
Incremental Maintenance of Views with DuplicatesTimothy Gri�n Leonid LibkinAT&T Bell Laboratories600 Mountain Avenue, Murray Hill NJ 07974, USAemail: fjgri�n, libkinjg@research.att.comAbstractWe study the problem of e�cient maintenance of materi-alized views that may contain duplicates. This problem isparticularly important when queries against such views in-volve aggregate functions, which need duplicates to producecorrect results. Unlike most work on the view maintenanceproblem that is based on an algorithmic approach, our ap-proach is algebraic and based on equational reasoning. Thisapproach has a number of advantages: it is robust and easilyextendible to new language constructs, it produces outputthat can be used by query optimizers, and it simpli�es cor-rectness proofs.We use a natural extension of the relational algebraoperations to bags (multisets) as our basic language. Wepresent an algorithm that propagates changes from baserelations to materialized views. This algorithm is basedon reasoning about equivalence of bag-valued expressions.We prove that it is correct and preserves a certain notionof minimality that ensures that no unnecessary tuples arecomputed. Although it is generally only a heuristic thatcomputing changes to the view rather than recomputingthe view from scratch is more e�cient, we prove resultssaying that under normal circumstances one should expectthe change propagation algorithm to be signi�cantly fasterand more space e�cient than complete recomputing of theview. We also show that our approach interacts nicelywith aggregate functions, allowing their correct evaluationon views that change.1 IntroductionIn database management systems base relations areoften used to compute views. Views are deriveddata that can be materialized (stored in a database)and subsequently queried against. If some of thebase relations are changed, materialized views must berecomputed to ensure correctness of answers to queries

against them. However, recomputing the whole viewfrom scratch may be very expensive. Instead one oftentries to determine the changes that must be made tothe view, given the changes to the base relations andthe expression that de�nes the view.The problem of �nding such changes to the viewsbased on changes to the base relations has come to beknown as the view maintenance problem, and has beenstudied extensively [27, 4, 3, 6, 7, 14, 29, 12, 5, 18, 26].The name is slightly misleading since, as a readingof this literature will indicate, any solution to theproblem is applicable in a large number of practicalproblems, including integrity constraint maintenance,the implementation of active queries, triggers andmonitors.Most of the work on view maintenance has assumedthat relations are set-valued, that is, duplicates areeliminated. However, most practical database systemsuse bags (multisets) as the underlying model. They dohandle duplicates, which is particularly important forevaluation of aggregate functions. For instance, if theaverage salary of employees is to be computed, thenone applies the aggregate AVG to �Salary(Employees).Duplicates cannot be removed from the projection sincethe result would be wrong when at least two employeeshad the same salary. Not eliminating duplicates alsospeeds up query evaluation, as duplicate elimination isgenerally a rather expensive operation.Many theoretical results obtained for set-theoreticsemantics do not carry over to bags. In trying tobridge the gap between theoretical database researchand practical languages, one particularly active researchtopic has been the design of bag languages [17, 24, 16].Bag primitives [2] formed the basis for the algebrassuggested by [11, 19]. These algebras turned out tobe equivalent and accepted as the basic bag algebra. Inthis paper we use the basic bag algebra from [11, 19].It was also shown that the basic bag algebra essentiallyadds the correct evaluation of aggregate functions tothe relational algebra, and this continues to hold whennested relations are present [20]. There are a number ofdeep results on the complexity and expressive power of 1



bag languages [11, 2, 19, 20, 21, 22, 31].The main goal of this paper is to lay the foundationfor incremental maintenance of views de�ned in the bagalgebra. We advocate an approach based on equationalreasoning. That is, for each primitive in the bag algebrawe derive an equation that shows how the result ofapplying this primitive changes if some changes aremade to its arguments. We do it independently for eachprimitive in the language; then, if an expression is given,the change propagation algorithm calculates changes tothe view by recursively applying those rules.This di�ers from most approaches found in theliterature. Most papers on view maintenance suggestan algorithmic approach. That is, given changes tothe base relations, an algorithm | sometimes quitead hoc | is produced that computes the changes tothe view. This approach makes it harder to prove acorrectness result. For example, in [6] a new primitivewhen is introduced: E when � is the value of theexpression E if all changes given in � are applied to E'sarguments. The semantics of when is explained in [6] bymeans of low-level algorithms that compute the value ofE when � when E is a relational algebra operation. Thecorrectness result for those low-level algorithms has notbeen proved in [6].The only paper that addresses the issue of incrementalview maintenance when duplicates are present is [12],where a similar algorithmic approach is adopted, butthis time in a Datalog setting. A correctness resultis proved in [12], but it is not particularly robustas it is not clear how the algorithm would react toslight changes in the language. We shall explain thedi�erence between [12] and our approach in more detailin section 7. An equational approach has been used in[9] for the relational algebra. That work grew out of ananalysis of [29], which presented an iterative algorithmfor propagating changes. This was improved in [9] witha recursive algorithm that is similar in style to ours.This allows correctness to be proved with a simple proofby induction.We believe that the equational approach to the viewmaintenance problem has a number of advantages overthe algorithmic approach. In particular:� Unlike the algorithmic approach, it provides us withprecise semantics of changes to the views. Conse-quently, using the equational approach makes it eas-ier to prove correctness of the change propagationalgorithm. Also, as we shall see in section 4, therecursive form of our algorithm allows us to use in-variants concerning minimality to further simplifychange expressions. Such assumptions would not beavailable to a later phase of query optimization.� This approach is robust: if language changes (e.g.new primitives are added), one only has to derive

