
Expressive Power of SQLLeonid Libkin a;�;1aDepartment of Computer Siene, University of Toronto, Toronto, OntarioM5S 3H5, CanadaAbstratIt is a folk result in database theory that SQL annot express reursive queriessuh as reahability; in fat, a new onstrut was added to SQL3 to overome thislimitation. However, the evidene for this laim is usually given in the form of areferene to a proof that relational algebra annot express suh queries. SQL, onthe other hand, in all its implementations has three features that fundamentallydistinguish it from relational algebra: namely, grouping, arithmeti operations, andaggregation.In the past few years, most questions about the additional power provided bythese features have been answered. This paper surveys those results, and presentsnew simple and self-ontained proofs of the main results on the expressive power ofSQL. Somewhat surprisingly, tiny di�erenes in the language de�nition a�et theresults in a dramati way: under some very natural assumptions, it an be provedthat SQL annot de�ne reursive queries, no matter what aggregate funtions andarithmeti operations are allowed. But relaxing these assumptions just a tiny bitmakes the problem of proving expressivity bounds for SQL as hard as some long-standing open problems in omplexity theory.
1 IntrodutionWhat queries an one express in SQL? Perhaps more importantly, one wouldlike to know what queries annot be expressed in SQL { after all, it is theinability to express ertain properties that motivates language designers toadd new features (at least one hopes that this is the ase).� Corresponding author.Email address: libkin�s.toronto.edu (Leonid Libkin).1 Researh aÆliation: Bell Labs.Preprint submitted to Theoretial Computer Siene

This seems to be a rather basi question that database theoretiians shouldhave produed an answer to by the beginning of the 3rd millennium. After all,we have been studying the expressive power of query languages for some 20years now (and in fat more than that, if you ount earlier papers by logiianson the expressiveness of �rst-order logi), and SQL is the de-fato standard ofthe ommerial database world { so there surely must be an answer somewherein the literature.When one thinks of the limitations of SQL, its inability to express reahabilityqueries omes to mind, as it is well doumented in the literature (in fat, inmany database books written for very di�erent audienes, e.g. [1,5,7,26℄). Letus onsider a simple example: suppose that R(Sr,Dest) is a relation withight information: Sr stands for soure, and Dest for destination. To �ndpairs of ities (A;B) suh that it is possible to y from A to B with one stop,one would use a self-join as follows.SELECT R1.Sr, R2.DestFROM R AS R1, R AS R2WHERE R1.Dest=R2.SrWhat if we want pairs of ities suh that one makes two stops on the way?Then we do a more ompliated self-join shown below.SELECT R1.Sr, R3.DestFROM R AS R1, R AS R2, R AS R3WHERE R1.Dest=R2.Sr AND R2.Dest=R3.SrTaking the union of these two and the relation R itself we would get the pairs ofities suh that one an y from A to B with at most two stops. But often oneneeds a general reahability query in whih no a priori bound on the numberof stops is known; that is, whether it possible to get to B from A.Graph-theoretially, this means omputing the transitive losure of R. It is wellknown that the transitive losure of a graph is not expressible in relationalalgebra or alulus; in partiular, expressions similar to those above (whihhappen to be unions of onjuntive queries) annot possibly express it. Thisappears to be a folk result in the database ommunity; while many papers dorefer to [2℄ or some other soure on the expressive power of �rst-order logi,many texts just state that relational algebra, alulus and SQL annot expressreursive queries suh as reahability.2

