
Algorithms for Deferred View MaintenanceLatha S. ColbyBell Laboratoriescolby@bell-labs.com Timothy Gri�nBell Laboratoriesgri�n@bell-labs.com Leonid LibkinBell Laboratorieslibkin@bell-labs.comInderpal Singh MumickBell Laboratoriesmumick@bell-labs.com Howard TrickeyBell Laboratorieshoward@bell-labs.comAbstractMaterialized views and view maintenance are important fordata warehouses, retailing, banking, and billing applications.We consider two related view maintenance problems: 1) howto maintain views after the base tables have already beenmodi�ed, and 2) how to minimize the time for which theview is inaccessible during maintenance.Typically, a view is maintained immediately, as a part ofthe transaction that updates the base tables. Immediatemaintenance imposes a signi�cant overhead on updatetransactions that cannot be tolerated in many applications.In contrast, deferred maintenance allows a view to becomeinconsistent with its de�nition. A refresh operation is usedto reestablish consistency. We present new algorithms toincrementally refresh a view during deferred maintenance.Our algorithms avoid a state bug that has arti�cially limitedtechniques previously used for deferred maintenance.Incremental deferred view maintenance requires auxiliarytables that contain information recorded since the last viewrefresh. We present three scenarios for the use of auxiliarytables and show how these impact per-transaction overheadand view refresh time. Each scenario is described by aninvariant that is required to hold in all database states. Wethen show that, with the proper choice of auxiliary tables, itis possible to lower both per-transaction overhead and viewrefresh time.1 IntroductionInterest in materialized views has increased in recentyears [GM96], primarily due to the expanding rangeof their applications [GM95]. Most of the researchon materialized views has focussed on techniques forincrementally updating materialized views when thebase tables used to derive the views are updated[BLT86, CW91, GL95, GMS93, Han87, QW91, RK86,SI84, SP89].

Maintenance of a view may involve several steps,one of which brings the view table up-to-date. Wecall this step refresh. There may be other stepsinvolved in the process of maintaining a view. Forexample, it may be necessary to maintain auxiliarytables that store the history of updates to the basetables. View maintenance techniques depend on whenthe view is refreshed. A view can be refreshedwithin the transaction that updates the base tables,or the refresh can be delayed. The former case isreferred to as immediate view maintenance, while thelatter is called deferred view maintenance. Deferredmaintenance may be done periodically or on-demandwhen certain conditions arise. In the past, the termdeferred maintenance has sometimes been used for on-demand maintenance.Most of the work on view maintenance has involvedthe immediate case [BLT86, CW91, GL95, QW91]. Theimmediate maintenance approach has the disadvantagethat each update transaction incurs the overhead ofupdating the view. The overhead increases with thenumber of views and their complexity.In some applications, immediate view maintenanceis simply not possible. For example, in a datawarehousing system, if a component database does notknow what views exist at the warehouse, it cannotmodify transactions updating base tables so that theyalso refresh materialized views. Even in a centralizedsystem where all the views are known, it may benecessary to minimize the per-transaction overheadimposed by view maintenance. In such cases, deferredmaintenance is most appropriate.Other applications may have a certain tolerance forout-of-date data, or even require that the view be frozenfor analysis and other functions [AL80]. In this case,the view could be refreshed periodically or just beforequerying. Deferred maintenance also allows severalupdates to be batched together.This paper contributes to the work on deferred viewmaintenance by presenting solutions to the followingproblems.469

Minimize View Downtime By downtime we meanthe execution time required by the transaction thatrefreshes the view table. While the view is beingrefreshed, an exclusive write lock is typically held overthe view, and all queries and scans against the view aredisallowed. Therefore, we would like to do maintenancein a manner that minimizes the time for which accessto the view is blocked (during refresh), and at the sametime minimizes the overhead on update transactions.Avoid the State Bug Incremental view maintenanceis typically based on \incremental queries" that avoidthe need to recompute a materialized view from scratch.These queries use the updates made to base tablesto compute changes that can be directly applied to amaterialized view table to bring it up-to-date. Suchqueries can be evaluated in one of two states: thepre-update state where the base-table changes havenot yet been applied, or the post-update state wherethe base-table changes have been applied. Most ofthe algorithms for view maintenance assume that theincremental queries are evaluated in the pre-updatestate. In the deferred case, since the base tables havealready been modi�ed, the pre-update algorithms arenot directly applicable. In fact, direct application ofpre-update algorithms in the post-update state canresult in incorrect answers, a fact we call the state bug.The state bug can be avoided by severely restrictingthe class of updates and views considered. However,such restrictions limit the scope of deferred maintenancetechniques. What is required is a general post-updatealgorithm that avoids the state bug and allows a largeclass of updates and views.In the rest of the introduction, we elaborate on theabove points and outline the contributions of the paper.1.1 Minimizing view downtimeConsider the following example, patterned after a realapplication at a large retailing company.Example 1.1 Point-of-sale information is collected ina sales table, and a customer table is used to keeprecords pertaining to customers. The sales table canbe very large and can contain duplicates.sales(custId, itemNo, quantity, salesPrice)customer(custId, name, address, score)CREATE VIEW V (custId, name, score, itemNo, quantity) ASSELECT c.custId, c.name, c.score, s.itemNo,s.quantityFROM customer c, sales sWHERE c.custId = s.custId ANDs.quantity ! = 0 ANDc.score = \High" .

