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Abstract

We study the problem of efficient maintenance of materi-
alized views that may contain duplicates. This problem is
particularly important when queries against such views in-
volve aggregate functions, which need duplicates to produce
correct results. Unlike most work on the view maintenance
problem that is based on an algorithmic approach, our ap-
proach is algebraic and based on equational reasoning. This
approach has a number of advantages: it is robust and easily
extendible to new language constructs, it produces output
that can be used by query optimizers, and it simplifies cor-
rectness proofs.

We use a natural extension of the relational algebra
operations to bags (multisets) as our basic language. We
present an algorithm that propagates changes from base
relations to materialized views. This algorithm is based
on reasoning about equivalence of bag-valued expressions.
We prove that it is correct and preserves a certain notion
of minimality that ensures that no unnecessary tuples are
computed. Although it is generally only a heuristic that
computing changes to the view rather than recomputing
the view from scratch is more efficient, we prove results
saying that under normal circumstances one should expect
the change propagation algorithm to be significantly faster
and more space efficient than complete recomputing of the
view. We also show that our approach interacts nicely
with aggregate functions, allowing their correct evaluation
on views that change.

1 Introduction

In database management systems base relations are
often used to compute views. Views are derived
data that can be materialized (stored in a database)
and subsequently queried against. If some of the
base relations are changed, materialized views must be
recomputed to ensure correctness of answers to queries

against them. However, recomputing the whole view
from scratch may be very expensive. Instead one often
tries to determine the changes that must be made to
the view, given the changes to the base relations and
the expression that defines the view.

The problem of finding such changes to the views
based on changes to the base relations has come to be
known as the view maintenance problem, and has been
studied extensively [27, 4, 3, 6, 7, 14, 29, 12, 5, 18, 26].
The name is slightly misleading since, as a reading
of this literature will indicate, any solution to the
problem is applicable in a large number of practical
problems, including integrity constraint maintenance,
the implementation of active queries, triggers and
monitors.

Most of the work on view maintenance has assumed
that relations are set-valued, that is, duplicates are
eliminated. However, most practical database systems
use bags (multisets) as the underlying model. They do
handle duplicates, which is particularly important for
evaluation of aggregate functions. For instance, if the
average salary of employees is to be computed, then
one applies the aggregate AVG to Ilsaiary(Employees).
Duplicates cannot be removed from the projection since
the result would be wrong when at least two employees
had the same salary. Not eliminating duplicates also
speeds up query evaluation, as duplicate elimination is
generally a rather expensive operation.

Many theoretical results obtained for set-theoretic
semantics do not carry over to bags. In trying to
bridge the gap between theoretical database research
and practical languages, one particularly active research
topic has been the design of bag languages [17, 24, 16].
Bag primitives [2] formed the basis for the algebras
suggested by [11, 19]. These algebras turned out to
be equivalent and accepted as the basic bag algebra. In
this paper we use the basic bag algebra from [11, 19].
It was also shown that the basic bag algebra essentially
adds the correct evaluation of aggregate functions to
the relational algebra, and this continues to hold when
nested relations are present [20]. There are a number of
deep results on the complexity and expressive power of



bag languages [11, 2, 19, 20, 21, 22, 31].

The main goal of this paper is to lay the foundation
for incremental maintenance of views defined in the bag
algebra. We advocate an approach based on equational
reasoning. That is, for each primitive in the bag algebra
we derive an equation that shows how the result of
applying this primitive changes if some changes are
made to its arguments. We do it independently for each
primitive in the language; then, if an expression is given,
the change propagation algorithm calculates changes to
the view by recursively applying those rules.

This differs from most approaches found in the
literature. Most papers on view maintenance suggest
an algorithmic approach. That is, given changes to
the base relations, an algorithm — sometimes quite
ad hoc — 1s produced that computes the changes to
the view. This approach makes it harder to prove a
correctness result. For example, in [6] a new primitive
when is introduced: E when § is the value of the
expression F if all changes given in J are applied to E’s
arguments. The semantics of when is explained in [6] by
means of low-level algorithms that compute the value of
E when § when E is a relational algebra operation. The
correctness result for those low-level algorithms has not
been proved in [6].

The only paper that addresses the issue of incremental
view maintenance when duplicates are present is [12],
where a similar algorithmic approach is adopted, but
this time in a Datalog setting. A correctness result
is proved in [12], but it is not particularly robust
as it is not clear how the algorithm would react to
slight changes in the language. We shall explain the
difference between [12] and our approach in more detail
in section 7. An equational approach has been used in
[9] for the relational algebra. That work grew out of an
analysis of [29], which presented an iterative algorithm
for propagating changes. This was improved in [9] with
a recursive algorithm that is similar in style to ours.
This allows correctness to be proved with a simple proof
by induction.

We believe that the equational approach to the view
maintenance problem has a number of advantages over
the algorithmic approach. In particular:

e Unlike the algorithmic approach, it provides us with
precise semantics of changes to the views. Conse-
quently, using the equational approach makes it eas-
ier to prove correctness of the change propagation
algorithm. Also, as we shall see in section 4, the
recursive form of our algorithm allows us to use in-
variants concerning minimality to further simplify
change expressions. Such assumptions would not be
available to a later phase of query optimization.

e This approach is robust: if language changes (e.g.
new primitives are added), one only has to derive

new rules for the added primitives, leaving all other
rules intact. As long as the new rules are correct,
the correctness of the change propagation algorithm
is not affected.

e The resulting changes to the view are obtained in
form of expressions in the same language used to de-
fine the view. This makes additional optimizations
possible. For example, the expressions for changes
that are to be made (e.g. for sets/bags of tuples to
be deleted/added) can be given as an input to any
query optimizer that might find an efficient way of
calculating them.