new rules for the added primitives, leaving all otherrules intact. As long as the new rules are correct,the correctness of the change propagation algorithmis not a�ected.� The resulting changes to the view are obtained inform of expressions in the same language used to de-�ne the view. This makes additional optimizationspossible. For example, the expressions for changesthat are to be made (e.g. for sets/bags of tuples tobe deleted/added) can be given as an input to anyquery optimizer that might �nd an e�cient way ofcalculating them.Example. Suppose we have a database with therelations S1(Pid;Cost;Date) and S2(Pid;Cost;Date)for recording shipments of parts received from twodi�erent suppliers. The attribute Pid is a uniqueidenti�er for parts, Cost is the associated cost of a part,and Date is the day the shipment arrived. In additionwe have the relation Paid(Pid;Cost; S), which registersparts that have been paid for. The attribute S musthave the value 1 or 2, indicating which supplier waspaid (see Figure 1).We would like to compute the total amount of moneywe owe | the cost of all parts received by not yet paidfor. One way of doing this is to de�ne a view Unpaid asV1 def= (�Pid;Cost(S1) ]�Pid;Cost(S2))V2 def= �Pid;Cost(Paid)Unpaid def= V1 : V2Here ] is the additive union that adds up multiplicitiesof elements in bags. In particular, it will producetwo copies of the record [Pid ) P1; Cost ) 1; 200]in calculating V1. The modi�ed subtraction monus :subtracts multiplicities. If a record r occurs n times inS and m times in T , then the number of occurrences ofr in S : T is n�m if n � m and 0 if n < m.Assume that the derived data that we are interestedin is the amount still owed:Owe = TOTAL(�Cost(Unpaid))Note that multiset semantics gives the correct answerhere, while set-theoretic semantics would not. Forexample, for relations shown in �gure 1, the amountOwe is $7,400. However, if we switch to set semanticsand calculate Unpaid as (�Pid;Cost(S1)[�Pid;Cost(S2))��Pid;Cost(Paid), then Owe calculated by the sameformula equals $4,800. Thus, we do need multisetsemantics for maintaining the view Unpaid in a correctmanner.Suppose that a transaction changes Paid by deletingthe bag 5Paid and inserting the bag 4Paid. That is,Paidnew = (Paid : 5Paid) ]4Paid: 2



S1Pid Cost DateP1 1,200 09/12P2 2,100 08/27P3 1,300 09/11P4 1,400 08/25 S2Pid Cost DateP1 1,200 09/05P4 1,400 08/24P5 4,000 09/03 PaidPid Cost SP1 1,200 1P5 4,000 2 UnpaidPid CostP1 1,200P2 2,100P3 1,300P4 1,400P4 1,400Figure 1: Relations S1, S2, Paid and view UnpaidRather than recomputing the entire view Unpaid fromscratch, we would like to �nd expressions 5Unpaid and4Unpaid such thatUnpaidnew = (Unpaid : 5Unpaid) ]4Unpaid:This has the potential of greatly reducing the amount ofcomputational resources needed to recompute this newvalue.For example, let 5Paid contain the single record[Pid ) P5;Cost ) 4; 000; S ) 2] and 4Paid containthe single record [Pid ) P3;Cost ) 1; 300; S ) 1].(That is, we discovered that a payment was madeto the �rst supplier for P3 rather than the secondfor P5.) Then it is fairly easy to see that 5Unpaidshould evaluate to [Pid ) P3;Cost ) 1; 300] and that4Unpaid should evaluate to [Pid) P5;Cost) 4; 000].Our algorithm treats the changes to base relations asblack boxes. For this example it produces the deletebag, 5Unpaid,[�Pid;Cost(4Paid) : �Pid;Cost(5Paid)]minUnpaid;and the insert bag, 4Unpaid,(�Pid;Cost(5Paid) : �Pid;Cost(4Paid)) : (V2 : V1):Here SminT is a multiset such that the number of oc-currences of a record r in it is min(n;m), where n andmare numbers of occurrences in S and T respectively. No-tice that the evaluation of the expressions for 5Unpaidand 4Unpaid can be made very e�cient. First we as-sume that all relations S1; S2 and Unpaid have an indexbuilt on the them that uses Pid as a key. Then, in orderto evaluate the expressions for 5Unpaid and 4Unpaidwe only have to �nd the numbers of occurrences of ele-ments of �Pid;Cost(5Paid) and �Pid;Cost(4Paid) in V1,V2 and �Pid;Cost(Paid). For example, to �nd 5Unpaid,for each r 2 4Paid we �nd x; y; z; v as the numbers ofoccurrences of r in 4Paid, 5Paid, V1 and V2. Then Roccurs minf(x : y); (z : v)g times in 5Unpaid. Thus,the complexity of such evaluation depends on how fastwe can access elements of the base relations. Access tothe base relations is typically fast, compared to accessto views.

Even if no index exists, the time complexity is stilllinear in the sizes of the base relations. The bigwin here is in space usage. Whereas recomputingthe whole view Unpaid would require space linear inthe size of base relations, the propagation algorithmonly requires that we �nd the number of occurrencesof certain records in base relations and then evaluatean arithmetic expression. Therefore, space needed forupdating the view Unpaid is linear in the size of changesto the base relations. Typically, these changes arerelatively small compared to the size of the relations.Thus, calculating changes to the view as opposed toreconstructing the view from scratch leads at least tosubstantial improvement in space usage.Once changes to Unpaid are calculated, the new valueof Owe is found asOwenew = (Owe � TOTAL(�Cost(5Unpaid)))+ TOTAL(�Cost(4Unpaid)):The correctness of this is guaranteed for our solution.Indeed, Owenew calculated above is $10,100, and onecan see that it is the correct amount still owed oncechanges to Paid have been made.Organization. In Section 2 we introduce our nota-tion, describe our basic bag algebra, and state the prob-lem. We present some basic facts concerning equationalreasoning for our bag algebra in Section 3. In Section 4we present our change propagation algorithm for viewmaintenance. We then address aggregate functions inSection 5. In Section 6 we analyze the complexity of theresults produced by our algorithm. We discuss relatedwork in Section 7. Finally, we conclude in Section 8with some remarks concerning future work. All proofscan be found in [10].2 Notation and Problem Statement2.1 The Bag Algebra, BAAs we mentioned in the introduction, several equivalentapproaches to bag-based database languages have beenproposed [11, 19, 22]. As our basic language in whichwe formulate the change propagation algorithm we take 3



