
Data Exchange and Incomplete Information

Leonid Libkin
University of Toronto and University of Edinburgh

libkin@cs.toronto.edu and libkin@inf.ed.ac.uk

Dedicated to the memory of Alberto Mendelzon

ABSTRACT

Data exchange is the problem of finding an instance of a
target schema, given an instance of a source schema and
a specification of the relationship between the source and
the target, and answering queries over target instances in a
way that is semantically consistent with the information in
the source. Theoretical foundations of data exchange have
been actively explored recently. It was also noticed that the
standard certain answers semantics may behave in very odd
ways.

In this paper I explain that this behavior is due to the fact that
the presence of incomplete information in target instances
has been ignored; in particular, proper query evaluation tech-
niques for databases with nulls have not been used, and the
distinction between closed and open world semantics has not
been made. I present a concept of target solutions based on
the closed world assumption, and show that the space of all
solutions has two extreme points: the canonical universal
solution and the core, well studied in data exchange. I show
how to define semantics of query answering taking into ac-
count incomplete information, and show that the well-known
anomalies go away with the new semantics. The paper also
contains results on the complexity of query answering, up-
per approximations to queries (maybe-answers), and various
extensions.

1. Introduction

Data exchange is the problem of finding an instance of a
target schema, given an instance of a source schema and a
specification of the relationship between the source and the
target. This is an old problem that has received renewed
attention over the past few years. Commercial strength sys-
tems have been built [24], and theoretical foundations have
been developed recently, starting with the influential papers
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by Fagin, Kolaitis, Miller, and Popa [10, 11]. A survey of
the area was presented in the most recent PODS invited talk
[18].

Here we revisit the basics of relational data exchange, as
described in [10, 11, 18]. Adata exchange setting is a
triple (σ, τ,Σ) whereσ andτ aresource andtarget schemas
(relational vocabularies), andΣ is a set ofsource-to-target
dependencies (STDs),

ψτ (x̄, z̄) :– ϕσ(x̄, ȳ),

whereϕσ is a formula overσ andψτ is a conjunction of
atomicτ -formulae (here we follow the notation of [6]: the
above is shorthand for FO formulae overσ ∪ τ of the form
∀x̄∀ȳ

(

ϕσ(x̄, ȳ) → ∃z̄ ψτ (x̄, z̄)
)

).

Consider, for example, a schemaσ with two ternary rela-
tionsR1 andR2 and a schemaτ with one ternary relation
V . SupposeR1 andR2 are databases of two different air-
lines, having attributes (departurecity, arrival city, flight#).
Assume these airlines merge and they want to offer the same
flights as the first airline, and for each route of the second
airline they want to make sure that the cities remain reach-
able with at most one change of planes. Assume thatV has
attributes (departurecity, arrival city, aircraft type). Then
this situation is captured by the following STDs:

V (x1, x2, z) :– R1(x1, x2, y)
V (x1, z1, z), V (z1, x2, z

′) :– R2(x1, x2, y)

If we have a source instanceS, then our goal is to find a target
instanceT and answer queries written overτ in a way that is
semantically consistent with the information inS. The main
contributions of [10, 11] and others were as follows:

• They defined the concept of a solution (an instanceT
such that(S, T ) |= Σ) and the concept of auniversal
solution (these are solutions that in a certain sense are
more general than arbitrary ones).

• Two universal solutions of particular importance were
studied: thecanonical (universal) solution, and the
core of universal solutions. For example, ifR1

has tuples(JFK,CDG,001) and (JFK,CDG,003),
and R2 has one tuple(JFK,LHR,005), then the
canonical solution would have tuples(JFK,CDG,⊥1),
(JFK,CDG,⊥2), corresponding to the first STD (that
ensures there are flights from JFK to CDG), and
(JFK,⊥3,⊥4), and (⊥3,LHR,⊥5), corresponding to



the second STD (that ensures LHR is reachable from
JFK with one stop). The core, instead of two tuples
corresponding to the JFK–CDG flights, will have just
one,(JFK,CDG,⊥).

Elements⊥i here arenull values: we know that some
values need to be put in the target instance, but we do
not yet have their values.

• The semantics of answering queries was defined in terms
of certain answers, and it was shown that the canonical
solution and the core are good for answering conjunc-
tive queries (with inequalities).

These results provided the basis for extensions dealing with
rewritability, query answering, schema composition, algo-
rithmic issues, other data models, etc [4, 6, 12, 13, 23].
However, the main concepts of solutions and query answer-
ing semantics still appear quite ad hoc. Furthermore, they
give rise to some well known anomalies of the standard
certain-answers semantics as introduced in [10]. Here we
recall perhaps the strangest one [4]. A data exchange setting
is copying if σ = {R1, . . . , Rn}, τ = {R′

1, . . . , R
′
n} andΣ

consists of STDs

R′
i(x̄) :– Ri(x̄)

(that is,Ri andR′
i have the same arity). In other words, it

says: copy eachRi intoR′
i. And yet in this setting one can

define FO queries over the target that cannot be answered in
FO at all, if the semantics of [10] is used!

It is natural to assume that the reason for such anomalies lies
in some basic problems with the setting such as the definition
of solutions and query answering semantics. In fact [11] tried
to remedy this partially by introducing a different, ratherad
hoc, certain-answers semantics which avoided some of the
problems mentioned above, but did exhibit some anomalous
behavior as well. This led Kolaitis and others [7] to ask:
“what is so sacred about this [certain answers] semantics?”

My goal is to answer this question, and, more generally,
re-think the basics of data exchange. My main point is
that while target instances are tables with nulls, techniques
for handling data with incomplete information have been
completely ignored in data exchange: certain answers are
defined in [10] with respect to sets of solutions as if each
were a relationwithout null values.

