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Abstract

Materialized views and view maintenance are important for
data warehouses, retailing, banking, and billing applications.
We consider two related view maintenance problems: 1) how
to maintain views after the base tables have already been
modified, and 2) how to minimize the time for which the
view is inaccessible during maintenance.

Typically, a view is maintained immediately, as a part of
the transaction that updates the base tables. Immediate
maintenance imposes a significant overhead on update
transactions that cannot be tolerated in many applications.
In contrast, deferred maintenance allows a view to become
inconsistent with its definition. A refresh operation is used
to reestablish consistency. We present new algorithms to
incrementally refresh a view during deferred maintenance.
Our algorithms avoid a state bug that has artificially limited
techniques previously used for deferred maintenance.

Incremental deferred view maintenance requires auxiliary
tables that contain information recorded since the last view
refresh. We present three scenarios for the use of auxiliary
tables and show how these impact per-transaction overhead
and view refresh time. Each scenario is described by an
invariant that is required to hold in all database states. We
then show that, with the proper choice of auxiliary tables, it
is possible to lower both per-transaction overhead and view
refresh time.

1 Introduction

Interest in materialized views has increased in recent
years [GM96], primarily due to the expanding range
of their applications [GM95]. Most of the research
on materialized views has focussed on techniques for
incrementally updating materialized views when the
base tables used to derive the views are updated
[BLT86, CW91, GL95, GMS93, Han87, QW91, RK86,
S184, SP89].
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Maintenance of a view may involve several steps,

one of which brings the view table up-to-date. We
call this step refresh. There may be other steps
involved in the process of maintaining a view. For

example, it may be necessary to maintain auxiliary
tables that store the history of updates to the base
tables. View maintenance techniques depend on when
the view is refreshed. A view can be refreshed
within the transaction that updates the base tables,
or the refresh can be delayed. The former case is
referred to as tmmediate view maintenance, while the
latter is called deferred view maintenance. Deferred
maintenance may be done periodically or on-demand
when certain conditions arise. In the past, the term
deferred maintenance has sometimes been used for on-
demand maintenance.

Most of the work on view maintenance has involved
the immediate case [BLT86, CW91, GL95, QW91]. The
immediate maintenance approach has the disadvantage
that each update transaction incurs the overhead of
updating the view. The overhead increases with the
number of views and their complexity.

In some applications, immediate view maintenance
is simply not possible.  For example, in a data
warehousing system, if a component database does not
know what views exist at the warehouse, it cannot
modify transactions updating base tables so that they
also refresh materialized views. Even in a centralized
system where all the views are known, it may be
necessary to minimize the per-transaction overhead
imposed by view maintenance. In such cases, deferred
maintenance is most appropriate.

Other applications may have a certain tolerance for
out-of-date data, or even require that the view be frozen
for analysis and other functions [AL80]. In this case,
the view could be refreshed periodically or just before
querying. Deferred maintenance also allows several
updates to be batched together.

This paper contributes to the work on deferred view
maintenance by presenting solutions to the following
problems.



Minimize View Downtime By downtime we mean
the execution time required by the transaction that
refreshes the view table. While the view is being
refreshed, an exclusive write lock is typically held over
the view, and all queries and scans against the view are
disallowed. Therefore, we would like to do maintenance
in a manner that minimizes the time for which access
to the view is blocked (during refresh), and at the same
time minimizes the overhead on update transactions.

Avoid the State Bug Incremental view maintenance
is typically based on “incremental queries” that avoid
the need to recompute a materialized view from scratch.
These queries use the updates made to base tables
to compute changes that can be directly applied to a
materialized view table to bring it up-to-date. Such
queries can be evaluated in one of two states: the
pre-update state where the base-table changes have
not yet been applied, or the post-update state where
the base-table changes have been applied. Most of
the algorithms for view maintenance assume that the
incremental queries are evaluated in the pre-update
state. In the deferred case, since the base tables have
already been modified, the pre-update algorithms are
not directly applicable. In fact, direct application of
pre-update algorithms in the post-update state can
result in incorrect answers, a fact we call the state bug.
The state bug can be avoided by severely restricting
the class of updates and views considered. However,
such restrictions limit the scope of deferred maintenance
techniques. What is required is a general post-update
algorithm that avoids the state bug and allows a large
class of updates and views.

In the rest of the introduction, we elaborate on the
above points and outline the contributions of the paper.

1.1 Minimizing view downtime

Consider the following example, patterned after a real
application at a large retailing company.

Example 1.1 Point-of-sale information is collected in
a sales table, and a customer table is used to keep
records pertaining to customers. The sales table can
be very large and can contain duplicates.

sales(custld, itemNo, quantity, salesPrice)
customer(custld, name, address, score)

CREATE VIEW V (custId, name, score, itemNo, quantity) AS
SELECT c.custld, c.name, c.score, s.itemNo,
s.quantity
FROM customer c, sales s
WHERE c.custld = s.custld AND
s.quantity ! = 0 AND
c.score = “High” .
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Suppose that insertions into the sales table are made
continuously. The view V, defined above, uses a join of
these tables to compute sales made to highly valued
customers. (In practice, views with aggregation are
more likely. For simplicity, we omit aggregation since it
is orthogonal to the problems that we discuss.) Suppose
further that this view is materialized in a table MV,
and that it is refreshed once every 24 hours. Between
refreshes, the table MV is used by decision support
applications for market analysis. If we assume that
the entire view is write-locked during refresh, then it
is important to minimize this view downtime. a

Contribution 1: We define consistency for databases
that support deferred view maintenance in terms of in-
variants that describe relationships between base tables,
materialized views, and auxiliary tables. Solutions to
the deferred view maintenance problem are algorithms
for extending user transactions with auxiliary opera-
tions needed to maintain the view invariants, and addi-
tional operations for refreshing materialized view tables.
We present three such invariants together with associ-
ated algorithms for deferred view maintenance. Each
solution can accommodate various update policies, and
we present policies that differ in their impact on refresh
times and update transaction overhead. One of these
policies provides for minimal view downtime while also
minimizing the overhead on update transactions.

