A Query Language for Multidimensional Arrays:
Design, Implementation, and Optimization Techniques

Leonid Libkin*
Bell Laboratories

Abstract

While much recent research has focussed on extending
databases beyond the traditional relational model, relatively
little has been done to develop database tools for querying
data organized in (multidimensional) arrays. The scientific
computing community has made little use of available
database technology. Instead, multidimensional scientific
data is typically stored in local files conforming to various
data exchange formats and queried via specialized access
libraries tied in to general purpose programming languages.

To allow such data to be queried using known database
techniques, we design and implement a query language for
multidimensional arrays. Our main design decision is to
treat arrays as functions from index sets to values rather
than as collection types. This leads to clean syntax and
semantics as well as simple but powerful optimization rules.

We present a calculus for arrays that extends standard
calculi for complex objects. We derive a higher-level
comprehension style query language based on this calculus
and describe its implementation, including a data driver for
the NetCDF data exchange format. Next, we explore some
optimization rules obtained from the equational laws of our
core calculus. Finally, we study the expressiveness of our
calculus and prove that it essentially corresponds to adding

ranking to a query language for complex objects.

1 Introduction

Data organized into multidimensional arrays arises
naturally in a variety of scientific disciplines. Yet the
array type has received little attention in most recent

*Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974, USA. E-mail: libkin@bell-labs.com.

tDept. of Comp. & Info. Science, Univ. of Pennsylvania,
Philadelphia, PA 19104, USA. E-mail: rona@saul.cis.upenn.edu.
Part of this work was done while visiting Bell Labs.

*Real World Computing Partnership Novel Function Institute
of Systems Science Laboratory, Heng Mui Keng Terrace, Singa-
pore 0511. E-mail: limsoon@iss.nus.sg.

Rona Machlin'

University of Pennsylvania

228

. +
Limsoon Wong?*

Institute of Systems Science

database research on data models and query languages.
In their 1993 wake-up call to the database research
community [22], Maier and Vance argue that lack of
adequate support for arrays in existing DBMS’s is
one of the reasons the scientific computing community
has made little use of database technology. Instead,
multidimensional scientific data is typically stored in
local files using specialized data exchange formats such
as NetCDF (see [28]). Since most of these formats
do not have query language interfaces, queries must
be written in general purpose programming languages
(GPPLs) using associated access libraries.

Ideally, a query language interface would provide two
important advantages over the GPPL approach:

e Query languages are high-level, strongly typed, and
declarative, making programming an easier, less
eITOr-prone process.

e Query languages are based on small sets of special-
ized constructs, so they are more easily optimized,
taking the burden of producing efficient code away
from the programmer.

On the other hand, GPPLs can express a wider number
of algorithms efliciently. We therefore advocate an
approach in which data extraction and manipulation
are handled by the query language, but computation-
intensive algorithms are handled by domain-specific
external primitives written in GPPLs. Unfortunately,
most existing query systems do not support arrays
as first-class citizens. So using them to extract and
manipulate data organized in arrays might prove more
awkward and less efficient than using a GPPL.

In this paper, we develop a data model for complex
objects and arrays based on the point of view that ar-
rays are functions rather than collection types. For this
model, we define a set of specialized constructs forming
a calculus for arrays which we call ARCA. This cal-
culus is an extension of the nested relational calculus
NRC [7] with primitives for multidimensional arrays.
From N'RCA, we derive a higher-level comprehension-
style query language, AQL, which we then implement.

The system we obtain includes an optimizer based
on the equational theory provided by our arrays-as-
functions model. Qur implementation architecture em-
phasizes openness, that is, the capability to dynamically
inject domain-specific external primitives, data read-
ers/writers, and optimization rules into our system. By
providing readers/writers for data exchange formats like
NetCDF, we can tie our system in to “legacy” scientific
data.

To make things concrete, suppose we wish to answer
the following query:

On which days last June was it unbearably hot in NYC?

where we measure “unbearability” via a predefined al-
gorithm heatindex. We assume this algorithm expects
as input a one-dimensional array of triples containing a
day’s worth of hourly (temperature, relative humidity,
wind speed) readings. Further, let us assume we have
access to the following data for NYC in June:

T, a one-dimensional array containing a month’s worth
of hourly temperature readings at surface level.

RH, a one-dimensional array containing a month’s worth
of hourly relative humidity readings at surface level.

WS, atwo-dimensional array containing a month’s worth
of half-hourly wind speed readings ranging over
various altitudes. Observe that this array differs
from the first two in both dimensionality (it has
an extra altitude dimension) and gridding (its time
dimension has a half-hourly grid).

One reason this query might be hard to answer is
that the input data must be transformed into a new
format before the predefined algorithm can be applied.
In particular, input data with different dimensionalities
and grids must be correlated. That is, WS must go from a
half-hourly grid to an hourly grid, and its dimensionality
must be reduced by projecting along its surface level
altitude. Also, the three arrays must be combined
into one array, putting elements from corresponding
indices together into the same tuple (such an operation
is usually called zip). Finally, subsequences representing
a day’s worth of readings must be extracted. Here is the

query in AQL:

: {d | \d <- gen!30,
: (* for each day in June *)

\WS’ == evenpos! (proj_col!(¥WS,0)),
(* adjust WS grid and dim *)
\TRW == zip_3!(T,RH,WS’),

(* combine the readings *)
\A == subseq! (TRW,d*24,d*24+23),

(* extract day d readings *)
heatindex!(A) > threshold};

(* filter for unbearability *)

While one can imagine operations such as subseq or
zip might be expressible in a query language without

229

arrays (e.g., by using sets or lists to represent arrays),
they certainly would not be as efficient. For example,
we expect zip to take linear time in an array query
language, but in one without arrays it would ordinarily
take quadratic time (the time to do a cross product).

The question arises, what array primitives need
to be included in our query language in order to
efficiently extract and manipulate array data? As the
example just given suggests, we will want to be able
to extract subslabs (generalized subsequences) from a
multidimensional array, change the dimensionality or
gridding of an array, and glue together similar arrays
via operations like zip. But the list need not stop here.
For example, why not include primitives for transposing
a matrix or for reshaping a one-dimensional array in
row-major order into a two-dimensional array, etc.?

We will argue that only three array constructs are
needed: one for creating, or tabulating, an array from
a function, one for subscripting into an array, and
one for getting the dimensions of an array. Using
just these three constructs (together with arithmetic
and boolean operations), we can express all of the
operations mentioned. For example, evenpos(4) can
be expressed by [[A[i*2] | \i < len(A)/2]1], where
[Le | \i < nl] is our notation for the array whose
length is n and whose values are given by Ai.e. We will
explain this notation further when we introduce N'RCA.

