
A Query Language for Multidimensional Arrays:Design, Implementation, and Optimization TechniquesLeonid Libkin�Bell Laboratories Rona MachlinyUniversity of Pennsylvania Limsoon WongzInstitute of Systems ScienceAbstractWhile much recent research has focussed on extendingdatabases beyond the traditional relational model, relativelylittle has been done to develop database tools for queryingdata organized in (multidimensional) arrays. The scienti�ccomputing community has made little use of availabledatabase technology. Instead, multidimensional scienti�cdata is typically stored in local �les conforming to variousdata exchange formats and queried via specialized accesslibraries tied in to general purpose programming languages.To allow such data to be queried using known databasetechniques, we design and implement a query language formultidimensional arrays. Our main design decision is totreat arrays as functions from index sets to values ratherthan as collection types. This leads to clean syntax andsemantics as well as simple but powerful optimization rules.We present a calculus for arrays that extends standardcalculi for complex objects. We derive a higher-levelcomprehension style query language based on this calculusand describe its implementation, including a data driver forthe NetCDF data exchange format. Next, we explore someoptimization rules obtained from the equational laws of ourcore calculus. Finally, we study the expressiveness of ourcalculus and prove that it essentially corresponds to addingranking to a query language for complex objects.1 IntroductionData organized into multidimensional arrays arisesnaturally in a variety of scienti�c disciplines. Yet thearray type has received little attention in most recent�Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ07974, USA. E-mail: libkin@bell-labs.com.yDept. of Comp. & Info. Science, Univ. of Pennsylvania,Philadelphia, PA 19104, USA. E-mail: rona@saul.cis.upenn.edu.Part of this work was done while visiting Bell Labs.zReal World Computing Partnership Novel Function Instituteof Systems Science Laboratory, Heng Mui Keng Terrace, Singa-pore 0511. E-mail: limsoon@iss.nus.sg.

database research on data models and query languages.In their 1993 wake-up call to the database researchcommunity [22], Maier and Vance argue that lack ofadequate support for arrays in existing DBMS's isone of the reasons the scienti�c computing communityhas made little use of database technology. Instead,multidimensional scienti�c data is typically stored inlocal �les using specialized data exchange formats suchas NetCDF (see [28]). Since most of these formatsdo not have query language interfaces, queries mustbe written in general purpose programming languages(GPPLs) using associated access libraries.Ideally, a query language interface would provide twoimportant advantages over the GPPL approach:� Query languages are high-level, strongly typed, anddeclarative, making programming an easier, lesserror-prone process.� Query languages are based on small sets of special-ized constructs, so they are more easily optimized,taking the burden of producing e�cient code awayfrom the programmer.On the other hand, GPPLs can express a wider numberof algorithms e�ciently. We therefore advocate anapproach in which data extraction and manipulationare handled by the query language, but computation-intensive algorithms are handled by domain-speci�cexternal primitives written in GPPLs. Unfortunately,most existing query systems do not support arraysas �rst-class citizens. So using them to extract andmanipulate data organized in arrays might prove moreawkward and less e�cient than using a GPPL.In this paper, we develop a data model for complexobjects and arrays based on the point of view that ar-rays are functions rather than collection types. For thismodel, we de�ne a set of specialized constructs forminga calculus for arrays which we call NRCA. This cal-culus is an extension of the nested relational calculusNRC [7] with primitives for multidimensional arrays.From NRCA, we derive a higher-level comprehension-style query language, AQL, which we then implement.228

The system we obtain includes an optimizer basedon the equational theory provided by our arrays-as-functions model. Our implementation architecture em-phasizes openness, that is, the capability to dynamicallyinject domain-speci�c external primitives, data read-ers/writers, and optimization rules into our system. Byproviding readers/writers for data exchange formats likeNetCDF, we can tie our system in to \legacy" scienti�cdata.To make things concrete, suppose we wish to answerthe following query:On which days last June was it unbearably hot in NYC?where we measure \unbearability" via a prede�ned al-gorithm heatindex. We assume this algorithm expectsas input a one-dimensional array of triples containing aday's worth of hourly (temperature, relative humidity,wind speed) readings. Further, let us assume we haveaccess to the following data for NYC in June:T, a one-dimensional array containing a month's worthof hourly temperature readings at surface level.RH, a one-dimensional array containing a month's worthof hourly relative humidity readings at surface level.WS, a two-dimensional array containing a month's worthof half-hourly wind speed readings ranging overvarious altitudes. Observe that this array di�ersfrom the �rst two in both dimensionality (it hasan extra altitude dimension) and gridding (its timedimension has a half-hourly grid).One reason this query might be hard to answer isthat the input data must be transformed into a newformat before the prede�ned algorithm can be applied.In particular, input data with di�erent dimensionalitiesand grids must be correlated. That is, WSmust go from ahalf-hourly grid to an hourly grid, and its dimensionalitymust be reduced by projecting along its surface levelaltitude. Also, the three arrays must be combinedinto one array, putting elements from correspondingindices together into the same tuple (such an operationis usually called zip). Finally, subsequences representinga day's worth of readings must be extracted. Here is thequery in AQL:: {d | \d <- gen!30,:: (* for each day in June *):: \WS' == evenpos!(proj_col!(WS,0)),:: (* adjust WS grid and dim *):: \TRW == zip_3!(T,RH,WS'),:: (* combine the readings *):: \A == subseq!(TRW,d*24,d*24+23),:: (* extract day d readings *):: heatindex!(A) > threshold};:: (* filter for unbearability *)While one can imagine operations such as subseq orzip might be expressible in a query language without

arrays (e.g., by using sets or lists to represent arrays),they certainly would not be as e�cient. For example,we expect zip to take linear time in an array querylanguage, but in one without arrays it would ordinarilytake quadratic time (the time to do a cross product).The question arises, what array primitives needto be included in our query language in order toe�ciently extract and manipulate array data? As theexample just given suggests, we will want to be ableto extract subslabs (generalized subsequences) from amultidimensional array, change the dimensionality orgridding of an array, and glue together similar arraysvia operations like zip. But the list need not stop here.For example, why not include primitives for transposinga matrix or for reshaping a one-dimensional array inrow-major order into a two-dimensional array, etc.?We will argue that only three array constructs areneeded: one for creating, or tabulating, an array froma function, one for subscripting into an array, andone for getting the dimensions of an array. Usingjust these three constructs (together with arithmeticand boolean operations), we can express all of theoperations mentioned. For example, evenpos(A) canbe expressed by [[A[i*2] | \i < len(A)/2]], where[[e | \i < n]] is our notation for the array whoselength is n and whose values are given by �i:e. We willexplain this notation further when we introduceNRCA.Looking back at our AQL implementation for the mo-tivating example, it appears we have given a proceduraldescription of how to implement the query. For exam-ple, it is not hard to see that we could have obtained thesame result by exchanging the order of zip and subseq,taking three subsequences �rst before \zipping" the re-sults. So we might ask, why not implement this query ina GPPL after all? If we had programmed the query in aGPPL, these implementation choices would yield di�er-ent algorithms with di�erent usage of space and time.However, in the query language we give in this paper,these various choices get optimized to similarly e�cientqueries. In fact, in the normalization phase of our op-timizer, zip3 � (subseq ; subseq ; subseq) and subseq � zip3get reduced to the same query, up to extra constant-time bound checks.Related work. There have been several proposals formaking arrays �rst class citizens in query languages.Most of these consider arrays as collection types. Beeriand Chan [3] propose an algebra for arrays, and Fegarasand Maier [9] include arrays into their object-orientedcalculus. Both approaches allow constructs in whichmultiple values can be assigned to the same index.However, they solve the problem di�erently. Beeriand Chan's approach is to introduce run-time checks,while Fegaras and Maier use prede�ned operations tomerge di�erent values assigned to the same index.229