Suppose that insertions into the sales table are madecontinuously. The view V , de�ned above, uses a join ofthese tables to compute sales made to highly valuedcustomers. (In practice, views with aggregation aremore likely. For simplicity, we omit aggregation since itis orthogonal to the problems that we discuss.) Supposefurther that this view is materialized in a table MV ,and that it is refreshed once every 24 hours. Betweenrefreshes, the table MV is used by decision supportapplications for market analysis. If we assume thatthe entire view is write-locked during refresh, then itis important to minimize this view downtime. 2Contribution 1: We de�ne consistency for databasesthat support deferred view maintenance in terms of in-variants that describe relationships between base tables,materialized views, and auxiliary tables. Solutions tothe deferred view maintenance problem are algorithmsfor extending user transactions with auxiliary opera-tions needed to maintain the view invariants, and addi-tional operations for refreshing materialized view tables.We present three such invariants together with associ-ated algorithms for deferred view maintenance. Eachsolution can accommodate various update policies, andwe present policies that di�er in their impact on refreshtimes and update transaction overhead. One of thesepolicies provides for minimal view downtime while alsominimizing the overhead on update transactions.1.2 Avoiding the state bugWe illustrate the state bug by applying the algorithmof [BLT86] in both pre- and post-update states.Example 1.2 Let us suppose that we have a view Ude�ned as follows and materialized in table MU (weassume SQL duplicate semantics).CREATE VIEW U (A) ASSELECT R.AFROM R, SWHERE R.B = S.B .Suppose that the contents of R, S and MU are asshown below.R: A Ba1 b1 S: B Cb1 c1b1 c2b2 c1 MU : Aa1a1Suppose that R and S are to be updated by insertingthe tuple [a1; b2] in R and the tuple [b2; c2] in S. We canuse the algorithm of [BLT86, Han87] for calculating theincremental update toMU . The algorithmof [BLT86] isa pre-update algorithm that is based on the availabilityof the base tables before the update. The changes to theview are computed with the incremental query MMU ,470

given below (the symbols MR and MS denote bags oftuples inserted into tables R and S):�R:A(R ./ (MS))[�R:A((MR) ./ S)[�R:A((MR) ./ (MS))To be consistent with SQL semantics, we assume thatall operators have multiset (bag) semantics. Usingthis equation, the incremental insert to MU can becalculated correctly as f[a1]; [a1]g. Now suppose thatthe same equation is evaluated in a post-update state,i.e., after the tuples [a1; b2] and [b2; c2] have beeninserted in R and S. Then MMU would incorrectlyevaluate to f[a1]; [a1]; [a1]; [a1]g. 2Example 1.3 We present another example that showshow the state bug can lead to wrong answers otherthan incorrect multiplicities. Consider a view U de�nedas R � S. Let R = f[a]; [b]; [c]g and S = f[c]; [d]g.In the current state, U is materialized in a tableMU that contains tuples [a] and [b]. Let t be atransaction that deletes the tuple [b] from R and insertsit into S. Then the algorithms of [QW91, GL95] thatextend [BLT86, Han87] to the full relational and bagalgebra calculate the delete bag for the view using thefollowing equation (the symbols OR, and OMU denotebags of tuples deleted from tables R and MU):OMU = (OR�S)[(MS\R) = (f[b]g�S)[(f[b]g\R):Note that it is irrelevant which semantics (set or bag)we use as no duplicates are present in any of the tablesbefore or after the transaction. If OMU is evaluated inthe pre-update state, the result is f[b]g and then MUbecomes f[a]g (which is correct). However, the sameexpression for OMU evaluated in the post-update state,after transaction t is applied, yields OMU = fg, whichmeans that MU is not updated and keeps the incorrecttuple [b]! 2In the past, the same algorithm has been used in bothpre-update and post-update states. However, the statebug has been avoided either by assuming availability ofpre-update base tables in the post-update state, or byconsidering only restricted classes of views and updates.The �rst approach is illustrated in [Han87], wheredi�erential tables are maintained on base tables thatcontain the suspended updates that have not actuallybeen applied to the database state. One problem withthis approach is that it slows down the evaluation of allqueries over base tables.As an example of the second approach, [ZG+95] in-vestigates view maintenance in a warehousing envi-ronment. Their algorithms comprise a standard viewmaintenance part and a compensating part. The viewmaintenance part is based on the pre-update algorithmof [BLT86, Han87], but is applied in the post-updatestate. The state bug is not encountered since their so-lution imposes restrictions that require (1) updates to

change only one table, and (2) view de�nitions to beSPJ queries without self-joins. Their algorithms wouldyield incorrect results if these restrictions were relaxed.Other papers dealing with deferred main-tenance [KR87, LH+86, SP89] have considered evensmaller (select-project) classes of views. Select-projectviews are self-maintainable [GJM96] in the sense thatsuch views can be maintained without looking at basetables. Consequently, the issue of pre-update state vs.post-update state of base tables is irrelevant for main-taining select-project views.Contribution 2: Our second contribution is to derivealgorithms for view maintenance in the post-updatestate that avoid the state bug. These algorithms workfor the full multiset algebra and permit insertions anddeletions to any number of tables.Paper Outline: After introducing the notation andbasic concepts in Section 2, we present, in Section 3, aframework that casts the problem of view maintenanceas that of maintaining database invariants. Fourdi�erent scenarios are discussed { one for the immediateupdate of materialized views and three variations ondeferred maintenance. In Section 4, we exploit aduality between pre-and post-update states to arriveat incremental algorithms that avoid the state bug andwork for a large class of updates and views. Section 5presents algorithms for solving the three scenariosof deferred view maintenance described in Section 3.We present refresh policies that use these algorithmsand solve the problem of minimizing view downtime.Related work is discussed in Section 6. All proofs canbe found in the full paper [CG+96].2 Preliminaries2.1 The bag algebra, BAA bag (or multiset) X is like a set, except that multipleoccurrences of elements are allowed. An element x issaid to have multiplicity n in the bag X if X containsexactly n copies of x. The notation x 2 X means thatx has multiplicity n > 0 in X, and x 62 X means that xhas multiplicity 0 in X.A database schema is a collection of base table namesfR1; : : : ; Rng. A database state is a mapping from tablenames fR1; : : : ; Rng to �nite bags of tuples. We writeRi(s) to denote the value of table Ri in the state s.Our query language will be the bag algebra of [GM93,LW93], restricted to
at bags (bags of tuples, i.e., nobag-valued attributes). Let p range over quanti�er-freepredicates, andA range over sets of attribute names. BA471