Looking back at our AQL implementation for the mo-
tivating example, it appears we have given a procedural
description of how to implement the query. For exam-
ple, it is not hard to see that we could have obtained the
same result by exchanging the order of zip and subseg,
taking three subsequences first before “zipping” the re-
sults. So we might ask, why not implement this query in
a GPPL after all? If we had programmed the query in a
GPPL, these implementation choices would yield differ-
ent algorithms with different usage of space and time.
However, in the query language we give in this paper,
these various choices get optimized to similarly efficient
queries. In fact, in the normalization phase of our op-
timizer, zips o (subseq, subseq, subseq) and subseq o zipy
get reduced to the same query, up to extra constant-
time bound checks.

Related work. There have been several proposals for
making arrays first class citizens in query languages.
Most of these consider arrays as collection types. Beeri
and Chan [3] propose an algebra for arrays, and Fegaras
and Maier [9] include arrays into their object-oriented
calculus. Both approaches allow constructs in which
multiple values can be assigned to the same index.
However, they solve the problem differently. Beeri
and Chan’s approach is to introduce run-time checks,
while Fegaras and Maier use predefined operations to
merge different values assigned to the same index.

Consequently, arrays become dependent on the choice of
merge operation. Buneman [4] shows how to encode fast
Fourier transform as a database query in comprehension
style. His constructs allow him to avoid the problem
mentioned above. However, his approach does not
give us languages with adequate expressive power. For
example, operations involving permutations of indices
cannot be expressed.

Greco, Palopoli and Spadafora [11] propose adding
multidimensional arrays to datalog. They give fixpoint
semantics for their language and study optimizations.
Extensions of datalog with sequences, which are similar
to one-dimensional arrays, are studied in recent papers
of Mecca and Bonner [24, 25]. They are interested
in giving restrictions on the programs that ensure
finiteness of the results. Other work on sequences
in query languages includes [17, 29, 30]. In [29, 30]
sequences are viewed as maps from linear orders to
values, which is close to our approach of viewing arrays
as functions.

There are several approaches that treat arrays as
functions. Note that this point of view is widely
accepted in programming language theory, cf. [12].
Maier and Vance [22] propose syntax similar to our
tabulation construct. Constructs of the same flavor are
used in a number of functional languages that provide
support for arrays, see [1, 10, 15, 26], and also in APL
[16]. The view of arrays as functions was also explored
by [14] in the context of parallel computations. An early
axiomatization for arrays was given in [27].

A number of proposals for object-oriented query lan-
guages include arrays, see [9, 23]. The ODMG proposal
[8] includes one-dimensional arrays with operations for
creating, inserting, updating, subscripting and resizing.
Their arrays seem to support in-place updates, since
they can have holes and there is an explicit resize op-
eration. Vandenberg and DeWitt propose an object-
oriented algebra supporting arrays in addition to other
constructs [31, 32]. They only treat one-dimensional ar-
rays. The array operations in [31, 32] are very similar
to typical list operations, but also include operations for
array subscripting.

Organization. In section 2 we describe the design
of a nested relational calculus for arrays, NRCA. This
calculus forms the theoretical basis for our array query
language AQL in much the same way that the relational
algebra/calculus form the theoretical basis for SQL. The
array calculus AQL is presented in section 3, and its
implementation in section 4. Like relational algebra, our
calculus N'RCA comes with an equational theory that
inspires the core rules of our optimizer. The optimizer is
discussed in section 5. Finally, we study the expressive
power of the array calculus and connect N'RCA with
ranking collections of objects. Concluding remarks are
given in section 7.

230

2 Language design: a calculus for arrays

In this section we present ANRCA, the core calculus
underlying our implemented query language for arrays.
This calculus forms the basis for reasoning formally
about our query language, playing much the same role
that the relational calculus/algebra play for SQL. It is
at the level of this core calculus that we formulate the
data model and constructs for our language as well as
study their semantics and expressive power.

Our data model combines complex objects with
multidimensional arrays. Complex objects are usually
taken to mean free nestings of collections, such as
sets, bags, and lists, with records and variants. They
also often encorporate some notion of object identity.
Such types have been studied extensively elsewhere
[6, 7, 8,9, 17, 19, 32]. Here, we restrict our attention
to complex objects formed via free nestings of sets and
tuples, that is, to nested relations. We choose to work
within this simpler type framework in order to focus on
the semantics of arrays; however, we see no obstacle to
extending our model to a richer type system.

What do we take multidimensional arrays to be in our
model? We differ from others [3, 4, 8, 11, 31, 32] in that
we do not treat arrays as collection types but rather as
partial functions of finite, “rectangular” domain. As
we shall see, this approach yields an elegant syntax
and inspires some simple but powerful optimization
rules. Viewed as functions, arrays map indices to values.
What we mean by “rectangular” domain is that the
range of each index contains no holes. For simplicity, we
assume all indices range over natural numbers and are
zero-based (start with zero). So, a k-dimensional array
has “rectangular” domain if its ¢th index, 1 < 7 < k,
ranges from 0 to n; for some n; > 0.

Formally, the types of NRCA include object types
and object function types. The object types are
given by:

tu=b BN [t x--xtg [{t}]| [ty

where b denotes any uninterpreted base type, 8 denotes
the type of Booleans, N denotes the type of natural
numbers, t; X --- X tx denotes the k-ary product type,
i.e., the type of k-tuples whose ith components are
of type t;, {¢t} denotes the type of finite sets whose
elements are of type ¢, and [t], denotes the type of
k-dimensional arrays whose values are of type ¢ and
whose indices range over initial segments of the natural
numbers. We will sometimes write [¢] for [¢],. The
object function types are types t; — 3, where 1, ¢
are object types.

We now present the constructs of NRCA, our nested
relational calculus with arrays. NRCA is an extension
of the nested relational calculus N'RC [7]. We chose
this presentation of nested relations because it leads to
an appealing comprehension syntax [6, 9] and because

NTRC constructs
FUNGTIONS Fz:stke:t I'tei1:5—t Tlex:s
T,z:sbtz:s 'FAze:s >t Tke(ex):t
PRODUGCTS T'he ity T'ler:tr Thetty XXt (for1<i<k;k>2)
TF(e1,...,ex) i t1 X -+ X tg Ttk min(e):t;
SETS I'te:s T'te:{s} Thter:{s} Tyz:skei:{t} TFes:{s}
TH{}:{s} TF{e}:{s} T'ke Uez:{s} TEU{er |z €ex}: {t}
BOOLBANS Thei:B They:t T'hes:t Thei:t They:t
TF true: B T F false : B TFif e; then ey elsees : t T'heiopes: B
where op € {:7<7>7S7277é}
Natural Numbers
NATURALS T'Fe;:N T'hFex:N T'e:N ITyz:sFe:N TFep:{s}
'tn:N I'tei opez: N 't gen(e) : {N} Y{er |z €ez}:N
where n € w and op € {+,=,*,/,%}
k-Dimensional Arrays (k > 1)
T,i1:N,...,ix:NlFe:t T'ke :N T'Fep:N
ARRAYS - -
PrHle|i <eiy... in <er]:[t]
I'hei:[t], Thep:N* T'ke:[t], The:{N¥xt}
I'teifex]: t T I dimg(e) : N* I'+ indexx(e) : [{t}],
T'te:{s}
ERRORS THL1%:¢ Tk get(e) : s

Figure 1: The constructs of NRCA

it comes with an equational theory that gives us useful
optimizations [7, 34]. We will touch on these aspects of
the calculus in sections 3 and 5.

