � ; T j= ' i� there are � elements x1; x2 in T su
h thatx1:l = x2:l, i.e., the value of the l attribute of a � element 
annot uniquely identify it inext(�).With these we de�ne two extensions of CUnaryK ;FK as follows. One is CUnaryK:;IC , the 
lass 
onsistingof unary keys, unary in
lusion 
onstraints and negations of unary keys. The other, CUnaryK:;IC:,
onsists of unary keys, unary in
lusion 
onstraints and their negations. As mentioned earlier,we 
onsider these 
lasses mostly for the study of the impli
ation problem for CUnaryK ;FK 
onstraints.Finally, we des
ribe the 
onsisten
y and impli
ation problems asso
iated with XML 
onstraints.Let C be one of CK ;FK , CUnaryK ;FK , CUnaryK:;IC or CUnaryK:;IC:, D a DTD, � a set of C 
onstraints over Dand T an XML tree valid w.r.t. D. We write T j= � when T j= � for all � 2 �. Let ' beanother C 
onstraint. We say that � implies ' over D, denoted by (D;�) ` ', if for any XMLtree T su
h that T j= D and T j= �, it must be the 
ase that T j= '. It should be noted when' is a foreign key, ' 
onsists of an in
lusion 
onstraint �1 and a key �2. In this 
ase (D;�) ` 'in fa
t means that (D;�) ` �1 ^ �2.The 
entral te
hni
al problem investigated in this paper is the 
onsisten
y problem. The 
on-sisten
y problem for C is to determine, given any DTD D and any set � of C 
onstraints overD, whether there is an XML tree T su
h that T j= � and T j= D.The impli
ation problem for C is to determine, given any DTD D, any set � and ' of C
onstraints over D, whether (D;�) ` '.3. GENERAL KEYS AND FOREIGN KEYSIn this se
tion we study CK ;FK , the 
lass of multi-attribute keys and foreign keys. We show thatthe 
onsisten
y and impli
ation problems for CK ;FK are unde
idable, but we identify severalspe
ial 
ases of the problems and show that these 
ases are de
idable in PTIME.Journal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 133.1 Unde
idability of 
onsisten
y analysisOur main result is negative:Theorem 3.1. The 
onsisten
y problem for CK ;FK 
onstraints is unde
idable.Proof: We �rst show that an impli
ation problem asso
iated with keys and foreign keys inrelational databases is unde
idable, and then present a redu
tion from (the 
omplement of) theimpli
ation problem to the 
onsisten
y problem for CK ;FK 
onstraints.Let us �rst review keys, foreign keys and their asso
iated impli
ation problems in relationaldatabases (
f. [1℄). Let R = (R1; : : : ; Rn) be a relational s
hema. For ea
h relation (s
hema)Ri in R, we write Att(Ri) for the set of all attributes of Ri, and Inst(Ri) for the set of �niteinstan
es of Ri. By database instan
es we mean �nite instan
es. An instan
e I of R has theform (I1; : : : ; In), where Ii 2 Inst(Ri) for all i 2 [1; n℄. For an instan
e Ii 2 Inst(Ri), a tuplet 2 Ii and an attribute l 2 Att(Ri), we use t:l to denote the l attribute value of t. Keys andforeign keys over R are de�ned as follows:|key: R[l1; :::; lk℄ ! R, where R 2 R, and for any i 2 [1; k℄, li 2 Att(R). An instan
e I of Rsatis�es the key 
onstraint ', denoted by I j= ', if8 t1 t2 2 I ( ^1�i�k(t1:li = t2:li)! ^l2Att(R)(t1:l = t2:l));where I is the instan
e of R in I;|foreign key: R[l1; :::; lk℄ � R0[l01; :::; l0k℄ and R0[l01; :::; l0k℄ ! R0, where R, R0 are in R,[l1; :::; lk℄ and [l01; :::; l0k℄ are lists of attributes in Att(R) and in Att(R0), respe
tively. In ad-dition, the set 
onsisting of l01; :::; l0k is a key of R0. We write I j= ' if I j= R0[l01; :::; l0k℄! R0and moreover, 8 t1 2 I 9 t2 2 I 0 ( ^1�j�kt1:lj = t2:l0j);where I and I 0 are the instan
es of R and R0 in I, respe
tively.Let � [ f'g be a set of keys and foreign keys over R. We use � ` ' to denote that � implies', i.e., for any instan
e I of R, if I j= �, then I j= '.In relational databases, the impli
ation problem for keys and foreign keys is the problem ofdetermining, given a relational s
hema R, any set � and ' of keys and foreign keys over R,whether � ` '. A spe
ial 
ase of the problem is the impli
ation problem for keys by keys andforeign keys, whi
h is to determine whether � ` ' where ' is a key and � is a set of keys andforeign keys over R. Journal of the ACM



14 � Wenfei Fan and Leonid LibkinIt was shown in [19℄ that the impli
ation problem for keys and foreign keys in relationaldatabases is unde
idable. The lemma below shows a stronger result.Lemma 3.2. In relational databases, the impli
ation problem for keys by keys and foreignkeys is unde
idable.Proof: We prove this by redu
tion from the impli
ation problem for fun
tional dependen
ies byfun
tional and in
lusion dependen
ies, whi
h is unde
idable. Before we give the redu
tion, we�rst review fun
tional and in
lusion dependen
ies in relational databases. Let R be a relationals
hema. Fun
tional dependen
ies (FDs) and in
lusion dependen
ies (IDs) over R are de�nedas follows.|FD. R : X ! Y , where R 2 R, and X and Y are subsets of attributes in Att(R). An instan
eI of R satis�es the FD �, denoted by I j= �, if 8 t1 t2 2 I (l̂2X(t1:l = t2:l)! ^l02Y (t1:l0 = t2:l0)),where I is the instan
e of R in I. Observe that keys are a spe
ial 
ase of FDs in whi
hY = Att(R).|ID. R[l1; :::; lk℄ � R0[l01; :::; l0k℄, where R;R0 2 R, [l1; :::; lk℄ is a list of attributes in Att(R),and [l01; :::; l0k℄ is a list of attributes in Att(R0). In 
ontrast to foreign keys, the set 
onsistingof l01; :::; l0k is not ne
essarily a key of R0. An instan
e I of R satis�es the ID �, denoted byI j= �, if 8 t1 2 I 9 t2 2 I 0 ( ^1�j�kt1:lj = t2:l0j), where I; I 0 are the instan
es of R;R0 in I,respe
tively.Let � [ f�g be a set of FDs and IDs over R. We use � ` � to denote that � implies � as forkeys and foreign keys. The impli
ation problem for FDs by FDs and IDs is the problem todetermine, given any relational s
hema R, any set � of FDs and IDs over R and a FD � overR, whether � ` �. This is a well-known unde
idable problem (see, e.g., [1℄ for a proof).We en
ode FDs and IDs in terms of keys and foreign keys as follows.(1) FD  = R : X ! Y .Note that every relation R has a key. In parti
ular, Att(R), the set of all attributes of R,is a key of R. Let Z be a key for R, i.e., R[Z℄ ! R. We de�ne a new (fresh) relations
hema Rnew su
h that Att(Rnew) = XY Z, i.e., the union of X, Y and Z. Intuitively, given aninstan
e I of R, an instan
e Inew of Rnew is to be 
onstru
ted as a subset of �XY Z(I) su
h that�XY (I) = �XY (Inew) and Inew satis�es the key Rnew[XY ℄ ! Rnew, where �W (I) denotes theproje
tion of I on attributes W . That is, we eliminate tuples in �XY Z(I) that violate the key.Observe that XY Z is a key for both Rnew and R sin
e it is the set of all attributes of Rnew,Journal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 15and it 
ontains the key Z of R (i.e., it is a superkey of R). Thus we en
ode  with:�1 = Rnew[X℄! Rnew; �2 = R[XY ℄ � Rnew[XY ℄;�3 = Rnew[XY Z℄ � R[XY Z℄; �4 = Rnew[XY ℄! Rnew:(2) ID  = R1[X℄ � R2[Y ℄.Let Z be a key for R2, i.e., R2[Z℄! R2. We de�ne a new s
hema Rnew su
h that Att(Rnew) =Y Z. Intuitively, given an instan
e I2 of R2, an instan
e Inew of Rnew is to be 
onstru
ted asa subset of �Y Z(I2) by eliminating tuples that violate the key Rnew[Y ℄ ! Rnew, su
h that�Y (I2) = �Y (Inew) and Inew satis�es the key. Observe that Y Z is a key for R2 sin
e it 
ontainsthe key Z of R2, i.e., it is a superkey of R2. Thus we en
ode  with:�1 = Rnew[Y ℄! Rnew; �2 = R1[X℄ � Rnew[Y ℄; �3 = Rnew[Y Z℄ � R2[Y Z℄:We next show that the en
oding is indeed a redu
tion from the impli
ation problem for FDs byFDs and IDs to the impli
ation problem for keys by keys and foreign keys. Given a relationals
hema R, a set � of FDs and IDs over R, and a FD � = R� : X ! Y over R, as des
ribedabove we en
ode � with a set �1 of keys and foreign keys, and en
ode � with�1 = R�new[X℄! R�new; �2 = R�[XY ℄ � R�new[XY ℄;�3 = R�new[XY Z℄ � R�[XY Z℄; �4 = R�new[XY ℄! R�new:Let �0 = �1 [ f�2; �3; �4g. It suÆ
es to show that � ` � i� �0 ` �1.Let R' be the relational s
hema that in
ludes all relation s
hemas in R as well as new relations
reated in the en
oding. We show the 
laim as follows.(1) Suppose that there is an instan
e I of R su
h that I j= V� ^ :�. We show that there isan instan
e I' of R' su
h that I' j= V�0 ^ :�1. We 
onstru
t I' su
h that for any R in R, theinstan
e of R in I' is the same as the instan
e of R in I. We populate instan
es of new relationsRnew 
reated in the en
oding as mentioned above. (a) If Rnew is introdu
ed in the en
oding ofa FD R : X ! Y then we let the instan
e Inew of Rnew in I' be a subset of �XY Z(I) su
h that�XY (I) = �XY (Inew) and Inew j= Rnew[XY ℄ ! Rnew, where I is the instan
e of R in I. (b) IfRnew is introdu
ed in the en
oding of an ID R1[X℄ � R2[Y ℄ then let the instan
e Inew of Rnewin I' be a subset of �Y Z(I2) su
h that �Y (I2) = �Y (Inew) and Inew j= Rnew[Y ℄ ! Rnew, whereI2 is the instan
e of R2 in I. It is easy to verify that I' j= V�0 ^ :�1.(2) Suppose that there is an instan
e I' of R' su
h that I' j= V�0 ^ :�1. We 
onstru
t aninstan
e I of R by removing from I' all instan
es of new relations introdu
ed in the en
oding.It is easy to verify that I j= V� ^ :�. Journal of the ACM