Consequently, arrays become dependent on the choice ofmerge operation. Buneman [4] shows how to encode fastFourier transform as a database query in comprehensionstyle. His constructs allow him to avoid the problemmentioned above. However, his approach does notgive us languages with adequate expressive power. Forexample, operations involving permutations of indicescannot be expressed.Greco, Palopoli and Spadafora [11] propose addingmultidimensional arrays to datalog. They give �xpointsemantics for their language and study optimizations.Extensions of datalog with sequences, which are similarto one-dimensional arrays, are studied in recent papersof Mecca and Bonner [24, 25]. They are interestedin giving restrictions on the programs that ensure�niteness of the results. Other work on sequencesin query languages includes [17, 29, 30]. In [29, 30]sequences are viewed as maps from linear orders tovalues, which is close to our approach of viewing arraysas functions.There are several approaches that treat arrays asfunctions. Note that this point of view is widelyaccepted in programming language theory, cf. [12].Maier and Vance [22] propose syntax similar to ourtabulation construct. Constructs of the same
avor areused in a number of functional languages that providesupport for arrays, see [1, 10, 15, 26], and also in APL[16]. The view of arrays as functions was also exploredby [14] in the context of parallel computations. An earlyaxiomatization for arrays was given in [27].A number of proposals for object-oriented query lan-guages include arrays, see [9, 23]. The ODMG proposal[8] includes one-dimensional arrays with operations forcreating, inserting, updating, subscripting and resizing.Their arrays seem to support in-place updates, sincethey can have holes and there is an explicit resize op-eration. Vandenberg and DeWitt propose an object-oriented algebra supporting arrays in addition to otherconstructs [31, 32]. They only treat one-dimensional ar-rays. The array operations in [31, 32] are very similarto typical list operations, but also include operations forarray subscripting.Organization. In section 2 we describe the designof a nested relational calculus for arrays, NRCA. Thiscalculus forms the theoretical basis for our array querylanguage AQL in much the same way that the relationalalgebra/calculus form the theoretical basis for SQL. Thearray calculus AQL is presented in section 3, and itsimplementation in section 4. Like relational algebra, ourcalculus NRCA comes with an equational theory thatinspires the core rules of our optimizer. The optimizer isdiscussed in section 5. Finally, we study the expressivepower of the array calculus and connect NRCA withranking collections of objects. Concluding remarks aregiven in section 7.

2 Language design: a calculus for arraysIn this section we present NRCA, the core calculusunderlying our implemented query language for arrays.This calculus forms the basis for reasoning formallyabout our query language, playing much the same rolethat the relational calculus/algebra play for SQL. It isat the level of this core calculus that we formulate thedata model and constructs for our language as well asstudy their semantics and expressive power.Our data model combines complex objects withmultidimensional arrays. Complex objects are usuallytaken to mean free nestings of collections, such assets, bags, and lists, with records and variants. Theyalso often encorporate some notion of object identity.Such types have been studied extensively elsewhere[6, 7, 8, 9, 17, 19, 32]. Here, we restrict our attentionto complex objects formed via free nestings of sets andtuples, that is, to nested relations. We choose to workwithin this simpler type framework in order to focus onthe semantics of arrays; however, we see no obstacle toextending our model to a richer type system.What do we take multidimensional arrays to be in ourmodel? We di�er from others [3, 4, 8, 11, 31, 32] in thatwe do not treat arrays as collection types but rather aspartial functions of �nite, \rectangular" domain. Aswe shall see, this approach yields an elegant syntaxand inspires some simple but powerful optimizationrules. Viewed as functions, arrays map indices to values.What we mean by \rectangular" domain is that therange of each index contains no holes. For simplicity, weassume all indices range over natural numbers and arezero-based (start with zero). So, a k-dimensional arrayhas \rectangular" domain if its ith index, 1 � i � k,ranges from 0 to ni for some ni � 0.Formally, the types of NRCA include object typesand object function types. The object types aregiven by:t ::= b j B j N j t1 � � � � � tk j ftg j [[t]]kwhere b denotes any uninterpreted base type, B denotesthe type of Booleans, N denotes the type of naturalnumbers, t1 � � � � � tk denotes the k-ary product type,i.e., the type of k-tuples whose ith components areof type ti, ftg denotes the type of �nite sets whoseelements are of type t, and [[t]]k denotes the type ofk-dimensional arrays whose values are of type t andwhose indices range over initial segments of the naturalnumbers. We will sometimes write [[t]] for [[t]]1. Theobject function types are types t1 ! t2, where t1, t2are object types.We now present the constructs of NRCA, our nestedrelational calculus with arrays. NRCA is an extensionof the nested relational calculus NRC [7]. We chosethis presentation of nested relations because it leads toan appealing comprehension syntax [6, 9] and because230