The constructs of NRC and their typing rules are
given in the top third of figure 1. Here, we briefly
review their meanings. The constructs for functions are
standard. For products, (e1,...,ex) and m; (e) are just
the obvious generalizations of pairing and projection
to k-tuples, where & > 2. When k = 2, we will
often write m; instead of m; 5. The meanings of the
set constructs are as follows: {} denotes the empty
set; {e} denotes the singleton set containing just e;
e1 U ey denotes the union of the sets e; and e3; and
U{e1] =z € ez} denotes the union of the sets obtained
by applying the function Az.e; to the elements of the
set ez (i.e., if e; denotes the set {o1,...,0,} and Az.e;
denotes the function f, then (J{e1| z € ez} denotes
the set f(o1) U...U f(o,)). We also use a construct
get: get(e) denotes the unique element of e if e is a
singleton and is undefined (produces the error value 1)
otherwise. The constructs for Booleans are standard.

231

Note that from an expressivity standpoint we need only
include equality (=) and linear order (<) over the base
types, because their liftings to all other complex object

types will be definable in N'RCA [21]. We shall denote
the linear order on objects of type t by <;.

The following are examples of N'RC expressions:

filter P X = | J{if P(z) then {z} else {} |z € X}

Mg X = Ui{min(@)} | = € X}

X x ¥ = HU{(e.9)} | o € X} |y € Y}

nest(X) = | J{{(mz, Iz (filter(Ay.my = mz)(X)))} | = € X}

The last function, nest, of type {s x t} — {s x {t}},
collects all second components of tuples with the same
first component into a set. As these examples illustrate,
the syntax of A'RC can grow a bit unwieldy. We will
come back to these examples in the next section after
introducing a friendlier comprehension syntax.

To NRC, we add constructs for natural numbers
and arrays. The natural number constructs (shown
in the middle of figure 1) include the constants, some

arithmetic operators (plus (+), monus (+), times (%),
integer division (/), mod (%)), a gen construct, and a
summation construct. The gen construct gives initial
segments of natural numbers: gen(e) = {0,...,e L 1}.
The summation construct is similar to the big union
construct: if e; denotes the set {o1,...,0,} and Az.e;
denotes the natural-valued function f, then > {ei1]| z €
ez} evaluates to f(o1) + ...+ f(on). We can use the
summation construct to express various aggregates:

count(X) =Y {1l |z € X}
Vee X(P)=>Y{if PthenQelse Ll |lz€ X} =0
min(X) = get(filter(Ay.Vz € X(y < 2))(X))

The remaining constructs at the bottom of figure 1
are for (multidimensional) arrays. Note that each rule
containing N* (where N¥ = N x .. x N, k times) really
stands for two rules: one for the one-dimensional case
and one for the multi-dimensional case. There are four
array constructs: [e | i1 < ey,...,1 < ex] for defining,
or tabulating, an array, ej[es] for subscripting into an
array, dimy(e) for extracting the dimensions of an array,
and indezg(e) for converting an indexed set into an
array. We postpone discussion of indez until later. For
the one-dimensional case, the meanings of the other
three constructs are as follows: [e; | 7 < ez] denotes
the (one-dimensional) array of length e; whose indices
range from 0 to e 1. 1 and whose values are given by the
function Ai.e; (that is, by applying this function to the
index value); dimi(e) denotes the length of the array e;
and ej[es] denotes the value of array e; at index eq, if
ez is within bounds (that is, if e; < dim1(e1)), and is
undefined otherwise. We will often write len for dim,
as in the following examples:

map f A=[f(A[7]) | i < len(A)]

sip(A, B) = [(Afi], Blil) | ¢ < min{len(A), len(B)}]
subseq(4,%,j) = [As+ k] | k< (7 +1) 1]

reverse A = [A[len(A4) ~1 1] | ¢ < len(A)]
evenpos A = [A[ix 2] | i < len(A4)/2]

The array constructs generalize to the k-dimensional
case (when k > 2) as follows: [e | 41 < e1,...,% < €]
denotes the k-dimensional array whose j** dimension
has length given by e; (i.e., whose j** index ranges from
0 to e; L 1) and whose values are given by the function
A(%1,...,%%).€; dimg(e) denotes a k-tuple (ng,...,ng)
giving the lengths of the &k dimensions of the array e;
and e;[es] denotes the value of the k-dimensional array
ey at the index given by the k-tuple e;. Henceforth, we
will write efe,...,ex] instead of e[(e1,...,ex)]. In the
following examples of matrix operations we have also
abbreviated m; ; o dimy to dim; g:

transpose M = [M[i,j] | j < dimz2(M),1 < dim2(M)]
projcol(M, j) = [M[i,j] | i < dimy,2(M)]
multiply (M, N) = if dimz2(M) # dimy,2(N) then L else
[> {M[i, 5]« N[j,k] | j € gen(dima(M))} |
i < dim12(M),j < dim22(N)]

232

We now make precise what we meant when we said
arrays are partial functions of “rectangular” domain.
Observe that the gen and dim constructs can be used
to define the domain (i.e., index set) of any array. In
particular, for a one-dimensional array e, dom(e)
gen(len(e)), and for a k-dimensional array (k > 2),
domy(e) = gen(dimige) x --- x gen(dimg ge). Thus,
arrays of type [t], can be thought of as partial functions
from N* to ¢t whose domains are (products of) initial
segments of N. In general, we consider a domain to
be “rectangular” if it is a product of initial segments
of linear orders. From the point of view of arrays
as partial functions, the array tabulation construct
[e | 31 < e1,...,% < ex] is analogous to a (bounded)
A-abstraction A(%1,...,%) € (gen(er) x --- x gen(eg)).e
and array subscripting is analogous to (partial) function
application. These observations suggest that partial
counterparts to the A-calculus 8 and 7 reduction rules
[2] might be applicable to arrays. We explore these and
other normalization rules for the calculus in section 5.

The only remaining construct other than indez is the
construct for errors. Recall that both e;[ez] and get(e)
can be undefined. Errors are introduced explicitly into
the language so that optimization rules for arrays and
get can express such partiality.