But it is well known that answering queries over databases
with incomplete information must be done with care: not
treating nulls as such leads to semantically incorrect answers
[2, 17, 22, 30]. Hence, we define the notions of solutions
and query answering in data exchange treating solutions as
databases with nulls.

Once the view of solutions as instances with nulls is adopted,
we still need to address two more issues.

1. Closed vs Open World Assumption (CWA vs OWA):
this is the standard issue in databases with incomplete
information that needs to be clarified before the se-
mantics can be defined [26, 17]. CWA states that the
database is closed to adding new facts except those

consistent with one of the incomplete tuples in it; OWA
opens the database to such facts.

In my view (explained below), CWA is the right as-
sumption in data exchange, although most previous
papers defined OWA-based semantics.

2. Query answering semantics. Indeed there is nothing
sacred about the certain answers semantics; more than
25 years ago, Lipski [22] already suggested using both
certain andmaybe answers in the context of partial
information, as providing lower and upper approxima-
tions to query results. Even more advanced forms of
approximations were proposed [9, 8, 15, 21] but here
we use the basic lower and upper ones.

Before outlining the main contributions, let me add two com-
ments on points 1) and 2) above. First, the reason for adopting
CWA is that in data exchange we need to move data from
source to target based on STDs. Hence, query answering
must be based on such data, and not data that can later be
added to target instances. This is the CWA approach.

Second, for query answering, the notions of certain and
maybe answers can be applied at two different levels: at
the level of each individual solution (which is a table with
nulls), and at the level of all solutions, to combine individual
answers into one. The former has always been ignored in the
context of data exchange, while for the latter only the lower
approximation (certain answers) has been considered [10].

Below is a summary of the paper.

1. I present a small number of requirements of what it
means to be a good CWA solution. With these prop-
erly formalized, CWA solutions are characterized, and
their space is shown to have two extreme points: a
unique largest solution, that happens to be the canoni-
cal solution of [10], and a unique smallest solution, that
happens to be the core [11].

2. Combining certain/maybe answers at the levels of in-
dividual solutions and all solutions gives us four rea-
sonable semantics, and these are characterized as cer-
tain/maybe answers over the core/canonical solution.

Thus, the problem of query answering in data exchange
is reduced to the well-studied problem of query answer-
ing over databases with incomplete information, while
these databases are the core and the canonical solution,
which we know well how to construct.

It is further shown that the new semantics does not
exhibit the anomalous behavior explained above.

3. With the problem of query answering in data exchange
reduced to that of finding certain or maybe answers
over canonical solutions and cores, we study its com-
plexity. Certain answers-based semantics are shown
to be coNP-complete, and maybe answers-based se-
mantics are NP-complete (in the size of the source in-
stance). In special cases, such as conjunctive queries,
our semantics fits in nicely with that of [11, 10] (which
concentrated on conjunctive queries). We also look at
representations for maybe-answers to queries.



4. Two extensions are considered: the OWA semantics
(which is shown to be undecidable even for simple FO
queries), as well as adding keys and foreign keys to
data exchange settings.

Organization. Notations are given in Section 2. We
present the CWA-based notion of solutions in Section 3. In
Section 4 we define the semantics of query answering, and
in Sections 5 and 6 we study its complexity and the special
cases of monotone and conjunctive queries. In Section 7
we give a representation mechanism for maybe-answers. In
Section 8 we consider extensions (OWA semantics and target
constraints). In Section 9 we discuss practical applicability
of these results. Section 10 points out some directions for
future work. Due to space limitations, only a few proofs are
given. Complete proofs are in the full version available from
the author.

2. Notations

Data exchange settings

The following definitions are standard [10, 11, 4, 18]. A
data exchange setting is a triple (σ, τ,Σ) whereσ andτ
are the source and the target schemas respectively (that is,
sets of relation names with associated arities), andΣ is a
set ofsource-to-target dependencies (STDs) of the form
ψτ (x̄, z̄) :– ϕσ(x̄, ȳ), whereϕσ is a first-order (FO) formula
over vocabularyσ, andψτ is a conjunction of atomicτ -
formulae. We assume thatσ andτ have no relation names
in common, and that elements of the source instance come
from a countably infinite domainConst (in data exchange
terminology, calledconstants). New elements created in
target instances are null values, and we assume that nulls
come from a countably infinite domainNull disjoint from
Const. Elements ofConst are typically denoted by lowercase
letters, and elements ofNull by⊥ with sub/superscripts.

There are some minor differences between this setting and
[10, 11]. Frist, as in [4], we letϕσ ’s be FO formulae (as
opposed to [10, 11] where they were restricted to conjunctive
queries). Also, as in [4], we shall assume that one can
distinguish nulls from constants. One way of enforcing this
is to assume that we have a unary predicate testing for nulls,
like theIS NULL condition in SQL.

Given a data exchange setting(σ, τ,Σ) and a source instance
S, a target instanceT is called asolution forS if (S, T ) |= Σ.
More precisely, for everyψ(x̄, z̄) :– ϕ(x̄, ȳ) in Σ and every
pair of tuples̄a, b̄ such thatϕ(ā, b̄) holds inS, there is a tuple
c̄ such thatψ(ā, c̄) holds inT .

Given two instancesT, T ′ over τ , a homomorphism1 h :
T → T ′ is a mappingh from Null to Null such that for each
relation symbolR in τ and each tuplēt in the interpretation
RT of R in T , the tupleh(t̄) is in RT

′

, the interpretation
of R in T ′. (Of course byh(t̄) we mean the tuple obtained
1This is a stricter notion than the one used in [10, 18] and
others. We discuss this at the end of the section.

from t̄ by replacing each null⊥ in it by h(⊥), and leaving
the constants intact.)