NRC constructsFunctions �; x : s ` x : s �; x : s ` e : t� ` �x:e : s! t � ` e1 : s! t � ` e2 : s� ` e1(e2) : tProducts � ` e1 : t1 : : : � ` ek : tk� ` (e1; : : : ; ek) : t1 � � � � � tk � ` e : t1 � � � � � tk� ` �i;k(e) : ti (for 1 � i � k; k � 2)Sets � ` fg : fsg � ` e : s� ` feg : fsg � ` e1 : fsg � ` e2 : fsg� ` e1 [e2 : fsg �; x : s ` e1 : ftg � ` e2 : fsg� ` Sfe1 j x 2 e2g : ftgBooleans � ` true : B � ` false : B � ` e1 : B � ` e2 : t � ` e3 : t� ` if e1 then e2 else e3 : t � ` e1 : t � ` e2 : t� ` e1 op e2 : Bwhere op 2 f=;<;>;�;�; 6=gNatural NumbersNaturals � ` n : N � ` e1 : N � ` e2 : N� ` e1 op e2 : N � ` e : N� ` gen(e) : fNg �; x : s ` e1 : N � ` e2 : fsgPfe1 j x 2 e2g : Nwhere n 2 ! and op 2 f+; : ; �; =;%gk-Dimensional Arrays (k � 1)Arrays �; i1 : N; : : : ; ik : N ` e : t � ` e1 : N : : : � ` ek : N� ` [[e j i1 < e1; : : : ; ik < ek]] : [[t]]k� ` e1 : [[t]]k � ` e2 : Nk� ` e1[e2] : t � ` e : [[t]]k� ` dimk(e) : Nk � ` e : fNk� tg� ` indexk(e) : [[ftg]]kErrors � ` ?t : t � ` e : fsg� ` get(e) : sFigure 1: The constructs of NRCAit comes with an equational theory that gives us usefuloptimizations [7, 34]. We will touch on these aspects ofthe calculus in sections 3 and 5.The constructs of NRC and their typing rules aregiven in the top third of �gure 1. Here, we brie
yreview their meanings. The constructs for functions arestandard. For products, (e1; : : : ; ek) and �i;k(e) are justthe obvious generalizations of pairing and projectionto k-tuples, where k � 2. When k = 2, we willoften write �i instead of �i;2. The meanings of theset constructs are as follows: fg denotes the emptyset; feg denotes the singleton set containing just e;e1 [e2 denotes the union of the sets e1 and e2; andSfe1j x 2 e2g denotes the union of the sets obtainedby applying the function �x:e1 to the elements of theset e2 (i.e., if e2 denotes the set fo1; : : : ; ong and �x:e1denotes the function f , then Sfe1j x 2 e2g denotesthe set f(o1) [: : : [f(on)). We also use a constructget : get(e) denotes the unique element of e if e is asingleton and is unde�ned (produces the error value ?)otherwise. The constructs for Booleans are standard.
Note that from an expressivity standpoint we need onlyinclude equality (=) and linear order (�) over the basetypes, because their liftings to all other complex objecttypes will be de�nable in NRCA [21]. We shall denotethe linear order on objects of type t by �t.The following are examples of NRC expressions:�lter P X =Sfif P (x) then fxg else fg j x 2 Xg�i;k X =Sff�i;k(x)g j x 2 XgX � Y = SfSff(x; y)g j x 2 Xg j y 2 Y gnest(X) =Sff(�1x;�2(�lter(�y:�1y = �1x)(X)))g j x 2 XgThe last function, nest, of type fs � tg ! fs � ftgg,collects all second components of tuples with the same�rst component into a set. As these examples illustrate,the syntax of NRC can grow a bit unwieldy. We willcome back to these examples in the next section afterintroducing a friendlier comprehension syntax.To NRC, we add constructs for natural numbersand arrays. The natural number constructs (shownin the middle of �gure 1) include the constants, some231

arithmetic operators (plus (+), monus (:), times (�),integer division (=), mod (%)), a gen construct, and asummation construct. The gen construct gives initialsegments of natural numbers: gen(e) = f0; : : : ; e � 1g.The summation construct is similar to the big unionconstruct: if e2 denotes the set fo1; : : : ; ong and �x:e1denotes the natural-valued function f , then Pfe1j x 2e2g evaluates to f(o1) + : : : + f(on). We can use thesummation construct to express various aggregates:count(X) =Pf1 j x 2 Xg8x 2 X(P) =Pfif P then 0 else 1 j x 2 Xg = 0min(X) = get(�lter(�y:8x 2 X(y � x))(X))The remaining constructs at the bottom of �gure 1are for (multidimensional) arrays. Note that each rulecontaining Nk (where Nk = N� � � � �N, k times) reallystands for two rules: one for the one-dimensional caseand one for the multi-dimensional case. There are fourarray constructs: [[e j i1 < e1; : : : ; ik < ek]] for de�ning,or tabulating, an array, e1[e2] for subscripting into anarray, dimk(e) for extracting the dimensions of an array,and index k(e) for converting an indexed set into anarray. We postpone discussion of index until later. Forthe one-dimensional case, the meanings of the otherthree constructs are as follows: [[e1 j i < e2]] denotesthe (one-dimensional) array of length e2 whose indicesrange from 0 to e2�1 and whose values are given by thefunction �i:e1 (that is, by applying this function to theindex value); dim1(e) denotes the length of the array e;and e1[e2] denotes the value of array e1 at index e2, ife2 is within bounds (that is, if e2 < dim1(e1)), and isunde�ned otherwise. We will often write len for dim1as in the following examples:map f A = [[f(A[i]) j i < len(A)]]zip(A;B) = [[(A[i]; B[i]) j i < minflen(A); len(B)g]]subseq(A; i; j) = [[A[i+ k] j k < (j + 1) : i]]reverse A = [[A[len(A) : i : 1] j i < len(A)]]evenpos A = [[A[i � 2] j i < len(A)=2]]The array constructs generalize to the k-dimensionalcase (when k � 2) as follows: [[e j i1 < e1; : : : ; ik < ek]]denotes the k-dimensional array whose jth dimensionhas length given by ej (i.e., whose jth index ranges from0 to ej � 1) and whose values are given by the function�(i1; : : : ; ik):e; dimk(e) denotes a k-tuple (n1; : : : ; nk)giving the lengths of the k dimensions of the array e;and e1[e2] denotes the value of the k-dimensional arraye1 at the index given by the k-tuple e2. Henceforth, wewill write e[e1; : : : ; ek] instead of e[(e1; : : : ; ek)]. In thefollowing examples of matrix operations we have alsoabbreviated �i;k � dimk to dimi;k:transpose M = [[M [i; j] j j < dim2;2(M); i < dim1;2(M)]]proj col(M;j) = [[M [i; j] j i < dim1;2(M)]]multiply(M;N) = if dim2;2(M) 6= dim1;2(N) then ? else[[PfM [i; j] �N [j; k] j j 2 gen(dim2;2(M))g ji < dim1;2(M); j < dim2;2(N)]]