We now describe the indez construct. If we think of
arrays as functions, then a natural way to convert an
array into a set is to generate its graph by using the
function graph, of type [t], — {N* x t}:

graphy () = (_{{(i, e[d])}| i € doms(e)}

In general, the graph of a function is the set of ordered
pairs defining the function. The index construct is es-
sentially the inverse of graph: it takes a set of (key,value)
pairs where keys are of type N*, and it produces the
corresponding array. There are two problems: first, the
set may not be the graph of a function, i.e., it may
contain two different values for the same key; second,
the domain of the function defined by the set may not
be “rectangular”, i.e., it may have holes. We fix both
these problems by letting indez : {N* x t} — [{t}],
instead of indez : {N* x t} — [t],. Then we can
put {} in the holes, and if there is more than one
value for the same key, we just include all of them.
For example, indez({(1, “a”), (3, “b”), (1, “”)})
[{},{“a”,”c"},{}, {“b”}]. Here, we use [oo,...,0n_1]
as notation for the one-dimensional array of length n
whose value at index 7 is o;.

Another way of looking at index is that indezy(e) de-
notes the k-dimensional array whose j** dimension has
indices ranging from 0 to the maximum value of the j**
key in e and whose value at any k-ary index within these
ranges 1s a grouping of all values in e with keys equal to
this index. Because indez causes an implicit group-by,
it can be used to write more efficient code. Consider the

following two versions of histogram : [N] — [N]:

hist e = [> {if e[j] =i then 1 else 0 | j € dom(e)} |
i < max(rng(e))]

hist’ e = map(count)(indez(| J{{(e[s],7)} | 7 € dom(e)}))
where rng(e) = J{{e[i]} | + € dom(e)} and map and
count are as given above. The first version takes at
least O(n - m), where n is the length of e, and m is the
maximum value in e. Assuming the indexing of a set of
size n with maximum key value m takes O(m + nlogn)
(m to initialize the array with {}’s and nlogn to insert
the n values in the appropriate sets), the second version
takes O(m + nlogn). This is because the total number
of additions performed by map(count) is bounded by =,
the size of the original set.

3 The Array Query Language AQL

As we observed above, the syntax of NRCA is too low-
level. We now derive a higher-level query language,
AQL, based on our core calculus. As a first step
toward achieving a more convenient language, we add
comprehensions, pattern matching, and block structure
to our core calculus. Then, before going on to describe
our implementation of AQL, we consider two more
issues: how to express complex object values in our
language and whether we should add any derived
operators to our language as primitives.

Comprehensions. A set comprehension [6, 33] has
the form {e | GFy,...,GF,}, where each GF; is either
a generator \z <-e or a filter (i.e., Boolean-valued
expression) e. It can be read as “the set of all e such
that GFy,...,GF,”, where a generator \z <- e is read
“z comes from e”. For example,

{(:n,y) | \:L‘. <= Aa \y <= B}

define Ax B and AN B, respectively. Note the difference
in notation between the generator \z <- A and the
membership test # € B. Semantically, a generator
\z <- A binds z to successive members of A, whereas
z € B tests whether a particular value is a member of B.
The slash in \z is used to indicate that this is a binding
occurrence of z. Once a variable has been bound, it can
be used anywhere in the remaining generators/filters,
as well as in the head expression. Comprehensions
do not add extra expressive power since they can be
translated into AN"RC expressions, see the first table in
figure 2. Here, GF represents any (possibly empty) list
of generators and filters.

The question arises whether we should define some-
thing like comprehensions for arrays. On the one hand,
we don’t view arrays as collections, so we don’t expect
there to be a comprehension syntax for arrays compa-
rable to the one given for sets. On the other hand, the
domain of an array is a set, so we should be able to

{z |\z <- A, z € B}

233

| Comprehension | Calculus Expression |
{e1 | \z <- €2, GF} U{{e1 | GF} | z € ex}
{e1 | e2, GF} if es then {e; | GF} else {}
{el} {e}

A_.e
AP, ..

A\z.e
A\z.((AP]. ...((AP).€)(Tn,nz))
) (Tam)
U0 <)) \e <]
U{éf z = CX then e; else {} |
NewP <- es}

., Pl).e

Ufer | P! <-e2}
Ufer | P <- e}

Figure 2: Translations for comprehensions and patterns

define generators over arrays. We introduce the nota-
tion [\ : \z] <- A as syntactic sugar for the combined
generators \i <- dom(A),\z <- {A[é]}. For example,
{i | [\¢: \z] <- A,z > 90} picks out those positions
in A whose values exceed 90.

Pattern Matching. The slashed variables that
occur in comprehension generators are examples of
patterns, cf. [6]. In particular, \z is a pattern that
matches anything and binds it to z. The following is
an example of a more general use of patterns:

{(2,9:2) | (\e,\y) <= R, (y,\2) <= 5}

The pattern (\z, \y) matches successive tuples from R,
binding # and y to the first and second components,
respectively. The pattern (y,\z) then matches those
tuples from S whose first component is equal to the
value currently bound to y, and for each such tuple,
it binds z to the tuple’s second component. This
is just the natural join of R and S. As another
example, {z | (-, 0,\z) <- R} selects those tuples of
R whose second component is 0 and projects out
their third components. In general, patterns are given
by P i:= (P1,...,Px) | - | ¢ | z | \&, where (P1,..., Px)
matches any k-tuple whose it component matches P;,
_ matches anything, ¢ only matches the constant ¢, =
only matches the value currently bound to z, and \z
matches anything and binds it to .

We henceforth allow set generators to be of the form
P <- e and array generators to be of the form [P; :
P;] <-e. We also generalize lambda abstractions to
AP'.e, but lambda patterns P’ are only allowed to be
of the simpler form P’ ::= (Py,..., P.) | - | \z. Finally,
we introduce P == e as shorthand for P <- {e}.

To get a feeling for what comprehensions and patterns
have bought us, we give an implementation of nest that
is much simpler than the one shown in section 2:

nest = A\X.{(z,{y | (,\y) <- X}) | (\&,) <- X}

Clearly, patterns and comprehensions allow us to
express queries much more concisely. Yet they are

merely a syntactic convenience; like comprehensions,
patterns can be translated away, as shown in the second
table in figure 2, cf. [34]. Here, \z is a fresh variable,
CX is the constant or non-binding variable that occurs
leftmost in P, and NewP is P with this leftmost
occurrence of C X replaced by \z.

Blocks. Another syntactic convenience is the ability
to define local variables. We introduce let val P' =
e1 in ey end as syntactic sugar for (AP'.ex)(e1). It is
not difficult to see that we can translate a let block with
multiple declarations into nested let blocks, each with
a single declaration. So we allow the more general form
let val Pl —e; ... val P, — e, in e end.