1.2 Avoiding the state bug

We illustrate the state bug by applying the algorithm
of [BLT86] in both pre- and post-update states.

Example 1.2 Let us suppose that we have a view U
defined as follows and materialized in table MU (we

assume SQL duplicate semantics).

CREATE VIEW U (4) AS
SELECT R.A
FROM R, S
WHERE R.B = S.B .

Suppose that the contents of R, S and MU are as
shown below.

5[C]

. B . b1 | a1 .
R: S: s MU: Zl
bz C1 !

Suppose that R and S are to be updated by inserting
the tuple [a1, b2] in R and the tuple [by, cz] in S. We can
use the algorithm of [BLT86, Han87] for calculating the
incremental update to MU. The algorithm of [BLT86] is
a pre-update algorithm that is based on the availability
of the base tables before the update. The changes to the
view are computed with the incremental query A MU,



given below (the symbols AR and A S denote bags of
tuples inserted into tables R and S):

7TR_A(R > (A S))U?TR_A((A R) > S)Uﬂ'R_A((A R) > (A S))

To be consistent with SQL semantics, we assume that
all operators have multiset (bag) semantics. Using
this equation, the incremental insert to MU can be
calculated correctly as {[a1],[a1]}. Now suppose that
the same equation is evaluated in a post-update state,
i.e., after the tuples [a1,b2] and [bs,c2] have been
inserted in R and S. Then A MU would incorrectly
evaluate to {[a1], [a1], [e1], [e1]}- O

Example 1.3 We present another example that shows
how the state bug can lead to wrong answers other
than incorrect multiplicities. Consider a view U defined
as R — S. Let R = {[a],[b],[c]} and S = {[c],[d]}.
In the current state, U is materialized in a table
MU that contains tuples [a] and [b]. Let ¢ be a
transaction that deletes the tuple [b] from R and inserts
it into S. Then the algorithms of [QW91, GL95] that
extend [BLT86, Han87] to the full relational and bag
algebra calculate the delete bag for the view using the
following equation (the symbols VR, and VMU denote
bags of tuples deleted from tables R and MU):

VMU = (VR-S)U(ASNR) = ({[t]}-S)U({[t]}NR).

Note that it is irrelevant which semantics (set or bag)
we use as no duplicates are present in any of the tables
before or after the transaction. If VMU is evaluated in
the pre-update state, the result is {[b]} and then MU
becomes {[a]} (which is correct). However, the same
expression for VMU evaluated in the post-update state,
after transaction t is applied, yields VMU = {}, which
means that MU is not updated and keeps the incorrect
tuple [b]! O

In the past, the same algorithm has been used in both
pre-update and post-update states. However, the state
bug has been avoided either by assuming availability of
pre-update base tables in the post-update state, or by
considering only restricted classes of views and updates.
The first approach is illustrated in [Han87], where
differential tables are maintained on base tables that
contain the suspended updates that have not actually
been applied to the database state. One problem with
this approach is that it slows down the evaluation of all
queries over base tables.

As an example of the second approach, [ZG195] in-
vestigates view maintenance in a warehousing envi-
ronment. Their algorithms comprise a standard view
maintenance part and a compensating part. The view
maintenance part is based on the pre-update algorithm
of [BLT86, Han87], but is applied in the post-update
state. The state bug is not encountered since their so-
lution imposes restrictions that require (1) updates to
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change only one table, and (2) view definitions to be
SPJ queries without self-joins. Their algorithms would
yield incorrect results if these restrictions were relaxed.

Other papers dealing with deferred main-
tenance [KR87, LH*86, SP89] have considered even
smaller (select-project) classes of views. Select-project
views are self-maintainable [GIJM96] in the sense that
such views can be maintained without looking at base
tables. Consequently, the issue of pre-update state vs.
post-update state of base tables is irrelevant for main-
taining select-project views.

Our second contribution is to derive
algorithms for view maintenance in the post-update
state that avoid the state bug. These algorithms work
for the full multiset algebra and permit insertions and
deletions to any number of tables.

Contribution 2:

Paper Outline: After introducing the notation and
basic concepts in Section 2, we present, in Section 3, a
framework that casts the problem of view maintenance
as that of maintaining database invariants. Four
different scenarios are discussed — one for the immediate
update of materialized views and three variations on
deferred maintenance. In Section 4, we exploit a
duality between pre-and post-update states to arrive
at incremental algorithms that avoid the state bug and
work for a large class of updates and views. Section b
presents algorithms for solving the three scenarios
of deferred view maintenance described in Section 3.
We present refresh policies that use these algorithms
and solve the problem of minimizing view downtime.
Related work is discussed in Section 6. All proofs can

be found in the full paper [CGT96].

2 Preliminaries

2.1 The bag algebra, BA

A bag (or multiset) X is like a set, except that multiple
occurrences of elements are allowed. An element z is
said to have multiplicity n in the bag X if X contains
exactly n copies of z. The notation # € X means that
# has multiplicity n > 0 in X, and # ¢ X means that z
has multiplicity 0 in X.

A database schema is a collection of base table names
{Ri,...,R,}. A database stateis a mapping from table
names {Ry,..., R,} to finite bags of tuples. We write
R;(s) to denote the value of table R; in the state s.