With this limitation in mind, the SQL3 standard introdued reursion ex-pliitly into the language [7,12℄. One would write the reahability query asfollows.WITH RECURSIVE TrCl(Sr,Dest) ASRUNIONSELECT TrCl.Sr, R.DestFROM TrCl, RWHERE TrCl.Dest = R.SrSELECT * FROM TrClThis simply models the usual datalog rules for transitive losure:trl(x; y) :- r(x; y)trl(x; y) :- trl(x; z); r(z; y) :When a new onstrut is added to a language, a good reason must exist forit, espeially if the language is a delarative query language, with a smallnumber of onstruts, and with programmers relying heavily on its optimizer.The reason for introduing reursion in the next SQL standard is preisely thisfolk result stating that it annot be expressed in the language. But when onelooks at what evidene is provided to support this laim, one noties that allthe referenes point to papers in whih it is proved that relational algebra andalulus annot express reursive queries. Why is this not suÆient? Considerthe following querySELECT 1FROM R1WHERE (SELECT COUNT(*) FROM R1) >(SELECT COUNT(*) FROM R2)This query tests if jR1 j>jR2 j: in that ase, it returns 1, otherwise it returnsthe empty set. However, logiians proved it long time ago that �rst-order logi,and thus relational alulus, annot ompare ardinalities of relations (f. [1℄),and yet we have a very simple SQL query doing preisely that.The onlusion, of ourse, is that SQL has more power than relational algebra,and the main soure of this additional power is its aggregation and groupingonstruts, together with arithmeti operations on numerial attributes. Butthen one annot say that the transitive losure query is not expressible in SQLsimply beause it is inexpressible in relational algebra. Thus, it might appearthat the folk theorem about reursion and SQL is an unproven statement.3

Fortunately, this is not the ase: the statement was (partially) proved in thepast few years; in fat, a series of papers proved progressively stronger results,�nally establishing good bounds on the expressiveness of SQL.The main goal of the paper is twofold:(a) We give an overview of these reent results on the expressiveness of SQL.We shall see that some tiny di�erenes in the language de�nition a�et theresults in a dramati way: under some assumptions, it an be shown thatreahability and many other reursive queries are not expressible in SQL.However, under a slightly di�erent set of assumptions, the problem of prov-ing expressivity bounds for SQL is as hard as separating some omplexitylasses.(b) Due to a variety of reasons, even the simplest proofs of expressivity resultsfor SQL are not easy to follow; partly this is due to the fat that mostpapers used the setting of their predeessors that had unneessary ompli-ations in the form of nested relations, somewhat unusual (for mainstreamdatabase people) languages and in�nitary logis. Here we get rid of thoseompliations, and present a simple and self-ontained proof of expressivitybounds for SQL.Organization In the next setion, we disuss the main features that distin-guish SQL from relational algebra, in partiular, aggregate funtions. We thengive a brief overview of the literature on the expressive power of SQL.Starting with Setion 3, we present those results in more detail. We introduerelational algebra with grouping and aggregates, Algaggr, that essentially ap-tures basi SQL statements. Setion 4 states the main result on the expressivepower of SQL, namely that queries it an express are loal. If one thinks ofqueries on graphs, it means that the deision whether a tuple ~t belongs to theoutput is determined by a small neighborhood of ~t in the input graph; thereahability query does not have this property.Setion 5 de�nes an aggregate logi Laggr and shows a simple translation of thealgebra with aggregates Algaggr into this logi. Then, in Setion 6, we presenta self-ontained proof of loality of Laggr (and thus of Algaggr).In previous papers on the expressive power of SQL [24,25,22,18℄, we usedlanguages of a rather di�erent avor, based on strutural reursion [4℄ andomprehensions [30℄. In Setion 7, we show that those languages are at mostas expressive as Algaggr.In Setion 8, we onsider an extension Alg<aggr of Algaggr in whih non-numerial order omparisons are allowed, and show that it is more powerfulthan the unordered version. Furthermore, no nontrivial bounds on the expres-siveness of this language an be proved without answering some deep open4