Literals and a complex object exchange for-
mat. So far, we haven’t included any way to build
complex object data. We now define a grammar for
complex object values:

co u= true | false | n |
(co1,...,con) | {co1,...,con} |
[[nla <. .y g5 COQy - - -, co(nl-...-nk)—l]]

This grammar describes a data exchange format for
the values of our language. We will use this format
to input data and to output results. But are all
these values already definable in our language? Clearly
the base values and the tuple values are definable
by the corresponding literals. For sets, we can take
{co1,...,con} as syntactic sugar for {co1}U---U{con}.
What about arrays? First we define empty, singleton,
and append for arrays:

[]
[e]
AQB

i i<0]

fe | s < 1]

[if i< len(A) then Ali] elseB[i = len(A)] |
1 < len(A) + len(B)]

and observe that like the corresponding set operations,
these operations form a monoid, cf. [9]. Then we set
[[61, ceey en]] = [[61]]@ o @[[eﬂ]]

Note that with this definition, the literal [ey,...,ex]
is equivalent to a tabulation whose defining function
has a giant nested if statement (one level of nesting for
each element of the array), so tabulation takes O(n?)
time. For reasons of efficiency, we therefore add the
new [ni,...,nk;e€o,.- .,e(nl.___.nk)_l]] construct to the
language. Here, n4,...,n, are the k& dimensions, and
they are followed by n1 - ... - ng values in row-major
order. This construct is undefined if the number of value
expressions doesn’t match the product of the dimension
expressions.

Derived primitives. The astute reader may have
noticed that we could have omitted indez and the
arithmetic operators from our calculus because they
are already expressible. By treating these operators as
primitives, we opened up the possibility of computing
them more efficiently. The question arises whether any

234

further derived operators should be added as primitives.
There are generally three reasons for doing so. The
first reason is to make the primitive known to the
code generator so a more efficient query plan can be
generated. This is what we did with the arithmetic
operators. For reasons of efficiency, we also assume the
following derived operators to be primitive constructs
of our language: min, max, €.

A second reason is to make the primitive known
to the code optimizer so that rules specific to that
primitive can be applied. For example, we might
consider extending our calculus with a primitive for
transpose so that the rule transpose(fe | ¢ < e1,j <
ez)~ [e|j<ezi<er]can be applied. In section
5, we will show that we don’t need to add extra array
primitives, as most such rules are already encoded by
the rules for our minimal calculus.

A third reason for adding derived operators as
primitives is for the convenience of the programmer.
We henceforth assume the following frequently used
operators are available as macros: and, or, not,
forall_in, exists_in, dom, rng, dim; ;, subseq, zip, etc.

What if we have forgotten a useful macro or if we
later need a domain-specific primitive whose efficient
implementation cannot be expressed in AQL or whose
optimization rules cannot be derived in AQL? In the
next section, we describe an implementation of AQL
which emphasizes openness: macros, external primitives
and optimization rules can all be injected dynamically
into our language. We even allow new data readers and
writers to be added dynamically, so our language can
easily be adapted to specific application domains.

4 Implementation

We have developed a prototype system implementing
AQL using Standard ML (SML) [26]. Our system
provides two views of AQL. Within the SML read-
eval-print loop, a user can make calls to any of our
library routines. These routines provide support for
customizing the AQL top-level environment to specific
application domains. Within the AQL read-eval-print
loop, the user can enter AQL declarations and queries.
Because SML has an interactive compiler, the user
can go back and forth between these two views of the
system and, thus, customize the system dynamically.
We give an overview of the system’s architecture, and
then illustrate interaction with the two read-eval-print
loops via an extended example.

4.1 General Architecture

The general architecture of our system is shown in figure
3. It is based on the architecture of CPL/Kleisli, an
open query system implementing NRC, see [5, 34].
Our system is divided into four main subsystems: a
query module which manages query representation and

ML C/PRL Net Remote Servers
1/0 Module
Query Module Pipe SQL Driver
0 Query parser/ Parser/ _
pretty printer Pretty
o Typechecker printer
0 Optimizer
OQL Driver
Object Module
1/0 server
0 Object library
0 Query execu-
tion
o Object parser/
pretty printer NetCDF Utils
‘ Shared
Memory Local Disk
Environment _
Module SML/C -
Interface —_—
Utils .
o Top-level HDF Utils
control
o Declarations
o Customization
facilities

Figure 3: The AQL System Architecture

compilation, an object module which supports query
evaluation via a complex object library, an I/O module
which provides access to local and remote data, and an
environment module which facilitates customization of
the system to specific application domains.

Query Processing. When a query is executed, it
produces a complex object value as its result. The
compilation of queries and their evaluation into complex
objects is handled by the query and object modules.
The details of this process are as follows. An AQL query
is first parsed into an internal representation of the
surface syntax. After undergoing some simple syntactic
checks, the query is translated into a second internal
representation, which is just abstract syntax for our
core calculus. The translation consists of eliminating
comprehensions, patterns, blocks and other syntactic
sugar. The core calculus query is now sent through
a typechecker. Next, in preparation for optimization,
any macros defined in the top-level environment are
substituted in. The query is now optimized and the
resulting query is evaluated into a complex object value.

Query evaluation proceeds by translating core calcu-
lus constructs into calls to routines in a complex object
library. The routines act on an abstract representation
of complex object values that resembles our definitions
for literals (see section 3). Once a result has been com-
puted, this abstract representation of complex objects
is translated to the surface syntax for complex objects
via a pretty printer.

Openness and the Top-Level Environment.
Our system has an open architecture: new external

235

functions, data readers/writers, and optimization rules
can all be added dynamically to the AQL top-level
environment by calling appropriate registration routines
provided in the environment module. Once registered,
external functions and readers/writers are immediately
available as new primitives within the AQL top-
level read-eval-print loop, and rules/cost functions are
immediately available to the optimizer. In addition,
there are two types of top-level declarations available
to the user in the AQL read-eval-print loop: macro
declarations, which keep track of queries and can be
used to define new primitives, and val declarations,
which keep track of complex object values and can be
used to define literals.

I/O0 and the NetCDF Interface. There are
also two top-level commands to handle data I/O. The
command readval \V using READER at E inputs a
complex object value into the variable V by using the
reader previously registered as READER applied to the
arguments given by the expression E. There is a similar
command writeval E using WRITER at E for output.

By providing a standard data exchange format for
complex objects (see section 3), we help make the
system open. Any driver which produces a stream of
bytes in this format can quickly be plugged into our
system by registering it as a new reader. The readval
command calls the driver registered as READER with
the parameters given by E and then parses the data
deposited on the input stream into a complex object.
We have implemented a driver for NetCDF. We used
this driver to register a series of readers for inputting
arrays of various dimensions. For example, the reader
NETCDF3 can be used to input 3-dimensional arrays. It
takes a file name, a variable name, a triple giving a
lower bound index, and a triple giving an upper bound
index as inputs, and it returns the subslab of the given
variable bounded by the given indices. An example of
the use of this reader is given below.