We say thatT ′ is a subinstance ofT if for each relation
symbolR ∈ τ and its interpretationsRT andRT

′

, we have
RT

′

⊆ RT . In this case we also writeT ′ ⊆ T .

A 1-1 homomorphism is just a renaming of nulls. We say
thatT is contained in T ′ if there is a renaming of nullsh
such thath(T ) ⊆ T ′, and we shall identify instances which
are the same up to renaming of nulls.

Canonical universal solution and the core

Two solutions play a special role in data exchange: the
canonical universal solution [10], and the core [11]. We
start with the definition of the canonical universal solu-
tion, following the presentation of [4]. Let(σ, τ,Σ) be a
data exchange setting, andS a source instance. For each
STDψ(x̄, z̄) :– ϕ(x̄, ȳ) and for each pair of tuples̄a, b̄ such
thatϕ(ā, b̄) holds inS, create fresh tuples of distinct nulls
⊥̄ = ⊥̄(ϕ,ψ,ā,b̄) (so that|⊥̄| = |z̄|) and put tuples in the target
so thatψ(ā, ⊥̄) holds. We recall thatψ is a conjunction of
atomic formulae. The result is thecanonical (universal)

solution CanSol
(σ,τ,Σ)(S). Typically the data exchange

setting is understood from the context, and we write just
CanSol(S).

For example, letσ = {E}, τ = {R}, with bothE andR
binary, and letΣ containR(x, z) :– E(x, y). Then ifE has
tuples{(a, b1), (a, b2)}, then the canonical solution would
have tuples{(a,⊥1), (a,⊥2)} in relationR.

A subinstanceT ′ of T is a core of T if there is a homo-
morphismh : T → T ′ but no homomorphism fromT to a
proper subinstance ofT ′ [16, 11]. Cores always exist and
even though an instance may have multiple cores, they are all
isomorphic (that is, the same up to renaming of nulls) [16].
Thus we can speak of the core ofT . We shall denote the core
of CanSol

(σ,τ,Σ)(S) by Core
(σ,τ,Σ)(S) (again, omitting

(σ, τ,Σ) if it is understood from the context).

In the previous example, both{(a,⊥1)} and{(a,⊥2)} are
cores; of course they are isomorphic so we can say that
{(a,⊥)} is the core of{(a,⊥1), (a,⊥2)}.

For arbitrary structures, computing cores is intractable [16],
but for a fixed setting(σ, τ,Σ), Core(S) can be constructed
in time polynomial inS [11]2.

Relations with incomplete information

We very briefly review some standard definitions [2, 17]. A
database instance with incomplete information is an instance

2Results of [11] refer to the setting where homomorphism
may map nulls to constants. However if we, in linear time,
modify all STDs so that they also collect nulls in a unary
relation, then homomorphisms from CanSol(S), even in the
setting of [11], map nulls to nulls, and complexity bounds of
[11] apply.



whose domain is a subset ofConst ∪ Null. Nulls are treated
as “unknown” (as opposed to “nonexistent”) values [30]. A
valuation is a partial mapv : Null → Const. Given an
instanceT with incomplete information and a valuationv
defined on all the nulls present inT , let v(T ) stand for the
instance of the same schema overConst in which every null
⊥ present inT is replaced byv(⊥). We then define

Rep(T ) = {v(T ) | v is a valuation},

wherev ranges over all valuations defined on all nulls present
in T . Note thatRep(T ) is a potentially infinite object (e.g., if
T has a unary relationU with one tuple{⊥}, thenRep(T ) =
{{c} | c ∈ Const}).

In order to evaluate a queryQ on an instance with nulls
(whereQ comes from a language that works on instances
without nulls, e.g., a fragment of FO or relational algebra),
one normally considers{Q(R) | R ∈ Rep(T )}. To rep-
resent this set (even for an FO queryQ), one needs rather
complicatedconditional tables [17]. Instead of exact rep-
resentation, one may use lower and upper approximations,
namelycertain andmaybe answers, defined by:

2Q(T ) =
⋂

{Q(R) | R ∈ Rep(T )}

3Q(T ) =
⋃

{Q(R) | R ∈ Rep(T )}.

That is, certain answers2Q(T ) contain tuples present in
the answer no matter what values are assigned to nulls, and
maybe answers3Q(T ) contain tuples present in at least one
answer toQ for some assignment of values to nulls. Notice
that2Q(T ) is a finite object (since it is contained inQ(v(T ))
for every valuationv), but3Q(T ) may well be infinite and
thus some finite representation of it needs to be found.

Remark. In [10, 18] and others, homomorphisms are map-
pings fromNull to Null∪Const. Since we assume that there
is a unary predicate that plays the role ofIS NULL, such pred-
icate has to be preserved by homomorphisms of structures
and thus homomorphisms under those assumptions should
map nulls to nulls. Note that each homomorphismh in the
sense of [10, 11] can be factored asv ◦ g, whereg is a homo-
morphism as we define it, andv is a partial valuation. Hence
all the same complete instances will be arising asRep(T ),
regardless of the definition, but the definition we use helps
separate concepts related to homomorphisms and valuations.
From the technical point of view, our definition does not im-
pose any restrictions, as we could drop the assumption that
homomorphisms preserve nulls and obtain exact analogs of
all the results given here.

3. Data exchange: solutions

The main idea of solutions under the CWA is that every fact in
the target instance is directly justified by the source instance
and the STDs. We formulate this – first, at a rather informal
level – as follows:

1. For all nulls, their presence is justified by the source
instance and the STDs.

2. Justifications for nulls should not be overused: that is,
each justification for producing a null does not generate
multiple nulls.

3. Each fact in the target instance is justified by the source
instance and the STDs. That is, solutions should not
invent new facts compared to what can be inferred if
no additional assumptions are made about the nulls.