Our query language will be the bag algebra of [GM93,
LW93], restricted to flat bags (bags of tuples, i.e., no
bag-valued attributes). Let p range over quantifier-free
predicates, and A range over sets of attribute names. BA



expressions are generated by the following grammar.

Q == ¢ empty bag
| {z} singleton bag
| R table name
| op(Q) selection
| TI4(Q) projection
| (@) duplicate elimination
| Q1YQ: additive union
| @Q1+@Q- monus
| Q1% Q2 cartesian product

We will use the symbols @, Q1, @2, E, and F to denote
BA expressions, which will usually be called queries. If s
is a database state and @ is a query, then Q(s) denotes
the multiset resulting from evaluating @ in the state s.

The only operation that may require explanation is
If £ occurs n times in @1 and m times in
()2, then the number of occurrences of z in @1 ~ @2
is the maximum of 0 and n — m. The SQL EXCEPT
operator is different from monus in that @J; EXCEPT @,
eliminates all tuples that occur in )2, no matter what
their multiplicity. The EXCEPT operation can be defined
in our bag language as

Q1 EXCEPT Q; % I (01-2(Q1 x (¢(Q1) = @2))).

We include monus in the algebra because it cannot
be defined using EXCEPT and the rest of BA. This
follows from the characterization of interdefinability of
the operations of BA in [GM93, LW93].

We will also use the operations @ min®; (minimal
intersection) and @;max@, (maximal union) that
create bags in which the multiplicity of any tuple is
the minimum (maximum) of its multiplicities in @1 and
Q2. These can be defined in BA as @1 min Q> def Q1 =~
(Q1=Q2) and Q1 maxQ: = Q1 W(Q2 = Q).

For arbitrary queries ()1 and ()2 we use the notation
1 ()2 to mean that for all database states s,
Q1(s) = Qa(s). The notation @1 C @2 means that
for all database states s, @1(s) is a subbag of Qa(s).

monaus.

2.2 Transactions

Transactions 7 are functions from states to states. If
s is a database state, then 7(s) is the state resulting
from the execution of transaction 7 in state s. Q(7{(s))
represents the value of query @ after 7 is executed in
state s.

We consider abstract transactions defined with the
notation 7 = {R1:=Q1,..., Rn:=Qxr}, abbreviated as
T = {Ri:=Q.}. When T is executed in state s, then
the value of R; in state 7{s) becomes Q;(s). That is,
T executed in state s has the effect of simultaneously
replacing the contents of each R; with the result of
evaluating query @; in state s.

Since we only consider view maintenance in response
to insertions and deletions into base tables caused by a
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transaction, we will consider only simple transactions T
of the form

{Rliz(Rl - VRl)L‘!'JA Ry,..., Rn::(Rn - VRn)L‘!'JA Rn}

In other words, the value of R; in state 7T{(s) is
((R; ~ VR;)WA R;)(s). This is without loss of generality
since any abstract transaction can be transformed to an
equivalent simple transaction.

2.3 Logs and differential tables

A log L is a collection of auxiliary base tables VRj,
AR,, ..., YR,, AR,. Suppose that database states are
ordered and s, < s., where s, represents a state of the
database that existed before the database entered state
sc. Informally, think of s, as a past state and s. as the
current state. A log L records the transition from state

sp to the state s., written s, LY sc, if, for each table R;,
Ri(sp) = ((Ri - ARi) &) VRi)(SC).

That is, log £ records all deletions (VR;) from and
insertions (A R;) into each table R; that comprise the
transition from state s, to state s.. Note that in order to
compute the past value of R; from the value of R; in the
current state, we must delete the bag that was inserted
and insert the bag that was deleted. A similar technique
is used in [CW91] with transition tables, which can be
thought of as transient logs.

Our notion of logs is not the same as that of
differential tables introduced in [SL76]. The tables B,
A, and D are differential tables for table R if R =
(B =~ D)W A. In this approach, every “base table” R is
treated as a virtual table (view). Tables D and A can be
thought of as suspended deletions and insertions, while
B represents an “old” value of the table R. In contrast,
our notion of a log assumes that the changes have been
applied to the base tables.

A word about our use of white triangles (V and A)
and black triangles (¥ and A). The white triangles rep-
resent changes specified by the transactions, or changes
computed from those specified in the transactions. The
black triangles represent changes in the log or changes
computed from the log.

2.4 Substitutions

We will denote general substitutions with the notation
7 = [@1/R1, -+, Q@n/Rn]. The notation n(Q) denotes
the query that results from simultaneously replacing
every occurrence of R; in @ by @;. For example, if
nis [e(R3)/R1,04(R1)/R2] and Q is op,(R1 X Rs), then
1(Q) is op(e(E2) X oyl B)).

The next subsection will make use of two substitu-
tions T and £ that are derived from simple transactions

T and logs L as:

[((Rl - VRl)L‘!'JARl)/Rl, ceey ((Rn - VRn)L‘!'JARn)/Rn]



and

[(R1~ AR WYR:)/R1,...,((Rn = ARy) W VR,)/Ry]

2.5 Past and future queries

Past and future queries are the key concepts of view
maintenance as they allow us to compute the value of a
query in a state that is different from the current one.

Definition 1 (Past and Future Queries):

1. Suppose s, is a state that precedes state s.. A query
PQ is a past-query at state s, for a query @ at s, if
Q(sp) = PQ(sc). Informally, we can evaluate a past-
query P(Q in the current state in order to determine
the value that @ had in an earlier state.

