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1 Introduction

Can we store an infinite set in a database? Clearly not, but instead we can
store a finite representation of an infinite set and write queries as if the entire
infinite set were stored. This is the key idea behind constraint databases,
which emerged relatively recently as a very active area of database research.
The primary motivation comes from geographical and temporal databases:
how does one store a region in a database? More importantly, how does one
design a query language that makes the user view a region as it if were an
infinite collection of points stored in the database?

Finite representations used in constraint databases are first-order formu-
lae; in geographical applications, one often uses Boolean combinations of
linear or polynomial inequalities. One of the most challenging questions in
the development of the theory of constraint databases was that of the ex-
pressive power: what are the limitations of query languages for constraint
databases? These questions were easily reduced to those on the expressive-
ness of query languages over ordinary relational databases, with additional
condition that databases may store numbers and arithmetic operations may
be used in queries.

It turned out that the classical techniques for analyzing the expressive
power of relational query languages no longer work in this new setting. In
the past several years, however, most questions on the expressive power have
been settled, by using new techniques that mix the finite and the infinite,
and bring together results from a number of fields such as model theory,
algebraic geometry and symbolic computation.



In this column we briefly survey of some of the results on expressiveness
of query languages for constraint databases. Mathematically, these can be
viewed as results on expressiveness of logics over finite or definable sets
embedded in certain structures. We first deal with the finite case, that is
formalized by embedded finite models. We give a new type of expressivity
bounds — collapse results — and explain how they can be applied in the
setting of constraint databases.

2 Embedded finite models and relational
databases

The definition of embedded finite models is rather simple. We consider a
first-order language L and an L-structure M with an infinite universe U.
Consider a separate first-order language SC = (Ry,...,R;) that consists
of relational symbols only. (The notation SC comes from the database
name “schema”.) A SC structure on M (or an embedded finite model) is a
structure

(U, LM, RM, ..., RM)

where each R{V1 is a finite subset of U¥, where k; is the arity of R;, and
LM is the interpretation of L in M. In this setting, we want to study
the expressive power of first-order logic (FO) with respect to the finite SC-
reduct. That is, we look at sentences like 3z3Jy R(z,y) ANy -z = = + 2
that states the existence of a specific edge (z,y) in a graph whose nodes are
numbers. We want to know what one can express over such finite structures
embedded in an infinite one.

At the first glance, the problem may appear a bit esoteric, and certainly
more appropriate for the Logic Column than for the Database one. To
prove that the first impression is false, let me explain how this problem
naturally arises in the theory of relational databases. A relational database
is just a finite relational structure. Databases are queried using languages
that correspond to first-order logic (FO) and its fragment (in fact, the core
SQL — minus aggregation — has precisely the power of FO). These languages
usually come in two flavors: declarative, like relational calculus (which is just
FO), and procedural, like relational algebra, that give evaluation mechanism
for declarative queries.

When relational algebra and calculus are introduced in textbooks, the con-
ditions for selecting tuples from relations are usually defined to be boolean



combinations of £ = y and z < y, where x and y are variables or con-
stants. This is often followed by a number of examples faithful to the
definitions, as well as examples of the kind “find employees who make at
least 90% of their manager’s salary,” which involves conditions of the form
z > 0.9 -y. This addition corresponds exactly to the formal setting in-
troduced in the first paragraph: we may assume that M is, for example,
the real field R = (R, +,+,0,1, <), and one can thus write queries such as
o(z) = Jy, s1,s2 (M(z,y) A S(z,s1) AN S(y,s2) Asi > 0.9 - s9), where M
records the employee-manager relation, and S has salaries of all employees.

How does one analyze this very natural extension of the standard rela-
tional calculus? We know many results about expressivity of FO without the
interpreted structure M; in fact, much of the development of finite-model
theory was motivated by database problems. Standard techniques such as
0-1 laws [15] and locality [16] tell us that queries such as parity of cardi-
nality or the transitive closure of a graph are inexpressible in FO. However,
these techniques become inapplicable in the embedded setting. Other tech-
niques, such as Ehrenfeucht-Fraissé games, become extremely awkward to
apply with interpreted operations present.

The full scope of interaction between finite databases and fixed, possibly
infinite, interpreted structure, has not, until recently, been fully explored in
the database community, although the question was already raised in the
seminal paper of Chandra and Harel [13]. One of the reasons the database
community started looking at these problems recently is the emergence of
constraint databases as a very active area of research. We discuss them next.