Example. Suppose we have a database with the
relations S1(Pid, Cost, Date) and S2(Pid, Cost, Date)
for recording shipments of parts received from two
different suppliers. The attribute Pid is a unique
identifier for parts, Cost is the associated cost of a part,
and Date is the day the shipment arrived. In addition
we have the relation Paid(Pid, Cost, S), which registers
parts that have been paid for. The attribute S must
have the value 1 or 2, indicating which supplier was
paid (see Figure 1).

We would like to compute the total amount of money
we owe — the cost of all parts received by not yet paid
for. One way of doing this is to define a view Unpaid as

v, & (IIpid,cost(S1) W ITpig,cost (S2))
v IIpid,cost (Paid)
Unpaid I A /A

Here W is the additive union that adds up multiplicities
of elements in bags. In particular, it will produce
two copies of the record [Pid = P1, Cost = 1,200]
in calculating V3. The modified subtraction monus ~
subtracts multiplicities. If a record r occurs n times in
S and m times in T, then the number of occurrences of
rinS-~Tisn—mifn>mand0ifn<m.

Assume that the derived data that we are interested
in is the amount still owed:

Owe = TOTAL(IIgost (Unpaid))

Note that multiset semantics gives the correct answer
here, while set-theoretic semantics would not. For
example, for relations shown in figure 1, the amount
Owe is $7,400. However, if we switch to set semantics
and calculate Unpaid as (IIpid,cost(S1)UIIpia,cost (S2)) —
IIpid,cost(Paid), then Owe calculated by the same
formula equals $4,800. Thus, we do need multiset
semantics for maintaining the view Unpaid in a correct
manner.

Suppose that a transaction changes Paid by deleting
the bag s/Paid and inserting the bag APaid. That is,

Paid™" = (Paid = yyPaid) & APaid.
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| Pid | Cost | Date | | Pid | Cost | Date |
P1 | 1,200 | 09/12 T [ 1,200 | 09,05
P2 | 2,100 | 08/27 P4 1’400 08/24
P3 | 1,300 | 09/11 PE 4’000 0903
P4 | 1,400 | 08/25 !

Unpaid
Pid | Cost
Paid [ Pid [ Cost ]
[Pid [ Cost [ S | P1 | 1,200
P1 | 1,200 | 1 P2 | 2,100
P5 | 4,000 | 2 P3 | 1,300
’ P4 | 1,400
P4 | 1,400

Figure 1: Relations S1, S2, Paid and view Unpaid

Rather than recomputing the entire view Unpaid from
scratch, we would like to find expressions yUnpaid and

AUnpaid such that
Unpaid™™ = (Unpaid - 7Unpaid) ¥ AUnpaid.

This has the potential of greatly reducing the amount of
computational resources needed to recompute this new
value.

For example, let syPaid contain the single record
[Pid = P5,Cost = 4,000,S = 2] and APaid contain
the single record [Pid = P3,Cost = 1,300,S = 1].
(That is, we discovered that a payment was made
to the first supplier for P3 rather than the second
for P5.) Then it is fairly easy to see that yUnpaid
should evaluate to [Pid = P3, Cost = 1,300] and that
AUnpaid should evaluate to [Pid = P5, Cost = 4, 000].

Our algorithm treats the changes to base relations as
black boxes. For this example it produces the delete
bag, 7 Unpaid,

[IIpig,cost (APaid) + IIpig,cost(VPaid)] min Unpaid,
and the insert bag, AUnpaid,
(IIpia, cost(VPald) ~ Ipiq, cost (APaid)) — (V2 = V7).

Here SminT is a multiset such that the number of oc-
currences of a record r in it is min(n, m), where n and m
are numbers of occurrences in S and T respectively. No-
tice that the evaluation of the expressions for \yUnpaid
and AUnpaid can be made very efficient. First we as-
sume that all relations S1, S2 and Unpaid have an index
built on the them that uses Pid as a key. Then, in order
to evaluate the expressions for \yUnpaid and AUnpaid
we only have to find the numbers of occurrences of ele-
ments of Ipiq, cost(VPaid) and Ilpig,cost(APaid) in V7,
V5 and Ilpiqg,cost(Paid). For example, to find 7Unpaid,
for each r € APaid we find z,y, z,v as the numbers of
occurrences of r in APaid, \yPaid, V3 and V,. Then R
occurs min{(z = y), (z ~ v)} times in yUnpaid. Thus,
the complexity of such evaluation depends on how fast
we can access elements of the base relations. Access to
the base relations is typically fast, compared to access
to views.

Even if no index exists, the time complexity is still
linear in the sizes of the base relations. The big
win here is in space usage. Whereas recomputing
the whole view Unpaid would require space linear in
the size of base relations, the propagation algorithm
only requires that we find the number of occurrences
of certain records in base relations and then evaluate
an arithmetic expression. Therefore, space needed for
updating the view Unpaid is linear in the size of changes
to the base relations. Typically, these changes are
relatively small compared to the size of the relations.
Thus, calculating changes to the view as opposed to
reconstructing the view from scratch leads at least to
substantial improvement in space usage.

Once changes to Unpaid are calculated, the new value
of Owe is found as

Owe™™ = (Owe — TOTAL(Il¢ost (7 Unpaid)))
+ TOTAL(IIgost(AUnpaid)).

The correctness of this is guaranteed for our solution.
Indeed, Owe™" calculated above is $10,100, and one
can see that it is the correct amount still owed once
changes to Paid have been made.

Organization. In Section 2 we introduce our nota-
tion, describe our basic bag algebra, and state the prob-
lem. We present some basic facts concerning equational
reasoning for our bag algebra in Section 3. In Section 4
we present our change propagation algorithm for view
maintenance. We then address aggregate functions in
Section 5. In Section 6 we analyze the complexity of the
results produced by our algorithm. We discuss related
work in Section 7. Finally, we conclude in Section 8
with some remarks concerning future work. All proofs
can be found in [10].