expressions are generated by the following grammar.Q ::= � empty bagj fxg singleton bagj R table namej �p(Q) selectionj �A(Q) projectionj �(Q) duplicate eliminationj Q1]Q2 additive unionj Q1 : Q2 monusj Q1 � Q2 cartesian productWe will use the symbols Q, Q1, Q2, E, and F to denoteBA expressions, which will usually be called queries. If sis a database state and Q is a query, then Q(s) denotesthe multiset resulting from evaluating Q in the state s.The only operation that may require explanation ismonus. If x occurs n times in Q1 and m times inQ2, then the number of occurrences of x in Q1 : Q2is the maximum of 0 and n � m. The SQL EXCEPToperator is di�erent from monus in that Q1 EXCEPT Q2eliminates all tuples that occur in Q2, no matter whattheir multiplicity. The EXCEPT operation can be de�nedin our bag language asQ1 EXCEPT Q2 def= �1(�1=2(Q1 � (�(Q1) : Q2))):We include monus in the algebra because it cannotbe de�ned using EXCEPT and the rest of BA. Thisfollows from the characterization of interde�nability ofthe operations of BA in [GM93, LW93].We will also use the operations Q1minQ2 (minimalintersection) and Q1maxQ2 (maximal union) thatcreate bags in which the multiplicity of any tuple isthe minimum (maximum) of its multiplicities in Q1 andQ2. These can be de�ned in BA as Q1minQ2 def= Q1 :(Q1 : Q2) and Q1maxQ2 def= Q1] (Q2 : Q1).For arbitrary queries Q1 and Q2 we use the notationQ1 � Q2 to mean that for all database states s,Q1(s) = Q2(s). The notation Q1 � Q2 means thatfor all database states s, Q1(s) is a subbag of Q2(s).2.2 TransactionsTransactions T are functions from states to states. Ifs is a database state, then T(s) is the state resultingfrom the execution of transaction T in state s. Q(T(s))represents the value of query Q after T is executed instate s.We consider abstract transactions de�ned with thenotation T = fR1:=Q1; : : : ; Rn:=Qng, abbreviated asT = fRi:=Qig. When T is executed in state s, thenthe value of Ri in state T(s) becomes Qi(s). That is,T executed in state s has the e�ect of simultaneouslyreplacing the contents of each Ri with the result ofevaluating query Qi in state s.Since we only consider view maintenance in responseto insertions and deletions into base tables caused by a

transaction, we will consider only simple transactions Tof the formfR1:=(R1 : OR1)]MR1; : : : ; Rn:=(Rn : ORn)]MRng:In other words, the value of Ri in state T(s) is((Ri : ORi)]MRi)(s). This is without loss of generalitysince any abstract transaction can be transformed to anequivalent simple transaction.2.3 Logs and di�erential tablesA log L is a collection of auxiliary base tables HR1,NR1, : : :, HRn, NRn. Suppose that database states areordered and sp � sc, where sp represents a state of thedatabase that existed before the database entered statesc. Informally, think of sp as a past state and sc as thecurrent state. A log L records the transition from statesp to the state sc, written sp L! sc, if, for each table Ri,Ri(sp) = ((Ri : NRi)]HRi)(sc):That is, log L records all deletions (HRi) from andinsertions (NRi) into each table Ri that comprise thetransition from state sp to state sc. Note that in order tocompute the past value of Ri from the value of Ri in thecurrent state, we must delete the bag that was insertedand insert the bag that was deleted. A similar techniqueis used in [CW91] with transition tables, which can bethought of as transient logs.Our notion of logs is not the same as that ofdi�erential tables introduced in [SL76]. The tables B,A, and D are di�erential tables for table R if R =(B : D)]A. In this approach, every \base table" R istreated as a virtual table (view). TablesD and A can bethought of as suspended deletions and insertions, whileB represents an \old" value of the table R. In contrast,our notion of a log assumes that the changes have beenapplied to the base tables.A word about our use of white triangles (O and M)and black triangles (H and N). The white triangles rep-resent changes speci�ed by the transactions, or changescomputed from those speci�ed in the transactions. Theblack triangles represent changes in the log or changescomputed from the log.2.4 SubstitutionsWe will denote general substitutions with the notation� = [Q1=R1; � � � ; Qn=Rn]. The notation �(Q) denotesthe query that results from simultaneously replacingevery occurrence of Ri in Q by Qi. For example, if� is [�(R2)=R1; �q(R1)=R2] and Q is �p(R1 � R2), then�(Q) is �p(�(R2)� �q(R1)).The next subsection will make use of two substitu-tions bT and bL that are derived from simple transactionsT and logs L as:[((R1 : OR1)]MR1)=R1; : : : ; ((Rn : ORn)]MRn)=Rn]472

and[((R1 : NR1)]HR1)=R1; : : : ; ((Rn : NRn)]HRn)=Rn]2.5 Past and future queriesPast and future queries are the key concepts of viewmaintenance as they allow us to compute the value of aquery in a state that is di�erent from the current one.De�nition 1 (Past and Future Queries):1. Suppose sp is a state that precedes state sc. A queryPQ is a past-query at state sc for a query Q at sp ifQ(sp) = PQ(sc). Informally, we can evaluate a past-query PQ in the current state in order to determinethe value that Q had in an earlier state.2. A query FQ is called a future-query at state sp for Qat state sc if FQ(sp) = Q(sc). We call FQ a future-query for Q with respect to a transaction T if forevery database state s we have FQ(s) = Q(T(s)).That is, if the database is currently in state s,then we can evaluate FQ in order to determine the\future" value that query Q will have in the stateimmediately after T is executed. 2Transactions and logs can be used to compute future-and past-queries. If T is a simple transaction, thenfuture(T ; Q) de�ned asbT(Q) � Q((R1 : OR1)]MR1; : : : ; (Rn : ORn)]MRn)is a future-query for Q(R1; : : : ; Rn) with respect to T .Indeed, for any state s, (future(T ; Q))(s) = Q(T(s)).If L is a log from state sp to state sc, then the values ofRi at sp can be computed from the values ofRi at sc andthe log as Ri(sp) = ((Ri : NRi)]HRi)(sc). Therefore,past(L; Q) de�ned asbL(Q) � Q((R1 : NR1)]HR1; : : : ; (Rn : NRn)]HRn)is a past-query, at state sc for Q at state sp. That is,Q(sp) = (past(L; Q))(sc).In summary, future-queries allow us to anticipatestate changes, while past-queries allow us to compensatefor changes that have already been made.3 View Maintenance ScenariosIn what follows, the view V is de�ned by a query Qand materialized in the tableMV . A materialized viewis said to be consistent with its de�nition in state s ifQ(s) = MV (s).Any correct solution to the immediate view mainte-nance problem must guarantee that the contents of theview tableMV always be consistent with the de�nitionof the view V . In other words, the formula Q � MVis an invariant that should hold in all database states.