3 Constraint Databases

Constraint databases were invented about ten years ago [23] and have be-
come a well-established topic in the database field. The mathematical model
is very simple. We consider the setting of embedded finite models, and in-
stead of interpreting each n-ary symbol S from SC as a finite n-relation,
we interpret it as definable subset of U™. That is, the interpretation of S is
{@deU" | M= a(d)} for some formula « in the language L.

The key idea is that the formula « gives a finitary representation of an
infinite objects. Consider, for example, sets definable over the real ordered
group Ry, = (R,+,—,0,1,<). These are Boolean combinations of sets
definable with linear inequalities of the form 2?21 a;-r; < b, with coefficients
a;s being rational — this follows from the fact that over Ry, every formula is



equivalent to a quantifier-free one (one also says that Ry, admits quantifier-
elimination). Sets arising in such a way are called semi-linear [11, 33].

Such representation is very convenient in geographical applications, as
regions are often represented as semi-linear sets on the real plane R%. If
linear constraints are not sufficient, one can use polynomial ones. That is,
one can consider sets definable over the real field R. Such sets, called semi-
algebraic [11, 33], are Boolean combinations of sets definable by polynomial
inequalities p(z1,...,z,) < 0. This again follows from the classical result of
Tarski’s [32] that the real field has quantifier-elimination.

We use the notation FO + PoLy for FO over the real field and SC (FO
with polynomial constraints) and FO + LIN for FO over the real ordered
group and SC (FO with linear constraints). An example of definability in
FO + Povy is the property that all points in a relation S lie on a com-
mon circle: 3aFbIr (VaVy S(z,y) — (z —a)? + (y — b)?> = r?). In general,
FO + Povy can define many useful topological concepts such as closure, inte-
rior and boundary. These are definable in FO 4 LIN as well. In FO + Pory
one can also define the convex hull of a set. To see how this is done in the
two-dimensional case, assume that a set a semi-algebraic set S € R? is given.
Then ¢(z,y) given by

3z, Y1, T2, Y2, 3, Y3 IN A3 (S(z1,y1) AS(z2,9y) AS(23,43) AAM >0A 2 >0A A3 >0A
(3::)\1-3:1—1—)\2-3:2—1—)\3-mg)/\(y:>\1-y1+)\2-y2+)\3-y3))

is true on (z,y) iff (z,y) € conv(X). In general, to definite the convex hull
of a set in R", one uses Carathéodory’s theorem stating that z is in the
convex hull of X C R" iff z is in the convex hull of some n + 1 points in X,
and codes this by a FO formula just as we did above for the case of R?. We
note in passing that multiplication is essential for definability of the convex
hull; in fact, even adding a predicate for collinearity to FO + LIN, one gets
the full power of FO + PoLy.

Thus, FO + PoLy is a rather expressive language to talk about semi-
algebraic sets. In fact, many typical GIS queries can already be expressed
in the weaker language FO + LIN. We next turn to a very basic topological
property: connectivity. Suppose we are given a semi-algebraic or semi-linear
set S, and we want to test if it is topologically connected. Can we do this
in FO + PoLy or FO + LIN?

The first reaction is to say 'no’. Indeed, it is well known that over fi-
nite structures, FO cannot define graph connectivity (see, e.g., [14]), and
topological connectivity appears to be a natural continuous analog of graph



connectivity. This intuition was made precise in [29] where it was shown
that if FO 4+ PoLy defines topological connectivity of semi-algebraic sets,
then it defines graph connectivity of finite graphs. (The idea of the reduc-
tion is to embed a finite graph G into R? without self-intersections.) This
reduces the problem of topological connectivity of semi-algebraic sets to the
problem of definability of graph connectivity of finite graphs. However, by
definability we still mean definability in FO 4+ PoLy. That is, we now deal
with a problem that perfectly fits the setting of embedded finite models: we
have a finite graph whose nodes are in R, and we want to see if in FO over
the language of the graph and the real field, one can say that the graph is
connected.

Questions of this kind were asked in early 90s; after several partial results
(all inherently limited to deal with languages like FO 4+ POLY), definite an-
swers appeared a few years ago. In fact, by now we have a very good picture
of the expressive power of FO over embedded finite models, depending on
the the properties of the underlying structure M. But before we survey
those, we must deal with the crucial issue of the semantics of FO in the
embedded setting.

4 Semantics of first-order queries

We use two simple examples to review the concepts of active and natural
semantics in the relational model. Assume that we have a finite binary
relation S on a set A, which is a subset of some infinite set U. Suppose we
want to test if S is reflexive. The most obvious way to write this in FO is
Vz S(z,z). How do we interpret Vz here? It is essential that we interpret it
as “for all z € A.” Indeed, if by V& we mean “for all x € U,” then the result
of the above query is always false: as A is finite and U is infinite, there is
always some z € U — A for which S(z, z) fails.