We now formalize these notions. Fix a data exchange setting
(σ, τ,Σ) whereΣ is a collection

{ψi(x̄i, z̄i) :– ϕi(x̄i, ȳi) | 1 ≤ i ≤ m}.

Let S be a source instance. A justification for a null overS
consists of:

1. an STDψi(x̄i, z̄i) :– ϕi(x̄i, ȳi) in Σ,

2. a tuple(ā, b̄) witnessing its body (i.e.,ϕi(ā, b̄)), and

3. a position in the head, amonḡzi, corresponding to a
null to be introduced.

Formally, justification for a null over S is a quadruple
(i, ā, b̄, k) where i ≤ m, ā and b̄ are tuples such that
S |= ϕi(ā, b̄), andk ≤ |z̄i|. We let J (S) stand for the
set of all justifications (if the setting is understood from the
context).

In the example from the introduction, one possible justifica-
tion is a tuple

(

1, (JFK,CDG), (001), 1
)

which says that for
the first rule, tuples̄a = (JFK,CDG), b̄ = (001), satisfy the
body of the rule, and thus a null corresponding to the position
of z in V (x1, x2, z) (which happens to be1, since there is
only one variable that is not present in the body), a null must
be produced.

We want each null in the target instance to be associated with
a justification for it. Furthermore, in the spirit of CWA, we
do not want the same justification to justify different nulls.
We do, however, allow different justifications to justify the
same null.

This is captured as follows. LetΠ be a partition ofJ (S)
with blocksB1, . . . , Bl. We then create a target instance
TΠ(S) in which justifications from each blockBj are all
represented by the same null⊥j , j = 1, . . . , l. That is, for
eachψi(x̄i, z̄i) :– ϕi(x̄i, ȳi) in Σ and for each̄a, b̄ such that
S |= ϕi(ā, b̄), consider all the justifications

(i, ā, b̄, 1), . . . , (i, ā, b̄, |z̄i|)

Define a tuple of nulls̄ν = (ν1, . . . , ν|z̄i|) so thatνj = ⊥p
if (i, ā, b̄, j) is in Bp, thepth block of the partition. Then
add tuples toTΠ(S) to satisfyψi(ā, ν̄). (Recall thatψi is a
conjunction of atoms.)

We call instances of the formTΠ(S), whereΠ is a partition
on the set of justificationsJ (S), CWA-presolutions. It
is immediate from the definition that each CWA-presolution
TΠ(S) is a solution in the sense of [10]: that is,(S, TΠ(S)) |=
Σ.



Consider the finest partitionΠsng in which each block is a sin-
gleton⊥(i,ā,b̄,k) associated with the justification(i, ā, b̄, k).
ThenTΠsng

(S) is the canonical solutionCanSol(S). In
general, if we define a homomorphismhΠ : {⊥(i,ā,b̄,k)} →
{⊥1, . . . ,⊥l} by

hΠ(⊥(i,ā,b̄,k)) = ⊥p ⇔ ⊥(i,ā,b̄,k) ∈ Bp,

thenhΠ(CanSol(S)) = TΠ(S).

Next we deal with the third requirement. Notice that CWA-
presolutions can make certain assumptions equating nulls,
and thus may generate new associations between elements in
the target. Some of these facts are already there even if we
do not make any assumptions about equating nulls, that is,
they are inTΠsng

(S) = CanSol(S). Some, however, may
be genuinely new: for example, ifCanSol(S) has tuples
(a,⊥1) and(⊥2, b), then equating⊥1 and⊥2 will tell us that
there is a path of length2 betweena andb. The CWA should
prohibit inventing facts based on equating nulls unless such
nulls are made equal by the STDs (in other words, they are
equal inTΠsng

(S)).

We formalize this is as follows. Afact is a formulaf(ā),
whereā is overConst, of the form∃z̄ α(ā, z̄), whereα is
a conjunction ofτ -atoms. It is satisfied in a target instance
T if there is a tuple of nulls̄⊥ such thatα(ā, ⊥̄) is true.
Then solutions are presolutions in which every true fact can
be inferred without equating nulls (unless STDs force them
to be equal).

Definition 3.1. A CWA-presolution T is called a CWA-
solution if every fact true in T is also true in TΠsng

(S) =
CanSol(S).

The set of all CWA-solutions for S is denoted by

[[S]]
(σ,τ,Σ)
CWA , or just [[S]]CWA if the data exchange setting

is clear from the context.

Each (pre)solutionT represents a setRep(T ) of target
instances without incomplete information. Notice that
Rep(T ) ⊆ Rep(TΠsng

(S)) = Rep(CanSol(S)), and
hence by imposing extra conditions on presolutions we do
not lose any instances that are represented by them.

Almost directly from the definitions we obtain:

Lemma 3.2. A CWA-presolution T for S is a CWA-
solution iff there exists a homomorphism T 7→
CanSol(S).

In particular, this implies that, in the terminology of [10],
CWA-solutions areuniversal solutions, that is, they have
homomorphisms into all other solutions.

A more important property is that there exists a unique mini-
mal CWA-solution, namely, the core. Recall that “contains”
means up to renaming of nulls.

Lemma 3.3. If T is a CWA-solution for S in a data
exchange setting (σ, τ,Σ), then Core(S) is contained
in T . Moreover, Core(S) itself is a CWA-solution.

[[S]]CWA

CanSol(S)

Core(S)

h′h

⊆

T

Figure 1: A representation of [[S]]CWA

Combining, we have the following description of CWA-
solutions.