a restriction of those languages to 
at bags (that is,bag-valued attributes are not allowed).In what follows, base relation names are denoted bythe symbols R, R1, R2, : : :. Let p range over quanti�er-free predicates, and A range over sets of attributenames. BA expressions are generated by the followinggrammar.S ::= � empty bagj R name of stored bagj �p(S) selectionj �A(S) projectionj S ] S additive unionj S : S monusj SminS minimum intersectionj SmaxS maximum unionj �(S) duplicate eliminationj S � S cartesian productTo de�ne the semantics of these operations, letcount(x; S) be the number of occurrences of x in abag S. Then, for any operation e in the language, wede�ne count(x; e(S; T )) or count(x; e(S)) as a functionof count(x; S) and count(x; T ) as follows:count(x; �p(S)) = � count(x; S) p(x) is true0 p(x) is falsecount(x;�A(S)) = Xy2S;�A(y)=x count(y; S)count(x;S ] T ) = count(x; S) + count(x;T )count(x;S : T ) = max(count(x; S)� count(x; T ); 0)count(x; Smin T ) = min(count(x; S); count(x; T ))count(x; Smax T ) = max(count(x; S); count(x; T ))count(x; �(S)) = � 1 count(x;S) > 00 count(x;S) = 0count((x; y); S � T ) = count(x; S)� count(y; T )This language is not intended to be minimal. Forexample, min can be de�ned as SminT def= S : (S : T ).For the full characterization of interde�nability of theoperations of BA, consult [19].We use the symbols S, T , W , and Z to denotearbitrary BA expressions, and s to denote a databasestate, that is, a partial map from relation names tomultisets. If s is a database state and T is a BAexpression such that s is de�ned on all relation namesmentioned in T , then s(T ) denotes the multiset resultingfrom evaluating T in the state s. (Note that s is afunction, so we consider evaluating T in s as the resultof applying s to T .) The notation T =b S means thatfor all database states s, if s is de�ned on all relationnames mentioned in S and T , then s(T ) = s(S).2.2 TransactionsA transaction is a program that changes the stateof a database in one atomic step. There are many

approaches to languages for specifying transactions, (seefor example [1, 28, 30]). In this paper we prefer to adoptan abstract view of transactions, in order to make theresults independent of a particular language used, but atthe same time readily applicable to any such language.The abstract transactions to be considered are of theform t = fR1 (R1 : 5R1) ]4R1;: : : ;Rn (Rn : 5Rn) ]4Rng:The expressions 5Ri and 4Ri represent the multisetsdeleted from and inserted into base relation Ri. Moreformally, when transaction t is executed in state s, thenvalue of Ri in state t(s) becomes s((Ri : 5Ri)]4Ri).The expression T is a pre-expression of S w.r.t. t iffor every database state s we have s(T ) =b t(s)(S). Itis easy to check thatpre(t; S) def= S((R1 : 5R1) ]4R1;� � � ;(Rn : 5Rn) ]4Rn))is a pre-expression of S w.r.t. t. In other words, wecan evaluate pre(t; S) before we execute t in order todetermine the value that S will have afterwards.2.3 Problem StatementSuppose S(R1; � � � ; Rn) is a BA expression and t is atransaction. We would like to determine how t's changesto the base relations propagate to changes in the valueof S. In particular, we seek to construct expressions 4Sand 5S, called a solution for pre(t; S), such thatpre(t; S) =b (S : 5S) ]4S:Note that the expressions 5S and 4S are to beevaluated before t is executed (and committed). Thesesolutions can be used in many applications involving themaintenance of derived data. For example, in the case ofview maintenance this allows us to recompute the valueof S in the new state from its value in the old state andthe values of 5S and 4S. For integrity maintenanceit allows us to check data integrity before a transactionis committed, thus allowing for the transaction to beaborted without the expense of a roll-back operation.Clearly, not all solutions are equally acceptable. Forexample, 5S = S and 4S = pre(t; S) is always asolution. How can we determine which are \good"solutions? First, if S is a materialized view, then itshould be generally cheaper to evaluate (S : 5S)]4Sthan to evaluate pre(t; S) in the current state (or toevaluate S after t has been executed). Second, weshould impose some \minimality" conditions on 5Sand 4S to make sure that no unnecessary tuples areproduced. In particular, 4



1. 5S : S =b � : We only delete tuples that are in S.2. 4Smin5S =b � : We do not delete a tuple andthen reinsert it.A solution meeting condition (1) will be called weaklyminimal, while a solution meeting both conditions (1)and (2) will be called strongly minimal. Note that, incontrast to the relational case [29], it does not makesense to insist that S be disjoint from 4S since atransaction may increase the multiplicities of elementsin S.We will argue that minimality (weak or strong) isespecially desirable due to the way in which changesinteract with aggregate functions. For example, we haveTOTAL((S : 5S) ]4S)= (TOTAL(S) � TOTAL(5S)) + TOTAL(4S)assuming a (weakly or strongly) minimal solution.Again, not all strongly minimal solutions are equallyacceptable. For example, the pair5Q = Q : pre(t; Q)and 4Q = pre(t; Q) : Qis a strongly minimal solution. However, one does notwin by using it for maintaining the view given by Q.The main goal of this paper is to present analgorithm for generating (at compile time) stronglyminimal solutions to the view maintenance problemand demonstrate that they are computationally moree�cient than recomputing the view (at run-time).3 PreliminariesThis section presents the equational theory underly-ing our change propagation algorithm. A change prop-agation algorithm for the relational algebra was pre-sented in [29], based on a collection of equations thatare used to \bubble up" change sets to the top of anexpression. For example, [29] uses the equation(S [4S) � T = (S � T ) [ (4S � T )to take the insertion4S into S and propagate it upwardto the insertion 4S � T into S � T .Our �rst step is to de�ne a collection of suchpropagation rules for bag expressions. The situationis more complicated for BA expressions since they donot obey the familiar laws of boolean algebra thatwe are accustomed to using with set-valued relationalexpressions. For bag expression, the above example nowbecomes(S ]4S) : T = (S : T ) ] (4S : (T : S));which is not immediately obvious.