Any driver that deposits its data on the input stream
using our data exchange format for complex objects
can appear as a reader to the AQL input server. In
particular, drivers that communicate with remote data
servers via open sockets can be registered as readers. A
driver for Sybase which was registered as a Kleisli reader
was described in [5]. We plan to add a similar driver to
our system for a fragment of SQL. We also plan to add a
driver which translates the nested relations plus arrays
fragment of OQL into our exchange format.

Since NetCDF files are stored locally, it is possible
to avoid serializing their data into a byte stream. We
are investigating the possibility of adding another driver
which deposits its data directly into AQL complex
objects via shared memory between the NetCDF access
library routines and the AQL I/0 server.

4.2 Using AQL: an example

The following sample session illustrates some of the
features of AQL by showing how we can answer the
query: What days last June was it hotter than 85°
after sunset in NYC? We assume we have access to
a NetCDF file temp.nc containing a year’s worth of
hourly temperature readings varying over time, latitude,
and longitude. To answer this query, we choose to
use an external function sunset which computes the
time of sunset for a given longitude and latitude on a
given day. So at the SML top-level, we first provide
the definition of this function and then register it
as an AQL primitive june sunset, since we’re only
interested in days in June. The code for the function
sunset(long,lat,month,day,year) of type real *
real * int * int * int -> int is omitted.

let val COjunesunset = fn CO =>
let val (latC0,lonC0,dayC0) = CO_Tuple.extract3 CO
in CO_Nat.mK(
sunset (CO_Real .Km(latC0),C0_Real.Km(lonCO),
6,C0_Tat.Km(dayC0),95))
end
in TopEnv.RegisterCO(‘‘june_sunset’’,
C0.Funct(COjunesunset),
Type.Arrow(
Type.Tuple(3, [Type.Real,Type.Real,Type.Natl),
Type.Nat))

end;

Here we have used our system’s complex object
interface to translate the SML function sunset into
a complex object function COjunesunset. The call to
RegisterCO makes this complex object function known
to AQL as the primitive june _sunset. We now enter
the AQL top-level read-eval-print loop and define a
macro which we will use to index into the NetCDF file.

- AQLO);
val \months = [[0,31,28,31,30,31,30,31,31,30,31,30]];

typ months : [[int]]_1

val months = [[(0):0, (1):31, (2):28, ...]]

macro \days_since_1_1 = fn (\m,\d,\y) =>
d + summap(fn \i => months[i])!(gen'm) +
if m>2 and y%4=0 then 1 else 0;

typ days_since_1_1 : nat * nat * nat -> nat

val days_since_1_1 = days_since_1_1 registered as macro.

This macro takes an input date and computes the
number of days since the beginning of the year. The
AQL notation fn P => e defines lambda abstraction,
! is the AQL notation for function application, and
summap (f) !e is the AQL notation for Y {f(z)|z € e}.
We next read the June data from the NetCDF file, using
the macro we just defined to compute the index range
for time. We assume the latitude and longitude indices
are provided by two other index computing macros
previously defined for this NetCDF file. We also assume

236

that NYlat and Nylon of type real giving the latitude
and longitude for New York are available.

readval \T using NETCDF3 at
("temp.nc", "temp",
(days_since_1_1!(6,1,95)#%24,
lat_index!(llYlat),lon_index!(NYlon)),
(days_since_1_1'(6,30,95) %24,
lat_index! (IYlat) ,lon_index!(NYlon)));

typ T : [[realll_3

val T = [[(0,0,0):67.3, (1,0,0):67.3, (2,0,0):67.2, ...1]

T now contains hourly data for June at the given
latitude and longitude. We finally execute our query,
using the newly registered june_sunset primitive:

{a | [(\h,_,_):\t] <- T, \d==h/24+1,
h > june_sunset!(NYlat,NYlon,d), t > 85.0%};

typ it : {nat}
val it = {25,27,28%}

That is, there were three days in June when the
temperature went over 85 after sunset.

5 Optimizations

The AQL optimizer proceeds in a number of phases.
The rule bases, the rule application strategies, and the
number of phases of this optimizer are extensible.

We will discuss only the normalization phase of the
optimizer. The rules for sets, tuples, and conditionals
come from the equational theory of N'RC, described in
[7, 34]. They include rules for vertical and horizontal
fusion of set loops, filter promotion, and column
reduction [5]. The rules for summation and arithmetic
come from an extension of N'RC to arithmetic given in
[18]. Here, we describe the new rules for arrays.

Since the syntax for arrays was inspired by viewing
them as functions, it is not surprising that the rules for
arrays are also based on this view of arrays as (partial)
functions. There are three rules for arrays:

BP) leili<ez]les]~

if e3 < ep then e;{i:=e3} else L
(n?) [Le[i] |i<len(e)]~e
(87) len([e1|i<ex])~ ez

The first two are partial versions of the lambda calculus
B and 7 transition rules, cf. [2]. The third rule
corresponds to partial function domain extraction. In
the context of arrays, the first rule can be interpreted as
saying that to compute the value of the array tabulated
by [e1 | ¢ < ez] at index es, it suffices to compute just
the esth value of the array, after checking that ez would
have been within bounds. This rule saves both time
and space by avoiding tabulation (i.e., materialization)
of the intermediary array. The second rule can be
interpreted as saying that the array tabulated from

another array e by using all its values in order is just
the array e. Once again this rule saves time and space
by avoiding retabulation of the array. The third rule
says that to get the length of the array tabulated by
[e1 |t < ez], youdon’t need to tabulate this array,
you only need to compute e;. This rule is sound only
if e is error-free. The three rules for arrays generalize
straightforwardly to the k-dimensional case.

These rules seem quite obvious and simple, but are
they enough for optimizing arrays? Recall that in
section 3, we claimed that it was not necessary to add
a primitive for transpose in order to capture the rule:

transpose(fe | i<m,j<n])~[e|j<ni<m]

Assuming the definition of transpose we gave in section
2, we now show that this rule is derivable (up to
redundant constraint checks), using the rules we have
given so far. In addition to the rules for arrays, our
derivation uses two rules we inherit from N'RC: 3 for
functions ((Az.e1)(e2) ~ e1{z:=e2}) and 7 for products
(mi(z1, 22) ~ i, = 1,2). We also abbreviate Je | 1 <
m,j<mn]asfe| ...]. Then

transpose(fe | i< m,j <n])

(AAJA[Y, 5] | 7 < ma(dimaA), 7 < mi(dimaA)])

(leli<m,j<n])
L e | . J0#,4 | 5 < ma(dimale | i < m,j < n]),
7 < m(dimafle | 1 <m,j < n])]

P
~* e | .. Q#7717 < ma(m,n), i < mi(m,n)]
™
~* [le|i<m,j<n]l,j']]i <nd <m]

£ [if (¢ < m) then if (j' < n) then
e{i:=d,j:=7} else Lelse L |7 <n,i’ <m]

Observe that in the last expression, both if condi-
tions must necessarily hold because they are only eval-
uated if ¢ and j' are within bounds, i.e., if (j/ < n)
and (' < m). So these constraint checks are redun-
dant. If we could get rid of these redundant con-
straint checks, then we would end up with the ex-
pression [eq{s 7,7 7'V 7 < nt < om]
which is just the right-hand-side of the transpose rule
given above (up to variable renaming). Similar reason-
ing shows that both zip(subseq(A4,1, j), subseq(B,1,J))
and subseq(zip(A, B), 4, J) are transformed to the same
query (up to extra constraint checks and variable re-
naming), thus justifying our claim from the introduction
that the order of these operations is irrelevant.