16 � Wenfei Fan and Leonid LibkinTherefore, the en
oding is indeed a redu
tion from the impli
ation problem for FDs by FDs andIDs. This shows that the impli
ation problem for keys by keys and foreign keys is unde
idable.2From Lemma 3.2 follows that the 
omplement of the impli
ation problem for keys by keys andforeign keys is also unde
idable. That is to determine, given a relational s
hema R, a set � ofkeys and foreign keys over R and a key ' over R, whether there is an instan
e of R satisfyingV� ^ :'.We now 
ontinue with the proof of Theorem 3.1, i.e., the 
onsisten
y problem for CK ;FK 
on-straints is unde
idable. Given Lemma 3.2, it suÆ
es to give a redu
tion from the 
omplementof the impli
ation problem for keys by keys and foreign keys. Let R = (R1; : : : ; Rn) be arelational s
hema, � be a set of keys and foreign keys over R, and ' = R[X℄ ! R be a keyover R. Let Y = Att(R) n X. We en
ode R, � and ' in terms of a DTD D and a set � ofCK ;FK 
onstraints over D as follows. Let D = (E; A; P; RA; r), whereE = fRi j i 2 [1; n℄g [ fti j i 2 [1; n℄g [ fr; DY ; EXgA = [i2[1;n℄Att(Ri)P (r) = R1; : : : ; Rn; DY ; DY ; EXP (Ri) = t�i for i 2 [1; n℄P (ti) = � for i 2 [1; n℄P (DY ) = P (EX) = �RA(ti) = Att(Ri) for i 2 [1; n℄RA(DY ) = X [ YRA(EX) = XRA(r) = RA(Ri) = ; for i 2 [1; n℄We denote P (R) = t�' for the relation R in '. Note that R = Rs and t' = ts for some s 2 [1; n℄.We en
ode � and ' with � = �� [ �', where �� is de�ned as follows:|�� in
ludes ti[Z℄! ti if � in
ludes a key Ri[Z℄! Ri;|�� in
ludes ti[Z℄ � tj[Z 0℄, tj[Z 0℄! tj if � has a foreign key Ri[Z℄ � Rj[Z 0℄, Rj[Z 0℄! Rj.The set �' 
onsists of the following:DY [Y ℄! DY ; EX [X℄! EX ; DY [X℄ � EX [X℄; DY [X; Y ℄ � t'[X; Y ℄; t'[XY ℄! t';where [X; Y ℄ stands for the 
on
atenation of list X and list Y , and t' is the grammar symbolin P (R) = t�'. Observe that Att(R) = X [ Y and thus XY is a key of t'.Journal of the ACM
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Fig. 2. A tree used in the proof of Theorem 3.1
As depi
ted in Figure 2, in any XML tree valid w.r.t. D, there are two distin
t DY nodes d1and d2 that have all the attributes in X [ Y , and a single EX node having all attributes in X.If T j= �', then (1) d1[X℄ = d2[X℄ by DY [X℄ � EX [X℄ and the fa
t jext(EX)j = 1; and (2)d1[Y ℄ 6= d2[Y ℄ by DY [Y ℄! DY . These nodes will serve as a witness for :'.Given these, we show that V� ^ :' 
an be satis�ed by an instan
e of R if and only if � 
anbe satis�ed by an XML tree valid w.r.t. D. Assume that there is an instan
e I of R satisfyingV� ^ :'. We 
onstru
t an XML tree T from I as follows. Let T have a root node r and a Rinode for ea
h Ri in R. For any Ri 2 R and ea
h tuple p in the instan
e of Ri in I, we 
reatea distin
t ti node x su
h that p:l = x:l for all l 2 Att(Ri). Sin
e I j= :', there are two tuplesp and p0 in the instan
e of R in I su
h that p[X℄ = p0[X℄ and p[Y ℄ 6= p0[Y ℄. We 
reate twodistin
t DY nodes d1 and d2 su
h that d1:l = p:l and d2:l = p0:l for all l 2 Att(R). In addition,we 
reate a single EX node e su
h that e:l = p:l for all l 2 X. We de�ne the edge relation ofT su
h that T has the form shown in Figure 2. It is easy to verify that T j= D. By I j= �it is easy to verify that T j= ��. By the de�nition of T , it is also easy to see that T j= �'.In parti
ular, sin
e Att(R) = X [ Y and the set of all attributes of a relation is a key of therelation, we have T j= t'[XY ℄ ! t', where t' is the symbol in P (R) = t�'. Therefore, T j= �.Conversely, suppose that D has a valid XML tree T that satis�es �. We de�ne an instan
eI of s
hema R as follows. For ea
h ti node x, let (l1 = x:l1; : : : ; lm = x:lm) be a tuple inthe instan
e of Ri in I, where l1; : : : ; lm are an enumeration of Att(Ri). Obviously I is aninstan
e of R. By T j= ��, it is easy to verify that I j= �. Moreover, by T j= �' and thede�nition of I, we have I j= :' sin
e there must be two tuples d1 and d2 in the instan
e of Rin I su
h that d1[X℄ = d2[X℄ but d1[Y ℄ 6= d2[Y ℄. Thus the en
oding is indeed a redu
tion fromthe 
omplement of the impli
ation problem for keys by keys and foreign keys.This 
ompletes the proof of Theorem 3.1. 2Journal of the ACM
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@K @K @KFig. 3. A tree used in the proof of Lemma 3.33.2 Unde
idability of impli
ationWe next 
onsider the impli
ation problem.Lemma 3.3. The following problems are unde
idable: given any DTD D, any set � of CK ;FK
onstraints over D, any unary key '1 and unary in
lusion 
onstraint '2 over D, whether (1)(D;�) ` '1; (2) (D;�) ` '2.Proof: It suÆ
es to establish a redu
tion from the 
onsisten
y problem for CK ;FK to the 
om-plement of the impli
ation problem for CK ;FK . Let the DTD D be (E; A; P; R; r). We de�neanother DTD D0 = (E 0; A0; P 0; R0; r), whereE 0 = E [ fDY ; EXg where DY , EX are fresh element typesA0 = A [ fKg where K is a fresh attributeP 0(r) = P (r); DY ; DY ; EX i.e., P (r) followed by two DY elements and an EX elementP 0(�) = P (�) for all � 2 E n frgP 0(DY ) = P 0(EX) = �R0(DY ) = fKgR0(EX) = fKgR0(�) = R(�) for all � 2 EWe de�ne a unary key '1, a unary in
lusion 
onstraint '2 and another key � over D0 as follows:'1 = DY :K ! DY ; '2 = DY :K � EX :K; � = EX :K ! EX :Clearly, � is also a set of CK ;FK 
onstraints over D0. We next show that (1) � is satis�able overD i� V�^�^'2 ^:'1 is satis�able over D0; (2) � is satis�able over D i� V�^ �^'1 ^:'2is satis�able over D0. For if these hold, then the en
oding is a redu
tion from the 
onsisten
yproblem for CK ;FK to the 
omplements of the impli
ation problems des
ribed in Lemma 3.3.We prove (1) as follows. If there exists a tree T j= D0 and T j= V� ^ � ^ '2 ^ :'1, thenwe 
onstru
t another tree T 0 by removing DY , EX elements from T . Obviously, T 0 j= D andJournal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 19T 0 j= �. Conversely, suppose that there is a tree T j= D and T j= �. We 
onstru
t anothertree T 0 from T as shown in Figure 3. Let us refer to the two DY elements in T 0 as d1; d2, andthe EX element as e. Let d1:K = d2:K = e:K. Then it is easy to see that T 0 j= D0, T 0 j= �and T 0 j= � ^ '2 ^ :'1.We now prove (2). As above, we 
an show that if there is a tree T j= D0 and T j= V� ^� ^ '1 ^ :'2, then there exists another tree T 0 su
h that T 0 j= D and T 0 j= �. Conversely,suppose that there is a tree T j= D and T j= �. We 
onstru
t a tree T 0 from T as shown inFigure 3. Again we refer to the two DY elements in T 0 as d1; d2, and the EX element as e. Nowlet d1:K 6= d2:K. Then it is easy to see that T 0 j= D0, T 0 j= � and T 0 j= � ^ '1 ^ :'2. 2From Lemma 3.3 we immediately obtain:Corollary 3.4. For CK ;FK 
onstraints, the impli
ation problem is unde
idable.3.3 PTIME de
idable 
asesWhile the general 
onsisten
y and impli
ation problems are unde
idable, it is possible to identifysome de
idable 
ases of low 
omplexity. The �rst one is 
he
king whether a DTD has a validXML tree. This is a spe
ial 
ase of the 
onsisten
y problem, namely, when the given set ofCK ;FK 
onstraints is empty. A more interesting spe
ial 
ase involves keys only. Let CK denotethe set of all keys in CK ;FK . The 
onsisten
y problem for CK is to determine, given any DTDD and any set � of keys in CK over D, whether there exists an XML tree valid w.r.t. D andsatisfying �. Similarly, we 
onsider the impli
ation problem for CK ;FK : given any DTD D, anyset � and ' of keys in CK over D, whether (D;�) ` '. The next theorem tells that all these
ases are de
idable.Theorem 3.5. The following problems are de
idable in linear time:(1) Given any DTD D, whether there exists an XML tree valid w.r.t. D.(2) The 
onsisten
y problem for CK .(3) The impli
ation problem for CK .Proof: (1) The �rst problem of the theorem 
an be redu
ed to the emptiness problem for a
ontext free grammar (CFG). Observe that a DTD D = (E;A; P;R; r) 
an be viewed as anextended CFG GD with r as its start symbol, S as a nonterminal with a produ
tion rule, say,S ! 0, and with attributes (A and R) ignored. It is easy to verify that D has a valid XMLtree if and only if GD is nonempty, i.e., it generates a terminal string (equivalently, a parsetree). Indeed, given an XML tree T valid w.r.t. D, one 
an 
onstru
t a parse tree of GD byJournal of the ACM



20 � Wenfei Fan and Leonid Libkinmodifying T , i.e., by removing attributes from T and modifying its text nodes. Conversely,given a parse tree T 0 of GD one 
an 
onstru
t a valid XML tree of D by modifying T 0, i.e.,by adding attributes to T 0 and removing 
hildren of S nodes from T 0. It is straightforward to
onvert the extended CFG GD to a CFG G in linear time, by introdu
ing new nonterminalsand their (re
ursive) produ
tion rules to represent Kleene 
losures. Moreover, GD is nonemptyif and only if G is nonempty. It is well known that the emptiness problem for a CFG 
anbe determined in linear time (
f. [24℄). Putting everything together, a linear algorithm for
he
king the validity of D works as follows: it �rst generates in linear time the CFG G fromD, and then 
he
ks in linear time whether G is empty; it 
on
ludes that D has a valid XMLtree if and only if G is nonempty. Thus the validity of DTDs 
an be de
ided in linear time.(2) We next prove the se
ond statement of Theorem 3.5. That is, the 
onsisten
y problem forCK is de
idable in linear time. Given any DTD D and any set � of keys in CK over D, it suÆ
esto show that � 
an be satis�ed by an XML tree valid w.r.t. D if and only if D has a valid XMLtree. For if it holds, then the se
ond statement follows immediately from the �rst statement ofTheorem 3.5.We now show the 
laim. Suppose that there exists an XML tree T1 = (V; lab; ele; att; val; root)valid w.r.t. D. We 
onstru
t another XML tree T2 by modifying the val fun
tion in T1 su
h thatfor any key � [X℄ ! � in �, jext(�)j = jext(�:l)j in T2 for every l 2 X. That is, T2 j= �:l ! �for all l 2 X. More spe
i�
ally, let T2 = (V; lab; ele; att; val0; root). Observe that the onlydi�eren
e between T1 and T2 is the de�nition of the fun
tion val0. For any v1; v2 in V withlab(v1) = � and lab(v2) = � , we 
an make val0(att(v1; l)) 6= val0(att(v2; l)) for any l 2 X. Letval0(v) = val(v) for all other verti
es in V . It is easy to verify that T2 is valid w.r.t. D sin
eT1 is valid w.r.t. D. In addition, T2 j= � [X℄! � sin
e for any x; y 2 ext(�), x[X℄ 6= y[X℄. Theother dire
tion is immediate.(3) Finally, we prove the last statement of Theorem 3.5. That is, the impli
ation problem forCK is de
idable in linear time. To show this, we need the following lemma.Lemma 3.6. For any DTD D and element type � in D, it is de
idable in linear time whetherthere is an XML tree T su
h that T j= D and moreover, jext(�)j > 1 in T .Proof: As in the proof of the �rst statement of the theorem, it is easy to show that given aDTD D, one 
an �nd in linear time a CFG G su
h that D has a valid XML tree in whi
hjext(�)j > 1 if and only if the start symbol r of G derives a terminal string w whose parse treehas at least two � nodes. This 
an be transformed in linear time to the problem of 
he
king if agiven CFG derives a string with at least two o