2 Notation and Problem Statement
2.1 The Bag Algebra, BA

As we mentioned in the introduction, several equivalent
approaches to bag-based database languages have been
proposed [11, 19, 22]. As our basic language in which
we formulate the change propagation algorithm we take



a restriction of those languages to flat bags (that is,
bag-valued attributes are not allowed).

In what follows, base relation names are denoted by
the symbols R, R1, Ry, .... Let p range over quantifier-
free predicates, and A range over sets of attribute
names. BA expressions are generated by the following
grammar.

S = ¢ empty bag
| R name of stored bag
| op(S) selection
| TI4(8) projection
| SwS additive union
| S§=8 monus
| SminS minimum intersection
| SmaxS maximum union
| €(S) duplicate elimination
| Sx8§ cartesian product

To define the semantics of these operations, let
count(z, ) be the number of occurrences of z in a
bag S. Then, for any operation e in the language, we
define count(z,e(S,T)) or count(z,e(S)) as a function
of count(z, S) and count(z, T) as follows:

count{z, S) p(z) is true
0 p(z) is false

Z count(y, S)

y€S, I 4(y)=2

= count{z,S) + count(z,T)
= max(couni(z,S) — count{z,T),0)
= min(count(z, S), count(z,T))
= max(count(z, S), count(z,T))

1 count(z,S) >0

0 count(z,S) =0
count(z, S) x count(y,T)

count(z,o,(S))

count(z,I14(S))

count(z,S W T)
count(z,S = T)
count{z, S min T)
count(z, S max T)
count(z,e(S)) =

count{(z,y),S x T)

This language is not intended to be minimal. For

example, min can be defined as S minT g (§=T).
For the full characterization of interdefinability of the
operations of BA, consult [19].

We use the symbols §, T, W, and Z to denote
arbitrary BA expressions, and s to denote a database
state, that is, a partial map from relation names to
multisets. If s is a database state and T is a BA
expression such that s is defined on all relation names
mentioned in T, then s(7T') denotes the multiset resulting
from evaluating T in the state s. (Note that s is a
function, so we consider evaluating 7" in s as the result
of applying s to T.) The notation T = S means that
for all database states s, if s is defined on all relation
names mentioned in S and T, then s(T) = s(S).

2.2 Transactions

A transaction is a program that changes the state
of a database in one atomic step. There are many

approaches to languages for specifying transactions, (see
for example [1, 28, 30]). In this paper we prefer to adopt
an abstract view of transactions, in order to make the
results independent of a particular language used, but at
the same time readily applicable to any such language.

The abstract transactions to be considered are of the
form

t = {Rl — (Rl - le) (] ARl,
R, + (R, ~VRn) W AR,}.

The expressions 7 R; and AR; represent the multisets
deleted from and inserted into base relation R;. More
formally, when transaction ¢ is executed in state s, then
value of R; in state t(s) becomes s((R; ~ VR;) W AR;).

The expression T is a pre-ezpression of S w.r.t. ¢ if
for every database state s we have s(T') =5 t(s)(S). It
is easy to check that

def

pre(t, S) = S((Rl - le) | ARl,

(B = VR) & AR))

is a pre-expression of S w.r.t. ¢. In other words, we
can evaluate pre(t, S) before we execute ¢ in order to
determine the value that S will have afterwards.

2.3 Problem Statement

Suppose S(Ri1, -, Rp) is a BA expression and ¢ is a
transaction. We would like to determine how ¢’s changes
to the base relations propagate to changes in the value
of §. In particular, we seek to construct expressions AS
and 7S, called a solution for pre(¢, S), such that

pre(,9) = (S~ VS)WAS.

Note that the expressions S and AS are to be
evaluated before ¢ is executed (and committed). These
solutions can be used in many applications involving the
maintenance of derived data. For example, in the case of
view maintenance this allows us to recompute the value
of § in the new state from its value in the old state and
the values of 7S and AS. For integrity maintenance
it allows us to check data integrity before a transaction
is committed, thus allowing for the transaction to be
aborted without the expense of a roll-back operation.

Clearly, not all solutions are equally acceptable. For
example, vS = S and AS = pre(t,S) is always a
solution. How can we determine which are “good”
solutions? First, if S is a materialized view, then it
should be generally cheaper to evaluate (S ~ 7S)WAS
than to evaluate pre(t,S) in the current state (or to
evaluate S after ¢ has been executed). Second, we
should impose some “minimality” conditions on .5
and AS to make sure that no unnecessary tuples are
produced. In particular,



1. v8§ =8 = ¢ : We only delete tuples that are in S.
2. ASminyS = ¢ : We do not delete a tuple and

then reinsert it.

A solution meeting condition (1) will be called weakly
minimal, while a solution meeting both conditions (1)
and (2) will be called strongly minimal. Note that, in
contrast to the relational case [29], it does not make
sense to insist that S be disjoint from AS since a
transaction may increase the multiplicities of elements
in S.

We will argue that minimality (weak or strong) is
especially desirable due to the way in which changes
interact with aggregate functions. For example, we have

TOTAL((S =~ vS) W AS)
= (TOTAL(S) — TOTAL(vS)) + TOTAL(AS)

assuming a (weakly or strongly) minimal solution.
Again, not all strongly minimal solutions are equally
acceptable. For example, the pair

V@ =Q = pre(t, Q)

and
AQ = pre(t,Q) - Q

is a strongly minimal solution. However, one does not
win by using it for maintaining the view given by Q.
The main goal of this paper is to present an
algorithm for generating (at compile time) strongly
minimal solutions to the view maintenance problem
and demonstrate that they are computationally more
efficient than recomputing the view (at run-time).

3 Preliminaries

This section presents the equational theory underly-
ing our change propagation algorithm. A change prop-
agation algorithm for the relational algebra was pre-
sented in [29], based on a collection of equations that
are used to “bubble up” change sets to the top of an
expression. For example, [29] uses the equation

(SUAS)—T =(S—T)U(AS—T)

to take the insertion AS into S and propagate it upward
to the insertion AS — T into § — T.