2. A query FQ is called a future-query at state s, for @
at state s; if FQ(sp) = Q(s:). We call FQ a future-
guery for ) with respect to a transaction 7 if for
every database state s we have FQ(s) = Q(T(s)).
That is, if the database is currently in state s,
then we can evaluate F'Q) in order to determine the
“future” value that query ) will have in the state
immediately after 7 is executed. a

Transactions and logs can be used to compute future-
and past-queries. If 7 is a simple transaction, then

FUTURE(T, Q) defined as

T(Q) = Q((Ry~ VR,)WARy,...,(Rn = VR,)WAR,)

is a future-query for Q(Ry,..., R,) with respect to 7.
Indeed, for any state s, (FUTURE(T, @))(s) = Q(T(s)).

If £ is alog from state s, to state s., then the values of
R; at s, can be computed from the values of R; at s. and
the log as Ri(sp) = ((R: ~ AR;) W VR;)(s.). Therefore,
PAST(L, Q) defined as

L£(Q) = Q((Ry = AR))WVRy,...,(Ry =~ AR,)WVR,)

is a past-query, at state s, for @ at state s,. That is,
Q(sp) = (PAST(L, @))(s.):

In summary, future-queries allow us to anticipate
state changes, while past-queries allow us to compensate
for changes that have already been made.

3 View Maintenance Scenarios

In what follows, the view V is defined by a query @
and materialized in the table M V. A materialized view
is sald to be consistent with its definition in state s if
Q(s) = MV (s).

Any correct solution to the immediate view mainte-
nance problem must guarantee that the contents of the
view table MV always be consistent with the definition
of the view V. In other words, the formula @ = MV
is an znvariant that should hold in all database states.
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Any solution to the immediate view maintenance prob-
lem must then employ some method of augmenting user
transactions with the updates to table MV needed to
maintain this invariant.

This section demonstrates that the same approach
can be used to characterize deferred view maintenance
problems. We use database invariants to specify
three deferred view maintenance scenarios. For each
invariant, we specify algorithms for transforming user
transactions into ones that maintain the invariant.
These invariants are more complex than the immediate
case since they must relate table MV to query @ as
well as auxiliary tables. Unlike the immediate case, the
deferred scenarios also require additional algorithms for
refreshing view tables as well as for propagating changes
to auxiliary tables. For each scenario considered,
we explain the main idea behind the associated view
maintenance algorithms. The details of the algorithms
will be given in Section 5.

3.1 Database invariants

First, we need to introduce some terminology. For
formula o and database state s, the notation s = «
means that a holds in state s. Given formulas «, 8, and
a transaction T, we will use the Hoare triple {a}T{8}
(see [Gri81]) to assert that for every state s, if s = «,
then 7(s) = 8. A transaction 7 is said to be safe for a
if {a}T{a}. That is, if & holds in a given state, then it
will hold in the state after T is executed.

We assume that the database tables are partitioned
into ezternal tables that can be changed by user
transactions (user-defined base tables) and internal
tables that are used to store and support materialized
views (such as MV, log tables, and view differential
files). User transactions are not allowed to directly
update internal tables.

A formula is called a database invariant if it is
guaranteed to hold in every state. We shall denote
database invariants by INV, where the index * specifies
a named scenario for view maintenance. Given an
invariant INV, and a user transaction 7, it cannot be
expected that T will be safe for INV,. Thus, each
scenario requires an algorithm for transforming any user
transaction 7 into a transaction makesafe,[7] that is
safe for INV,. This transaction should have the same
behavior as T on external tables. Hence, makesafe,[7]
will augment 7 with changes to internal tables.

The scenarios describing deferred maintenance will
also require various auxiliary functions to refresh view
tables. For each INV,, we will define a transaction

refresh, such that {INV,}refresh,{Q = MV}.

3.2 Immediate maintenance

We review the immediate update scenario in order to
facilitate comparison with the deferred scenarios.



VIEW MAINTENANCE

immediate deferred
INVy: Q@ =MV INVy:  PAST(L,Q) = (MV =vMV)"aMV
deferred with deferred with
base logs differential tables

INVg,: PAST(L,Q)= MV| |INVy: Q=(MV =vMV)WaMV

Figure 1: Invariants for

view maintenance

Suppose that we require that the table MV always be
consistent with its definition. As noted, this amounts to
declaring the formula below to be a database invariant.

The literature on immediate view maintenance [BLT86,
CW91, GL95, QW91, SI84] presents various approaches
to converting any transaction 7 to a transaction
makesafe,,[7] that is guaranteed to maintain INV,.
The method of choice is to produce incremental queries,

Vv(T, Q) and A(T, Q), such that augmenting 7 with
MV:=(MV =V(T,Q)) ¢ A(T, Q)

correctly maintains the view. Note that the incremental
queries are typically evaluated in the state before the
updates of T have been applied.

Although incremental queries can avoid the work of
recomputing @ from scratch, their evaluation can still
impose a large per-transaction overhead.

3.3 Deferred maintenance with base logs

Suppose that the table MV is allowed to become
inconsistent with the definition of view V. This means
that the content of table MV is equal to the value of
Q@ in some past state when MV was last refreshed or
was initialized. Suppose that log £ records the changes
made to base tables that make up the transition from
this past state to the current state. This scenario can
be captured with the invariant

NV, ‘PAST([,, Q) = MV \
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Note that if the log is empty, then the view table is
consistent since in this case @ = PasT(L, Q). A solu-
tion to this scenario involves defining the transformation
makesafeg,[.] that maintains the invariant and a func-
tion refreshy;, that brings the view up-to-date.

For any user transaction 7, makesafeg,[T] must do
two things: 1) execute 7, and (2) correctly extend the
log £ in order to maintain the invariant. This imposes
little overhead on each transaction since we only need
to record the changes made to base tables.