problems in omplexity theory.Setion 9 gives a summary and onluding remarks.2 SQL vs. Relational AlgebraWhat exatly is SQL? There is, of ourse, a very long standard, that listsnumerous features, most of whih have very little to do with the expressive-ness of queries. As far as expressiveness is onerned, the main features thatdistinguish SQL from relational algebra, are the following:� Aggregate funtions: one an ompute, for example, the average value in aolumn. The standard aggregates in SQL are COUNT, SUM, AVG, MIN, MAX.� Grouping: not only an one ompute aggregates, one an also group themby values of di�erent attributes. For example, it is possible to ompute theaverage salary for eah department.� Arithmeti: SQL allows one to apply arithmeti operations to numerialvalues.For example, for relations S1(Empl,Dept) and S2(Empl,Salary), the follow-ing query (assuming that Empl is a key for both relations) omputes the av-erage salary for eah department whih pays total salary at least 100,000:
(�) SELECT S1.Dept, AVG(S2.Salary)FROM S1, S2WHERE S1.Empl=S2.EmplGROUPBY S1.DeptHAVING SUM(S2.Salary) > 100000Next, we address the following question: what is an aggregate funtion? The�rst paper to look into this was probably [20℄: it de�ned aggregate funtionsas f : R ! Num, where R is the set of all relations, and Num is a numerialdomain. A problem with this approah is that it requires a di�erent aggregatefuntion for eah relation and eah numerial attribute in it; that is, we do nothave just one aggregate AVG, but in�nitely many of those. This ompliationarises from dealing with dupliates in a olumn. However, dupliates an beinorporated in a muh more elegant way, as suggested in [14℄, whih we shallfollow here. Aording to [14℄, an aggregate funtion F is a olletionF = ff0; f1; f2; : : : ; f!g5

where fk is a funtion that takes a k-element multiset (bag) of elements ofNum and produes an element of Num. For tehnial reasons, we also adda onstant f! 2 Num whose intended meaning is the value of F on in�nitemultisets. For example, if Num is N , or Q , or R, we de�ne the aggregateP = fs0; s1; : : :g by sk(fjx1; : : : ; xkjg) = Pki=1 xi; furthermore, s0 = s! = 0(we use the fj jg brakets for multisets). This orresponds to SQL's SUM. ForCOUNT, one de�nes C = f0; 1; : : :g with k returning k (we may again assume! = 0). The aggregate AVG is de�ned as A = fa0; a1; : : :g with ak(X) =sk(X)k(X) , a0 = a! = 0. For MAX, we de�ne the aggregate fmax 0;max 1; : : :g withmaxk(fjx1; : : : ; xkjg) = maxi�k xi, max 0 = max! = 0, and likewise for MIN.Languages that model SQL and their expressive powerIt is very hard to prove formal statements about a language like SQL: to put itmildly, its syntax is not very easy to reason about. The researh ommunity hasome up with several proposals of languages that apture the expressivenessof SQL. The earliest one is perhaps Klug's extension of relational algebra bygrouping and aggregation [20℄: if e is an expression produing a relation withm attributes, ~A is a set of attributes, and f is an aggregate funtion, theneh ~A; fi is a new expression that produes a relation with m + 1 attributes.Assuming f applies to attribute A0, and ~B is the list of all attributes of theoutput of e, the semantis is best explained by SQL:SELECT ~B, f(A0)FROM eGROUPBY ~AKlug's paper did not analyze the expressive power of this algebra, nor did itshow how to inorporate arithmeti operations. The main ontribution of [20℄is an equivalene result between the algebra and an extension of relational al-ulus. However, the main fous of that extension is its safety, and the resultinglogi is extremely hard to deal with, due to many syntati restritions.To the best of my knowledge, the �rst paper that diretly addressed the prob-lem of the expressive power of SQL, was the paper by Consens and Mendel-zon in ICDT'90 [6℄. They have a datalog-like language, whose nonreursivefragment is exatly as expressive as Klug's algebra. Then they show thatthis language annot express the transitive losure query under the assump-tion that DLOGSPACE is properly inluded in NLOGSPACE. The reasonis simple: Klug's algebra (with some simple aggregates) an be evaluated inDLOGSPACE, while transitive losure is omplete for NLOGSPACE.6