Our first step is to define a collection of such
propagation rules for bag expressions. The situation
is more complicated for BA expressions since they do
not obey the familiar laws of boolean algebra that
we are accustomed to using with set-valued relational
expressions. For bag expression, the above example now
becomes

(SWAS) =T =(S=T)W(AS = (T = 5)),

which is not immediately obvious.

Figure 2 contains our equations for change propaga-
tion in bag expressions. Some subexpressions are an-
notated with a 7 (for a deletion bag) or a A (for an
insertion bag). This annotation simply emphasizes the
intended application of these equations : when read as
left-to-right rewrite rules, they tell us how to propa-
gate changes upward in an expression. Note that the
correctness of these equations involves no assumptions
concerning minimality of the change bags.

Theorem 1 The equations of Figure 2 are correct.

Example. By repeated applications of the rules
in figure 2 we can propagate any number of changes
upward. Consider the expression U = S W T. Suppose
that

pre(t, U) = (S = vS) WAS) W ((T = vT) & AT).

The changes to S and T can be propagated upward and
expressed as changes to U as follows:

(5= vS) 8 AS) & (T = vT)w AT)
PS  ((S=vS)wAS)w(T = vT)wAT
P ((S=vS)w (T =vT)wAS)wAT
D (((S=v8)WT) = (vTminT)) W AS) & AT
P (((SWT) = (vSminS)) = (VT minT)) & AS) ¥ AT
—y (U=vil)w AU

where 1U = (VSminS) W (VT minT) and AU =
AS W AT. The last step is simply an application of the
general rules

Gl (SUT)UW =, SW(TWW)
G2. (S=T)=W =, 5= (TyW)

which are applied in order to collect all deletions into
one delete bag and all insertions into one insert bag.
Repeated application of the rules of figure 2 guaran-
tees a solution, but not necessarily a strongly minimal
one. However, the following theorem tells us that any
solution can be transformed into a strongly minimal one.

Theorem 2 Suppose that W = (Q ~v1Q)W A1Q.
Let V2Q = (Q mlnle) - AlQ and AzQ = AlQ -
(@minv/1Q). Then

a) W= (Q=v20Q)WAQ

b) V2Q-Q=v¢

¢) V2Q@minAyQ =p ¢.

Returning to the example from above, \71U and AU
can be transformed to a strongly minimal solution by

taking 72U to be
(Umin((vSminS) W (vTminT))) ~ (AS W AT)
and AyU to be

(ASWAT) ~ (Umin((vSminS) W (vT minT)))



Pl op(5 = VS) =b 0p(S5) =~ 0p(VS)
P2, op(SWAS) =4 0,(5) Wop(AS)

P3. TI4(S~vS) = [4(S) -

IT4(7SminS)

P4. HA(SLTJAS) = HA(S)H'JHA(AS)

P5. (S=vS)WT = (SWT)~(vSminS)

P6. (SUAS)UT—I,(SLTJT)&JAS

Prl. (S=vS)~-T=(S~T)=vS

Pg8. S~ (T VT) = (S -T)W (YT minT) =~ (T = 5))
PO, (SWAS)-T = (S-T)w(AS - (T - 5))

P10. S- (TUAT) = (S = T) = AT

P1l. (S+~vS)minT = (SminT) =~ (vS = (S =T))

P12.

P14.
P15. (S = vS) =p ¢(S) =

P16. €(SWAS) =5 €(S) W (e(A
P17. (S=vS)xT=5(SxT)~
P18. (SWAS)xT=4(SxT)w¥

( )

(SYAS)minT = (SminT) W
P13. (S +~vS)maxT = (SmaxT) ~

(SWAS)maxT =p (SmaxT)W (AS ~

(ASmin(T ~ 5))
(VSmin (S ~T))

(T~ 5))
(e(VSminS) = (S =~ vS5))
§) = 5)
(VS xT)
(AS xT)

Figure 2: Change propagation equations for bag expressions

Although these expressions are rather complex, they can
be greatly simplified to

def

vl = (VS -~ AT) W (vT -~ AS)

def

AU = (AS ~yT) W (AT -y S)

under the assumption that the solutions (7S, AS) and
(VT, AT) are strongly minimal (details omitted).

This example illustrates the three-step process that
was used to derive the recursive algorithm presented in
the next section. First, a general solution is derived by
repeated application of the propagation rules of figure
2. Second, a strongly minimal solution is obtained
by application of theorem 2. Third, the results are
simplified under the assumption that all solutions for
subexpressions are strongly minimal.

Note that if we are only concerned with correctness,
then there is considerable freedom in the design of the
propagation rules presented figure 2. For example, we
could replace rule P8 with
S=T=vT)=s (S=TYW((S =

(T =vT)) (S =T))

However, we have designed our rules from a computa-
tional point of view. Note that the structure of each
equation in figure 2 follows the same pattern. For any
operation e and its value V = e(Ry,...,Rp), n =1 or
n = 2, if one of its arguments changes, then its value
V' on changed arguments is obtained as either V = 7
or VW A. The expressions for 7 and A are always
of special form. Intuitively, they are “controlled” by
v R;s and AR;s, that is, could be computed by iterat-
ing over them and fetching corresponding elements from

base relations, rather than by iterating over base rela-
tions. Furthermore, this special form is preserved in the
transformations defined in theorem 2.

For example, to compute Z = ((vT minT) ~ (T =~ 5))
(rule P8 in figure 2), for each element z € T, let n,m
and k be numbers of occurrences of z in YT, T and S
respectively. Then z occurs min(n, m) ~ (m = k) times
in Z. Thus, to compute Z, we only fetch elements in
7T from T and S. Since 7 R;s and AR;s are generally
small compared to the size of base relations R;s, this
special form of expressions for 37 and A will make the
change propagation algorithm suitable for maintaining
large views. This intuition will be made more precise in
the analysis of section 6.