The refresh function must satisfy the specification
{INVyg}refreshg . {@ = MV}. In a manner similar to
the immediate case, we could formulate incremental
queries, ¥(£, Q) and A(L, @), such that the transaction

MV:=(MV ~v(L,Q)) v A(L,Q)

correctly refreshes the table M V. Unlike the immediate
case, these incremental queries must be evaluated in
a post-update state that reflects the changes recorded
in log £. In Section 4, we present a technique for
computing incremental queries for post-update states.

We should expect that in most cases this incremental
approach will be much less expensive than recomputing
) from scratch. However, the computation of the
incremental queries still may be costly, which implies
a high refresh time.

3.4 Deferred maintenance with differential
tables for views

Many applications require a low refresh time. One

way to minimize view downtime is to precompute the



changes necessary for refreshing table MV and store
them in “differential tables.” This scenario can be
captured with the invariant

TNV 1Q = (MV - YMV)waMV|

where VMV and A MV are the differential tables that
maintain the changes needed to bring the view table
up-to-date. Another way of saying this is that the
differential tables record the difference of the past value
of @ (stored in MV) and its current value. Note that
if the differential tables are empty, then the view table
MYV is consistent.

The refresh function in this case applies the differen-
tial tables to MV,

MV:=(MV ~-VMV)JAMV,

and empties them. If the differential tables contain
exactly the net change needed to refresh MV (that is,
VMV C MV and VMV minAMV = ¢), then this
represents the minimal possible refresh time for M V.

However, as in the immediate update case, the per-
transaction overhead for maintaining the invariant may
be high since makesafen;[7] must maintain correct
values for VMV and AMYV.

3.5 Deferred maintenance with differential
tables and base logs

One of our goals is to present a new solution to the
deferred view maintenance problem that provides (1)
a fast refresh algorithm, and (2) low per-transaction
overhead for maintaining auxiliary information.

Our solution combines the last two approaches. We
maintain both a log £ on base tables and a pair of
differential tables, VMV and A MV, for the view table
MYV . The combined invariant is

INVe | PAST(L,Q) = (MV =VMV)8AMY |

To understand this scenario, it helps to keep in mind
three different states: (1) a past state s, such that
the table MV is consistent with @ in state sp, (2) the
current database state s., and (3) an intermediate state
i, with s, < s; < s.. The log L records the transition
from s; to s.. That is, in this scenario the log is used to
maintain the view differential tables (VMV and A MV),
and records the changes to the base tables made since
the last refresh of the differential tables (in state s;). If
the differential tables are applied to the view table MV
to refresh it, then the contents of the table MV will
correspond to the value that @ had in state s;, when
the log was initialized. That is, updating MV using the
differential tables gives us the value of the past query
for @, PAsT(L, Q).

The transaction makesafe[7] is essentially the same
as makesafes,[7] — it only needs to update the log
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in order to maintain invariant INV,  The refresh
function for this scenario must satisfy the specification
{INVc}refresho{@ = MV?}. In addition, this scenario
suggests two auxiliary transactions: a transaction
propagate., that propagates to the differential tables
the changes recorded in the log £, and a transaction
partial_refresh, that partially refreshes the view table
by applying the differential tables. These transactions
have the specifications:

{INV.} propagate, {@ = (MV ~VMV)yAMV},
{INV} partial_refresh, {PasT(L,Q) = MV}.

By decoupling incremental computation from both
refresh, and makesafe[7], these auxiliary transactions
will allow us to achieve our goal of low refresh time while
simultaneously obtaining low per-transaction overhead.
A more detailed discussion is presented in Section 5.
Here we are only interested in a formal specification of
this scenario.

Figure 1 summarizes the four invariants that describe
different scenarios for view maintenance. Note that
both the INVy, and INV,, scenarios can be considered
as special cases of the [NV scenario.

4 Exploiting Duality

As mentioned in the previous section, the method of
choice for solving the immediate view maintenance
problem involves finding incremental queries V(7,Q)
and A (T, Q) such that the operation

MV:=(MV =v(T,Q)) W A(T,Q)

will correctly update the materialized view, provided
that the queries V(7, Q) and A (T, Q) are evaluated in
the pre-update database state. This amounts to solving

for v(T,Q) and A(T, Q) in the equation
(1)

since table MV is assumed to contain the current value
of @ and we wish to update MV to contain the value
that @ will have in the future, after 7 is executed. An
example of such an algorithm for the bag algebra can
be found in [GL95].

Now let us turn to the simple case of deferred
maintenance. Suppose that MV was initialized or last
refreshed at state s, and the database is currently in
state sc. Suppose that £ is a log from s, to s.. In
order to incrementally refresh MV we want to find two
queries ¥(£, Q) and A(L, @) such that the operation

FUTURE(T, Q) = (Q =V(7,Q) WA (T,Q)

MV:=(MV ~v(L,Q)) v A(L,Q)

will correctly update the materialized view.
Note that these incremental queries must be evalu-
ated in the post-update database state that reflects all



of the changes recorded in £. Finding such incremental
queries amounts to solving for ¥(£, Q) and A(L, Q) in
the equation

(2) Q (PasT(L,Q)~V(L,Q)) W A(L,Q)

since table MV is assumed to contain the past value of
@ and we wish to update MV to contain the current
value of @.

Can we use the same algorithm for the pre- and post-
update states? As we have indicated (see Section 1.2),
this cannot be done directly without producing incor-
rect results. There is, however, a natural duality be-
tween future- and past-queries that can be exploited to
solve this problem. Recall from Section 2.5 that both of
these queries are formed as substitution instances,

PUTURE(T, Q) E 7(Q), PasT(L£,Q) = £(Q)
and that each query is formed by replacing every
occurrence of a base table name R; with a query of the
form (R; -~ D;)wWA;. However, the roles of insertions and
deletions are reversed since future-queries anticipate the
changes that a transaction will make, while past-queries
compensate for changes that have already been made.