We now make precise what we meant when we saidarrays are partial functions of \rectangular" domain.Observe that the gen and dim constructs can be usedto de�ne the domain (i.e., index set) of any array. Inparticular, for a one-dimensional array e, dom(e) =gen(len(e)), and for a k-dimensional array (k � 2),domk(e) = gen(dim1;ke) � � � � � gen(dimk;ke). Thus,arrays of type [[t]]k can be thought of as partial functionsfrom Nk to t whose domains are (products of) initialsegments of N. In general, we consider a domain tobe \rectangular" if it is a product of initial segmentsof linear orders. From the point of view of arraysas partial functions, the array tabulation construct[[e j i1 < e1; : : : ; ik < ek]] is analogous to a (bounded)�-abstraction �(i1; : : : ; ik) 2 (gen(e1)� � � � � gen(ek)):eand array subscripting is analogous to (partial) functionapplication. These observations suggest that partialcounterparts to the �-calculus � and � reduction rules[2] might be applicable to arrays. We explore these andother normalization rules for the calculus in section 5.The only remaining construct other than index is theconstruct for errors. Recall that both e1[e2] and get(e)can be unde�ned. Errors are introduced explicitly intothe language so that optimization rules for arrays andget can express such partiality.We now describe the index construct. If we think ofarrays as functions, then a natural way to convert anarray into a set is to generate its graph by using thefunction graphk of type [[t]]k ! fNk� tg:graphk(e) =[ff(i; e[i])gj i 2 domk(e)gIn general, the graph of a function is the set of orderedpairs de�ning the function. The index construct is es-sentially the inverse of graph: it takes a set of (key,value)pairs where keys are of type Nk, and it produces thecorresponding array. There are two problems: �rst, theset may not be the graph of a function, i.e., it maycontain two di�erent values for the same key; second,the domain of the function de�ned by the set may notbe \rectangular", i.e., it may have holes. We �x boththese problems by letting index : fNk � tg ! [[ftg]]kinstead of index : fNk � tg ! [[t]]k. Then we canput fg in the holes, and if there is more than onevalue for the same key, we just include all of them.For example, index (f(1; \a"); (3; \b"); (1; \c")g) =[[fg; f\a"; "c"g; fg; f\b"g]]. Here, we use [[o0; : : : ; on�1]]as notation for the one-dimensional array of length nwhose value at index i is oi.Another way of looking at index is that index k(e) de-notes the k-dimensional array whose jth dimension hasindices ranging from 0 to the maximum value of the jthkey in e and whose value at any k-ary index within theseranges is a grouping of all values in e with keys equal tothis index. Because index causes an implicit group-by,it can be used to write more e�cient code. Consider the232

following two versions of histogram : [[N]]! [[N]]:hist e = [[Pfif e[j] = i then 1 else 0 j j 2 dom(e)g ji < max(rng(e))]]hist0 e = map(count)(index(Sff(e[j]; j)g j j 2 dom(e)g))where rng(e) = Sffe[i]g j i 2 dom(e)g and map andcount are as given above. The �rst version takes atleast O(n �m), where n is the length of e, and m is themaximum value in e. Assuming the indexing of a set ofsize n with maximum key value m takes O(m+n logn)(m to initialize the array with fg's and n logn to insertthe n values in the appropriate sets), the second versiontakes O(m+ n logn). This is because the total numberof additions performed by map(count) is bounded by n,the size of the original set.3 The Array Query Language AQLAs we observed above, the syntax of NRCA is too low-level. We now derive a higher-level query language,AQL, based on our core calculus. As a �rst steptoward achieving a more convenient language, we addcomprehensions, pattern matching, and block structureto our core calculus. Then, before going on to describeour implementation of AQL, we consider two moreissues: how to express complex object values in ourlanguage and whether we should add any derivedoperators to our language as primitives.Comprehensions. A set comprehension [6, 33] hasthe form fe j GF1; : : : ; GFng, where each GFi is eithera generator nx <- e or a �lter (i.e., Boolean-valuedexpression) e. It can be read as \the set of all e suchthat GF1; : : : ; GFn", where a generator nx <- e is read\x comes from e". For example,f(x; y) j nx <- A; ny <- Bg fx j nx <- A; x 2 Bgde�ne A�B and A\B, respectively. Note the di�erencein notation between the generator nx <- A and themembership test x 2 B. Semantically, a generatornx <- A binds x to successive members of A, whereasx 2 B tests whether a particular value is a member ofB.The slash in nx is used to indicate that this is a bindingoccurrence of x. Once a variable has been bound, it canbe used anywhere in the remaining generators/�lters,as well as in the head expression. Comprehensionsdo not add extra expressive power since they can betranslated into NRC expressions, see the �rst table in�gure 2. Here, GF represents any (possibly empty) listof generators and �lters.The question arises whether we should de�ne some-thing like comprehensions for arrays. On the one hand,we don't view arrays as collections, so we don't expectthere to be a comprehension syntax for arrays compa-rable to the one given for sets. On the other hand, thedomain of an array is a set, so we should be able to

Comprehension Calculus Expressionfe1 j nx <- e2;GFg Sffe1 j GFg j x 2 e2gfe1 j e2;GFg if e2 then fe1 j GFg else fgfe j g feg� :e � nz:e�(P 01; : : : ; P 0n):e � nz:((�P 01: : : : ((�P 0n:e)(�n;nz)): : :)(�1;n))Sfe1 j P 0 <- e2g Sf(�P 0:e1)(z) j nz <- e2gSfe1 j P <- e2g Sfif z = CX then e1 else fg jNewP <- e2gFigure 2: Translations for comprehensions and patternsde�ne generators over arrays. We introduce the nota-tion [ni : nx] <- A as syntactic sugar for the combinedgenerators ni <- dom(A); nx <- fA[i]g. For example,fi j [ni : nx] <- A; x > 90g picks out those positionsin A whose values exceed 90.Pattern Matching. The slashed variables thatoccur in comprehension generators are examples ofpatterns, cf. [6]. In particular, nx is a pattern thatmatches anything and binds it to x. The following isan example of a more general use of patterns:f(x; y; z) j (nx; ny) <- R; (y; nz) <- SgThe pattern (nx; ny) matches successive tuples from R,binding x and y to the �rst and second components,respectively. The pattern (y; nz) then matches thosetuples from S whose �rst component is equal to thevalue currently bound to y, and for each such tuple,it binds z to the tuple's second component. Thisis just the natural join of R and S. As anotherexample, fx j (; 0; nx) <- Rg selects those tuples ofR whose second component is 0 and projects outtheir third components. In general, patterns are givenby P ::= (P1; : : : ; Pk) j j c j x j nx, where (P1; : : : ; Pk)matches any k-tuple whose ith component matches Pi,matches anything, c only matches the constant c, xonly matches the value currently bound to x, and nxmatches anything and binds it to x.We henceforth allow set generators to be of the formP <- e and array generators to be of the form [P1 :P2] <- e. We also generalize lambda abstractions to�P 0:e, but lambda patterns P 0 are only allowed to beof the simpler form P 0 ::= (P 01; : : : ; P 0n) j j nx. Finally,we introduce P == e as shorthand for P <- feg.To get a feeling for what comprehensions and patternshave bought us, we give an implementation of nest thatis much simpler than the one shown in section 2:nest = � nX:f(x; fy j (x; ny) <- Xg) j (nx;) <- XgClearly, patterns and comprehensions allow us toexpress queries much more concisely. Yet they are233