Theorem 3.4. A target instance T is a CWA solution
for S iff the following are true:

1. T is a homomorphic image of CanSol(S);

2. there is a homomorphism T → CanSol(S);

3. T contains Core(S).

Thus, the space of all CWA solutions contains two unique
extreme points: the minimal solution, that is contained in
all others, which is the core, and the maximal one, of which
every solution is a homomorphic image, namely the canon-
ical solution. This is illustrated in Figure 1. Note also the
inclusions

Rep(Core(S)) ⊆ Rep(T ) ⊆ Rep(CanSol(S))

for every CWA-solutionT . We also remark that there
could be CWA-solutionsT which are not contained in
CanSol(S). For instance, letτ have a ternary relation
R, and letCanSol(S) consist of two tuples(a,⊥1,⊥2)
and(a,⊥3,⊥4). Then{(a,⊥1,⊥′), (a,⊥3,⊥′)} is a CWA-
solution that is not contained inCanSol(S).

It follows from [4, 10, 11] that bothCanSol(S) and
Core(S) can be computed in polynomial time, for a fixed
data exchange setting. As we shall see in the next section,
query answering under CWA can be done using just these
two solutions.

4. Query answering: semantics

As mentioned earlier, previous approaches to query answer-
ing in data exchange ignored both the possibility of using
maybe answers, and more importantly the fact that solu-
tions themselves are databases with incomplete information,
and thus appropriate techniques should be used for querying
them.



For each individual solutionT and a queryQ over it, we
have the lower and the upper approximations to the answer,
which are given by2Q(T ) =

⋂

{Q(R) | R ∈ Rep(T )}, and
3Q(T ) =

⋃

{Q(R) | R ∈ Rep(T )}. Furthermore, answers
to queries over different solutions can be combined in two
different ways: we can either look for certain answers which
are true for all solutions (this is the semantics of [10] and
others), or tuples true in some solutions. These combinations
give rise to four different semantics for query answering,
depending on how we combine possibility/certainty at the
level of each solution, and all solutions. These are defined
formally below. We are assuming a data exchange setting
(σ, τ,Σ) and a source instanceS.

• The certain answers semantics: we collect tuples that
belong to the answer no matter which solution is chosen
and how nulls are instantiated, i.e.

t̄ ∈ certain2(Q,S) ⇔ ∀T ∈ [[S]]CWA : t̄ ∈ 2Q(T )

• The potential certain answers semantics: we collect
tuples that appear as certain answers for at least one
CWA-solution. In other words,

t̄ ∈ certain3(Q,S) ⇔ ∃T ∈ [[S]]CWA : t̄ ∈ 2Q(T )

• The persistent maybe answers semantics: we collect
tuples that appear as maybe answers for all CWA-
solutions. In other words,

t̄ ∈ maybe
2
(Q,S) ⇔ ∀T ∈ [[S]]CWA : t̄ ∈ 3Q(T )

• Themaybe answers semantics: we collect tuples that ap-
pear as maybe answers for at least one CWA-solution.
In other words,

t̄ ∈ maybe
3
(Q,S) ⇔ ∃T ∈ [[S]]CWA : t̄ ∈ 3Q(T )

While these seem to be rather diverse, there are simple con-
nections between these semantics and characterizations in
terms of canonical solutions and cores: to evaluate a query
Q under one of those semantics, one has to answer either
2Q or 3Q on eitherCanSol(S) or Core(S). Since we
know how to construct canonical solutions and cores [10, 11,
24, 13], the problem of answering queries in data exchange
is thus reduced to the classical and well studied problem of
answering queries in databases with incomplete information
[2, 3, 17].

Theorem 4.1. The following characterizations of the se-
mantics hold:

certain2(Q,S) = 2Q(CanSol(S))
certain3(Q,S) = 2Q(Core(S))
maybe

2
(Q,S) = 3Q(Core(S))

maybe
3
(Q,S) = 3Q(CanSol(S)).

Proof. Notice that for every CWA-solutionT we have
Rep(Core(S)) ⊆ Rep(T ) ⊆ Rep(CanSol(S)) as a con-
sequence of Theorem 3.4. Therefore,

2Q(CanSol(S)) =
⋂

R∈Rep(CanSol(S))Q(R)
⊆ 2Q(T ) =

⋂

R∈Rep(T )Q(R)
⊆ 2Q(Core(S)) =

⋂

R∈Rep(Core(S))Q(R),

and likewise

3Q(CanSol(S)) =
⋃

R∈Rep(CanSol(S))Q(R)
⊇ 3Q(T ) =

⋃

R∈Rep(T )Q(R)
⊇ 3Q(Core(S)) =

⋃

R∈Rep(Core(S))Q(R).

Hence,

certain2(Q,S) =
⋂

T∈[[S]]CWA

2Q(T ) = 2Q(CanSol(S))

certain3(Q,S) =
⋃

T∈[[S]]CWA

2Q(T ) = 2Q(Core(S))

maybe
2
(Q,S) =

⋂

T∈[[S]]CWA

3Q(T ) = 3Q(Core(S))

maybe
2
(Q,S) =

⋃

T∈[[S]]CWA

3Q(T ) = 3Q(CanSol(S)),

as claimed. 2

One can use Theorem 4.1 to establish the following relation-
ship between these semantics.

Corollary 4.2. The following inclusions hold:

certain2(Q,S) ⊆ certain3(Q,S)
⊆ maybe

2
(Q,S) ⊆ maybe

3
(Q,S).

For the reader familiar with the semantics of [10, 11] (that is,
the OWA-based certain answers semantics, and the universal
solutions semantics), we remark that both produce subsets of
certain2(Q,S).

New semantics and query rewriting/answering anomalies

Some of the well-known problems in data exchange – nonex-
istence of rewritings and anomalies in query answering – dis-
appear with the new notion of CWA-solutions and the new
semantic functions.