Any solution to the immediate view maintenance prob-lem must then employ some method of augmenting usertransactions with the updates to table MV needed tomaintain this invariant.This section demonstrates that the same approachcan be used to characterize deferred view maintenanceproblems. We use database invariants to specifythree deferred view maintenance scenarios. For eachinvariant, we specify algorithms for transforming usertransactions into ones that maintain the invariant.These invariants are more complex than the immediatecase since they must relate table MV to query Q aswell as auxiliary tables. Unlike the immediate case, thedeferred scenarios also require additional algorithms forrefreshing view tables as well as for propagating changesto auxiliary tables. For each scenario considered,we explain the main idea behind the associated viewmaintenance algorithms. The details of the algorithmswill be given in Section 5.3.1 Database invariantsFirst, we need to introduce some terminology. Forformula � and database state s, the notation s j= �means that � holds in state s. Given formulas �, �, anda transaction T , we will use the Hoare triple f�gTf�g(see [Gri81]) to assert that for every state s, if s j= �,then T(s) j= �. A transaction T is said to be safe for �if f�gTf�g. That is, if � holds in a given state, then itwill hold in the state after T is executed.We assume that the database tables are partitionedinto external tables that can be changed by usertransactions (user-de�ned base tables) and internaltables that are used to store and support materializedviews (such as MV , log tables, and view di�erential�les). User transactions are not allowed to directlyupdate internal tables.A formula is called a database invariant if it isguaranteed to hold in every state. We shall denotedatabase invariants by INV� where the index � speci�esa named scenario for view maintenance. Given aninvariant INV� and a user transaction T , it cannot beexpected that T will be safe for INV�. Thus, eachscenario requires an algorithm for transforming any usertransaction T into a transaction makesafe�[T] that issafe for INV�. This transaction should have the samebehavior as T on external tables. Hence, makesafe�[T]will augment T with changes to internal tables.The scenarios describing deferred maintenance willalso require various auxiliary functions to refresh viewtables. For each INV�, we will de�ne a transactionrefresh� such that fINV�grefresh�fQ �MV g.3.2 Immediate maintenanceWe review the immediate update scenario in order tofacilitate comparison with the deferred scenarios.473

QQQQQQQQQQQ########## ccccccccccINVIM : Q �MV ����������� INVC: past(L; Q) � (MV : OMV)] MMVdi�erential tablesINVBL : past(L; Q) �MV INVDT: Q � (MV : OMV)] MMV
VIEW MAINTENANCEimmediate deferreddeferred withbase logs deferred withFigure 1: Invariants for view maintenanceSuppose that we require that the tableMV always beconsistent with its de�nition. As noted, this amounts todeclaring the formula below to be a database invariant.INVIM Q � MVThe literature on immediate view maintenance [BLT86,CW91, GL95, QW91, SI84] presents various approachesto converting any transaction T to a transactionmakesafeIM[T] that is guaranteed to maintain INVIM.The method of choice is to produce incremental queries,O(T ; Q) and M (T ; Q), such that augmenting T withMV :=(MV : O(T ; Q))]M (T ; Q)correctly maintains the view. Note that the incrementalqueries are typically evaluated in the state before theupdates of T have been applied.Although incremental queries can avoid the work ofrecomputing Q from scratch, their evaluation can stillimpose a large per-transaction overhead.3.3 Deferred maintenance with base logsSuppose that the table MV is allowed to becomeinconsistent with the de�nition of view V . This meansthat the content of table MV is equal to the value ofQ in some past state when MV was last refreshed orwas initialized. Suppose that log L records the changesmade to base tables that make up the transition fromthis past state to the current state. This scenario canbe captured with the invariantINVBL past(L; Q) � MV

Note that if the log is empty, then the view table isconsistent since in this case Q � past(L; Q). A solu-tion to this scenario involves de�ning the transformationmakesafeBL[:] that maintains the invariant and a func-tion refreshBL that brings the view up-to-date.For any user transaction T , makesafeBL[T] must dotwo things: 1) execute T , and (2) correctly extend thelog L in order to maintain the invariant. This imposeslittle overhead on each transaction since we only needto record the changes made to base tables.The refresh function must satisfy the speci�cationfINVBLgrefreshBLfQ � MV g. In a manner similar tothe immediate case, we could formulate incrementalqueries, H(L; Q) and N(L; Q), such that the transactionMV :=(MV : H(L; Q))]N(L; Q)correctly refreshes the tableMV . Unlike the immediatecase, these incremental queries must be evaluated ina post-update state that re
ects the changes recordedin log L. In Section 4, we present a technique forcomputing incremental queries for post-update states.We should expect that in most cases this incrementalapproach will be much less expensive than recomputingQ from scratch. However, the computation of theincremental queries still may be costly, which impliesa high refresh time.3.4 Deferred maintenance with di�erentialtables for viewsMany applications require a low refresh time. Oneway to minimize view downtime is to precompute the474