Suppose that 7 is a substitution (see Section 2.4), and
suppose that we have a method for constructing queries

DEL(7n, @) and ApD(n, Q) such that

(3) n(Q) = (Q =~ DEL(n,Q)) W ApD(7, Q).

Algorithms that produce the queries DEL(n, @) and
ADD(n, Q) are called differential algorithms (terminol-
ogy is from [Pai84]). Solving Equation (1) is then simply
a matter of defining V(7, Q) and A(T, Q) as

Y(T,Q) & DeL(T,Q), A(T,Q) & Abp(T,Q).

Solving (2) for ¥(£,Q) and A(L, Q) is not quite so
simple. First, applying Equation (3) with n = £ results
in

PAST(L, Q) = £(Q) = (Q = DEL(L, Q)) ¥ ADD(L, Q).

Now in order to solve Equation (2) we must “cancel” the
incremental queries. We can do this using the following
lemma.

Lemma 1 (cancellation) Suppose that N, O, I, and
D are queries. If N (O~D)WI, then O
(N ~I) & (OminD).

O
Applying this lemma to the above equation yields
Q = (PasT(L, Q) = ApD(Z, Q)) W (Q min DEL(Z, Q)).

Therefore, (2) can be solved by defining the queries
V(L£,Q) and A(L, Q) as

v,Q) ¥
A(L,Q)

ADD(E, Q)

< QminDEL(Z, Q).
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4.1 Incremental computation

Note that the query A(L, @) def @ min DEL(E, Q) could
be simplified to DEL(E, Q) if we knew that DEL(E, Q) C
). This is related to the “minimality” conditions
of [GL95, QW91]. These conditions limit the number of
unnecessary tuples produced by the incremental change
queries.

The minimality constraints typically imposed on

solutions to 7(Q) = (@ ~ DEL(n, Q)) W ADD(7, @) are

(a) DEL(n, @) C Q : Only tuples actually in @ are in
the deleted bag.

(b) DEL(7n, @) min ADD(n, @) = ¢ : No tuple is deleted

and then reinserted.

The design of differential algorithms to compute
DEL(7n, @) and ADD(%, Q) then involves a choice of im-
posing none of these constraints, or of imposing one
of the three possible combinations of them. A solu-
tion meeting condition (a) will be called weakly mini-
mal, while a solution meeting both conditions (a) and
(b) will be called strongly minimal. In this paper, we
present algorithms that produce weakly minimal solu-
tions, for which the following simpler equations hold:

v(£,Q)
AL, Q)

We will assume that every substitution 7
[Q1/R1,- -+, Qn/Ry] has a factored form. That is, every
query @; is of the form (R; — D;) W A;. Note that (1) if
n= %, then D; = VR; and A4; = AR;, and (2) if n = E,
then D; = AR; and A; = VR;.

A factored substitution is called weakly minimal if
D; C R;. Note that any factored substitution n can
be transformed into an equivalent weakly or strongly
minimal substitution.

A simple transaction is called weakly minimal if Tisa
weakly minimal substitution. Similarly, a log £ is called
weakly minimal if £ is a weakly minimal substitution.
This amounts to declaring that AR; C R; is a database
invariant, for each table R;. As we will see in the next
section, care must be taken to guarantee that these
invariants are maintained.

Figure 2 presents our algorithm for calculating
DEL(n, @) and ADD(7, @) for weakly minimal substi-
tutions. When @ is ¢ or {z}, then DEL(n, @)
ADD(n,Q) = ¢. This algorithm is derived from the
same change propagation rules for the bag algebra that
were used in [GL95] to derive a strongly minimal al-
gorithm. The functions V(7,Q), A(T,Q), Y(L,Q),
A(L, Q) can be derived straightforwardly from Figure 2.
For example, the equation for DEL(n, F = F) in Figure 2
gives rise to the equation

ApD(L, Q)
DEL(L, Q).

V(T,E=F) = (V(T,E)wA(T,F))min(E = F),



@ | DEL(n, Q)

R; D;, where U(Ri) = (Rz - Di) W A;

op(E) | op(DEL(, E))

II4(F) | 14(DEL(n, E))

«(B) | «(DvL(n, B)) - (B = DeL(n, B))

EwF | DEL(n, E) W DEL(y, F)

E - F | (DEL(n, E) W ADD(n, F))min(E ~ F)

E x F | (DEL(n, E) x DEL(n, F)) W (DEL(n, E) X (F ~ DEL(n, F))) W ((E ~ DEL(n, E)) x DEL(7, F))
(@ | App(n, Q)

R; A;, where U(Ri) = (Rz - Di) W A;

op(E) | 0p(ADD(n, E))

T4(E) | ITa(ADD(n, E))

«(B) | «(AbD(n, B)) - (B = DeL(7, E))

EwF | App(n, E)w ADD(n, F)

B=F | ((Abb(n, B) ® Dew(n, F)) = (F = B)) = (DEL(n, B) & AbD (7, F)) = (E = F))

E x F | (ApD(n, E) x ADD(n, F)) W (ADD(7, E) x (F ~ DEL(7, F))) W ((E =~ DEL(n, E)) x ADD(7, F))

Figure 2: Mutually Recursive functions DEL(n, @) and Apb(n, Q).

as well as its dual equation

def

A(L,E-F) (A(L,E)W V(L,F))min(E ~ F).