The set A in the above example is what is usually called the active domain
of a database — the set of all constants that occur in relations of a database
D. We denote this by adom (D). Thus, one possible semantics of FO queries
is the active semantics: under this semantics, 3xp(z) is interpreted as “there
exists z in adom(D).”

For the next example, consider the real field R = (R, +,-,0,1, <), and let
again S be a finite binary relation on a set A C R. Suppose we want to ask
the following query: do all elements in S, considered as points in R?, lie on
a line? To answer this, one has to test for the existence of a slope a and a



base b such that y = ax + b holds for every (z,y) in S. That is, the query
is Ja3bVaVy (S(z,y) — y = az + b). In contrast to the previous example,
here the quantifiers da and 3b are to be interpreted as “exist real numbers
a and b.” Indeed, if we restrict the range of these two quantifiers to A, the
query above may produce a wrong result, as there is no guarantee that a
and b will be found in A.

The interpretation under which 3z and Vax mean “exists £ € U” and
“for all x € U,” where U is the infinite universe of a structure over which
databases are interpreted, is called the natural semantics, or natural inter-
pretation.

Notation: FO(M, SC) denotes the class of queries on SC-structures de-
finable in FO over M, under the natural interpretation; likewise, we use
the notation FO, (M, SC) for the active interpretation. Since adom (D)
is definable in FO, we have FO, (M, SC) C FO(M, SC). When we write
FO + Povry and FO + LIN, we mean the natural interpretation of formulae.

5 Collapse results

Our goal is to obtain general results on limitations of the expressive power of
a query language. Our main tools are collapse results: these say that query
class A is contained in query class B, where A is a class that could a priori
be much bigger than B. Such results answer most questions on expressive
power in the embedded context.

An important class of collapse result is generic collapse, describing expres-
siveness with respect to ‘pure’, or generic, queries. Generic queries are those
that conform to the principle of data independence. Formally, they commute
with permutations on the domain. Informally, this means that database en-
tries are just “tags” of objects and one cannot use any extra information
about them. Connectivity is an example of a generic query. So are many
others: acyclicity, parity of cardinality, etc. In fact, every query that can
be expressed in traditional relational languages like relational algebra and
datalog, is generic.

We shall deal with three kinds of collapse results:

Natural-Active Collapse We say that a structure M admits this collapse
if FO(M, SC) = FO,¢t (M, SC); that is, every query definable under
the natural semantics is definable under the active semantics.

Active Generic Collapse Let M be ordered (that is, < is one of the



symbols in L, interpreted as a linear order on the universe U). We
say that M admits the active-generic collapse if the classes of generic
queries in FOu. (M, SC) and FO,((U, <), SC) are the same; that
is, every query definable under the active-domain semantics with M-
constraints is definable under the active-domain semantics with just
order constraints.

Natural Generic Collapse over ordered M states the classes of generic
queries in FO(M, SC) and FO((U, <), SC) are the same; that is, every
query definable under the natural semantics with M-constraints is
definable under the natural semantics with just order constraints.

As an illustration of the power of these collapse results, let us sketch the
proof that graph connectivity is not expressible in FO + PoLy (assuming
that we have already proved the above collapse results for the real field R).
Assume to the contrary that connectivity is definable in FO 4+ PoLy. By the
natural-active collapse, it is then definable in FO 4+ PoLY under the active
semantics; being generic, it is thus definable with just the order relation.
However, it well known that graph connectivity is not definable in FO, over
finite ordered graphs [21].

We now consider the active generic collapse. This is the easiest kind of
collapse results, and it turns out that it works over all ordered structures:

Theorem 1 ([6, 27]) Any ordered structure M admits the active generic
collapse. O

The proof — relatively easy — is based on Ramsey’s theorem. In fact, one
shows that for any infinite set X C U and any FO,t (M, SC) formula «(T),
one can find an infinite subset ¥ C X and a FO, ((U, <), SC) formula
B(Z) such that D = «a(d@) + (@) holds whenever adom(D) C Y and all
components of @ are in Y. Using this, and genericity, one derives the collapse
result.

And what about the collapse to pure FO, without an order relation? In
general, it cannot be guaranteed, as FO,ct(SC) # FOact ((U, <), SC) (see,
e.g., [1] for a separating example). However, for several classes of structures
the collapse to equality can be proved: for example, for (R, +, -, e*) [9].