Figure 2 contains our equations for change propaga-tion in bag expressions. Some subexpressions are an-notated with a 5 (for a deletion bag) or a 4 (for aninsertion bag). This annotation simply emphasizes theintended application of these equations : when read asleft-to-right rewrite rules, they tell us how to propa-gate changes upward in an expression. Note that thecorrectness of these equations involves no assumptionsconcerning minimality of the change bags.Theorem 1 The equations of Figure 2 are correct.Example. By repeated applications of the rulesin �gure 2 we can propagate any number of changesupward. Consider the expression U = S ] T . Supposethatpre(t; U ) =b ((S : 5S) ]4S) ] ((T : 5T ) ]4T ):The changes to S and T can be propagated upward andexpressed as changes to U as follows:((S : 5S) ]4S) ] ((T : 5T ) ]4T )P6=b (((S : 5S) ]4S) ] (T : 5T )) ]4TP6=b (((S : 5S) ] (T : 5T )) ]4S) ]4TP5=b ((((S : 5S) ] T ) : (5T min T )) ]4S) ]4TP5=b ((((S ] T ) : (5Smin S)) : (5T min T )) ]4S) ]4T=b (U : 51U) ]41Uwhere 51U = (5SminS) ] (5T minT ) and 41U =4S ]4T . The last step is simply an application of thegeneral rulesG1. (S ] T ) ]W =b S ] (T ]W )G2. (S : T ) : W =b S : (T ]W )which are applied in order to collect all deletions intoone delete bag and all insertions into one insert bag.Repeated application of the rules of �gure 2 guaran-tees a solution, but not necessarily a strongly minimalone. However, the following theorem tells us that anysolution can be transformed into a strongly minimalone.Theorem 2 Suppose that W =b (Q : 51Q) ]41Q.Let 52Q = (Qmin51Q) : 41Q and 42Q = 41Q :(Qmin51Q): Thena) W =b (Q : 52Q) ]42Qb) 52Q : Q =b �c) 52Qmin42Q =b �.Returning to the example from above,51U and41Ucan be transformed to a strongly minimal solution bytaking 52U to be(U min((5SminS) ] (5T minT ))) : (4S ]4T )and 42U to be(4S ]4T ) : (U min((5SminS) ] (5T minT ))) 5



P1. �p(S : 5S) =b �p(S) : �p(5S)P2. �p(S ]4S) =b �p(S) ] �p(4S)P3. �A(S : 5S) =b �A(S) : �A(5SminS)P4. �A(S ]4S) =b �A(S) ]�A(4S)P5. (S : 5S) ] T =b (S ] T ) : (5SminS)P6. (S ]4S) ] T =b (S ] T ) ]4SP7. (S : 5S) : T =b (S : T ) : 5SP8. S : (T : 5T ) =b (S : T ) ] ((5T minT ) : (T : S))P9. (S ]4S) : T =b (S : T ) ] (4S : (T : S))P10. S : (T ]4T ) =b (S : T ) : 4TP11. (S : 5S)minT =b (SminT ) : (5S : (S : T ))P12. (S ]4S)minT =b (SminT ) ] (4Smin(T : S))P13. (S : 5S)maxT =b (SmaxT ) : (5Smin(S : T ))P14. (S ]4S)maxT =b (SmaxT ) ] (4S : (T : S))P15. �(S : 5S) =b �(S) : (�(5SminS) : (S : 5S))P16. �(S ]4S) =b �(S) ] (�(4S) : S)P17. (S : 5S)� T =b (S � T ) : (5S � T )P18. (S ]4S)� T =b (S � T ) ] (4S � T )Figure 2: Change propagation equations for bag expressionsAlthough these expressions are rather complex, they canbe greatly simpli�ed to53U def= (5S : 4T ) ] (5T : 4S)43U def= (4S : 5T ) ] (4T : 5S)under the assumption that the solutions (5S;4S) and(5T;4T ) are strongly minimal (details omitted).This example illustrates the three-step process thatwas used to derive the recursive algorithm presented inthe next section. First, a general solution is derived byrepeated application of the propagation rules of �gure2. Second, a strongly minimal solution is obtainedby application of theorem 2. Third, the results aresimpli�ed under the assumption that all solutions forsubexpressions are strongly minimal.Note that if we are only concerned with correctness,then there is considerable freedom in the design of thepropagation rules presented �gure 2. For example, wecould replace rule P8 withS : (T : 5T ) =b (S : T ) ] ((S : (T : 5T )) : (S : T ))However, we have designed our rules from a computa-tional point of view. Note that the structure of eachequation in �gure 2 follows the same pattern. For anyoperation e and its value V = e(R1; : : : ; Rn), n = 1 orn = 2, if one of its arguments changes, then its valueV 0 on changed arguments is obtained as either V : 5or V ] 4. The expressions for 5 and 4 are alwaysof special form. Intuitively, they are \controlled" by5Ris and 4Ris, that is, could be computed by iterat-ing over them and fetching corresponding elements from