urren
es of a given terminal symbol, whi
h inturn 
an be solved in linear time by a minor modi�
ation of the emptiness test for CFG from[24℄. 2Journal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 21Let � be a set of keys in CK over D, and ' = � [X℄! � be another key in CK over D. We saythat � subsumes ' if there is � = � [Y ℄ ! � in � su
h that Y � X, i.e., ' is a superkey of �.Using this and Lemma 3.6 we 
an prove the following:Lemma 3.7. Let D be a DTD, � a set of keys in CK over D, and ' = � [X℄! � another keyin CK over D. There is an XML tree T su
h that T j= D, T j= � but T j= :' if and only if �does not subsume ' and moreover, there is an XML tree T 0 su
h that T 0 j= D and jext(�)j > 1in T 0. In addition, this is de
idable in linear time in the sizes of D and � [ f'g.Proof: We �rst show that there is an XML tree T su
h that T j= D, T j= � but T j= :' i� �does not subsume ' and moreover, there is an XML tree T 0 su
h that T 0 j= D and jext(�)j > 1in T 0. Suppose that there is an XML tree T su
h that T j= D, T j= � and T j= :'. Thenobviously, T is valid w.r.t. D, and moreover, there must be at least two � elements d1; d2 inT su
h that d1[X℄ = d2[X℄ but d1 6= d2 sin
e T j= :'. Thus there must be jext(�)j > 1 inT . In addition, � 
annot 
ontain � [Y ℄ ! � with Y � X, sin
e otherwise it would 
ontradi
tT j= :' and T j= �. Conversely, let T 0 be a tree su
h that T 0 j= D and jext(�)j > 1 in T 0.Thus there are at least two � elements d1; d2 in T 0. We 
onstru
t a new tree T by modifyingthe string values asso
iated with the attributes of T 0, while leaving the other fun
tions of T 0un
hanged. More spe
i�
ally, we let d1[X℄ = d2[X℄ in T but all other attributes have di�erentstring values. It is easy to verify that T j= D and T j= :' by the de�nition of T . To showT j= �, suppose by 
ontradi
tion that there were � 2 � su
h that T j= :�. Then � must beof the form � [Y ℄ ! � where Y � X, i.e., ' is a superkey of �, sin
e ex
ept d1[X℄ = d2[X℄,distin
t nodes in T have the di�erent attribute values by the de�nition of T . This 
ontradi
tsthe assumption that � does not subsume '. Thus the �rst statement of the lemma holds.To show that this 
an be done in linear time, observe that by Lemma 3.6, it 
an be de
ided inlinear time in the size of D whether there is a tree T su
h that T j= D and jext(�)j > 1 in T .In addition, it is de
idable in linear time in the size of �[f'g whether ' is a superkey of somekey in � (see e.g., [1℄ for dis
ussions about a linear time algorithm for 
he
king impli
ation offun
tional dependen
ies). Thus it is de
idable in linear time in the sizes of D and � [ f'gwhether these 
onditions hold. 2This suÆ
es to prove the third statement of Theorem 3.5 be
ause (D;�) ` ' i� there is noXML tree T su
h that T j= D, T j= � but T j= :'. By Lemma 3.7, the latter 
an be de
idedin linear time.This 
ompletes the proof of Theorem 3.5. 2Given Theorem 3.5, one would be tempted to think that when only foreign keys are 
onsidered,the analyses of 
onsisten
y and impli
ation 
ould also be simpler. However, it is not the 
ase.Journal of the ACM



22 � Wenfei Fan and Leonid LibkinRe
all that a foreign key of CK ;FK 
onsists of an in
lusion 
onstraint and a key. Thus we
annot ex
lude keys in the presen
e of foreign keys. It is not hard to show that 
onsisten
yand impli
ation of foreign keys in CK ;FK remain unde
idable.4. UNARY KEYS AND FOREIGN KEYSThe unde
idability of the 
onsisten
y problem for general keys and foreign keys motivates usto look for restri
ted 
lasses of 
onstraints. One important 
lass is CUnaryK ;FK , the 
lass of unarykeys and foreign keys. A 
ursory examination of existing XML spe
i�
ations reveals that mostkeys and foreign keys are single-attribute 
onstraints, i.e., unary. In parti
ular, in XML DTDs,one 
an only spe
ify unary 
onstraints with ID and IDREF attributes.In this se
tion, we �rst investigate the 
onsisten
y problem for CUnaryK ;FK . To simplify the dis
ussionand to establish a (slightly) stronger result, we 
onsider a larger 
lass of 
onstraints, namely,CUnaryK ;IC , the 
lass of unary keys and unary in
lusion 
onstraints. In 
ontrast to CUnaryK ;FK , CUnaryK ;ICallows the presen
e of unary in
lusion 
onstraints independent of keys. We develop an en
odingof DTDs and CUnaryK ;IC 
onstraints with linear integer 
onstraints. This enables us to redu
e the
onsisten
y problem for CUnaryK ;IC (and thus for CUnaryK ;FK ) to the linear integer programming problem,one of the most studied NP-
omplete problems. We then use the same te
hnique to show thatthe 
onsisten
y problem remains in NP when negations of keys are allowed, i.e., the problem forCUnaryK:;IC 
onstraints is also in NP. Finally, we identify several tra
table 
ases of the 
onsisten
yproblems.4.1 Coding DTDs, unary 
onstraintsWe show that CUnaryK ;IC 
onstraints and DTDs 
an be en
oded with linear equalities and in-equalities on the integers, 
alled 
ardinality 
onstraints. The en
oding allows us to redu
e the
onsisten
y problem for CUnaryK ;IC 
onstraints in PTIME to the linear integer programming (LIP)problem:LINEAR INTEGER PROGRAMMING (LIP)INPUT: An m� n matrix A of integers and a 
olumn ve
tor ~b of m integers.QUESTION: Does there exist a 
olumn ve
tor ~x of n integers su
h that A~x � ~b?That is, for i 2 [1; m℄, Xj2[1;n℄aij xj � bi;Journal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 23where aij is the jth element of the ith row of A, xj is the jth entry of ~x and bi is the ithentry of ~b. It is known that LIP is NP-
omplete in the strong sense [22℄. In parti
ular, whennonnegative integer solutions are 
onsidered, [32℄ has shown that if the problem has a solution,then it has another solution in whi
h for all j 2 [1; n℄, xj is no larger than n (ma)2m+1, wherea is the largest absolute value of elements in A and ~b.More spe
i�
ally, we show the following:Theorem 4.1. There is a polynomial (O(s2 � log s)) time algorithm that, given a DTD Dand a set � of CUnaryK ;IC 
onstraints, 
onstru
ts an integer matrix A and an integer ve
tor ~b su
hthat there exists an XML tree valid w.r.t. D and satisfying � if and only if A~x � ~b has aninteger solution.As an immediate result, we have:Corollary 4.2. The 
onsisten
y problem for CUnaryK ;FK 
onstraints is in NP.The proof of Theorem 4.1 is a bit involved. A road map of the proof is as follows. Given aDTD D and a set � of CUnaryK ;IC 
onstraints over D, we de�ne in O(s2 � log s) time (in the sizes ofD and �, denoted by jDj and j�j, respe
tively) the following:|another DTD DN , referred to as the simpli�ed DTD of D, in whi
h regular expressions arerestri
ted to have at most one operator: either \j" (union) or \," (
on
atenation)2; we redu
ethe 
onsisten
y of D and � to that of DN and �, i.e., there exists an XML tree valid w.r.t.D and satisfying � if and only if there exists an XML tree valid w.r.t. DN and satisfying �;|a set C� of linear integer 
onstraints su
h that there is an XML tree valid w.r.t. DN andsatisfying � if and only if there is an XML tree valid w.r.t. DN and satisfying C�;|a system 	DN of linear integer 
onstraints su
h that there exists an XML tree valid w.r.t.DN if and only if 	DN admits an integer solution; the 
ardinality 
onstraints in 	DN aremore 
omplex than those studied in the 
ontext of obje
t-oriented and relational databases[12; 13; 26℄;|�nally, a system of integer 
onstraints 	(D;�) from C� and 	DN su
h that there exists anXML tree valid w.r.t. D and satisfying � if and only if 	(D;�) admits an integer solution.Putting everything together, we redu
e the 
onsisten
y problem for CUnaryK ;IC to the existen
e ofa solution of an instan
e of LIP, and thus obtain the NP bound.2We are grateful to one of the referees for suggesting this simpli�
ation of DTDs. Journal of the ACM



24 � Wenfei Fan and Leonid LibkinProof of Theorem 4.1: We start by des
ribing the pro
ess of simplifying DTDs. We shall thenpresent an en
oding of unary 
onstraints and DTDs. Finally, we develop a 
hara
terization ofXML spe
i�
ations with both DTDs and unary 
onstraints in terms of linear integer 
onstraints.Simplifying DTDs. We �rst explain how to redu
e the 
onsisten
y problem for CUnaryK ;IC tothat over simple DTDs. Intuitively, we repla
e long regular expressions in P (�) by shorterones. Formally, 
onsider a DTD D = (E; A; P; R; r). For ea
h � 2 E, P (�) is a regularexpression �. A DTD is basi
ally an extended regular grammar (
f. [11; 31℄); thus � ! � 
anbe viewed as the produ
tion rule for � . We rewrite the regular expression � by introdu
inga set N of new element types (nonterminals) su
h that the produ
tion rules of the new DTDhave one of the following forms:� ! �1; �2 � ! �1 j �2 � ! �1 � ! S � ! �where �; �1; �2 are element types in E [N , S is the string type and � denotes the empty word.More spe
i�
ally, we 
ondu
t the following \simplifying" pro
ess on the produ
tion rule � ! �:(1) If � = (�1; �2), then we introdu
e two new element types �1; �2 and repla
e � ! � with anew rule � ! �1; �2. We pro
eed to pro
ess �1 ! �1 and �2 ! �2 in the same way.(2) If � = (�1j�2), then we introdu
e two new element types �1; �2 and repla
e � ! � with anew rule � ! �1 j �2. We pro
eed to pro
ess �1 ! �1 and �2 ! �2 in the same way.(3) If � = ��1, then we introdu
e a new element type �1 and repla
e � ! � with � ! �1. Wepro
eed to pro
ess �1 ! � j �1; �1 in the same way.(4) If � is one of � 0 2 E, S or �, then the rule for � remains un
hanged.To avoid introdu
ing unne
essary new element types, in the �rst two 
ases above, if �1 (resp.�2) is a symbol of E [ fSg, we do not introdu
e a new element type for �1 (resp. �2).We refer to the set of new element types introdu
ed when pro
essing � ! P (�) as N� and theset of produ
tion rules generated/revised as P� . Note that N� \ E = ; for any � 2 E.We de�ne a new DTD DN = (EN ; A; PN ; RN ; r), referred to as the simpli�ed DTD of D (orjust a simple DTD if D is 
lear from the 
ontext), where|EN = E [ [�2EN� , i.e., E plus those new element types introdu
ed in the simplifying pro
ess;|PN = [�2EP� , i.e., produ
tion rules generated/revised in the simplifying pro
ess;|RN(�) = R(�) for ea
h � 2 E, and RN(�) = ; for ea
h � 2 EN n E.Journal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 25Note that the root element type r and the set A of attributes remain un
hanged. Moreover,elements of any type in EN nE do not have any attribute. Note that DN does not 
ontain theKleene star \�".For example, the simpli�ed DTD of D1 given in Se
tion 1 is DN1 = (EN1 ; A1; PN1 ; RN1 ; r),whereEN1 = ftea
hers; tea
her; tea
h; resear
h; subje
t; � 1t ; � 2t ; ��gA1 = fname; taught bygPN1 (tea
hers) = tea
her; � 1tPN1 (� 1t ) = �� j � 2tPN1 (��) = �PN1 (� 2t ) = tea
her; � 1tPN1 (tea
her) = tea
h; resear
hPN1 (tea
h) = subje
t; subje
tPN1 (subje
t) = PN1 (resear
h) = SRN1 (tea
her) = fnamegRN1 (subje
t) = ftaught bygRN1 (tea
hers) = RN1 (tea
h) = RN1 (resear
h) = RN1 (� 1t ) = RN1 (� 2t ) = RN1 (��) = ;r1 = tea
hersHere � 1t ; � 2t ; �� are the new element types introdu
ed.The simpli�ed DTD DN2 of D2 in Se
tion 1 is the same as D2 itself.Obviously, any set � of CUnaryK ;IC 
onstraints over D is also a set of CUnaryK ;IC 
onstraints over thesimpli�ed DTD DN of D. The next lemma establishes the 
onne
tion between D and DN ,whi
h allows us to 
onsider only simple DTDs from now on.Lemma 4.3. Let D be a DTD, DN be the simpli�ed DTD of D and � be a set of CUnaryK ;IC
onstraints over D. Then there exists an XML tree T1 su
h that T1 j= D and T1 j= � i� thereexists an XML tree T2 su
h that T2 j= DN and T2 j= �.Proof: It suÆ
es to show the following 
laim. For any XML tree T1 j= D one 
an 
onstru
tan XML tree T2 j= DN , and for any T2 j= DN one 
an 
onstru
t T1 j= D, su
h that for anyelement type � in D and l 2 R(�), jext(�)j in T2 equals jext(�)j in T1, and ext(�:l) in T2 equalsext(�:l) in T1.We �rst prove the lemma assuming that the 
laim is true. Assume that there exists an XMLtree T1 su
h that T1 j= D and T1 j= �. Find the tree T2 j= DN as in the 
laim. Suppose thatJournal of the ACM