changes necessary for refreshing table MV and storethem in \di�erential tables." This scenario can becaptured with the invariantINVDT Q � (MV : OMV)]MMVwhere OMV and MMV are the di�erential tables thatmaintain the changes needed to bring the view tableup-to-date. Another way of saying this is that thedi�erential tables record the di�erence of the past valueof Q (stored in MV) and its current value. Note thatif the di�erential tables are empty, then the view tableMV is consistent.The refresh function in this case applies the di�eren-tial tables to MV ,MV :=(MV : OMV)]MMV ;and empties them. If the di�erential tables containexactly the net change needed to refresh MV (that is,OMV � MV and OMV minMMV � �), then thisrepresents the minimal possible refresh time for MV .However, as in the immediate update case, the per-transaction overhead for maintaining the invariant maybe high since makesafeDT[T] must maintain correctvalues for OMV and MMV .3.5 Deferred maintenance with di�erentialtables and base logsOne of our goals is to present a new solution to thedeferred view maintenance problem that provides (1)a fast refresh algorithm, and (2) low per-transactionoverhead for maintaining auxiliary information.Our solution combines the last two approaches. Wemaintain both a log L on base tables and a pair ofdi�erential tables, OMV and MMV , for the view tableMV . The combined invariant isINVC past(L; Q) � (MV : OMV)]MMVTo understand this scenario, it helps to keep in mindthree di�erent states: (1) a past state sp such thatthe table MV is consistent with Q in state sp, (2) thecurrent database state sc, and (3) an intermediate statesi, with sp � si � sc. The log L records the transitionfrom si to sc. That is, in this scenario the log is used tomaintain the view di�erential tables (OMV and MMV),and records the changes to the base tables made sincethe last refresh of the di�erential tables (in state si). Ifthe di�erential tables are applied to the view tableMVto refresh it, then the contents of the table MV willcorrespond to the value that Q had in state si, whenthe log was initialized. That is, updatingMV using thedi�erential tables gives us the value of the past queryfor Q, past(L; Q).The transaction makesafeC[T] is essentially the sameas makesafeBL[T] | it only needs to update the log

in order to maintain invariant INVC. The refreshfunction for this scenario must satisfy the speci�cationfINVCgrefreshCfQ � MV g. In addition, this scenariosuggests two auxiliary transactions: a transactionpropagateC, that propagates to the di�erential tablesthe changes recorded in the log L, and a transactionpartial refreshC, that partially refreshes the view tableby applying the di�erential tables. These transactionshave the speci�cations:fINVCg propagateC fQ � (MV : OMV)]MMV g;fINVCg partial refreshC fpast(L; Q) � MV g:By decoupling incremental computation from bothrefreshC and makesafeC[T], these auxiliary transactionswill allow us to achieve our goal of low refresh time whilesimultaneously obtaining low per-transaction overhead.A more detailed discussion is presented in Section 5.Here we are only interested in a formal speci�cation ofthis scenario.Figure 1 summarizes the four invariants that describedi�erent scenarios for view maintenance. Note thatboth the INVBL and INVDT scenarios can be consideredas special cases of the INVC scenario.4 Exploiting DualityAs mentioned in the previous section, the method ofchoice for solving the immediate view maintenanceproblem involves �nding incremental queries O(T ; Q)and M (T ; Q) such that the operationMV :=(MV : O(T ; Q))]M (T ; Q)will correctly update the materialized view, providedthat the queries O(T ; Q) and M (T ; Q) are evaluated inthe pre-update database state. This amounts to solvingfor O(T ; Q) and M (T ; Q) in the equation(1) future(T ; Q) � (Q : O(T ; Q))]M (T ; Q)since table MV is assumed to contain the current valueof Q and we wish to update MV to contain the valuethat Q will have in the future, after T is executed. Anexample of such an algorithm for the bag algebra canbe found in [GL95].Now let us turn to the simple case of deferredmaintenance. Suppose that MV was initialized or lastrefreshed at state sp and the database is currently instate sc. Suppose that L is a log from sp to sc. Inorder to incrementally refresh MV we want to �nd twoqueries H(L; Q) and N(L; Q) such that the operationMV :=(MV : H(L; Q))]N(L; Q)will correctly update the materialized view.Note that these incremental queries must be evalu-ated in the post-update database state that re
ects all475

of the changes recorded in L. Finding such incrementalqueries amounts to solving for H(L; Q) and N(L; Q) inthe equation(2) Q � (past(L; Q) : H(L; Q))]N(L; Q)since table MV is assumed to contain the past value ofQ and we wish to update MV to contain the currentvalue of Q.Can we use the same algorithm for the pre- and post-update states? As we have indicated (see Section 1.2),this cannot be done directly without producing incor-rect results. There is, however, a natural duality be-tween future- and past-queries that can be exploited tosolve this problem. Recall from Section 2.5 that both ofthese queries are formed as substitution instances,future(T ; Q) def= bT(Q); past(L; Q) def= bL(Q)and that each query is formed by replacing everyoccurrence of a base table name Ri with a query of theform (Ri : Di)]Ai. However, the roles of insertions anddeletions are reversed since future-queries anticipate thechanges that a transaction will make, while past-queriescompensate for changes that have already been made.Suppose that � is a substitution (see Section 2.4), andsuppose that we have a method for constructing queriesDel(�;Q) and Add(�;Q) such that(3) �(Q) � (Q : Del(�;Q))]Add(�;Q):Algorithms that produce the queries Del(�;Q) andAdd(�;Q) are called di�erential algorithms (terminol-ogy is from [Pai84]). Solving Equation (1) is then simplya matter of de�ning O(T ; Q) and M (T ; Q) asO(T ; Q) def= Del(bT ; Q); M (T ; Q) def= Add(bT ; Q):Solving (2) for H(L; Q) and N(L; Q) is not quite sosimple. First, applying Equation (3) with � = bL resultsinpast(L; Q) � bL(Q) � (Q : Del(bL; Q))]Add(bL; Q):Now in order to solve Equation (2) we must \cancel" theincremental queries. We can do this using the followinglemma.Lemma 1 (cancellation) Suppose that N , O, I, andD are queries. If N � (O : D)] I , then O �(N : I)] (OminD). 2Applying this lemma to the above equation yieldsQ � (past(L; Q) : Add(bL; Q))] (QminDel(bL; Q)):Therefore, (2) can be solved by de�ning the queriesH(L; Q) and N(L; Q) asH(L; Q) def= Add(bL; Q)N(L; Q) def= QminDel(bL; Q):