base relations, rather than by iterating over base rela-tions. Furthermore, this special form is preserved in thetransformations de�ned in theorem 2.For example, to compute Z = ((5T minT ) : (T : S))(rule P8 in �gure 2), for each element x 2 5T , let n;mand k be numbers of occurrences of x in 5T , T and Srespectively. Then x occurs min(n;m) : (m : k) timesin Z. Thus, to compute Z, we only fetch elements in5T from T and S. Since 5Ris and 4Ris are generallysmall compared to the size of base relations Ris, thisspecial form of expressions for 5 and 4 will make thechange propagation algorithm suitable for maintaininglarge views. This intuition will be made more precise inthe analysis of section 6.4 Change Propagation AlgorithmThis section presents our algorithm for computing astrongly minimal solution to a given view maintenanceproblem. That is, given a transaction t and a BAexpression Q, we will compute expressions 5Q and 4Qsuch that pre(t; Q) =b (Q : 5Q) ]4Q.We �rst de�ne two mutually recursive functions5(t; Q) and 4(t; Q) such that for any transaction tpre(t; Q) =b (Q : 5(t; Q)) ]4(t; Q). These functionsare presented in �gure 3. For readability, we use theabbreviations add(t; S) for S ]4(t; S) and del(t; S) forS : 5(t; S).We derived the clauses of these recursive functionsin three steps: a) a general solution was obtainedby repeated applications of the propagation rules of�gure 2, b) theorem 2 was applied to obtain a stronglyminimal solution, c) the results were further simpli�ed 6



Q 5(t; Q) #R 5R, if R (R : 5R) ]4R is in t, and � otherwise 51�p(S) �p(5(t; S)) 52�A(S) �A(5(t; S)) : �A(4(t; S)) 53S ] T (5(t; S) : 4(t; T )) ] (5(t; T ) : 4(t; S)) 54S : T ((5(t; S) : 5(t; T )) ] (4(t; T ) : 4(t; S)))minQ 55SminT (5S : (S : T ))max(5T : (T : S)) 56SmaxT (5(t; S) ] (5(t; T )min(T : add(t; S))))min(5(t; T ) ] (5(t; S) min(S : add(t; T )))) 57�(S) �(5(t; S)) : del(t; S) 58S � T (5(t; S)�5(t; T )) ] ((del(t; S) �5(t; T )) : (4(t; S) � del(t; T )))]((5(t; S) � del(t; T )) : (del(t; S) �4(t; T ))) 59Q 4(t; Q) #R 4R, if R (R : 5R) ]4R is in t, and � otherwise 41�p(S) �p(4(t; S)) 42�A(S) �A(4(t; S)) : �A(5(t; S)) 43S ] T (4(t; S) : 5(t; T )) ] (4(t; T ) : 5(t; S)) 44S : T ((4(t; S) : 4(t; T )) ] (5(t; T ) : 5(t; S))) : (T : S) 45SminT (4(t; S) ] (4(t; T )min(del(t; S) : T )))min(4(t; T ) ] (4(t; S) min(del(t; T ) : S))) 46SmaxT (4S : (T : S))max(4T : (S : T )) 47�(S) �(4(t; S)) : S 48S � T (4(t; S) �4(t; T )) ] ((del(t; S) �4(t; T )) : (5(t; S) � T ))]((4(t; S)� del(t; T )) : S �5(t; T )) 49Figure 3: Mutually recursive functions 5 and 4.by assuming that all recursively derived solutions arestrongly minimal.This last step is quite important since the assump-tions of strong minimality would not be available to aquery optimizer at a later stage. It is also why we wantto apply theorem 2 at every stage, rather than just onceat the end. The three steps were outlined in the previ-ous section for the S ] T case.Algorithm. Our algorithm is simply this: giveninputs t and Q, use the functions5(t; Q) and4(t; Q) tocompute a solution for pre(t; Q). Note that in an actualimplementation5(t; Q) and4(t; Q) could be combinedinto one recursive function. Thus the algorithm requiresonly one pass over the expression Q.The following theorem shows that the functions5 and 4 correctly compute a solution to the viewmaintenance problem and that they preserve strongminimality.Theorem 3 Let t be a strongly minimal transaction.That is, R : 5R =b � and 5Rmin4R =b � for anyR  (R : 5R) ] 4R in t. Let Q be a BA expression.Then1. pre(t; Q) =b (Q : 5(t; Q)) ]4(t; Q)2. 5(t; Q) : Q =b �3. 4(t; Q)min5(t; Q) =b �

Although some of the clauses in the de�nition offunctions 5 and 4 are rather complex, we believe thatin practice many of the subexpressions will be � or willeasily simplify to �. To illustrate this, recall the examplefrom section 1:V1 def= (�Pid;Cost(S1) ]�Pid;Cost(S2))V2 def= �Pid;Cost(Paid)Unpaid def= V1 : V2where the t is a transaction that changes Paid to(Paid : 5Paid)]4Paid. Using our change propagationfunctions, the delete bag can be calculated as follows.5(t;Unpaid)= 5(t;V1 : V2)55= ((5(t;V1) : 5(t;V2)) ] (4(t;V2) : 4(t;V1)))minUnpaid= ((� : 5(t;V2)) ] (4(t;V2) : �))minUnpaid= 4(t;V2)minUnpaid= 4(t;�Pid;Cost(Paid))minUnpaid43= [�Pid;Cost(4(t;Paid)) : �Pid;Cost(5(t;Paid))]minUnpaid51;410= [�Pid;Cost(4Paid) : �Pid;Cost(5Paid)] minUnpaidIn a similar way we can compute the change bag for 7