In general, the constraint checks introduced by the
BP rule will be redundant as long as no bounds errors
were present in the original code. The question arises
whether all redundant constraint checks can be removed
by further optimization rules. The answer is no, since

Proposition 5.1 Bound checking is undecidable for

NRCA expressions. O

237

However, many redundant checks can be eliminated
by applying the following rules together with standard
rules for conditionals [34]:

[[((1,] <e]-)...) |i1 < €1y...,0k <ek]]’\’>
[(...true...) | 41 <e1,...,0% < €x]

H(...i<e...) | 1€ gen(e)} ~
U{(.. . true...) | € gen(e)}

if e then (...e...) else & ~

if e then (...true...) else €
if e then e'else (...e...) ~

if e then e else (... false...)

Note that these rules need some extra conditions guar-
anteeing free variables in i; < e; or e are not captured
in(...(4 <ej)...)or(...e...).

We have implemented normalization and constraint
elimination as the first two phases of our optimizer.
Later phases include I/O optimizations and code mo-
tion.

6 Expressive power

So far we have presented the array query language
AQL based on the calculus NRCA that combines
complex objects and multidimensional arrays. A
natural question to ask is the following. How much
expressiveness do we gain by adding arrays to the
complex object language?

We give a precise answer to this question by showing
that adding arrays amounts to adding the following to
a pure relational query language (NRC):

1. A general operator for producing aggregate functions.
2. A generator for initial intervals of natural numbers.

While this gives us a precise answer to the question
above, such a characterization of the expressive power
is not very intuitive. In particular, it does not
connect very well with arrays. So we shall provide an
alternative characterization, showing that adding arrays
to a complex object language amounts to adding ranks
uniformly across sets and bags.

We need some terminology. A language NRC388
is defined to be the fragment of NRCA that contains
NRC, the arithmetic operations +, -, *, and the sum-
mation operator Y . As explained before, the arithmetic
plus the summation operator allow us to express aggre-
gates such as total and count. Using nesting, we can
express groupby, which is another means of aggregation
in SQL. This language can be viewed as a “theoret-
ical reconstruction” of SQL. Indeed, it has both fea-
tures that distinguish all implementations of SQL from
purely relational languages, that is, groupby and aggre-
gate functions. In fact, N'RC*88" was used in [20] to
study limitations of expressive power of SQL.

Our first result characterizes the expressive power

of NRCA as that of NRC88 (gen) (we list extra
primitives in parentheses). We also look at the class
of queries from flat relations (sets of tuples that do
not involve sets) to flat relations expressible in that
language.

Theorem 6.1 The languages NRCA
NRC*88(gen) have the same expressive power. More-
over, NRC?®® (gen) is a conservative eztension of its
flat fragment: any N'RC388(gen)-query from flat rela-
tions to flat relations can be expressed using relational
calculus, arithmetic operations, summation and gen. O

and

Since the languages NRCA and N'RC*88"(gen) have
different type systems, the above equivalence is modulo
some translation between the type systems. For the
nontrivial inclusion NRCA C NRC*88(gen) it must
translate away the arrays and errors. Here we just hint
at how this translation works by showing a translation of
NRCA objects into N'RC?88" objects. For simplicity, we
deal with pairs and not tuples and only one-dimensional
arrays. FEach object is translated into a pair. The
translation for the first component is as follows:

z° = {z}, for z of base type, (z,y)° = {(2°,%°)}
{z1,.. 20} ={2},...,20}, L°={}
[[60, ceey en_l]]o = {((60)0, O)a B ((en—l)oa n 1 1)}

The second component of the translation is used as
a flag for errors. To prove the equivalence modulo
these translations, we use the algebras of functions that
correspond to our calculi. They are derived in the same
manner as relational algebra is derived from relational
calculus. The algebra of functions corresponding to
NRC*88" was given in [19]. For N'RCA we derive a
similar algebra by adding a number of functions to
handle the array operations. For example, there is a
function mk_arr(f) : N — [t], provided f is of type N —
t. Applied to a number n it yields [f(2) | ¢ < n]. Using
these algebras, we show that they can be translated
into each other, and are thus equivalent modulo the
translation above.

To give a more intuitive characterization of the
expressive power of NRCA, we follow the idea of [4],
and replace the construct (J{e1 | z € ez} with

?,x:541:NlFe :{t} ?hFex:{s}
?E U {er | zi € ex}: {t}

that has the following semantics. Assume that e; is a set
{z1,...,2,} such that 1 <, ... <; zp (recall that <,
is a linear ordering on objects of type s), and that f is
the function A(z,).e3. Then | J {e1 | z; € ez} evaluates
to f(z1,1)U...U f(zn,n). For example, rank(X)
U, {{(=,%)} | i € X} assigns ranks to the elements of
aset: if X = {&4,...,2,} with 21 <, ... <; zq, then
rank(X) evaluates to {(z1,1), ..., (2n,n)}. Note that in
the expression | J {e1 | z; € e2}, both the rank 4 and the
variable # are bound.

238

We denote the language obtained by adding the type
of natural numbers, gen and the J {e1 | z; € ez}
construct to NRC by NRC;.

Next, we define an analog of N'RC; for bag-based
complex objects. First, we need an analog of the nested
relational calculus N'RC for bags, called NBC. In the
type system, the set type is replaced by the bag type.
We use {| [} as bag brackets. The union operation is W (it
adds up multiplicities). The | J{e1 | z € ez} construct is
replaced by H{le1 | z € ez[}. The semantics is the same
as before except that the operation W is used instead
of U. The language N'BC and its extensions have been
studied extensively in the past few years, see [13, 19, 20].

We define the “ranked” analog of the |4 operation,
W, {ez | =i € eif}, in exactly the same way as the
corresponding operation for sets, except that equal
values are assigned consecutive integers. Now we let
NBC, stand for N'BC augmented with ¢ {e2 | z; € e1]}
We do not add the type of natural numbers explicitly
because the number n can be simulated as a bag of n
identical elements.