4 Change Propagation Algorithm

This section presents our algorithm for computing a
strongly minimal solution to a given view maintenance
problem. That is, given a transaction ¢ and a BA
expression @), we will compute expressions 7@ and AQ
such that pre(, Q) = (Q ~ VQ) W AQ.

We first define two mutually recursive functions
v(t, Q) and A(t, Q) such that for any transaction ¢
pre(t, Q) = (Q ~v(¢,Q)) W A(t,Q). These functions
are presented in figure 3. For readability, we use the
abbreviations add(, S) for S W A(t, S) and del(t, S) for
S=v(t5).

We derived the clauses of these recursive functions
in three steps: a) a general solution was obtained
by repeated applications of the propagation rules of
figure 2, b) theorem 2 was applied to obtain a strongly
minimal solution, c) the results were further simplified



(@ [v(tQ) EN
R VR, if R+ (R-YVR)WARIisint, and ¢ otherwise v1
op(5) op(V(t S)) v2
I4(S) HA(V( S5)) ~Ha(A(,5)) v3
SYT | (V¢ S8)~ART)W(v(ET)=Ak,S)) v4
ST | (vES)=v(ET)W(ART) = At,S))) minQ V5
SminT | (VS = (S ~T))max (VT ~ (T - S)) v6
SmaxT | (v(t,S)W (v (¢, T)min(T =~ add(t, S)))) min (7 (¢, T) W (V(¢, S) min (S ~add(¢, T)))) | V7
€(S) e(V(t, S)) ~del(t, 5) v8
SxT (V(t,8) x v(t,T)) W ((del(t, S) x (¢, T)) = (A2, S) x del(t, T')))w 9

((V(ta S) x del(ta T)) — (del(ta S) x A(ta T)))

| @ | A Q) | # |
R AR, if R+ (R~R)WAR isint, and ¢ otherwise Al
op(5) op(A(t, S)) A2
TA(8) | Ta(B( 5) < Ta(9 (5, 5)) A3
SUT | (A4L,5) ~ (6 T) 6 (MG T) =9 (5, 5)) A
ST (65 = ALINE VG - v S =T =3 Y,
SminT | (A(¢, 8) W (AR, T)min(del(z, S) = T)))min (A(¢, T) W (A2, S) min(del(¢, T) ~ S))) | A6
SmaxT | (AS ~(T = 8))max (AT ~ (5§ = T)) AT
€(9) e(A(t,8))~ S A8
cor | (B8 % AGT) B (@I, 5) x MG T = (VG 5) < T Iy

(A, S) X del(hT)) = § (1, T))

Figure 3: Mutually recursive functions 17 and A.

by assuming that all recursively derived solutions are
strongly minimal.

This last step is quite important since the assump-
tions of strong minimality would not be available to a
query optimizer at a later stage. It is also why we want
to apply theorem 2 at every stage, rather than just once
at the end. The three steps were outlined in the previ-
ous section for the ST case.

Algorithm. OQur algorithm is simply this: given
inputs ¢ and @, use the functions /(¢, @) and A(¢, Q) to
compute a solution for pre(t, Q). Note that in an actual
implementation 3/(¢, @) and A(t, @) could be combined
into one recursive function. Thus the algorithm requires
only one pass over the expression ).

The following theorem shows that the functions
v and A correctly compute a solution to the view
maintenance problem and that they preserve strong
minimality.

Theorem 3 Let t be a strongly minimal transaction.
That is, R~ VR = ¢ and YRmin AR =3 ¢ for any
R+ (R-vR)WAR int. Let Q be a BA ezpression.
Then

1. pre(t, Q) =5 (@ = V(1, Q) W A(L, Q)
2. V(t,Q)=-Q =y ¢
3. A, Q)minvy(¢, Q) =b ¢

Although some of the clauses in the definition of
functions 7 and A are rather complex, we believe that
in practice many of the subexpressions will be ¢ or will
easily simplify to ¢. To illustrate this, recall the example
from section 1:

Vi = (Ipig,cost(S1) W IIpid,cost(S2))

Vo = Ilpig,cost(Paid)

Unpaid = V=15
where the ¢ is a transaction that changes Paid to
(Paid ~ 7Paid) W APaid. Using our change propagation
functions, the delete bag can be calculated as follows.

v/ (t, Unpaid)

= V(t7 Wi = VZ)

T (VW) = v(61V2) @ (A VR) = AL W)))
min Unpaid

= ((¢ =~v(t,V2))W (A(t,V2) =~ ¢)) min Unpaid

= A(t,Vz) min Unpaid

= A(t,1Ipia,cost (Paid)) min Unpaid

2 [Mriacort (At Paid)) = Mpia,cose (V (¢, Paid))]
min Unpaid

v1,A10

[IIpia,cost (APaid) = IIpig,cost (VPaid)] min Unpaid

In a similar way we can compute the change bag for



insertions, A(t, Unpaid), to be
[IIpid,cost(VPaid) ~ IIpiq,cost (APaid)] ~ (V3 ~ V7).

One advantage of our approach is that it produces
queries that can be further optimized by a query
optimizer. Consider the following example. Suppose
that we have a view WellPaid defined as

WellPaid = 1_IName(o'Salary> 50,000(Emp10yee5))

Now if a deletion has been made to Employees, then we
compute

VWeHPa.ld = HName(USalary> 50,000(vEmp10yeeS))

We have treated deletions and insertions as black
boxes, but often they are specified in some transaction
language or as queries. For example, if \yEmployees =
Osalary<5,000( Employees), then we can substitute this
value for \yEmployees in the equation for 1y WellPaid,
obtaining

HName(USalary> 50,000(USa1ary< 5,000(EmP10yeeS) ))

for syWellPaid. Any query optimizer that “knows” that
0p, (0p;(S)) = 0p,ap, () and that 5 < 50 will figure out
that \yWellPaid — @ and no computation needs to be
done.