We next deal with the natural-active collapse. Can it possibly be proved
for all structures? The answer, as was pointed out in [20], is clearly 'no’:
over N' = (N, +,-) every computable property of finite SC-structures is



expressible by a FO sentence (simply by coding), while we saw that graph
connectivity, for example, is not in FO, (N, SC).

To find a suitable class of structures over which the collapse holds, we
consider the model theoretic notion of o-minimality [31, 33]. An ordered
structure M is called o-minimal if every definable set is a finite union of
points and open intervals. A definable set is one of the form {c | M = p(c)}
where ¢ is a formula in the language of M, possibly supplemented by con-
stants for some elements of M. Classical examples of o-minimal structures
include the real field R and the real ordered group Ry, (as an easy con-
sequence of Tarski’s quantifier-elimination and the fundamental theorem of
algebra). More recently, it was shown that the exponential field (R, +, -, e*)
is o-minimal [34].

Theorem 2 ([8, 9]) Let M be an o-minimal structure admitting quantifier
elimination. Then M admits the natural-active collapse: FO(M,SC) =
Foact(M,Sc). O

Thus, the natural-active collapse holds for FO + PoLy and FO + LIN.
The first result on the natural-active collapse was the Hull-Su theorem [22],
treating the case of FO without any interpreted structure, but over an infi-
nite universe. The relatively complicated proof of [22] was later simplified in
[9, 12]. Even before [22], the “4 Russians” paper [3] showed that quantifica-
tion over finite domains suffices to recover the full power of FO((U, ), SC).

The natural-active collapse for FO + LIN (that is, over Ry;,) was estab-
lished — by constructive means — in [30]. Theorem 2 was first proved non-
constructively in [8], and then [9] gave an algorithm for converting every
FO(SC, M) formula into an equivalent FO,(SC, M) one (assuming that
the quantifier elimination is effective). In general, the complexity of such
transformation depends on the complexity of the quantifier elimination pro-
cedure. For the case of FO + PoOLyY, a partial complexity analysis was given
in [5], which handled the case of schemas SC containing only unary predi-
cates.

The natural generic collapse can now be obtained as a corollary of the
two previous theorems:

Corollary 1 Any o-minimal structure M admits the natural generic col-
lapse. O

Note that we no longer need the quantifier-elimination assumption, as
we can always take a definable extension that admits quantifier-elimination



(extra predicates do not hurt when we deal with the active semantics, as all
ordered structures admit the active generic collapse).

Corollary 1 first appeared in [6] where it was proved using techniques
from nonstandard analysis. It was recently generalized to other structures,
including quasi-o-minimal ones (see [7] for the definition and the proof) and
those of finite VC dimension. We first recall the definition (cf. [2]). Suppose
X is an infinite set, and C C 2¥ is a family of subsets of X. Let F C X be
finite; we say that C shatters F if the collection {F NC | C € C} is 2F. The
Vapnik-Chervonenkis (VC) dimension of C is the maximal cardinality of a
finite set shattered by C, or oo if arbitrarily large finite sets are shattered
by C.

Let ¢(#,4) be a formula in the language of M with | Z |= n,| 7 |= m.
For each @ € U", define (@, M) = {b € U™ | M = ©(@,b)}, and let
Fy,(M) be {p(@, M) | @ € U"}. Families of sets arising in such a way are
called definable families. We say that M has finite VC dimension if every
definable family over M has finite VC dimension. Examples include all o-
minimal structures [26] as well as quasi-o-minimal ones [4] (including, for
example, (N, +, <)).

Theorem 3 (see [4]) Let M have finite VC dimension. Then M admits
the natural generic collapse. O

When the collapse fails We have seen one example of the failure of the
natural-active collapse: N = (N, +,-). However, this structure is highly
undecidable. Can one find a structure with a decidable first-order theory
over which the natural-active collapse fails?

To see an example, let RG = (U, E) be the random graph on a countably
infinite set U: that is, any model that satisfies every sentence that is true
in almost all finite graphs. Here ‘almost all’ is with respect to the uniform
probability distribution: FE(a,b) holds of nodes a,b with probability one
half, independently for each pair a,b. It is known [15] that the set of all
such sentences forms a complete theory with infinite models, and that this
theory is decidable.

Proposition 1 (see [27]) The natural-active collapse fails over the random
graph. O

The idea of the proof is to use the extension axioms to simulate monadic
second-order logic over SC structures, using nodes of the random graph. As
monadic second-order logic is more expressive than FO, the result follows.