26 � Wenfei Fan and Leonid Libkinthere is ' 2 � su
h that T2 6j= '. If ' is a key �:l ! �:� , then there are two distin
t nodesx; y 2 ext(�) in T1 su
h that x:l = y:l. Thus jext(�:l)j < jext(�)j in T2 sin
e every � elementhas a single l attribute. Sin
e T1 j= ', it must be the 
ase that jext(�:l)j = jext(�)j in T1sin
e the value x:l of ea
h x 2 ext(�) uniquely identi�es x among all the nodes in ext(�). This
ontradi
ts the 
laim that jext(�)j in T2 equals jext(�)j in T1 and ext(�:l) in T2 equals ext(�:l)in T1. If ' is an in
lusion 
onstraint �1:l1 � �2:l2, then there is x 2 ext(�1) su
h that for ally 2 ext(�2) in T2, x:l1 6= y:l2. That is, x:l1 62 ext(�2:l2). By the 
laim, x:l1 2 ext(�1:l1) in T1.Sin
e T1 j= ', we have x:l1 2 ext(�2:l2) in T1. Again by the 
laim, we have x:l1 2 ext(�2:l2) inT2, whi
h 
ontradi
ts the assumption. The proof for the other dire
tion is similar.We next verify the 
laim. Given an XML tree T1 = (V1; lab1; ele1; att; val; root) su
h thatT1 j= D, we 
onstru
t an XML tree T2 by modifying T1 su
h that T2 j= DN . Consider a �element v in T1. Let ele1(v) = [v1; :::; vn℄ and w = lab1(v1) : : : lab1(vn). Re
all N� and P� , theset of nonterminals and the set of produ
tion rules generated when simplifying � ! P (�). LetQ� be the set of E symbols that appear in P� plus S. We 
an view G = (Q� ; N� [ f�g; P� ; �)as a 
ontext free grammar, where Q� is the set of terminals, N� [ f�g the set of nonterminals,P� the set of produ
tion rules and � the start symbol. Sin
e T1 j= D, we have w 2 P (�). By astraightforward indu
tion on the stru
ture of PN(�) it 
an be veri�ed that w is in the languagede�ned by G. Thus there is a parse tree T (w) of the grammar G for w, and w is the frontier(the list of leaves from left to right) of T (w). Without loss of generality, assume that the root ofT (w) is v, and the leaves are v1; : : : ; vn. Intuitively, we 
onstru
t T2 by repla
ing ea
h elementv in T1 by su
h a parse tree. More spe
i�
ally, let T2 = (V2; lab2; ele2; att; val; root). Here V2
onsists of nodes in V1 and the internal nodes introdu
ed in the parse trees. For ea
h x in V2,let lab2(x) = lab1(x) if x 2 V1, and otherwise let lab2(x) be the node label of x in the parse treewhere x belongs. Note that nodes in V2 n V1 are elements of some type in EN nE. If lab2(x) isan element type, let ele2(x) be the list of its 
hildren in the parse tree. Note that att and valremain un
hanged. By the 
onstru
tion of T2 it 
an be veri�ed that T2 j= DN . Moreover, forany � 2 E and l 2 R(�), jext(�)j in T2 equals jext(�)j in T1 and ext(�:l) in T2 equals ext(�:l)in T1 be
ause none of the new nodes, i.e., nodes in V2 n V1, is labeled with an E type, and thefun
tion att remains un
hanged.Conversely, assume that there is T2 = (V2; lab2; ele2; att; val; root) su
h that T2 j= DN . We
onstru
t T1 by modifying T2 su
h that T1 j= D. For any node v 2 V2 with lab(v) = �and � 2 EN n E, we substitute the subelements of v for v in ele(v0), where v0 is the parentof v. In addition, we remove v from V2, lab2(v) from lab2, and ele2(v) from ele2. Observethat by the de�nition of DN , no attributes are de�ned for elements of any type in EN n E.We repeat the pro
ess until there is no node labeled with element type in EN n E. Now letT1 = (V1; lab1; ele1; att; val; root), where V1, lab1 and ele1 are V2, lab2 and ele2 at the end ofthe pro
ess, respe
tively. Observe that att, val and root remain un
hanged. By the de�nitionof T1 it 
an be veri�ed that T1 j= D; and in addition, for any � 2 E and l 2 R(�), jext(�)jJournal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 27in T1 equals jext(�)j in T2, and ext(�:l) in T1 equals ext(�:l) in T2, be
ause none of the nodesremoved is labeled with a type of E and the fun
tions att and val are un
hanged. 2It is easy to see that DN is 
omputable in linear time in the size of D.En
oding unary 
onstraints. We now give a 
oding of CUnaryK ;IC 
onstraints. Let � be a setof CUnaryK ;IC 
onstraints over DTD D and DN be simpli�ed DTD of D. Referring to an arbitraryXML tree T valid w.r.t. D, we derive from � a 
lass of linear integer 
onstraints on T , denotedby C� and referred to the 
ardinality 
onstraints determined by �, as follows. For any ' 2 �,|if ' is a key 
onstraint �:l! � , then jext(�:l)j = jext(�)j is in C�;|if ' is an in
lusion 
onstraint �1:l1 � �2:l2, then jext(�1:l1)j � jext(�2:l2)j is in C�.|jext(�:l)j � jext(�)j and 0 � jext(�:l)j are in C� for any � 2 E and l 2 R(�).We use T j= C� to denote that T satis�es all 
onstraints of C�.For example, re
all the set �1 of CUnaryK ;FK 
onstraints over the DTD D1 given in Se
tion 1. Theset of 
ardinality 
onstraints determined by �1, denoted by C�1, 
onsists of:jext(tea
her:name)j = jext(tea
her)jjext(subje
t:taught by)j = jext(subje
t)jjext(subje
t:taught by)j � jext(tea
her:name)j0 � jext(tea
her:name)j0 � jext(subje
t:taught by)jIt is worth mentioning that jext(�:l)j = jext(�)j 
hara
terizes a key �:l ! � . Indeed, for anyXML tree T valid w.r.t. DN , T j= jext(�:l)j = jext(�)j i� T j= �:l ! � . However, things
an go wrong when it 
omes to in
lusion 
onstraints. Although T j= �1:l1 � �2:l2 impliesT j= jext(�1:l1)j � jext(�2:l2)j, the other dire
tion does not ne
essarily hold. This does not losegenerality as we do not intend to 
apture negations of in
lusion 
onstraints with this 
oding.Indeed, the lemma below shows that we are able to 
onsider C� instead of � when studyingthe 
onsisten
y of �.Lemma 4.4. Let DN be a simpli�ed DTD of D, � be a set of CUnaryK ;IC 
onstraints over D, andC� be the set of 
ardinality 
onstraints determined by �. Then there exists an XML tree T1su
h that T1 j= DN and T1 j= � if and only if there exists an XML tree T2 su
h that T2 j= DNand T2 j= C�. In addition, any XML tree valid w.r.t. DN and satisfying � also satis�es C�.Proof: It is easy to see that for any XML tree T1 that satis�es �, it must be the 
ase thatT1 j= C�. Conversely, we show that if there exists an XML tree T2 = (V; lab; ele; att; val; root)Journal of the ACM
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h that T2 j= DN and T2 j= C�, then we 
an 
onstru
t an XML tree T1 su
h that T1 j= DNand T1 j= �.We 
onstru
t T1 from T2 by modifying the fun
tion val while leaving V; lab; ele; att and rootun
hanged. As 
ardinality 
onstraints of C� do not involve text nodes, we 
hange val forattributes only. More spe
i�
ally, we modify val(v) if lab(v) 2 A, i.e., if v is an attribute,and leave val(v) un
hanged otherwise. Let S = f�:l j � 2 E; l 2 R(�)g. To de�ne thenew fun
tion, denoted by val0, we �rst asso
iate a set V�:l of string values with ea
h �:l inS. Let N be the maximum 
ardinality of ext(�:l) in T2, i.e., N � jext(�:l)j in T2 for all�:l 2 S. Let VS = fai j i 2 [1; N ℄g be a set of distin
t string values. For ea
h �:l 2 S, letV�:l = fai j i 2 [1; jext(�:l)j℄g, and for ea
h x 2 ext(�), let val0(att(x; l)) be a string value inV�:l su
h that in T1, ext(�:l) = V�:l. In addition, for ea
h key �:l! � in �, let x:l be a distin
tstring value in V�:l. This is possible be
ause by the de�nition of T1, (1) ext(�) in T1 equalsext(�) in T2; (2) jext(�:l)j in T1 equals jext(�:l)j in T2; and (3) T2 j= C� and jext(�)j = jext(�:l)jis in C�. We next show that T1 is indeed what we want. It is easy to verify that T1 j= DNgiven the 
onstru
tion of T1 from T2 and the assumption that T2 j= DN . To show that T1 j= �,we 
onsider ' 2 � in the following 
ases. (1) If ' is a key �:l ! � , it is immediate from thede�nition of T1 that T1 j= ' sin
e for any x 2 ext(�), x:l is a distin
t string value in V�:l.(2) If ' is �1:l1 � �2:l2, then T2 j= jext(�1:l1)j � jext(�2:l2)j by T2 j= C�. Re
all that by thede�nition of val0, for i 2 [1; 2℄, V�i:li = fai j i 2 [1; jext(�i:li)j℄g and in T1, ext(�i:li) = V�i:li.Thus ext(�1:l1) � ext(�2:l2) in T1. That is, T1 j= '. Therefore, T1 j= DN and T1 j= �. 2Observe that in the 
onstru
tion of T1 above, it is possible that ext(�1:l1) � ext(�2:l2) even if� does not imply �1:l1 � �2:l2. This does not have an impa
t on the 
onsisten
y analysis, asnegations of in
lusion 
onstraints are not involved in the analysis.It is straightforward to verify that given any set � of CUnaryK ;IC 
onstraints over a DTD D, the setC� of 
ardinality 
onstraints determined by � 
an be 
omputed in linear time in j�j and jDj.En
oding DTDs. We next move to a 
oding of DTDs. By Lemma 4.3 we 
an 
onsider simpleDTDs only. Given any simple DTD D = (E; A; P; R; r), we en
ode it in linear time with asystem 	D of linear integer 
onstraints su
h that D has a valid XML tree if and only if 	D hasan integer solution.We �rst des
ribe the variables used in the system 	D. For ea
h symbol � 2 E [ fSg, jext(�)jis a distin
t variable. Intuitively, in an XML tree T 
onforming to D, jext(�)j keeps tra
kof the number of all � elements. In addition, for ea
h o