5 Aggregate Functions

Most database query languages provide a number of
aggregate functions such as COUNT, TOTAL, AVG,
STDEV, MIN, MAX [23, 12, 30]. It was noticed in [20, 22]
that a number of aggregates (in fact, all of the above
except MIN and MAX) can be expressed if the query
language is endowed with arithmetic operations and the
following summation operator:

enll = flz) + ...+ fzn)

For example, COUNT is ¥ where the function 1 always
returns 1; TOTAL is X;4, AVG is TOTAL/COUNT. For
more complex examples, see [20, 21].

Any strongly minimal solution for the view mainte-
nance problem allows us to handle duplicates correctly
because the following will hold:

Ef {|:1:1, ..

Ty ((§ = VS)WAS) = (34(5) — B5(V5)) + Z4(AS)

Now if an aggregate function is defined as AGR(S) =
0(%4,(59), ..., Z£.(5)) where ¢ is an arithmetic expres-
sion in k arguments, to be able to maintain the value of
AGR when the view S changes, one has to keep k& num-
bers, X4,(S), ¢ = 1,..., k. Once changes to the view
(vS and AS) become known, the values of 3y, are re-
computed by the formula above and then ¢ is applied
to obtain the value of AGR.

For example, AVG(S) = TOTAL(S)/COUNT(S) =
24(8)/21(S). Assume that n = TOTAL(S) and
m = COUNT(S). If S changes and a strongly minimal
solution S = (§ =~ vS) W AS is computed, let
ny = Eid(VS), Ny = Eid(AS), m; = EI(VS),
my = X1(AS). Then AVG(S™) can be computed as
(n—n1+nz)/(m—mq+my). Notice that all additional
computation of aggregates is performed on changes to
the views, so one may expect it to be fast.

Two aggregates that require special treatment are
MIN and MAX. Assume that MIN(S) = n, and we want
to compute MIN(S™) where S™ = (S ~ vS) W AS is
strongly minimal. If we compute m = MIN(5/S) and
k = MIN(AS), then & < n implies MIN(S™) = k and
m > n implies MIN(S™) = min(n, k). However, if n = m
and k > n, then there is no way to say what the value
of MIN(S™) is for the minimal value n can be reached at
several elements of S and we do not know if all of them
were deleted in \7S. Thus, in only this case one has to
recompute S™ in order to evaluate MIN correctly.

6 Complexity Analysis

While it is generally faster to compute changes to
the view from changes to base relations rather than
recompute the whole view from scratch, this is only a
heuristic and need not be true in all cases. Changes
to base relations are also typically small, but it is
conceivable that in some situations a base relation R
can be replaced by another relation R'. In this case
VR = R and AR = R/, so changes to R are not
small compared to R itself. If these changes “dominate”
computing V/(t,Q@) and A(t, Q), then one should not
expect a significant improvement in time and space
efficiency from using the change propagation algorithm.

All this tells us that it is impossible to prove a general
statement saying that it is better to use the change
propagation algorithm rather than recompute the view.
This is also one of the reasons why so little effort has
been devoted to the complexity analysis of the view
maintenance problem. But intuitively, if changes are
small, computing solutions for pre-expressions should
be easier than computing pre-expressions themselves. In
particular, one may expect that in most cases the sizes
of AS and 7§ are small compared to the size of S, and
these are relatively easy to compute. In this section we
present an attempt to formalize this statement.

Our approach is the following. We define two func-
tions on BA expressions. These functions give a reason-
able time (or space) estimate for computing the delta-
expressions for the change propagation algorithm (the
function ta) and for recomputing the view from scratch
(the function tysew ). Then we shall prove that if changes
to base relations are small, the expected complexity of
evaluating A(¢, @) and v/ (¢, Q) is small compared to the
expected complexity of re-evaluating ¢} on changed ar-



guments. In other words, ta(A(2, Q)) +ta(v(t,Q)) is
small compared t0 ty;ew(pre(t, @)). The special form of
v(t, Q) and A(¢, Q) where all expressions that are hard
to evaluate occur inside the scope of a simpler 7 or A
will play the crucial role.

Our first step is to define ty;e. We give an optimistic
estimate for tyjew, because our goal is to prove that
generally recomputing the view is more expensive than
maintaining it. We first define tyjeq(R) = size(R) for
any base relation R. For binary operation define

t'view(S min T) = t'view(S (] T) = tview(S min T)
= t'view(S ma'XT) = t'view(S) + tyiew (T)

The idea is that to compute the new view, we have
to compute S and 7', and then, being optimistic, we
disregard the time needed to compute min, max, W
or = For cartesian product, define tyieq(S x T) =
tyiew(S) - tyiew(T). Finally, for unary operations we use
the optimistic estimate again, and disregard overhead
for doing computation on the argument. That is,

toiew(0p(5)) = tuiew(IL4(5)) = tuiew(e(S)) = toieu(S)

To define the function ta that estimates a reasonable
evaluation time for expressions used in the change
propagation algorithm, we use the special form of
the expressions in figure 3 that allow us to iterate
over subexpressions in scope of 17 or A, as was
explain before. To do this, as the first step, we
define a new function fetch(S) that estimates the
complexity of retrieving a given element from the value
of S(Ry,..., Ry,). We assume that fetch(R;)s are given
and bounded above by some number F. Then for any
binary operation * € BA we define fetch(S % T) =
fetch(S) + fetch(T'). For example, to retrieve z from
S x T, we first retrieve z’s projection onto attributes of
S from S, and then #’s projection onto 7"s attributes
from T, and use the result to obtain the right number
of z’s duplicates in S x T. For op(-) and €(-) we
assume fetch(o,(S)) = fetch(e(S)) = fetch(S) as an
upper bound. Finally, we make an assumption that
fetch(I14(S)) = fetch(S) which need not be true in
general but holds if the index on S is not projected out.
As we explained in the introduction, if the index does
get projected out, there is no guarantee of winning in
terms of time, but we still win in terms of space. Indeed,
the space occupied by IT4(S) is bounded by the space
needed for S itself, and then the following theorem can
be seen as a confirmation of the fact that one should
expect to reduce the space complexity.