insertions, 4(t;Unpaid), to be[�Pid;Cost(5Paid) : �Pid;Cost(4Paid)] : (V2 : V1):One advantage of our approach is that it producesqueries that can be further optimized by a queryoptimizer. Consider the following example. Supposethat we have a view WellPaid de�ned asWellPaid = �Name(�Salary>50;000(Employees))Now if a deletion has been made to Employees, then wecompute5WellPaid = �Name(�Salary>50;000(5Employees))We have treated deletions and insertions as blackboxes, but often they are speci�ed in some transactionlanguage or as queries. For example, if 5Employees =�Salary<5;000(Employees), then we can substitute thisvalue for 5Employees in the equation for 5WellPaid,obtaining�Name(�Salary>50;000(�Salary<5;000(Employees)))for 5WellPaid. Any query optimizer that \knows" that�p1(�p2 (S)) = �p1&p2 (S) and that 5 < 50 will �gure outthat 5WellPaid = ; and no computation needs to bedone.5 Aggregate FunctionsMost database query languages provide a number ofaggregate functions such as COUNT, TOTAL, AVG,STDEV,MIN,MAX [23, 12, 30]. It was noticed in [20, 22]that a number of aggregates (in fact, all of the aboveexcept MIN and MAX) can be expressed if the querylanguage is endowed with arithmetic operations and thefollowing summation operator:�f fjx1; : : : ; xnjg = f(x1) + : : :+ f(xn)For example, COUNT is �1 where the function 1 alwaysreturns 1; TOTAL is �id , AVG is TOTAL=COUNT. Formore complex examples, see [20, 21].Any strongly minimal solution for the view mainte-nance problem allows us to handle duplicates correctlybecause the following will hold:�f ((S : 5S)]4S) = (�f (S) � �f (5S)) + �f (4S)Now if an aggregate function is de�ned as AGR(S) ='(�f1 (S); : : : ;�fk(S)) where ' is an arithmetic expres-sion in k arguments, to be able to maintain the value ofAGR when the view S changes, one has to keep k num-bers, �fi (S), i = 1; : : : ; k. Once changes to the view(5S and 4S) become known, the values of �fi are re-computed by the formula above and then ' is appliedto obtain the value of AGR.

For example, AVG(S) = TOTAL(S)=COUNT(S) =�id(S)=�1(S). Assume that n = TOTAL(S) andm = COUNT(S). If S changes and a strongly minimalsolution Sn = (S : 5S) ] 4S is computed, letn1 = �id(5S), n2 = �id(4S), m1 = �1(5S),m2 = �1(4S). Then AVG(Sn) can be computed as(n�n1+n2)=(m�m1+m2). Notice that all additionalcomputation of aggregates is performed on changes tothe views, so one may expect it to be fast.Two aggregates that require special treatment areMIN and MAX. Assume that MIN(S) = n, and we wantto compute MIN(Sn) where Sn = (S : 5S) ] 4S isstrongly minimal. If we compute m = MIN(5S) andk = MIN(4S), then k � n implies MIN(Sn) = k andm > n impliesMIN(Sn) = min(n; k). However, if n = mand k � n, then there is no way to say what the valueof MIN(Sn) is for the minimal value n can be reached atseveral elements of S and we do not know if all of themwere deleted in 5S. Thus, in only this case one has torecompute Sn in order to evaluate MIN correctly.6 Complexity AnalysisWhile it is generally faster to compute changes tothe view from changes to base relations rather thanrecompute the whole view from scratch, this is only aheuristic and need not be true in all cases. Changesto base relations are also typically small, but it isconceivable that in some situations a base relation Rcan be replaced by another relation R0. In this case5R = R and 4R = R0, so changes to R are notsmall compared to R itself. If these changes \dominate"computing 5(t; Q) and 4(t; Q), then one should notexpect a signi�cant improvement in time and spacee�ciency from using the change propagation algorithm.All this tells us that it is impossible to prove a generalstatement saying that it is better to use the changepropagation algorithm rather than recompute the view.This is also one of the reasons why so little e�ort hasbeen devoted to the complexity analysis of the viewmaintenance problem. But intuitively, if changes aresmall, computing solutions for pre-expressions shouldbe easier than computing pre-expressions themselves. Inparticular, one may expect that in most cases the sizesof 4S and5S are small compared to the size of S, andthese are relatively easy to compute. In this section wepresent an attempt to formalize this statement.Our approach is the following. We de�ne two func-tions on BA expressions. These functions give a reason-able time (or space) estimate for computing the delta-expressions for the change propagation algorithm (thefunction t�) and for recomputing the view from scratch(the function tview). Then we shall prove that if changesto base relations are small, the expected complexity ofevaluating4(t; Q) and5(t; Q) is small compared to theexpected complexity of re-evaluating Q on changed ar- 8



guments. In other words, t�(4(t; Q)) + t�(5(t; Q)) issmall compared to tview(pre(t; Q)). The special form of5(t; Q) and4(t; Q) where all expressions that are hardto evaluate occur inside the scope of a simpler 5 or 4will play the crucial role.Our �rst step is to de�ne tview . We give an optimisticestimate for tview , because our goal is to prove thatgenerally recomputing the view is more expensive thanmaintaining it. We �rst de�ne tview(R) = size(R) forany base relation R. For binary operation de�netview(SminT ) = tview(S ] T ) = tview (SminT )= tview(SmaxT ) = tview(S) + tview (T )The idea is that to compute the new view, we haveto compute S and T , and then, being optimistic, wedisregard the time needed to compute min, max, ]or : . For cartesian product, de�ne tview(S � T ) =tview(S) � tview(T ). Finally, for unary operations we usethe optimistic estimate again, and disregard overheadfor doing computation on the argument. That is,tview(�p(S)) = tview(�A(S)) = tview(�(S)) = tview (S)To de�ne the function t� that estimates a reasonableevaluation time for expressions used in the changepropagation algorithm, we use the special form ofthe expressions in �gure 3 that allow us to iterateover subexpressions in scope of 5 or 4, as wasexplain before. To do this, as the �rst step, wede�ne a new function fetch(S) that estimates thecomplexity of retrieving a given element from the valueof S(R1; : : : ; Rn). We assume that fetch(Ri)s are givenand bounded above by some number F . Then for anybinary operation � 2 BA we de�ne fetch(S � T ) =fetch(S) + fetch(T ). For example, to retrieve x fromS � T , we �rst retrieve x's projection onto attributes ofS from S, and then x's projection onto T 's attributesfrom T , and use the result to obtain the right numberof x's duplicates in S � T . For �p(�) and �(�) weassume fetch(�p(S)) = fetch(�(S)) = fetch(S) as anupper bound. Finally, we make an assumption thatfetch(�A(S)) = fetch(S) which need not be true ingeneral but holds if the index on S is not projected out.As we explained in the introduction, if the index doesget projected out, there is no guarantee of winning interms of time, but we still win in terms of space. Indeed,the space occupied by �A(S) is bounded by the spaceneeded for S itself, and then the following theorem canbe seen as a con�rmation of the fact that one shouldexpect to reduce the space complexity.Now we de�ne inductively the estimated time com-plexity of evaluation of 4S and 5S. First, we assumethat for any base relation R, t�(4R) = size(4R) andt�(5R) = size(5R). In the de�nitions for BA opera-tions we disregard time needed for projecting out some�elds or checking the selection conditions, assuming that