merely a syntactic convenience; like comprehensions,patterns can be translated away, as shown in the secondtable in �gure 2, cf. [34]. Here, nz is a fresh variable,CX is the constant or non-binding variable that occursleftmost in P , and NewP is P with this leftmostoccurrence of CX replaced by nz.Blocks. Another syntactic convenience is the abilityto de�ne local variables. We introduce let val P 0 =e1 in e2 end as syntactic sugar for (�P 0:e2)(e1). It isnot di�cult to see that we can translate a let block withmultiple declarations into nested let blocks, each witha single declaration. So we allow the more general formlet val P 01 = e1 : : : val P 0n = en in e end .Literals and a complex object exchange for-mat. So far, we haven't included any way to buildcomplex object data. We now de�ne a grammar forcomplex object values:co ::= true j false j n j(co1; : : : ; con) j fco1; : : : ; cong j[[n1; : : : ; nk; co0; : : : ; co(n1�:::�nk)�1]]This grammar describes a data exchange format forthe values of our language. We will use this formatto input data and to output results. But are allthese values already de�nable in our language? Clearlythe base values and the tuple values are de�nableby the corresponding literals. For sets, we can takefco1; : : : ; cong as syntactic sugar for fco1g[� � �[fcong.What about arrays? First we de�ne empty, singleton,and append for arrays:[[]] = [[i j i < 0]][[e]] = [[e j i < 1]]A@B = [[if i < len(A) then A[i] elseB[i : len(A)] ji < len(A) + len(B)]]and observe that like the corresponding set operations,these operations form a monoid, cf. [9]. Then we set[[e1; : : : ; en]] = [[e1]]@ � � �@[[en]].Note that with this de�nition, the literal [[e1; : : : ; en]]is equivalent to a tabulation whose de�ning functionhas a giant nested if statement (one level of nesting foreach element of the array), so tabulation takes O(n2)time. For reasons of e�ciency, we therefore add thenew [[n1; : : : ; nk; e0; : : : ; e(n1�:::�nk)�1]] construct to thelanguage. Here, n1; : : : ; nk are the k dimensions, andthey are followed by n1 � : : : � nk values in row-majororder. This construct is unde�ned if the number of valueexpressions doesn't match the product of the dimensionexpressions.Derived primitives. The astute reader may havenoticed that we could have omitted index and thearithmetic operators from our calculus because theyare already expressible. By treating these operators asprimitives, we opened up the possibility of computingthem more e�ciently. The question arises whether any

further derived operators should be added as primitives.There are generally three reasons for doing so. The�rst reason is to make the primitive known to thecode generator so a more e�cient query plan can begenerated. This is what we did with the arithmeticoperators. For reasons of e�ciency, we also assume thefollowing derived operators to be primitive constructsof our language: min;max;2.A second reason is to make the primitive knownto the code optimizer so that rules speci�c to thatprimitive can be applied. For example, we mightconsider extending our calculus with a primitive fortranspose so that the rule transpose([[e j i < e1; j <e2]]) ; [[e j j < e2; i < e1]] can be applied. In section5, we will show that we don't need to add extra arrayprimitives, as most such rules are already encoded bythe rules for our minimal calculus.A third reason for adding derived operators asprimitives is for the convenience of the programmer.We henceforth assume the following frequently usedoperators are available as macros: and, or, not,forall in, exists in, dom, rng, dimi;k, subseq, zip, etc.What if we have forgotten a useful macro or if welater need a domain-speci�c primitive whose e�cientimplementation cannot be expressed in AQL or whoseoptimization rules cannot be derived in AQL? In thenext section, we describe an implementation of AQLwhich emphasizes openness: macros, external primitivesand optimization rules can all be injected dynamicallyinto our language. We even allow new data readers andwriters to be added dynamically, so our language caneasily be adapted to speci�c application domains.4 ImplementationWe have developed a prototype system implementingAQL using Standard ML (SML) [26]. Our systemprovides two views of AQL. Within the SML read-eval-print loop, a user can make calls to any of ourlibrary routines. These routines provide support forcustomizing the AQL top-level environment to speci�capplication domains. Within the AQL read-eval-printloop, the user can enter AQL declarations and queries.Because SML has an interactive compiler, the usercan go back and forth between these two views of thesystem and, thus, customize the system dynamically.We give an overview of the system's architecture, andthen illustrate interaction with the two read-eval-printloops via an extended example.4.1 General ArchitectureThe general architecture of our system is shown in �gure3. It is based on the architecture of CPL/Kleisli, anopen query system implementing NRC, see [5, 34].Our system is divided into four main subsystems: aquery module which manages query representation and234

C/PRL

SQL Driver

OQL Driver

NetCDF Utils

HDF Utils

Local Disk

Net
ML

Query Module

o Query parser/

 pretty printer

o Typechecker

o Optimizer

Object Module

o Object library

o Query execu-

 tion

o Object parser/

 pretty printer

Environment

Module

o Top-level

 control

o Declarations

o Customization

 facilities

I/O Module

Shared

Memory

Pipe

Parser/

Pretty

printer

I/O server

SML/C

Interface

Utils

Local Disk

Remote Servers

Figure 3: The AQL System Architecturecompilation, an object module which supports queryevaluation via a complex object library, an I/O modulewhich provides access to local and remote data, and anenvironment module which facilitates customization ofthe system to speci�c application domains.Query Processing. When a query is executed, itproduces a complex object value as its result. Thecompilation of queries and their evaluation into complexobjects is handled by the query and object modules.The details of this process are as follows. An AQL queryis �rst parsed into an internal representation of thesurface syntax. After undergoing some simple syntacticchecks, the query is translated into a second internalrepresentation, which is just abstract syntax for ourcore calculus. The translation consists of eliminatingcomprehensions, patterns, blocks and other syntacticsugar. The core calculus query is now sent througha typechecker. Next, in preparation for optimization,any macros de�ned in the top-level environment aresubstituted in. The query is now optimized and theresulting query is evaluated into a complex object value.Query evaluation proceeds by translating core calcu-lus constructs into calls to routines in a complex objectlibrary. The routines act on an abstract representationof complex object values that resembles our de�nitionsfor literals (see section 3). Once a result has been com-puted, this abstract representation of complex objectsis translated to the surface syntax for complex objectsvia a pretty printer.Openness and the Top-Level Environment.Our system has an open architecture: new external

functions, data readers/writers, and optimization rulescan all be added dynamically to the AQL top-levelenvironment by calling appropriate registration routinesprovided in the environment module. Once registered,external functions and readers/writers are immediatelyavailable as new primitives within the AQL top-level read-eval-print loop, and rules/cost functions areimmediately available to the optimizer. In addition,there are two types of top-level declarations availableto the user in the AQL read-eval-print loop: macrodeclarations, which keep track of queries and can beused to de�ne new primitives, and val declarations,which keep track of complex object values and can beused to de�ne literals.I/O and the NetCDF Interface. There arealso two top-level commands to handle data I/O. Thecommand readval \V using READER at E inputs acomplex object value into the variable V by using thereader previously registered as READER applied to thearguments given by the expression E. There is a similarcommand writeval E using WRITER at E for output.By providing a standard data exchange format forcomplex objects (see section 3), we help make thesystem open. Any driver which produces a stream ofbytes in this format can quickly be plugged into oursystem by registering it as a new reader. The readvalcommand calls the driver registered as READER withthe parameters given by E and then parses the datadeposited on the input stream into a complex object.We have implemented a driver for NetCDF. We usedthis driver to register a series of readers for inputtingarrays of various dimensions. For example, the readerNETCDF3 can be used to input 3-dimensional arrays. Ittakes a �le name, a variable name, a triple giving alower bound index, and a triple giving an upper boundindex as inputs, and it returns the subslab of the givenvariable bounded by the given indices. An example ofthe use of this reader is given below.Any driver that deposits its data on the input streamusing our data exchange format for complex objectscan appear as a reader to the AQL input server. Inparticular, drivers that communicate with remote dataservers via open sockets can be registered as readers. Adriver for Sybase which was registered as a Kleisli readerwas described in [5]. We plan to add a similar driver toour system for a fragment of SQL. We also plan to add adriver which translates the nested relations plus arraysfragment of OQL into our exchange format.Since NetCDF �les are stored locally, it is possibleto avoid serializing their data into a byte stream. Weare investigating the possibility of adding another driverwhich deposits its data directly into AQL complexobjects via shared memory between the NetCDF accesslibrary routines and the AQL I/O server.235