urren
e of � in the de�nition P (� 0)of some element type � 0, we also 
reate a distin
t variable. More spe
i�
ally, we 
reate su
hvariables as follows: if P (� 0) = �1 for �1 2 E [ fSg, then we 
reate a distin
t variable x1�1;� 0;if P (� 0) = (�1; �2) or P (� 0) = (�1j�2), then we 
reate two distin
t variables x1�1;� 0 and x2�1;� 0.Journal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 29Intuitively, for i 2 [1; 2℄, xi�1;� 0 keeps tra
k of the number of �i subelements at position i underall � 0 elements in T . For example, given an element type de�nition P(tea
h) = subje
t,subje
t, we 
reate two distin
t variables x1(subje
t; tea
h) and x2(subje
t; tea
h). Let X� be the setof all variables of the form xi�;� 0.Using these variables, for ea
h � 2 E, we de�ne a set  � of linear integer 
onstraints that
hara
terizes P (�) quantitatively, as follows:|If P (�) = �1 for �1 2 E [ fSg, then  � in
ludes jext(�)j = x1�1;� . Referring to the XML treeT , this assures that ea
h � element has a unique �1 subelement.|If P (� 0) = (�1; �2), then  � in
ludes jext(�)j = x1�1;� and jext(�)j = x2�2;� . These assure thatea
h � element in T must have a unique �1 subelement and a unique �2 subelement.|If P (� 0) = (�1j�2), then  � in
ludes jext(�)j = x1�1;� + x2�2;� . These assure that ea
h � elementin T must have either a �1 subelement or a �2 subelement, and thus the sum of the numberof these �1 subelements and the number of �2 subelements equals the number of � elementsin T .The set of 
ardinality 
onstraints determined by DTD D, denoted by 	D, 
onsists of the fol-lowing:|jext(r)j = 1; i.e., there is a unique root in any XML tree valid w.r.t. D;|
onstraints of  � for ea
h � 2 E; these assure that P (�) is satis�ed;|jext(�)j = Xxi�;� 02X�xi�;� 0 for ea
h � 2 (Enfrg)[fSg; this indi
ates that the set ext(�) in
ludesall � elements no matter where they o

ur in an XML tree;|x � 0 for any variable x used above; i.e., the number of elements (subelements) is nonnegative.We say that 	D is 
onsistent if and only if 	D admits an integer solution. That is, there is aninteger assignment to the variables of 	D su
h that all the linear integer 
onstraints in 	D aresatis�ed.As an example, let us 
onsider the simple DTDs DN1 and DN2 given above. The 
ardinality
onstraints determined by these DTDs are given below:	DN1 : tea
hers: jext(tea
hers)j = x1(tea
her; tea
hers) jext(tea
hers)j = x2(�1t ; tea
hers) �1t : jext(� 1t )j = x1(��; �1t ) + x2(�2t ; �1t ) �2t : jext(� 2t )j = x1(tea
her; �2t ) jext(� 2t )j = x2(�1t ; �2t ) tea
her: jext(tea
her)j = x1(tea
h; tea
her) jext(tea
her)j = x2(resear
h; tea
her)Journal of the ACM



30 � Wenfei Fan and Leonid Libkin tea
h: jext(tea
h)j = x1(subje
t; tea
h) jext(tea
h)j = x2(subje
t; tea
h) subje
t: jext(subje
t)j = x1(S; subje
t) resear
h: jext(resear
h)j = x1(S; resear
h)moreover,jext(tea
hers)j = 1 jext(tea
her)j = x1(tea
her; tea
hers) + x1(tea
her; �2t )jext(� 1t )j = x2(�1t ; tea
hers) + x2(�1t ; �2t ) jext(� 2t )j = x2(�2t ; �1t )jext(��)j = x1(��; �1t ) jext(tea
h)j = x1(tea
h; tea
her)jext(subje
t)j = x1(subje
t; tea
h) + x2(subje
t; tea
h)jext(resear
h)j = x2(resear
h; tea
her) jext(S)j = x1(S; subje
t) + x1(S; resear
h)all variables � 0.For example, x1(tea
her; tea
hers) indi
ates the number of tea
her 
hildren of all tea
hers nodes,and x1(tea
her; �2t ) stands for the number of tea
her 
hildren of nodes labeled � 2t . The 
ardinalityof ext(tea
her) equals the sum of x1(tea
her; tea
hers) and x1(tea
her; �2t ). Obviously, there is a uniquenode labeled tea
hers, i.e., the root. Hen
e we have x1(tea
her; tea
hers) = 1 sin
e the root has aunique tea
her 
hild. Thus jext(tea
her)j = 1 + x1(tea
her; �2t ).	D2: db: jext(db)j = x1(foo; db) foo: jext(foo)j = x1(foo; foo)moreover, jext(db)j = 1 jext(foo)j = x1(foo; db) + x1(foo; foo) all variables � 0.It is easy to 
he
k that 	DN1 is 
onsistent, whereas 	DN2 is not.We next show that 	D indeed 
hara
terizes the DTD D.Lemma 4.5. Let D be a simple DTD and 	D be the set of 
ardinality 
onstraints determinedby D. Then 	D is 
onsistent if and only if there is an XML tree T su
h that T j= D. Inaddition, for ea
h � 2 E, jext(�)j in T equals the value of the variable jext(�)j given by thesolution of 	D.Proof: First, assume that there is an XML tree T valid w.r.t. D. We de�ne an integer solutionof 	D as follows. For ea
h � 2 E [ fSg, let the value of the variable jext(�)j be the numberof � nodes in T . We pro
eed to assign integer values (number of 
ertain subelements) to othervariables by 
onsidering the stru
ture of P (�) for ea
h � 2 E. (1) If P (�) = �1 for some�1 2 E [ fSg, then let the value of the variable x1�1;� be the number of �1 subelements of all �elements in T . (2) If P (� 0) = (�1; �2), then let the value of the variable x1�1 ;� (resp. x2�2;� ) bethe number of the �1 (resp. �2) subelements of all � elements. In parti
ular, if �1 = �2, thenJournal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 31x1�1;� (resp. x2�2 ;�) has the number of the �rst (resp. se
ond) subelements of all � elements.(3) If P (� 0) = (�1j�2), then let the value of the variable x1�1 ;� (resp. x2�2;�) be the number of �1(resp. �2) subelements. If �1 = �2, then x1�1;� and x2�2;� may have any value as long as jext(�)j =x1�1;� +x2�2;� . We next show that this assignment is an integer solution of 	D. First, the value ofany variable is nonnegative, as it is the number of 
ertain elements (subelements) in T . Se
ond,jext(r)j = 1 as T has a unique root. Third, for ea
h � 2 E, by indu
tion on the stru
ture ofP (�), it 
an be veri�ed that the assignment satis�es  � sin
e T j= D and  � des
ribes P (�)quantitatively. Finally, the value of the variable jext(�)j is equal to the sum of all variables ofthe form xi�; � 0 (i 2 [1; 2℄) sin
e it 
ounts all the � elements in T no matter where they are. This
an be easily veri�ed by 
ontradi
tion. Thus the assignment is indeed a solution of 	D. Notethat by the de�nition of the solution, the value of the variable jext(�)j given by the solutionequals jext(�)j in T .Conversely, assume that 	D admits an integer solution. Observe that all these variables havenonnegative integer values be
ause of the inequalities in 	D. We show that there is an XMLtree T = (V; lab; ele; att; val; root) valid w.r.t. D. To do so, for ea
h � 2 E [ fSg, we 
reatejext(�)j many distin
t nodes and label them with � . We refer to this set of nodes as ext(�).In addition, for ea
h v 2 ext(�) and l 2 R(�), we 
reate a distin
t node, referred to as vl, andlabel it with l. Let V = [�2E[fSgext(�) [ [�2Efvl j v 2 ext(�); l 2 R(�)glab(v) = � � if v 2 ext(�) and � 2 E [ fSgl if v = vl for some vlatt(v; l) = � vl if vl 2 Vunde�ned otherwiseval(v) = � empty string if lab(v) is S or l, where l 2 Aunde�ned otherwiseIt is easy to verify that these fun
tions are well de�ned. Let root be the node labeled r, whi
h isunique by jext(r)j = 1 in 	D. Finally, to de�ne the fun
tion ele, we �rst mark nodes in ext(�)with variables in X� so that they 
an be grouped as subelements of 
ertain elements. For ea
hvariable xi�; � 0 in X� , we 
hoose xi�; � 0 many distin
t nodes labeled � and mark them with xi�; � 0 .Note that for ea
h � 2 E [ fSg, every � node in V n frootg 
an be marked on
e and onlyon
e by jext(�)j = Xxi�;� 02X�xi�;� 0 in 	D. Given these marked elements, starting at root, for ea
h� 2 E and ea
h � node v, we de�ne ele(v) as follows. If P (�) is �1 2 E [ fSg, then we 
hoosea distin
t �1 node y marked with x1�1;� and let ele(v) = [y℄. If P (�) = (�1; �2), then we 
hoosea �1 node y1 marked with x1�1;� and a �2 node y2 marked with x2�2 ;� , and let ele(v) = [y1; y2℄. IfJournal of the ACM