it is constant. We also assume that the number of du-plicates is known for all elements, and disregard thecomputational overhead of duplicate elimination. Thatis, t�(�p(S)) = t�(�A(S)) = t�(�(S)) = t�(S)For operations ];max and � we de�ne t�(S ] T ) =t�(SmaxT ) = t�(S) + t�(T ) and t�(S � T ) =t�(S) � t�(T ). The only thing out of ordinary in thede�nition of t� is the clauses for min and : :t�(S : T ) = t�(S) � fetch(T )t�(SminT ) = min(t�(S) � fetch(T ); t�(T ) � fetch(S))Unlike in the case of ];max and �, elements of T neednot be stored as they are only used to reduce the sizeof S. Hence, to compute S : T or SminT , one onlyhas to fetch elements of the computed value S fromT , and that requires fetch(T ) rather than t�(T ) timefor each element in S. In the case of min, which is asymmetric operation, we can alternatively iterate overT ; the estimated time complexity is obtained by takingthe minimum of the two possible iterations.Let D = fR1; : : : ; Rng be a family of base relationsstored in a database. We assume that a transaction t is�xed for the remainder of the section, and omit it in allde�nitions. De�nec(D) = maxi=1;:::;n size(5Ri) + size(4Ri)size(Ri)That is, c(D) gives the upper bound on the relative sizeof the changes to base relations. The following resultshows that if c(D) is small, then one should expect towin in terms of time (or space) by using the changepropagation algorithm.Theorem 4 Let Q(R1; : : : ; Rn) be a BA expression.Let 4Q and 5Q be calculated according to the changepropagation algorithm. Thenlimc(D)!0 t�(5Q) + t�(4Q)tview(pre(Q)) = 0Let us apply this theorem to our working example.Recall that the positive change to the view Unpaid wascalculated as4Unpaid= (�Pid;Cost(5Paid) : �Pid;Cost(4Paid)) : (V2 : V1)Assuming that for base relations the value of thefetch function equals F , we obtain t�(4Unpaid) =size(5Paid) � 2F 2 = O(size(5Paid)). Similarly,t�(5Unpaid) = O(size(4Paid)). Therefore, changes toUnpaid can be expected to be calculated inO(size(5Paid) + size(4Paid)) time. One can derivethe same result just by looking at the expressions for 9



5Unpaid and4Unpaid. Indeed, to calculate4Unpaid,we iterate over 5Paid and fetch its elements from4Paid; V1 and V2 and then compute the value of anarithmetic expression. The time needed for that is lin-ear in the size of 5Paid, assuming F is constant.On the other hand, to recompute the view Unpaid,one should expect to spend time O(size(S1) + size(S2)),and this is exactly what tview (pre(Unpaid)) is. If sizes of5Paid and4Paid are small, this tells us that it is betterto compute 5Unpaid and 4Unpaid than to recomputeUnpaid.One may ask what happens if one tries to use thesame evaluation strategy for both change propagationand recomputing the view. It should not be surprisingthat in several cases the complexity of both is the same,as we should not always expect to win by propagatingchanges. To give an example, let R1; R2 and R3 bebase relations, where R1's attributes are a1; a2, R2'ssole attribute is a1 and R3's attribute is a2. De�neour view as V := R1min(R2 � R3). Now assume thatsize(Ri) = n, i = 1; 2; 3. Assume that fetch(Ri) = F isconstant. Then it is easy to see that t�(5V ) = O(n)and t�(4V ) = O(n).Now assume that changes to base relations Ris aresmall. Then one can use the evaluation strategy thatgave us the function t� and calculate that t�(pre(V )) =O(n), where pre(V ) = (R1 : 5R1) ] R1)min(((R2 :5R2)]R2)�((R2 : 5R2)]R2)). The reason for this isthat it is not necessary to calculate the second argumentof min as we only have to retrieve certain elements fromit.This example shows that even for a simple viewde�nition it may be the case that using the changepropagation algorithm is as complex as recomputingthe view from scratch, provided that we do not usea straightforward evaluation strategy (corresponding totview).In some special cases of sublanguages of BA pre-cise statements about the complexity of evaluation ofchanges to the views can be proved. As a consequence,we shall see that for one special class of views the ratioof t�(4Q) + t�(5Q) and t�(pre(Q)) is guaranteed tobe small if so are changes to the base relations.Proposition 1 Let Q(R1; : : : ; Rn) be a projection- andproduct-free BA expression such that all conditions forselections can be calculated in O(1) time. Let n =Pni=1(size(5Ri) + size(4Ri)). Let the upper boundfor the time needed for retrieving an element from abase relation be a constant. Then the complexity ofevaluation of 5Q and 4Q is bounded above by O(n).This proposition can be seen as a corollary of a moregeneral result. We de�ne �-controlled expressions by