If we are given a data exchange setting(σ, τ,Σ), a source
S, and some semantic function that associates an answer
answer(Q,S) to a queryQ over the target, then arewriting
forQ over some specific target instanceT is a queryQ′ such
thatQ′(T ) = answer(Q,S). Typically one considers rewrit-
ings over the canonical solution or the core. Results of [4, 10]
show that with the semantics of [10] (or its modification pro-
posed in [11]), for some simple FO queries rewritings may
not exist (even in copying data exchange settings). How-
ever, for our semantics, rewritings always exist forarbitrary
queries: they are either2Q or 3Q, over either the canonical
solution or the core, as Theorem 4.1 shows. That is, one
obtains rewritings for arbitrary queries by using proper tech-
niques for evaluating queries in databases with incomplete
information.

Let us now come back to the example of copying data
exchange settings. Consider such a setting(σ, τ,Σ)
with σ = {R1, . . . , Rn}, τ = {R′

1, . . . , R
′
n} and Σ =

{R′
i(x̄) :– Ri(x̄) | 1 ≤ i ≤ n}. In other words, eachRi



is copied intoR′
i. A known anomaly of query answering in

data exchange is that under the semantics of [10, 11], FO
queries may not be rewritable in copying settings [4]. But
notice that, in a copying setting,[[S]]

(σ,τ,Σ)
CWA = {S}, for each

source instanceS. Hence,

certain2(Q,S) = certain3(Q,S)
= maybe

2
(Q,S) = maybe

3
(Q,S) = Q(S),

for everyQ, as expected. In addition, the rewriting ofQ is
Q itself, as it should be in a copying setting. Thus, the cor-
rect choice of semantics resolves one of the most unpleasant
anomalies in query answering in data exchange.

Another anomaly disappears under the new semantics. It is
known that ifQ is a Boolean query, then under the semantics
of [10] either the answer toQ over all instances is false,
or the answer to¬Q overall instances is false: that is, the
answer toQ cannot be true in some databases and false in
others. The previous example shows that this anomaly does
not arise under the new semantics.

Some anomalies of the standard certain-answers semantics
of [10] were noticed in [11], who proposed a different,
universal-solutions semantics. The reasoning behind it was
that since universal solutions (which have homomorphisms
into all other solutions) are “preferable” in data exchange,
perhaps one should only consider answers that are true in all
such solutions, that is,

⋂

{Q(R) | R is a universal solution}.

While the reason behind this definition is somewhat ad hoc,
these solutions have some nice properties: in particular ev-
ery existential query is FO-rewritable over the core under
the universal-solutions semantics [11]. Nonetheless, in a
slight modification of copying settings, this semantics be-
haves as badly as the semantics of [10]. Namely, consider
an extension of a copying setting with a domain predicate,
that is, together with all the STDsR′(x̄) :– R(x̄) we have
new STDsD(x) :–R(. . . , x, . . .) that create a unary relation
that collects all the elements of the active domain. Under
the CWA semantics,[[S]]CWA is simplyS together with the
active domain ofS as an interpretation ofD, and hence ev-
ery FO query is trivially rewritable (since the active domain
is definable). However, it is known [4] that in such a set-
ting one can construct simple∃∗∀ FO queries that are not
rewritable over the canonical solution or the core under the
universal-solutions semantics.

5. Query answering: complexity

Next we consider the data complexity of query answering in
data exchange [4, 10, 11]. Suppose we are given a semantic
function answer(Q,S) that, for a source instanceS and a
queryQ over the target schema, produces an answer toQ (it
will be one of the four semantic functions in the previous sec-
tion). Then thedata complexity of answer is the complex-
ity of the language{enc(S)#enc(t̄) | t̄ ∈ answer(Q,S)},
whereenc is some suitable encoding of instances and tuples.

Semantics data complexity
certain2 coNP-complete
certain3 coNP-complete
maybe

2
NP-complete

maybe
3

NP-complete

Figure 2: Data complexity

Theorem 5.1. The data complexity of FO queries for
the semantics certain2, certain3, maybe

2
, and maybe

3

is as shown in Figure 2.

In fact the upper bounds only require that the data complexity
of Q itself be polynomial. Thus we obtain:

Corollary 5.2. If L is a query language that contains
FO and has polynomial-time data complexity, then the
data complexity of L-queries for the semantics certain2,
certain3, maybe

2
, and maybe

3
is as shown in Figure 2.

Of course it has long been known that the complexity of
computing certain (maybe) answers for FO queries is coNP-
complete (NP-complete, respectively) [1, 3], in the size of
a tableT . However, here we measure the complexity of
answering queries onCanSol(S) or Core(S), in terms
of the size ofS. Thus, in the proof of Theorem 5.1, we
provide hardness examples that, unlike those in [1, 3], arise
asCanSol(S) or Core(S) for some fixed data exchange
setting.

6. Query answering: monotone and positive
queries

We now turn to the case of conjunctive queries, which was
most heavily studied in the context of data exchange [10, 11,
23]. First recall that [10, 11] and others follow the naive
approach to evaluation of queries on tables with nulls. We
call this naive evaluation functionnaive eval(Q, T ); it sim-
ply treats nulls as they were usual values (in other words,
it assumes that the domain of the database comes from
Const ∪ Null, and thus the equality predicate is available
on the entire domain; in particular, two nulls are equal if
they are just symbolically the same null). This corresponds
precisely to query evaluation overnaive tables [2, 17].

Based on this naive evaluation, [10, 11] proposed a seman-
tics for evaluating conjunctive queries which happened to
coincide with their notion of certain answers. DefineT↓ as
the instanceT from which all tuples containing nulls have
been removed. Then the evaluation function for conjunctive
queries from [10, 11] was

CQ eval(Q,S) = naive eval(Q,CanSol(S))↓.