4.1 Incremental computationNote that the query N(L; Q) def= QminDel(bL; Q) couldbe simpli�ed toDel(bL; Q) if we knew thatDel(bL; Q) �Q. This is related to the \minimality" conditionsof [GL95, QW91]. These conditions limit the number ofunnecessary tuples produced by the incremental changequeries.The minimality constraints typically imposed onsolutions to �(Q) � (Q : Del(�;Q))]Add(�;Q) are(a) Del(�;Q) � Q : Only tuples actually in Q are inthe deleted bag.(b) Del(�;Q)minAdd(�;Q) � � : No tuple is deletedand then reinserted.The design of di�erential algorithms to computeDel(�;Q) and Add(�;Q) then involves a choice of im-posing none of these constraints, or of imposing oneof the three possible combinations of them. A solu-tion meeting condition (a) will be called weakly mini-mal, while a solution meeting both conditions (a) and(b) will be called strongly minimal. In this paper, wepresent algorithms that produce weakly minimal solu-tions, for which the following simpler equations hold:H(L; Q) def= Add(bL; Q)N(L; Q) def= Del(bL; Q):We will assume that every substitution � =[Q1=R1; � � � ; Qn=Rn] has a factored form. That is, everyquery Qi is of the form (Ri : Di)]Ai. Note that (1) if� = bT, then Di = ORi and Ai = MRi, and (2) if � = bL,then Di = NRi and Ai = HRi.A factored substitution is called weakly minimal ifDi � Ri. Note that any factored substitution � canbe transformed into an equivalent weakly or stronglyminimal substitution.A simple transaction is called weakly minimal if bT is aweakly minimal substitution. Similarly, a log L is calledweakly minimal if bL is a weakly minimal substitution.This amounts to declaring that NRi � Ri is a databaseinvariant, for each table Ri. As we will see in the nextsection, care must be taken to guarantee that theseinvariants are maintained.Figure 2 presents our algorithm for calculatingDel(�;Q) and Add(�;Q) for weakly minimal substi-tutions. When Q is � or fxg, then Del(�;Q) �Add(�;Q) � �. This algorithm is derived from thesame change propagation rules for the bag algebra thatwere used in [GL95] to derive a strongly minimal al-gorithm. The functions O(T ; Q), M (T ; Q), H(L; Q),N(L; Q) can be derived straightforwardly from Figure 2.For example, the equation forDel(�;E : F) in Figure 2gives rise to the equationO(T ; E : F) def= (O(T ; E)]M (T ; F))min(E : F);476

Q Del(�;Q)Ri Di, where �(Ri) = (Ri : Di)]Ai�p(E) �p(Del(�;E))�A(E) �A(Del(�;E))�(E) �(Del(�;E)) : (E : Del(�;E))E] F Del(�;E)]Del(�; F)E : F (Del(�;E)]Add(�; F))min(E : F)E � F (Del(�;E)�Del(�; F))] (Del(�;E)� (F : Del(�; F)))] ((E : Del(�;E))�Del(�; F))Q Add(�;Q)Ri Ai, where �(Ri) = (Ri : Di)]Ai�p(E) �p(Add(�;E))�A(E) �A(Add(�;E))�(E) �(Add(�;E)) : (E : Del(�;E))E] F Add(�;E)]Add(�; F)E : F ((Add(�;E)]Del(�; F)) : (F : E)) : ((Del(�;E)]Add(�; F)) : (E : F))E � F (Add(�;E)�Add(�; F))] (Add(�;E)� (F : Del(�; F)))] ((E : Del(�;E))�Add(�; F))Figure 2: Mutually Recursive functions Del(�;Q) and Add(�;Q).as well as its dual equationN(L; E : F) def= (N(L; E)]H(L; F))min(E : F):Theorem 2 (Correctness of Di�erentiation) Forany query Q and any weakly minimal substitution �,(a) �(Q) � (Q : Del(�;Q))]Add(�;Q),(b) Del(�;Q) � Q. 2It can be veri�ed that our post-update algorithmgives the correct answers in the examples presented inSection 1.2.One of the reasons that we chose to use a weaklyminimal solution in this paper is that the expressionsare somewhat less complicated than for other solutions,and the algorithm can be seen as a generalizationof [BLT86, Han87] to the full bag algebra BA.It should be emphasized that the issue of minimalityof incremental algorithms is completely orthogonalto the problem of maintaining views in a deferredmanner. Any abstract transaction can be transformedinto an equivalent (weakly or strongly) minimal simpletransaction, and the same is true for logs. Thealgorithms in Figure 2, and those of Section 5.1could be modi�ed to maintain any combination ofthe minimality conditions (a) and (b), including nominimality constraints at all. For example, in orderto produce a strongly minimal solution, one could usethe strongly minimal incremental algorithm presentedin [GL95], and then modify the algorithms in Figure 3by enforcing strong minimality.

4.2 How the state bug has been avoidedThere are two ways of directly using the pre-updatealgorithm in the post-update state. The �rst isexempli�ed by [Han87], where di�erential tables areused to suspend the application of changes to databasetables. In other words, updates are not actually appliedbut simply stored in di�erential tables. Past values ofbase tables are directly available and do not have to becomputed. In this way, the pre-update algorithm willgive the correct result. However, this approach is notsu�ciently general since it assumes that all databasetables are implemented with di�erential tables. Thisassumption may be unrealistic in many applications.The second method can be explained with thisobservation:Remark 1 For certain restricted classes of views andupdates, the equations derived by the pre-update andpost-update algorithms produce the same results uponevaluation in the post-update state.For example, it can be shown that ifQ is an SPJ querywithout self-joins, T is a weakly minimal transactionthat inserts into and/or deletes from a single tableR, and log L records only the changes of one suchtransaction T , then O(T ; Q) � H(L; Q) and M (T ; Q) �N(L; Q).If these restrictions are relaxed even slightly (i.e., anSPJ query is allowed to have self-joins, or multiple tablesare updated), then it is easy to �nd examples of viewsand/or updates for which the pre-update algorithmsof [BLT86, GL95, Han87, QW91] will give incorrect477