means of the following grammar:S� := 4R j 5R j S�minT j S� : T jS� ] S� j S�maxS� j �(S�) j �p(S�)where T is an arbitrary projection- and product-free BAexpression.Proposition 2 Under the assumptions of proposition1, any �-controlled expression can be evaluated in timeO(n).Corollary 5 Let D be de�ned as above andc0(D) = maxi Pj size(5Rj) + size(4Rj)size(Ri)Let Q(R1; : : : ; Rn) be a projection- and product-free BAexpression such that all conditions for selections can becalculated in O(1) time. Thenlimc0(D)!0 t�(4Q) + t�(5Q)t�(pre(Q)) = 0Summing up the results of this section, theorem 4says that it is generally easier to compute changes toa materialized view than to recompute the view fromscratch, although we demonstrated that it is not alwaysthe case. For a restricted class of view, we proved thatcomputing changes is always more e�cient.7 Related WorkOur approach is closest to that of [9], which treatsthe standard relational algebra. That work grew outof an analysis of [29], which in turn was in
uencedby the notion of `�nite di�erencing' of [25]. Thealgorithm for change propagation in [29] is an iterativeone that propagates changes, one-by-one, to the topof an expression. It was shown in [9] that this is notenough to guarantee strong minimality. Instead [9]de�nes recursive functions to compute change sets, aswe have done here, and proves correctness by induction.The only work on change propagation for multisetsis [12], which is done in the context of a modi�edDatalog where programs produce multisets. Informally,a tuple's multiplicity in the multiset resulting fromthe evaluation of a program P indicates the numberof di�erent possible derivations showing that it wasproduced by P using Datalog semantics (see [12]).Given a program P and a transaction t, the changepropagation algorithmof [12] produces a programPn byconcatenating the clauses of program P with the clausesof a new program 4�P . Concatenation corresponds tothe additive union operation. The program 4�P isde�ned so that for any database state s, the evaluationof Pn in state s will result in the same multiset as theevaluation of program P in the new state t(s). If P is 10



a materialized query, then in order to evaluate P in thenew state we need only evaluate the clauses of 4�P inthe old state and form this union with the old (stored)value of P . In order to make this work with deletions,the semantics of [12] allows for negative multiplicities inthe change sets 4�P (s).For example, consider the programminus(X) : � S(X) & :T (X):If we have a database transaction that induces changesto both S and T , then the algorithm of [12] producesthe program 4�minus with clausesminus(X) : � 4�S(X) & :T (X):minus(X) : � Sn(X) & 4�T (X):where 4�T computes a set W such thatcount(x;W ) = 8<: �1 if x 2 4�T and x 62 T ]4�T1 if x 2 4�T and x 62 T0 otherwiseThere are many di�erences between our approachand that of [12]. First, we are treating di�erent querylanguages. The nonrecursive fragment of the languageof [12] cannot represent our operations of duplicateelimination, monus, min, and max. This follows fromgeneral results on the expressive power of bag languages[19]. On the other hand, our language does not handleGROUPBY or recursive queries, as does [12].Our approach does not require negative multiplicities.If a program P can be represented as a BA expressionP̂ , then an incremental change program 4�P canbe represented in BA as a pair of queries (5P̂ ;4P̂)where 5P̂ (4P̂ ) represents those tuples of 4�P witha negative (positive) multiplicity. Then program Pncorresponds to (P̂ : 5P̂ ) ]4P̂ .This highlights the fact that our approach is linguis-tically closed. That is, we give explicit algebraic repre-sentations to all expressions generated in change prop-agation, and these are represented in the language BA.For example, while [12] must extend their language witha new operation in order to evaluate the program4�T ,we would represented this operation explicitly as thepair of queries(�(4(t; T )) : T; �(5T ) : (T : 5T )):This makes additional optimizations possible, both inthe process of generating change expressions and in anylater optimization stages.Next, our approach gives a declarative semantics tochange propagation that is not tightly bound to onecomputational model. That is, we have an algebraicapproach rather than an algorithmic one. This makescorrectness proofs much easier, and also simpli�es the

process of extending the algorithm to new constructs.It also allows us to apply our results to problems otherthan view maintenance. For example, suppose that weare given the integrity constraint� def= (8x 2 R1) x:a = count fjz 2 R2 : z:b = x:bjg| {z }multisetand a strongly minimal transaction t = fR2  (R2 : 5R2) ] 4R2g. Furthermore, suppose that wewould like to transform t to a safe transaction,t0 = if � then t else abort;that can never leave the database in a state violating�. If we assume that � will always hold before t0 isexecuted, then we can use our algorithm, together withsome logical manipulations, to produce(8x 2 R1)countfjz 2 5R2 : z:b = x:bjg= countfjz 2 4R2 : z:b = x:bjgas the formula �. Indeed, this type of problem providedthe original motivation for our work (see [8]).Finally, we are able to use the inductive assumptionsof strong minimality to further simplify our solutions.Since this information is not available to a generalpurpose query optimizer, it may fail to produce ane�cient solution that can be found with our approach.A comparison of performance must wait for imple-mentations of the two approaches.8 Further WorkOur use of strong minimality in the simpli�cationof queries suggests that this information should beavailable to a specialized query optimizer. We arecurrently working on the design of such an optimizerbased on a collection of inference rules for derivingdisjointness (for example, if S is disjoint form T , thenS : W is disjoint from T : Z) and simpli�cationrules that exploit disjointness (for example, if S isdisjoint from T , then S : T simpli�es to S). Theoptimization process is initiated by recognizing thatall pairs produced by our algorithm, (5S;4S), aredisjoint.The work of [12] does handle recursive Datalogprograms. One current drawback to our approach isthat, as with the relational algebra, bag languages suchas BA cannot express recursive queries [22]. We hope toaddress this issue in the future by extending BA withloops or a �xed-point operator, as in [13, 19].The other extension of our approach deals withcomplex objects. Our bag algebra BA is the 
atfragment of what was originally designed as an algebrafor nested bags. We are currently working on anapproach that allows us to extend the equations of thechange propagation algorithm to complex objects. 11
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