It turns out that this is precisely what two of the semantics
we studied here do for the class of positive relational alge-
bra queries (that is,{σ, π,1,∪} queries in which selection
predicates are positive Boolean combinations of equalities).



Proposition 6.1. If Q is a monotone query, then
certain2(Q,S) = certain3(Q,S). Furthermore, if Q is a
positive relational algebra query, then

certain2(Q,S) = CQ eval(Q,S).

Proof. From Corollary 4.2 we havecertain2(Q,S) ⊆
certain3(Q,S) for arbitrary queries, so we need to prove
the converse, that is,2Q(Core(S)) ⊆ 2Q(CanSol(S)),
for an arbitraryS, if Q is monotone.

Consider an arbitrary valuationv on the nulls of
CanSol(S), and let R = v(CanSol(S)). Let ι :
Core(S) → CanSol(S) be the natural embedding of
Core(S) into CanSol(S), and letvι be a valuation on
the nulls ofCore(S) which is a composition ofι andv.
Then clearlyvι(Core(S)) ⊆ v(CanSol(S)), and hence
Q(vι(Core(S))) ⊆ Q(v(CanSol(S))).

Let Val(T ) be the set of all valuations on an instanceT .
Then

2Q(Core(S)) =
⋂

v′∈Val(Core(S))

Q(v′(Core(S)))

⊆
⋂

v∈Val(CanSol(S))

Q(vι(Core(S)))

⊆
⋂

v∈Val(CanSol(S))

Q(v(CanSol(S)))

= 2Q(CanSol(S))

Thus,certain2(Q,S) = certain3(Q,S) for a monotoneQ.

Finally, CanSol(S) is a naive table [17], and it is known
that naive tables form a strong representation system for the
positive fragment of relational algebra [17] (the results of [17]
apply to both open and closed world semantics), and hence
certain2(Q,S) = 2Q(CanSol(S)) = CQ eval(Q,S). 2

For maybe-answers, even for quantifier-free conjunctive
queries we may havemaybe

2
(Q,S) 6= maybe

3
(Q,S).

For example, it is easy to find a data exchange setting
with a single target relationR and an instanceS so that
CanSol(S) = {(a,⊥1), (a,⊥2)}. Then Core(S) =
{(a,⊥)}. If Q(x, y, z) = R(x, y) ∧ R(x, z), then
maybe

2
(Q,S) = 3Q(Core(S)) $ 3Q(CanSol(S)) =

maybe
3
(Q,S). The same proof as for Proposition 6.1

shows thatmaybe
2
(Q,S) = maybe

3
(Q,S) for every anti-

monotone queryQ.

7. Representing maybe answers

While2Q(T ) is a finite object,3Q(T ) is inherently infinite:
even ifQ is the identity queryid, we have3id(T ) =

⋃

{R |
R ∈ Rep(T )}. So it is natural to ask how maybe answers
can be represented; in particular, how are they going to be
presented to the user who wants an upper approximation to
a query.

Various representations of maybe answers are possible, e.g.
by viewing databases as logical theories in the spirit of [27]

or by using conditional tables [17], but all of them are rather
hard to use in practical query evaluation algorithms, and are
furthermore not very intuitive. So instead we propose an
approach that seems reasonable from the point of view of
user getting an understandable result of a maybe-query.

Let t̄ be a tuple inT overConst ∪ Null, and letv be astrict
valuation on̄t, that is, a 1-to-1 mapping from the set of nulls
in t̄ into Const such that no value ofv occurs as a constant in
T . We then letReps(t̄ | T ) = {v(t̄)}, wherev ranges over
strict valuations. Next, if we have an instanceT with nulls
and a queryQ, then we call a tableW a fair representation
of 3Q(T ) if

⋃

{Reps(t̄ | T ) | t̄ ∈ W} = 3Q(T ).

Intuitively, tuples in a fair representation of3Q(T ) give
null/constant patterns of tuples that appear in3Q(T ). For
example, if a pair(a1,⊥1, a2,⊥2) is in a fair representa-
tion of 3Q(T ), then for every pair(a′1, a

′
2) of constants not

present inT , the tuple(a1, a
′
1, a2, a

′
2) is in Q(R) for some

R ∈ Rep(T ).

We will now show that fair representations exist, and are of
polynomial size. However, constructing them may be hard:
we know that for FO queriesQ, the problem of checking
whether3Q(T ) is nonempty (withT as the input), isNP-
complete [3], and the problem remainsNP-complete ifT is
the canonical solution or the core (see Theorem 5.1). How-
ever, for positive relational algebra queries, the problemis
tractable.

For these results, we shall use the standard notion ofgeneric
queries [2]: these are queries that commute with permuta-
tions of the domain. Queries computable in standard lan-
guages such as relational algebra, datalog, etc., are generic.

Theorem 7.1. 1. For each generic query Q, there is
a polynomial pQ such that a fair representation of
3Q(T ) of size at most pQ(|T |) exists, for every T .

2. If the data complexity of a generic query Q is NP
(PSPACE), then a fair representation of 3Q(T )
can be constructed in NP (respectively, PSPACE).

3. If Q is a positive relational algebra query, then a
fair representation of 3Q(T ) can be constructed in
polynomial time, in the size of T .

The proof of this theorem also gives a slightly more gen-
eral version of item 2): if the data complexity ofQ is
NTIME(nk), and Q produces a relation of arity≤ k,
then a fair representation of3Q(T ) can be constructed in
NTIME(nk) (and a similar result is true for space bounds).