results if the incremental queries are evaluated in thepost-update state.5 Algorithms and PoliciesThis section presents algorithmic solutions for the threescenarios of deferred view maintenance described inSection 3. Each set of algorithms can be used toimplement a wide range of view update policies. By apolicy we mean a scheme by which the refresh functionsare actually invoked for a given view. For example,in the simple scenario de�ned by invariant INVBL, thefunction refreshBL could be invoked (1) only on demandby a user, (2) whenever the table MV is queried, or (3)in a periodic way. The section ends with a presentationof two policies for the INVC scenario that can be usedto minimize view downtime.5.1 AlgorithmsFigure 3 presents algorithmic solutions for the threescenarios of deferred view maintenance described inSection 3. The notation L:=� is used to abbre-viate the operations needed to empty log tables(HR1:=�; : : : ; NRn:=�). If T1 and T2 are transactions,then T1 + T2 denotes the transaction that has thesame behavior as performing the operations of T1 andT2 simultaneously. That is, we may view T1 + T2 asperforming T1 and T2 in a way that operations in T1 donot see the e�ect of operations in T2, and vice versa.These high-level algorithms are built from two maincomponents: the pre- and post-update di�erentialalgorithms presented in Section 4, and a method forcomposing two sequential updates into a single update.The latter is provided by the following lemma.Lemma 3 (Weakly Minimal Composition)Suppose that O, I1, I2, D1 and D2 are queries suchthat D1 � O and D2 � (O : D1)] I1. Let D3 def=D1] (D2 : I1) and I3 def= (I1 : D2)] I2. Then(a) (((O : D1)] I1) : D2)] I2 � (O : D3)] I3,(b) D3 � O.As an example, we show how propagateC fromFigure 3 is derived. Equation (2) in Section 4 tells usthat Q � (past(L; Q) : H(L; Q))]N(L; Q);and invariant INVC tells us thatpast(L; Q) � (MV : OMV)]MMV :This implies thatQ � (((MV : OMV)]MMV) : H(L; Q))]N(L; Q):By the composition lemma, we then getQ � (MV : (OMV] (H(L; Q) : MMV)))]((MMV : H(L; Q))]N(L; Q)):

5.2 CorrectnessAs discussed in Section 4.1 our solutions will imposethe following minimality invariants, in addition to theinvariants described in Figure 1. In the two cases thatuse a log L, we require that the invariants NRi � Ribe maintained. In the two cases that use di�erentialtables we will require that the invariant OMV � MVbe maintained.The following lemma tells us that the transactionsof Figure 3 correctly extend the log and maintain theminimality invariants.Lemma 4 Suppose that L is a weakly minimal log,sp L! sc, and T is a weakly minimal transaction. Thensp L! (makesafeBL[T])(sc). Furthermore, the transactionmakesafeBL[T] is safe for NRi � Ri for each table Ri,and the transactions makesafeDT[T] and propagateC aresafe for OMV �MV . 2The following theorem tells us that our algorithmsmeet the speci�cations given in Section 3.Theorem 5 The algorithms of Figure 3 are correct.That is, every transaction makesafe�[T] is safe for INV�for � being BL, DT and C. The refresh transactions arecorrect: fINV�grefresh�fQ � MV gIn addition, the following holds:fINVCg propagateC fQ � (MV : OMV)]MMV gfINVCg partial refreshC fpast(L; Q) � MV g 25.3 Minimizing view downtimeThe two transactions, propagateC and partial refreshC,of the INVC scenario allow for a very rich set ofmaintenance policies. We now present two policies forthat scenario and describe how they minimize viewdowntime.Policy 1: Every k time units, the transactionpropagateC is invoked to propagate changes from thelog L to the di�erential tables, OMV and MMV .Every m time units (m > k), the view table MV isbrought up-to-date using refreshC.Policy 2: The use of propagateC is the same as thatin Policy 1. Every m time units (m > k), the viewtableMV is partially refreshed using partial refreshC.With both policies, per-transaction overhead is min-imized since makesafeC[T] only adds the work requiredto update the log tables. Policy 1 can be expected tohave a refresh time much lower than that of the INVBLscenario. This is because much of the work of comput-ing incremental changes has already been done duringperiodic propagation. Policy 2 has the least downtime478

INVBL: past(L; Q) � MVmakesafeBL[T] = � HRi := HRi] (ORi : NRi);NRi := (NRi : ORi)]MRi � + TrefreshBL = fMV :=(MV : H(L; Q))]N(L; Q); L := �gINVDT : Q � (MV : OMV)]MMVmakesafeDT[T] = � OMV := OMV] (O(T ; Q) : MMV);MMV := (MMV : O(T ; Q))]M (T ; Q) � + TrefreshDT = fMV :=(MV : OMV)]MMV ; OMV :=�; MMV :=�gINVC : past(L; Q) � (MV : OMV)]MMVmakesafeC[T] = makesafeBL[T]propagateC = 8<: OMV := OMV] (H(L; Q) : MMV);MMV := (MMV : H(L; Q))]N(L; Q);L := � 9=;partial refreshC = refreshDTrefreshC = (propagateC followed by partial refreshC) or(partial refreshC followed by refreshBL)Figure 3: Deferred View Maintenance Algorithmssince it merely applies the precomputed di�erential ta-bles to the view table. Policy 2 refreshes the view toa state that is at most k time units out-of-date. Thispolicy is appropriate for applications that can toleratedata that is slightly out-of-date (assuming k is small).One can minimize view downtime further by remov-ing, from OMV and MMV , tuples that exist in bothOMV and MMV . Such a solution would be generatedby using strong minimality (Section 3.4), and requiresa strongly minimal analog of Lemma 3.Example 5.4 Again we consider the retail applicationof Section 1.1. Suppose that we use the INVC scenariofor the materialized viewMV , and maintain logs on thechanges to the sales table. In this example, the refreshperiod is 24 hours (m = 24). Suppose that propagationis done every hour (k = 1).Using Policy 1, we can expect the downtime to bemuch smaller than it would be in the INVBL scenario,since the log would contain at most an hour's worthof changes rather than a day's worth. The refresh ofPolicy 2 results in a view table that is no more than onehour out-of-date, and has the minimal downtime. 2Of course, there are many possible variations on thesetwo policies. For example, rather than using a �xedinterval k, the transaction propagateC could be invokedasynchronously whenever any free cycles are available.