4.2 Using AQL: an exampleThe following sample session illustrates some of thefeatures of AQL by showing how we can answer thequery: What days last June was it hotter than 85�after sunset in NYC? We assume we have access toa NetCDF �le temp.nc containing a year's worth ofhourly temperature readings varying over time, latitude,and longitude. To answer this query, we choose touse an external function sunset which computes thetime of sunset for a given longitude and latitude on agiven day. So at the SML top-level, we �rst providethe de�nition of this function and then register itas an AQL primitive june sunset, since we're onlyinterested in days in June. The code for the functionsunset(long,lat,month,day,year) of type real *real * int * int * int -> int is omitted.- let val COjunesunset = fn CO =>= let val (latCO,lonCO,dayCO) = CO_Tuple.extract3 CO= in CO_Nat.mK(= sunset(CO_Real.Km(latCO),CO_Real.Km(lonCO),= 6,CO_Nat.Km(dayCO),95))= end= in TopEnv.RegisterCO(``june_sunset'',= CO.Funct(COjunesunset),= Type.Arrow(= Type.Tuple(3,[Type.Real,Type.Real,Type.Nat]),= Type.Nat))= end;Here we have used our system's complex objectinterface to translate the SML function sunset intoa complex object function COjunesunset. The call toRegisterCO makes this complex object function knownto AQL as the primitive june sunset. We now enterthe AQL top-level read-eval-print loop and de�ne amacro which we will use to index into the NetCDF �le.- AQL();: val \months = [[0,31,28,31,30,31,30,31,31,30,31,30]];typ months : [[int]]_1val months = [[(0):0, (1):31, (2):28, ...]]: macro \days_since_1_1 = fn (\m,\d,\y) =>:: d + summap(fn \i => months[i])!(gen!m) +:: if m>2 and y%4=0 then 1 else 0;typ days_since_1_1 : nat * nat * nat -> natval days_since_1_1 = days_since_1_1 registered as macro.This macro takes an input date and computes thenumber of days since the beginning of the year. TheAQL notation fn P => e de�nes lambda abstraction,! is the AQL notation for function application, andsummap(f)!e is the AQL notation for Pff(x)jx 2 eg.We next read the June data from the NetCDF �le, usingthe macro we just de�ned to compute the index rangefor time. We assume the latitude and longitude indicesare provided by two other index computing macrospreviously de�ned for this NetCDF �le. We also assume

that NYlat and Nylon of type real giving the latitudeand longitude for New York are available.: readval \T using NETCDF3 at:: ("temp.nc", "temp",:: (days_since_1_1!(6,1,95)*24,:: lat_index!(NYlat),lon_index!(NYlon)),:: (days_since_1_1!(6,30,95)*24,:: lat_index!(NYlat),lon_index!(NYlon)));typ T : [[real]]_3val T = [[(0,0,0):67.3, (1,0,0):67.3, (2,0,0):67.2, ...]]T now contains hourly data for June at the givenlatitude and longitude. We �nally execute our query,using the newly registered june sunset primitive:: {d | [(\h,_,_):\t] <- T, \d==h/24+1,:: h > june_sunset!(NYlat,NYlon,d), t > 85.0};typ it : {nat}val it = {25,27,28}That is, there were three days in June when thetemperature went over 85 after sunset.5 OptimizationsThe AQL optimizer proceeds in a number of phases.The rule bases, the rule application strategies, and thenumber of phases of this optimizer are extensible.We will discuss only the normalization phase of theoptimizer. The rules for sets, tuples, and conditionalscome from the equational theory of NRC, described in[7, 34]. They include rules for vertical and horizontalfusion of set loops, �lter promotion, and columnreduction [5]. The rules for summation and arithmeticcome from an extension of NRC to arithmetic given in[18]. Here, we describe the new rules for arrays.Since the syntax for arrays was inspired by viewingthem as functions, it is not surprising that the rules forarrays are also based on this view of arrays as (partial)functions. There are three rules for arrays:(�p) [[e1 j i < e2]][e3];if e3 < e2 then e1fi := e3g else ?(�p) [[e[i] j i < len(e)]]; e(�p) len([[e1 j i < e2]]); e2The �rst two are partial versions of the lambda calculus� and � transition rules, cf. [2]. The third rulecorresponds to partial function domain extraction. Inthe context of arrays, the �rst rule can be interpreted assaying that to compute the value of the array tabulatedby [[e1 j i < e2]] at index e3, it su�ces to compute justthe e3th value of the array, after checking that e3 wouldhave been within bounds. This rule saves both timeand space by avoiding tabulation (i.e., materialization)of the intermediary array. The second rule can beinterpreted as saying that the array tabulated from236

another array e by using all its values in order is justthe array e. Once again this rule saves time and spaceby avoiding retabulation of the array. The third rulesays that to get the length of the array tabulated by[[e1 j i < e2]], you don't need to tabulate this array,you only need to compute e2. This rule is sound onlyif e1 is error-free. The three rules for arrays generalizestraightforwardly to the k-dimensional case.These rules seem quite obvious and simple, but arethey enough for optimizing arrays? Recall that insection 3, we claimed that it was not necessary to adda primitive for transpose in order to capture the rule:transpose([[e j i < m; j < n]]); [[e j j < n; i < m]]Assuming the de�nition of transpose we gave in section2, we now show that this rule is derivable (up toredundant constraint checks), using the rules we havegiven so far. In addition to the rules for arrays, ourderivation uses two rules we inherit from NRC: � forfunctions ((�x:e1)(e2); e1fx:=e2g) and � for products(�i(x1; x2) ; xi; i = 1; 2). We also abbreviate [[e j i <m; j < n]] as [[e j : : :]]. Thentranspose([[e j i < m; j < n]])= (�A:[[A[i0; j0] j j0 < �2(dim2A); i0 < �1(dim2A)]])([[e j i < m; j < n]])�; [[[[e j : : :]][i0; j0] j j0 < �2(dim2[[e j i < m; j < n]]);i0 < �1(dim2[[e j i < m; j < n]])]]�p;? [[[[e j : : :]][i0; j0] j j0 < �2(m;n); i0 < �1(m;n)]]�;? [[[[e j i < m; j < n]][i0; j0] j j0 < n; i0 < m]]�p; [[if (i0 < m) then if (j0 < n) thenefi := i0; j := j0g else ? else ? j j0 < n; i0 < m]]Observe that in the last expression, both if condi-tions must necessarily hold because they are only eval-uated if i0 and j0 are within bounds, i.e., if (j0 < n)and (i0 < m). So these constraint checks are redun-dant. If we could get rid of these redundant con-straint checks, then we would end up with the ex-pression [[efi := i0; j := j0g j j0 < n; i0 < m]]which is just the right-hand-side of the transpose rulegiven above (up to variable renaming). Similar reason-ing shows that both zip(subseq(A; i; j); subseq(B; i; j))and subseq(zip(A;B); i; j) are transformed to the samequery (up to extra constraint checks and variable re-naming), thus justifying our claim from the introductionthat the order of these operations is irrelevant.In general, the constraint checks introduced by the�p rule will be redundant as long as no bounds errorswere present in the original code. The question ariseswhether all redundant constraint checks can be removedby further optimization rules. The answer is no, sinceProposition 5.1 Bound checking is undecidable forNRCA expressions. 2