8. Extensions

Open World Semantics

So far we concentrated on CWA, but one can also define an
OWA semantics if there is no requirement that facts true in



solutions be also true if we do not impose conditions equating
nulls, and if we open target instances to new tuples. This way,
each OWA target instance would contain a CWA-presolution;
hence we can describe OWA solutions as those that contain
a homomorphic image of the canonical solution. The class
of all such solutions is denoted by[[S]]OWA (if the setting
(σ, τ,Σ) is understood).

With each query evaluation semanticsanswer we associate
a new semanticsanswerOWA defined just asanswer except
that [[ ]]OWA is used in the place of[[ ]]CWA.

There are many known cases when going from CWA to OWA
makes a decidable problem undecidable (see, e.g., [1, 29]),
and here we have another example: functionsanswerOWA

are not computable ifanswer is one of the four semantic
functions we studied for CWA. The proof (typically for a
proof of undecidability for OWA) is by reduction from FO
validity in the finite.

Proposition 8.1. If answer is one of the four semantic
functions certain2, certain3, maybe

2
, or maybe

3
, then

the problem of checking whether answerOWA(Q,S) eval-
uates to true, for an FO Boolean query Q and a source
instance S, is undecidable, even in copying data ex-
change settings.

Target Constraints

Sometimes constraints on the target are also imposed. This
changes the certain or maybe answers semantics for solutions
T , as we are only interested in instances inRep(T ) that
satisfy target constraints. In other words, if we have a set
of target constraintsΣt, then the semantics of3Q(T ) or
2Q(T ) is defined overRepΣt

(T ) = {v(T ) | v(T ) |= Σt},
wherev ranges over valuations onT .

We now show that even the simplest constraints compli-
cate matters significantly. Assume thatΣt contains only
keys and foreign keys. Then, for a data exchange setting
with target constraints(σ, τ,Σ,Σt) we consider the problem
Existence-Of-Solutions which has a source instance
S as an input, and outputs ’yes’ if there is a CWA-solution
T such thatRepΣt

(T ) 6= ∅.

Proposition 8.2. If target constraints contain keys
and foreign keys, then the problem Existence-Of-

Solutions is NP-complete.

The hardness is witnessed by a data exchange setting with
just two STDs, two keys and three inclusion constraints. If
inclusion constraints are dropped, it easy to show that the
problem becomes tractable.

9. Practical considerations

Data exchange is an area where systems work is ahead of
theoretical investigation: data exchange systems existedfor a
while (and are being worked on) [24, 25, 28], with theoretical
foundations arriving a few years later. In fact the main goal

of theoretical papers on data exchange is to offer insights into
the semantics of query answering, and to justify – or suggest
changes to – algorithms implemented in real-life systems.
In this short section I would like to give a few remarks on
applicability of results shown here.

• Of the four semantics proposed here, it is probably the
two extreme ones –certain2(Q,S) andmaybe

3
(Q,S)

– that are useful for providing approximation to query
answers. Ascertain2(Q,S) = 2Q(CanSol(S))
and maybe

3
(Q,S) = 3Q(CanSol(S)), this

strongly suggests materializing the canonical solution
CanSol(S) rather than the core (in addition, it is eas-
ier to computeCanSol(S) from the algorithmic point
of view).

• Once a queryQ is issued, certain answers toQ should
be computed and given to the user. Note that the issue
of non-rewritability goes away with the closed-world
semantics, so we simply compute2Q over the mate-
rialized CanSol(S). SinceCanSol(S) is a naive
table [2], this is easily done for the positive fragment
of relational algebra.

• If certain answers are not sufficient for the user, maybe
answers should be computed to provide an upper ap-
proximation. No new materialization of the target is
required, they can be computed overCanSol(S). Ef-
ficiency (outside the class of positive relational algebra
queries) is another matter and is discussed in the next
section.

10. Future work

There is still much left to do. We have only briefly looked
into dealing with target constraints, but they should be ex-
plored further. In particular it would be nice to identify
tractable cases of query answering in the presence of target
constraints. One may also look at techniques of database
repairs and query answering in inconsistent databases [5]
if the canonical solution fails to satisfy some of the target
constraints, although this will involve three different levels
at which incomplete information appears (nulls in targets,
repairs, potentially multiple target solutions). Furthermore,
target instances are databases with nulls, and thus dealing
with constraints such as FDs and IDs over them requires
additional care [19, 20].

We reduced query answering in data exchange to query
answering over naive tables, which may be intractable for
queries outside of the positive fragment of relational algebra.
It would be nice to find ways to overcome this; for example,
by finding easily constructible and fairly large subsets of cer-
tain answers. As for maybe answers, one should look into
designing fast incremental algorithms for constructing them,
so that answers would be produced tuple by tuple.

While the CWA appears to be more realistic assumption than
the OWA in data exchange, the OWA should not be dismissed
completely. One can definitely envision a situation when
certain facts are more reasonable to interpret under the OWA,



although a decision to do so requires additionalsemantic
information about target instances. Consider, for example,
an STDR(x, z) :– S(x, y). If there is a tuple(a, b) in S, the
most reasonable decision seems to be putting a tuple(a,⊥)
into the target instance. But, on the other hand, if we have
an additional knowledge that the relationship between the
two attributes ofR is one-to-many, it then seems reasonable
to “open” that closed world target and consider solutions in
which multiple tuples(a,⊥i) are permitted. Opening CWA
databases was looked at previously [14] and I believe the
right alternative to the OWA approach in data exchange is
using the CWA semantics of this paper, and opening facts
that need to be opened. But how to do it remains to be
investigated.

Finally, data exchange techniques have recently been looked
at in the XML context [6]. There is no clearly defined concept
of a good solution in that case (as the analog of the canonical
solution may fail to satisfy schema specifications), nor well-
defined techniques for answering queries with incomplete
information. Thus defining a proper semantics for solutions
and query answering for XML remains open.
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