Theorem 6.2 The languages N'RC, and N'BC, have
the same expressive power as NRCA. a

This result justifies our claim that the gain in
expressiveness obtained by adding arrays to a complex
object language is precisely characterized as adding
ranking in an explicit manner. Furthermore, this holds
for set- and bag-based complex objects.

7 Conclusions and future work

Multidimensional arrays are needed for natural repre-
sentations of many scientific data types. However, mul-
tidimensional arrays are not well supported by com-
mercial database systems or by theoretical database re-
search. As a result, multidimensional scientific data is
usually kept in flat files conforming to various data ex-
change formats such as NetCDF and is queried via a
collection of specialized library routines tied into some
general purpose programming languages.

In this paper, we aim to provide a database tech-
nology for flexibly querying and transforming multidi-
mensional arrays. We have developed a high-level com-
prehension style query language, AQL, for multidimen-
sional arrays. We have also implemented a data driver
to mediate between our query language and the popular
NetCDF data exchange format for scientific data. Thus
our query language can be used to directly manipulate
a large amount of “legacy” scientific data.

From the equational laws of AQL, we have derived
useful rules and implemented them in an optimizer.
Finally, we have investigated the expressive power of our
query language for arrays. In particular, we have shown
that its expressiveness corresponds to adding ranking
explicitly in a query language for complex objects. Our

array query language can also easily simulate all ODMG
array primitives.

Some problems still remain. We list two of them
below. Firstly, as mentioned earlier, we currently
use stream-based I/O for external arrays. We would
like to investigate techniques for providing more direct
access to these arrays, perhaps through the use of good
predictive caching.

Secondly, AQL currently supports initial segments
of natural numbers as array indices. We would like
to investigate techniques for providing more meaningful
data types such as longitudes and latitudes as indices
for scientific arrays. Eventually, we would like to allow
arbitrary linearly-ordered types to be used as indices.

Acknowledgements: We thank Peter Buneman for
inspiring this work, Tim Griffin, Val Tannen and the
anonymous reviewers for comments and suggestions,
and Lal George for being very helpful during the
implementation stage. R. Machlin was supported in
part by ARO AASERT DAAH04-93-G0129 and ARPA
N00014-94-1-1086.

References
[1] Arvind, R.S. Nikhil, and K.K. Pingali.

Data structures for parallel computing.
Trans. Progr. Lang. Syst. 11 (1989), 598-632.

H. Barendregt. Lambda Calculus:
Semantics. North Holland, 1984.

C. Beeri and D.K.C. Chan. Bounded arrays: a bulk
type perspective. Hebrew Univ. Technical Report, 1995.

I-structures:

ACM

Its Syntaz and

P. Buneman. The fast Fourier transform as a database
query. Technical Report MS-CIS-93-37/L&C 60, Uni-
versity of Pennsylvania, March 1993.

P. Buneman, S. Davidson, K. Hart, C. Overton,
L. Wong. A data transformation system for biological
data sources. In VLDB’95, pages 158-169.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and
L. Wong. Comprehension syntax. SIGMOD Record,
23(1):87-96, March 1994.

P. Buneman, S. Naqvi, V. Tannen and L. Wong.
Principles of programming with complex objects and
collection types. Theor. Comp. Sci., 149 (1995), 3-48.

R.G.G. Cattell, ed. The Object Database Standard:
ODMG-93. Morgan-Kaufmann, 1994.

L. Fegaras and D. Maier. Towards an effective calculus
for object query languages. In SIGMOD’95, pages 47—
58.

[10] J. Feo. Arrays in Sisal. In Proc. Workshop on Arrays,
Functional Languages and Parallel Systems, L. Mullin

et al. eds., Kluwer Academic Publishers, 1990.

S. Greco, P. Palopoli and E. Spadafora. Datalog:
Array manipulations in a deductive database language.
In Proc. 4th Conf. on Database Systems for Advanced
Applications, pages 180-188, 1995.

[11]

239

[12]
[13]

[14]

[15]

[19]

[20]

(21]

(22]

(23]

[31]

[32]

[33]

[34]

D. Gries. The Science of Programming. Springer-

Verlag, 1981.

S. Grumbach and T. Milo. Towards tractable algebras
for bags. In PODS’93, pages 49-58.

P. Hammarlund and B. Lisper. On the relation between
functional and data parallel programming languages. In
FPCA’93, pages 210-219.

P. Hudak, S.L. Peyton Jones and P. Wadler. Report
on the Programming Language Haskell. SIGPLAN
Notices, March 1992.

K. E. Iverson. A Programming Language. Wiley, 1962.

T. W. Leung, B. Subramaniam, S. Vandenberg and
S. B. Zdonik. Ordered types in the AQUA data model.
In DBPL’93, pages 115-135.

L. Libkin and L. Wong. Aggregate functions, conserva-
tive extensions, and linear orders. In DBPL’93, pages
282-294.

L. Libkin and L. Wong. Some properties of query
languages for bags. In DBPL’93, pages 97-114.

L. Libkin and L. Wong. New techniques for studying
set languages, bag languages and aggregate functions.
In PODS’94, pages 155-166.

L. Libkin and L. Wong. Conservativity of nested rela-
tional calculi with internal generic functions. Informa-
tion Processing Letters, 49(6):273—-280, March 1994.

D. Maier and B. Vance. A call to order. In PODS’93,
pages 1-16.

D. Maier and D. Hansen. Bambi meets Godzilla:
Object databases for scientific computing. In Proc.
Tth Working Conference on Scientific and Statistical
Database Management, 1994, pages 176-184.

G. Mecca and A. Bonner. Sequences, datalog and
transducers. In PODS’95, pages 23-35.

G. Mecca and A. Bonner. Finite query languages for
sequence databases. In DBPL’95, to appear.

R. Milner, M. Tofte, R. Harper. “The Definition of
Standard ML”. The MIT Press, Cambridge, Mass, 1990.
T. More. Axioms and theorems for a theory of arrays.
IBM J. Res. and Development 17 (1973), 135-175.

R. Rew, G. Davis and S. Emmerson. NetCDF User’s
Guide, Unidata Program Center, 1993.

P. Seshadri, M. Livny and R.Ramakrishnan. Sequence
query processing. In SIGMOD’94, pages 430-441.

P. Seshadri, M. Livny and R.Ramakrishnan. S$£Q: a
model for sequence databases. In ICDE’95, pages 232—
239.

S. Vandenberg. Algebras for Object-Oriented Query
Languages. PhD thesis, Univ. of Wisconsin, 1993.

S. Vandenberg and D. DeWitt. Algebraic support for
complex objects with arrays, identity and inheritance.
In SIGMOD’91, pages 158-167.

P. Wadler. Comprehending monads. Mathematical
Structures in Computer Science 2 (1992), 461-493.

L. Wong. Querying Nested Collections. PhD thesis,
Univ. of Pennsylvania, August 1994.