6 Expressive power of constraint query languages

We now return to the question of expressive power of languages such as
FO + LiN or FO + PoLy over constraint databases, that is, definable sets.
We indicated earlier that with topological connectivity, one can express
graph connectivity over finite databases, and thus the former should not
be expressible. Other reductions of this kind are summarized below.

Proposition 2 (see [20]) Assume that testing of any of the following prop-
erties of semi-linear sets in R? is expressible in FO + LIN or FO + PoLy:
topological connectivity, existence of exactly one/at least one hole, homeo-
morphism. Then the same language can erpress evenness. O

Since testing for even cardinality is generic, and not definable in
FO,.((U, <), SC), we conclude the following from the natural generic col-
lapse:

Corollary 2 None of the problems mentioned in Proposition 2 is definable
in FO + PoLY, even when inputs are restricted to semi-linear sets in R2. O

Most reductions to the finite case presented in [20] were quite ad-hoc.
More systematic ways of getting expressivity bounds for queries over semi-
algebraic sets are described in [24]. Those techniques work for topological
queries, that is, queries invariant under homeomorphisms of input databases,
which are infinite semi-algebraic sets on the real plane (cf. [28]). In such a
set X, every point Z has a small neighborhood B.(Z) = {¢ | d(Z,%) < €}
whose intersection with X is conic, that is, homeomorphic to the cone with
the center Z and the base S (Z) N X, where S (Z) = {7 | d(Z,9) = €}.
For example, in the set X = {(z,y) | 22 + y> < 1}, there are two types
of cones. Points in the interior of X have full cones (that is, for small
enough ¢, B.(#) C X), and points on the boundary have “half-filled” cones
(homeomorphic to the half-disc). Both types of cones have infinitely many
points in the disk realizing them. A remarkable result of [24] says that the
number of realizers of cone types is all one needs to know to find out if
FO + PoLY can express a given topological property.

Theorem 4 Assume that SC consists of a single binary predicate. Let ®
be a sentence in FO + POLY which expresses a topological property (that is,
a property invariant under homeomorphisms). Let Xy and X9 be two semi-
algebraic sets in R% such that for any cone type, there are equally many
points in X1 and Xy realizing this type. Then X; = @ iff X9 = @. O
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We now show how to use this result to obtain an alternative proof that
topological connectivity is not expressible in FO 4+ PoLy. Assume that it is
expressible by a sentence ®. Let X; be a disk, and X5 be a disjoint union
of two disks. Since there are only two types of cones realized in X; and X,
(full cone, and half-a-disk cone), and both have continuum many realizers,
Theorem 4 implies X; = @ iff Xy = ®. However, X; is connected, X is
not, and thus ® cannot define topological connectivity.

Other techniques for proving expressivity bounds Complexity
bounds were used to prove some early expressivity bounds for FO + LIN.
In particular, it was proven that, assuming all coefficients used in linear
(in)equalities are integers, the complexity of query evaluation is AC° [19].
This implies inexpressibility of queries such as parity of cardinality. How-
ever, the technique fails for FO 4+ PoLy, as multiplication is not in ACY.

The following growth bounds result was established as a by-product of the
work on query safety in constraint databases, and led to new expressivity
bounds. Let () be an FOyuct (M, SC) formula. Define growth, : N — N
by letting growth,(n) be the maximum cardinality of {@ | D |= ¢(@)} as D
ranges over SC-structures of size n.

Theorem 5 (see [10]) Let M be o-minimal, based on a dense order. Then
for any @(Z) there exists a polynomial p, such that, for any n € N, either
growth,,(n) < py(n), or growth,,(n) = oo.

As a geometric application, one derives from here that polygons cannot be
triangulated with arbitrary precision in FO 4+ PoLy. Note that o-minimality
is essential for the dichotomy theorem: over (N, 4+, <,1) one can define ¢
with growth,,(n) = 2".

Further reading For a general overview of the field of constraint
databases, see the forthcoming book [25]. Chapters 1 and 2 provide an
introduction to constraint databases, while chapters 3 and 4 contain an ex-
tensive treatment of expressive power. Other issues addressed in [25] include
query safety (including preservation of geometric properties), dealing with
spatial aggregation, datalog in constraint databases, topological queries, and
semi-linear databases in spatial applications. Another interesting method
of combining finite and infinite structures is the metafinite model theory
of [17]; it is, however, outside of the scope of this column. For practical
aspects, see a report on the implementation of a constraint database system
for linear constraints [18].
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