Now we define inductively the estimated time com-
plexity of evaluation of AS and 7S. First, we assume
that for any base relation R, ta(AR) = size(AR) and
ta(VR) = size(\7R). In the definitions for BA opera-
tions we disregard time needed for projecting out some
fields or checking the selection conditions, assuming that

it is constant. We also assume that the number of du-
plicates is known for all elements, and disregard the
computational overhead of duplicate elimination. That
is,

ta(op(5)) = ta(lla(5)) = ta(e(S)) = ta(S)

For operations W, max and x we define tao(S W T) =
ta(SmaxT) = ta(S) + ta(T) and ta(S x T) =
ta(S) - ta(T). The only thing out of ordinary in the
definition of ta is the clauses for min and -

ta(S ~T) = ta(S) - fetch(T)
ta(SminT) = min(ta(S) - fetch(T), ta(T) - fetch(S))

Unlike in the case of W, max and x, elements of T" need
not be stored as they are only used to reduce the size
of 5. Hence, to compute S =~ T or SminT, one only
has to fetch elements of the computed value S from
T, and that requires fetch(7') rather than ta(7") time
for each element in S. In the case of min, which is a
symmetric operation, we can alternatively iterate over
T; the estimated time complexity is obtained by taking
the minimum of the two possible iterations.

Let D = {Ry,...,R,} be a family of base relations
stored in a database. We assume that a transaction ¢ is
fixed for the remainder of the section, and omit it in all
definitions. Define

size(\V R;) + size(AR;)
size(R;)

(D) = max

i=1,...,mn

That is, ¢(D) gives the upper bound on the relative size

of the changes to base relations. The following result

shows that if ¢(D) is small, then one should expect to

win in terms of time (or space) by using the change
propagation algorithm.

Theorem 4 Let Q(Ri1,...,Rn) be o BA ezpression.
Let AQ and 7Q be calculated according to the change
propagation algorithm. Then

ta(V@Q) + ta(AQ)
tview(pre(Q))
Let us apply this theorem to our working example.

Recall that the positive change to the view Unpaid was
calculated as

=0

lim
c¢(D)—0

AUnpaid
= (Ipid,cost(VPaid) = IIpjq,cost (APaid)) ~ (V2 = V1)

Assuming that for base relations the value of the
fetch function equals F, we obtain ta(AUnpaid) =
size(\/Paid) - 2F? = O(size(vvPaid)). Similarly,
ta(7Unpaid) = O(size(APaid)). Therefore, changes to
Unpaid can be expected to be calculated in
O(size(v/Paid) + size(APaid)) time. One can derive

the same result just by looking at the expressions for



v Unpaid and AUnpaid. Indeed, to calculate AUnpaid,
we iterate over \yPaid and fetch its elements from
APaid,V; and V, and then compute the value of an
arithmetic expression. The time needed for that is lin-
ear in the size of JyPaid, assuming F' is constant.

On the other hand, to recompute the view Unpaid,
one should expect to spend time O(size(S1) + size(S2)),
and this is exactly what tyieq (pre(Unpaid)) is. If sizes of
v Paid and APaid are small, this tells us that it is better
to compute y7Unpaid and AUnpaid than to recompute
Unpaid.

One may ask what happens if one tries to use the
same evaluation strategy for both change propagation
and recomputing the view. It should not be surprising
that in several cases the complexity of both is the same,
as we should not always expect to win by propagating
changes. To give an example, let Ry, R; and Rz be
base relations, where R;’s attributes are ai,as, Ra’s
sole attribute is @y and R3’s attribute is ay. Define
our view as V := R;min(R; X R3). Now assume that
size(R;) = n, 1 = 1,2,3. Assume that fetch(R;) = F is
constant. Then it is easy to see that ta(7V) = O(n)
and ta(AV) = O(n).

Now assume that changes to base relations R;s are
small. Then one can use the evaluation strategy that
gave us the function ta and calculate that ta(pre(V)) =
O(n), where pre(V) = (R; ~ VR1) W Ry) min(((Rz ~
VR2)WR2) x ((R2 —~ VR2)WR3)). The reason for this is
that it is not necessary to calculate the second argument
of min as we only have to retrieve certain elements from
it.

This example shows that even for a simple view
definition it may be the case that using the change
propagation algorithm is as complex as recomputing
the view from scratch, provided that we do not use
a straightforward evaluation strategy (corresponding to
t'view)-

In some special cases of sublanguages of BA pre-
cise statements about the complexity of evaluation of
changes to the views can be proved. As a consequence,
we shall see that for one special class of views the ratio
of taA(AQ) + ta(vQ) and ta(pre(Q)) is guaranteed to

be small if so are changes to the base relations.

Proposition 1 Let Q(Ry,..., R,) be a projection- and
product-free BA exzpression such that all conditions for
selections can be calculated in O(1) time. Let n =
S (size(\VR;) + size(AR;)). Let the upper bound
for the time needed for retrieving an element from a
base relation be a constant. Then the complexity of

evaluation of V@ and AQ is bounded above by O(n).

This proposition can be seen as a corollary of a more
general result. We define A-controlled expressions by

means of the following grammar:
SA = AR | VR | SA minT | SA =T |
Sa WS | Sa maxSa | G(SA) | Up(SA)

where T is an arbitrary projection- and product-free BA
expression.