However, many redundant checks can be eliminatedby applying the following rules together with standardrules for conditionals [34]:[[(: : :(ij < ej) : : :) j i1 < e1; : : : ; ik < ek]];[[(: : : true : : :) j i1 < e1; : : : ; ik < ek]]Sf(: : : i < e : : :) j i 2 gen(e)g;Sf(: : : true : : :) j i 2 gen(e)gif e then (: : : e : : :) else e0 ;if e then (: : : true : : :) else e0if e then e0else (: : : e : : :);if e then e0 else (: : : false : : :)Note that these rules need some extra conditions guar-anteeing free variables in ij < ej or e are not capturedin (: : : (ij < ej) : : :) or (: : : e : : :).We have implemented normalization and constraintelimination as the �rst two phases of our optimizer.Later phases include I/O optimizations and code mo-tion.6 Expressive powerSo far we have presented the array query languageAQL based on the calculus NRCA that combinescomplex objects and multidimensional arrays. Anatural question to ask is the following. How muchexpressiveness do we gain by adding arrays to thecomplex object language?We give a precise answer to this question by showingthat adding arrays amounts to adding the following toa pure relational query language (NRC):1. A general operator for producing aggregate functions.2. A generator for initial intervals of natural numbers.While this gives us a precise answer to the questionabove, such a characterization of the expressive poweris not very intuitive. In particular, it does notconnect very well with arrays. So we shall provide analternative characterization, showing that adding arraysto a complex object language amounts to adding ranksuniformly across sets and bags.We need some terminology. A language NRCaggris de�ned to be the fragment of NRCA that containsNRC, the arithmetic operations +; : ; �, and the sum-mation operatorP. As explained before, the arithmeticplus the summation operator allow us to express aggre-gates such as total and count. Using nesting, we canexpress groupby, which is another means of aggregationin SQL. This language can be viewed as a \theoret-ical reconstruction" of SQL. Indeed, it has both fea-tures that distinguish all implementations of SQL frompurely relational languages, that is, groupby and aggre-gate functions. In fact, NRCaggr was used in [20] tostudy limitations of expressive power of SQL.Our �rst result characterizes the expressive power237

of NRCA as that of NRCaggr(gen) (we list extraprimitives in parentheses). We also look at the classof queries from
at relations (sets of tuples that donot involve sets) to
at relations expressible in thatlanguage.Theorem 6.1 The languages NRCA andNRCaggr(gen) have the same expressive power. More-over, NRCaggr(gen) is a conservative extension of its
at fragment: any NRCaggr(gen)-query from
at rela-tions to
at relations can be expressed using relationalcalculus, arithmetic operations, summation and gen. 2Since the languages NRCA and NRCaggr(gen) havedi�erent type systems, the above equivalence is modulosome translation between the type systems. For thenontrivial inclusion NRCA � NRCaggr(gen) it musttranslate away the arrays and errors. Here we just hintat how this translation works by showing a translation ofNRCA objects intoNRCaggr objects. For simplicity, wedeal with pairs and not tuples and only one-dimensionalarrays. Each object is translated into a pair. Thetranslation for the �rst component is as follows:x� = fxg; for x of base type, (x; y)� = f(x�; y�)gfx1; : : : ; xng� = fx�1; : : : ; x�ng; ?� = fg[[e0; : : : ; en�1]]� = f((e0)�; 0); : : : ; ((en�1)�; n� 1)gThe second component of the translation is used asa
ag for errors. To prove the equivalence modulothese translations, we use the algebras of functions thatcorrespond to our calculi. They are derived in the samemanner as relational algebra is derived from relationalcalculus. The algebra of functions corresponding toNRCaggr was given in [19]. For NRCA we derive asimilar algebra by adding a number of functions tohandle the array operations. For example, there is afunction mk arr(f) : N! [[t]], provided f is of type N!t. Applied to a number n it yields [[f(i) j i < n]]. Usingthese algebras, we show that they can be translatedinto each other, and are thus equivalent modulo thetranslation above.To give a more intuitive characterization of theexpressive power of NRCA, we follow the idea of [4],and replace the construct Sfe1 j x 2 e2g with�; x : s; i : N ` e1 : ftg � ` e2 : fsg� ` Srfe1 j xi 2 e2g : ftgthat has the following semantics. Assume that e2 is a setfx1; : : : ; xng such that x1 <s : : : <s xn (recall that <sis a linear ordering on objects of type s), and that f isthe function �(x; i):e2. Then Srfe1 j xi 2 e2g evaluatesto f(x1; 1) [: : : [f(xn; n). For example, rank(X) =Srff(x; i)g j xi 2 Xg assigns ranks to the elements ofa set: if X = fx1; : : : ; xng with x1 <s : : : <s xn, thenrank(X) evaluates to f(x1; 1); : : : ; (xn; n)g. Note that inthe expression Srfe1 j xi 2 e2g, both the rank i and thevariable x are bound.