32 � Wenfei Fan and Leonid LibkinP (�) = (�1j�2), then we 
hoose a node y marked with either x1�1;� or x2�2 ;� and let ele(y) = [y℄.By 	D 
onstraints, ea
h element or text node in V n frootg 
an be 
hosen on
e and only on
eas a subelement of some other element. By indu
tion on the stru
ture of P (�), one 
an verifythat T de�ned in this way is indeed an XML tree and T j= D. Finally, by the de�nition of T ,jext(�)j in T equals the value of the variable jext(�)j given by the solution of 	D. 2It is straightforward to show that given any simple DTDD, the set 	D of 
ardinality 
onstraintsdetermined by D 
an be 
omputed in linear time. As a result, the size of 	D is linear in jDj.Chara
terizing DTDs and unary 
onstraints. To 
omplete our 
hara
terization, given aDTD D = (E; A; P; R; r) and a �nite set � of CUnaryK ;IC 
onstraints over D, we de�ne a system	(D; �) of integer 
onstraints. The system 	(D; �), referred to as the set of 
ardinality
onstraints determined by D and �, is de�ned to be:	DN [ C� [ f(jext(�)j > 0)! (jext(�:l)j > 0) j � 2 E; l 2 R(�)g;where DN is the simpli�ed DTD of D, 	DN and C� are the sets of 
ardinality 
onstraintsdetermined by DN and �, respe
tively. In 	(D; �) we treat jext(�:l)j as a variable.We say that 	(D; �) is 
onsistent if and only if 	(D; �) admits an integer solution.For example, re
all the DTDs D1 and D2, and the 
onstraint sets �1 and �2 (the empty set)given in Se
tion 1. It is easy to verify that neither 	(D1; �1) nor 	(D2; �2) is 
onsistent. Thisis 
onsistent with the observations made in Se
tion 1.Observe that 	(D; �) 
an be partitioned into two sets: 	(D; �) = 	l(D; �)[	
(D; �), where	l(D; �) 
onsists of linear integer 
onstraints, and 	
(D; �) 
onsists of 
onstraints of the form(jext(�)j > 0 ! jext(�:l)j > 0), whi
h are to ensure that every � element has an l attribute.Note that jext(�:l)j � jext(�)j is already in C�.It is easy to verify that 	(D; �) 
an be 
omputed in linear time in jDj and j�j, and thus itssize is also linear in jDj and j�j.We next show that 	(D; �) indeed 
hara
terizes D and �.Lemma 4.6. Let D be a DTD, � be a �nite set of CUnaryK ;IC 
onstraints over D, and 	(D; �)be the set of 
ardinality 
onstraints determined by D and �. Then 	(D; �) is 
onsistent if andonly if there exists an XML tree T su
h that T j= D and T j= �.Proof: Let DN be the simpli�ed DTD of D. By Lemma 4.3, it suÆ
es to show that 	(D; �)is 
onsistent if and only if there is an XML tree T su
h that T j= DN and T j= �.Suppose that there exists an XML tree T su
h that T j= DN and T j= �. We show thatJournal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 33	(D; �) admits an integer solution. By Lemma 4.4, we have T j= C�, where C� is the set of
ardinality 
onstraints determined by �. By Lemma 4.5, one 
an de�ne an integer solution of	DN . The assignment assures that for ea
h � 2 E, the value of the variable jext(�)j equalsthe number of all the � nodes in T . We extend the assignment as follows: for ea
h � 2 E andl 2 R(�), let the value of the variable jext(�:l)j be the number of distin
t l attribute values ofall the � nodes in T . Thus by T j= C�, this extended assignment satis�es C�. In addition, ifjext(�)j > 0 then jext(�:l)j > 0 as every � element in T has an l attribute. Hen
e the assignmentis indeed a solution to 	(D; �). Thus 	(D; �) is 
onsistent.Conversely, suppose that 	(D; �) admits an integer solution. We show that there is an XMLtree T su
h that T j= DN and T j= �. Observe that an integer solution to 	(D; �) is alsoa solution to 	DN . Thus by Lemma 4.5, there is T 0 = (V; lab; ele; att; val; root) su
h thatT 0 j= DN . Moreover, for ea
h � 2 E, jext(�)j in T 0 is equal to the value of the variable jext(�)jgiven by the assignment. We 
onstru
t another XML tree T 00 by modifying the de�nition ofthe fun
tion val of T 0 su
h that for ea
h � 2 E and l 2 R(�), jext(�:l)j in T 00 equals the valueassigned to the variable jext(�:l)j by the assignment. This is possible sin
e jext(�:l)j � jext(�)j isin C�, and the assignment is also a solution to C�. Moreover, by (jext(�)j > 0! jext(�:l)j > 0)in 	(D; �), every � element in T 00 
an have an l attribute. It is straightforward to verify thatT 00 j= C� and T 00 j= DN . Hen
e by Lemma 4.4, there exists an XML tree T su
h that T j= DNand T j= �. 2Given these lemmas, we pro
eed to prove Theorem 4.1.Proof of Theorem 4.1 (
ontinued): We en
ode an instan
e (D;�) of the 
onsisten
y problem forCUnaryK ;FK as an instan
e of LIP. By Lemma 4.6, it suÆ
es to en
ode 	(D; �) as an instan
e of LIP.Re
all that 	(D; �) 
an be partitioned into two sets: 	l(D; �) of linear integer 
onstraints,and 	
(D; �) of 
onstraints of the form (x > 0 ! y > 0). We �rst en
ode 	(D; �) witha set of linear integer 
onstraints. Let S be the set of all the pairs (x; y) for ea
h 
onstraint(x > 0! y > 0) in 	
(D; �). For ea
h subset X of S, we de�ne 	X to be	l(D; �) [ fx = 0; y = 0 j (x; y) 2 Xg [ fx � 1; y � 1 j (x; y) 2 S nXg:It is easy to see that 	(D; �) admits an integer solution if and only if there is some 	X thathas an integer solution. Observe that 	X 
an be represented as an instan
e of LIP sin
e anequality F1 = F2 is equivalent to inequalities F1 � F2 and F2 � F1. In addition, for all variablesx in 	(D; �), we have x � 0 in 	(D; �). Thus any solution of 	X is nonnegative. Hen
e we
an apply the result of [32℄ here, whi
h says that if 	X has an integer solution, then it hasone in whi
h the values of all variables are no larger than n (ma)2m+1, where a is the largestabsolute value of the 
onstants in 	X . In other words, 	X has an integer solution in whi
h thevalue of ea
h variable has a length in binary of at most 1 + dlogn+ (2m+ 1) � log(ma)e manybits, and the bounds on solutions for all 	X 's are the same. Let 
 be a number that in binaryJournal of the ACM



34 � Wenfei Fan and Leonid Libkinnotation has 1 + dlogn + (2m + 1) � log(ma)e many 1's. Observe that 
 
an be 
omputed inO(s logs) time. Thus we de�ne a new system � of linear integer 
onstraints that is the sameas 	l(D; �) ex
ept it also in
ludes 
 y � x for all (x > 0)! (y > 0) in 	
(D; �). It is easy toverify that 	(D; �) has an integer solution i� � has an integer solution. Indeed, if 	(D; �)has an integer solution then it has one bounded by 
. Thus the solution satis�es 
 y � x, i.e.,it is an integer solution to �. Conversely, if � has an integer solution, then it is also an integersolution of 	l(D; �) and moreover, if x > 0 then y > 0 by 
 y � x in �; that is, it is aninteger solution to 	(D; �). As � 
an be represented as an instan
e of LIP, we 
an de�ne anmatrix A	 and a ve
tor ~b	 of integers su
h that 	(D; �) has an integer solution if and only ifA	 ~x � ~b	 has an integer solution. Re
all that 	(D; �) 
an be 
omputed in linear time andits size, denoted by s, is linear in jDj and j�j. Thus the instan
e of LIP 
an be 
omputed inO(s2 � log s) time in jDj and j�j.This 
ompletes the proof of Theorem 4.1. 2The en
oding is not only interesting in its own right, but also useful in the 
onsisten
y analysesof CUnaryK ;FK and CUnaryK:;IC 
onstraints, as well as in resolving a spe
ial 
ase of CUnaryK ;FK 
onstraintimpli
ation.4.2 CUnaryK ;FK and CUnaryK:;IC 
onstraintsWe next establish the pre
ise 
omplexity bound on the 
onsisten
y problem for unary keys andforeign keys:Theorem 4.7. The 
onsisten
y problem for CUnaryK ;FK 
onstraints is NP-
omplete.Proof: Corollary 4.2 has shown that the problem is in NP. We show that it is NP-hard byredu
tion from a variant of LIP, namely, A~x = ~b;where for all i 2 [1; m℄, j 2 [1; n℄, aij 
oeÆ
ients are in f0; 1g, all bi elements are 1, and all xj
omponents are binary, i.e., in f0; 1g. It is known that the variant is also NP-
omplete [22℄.Given su
h an instan
e A~x = ~b, we de�ne a DTD D and a set � of CUnaryK ;FK 
onstraints overD su
h that there is an XML tree valid w.r.t. D and satisfying � if and only if A~x = ~badmits a binary solution. For i 2 [1; m℄, we use Fi to denote Xj2[1;n℄aij xj. We de�ne D to be(E; A; P; R; r), whereE = frg [ fFi j i 2 [1; m℄g [ fbi j i 2 [1; m℄g [ fV Fi j i 2 [1; m℄gJournal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 35[ fXij j i 2 [1; m℄; j 2 [1; n℄g [ fZij j i 2 [1; m℄; j 2 [1; n℄gA = fvg [ fAij j i 2 [1; m℄; j 2 [1; n℄gP (r) = F1; :::; Fm; b1; :::; bmP (Fi) = Xij1; :::; Xijl for i 2 [1; m℄, where Xij1; :::; Xijl is a sub-list of Xi1; :::; Ximsu
h that Xij is in P (Fi) i� ai j in A is 1P (Xij) = Zij j � for i 2 [1; m℄ and j 2 [1; n℄P (Zij) = V Fi for i 2 [1; m℄ and j 2 [1; n℄P (V Fi) = P (bi) = � for i 2 [1; m℄R(Zij) = fAijg for i 2 [1; m℄ and j 2 [1; n℄R(V Fi) = R(bi) = fvg for i 2 [1; m℄R(r) = R(Fi) = R(Xij) = ;An XML tree valid w.r.t. D has the form shown in Figure 4. Intuitively, Xij en
odes xj inFi, and Zij en
odes the value of Xij: Xij has value 1 if and only if Xij has a Zij 
hild. Theelement type V Fi is to 
ode the value of Fi. Observe that A~x = ~b has a solution if and only iffor ea
h row i 2 [1; m℄ there is exa
tly one 
olumn j 2 [1; n℄ su
h that aij = 1 and xj = 1. Inthe XML tree T representing the instan
e, this means that for every i there is exa
tly one Xijelement with a Zij 
hild. This is a
hieved by restri
ting Fi to have a unique V Fi des
endant,and thus to have value 1, by means of the attribute v of V Fi and 
onstraints. More spe
i�
ally,we in
lude the following in the set �:V Fi:v ! V Fi; bi:v ! bi; V Fi:v � bi:v; bi:v � V Fi:v:These ensure that Fi = bi = 1 as T has a unique bi node. In addition, to ensure that allo