Similarly, refreshC or partial refreshC could be invokedonly when a user queries the view.6 Related WorkSeveral incremental view maintenance algorithms forimmediate maintenance have been proposed [BLT86,GL95, Han87, QW91]. These algorithms are basedon the assumption that access to the pre-update basetables is available. Equations that involve both pre-update and post-update base tables are presented in[CW91, GMS93]. In [CW91], the incremental changesare computed in the post-update state. The pre-updatestate of a table is computed from its post-update stateand from the transition tables that contain updateinformation. Our future queries are similar to the when-clause of [GHJ96].Research related to deferred view maintenance hasfocussed on two main issues: (a) computing the changesto the view and (b) applying the changes to the view.The work on computing updates has involved issuessuch as the types of auxiliary information needed tocompute incremental changes, and detecting relevantupdates. All of this work, however, has been done inthe context of restrictive classes of views. Databasesnapshots were proposed in [AL80] as a means ofproviding access to old database states and also as a479

way of optimizing the performance of large, distributeddatabases. An algorithm for determining the changesthat should be made to snapshots (restricted to select-project views over base tables) is presented in [LH+86].Techniques for maintainingupdate logs to allow e�cientdetection of relevant updates to select-project views aregiven in [KR87] and [SP89]. Deferred maintenance forselect-join views is implemented in ADMS [RK86].Issues related to the process of applying the com-puted updates to the view have been studied in [SR88]and [AGK95]. The problem of determining the optimalrefresh frequency, based on queueing models and pa-rameterization of response time and processing cost con-straints, has been investigated in [SR88]. View refreshstrategies based on di�erent priorities for transactionsthat apply computed updates to a view and transac-tions that read a view are presented in [AGK95]. Whileour paper is also concerned with the issue of balancingthe costs of refresh with the constraints of other trans-actions, the focus is on high-level algorithms for incre-mental maintenance based on the various methods ofkeeping auxiliary information to achieve this balance.A comparison of view processing techniques based onnon-materialization, and immediate and deferred viewmaintenance is presented in [Han87]. The algorithmsfor deferred maintenance used in that paper are basedon future updates and hypothetical tables.7 Future workThere are many directions for future work. Forexample, are there algorithms to refresh only thoseparts of a view needed by a given query? Howshould log information be stored so that the workdone by makesafeBL[T] is minimal, and independentof the number of views supported? What are theproblems related to concurrency control in the presenceof materialized views?Acknowledgments. We would like to thank Tera-data/Walmart Support Group and Dave Belanger forthe initial discussions that led to this work, and DanLieuwen and the referees for helpful comments.References[AGK95] B. Adelberg, H. Garcia-Molina, and B. Kao.Applying update streams in a soft real-timedatabase system. In SIGMOD'95 .[AL80] M. Adiba and B. Lindsay. Database snapshots. InVLDB'80 .[BLT86] J. Blakeley, P. Larson, and F. Tompa. E�cientlyUpdating Materialized Views. In SIGMOD'86.[CG+96] L. Colby, T. Gri�n, L. Libkin, I. Mumick,and H. Trickey. Algorithms for deferred viewmaintenance. Bell Labs Tech. Memo, 1996.[CW91] S. Ceri and J. Widom. Deriving production rulesfor incremental view maintenance. In VLDB'91 .

[GHJ96] S. Ghandeharizadeh, R. Hull, and D. Jacobs.Heraclitus: Elevating deltas to be �rst classcitizens in a database programming language.ACM TODS, to appear.[GJM96] A. Gupta, H. Jagadish, and I. Mumick. Dataintegration using self-maintainable views. InEDBT'96 .[GL95] T. Gri�n and L. Libkin. Incremental maintenanceof views with duplicates. In SIGMOD'95 .[GM93] S. Grumbach and T. Milo. Towards tractablealgebras for bags. In PODS'93.[GM95] A. Gupta and I. Mumick. Maintenance ofMaterialized Views: Problems, Techniques, andApplications. IEEE DE Bulletin, 18(2):3{19,1995.[GM96] A. Gupta and I. Mumick, editors. MaterializedViews. MIT Press, 1996. To be published.[GMS93] A. Gupta, I. Mumick, and V. Subrahmanian.Maintaining views incrementally. In SIGMOD'93.[Gri81] D. Gries. The Science of Programming. Springer,1981.[Han87] E. Hanson. A performance analysis of viewmaterialization strategies. In SIGMOD'87.[KR87] B. K�ahler and O. Risnes. Extended logging fordatabase snapshots. In VLDB'87.[LH+86] B. Lindsay, L. Haas, C. Mohan, H. Pirahesh,and P. Wilms. A snapshot di�erential refreshalgorithm. In SIGMOD'86 .[LW93] L. Libkin and L. Wong. Some properties of querylanguages for bags. In DBPL'93.[Pai84] R. Paige. Applications of �nite di�erencing todatabase integrity control and query/transactionoptimization. In H. Gallaire, J. Minker, andJ. Nicolas, editors, Advances in Database Theory,1984.[QW91] X. Qian and G. Wiederhold. Incremental recom-putation of active relational expressions. IEEETKDE, 3(3):337{341, 1991.[RK86] N. Roussopoulos and H. Kang. Principles andtechniques in the design of ADMS+. IEEEComputer, 19:19{25, 1986.[SI84] O. Shmueli and A. Itai. Maintenance of Views. InSIGMOD'84.[SL76] D. Severance and G. Lohman. Di�erential �les:Their application to the maintenance of largedatabases. ACM TODS, 1(3):256{267, 1976.[SP89] A. Segev and J. Park. Updating distributedmaterialized views. IEEE TKDE, 1(2):173{184,1989.[SR88] J. Srivastava and D. Rotem. Analytical modelingof materialized view maintenance. In PODS'88.[ZG+95] Y. Zhuge, H. Garcia-Molina, J. Hammer, andJ. Widom. View maintenance in a warehousingenvironment. In SIGMOD'95 .480