We denote the language obtained by adding the typeof natural numbers, gen and the Srfe1 j xi 2 e2gconstruct to NRC by NRCr.Next, we de�ne an analog of NRCr for bag-basedcomplex objects. First, we need an analog of the nestedrelational calculus NRC for bags, called NBC. In thetype system, the set type is replaced by the bag type.We use fj jg as bag brackets. The union operation is] (itadds up multiplicities). The Sfe1 j x 2 e2g construct isreplaced by Ufje1 j x 2 e2jg. The semantics is the sameas before except that the operation] is used insteadof [. The language NBC and its extensions have beenstudied extensively in the past few years, see [13, 19, 20].We de�ne the \ranked" analog of the U operation,Urfje2 j xi 2 e1jg, in exactly the same way as thecorresponding operation for sets, except that equalvalues are assigned consecutive integers. Now we letNBCr stand forNBC augmented withUrfje2 j xi 2 e1jg.We do not add the type of natural numbers explicitlybecause the number n can be simulated as a bag of nidentical elements.Theorem 6.2 The languages NRCr and NBCr havethe same expressive power as NRCA. 2This result justi�es our claim that the gain inexpressiveness obtained by adding arrays to a complexobject language is precisely characterized as addingranking in an explicit manner. Furthermore, this holdsfor set- and bag-based complex objects.7 Conclusions and future workMultidimensional arrays are needed for natural repre-sentations of many scienti�c data types. However, mul-tidimensional arrays are not well supported by com-mercial database systems or by theoretical database re-search. As a result, multidimensional scienti�c data isusually kept in
at �les conforming to various data ex-change formats such as NetCDF and is queried via acollection of specialized library routines tied into somegeneral purpose programming languages.In this paper, we aim to provide a database tech-nology for
exibly querying and transforming multidi-mensional arrays. We have developed a high-level com-prehension style query language, AQL, for multidimen-sional arrays. We have also implemented a data driverto mediate between our query language and the popularNetCDF data exchange format for scienti�c data. Thusour query language can be used to directly manipulatea large amount of \legacy" scienti�c data.From the equational laws of AQL, we have deriveduseful rules and implemented them in an optimizer.Finally, we have investigated the expressive power of ourquery language for arrays. In particular, we have shownthat its expressiveness corresponds to adding rankingexplicitly in a query language for complex objects. Our238

array query language can also easily simulate all ODMGarray primitives.Some problems still remain. We list two of thembelow. Firstly, as mentioned earlier, we currentlyuse stream-based I/O for external arrays. We wouldlike to investigate techniques for providing more directaccess to these arrays, perhaps through the use of goodpredictive caching.Secondly, AQL currently supports initial segmentsof natural numbers as array indices. We would liketo investigate techniques for providing more meaningfuldata types such as longitudes and latitudes as indicesfor scienti�c arrays. Eventually, we would like to allowarbitrary linearly-ordered types to be used as indices.Acknowledgements: We thank Peter Buneman forinspiring this work, Tim Gri�n, Val Tannen and theanonymous reviewers for comments and suggestions,and Lal George for being very helpful during theimplementation stage. R. Machlin was supported inpart by ARO AASERT DAAH04-93-G0129 and ARPAN00014-94-1-1086.References[1] Arvind, R.S. Nikhil, and K.K. Pingali. I-structures:Data structures for parallel computing. ACMTrans. Progr. Lang. Syst. 11 (1989), 598{632.[2] H. Barendregt. Lambda Calculus: Its Syntax andSemantics. North Holland, 1984.[3] C. Beeri and D.K.C. Chan. Bounded arrays: a bulktype perspective. Hebrew Univ. Technical Report, 1995.[4] P. Buneman. The fast Fourier transform as a databasequery. Technical Report MS-CIS-93-37/L&C 60, Uni-versity of Pennsylvania, March 1993.[5] P. Buneman, S. Davidson, K. Hart, C. Overton,L. Wong. A data transformation system for biologicaldata sources. In VLDB'95, pages 158{169.[6] P. Buneman, L. Libkin, D. Suciu, V. Tannen, andL. Wong. Comprehension syntax. SIGMOD Record,23(1):87{96, March 1994.[7] P. Buneman, S. Naqvi, V. Tannen and L. Wong.Principles of programming with complex objects andcollection types. Theor. Comp. Sci., 149 (1995), 3{48.[8] R.G.G. Cattell, ed. The Object Database Standard:ODMG-93. Morgan-Kaufmann, 1994.[9] L. Fegaras and D. Maier. Towards an e�ective calculusfor object query languages. In SIGMOD'95, pages 47{58.[10] J. Feo. Arrays in Sisal. In Proc. Workshop on Arrays,Functional Languages and Parallel Systems, L. Mullinet al. eds., Kluwer Academic Publishers, 1990.[11] S. Greco, P. Palopoli and E. Spadafora. DatalogA:Array manipulations in a deductive database language.In Proc. 4th Conf. on Database Systems for AdvancedApplications, pages 180{188, 1995.

[12] D. Gries. The Science of Programming. Springer-Verlag, 1981.[13] S. Grumbach and T. Milo. Towards tractable algebrasfor bags. In PODS'93, pages 49{58.[14] P. Hammarlund and B. Lisper. On the relation betweenfunctional and data parallel programming languages. InFPCA'93, pages 210{219.[15] P. Hudak, S.L. Peyton Jones and P. Wadler. Reporton the Programming Language Haskell. SIGPLANNotices, March 1992.[16] K. E. Iverson. A Programming Language. Wiley, 1962.[17] T. W. Leung, B. Subramaniam, S. Vandenberg andS. B. Zdonik. Ordered types in the AQUA data model.In DBPL'93, pages 115{135.[18] L. Libkin and L. Wong. Aggregate functions, conserva-tive extensions, and linear orders. In DBPL'93, pages282{294.[19] L. Libkin and L. Wong. Some properties of querylanguages for bags. In DBPL'93, pages 97{114.[20] L. Libkin and L. Wong. New techniques for studyingset languages, bag languages and aggregate functions.In PODS'94, pages 155-166.[21] L. Libkin and L. Wong. Conservativity of nested rela-tional calculi with internal generic functions. Informa-tion Processing Letters, 49(6):273{280, March 1994.[22] D. Maier and B. Vance. A call to order. In PODS'93,pages 1{16.[23] D. Maier and D. Hansen. Bambi meets Godzilla:Object databases for scienti�c computing. In Proc.7th Working Conference on Scienti�c and StatisticalDatabase Management, 1994, pages 176{184.[24] G. Mecca and A. Bonner. Sequences, datalog andtransducers. In PODS'95, pages 23{35.[25] G. Mecca and A. Bonner. Finite query languages forsequence databases. In DBPL'95, to appear.[26] R. Milner, M. Tofte, R. Harper. \The De�nition ofStandardML". The MIT Press, Cambridge, Mass, 1990.[27] T. More. Axioms and theorems for a theory of arrays.IBM J. Res. and Development 17 (1973), 135{175.[28] R. Rew, G. Davis and S. Emmerson. NetCDF User'sGuide, Unidata Program Center, 1993.[29] P. Seshadri, M. Livny and R.Ramakrishnan. Sequencequery processing. In SIGMOD'94, pages 430{441.[30] P. Seshadri, M. Livny and R.Ramakrishnan. SEQ: amodel for sequence databases. In ICDE'95, pages 232{239.[31] S. Vandenberg. Algebras for Object-Oriented QueryLanguages. PhD thesis, Univ. of Wisconsin, 1993.[32] S. Vandenberg and D. DeWitt. Algebraic support forcomplex objects with arrays, identity and inheritance.In SIGMOD'91, pages 158{167.[33] P. Wadler. Comprehending monads. MathematicalStructures in Computer Science 2 (1992), 461{493.[34] L. Wong. Querying Nested Collections. PhD thesis,Univ. of Pennsylvania, August 1994.239