urren
es of xj have the same value, the following are in �: for j 2 [1; n℄ and i; l 2 [1; m℄,Zij:Aij ! Zij; Zij:Aij � Zlj:Alj:These assert that Xij has value 1 if and only if Xlj equals 1. It is easy to see that the en
oding
an be done in PTIME in m and n. Moreover, A~x = ~b admits a binary solution if and only ifD has a valid XML tree satisfying �. Thus this is indeed a PTIME redu
tion from the variantof LIP. 2Re
all that in relational databases, it is 
ommon to 
onsider primary keys. That is, for ea
hrelation one 
an spe
ify at most one key, namely, the primary key of the relation. In the XMLsetting, the primary key restri
tion requires that for ea
h element type one 
an spe
ify at mostone key. This is the 
ase for \keys" spe
i�ed with ID attributes, sin
e in a DTD, at most oneID attribute 
an be spe
i�ed for ea
h element type. Under the primary key restri
tion, the
onsisten
y problem for a 
lass C of XML 
onstraints is to determine, given any DTD D andJournal of the ACM
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Fig. 4. A tree used in the proof of Theorem 4.7�nite set � of C 
onstraints in whi
h there is at most one key for ea
h element type (giveneither as keys or as part of foreign keys), whether there is an XML tree valid w.r.t. D andsatisfying �; similarly for impli
ation.One might think that the primary key restri
tion would simplify the 
onsisten
y analysis ofCUnaryK ;FK 
onstraints. However, it is not the 
ase.Corollary 4.8. Under the primary key restri
tion, the 
onsisten
y problem for CUnaryK ;FK re-mains NP-
omplete.Proof: The redu
tion from LIP given in the proof of Theorem 4.7 de�nes at most one key forea
h element type. 2A mild generalization of the en
oding above 
an establish the 
omplexity of the 
onsisten
yproblem for CUnaryK:;IC , the 
lass of unary keys, in
lusion 
onstraints and negations of keys. As weshall see shortly, the result for CUnaryK:;IC helps us study impli
ation of CUnaryK ;FK 
onstraints.Corollary 4.9. The 
onsisten
y problem for CUnaryK:;IC 
onstraints is NP-
omplete.Proof: Sin
e CUnaryK ;FK is a sub-language of CUnaryK:;IC , from Theorem 4.7 follows immediately thatthe 
onsisten
y problem for CUnaryK:;IC is NP-hard. We next show that the problem remains in NP.Let D be a DTD and � be a set of CUnaryK:;IC 
onstraints over D. We write � as �1 [ �2, where�1 is a set of unary keys and unary in
lusion 
onstraints over D, and �2 is a set of negations ofunary keys over D. Let 	(D;�1) be the system of linear inequalities determined by D and �1,as de�ned in the proof of Theorem 4.1. It admits an integer solution i� there exists an XMLJournal of the ACM
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e of DTDs � 37tree T su
h that T j= �1 and T j= D. We de�ne another system of linear inequalities, denotedby 	(D;�) and referred to as the system determined by D and �, to be	(D;�) = 	(D;�1) [ fjext(�:l)j < jext(�)j j :(�:l! �) 2 �2g:As 	(D;�) 
an be 
omputed in PTIME, it suÆ
es to show the following 
laim.Claim: There is an XML tree T su
h that T j= � and T j= D i� 	(D;�) has an integersolution.For if it holds, then the problem is in NP by redu
tion to LIP as in the proof of Theorem 4.1.We show the 
laim as follows. Assume that there exists a tree T su
h that T j= � and T j= D.Sin
e T j= �1, by Lemmas 4.5 and 4.6 and Theorem 4.1, it 
an be veri�ed that there is aninteger solution to 	(D;�1), the system of linear inequalities determined by D and �1, su
hthat the values of the variables jext(�)j and jext(�:l)j in 	(D;�1) given by the solution are the
ardinalities jext(�)j and jext(�:l)j in T . Note that for all element type � and attribute l of� in D, jext(�)j and jext(�:l)j are variables in 	(D;�1). Thus for ea
h �:l 6! � , the solutionalso assigns values to jext(�)j and jext(�:l)j. We 
laim that it is also a solution to 	(D;�).To see this, observe that it is always true that jext(�)j � jext(�:l)j in T sin
e every � elementin T 
ontributes at most one distin
t �:l value. Thus by T j= �2, there must be two distin
t� elements d1 and d2 in T su
h that d1:l = d2:l. Thus jext(�)j > jext(�:l)j. Therefore, allinequalities in 	(D;�) are satis�ed by the solution.Conversely, assume that 	(D;�) has an integer solution. Sin
e it is also a solution to 	(D;�1),again by Lemma 4.5 and 4.6 and Theorem 4.1, it 
an be veri�ed that there is a tree T su
hthat T j= D, T j= �1 and moreover, the 
ardinalities jext(�)j and jext(�:l)j in T are the valuesof the variables jext(�)j and jext(�:l)j in 	(D;�1) given by the solution. We 
laim that T j= �.Indeed, for any �:l 6! � in �2, we have jext(�)j > jext(�:l)j in T . Thus there must be twodistin
t � elements d1 and d2 in T su
h that d1:l = d2:l. That is, T j= �:l 6! � . Hen
e T j= Dand T j= �. 2It should be mentioned that the problem remains NP-hard under the primary key restri
tion.This 
an be veri�ed along the same lines as the proof of Corollary 4.8.Corollary 4.9 also tells us the 
omplexity of a spe
ial 
ase of the impli
ation problem for CUnaryK ;FK ,referred to as impli
ation problem for unary keys by CUnaryK ;FK 
onstraints:Theorem 4.10. The following is 
oNP-
omplete, even under the primary key restri
tion:given any DTD D, any set � of CUnaryK ;FK 
onstraints and any unary key ' over D, whether(D;�) ` '. Journal of the ACM



38 � Wenfei Fan and Leonid LibkinProof: Observe that (D;�) ` ' i� �[f:'g and D are not 
onsistent, i.e., there exists no XMLtree T su
h that T j= D, T j= � and T j= :'. Sin
e � [ f:'g is a set of CUnaryK:;IC 
onstraints,the impli
ation problem for unary keys by CUnaryK ;FK 
onstraints is in 
oNP by Corollary 4.9. Tosee that the problem is 
oNP-hard, re
all the en
oding given in the proof of Lemma 3.3. Ifthe set � of 
onstraints given is a set of CUnaryK ;FK 
onstraints, then that en
oding also serves asa redu
tion from the 
onsisten
y problem for CUnaryK ;FK to the 
omplement of (D;�) ` '. Thusfrom Theorem 4.1 follows that the impli
ation problem for unary keys by CUnaryK ;FK 
onstraints is
oNP-hard. Observe that the redu
tion in the proof of Lemma 3.3 de�nes at most one key forea
h element type. Thus given a set � of 
onstraints, if � satis�es the primary key restri
tion,then so does the set of all 
onstraints used in the redu
tion. Hen
e it remains 
oNP-hard evenunder the primary key restri
tion. 2Finally, we identify some PTIME de
idable 
ases of the 
onsisten
y and impli
ation problems.First, these problems for unary keys only are de
idable in linear time, by Theorem 3.5. We nextshow that given a �xed DTD D, the 
onsisten
y and impli
ation analyses be
ome simpler. Themotivation for 
onsidering a �xed DTD is be
ause in pra
ti
e, one often de�nes the DTD of aspe
i�
ation at one time, but writes 
onstraints in stages: 
onstraints are added in
rementallywhen new requirements are dis
overed.Corollary 4.11. For a �xed DTD, the following problems are de
idable in PTIME:|The 
onsisten
y problems for CUnaryK ;FK and CUnaryK:;IC .|Impli
ation of unary keys by CUnaryK ;FK 
onstraints.Proof: By Theorems 4.1, 4.10 and Corollary 4.9, an instan
e (D;�) of these problems 
an been
oded as a system � of linear integer 
onstraints. That is, these problems 
an be redu
edto 
he
king whether � admits an integer solution. The system � 
onsists of 
onstraints of C�(derived from �) and 	DN (derived from the simpli�ed DTD DN of D), and 
an be 
omputedin PTIME in jDj. Given a �xed DTD D, the number of variables in C� is bounded by the sizeof D (O(jDj2)), and the number of variables in 	DN is also �xed. Thus the number of variablesin � is bounded. It is known that when the number of variables in a system of linear integer
onstraints is bounded, 
he
king whether the system admits an integer solution 
an be done inPTIME [29℄. Putting these together, we have Corollary 4.11. 25. UNARY KEYS, INCLUSION CONSTRAINTS AND NEGATIONSIn Se
tion 4, we have shown that the 
onsisten
y problem for unary keys and foreign keys isNP-
omplete. In this se
tion, we extend the result by showing that the problem remains in NPwhen negations of these unary 
onstraints are allowed. That is, the problem is NP-
ompleteJournal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 39for CUnaryK:;IC:, the 
lass of unary keys, in
lusion 
onstraints and their negations. This helps ussettle the impli
ation problems for CUnaryK ;FK and the more general CUnaryK ;IC , the 
lass of unary keysand foreign keys, and the 
lass of unary keys and in
lusion 
onstraints, respe
tively. This isone of the reasons that we are interested in the 
onsisten
y problem for CUnaryK:;IC:.Theorem 5.1. The 
onsisten
y problem for CUnaryK:;IC: is NP-
omplete.While this theorem subsumes Theorem 4.7, the redu
tion is quite di�erent from the ni
e en-
oding with instan
es of LIP that we used for CUnaryK ;FK . In fa
t, while typi
ally NP-
ompleteproblems are easily shown to be in NP, and only the redu
tion from a known NP-
ompleteproblem is diÆ
ult, for the 
onsisten
y problem for CUnaryK:;IC:, the opposite is the 
ase, and theproof of membership in NP is a little involved (even assuming the en
oding of keys and in
lusion
onstraints by instan
es of LIP given in the previous se
tion). We 
annot redu
e the problemdire
tly to LIP as before, be
ause there is no dire
t 
onne
tion between �i:li 6� �j:lj and the
ardinalities jext(�i)j, jext(�j)j, jext(�i:li)j and jext(�j :lj)j in an XML tree.Proof: We develop an NP algorithm for determining the 
onsisten
y of CUnaryK:;IC: 
onstraints.The algorithm takes advantage of another en
oding of CUnaryK:;IC: 
onstraints with linear integer
onstraints, whi
h 
hara
terizes a set interpretation of unary in
lusion 
onstraints and theirnegations. Let D be a DTD and � be a set of CUnaryK:;IC: 
onstraints over D. We partition �into �1 and �2, where �1 is a set of CUnaryK:;IC 
onstraints, and �2 
onsists of negations of unaryin
lusion 
onstraints over D. Let 	(D;�1) be the system of linear inequalities determined byD and �1, as des
ribed in the proof of Corollary 4.9. Let l1; : : : ; ln be an enumeration of allattributes in D. Without loss of generality, assume that li is an attribute of element type �i(note that �i's need not be distin
t). Let U = (uij)ni;j=1 and V = (vij)ni;j=1 be two matri
eswhose elements are nonnegative integers. We say that they admit a set representation if thereis a family of �nite sets A1; : : : ; An su
h thatuij = jAi \ Aj j; vij = jAi n Aj j :We extend 	(D;�1) with new variables uij; vij, and equalities:|jext(�i:li)j = uii = uij + vij for all i; j 2 [1; n℄;|vij = 0 for all �i:li � �j:lj in �1, and moreover, vii = 0;|vij > 0 for all �i:li 6� �j:lj in �2.Let us denote the new system by 	(D;�) and refer to it as the system determined by D and �.Observe that 	(D;�) 
an be simply 
onverted to a system of linear inequalities (by treatingan equality as two inequalities). Journal of the ACM