Theorem 2 (Correctness of Differentiation) For
any query @ and any weakly minimal substitution 7,

(a) 7(Q) = (@ =~ DEL(n, Q)) W ApD(7, Q),
(b) DEL(7,Q) C Q.

It can be verified that our post-update algorithm
gives the correct answers in the examples presented in
Section 1.2.

One of the reasons that we chose to use a weakly
minimal solution in this paper is that the expressions

O

are somewhat less complicated than for other solutions,
and the algorithm can be seen as a generalization
of [BLT86, Han87] to the full bag algebra BA.

It should be emphasized that the issue of minimality
of incremental algorithms is completely orthogonal
to the problem of maintaining views in a deferred
manner. Any abstract transaction can be transformed
into an equivalent (weakly or strongly) minimal simple
transaction, and the same is true for logs. The
algorithms in Figure 2, and those of Section 5.1
could be modified to maintain any combination of
the minimality conditions (a) and (b), including no
minimality constraints at all. For example, in order
to produce a strongly minimal solution, one could use
the strongly minimal incremental algorithm presented
in [GL95], and then modify the algorithms in Figure 3
by enforcing strong minimality.
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4.2 How the state bug has been avoided

There are two ways of directly using the pre-update
algorithm in the post-update state. The first is
exemplified by [Han87], where differential tables are
used to suspend the application of changes to database
tables. In other words, updates are not actually applied
but simply stored in differential tables. Past values of
base tables are directly available and do not have to be
computed. In this way, the pre-update algorithm will
give the correct result. However, this approach is not
sufficiently general since it assumes that all database
tables are implemented with differential tables. This
assumption may be unrealistic in many applications.

The second method can be explained with this
observation:

Remark 1 For certain restricted classes of views and
updates, the equations derived by the pre-update and
post-update algorithms produce the same results upon
evaluation in the post-update state.

For example, it can be shown that if @ is an SPJ query
without self-joins, 7 is a weakly minimal transaction
that inserts into and/or deletes from a single table
R, and log L records only the changes of one such
transaction T, then V(7,Q) = ¥(£,Q)and A(T,Q) =
A(L,Q)

If these restrictions are relaxed even slightly (i.e., an
SPJ query is allowed to have self-joins, or multiple tables
are updated), then it is easy to find examples of views
and/or updates for which the pre-update algorithms
of [BLT86, GL95, Han87, QW91] will give incorrect



results if the incremental queries are evaluated in the
post-update state.

5 Algorithms and Policies

This section presents algorithmic solutions for the three
scenarios of deferred view maintenance described in
Section 3. Each set of algorithms can be used to
implement a wide range of view update policies. By a
policy we mean a scheme by which the refresh functions
are actually invoked for a given view. For example,
in the simple scenario defined by invariant INVyg, the
function refreshy;, could be invoked (1) only on demand
by a user, (2) whenever the table MV is queried, or (3)
in a periodic way. The section ends with a presentation
of two policies for the INV, scenario that can be used
to minimize view downtime.

5.1 Algorithms

Figure 3 presents algorithmic solutions for the three
scenarios of deferred view maintenance described in
Section 3. The notation L:=¢ is used to abbre-
viate the operations needed to empty log tables
(YR1:=¢,..., ARp:=¢). If T1 and T, are transactions,
then 77 + 7> denotes the transaction that has the
same behavior as performing the operations of 7; and
T> simultaneously. That is, we may view 71 + 7T as
performing 77 and 73 in a way that operations in 73 do
not see the effect of operations in 73, and vice versa.

These high-level algorithms are built from two main
components: the pre- and post-update differential
algorithms presented in Section 4, and a method for
composing two sequential updates into a single update.
The latter is provided by the following lemma.

Lemma 3 (Weakly Minimal Composition)

Suppose that O, I, I, D1 and Dy are queries such

that D; C O and Dy C (O=~Dy)WI,. Let Dy &

Dy W(Dy = 1)) and Is & (I = Dy) W I. Then
(a) (((O ;Dl) L‘!‘JIl) '—Dz) L‘!‘JIz = (O ;D3) L‘!‘JI3,
(b) D; CO.

As an example, we show how propagate, from
Figure 3 is derived. Equation (2) in Section 4 tells us
that

Q = (PAST(L,Q) = V(£,Q)) W A(L, Q),
and invariant INV, tells us that

PAST(L,Q) = (MV =VMV)yAMV.
This implies that
Q (MV =VMV)d AMV)=V(L,Q))WA(L,Q).
By the composition lemma, we then get

Q=(MV - (VMV W (V(L,Q) - AMV)))y
((AMV =V(L,Q)) WAL, Q).
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5.2 Correctness

As discussed in Section 4.1 our solutions will impose
the following minimality invariants, in addition to the
invariants described in Figure 1. In the two cases that
use a log L, we require that the invariants AR; C R;
be maintained. In the two cases that use differential
tables we will require that the invariant VMV C MV
be maintained.

The following lemma tells us that the transactions
of Figure 3 correctly extend the log and maintain the
minimality invariants.

Lemma 4 Suppose that L is a weakly minimal log,
Sp A sc, and T is a weakly minimal transaction. Then

Sp A (makesafeg,[T])(sc). Furthermore, the transaction
makesafeg,[7] is safe for AR; C R; for each table R;,
and the transactions makesaferr[T] and propagate, are
safe for VMV C MV. a

The following theorem tells us that our algorithms
meet the specifications given in Section 3.