Proposition 2 Under the assumptions of proposition
1, any A-controlled expression can be evaluated in time

O(n).
Corollary 5 Let D be defined as above and

¢(D) = max >, size(V R;) + size(AR;)

i size(R;)

Let Q(R1, ..., Ryn) be a projection- and product-free BA
expression such that all conditions for selections can be
calculated in O(1) time. Then

ta(AQ) +ta(VQ)
ta(pre(Q))

Summing up the results of this section, theorem 4
says that it is generally easier to compute changes to
a materialized view than to recompute the view from
scratch, although we demonstrated that it is not always
the case. For a restricted class of view, we proved that
computing changes is always more efficient.

=0

m
c¢/(D)—0

7 Related Work

Our approach is closest to that of [9], which treats
the standard relational algebra. That work grew out
of an analysis of [29], which in turn was influenced
by the notion of ‘finite differencing’ of [25]. The
algorithm for change propagation in [29] is an iterative
one that propagates changes, one-by-one, to the top
of an expression. It was shown in [9] that this is not
enough to guarantee strong minimality. Instead [9]
defines recursive functions to compute change sets, as
we have done here, and proves correctness by induction.
The only work on change propagation for multisets
is [12], which is done in the context of a modified
Datalog where programs produce multisets. Informally,
a tuple’s multiplicity in the multiset resulting from
the evaluation of a program P indicates the number
of different possible derivations showing that it was
produced by P using Datalog semantics (see [12]).
Given a program P and a transaction ¢, the change
propagation algorithm of [12] produces a program P™ by
concatenating the clauses of program P with the clauses
of a new program A* P. Concatenation corresponds to
the additive union operation. The program A*P is
defined so that for any database state s, the evaluation
of P% in state s will result in the same multiset as the
evaluation of program P in the new state t(s). If P is



a materialized query, then in order to evaluate P in the
new state we need only evaluate the clauses of A*P in
the old state and form this union with the old (stored)
value of P. In order to make this work with deletions,
the semantics of [12] allows for negative multiplicities in
the change sets AT P(s).

For example, consider the program

minus(X) :— S(X) & -T(X).

If we have a database transaction that induces changes
to both S and T, then the algorithm of [12] produces
the program A*minus with clauses

minus(X)
minus(X)

i~ ATS(X) & -T(X).
c— SM(X) & ATT(X).

where AT computes a set W such that

—1 ifec A*tT and z ¢ TWAET
1 feeA*TT andz2¢ T

0 otherwise

count(z, W) =

There are many differences between our approach
and that of [12]. First, we are treating different query
languages. The nonrecursive fragment of the language
of [12] cannot represent our operations of duplicate
elimination, monus, min, and max. This follows from
general results on the expressive power of bag languages
[19]. On the other hand, our language does not handle
GROUPBY or recursive queries, as does [12].

Our approach does not require negative multiplicities.
If a program P can be represented as a BA expression
P, then an incremental change program A*P can
be represented in BA as a pair of queries (VP,AP)
where VI:’ (AI:’) represents those tuples of A* P with
a negative (positive) multiplicity. Then program P™
corresponds to (I:’ -~ VI:’) WAP.

This highlights the fact that our approach is linguzs-
tically closed. That is, we give explicit algebraic repre-
sentations to all expressions generated in change prop-
agation, and these are represented in the language BA.
For example, while [12] must extend their language with
a new operation in order to evaluate the program AT,
we would represented this operation explicitly as the
pair of queries

(AGT) =T, (yT) = (T = vT))

This makes additional optimizations possible, both in
the process of generating change expressions and in any
later optimization stages.

Next, our approach gives a declarative semantics to
change propagation that is not tightly bound to one
computational model. That is, we have an algebraic
approach rather than an algorithmic one. This makes
correctness proofs much easier, and also simplifies the

process of extending the algorithm to new constructs.
It also allows us to apply our results to problems other
than view maintenance. For example, suppose that we
are given the integrity constraint

o def (V:I: c Rl) z.a = count {|z ERy:2b= m.b|}

multiset

and a strongly minimal transaction ¢ = {R; <
(R2 ~VRy) W ARy}. Furthermore, suppose that we
would like to transform ¢ to a safe transaction,

t' = if a then t else abort,

that can never leave the database in a state violating
o. If we assume that o will always hold before #' is
executed, then we can use our algorithm, together with
some logical manipulations, to produce

(Vil: € Rl)
count{jz € YRy : z.b = z.b[}
= count{z € ARy : z.b = z.b[}

as the formula a. Indeed, this type of problem provided
the original motivation for our work (see [8]).

Finally, we are able to use the inductive assumptions
of strong minimality to further simplify our solutions.
Since this information is not available to a general
purpose query optimizer, it may fail to produce an
efficient solution that can be found with our approach.

A comparison of performance must wait for imple-
mentations of the two approaches.

8 Further Work

Our use of strong minimality in the simplification
of queries suggests that this information should be
available to a specialized query optimizer. We are
currently working on the design of such an optimizer
based on a collection of inference rules for deriving
disjointness (for example, if S is disjoint form T, then
S = W is disjoint from T = Z) and simplification
rules that exploit disjointness (for example, if S is
disjoint from T, then S =« T simplifies to S). The
optimization process is initiated by recognizing that
all pairs produced by our algorithm, (vS,AS), are
disjoint.

The work of [12] does handle recursive Datalog
programs. One current drawback to our approach is
that, as with the relational algebra, bag languages such
as BA cannot express recursive queries [22]. We hope to
address this issue in the future by extending BA with
loops or a fixed-point operator, as in [13, 19].

The other extension of our approach deals with
complex objects. Our bag algebra BA is the flat
fragment of what was originally designed as an algebra
for nested bags. We are currently working on an
approach that allows us to extend the equations of the
change propagation algorithm to complex objects.
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