40 � Wenfei Fan and Leonid LibkinThe intended interpretation for the variable uij is j ext(�i:li) \ ext(�j:lj) j, and j ext(�i:li) next(�j :lj) j for vij. Thus vij > 0 in 	(D;�) says that ext(�i:lj) 6� ext(�j :lj) for all �i:li 6� �j:lj in�2.The lemma below reveals the 
onne
tion between the en
oding and the 
onsisten
y problemwe are investigating.Lemma 5.2. The linear system 	(D;�) determined by DTD D and 
onstraints � has aninteger solution with U;V having a set representation if and only if there is an XML tree Tsu
h that T j= D and T j= �.Proof: Let D be a DTD, �1 be a set of CUnaryK:;IC 
onstraints over D, �2 be a set of negationsof unary in
lusion 
onstraints over D, � = �1 [ �2, and 	(D;�) be the system of linearinequalities determined by D and � as des
ribed above. We show that 	(D;�) has an integersolution with U;V having a set representation i� there is an XML tree T su
h that T j= � andT j= D.Assume that there exists an XML tree T su
h that T j= � and T j= D. Sin
e T j= �1,as in the proof of Corollary 4.9 we 
an de�ne an integer solution to 	(D;�1), the system oflinear inequalities determined by D and �1. We extend the solution as follows: let uij bejext(�i:li) \ ext(�j :lj) j, and vij be jext(�i:li) n ext(�j:lj) j. It is easy to verify that this is indeeda solution to 	(D;�) with U;V having a set representation.Conversely, assume that 	(D;�) has an integer solution with U;V having a set representation.Then there are �nite sets A1; : : : ; An su
h thatuij = jAi \ Aj j; vij = jAi n Aj j :Again as in the proof of Corollary 4.9, we 
reate a tree T su
h that T j= �1 and T j= D. Inaddition, we de�ne the val fun
tion in T su
h that ext(�i:li) = Ai for i 2 [1; n℄. This is possiblesin
e jext(�i:li)j = uii = uij + vij is in 	(D;�) for all i; j 2 [1; n℄. Be
ause vij > 0 is in 	(D;�)for all �i:li 6� �j:lj in �2, we have j ext(�i:li) n ext(�j:lj) j> 0. That is, T j= �i:li 6� �j:lj. ThusT j= �2. This 
ompletes the proof of the lemma. 2It remains to show that one 
an 
he
k in NP whether the system 	(D;�) has an integer solutionwith U;V having a set representation. We start with a lemma.Lemma 5.3. Given 	(D;�), one 
an 
ompute, in polynomial time, a number M su
h that	(D;�) has an integer solution with U;V having a set representation if and only if it admitssu
h a solution with all variables being bounded by M .Proof: To prove the lemma, we need to extend 	(D;�). Let � be the set of fun
tions � :f1; : : : ; ng ! f0; 1g whi
h are not identi
ally 0, where n is the number of attributes in D. ForJournal of the ACM
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e of DTDs � 41every �, we introdu
e a new variable z� (note that the number of variables is now exponentialin the size of the problem). The intended interpretation of z� is the 
ardinality of\i:�(i)=1 ext(�i:li) n [j:�(j)=0 ext(�j :lj):We now extend 	(D;�) to 	0(D;�) by adding the following equalities:uij = X�:�(i)=�(j)=1 z�; vij = X�:�(i)=1;�(j)=0 z�:Clearly, 	(D;�) has an integer solution with U;V having a set representation i� 	0(D;�) hasan integer solution, as the variables z� des
ribe all possible interse
tions of ext(�i:li) and their
omplements, and the equalities above show how to re
onstru
t uij and vij from them. Wethus must show that if 	0(D;�) has an integer solution then it must have one with a boundon uij; vij, whi
h is polynomial (in terms of the size of 	(D;�)). For that, re
all [32℄ that ifa system of k linear inequalities with l variables and all 
oeÆ
ients at most 
 has an integersolution, then it has an integer solution in whi
h none of the variables ex
eeds l(
k)2k+1. Thus,M 
an be taken to be a number that in binary notation has 1 + dlog l + (2k + 1) � log(
k)emany 1's. Note that the number of variables, l, of 	0(D;�) is at most exponential in the sizeof 	(D;�), and the number of equalities, k, is at most polynomial. This shows that M 
an befound in polynomial time, and thus proves the lemma. 2Given Lemmas 5.2 and 5.3, let us go ba
k to the proof of that 
onsisten
y analysis of � overD is in NP. We present an NP algorithm for determining the 
onsisten
y of � over D. Ournondeterministi
 ma
hine 
omputes M given by Lemma 5.3, and then guesses a solution withall the 
omponents bounded by M . It then tests if the U;V part has a set representation.To do so, we transform U;V, in polynomial time, into another matrix W, and then run anondeterministi
 polynomial time ma
hine on W. If it returns `yes', then U;V have a setrepresentation, and thus by Lemma 5.2 the answer to whether � is 
onsistent over D is `yes'.Let K =M � n, where n is the number of all attributes in D. We now de�ne the matrix W. Itis a 2n� 2n matrix, withwij = 8>><>>: uij if i; j � nvi;j�n if i � n; j > nvi�n;j if i > n; j � nK � ui�n;j�n � vi�n;j�n � vj�n;i�n if i; j > nRe
all the INTERSECTION PATTERN problem: Given an m � m matrix A, are there setsY1; : : : ; Ym su
h that aij =jYi\Yj j? This problem is known to be NP-
omplete (see, e.g., [22℄).Journal of the ACM



42 � Wenfei Fan and Leonid LibkinWe now show the following: The INTERSECTION PATTERN problem returns `yes' on inputW i� U;V have a set representation.First, assume U;V have a set representation. That is, there are �nite sets A1; : : : ; An su
h thatuij = jAi \ Aj j; vij = jAi n Aj j :By the assumption, all entries in U;V are bounded by M , and hen
e we may assume that allsets in the representation are subsets of a set U of 
ardinality K. Let m = 2n and de�ne Yi tobe Ai for i � n, and U n Ai�n for i > n. Then W is the interse
tion pattern for this family ofsets, and thus the INTERSECTION PATTERN problem returns `yes' on W.Next, assume that the INTERSECTION PATTERN returns `yes' on W, so we have a familyof sets Y1; : : : ; Y2n for whi
h W is the interse
tion pattern. Let U be the union of all Yj's. Weshow Yn+i = U n Yi for all i � n. We have wi;n+i = vii = 0, and thus Yn+i � U n Yi. Moreover,we have jYi [ Yn+i j= wii + wn+i;n+i = K. We next show that for every i; j � n it is the 
asethat Yi [ Yn+i = Yj [ Yn+j (and thus equals U). Note that both Yi [ Yn+i and Yj [ Yn+j areK-element sets. Furthermore,(Yi [ Yn+i) \ (Yj [ Yn+j) = (Yi \ Yj) [ (Yi \ Yn+j) [ (Yn+i \ Yj) [ (Yn+i \ Yn+j):Observe that these four sets are pairwise disjoint, and their 
ardinalities are wij = uij; wi;j+n =vij; wi+n;j = vji and wi+n;j+n = K �uij � vij � vji, respe
tively. Thus, the 
ardinality of the set(Yi [ Yn+i) \ (Yj [ Yn+j) is K, and sin
e the 
ardinality of ea
h Yi [ Yn+i and Yj [ Yn+j is K,we 
on
lude Yi [ Yn+i = Yj [ Yn+j. This �nally shows that U has 
ardinality K, and thus ea
hYn+i is U n Yi for all i � n. This immediately gives us a set representation for U;V.To 
on
lude, on
e we guessed a bounded solution to 	(D;�) (all 
omponents are at most M),we pro
eed to 
ompute in polynomial time the matrix W from U and V, and then run a non-deterministi
 polynomial time algorithm on it to 
he
k ifW is an interse
tion pattern. Puttingeverything together, we see that this nondeterministi
 polynomial time algorithm returns `yes'i� there is a bounded solution (and thus, there is a solution) to 	(D;�) for whi
h U;V havea set representation. By Lemma 5.2, this happens if and only if there exists an XML tree Tsu
h that T j= D and T j= �.This 
ompletes the proof of Theorem 5.1. 2We next investigate impli
ation problems.Theorem 5.4. For ea
h of CUnaryK ;IC and CUnaryK ;FK , the impli
ation problem is 
oNP-
omplete,even under the primary key restri
tion.Journal of the ACM



On XML Integrity Constraints in the Presen
e of DTDs � 43Proof: The impli
ation problem for CUnaryK ;IC is to determine, for a DTD D, a set � of CUnaryK ;IC
onstraints, and a 
onstraint ' (unary key or unary in
lusion 
onstraint), whether (D;�) ` '.Note that (D;�) ` ' i� there is no XML tree T with T j= D ^ V� ^ :', and � [ f:'g isa set of CUnaryK:;IC: 
onstraints. Thus by Theorem 5.1, the impli
ation problem for CUnaryK ;IC is in
oNP. One 
an show that it is 
oNP-hard under the primary key restri
tion using an argumentsimilar to the proof of Theorem 4.10. Similarly for the impli
ation problem for CUnaryK ;FK . 2Finally, along the same lines as Corollary 4.11, we show the following:Corollary 5.5. For a �xed DTD, the following problems 
an be determined in PTIME:|The impli
ation problem for CUnaryK ;FK .|The 
onsisten
y problem for CUnaryK:;IC:.Proof: Let D be a DTD and � be a set of CUnaryK:;IC: 
onstraints over D. Let 	0(D;�) be thesystem of linear inequalities determined by D and �, as de�ned in the proof of Theorem 5.1.As in the proof of Corollary 4.11, one 
an show that the number of variables in 	0(D;�) isbounded by a fun
tion on the size of D. Therefore, when D is �xed, the number of variables in	0(D;�) is bounded by a 
onstant. It is known that when the number of variables in a systemof linear inequalities is bounded, it 
an be determined in PTIME whether the system admitsan integer solution [29℄. By the proofs of Lemma 5.2 and Theorem 5.1, 	0(D;�) admits aninteger solution if and only if there is an XML tree T su
h that T j= D and T j= �. ThusCorollary 5.5 follows from Theorems 5.1 and 5.4. 26. CONCLUSIONWe have studied the 
onsisten
y problems asso
iated with four 
lasses of integrity 
onstraintsfor XML. We have shown that in 
ontrast to its trivial 
ounterpart in relational databases, the
onsisten
y problem is unde
idable for CK ;FK , the 
lass of multi-attribute keys and foreign keys.This demonstrates that the intera
tion between DTDs and key/foreign key 
onstraints is ratherintri
ate. This negative result motivated us to study CUnaryK ;FK , the 
lass of unary keys and foreignkeys, whi
h are 
ommonly used in pra
ti
e. We have developed a 
hara
terization of DTDs andunary 
onstraints in terms of linear integer 
onstraints. This establishes a 
onne
tion betweenDTDs, unary 
onstraints and linear integer programming, and allows us to use te
hniquesfrom 
ombinatorial optimization in the study of XML 
onstraints. We have shown that the
onsisten
y problem for CUnaryK ;FK is NP-
omplete. Furthermore, the problem remains in NP forCUnaryK:;IC:, the 
lass of unary keys, unary in
lusion 
onstraints and their negations.We have also investigated the impli
ation problems for XML keys and foreign keys. In par-Journal of the ACM



44 � Wenfei Fan and Leonid Libkinmulti-attribute unary primary, unary DTD �xed, unary multi-attributekeys, foreign keys keys, foreign keys keys, foreign keys keys, foreign keys keys only
onsisten
y unde
idable NP-
omplete NP-
omplete PTIME linear timeimpli
ation unde
idable 
oNP-
omplete 
oNP-
omplete PTIME linear timeFig. 5. The main results of the paperti
ular, we have shown that the problem is unde
idable for CK ;FK and it is 
oNP-
omplete forCUnaryK ;FK 
onstraints. Several PTIME de
idable 
ases of the impli
ation and 
onsisten
y problemshave also been identi�ed. The main results of the paper are summarized in Figure 5.It is worth remarking that the unde
idability and NP-hardness results also hold for other s
hemaspe
i�
ations beyond DTDs, su
h as XML Data [27℄, XML S
hema [36℄ and the generalizationof DTDs proposed in [33℄. It remains open, however, whether the upper bounds (i.e., thede
idability and NP membership results) are still inta
t in these settings.This work is a �rst step towards understanding the intera
tion between DTDs and integrity
onstraints. A number of questions remain open. First, we have only 
onsidered keys andforeign keys de�ned with XML attributes. We expe
t to extend te
hniques developed herefor more general s
hema and 
onstraint spe
i�
ations. Se
ond, other 
onstraints 
ommonlyfound in databases, e.g., inverse 
onstraints, deserve further investigation. Third, a lot of workremains to be done on identifying tra
table yet pra
ti
al 
lasses of 
onstraints and on developingheuristi
s for 
onsisten
y analysis. Finally, a related proje
t is to use integrity 
onstraints todistinguish good XML design (spe
i�
ation) from bad design, along the lines as normalizationof relational s
hemas. Coding with linear integer 
onstraints gives us de
idability for someimpli
ation problems for XML 
onstraints, whi
h is a �rst step towards a design theory forXML spe
i�
ations.A
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