Theorem 5 The algorithms of Figure 3 are correct.
That is, every transaction makesafe,[7] is safe for INV,
for x being BL, DT and C. The refresh transactions are
correct:

{INV,}refresh,{@ = MV}
In addition, the following holds:

{INVc} propagate, {@ = (MV =VMV)WAMV}
{INV} partial_refresh, {PasT(L, Q) MV}

O

5.3 Minimizing view downtime

The two transactions, propagate, and partial_refresh,
of the INV, scenario allow for a very rich set of
maintenance policies. We now present two policies for
that scenario and describe how they minimize view
downtime.

Policy 1: Every %k time wunits, the transaction
propagate,, is invoked to propagate changes from the
log £ to the differential tables, VMV and A MV.
Every m time units (m > k), the view table MV is
brought up-to-date using refresh,.

Policy 2: The use of propagate, is the same as that
in Policy 1. Every m time units (m > k), the view
table MV is partially refreshed using partial_refresh ..

With both policies, per-transaction overhead is min-
imized since makesafec[7] only adds the work required
to update the log tables. Policy 1 can be expected to
have a refresh time much lower than that of the INVg,
scenario. This is because much of the work of comput-
ing incremental changes has already been done during
periodic propagation. Policy 2 has the least downtime



INVg,: PAST(L,Q) = MV

makesafeg,[7] = {
refreshy, = {MV:=

AR, =

VR, := VR, W (VR; -
(AR; = VR;) & AR
(MV = ¥(L£,Q)) W A(c Q),

_|_

A

INVpy: Q =

(MV =VMV)&AMV

makesafe,[7] = {
refresh,, = {MV:=

VMV := VMV W (V(T,Q) -
AMV :=(AMV =v(T,Q)) ¥ A(T, Q)
(MV = VMV)y$AMV,

AMY), }+T

YMV:i=¢, AMV:i=¢}

(MV =VMV)&AMV

refresh

VMV := VMV W (Y(L,Q) ~ AMV),
AMV := (AMV =¥(L,Q)) W A(L,Q),

INVg : PAST(L, Q) =
makesafec[7T] = makesafes,[7]
propagate, —

L:=¢
partial_refresh, = refreshpy

(propagate followed by partial_refresh )
(partial_refresh, followed by refreshyg;,)

or

Figure 3: Deferred View Maintenance Algorithms

since it merely applies the precomputed differential ta-
bles to the view table. Policy 2 refreshes the view to
a state that is at most k& time units out-of-date. This
policy is appropriate for applications that can tolerate
data that is slightly out-of-date (assuming & is small).

One can minimize view downtime further by remov-
ing, from VMV and A MV, tuples that exist in both
VMYV and AMV. Such a solution would be generated
by using strong minimality (Section 3.4), and requires
a strongly minimal analog of Lemma 3.

Example 5.4 Again we consider the retail application
of Section 1.1. Suppose that we use the INV, scenario
for the materialized view MV, and maintain logs on the
changes to the sales table. In this example, the refresh
period is 24 hours (m = 24). Suppose that propagation
is done every hour (k = 1).

Using Policy 1, we can expect the downtime to be
much smaller than it would be in the INVy, scenario,
since the log would contain at most an hour’s worth
of changes rather than a day’s worth. The refresh of
Policy 2 results in a view table that is no more than one
hour out-of-date, and has the minimal downtime. a

Of course, there are many possible variations on these
two policies. For example, rather than using a fixed
interval k, the transaction propagate_, could be invoked
asynchronously whenever any free cycles are available.
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Similarly, refresh, or partial_refresh, could be invoked

only when a user queries the view.

6 Related Work

Several incremental view maintenance algorithms for
immediate maintenance have been proposed [BLTS86,
GL95, Han87, QW91]. These algorithms are based
on the assumption that access to the pre-update base
tables is available. Equations that involve both pre-
update and post-update base tables are presented in
[CW91, GMS93]. In [CW91], the incremental changes
are computed in the post-update state. The pre-update
state of a table is computed from its post-update state
and from the transition tables that contain update
information. Our future queries are similar to the when-
clause of [GHJ96].

Research related to deferred view maintenance has
focussed on two main issues: (a) computing the changes
to the view and (b) applying the changes to the view.
The work on computing updates has involved issues
such as the types of auxiliary information needed to
compute incremental changes, and detecting relevant
updates. All of this work, however, has been done in
the context of restrictive classes of views. Database
snapshots were proposed in [AL80] as a means of
providing access to old database states and also as a



way of optimizing the performance of large, distributed
databases. An algorithm for determining the changes
that should be made to snapshots (restricted to select-
project views over base tables) is presented in [LH86].
Techniques for maintaining update logs to allow efficient
detection of relevant updates to select-project views are
given in [KR87] and [SP89]. Deferred maintenance for
select-join views is implemented in ADMS [RK86].

Issues related to the process of applying the com-
puted updates to the view have been studied in [SR8S§]
and [AGK95]. The problem of determining the optimal
refresh frequency, based on queueing models and pa-
rameterization of response time and processing cost con-
straints, has been investigated in [SR88]. View refresh
strategies based on different priorities for transactions
that apply computed updates to a view and transac-
tions that read a view are presented in [AGK95]. While
our paper is also concerned with the issue of balancing
the costs of refresh with the constraints of other trans-
actions, the focus is on high-level algorithms for incre-
mental maintenance based on the various methods of
keeping auxiliary information to achieve this balance.
A comparison of view processing techniques based on
non-materialization, and immediate and deferred view
maintenance is presented in [Han87]. The algorithms
for deferred maintenance used in that paper are based
on future updates and hypothetical tables.

7 Future work

There are many directions for future work.  For
example, are there algorithms to refresh only those
parts of a view needed by a given query? How
should log information be stored so that the work
done by makesafeg,[7] is minimal, and independent
of the number of views supported? What are the
problems related to concurrency control in the presence
of materialized views?
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