That result an be viewed as a strong evidene that SQL is indeed inapableof expressing reahability queries. However, it is not ompletely satisfatoryfor three reasons. First, nobody knows how to separate omplexity lasses.Seond, what if one adds more omplex aggregates that inrease the om-plexity of query evaluation? And third, what if the input graph has a verysimple struture (for example, no node has outdegree more than 1)? In thisase reahability is in DLOGSPACE, and the argument of [6℄ does not work.In early 90s, many people were looking into languages for olletion types.Funtional statially typeheked query languages beame quite fashionable,and they were produed in all kinds of avors, depending on partiular olle-tion types they had to support. It turned out that a set language apturingessentially the expressive power of a language for bags, ould also model all theessential features of SQL [24℄. The problem was that the language dealt withnested relations, or omplex objets. But then [24℄, extending [28,31℄, proved aonservativity result, stating that nested relations are not really needed if theinput and output do not have them. That made it possible to use a non-nestedfragment of languages inspired by strutural reursion [4℄ and omprehensions[30℄ as a \theoretial reonstrution of SQL."Several papers dealt with this language, and proved a number of expressivitybounds. The �rst one, appearing in PODS'94 [24℄, showed that the languageould not express reahability queries. The proof, however, was very far fromideal. It only proved inexpressibility of transitive losure in a way that wasvery unlikely to extend to other queries. It relied on a ompliated syntatirewriting that would not work even for a slightly di�erent language. And theproof would not work if one added more aggregate funtions.The �rst limitation was addressed in [8℄ where a ertain general property ofqueries expressible in SQL was established. However, the other two problemsnot only remained, but were exaerbated: the rewriting of queries beamepartiularly unpleasant. In an attempt to remedy this, [22℄ gave an indiretenoding of a fragment of SQL into �rst-order logi with ounting, FO(C) (itwill be formally de�ned later). The restrition was to natural numbers, thusexluding aggregates suh as AVG. The enoding is bound to be indiret, sineSQL is apable of expressing queries that FO(C) annot express. The enodingshowed that for any query Q in SQL, there exists an FO(C) query Q0 thatshares some nie properties with Q. Then [22℄ established some propertiesof FO(C) queries and transferred them to that fragment of SQL. The proofwas muh leaner than the proofs of [24,8℄, at the expense of a less expressivelanguage.After that, [25℄ showed that the oding tehnique an be extended to SQLwith rational numbers and the usual arithmeti operations. The prie to paywas the readability of the proof { the enoding part beame very unpleasant.7

That was a good time to pause and see what must be done di�erently. Howdo we prove expressivity bounds for relational algebra? We do it by provingbounds on the expressiveness of �rst-order logi (FO) over �nite strutures,sine relational algebra has the same power as FO. So perhaps if we ouldput aggregates and arithmeti diretly into logi, we would be able to proveexpressivity bounds in a nie and simple way?That program was arried out in [18℄, and I shall survey the results below.One problem with [18℄ is that it inherited too muh unneessary mahineryfrom its predeessors [24,8,25,22,23℄: one had to deal with languages for om-plex objets and apply onservativity results to get down to SQL; logis werein�nitary to start with, although in�nitary onnetives were not neessaryto translate SQL; and expressivity proofs went via a speial kind of gamesinvented elsewhere [16℄.Here we show that all these ompliations are ompletely unneessary: thereis indeed a very simple proof that reahability is not expressible in SQL,and this proof will be presented below. Our language is a slight extension ofKlug's algebra (no nesting). We translate it into an aggregate logi (with noin�nitary onnetives) and prove that it has nie loality properties (withoutusing games).3 Relational algebra with aggregatesTo deal with aggregation, we must distinguish numerial olumns (to whihaggregates an be applied) from non-numerial ones. We do it by typing: atype of a relation is simply a list of types of its attributes.We assume that there are two base types: a non-numerial type b with domainDom, and a numerial type n, whose domain is denoted by Num (it ould beN ;Z;Q ;R , for example).A type of a relation is a string over the alphabet fb; ng. A relation R of typea1 : : : am has m olumns, the ith one ontaining entries of type ai. In otherwords, suh a relation is a �nite subset ofmYi=1 dom(ai)where dom(b) = Dom and dom(n) = Num. For example, the type ofS2(Empl,Salary) is bn. For a type t, t:i denotes the ith position in the string.The length of t is denoted by j t j.A database shema SC is a olletion of relation names Ri and their types ti;8

we write Ri : ti if the type of Ri is ti.Next, we de�ne expressions of relational algebra with aggregates,Algaggr(
;�), parameterized by a olletion
 of funtions and prediateson Num, and a olletion � of aggregates, over a given shema SC . Expres-sions are divided into three groups: the standard relational algebra, arithmeti,and aggregation/grouping. In what follows, m stands for j t j, and i1; : : : ; ik fora sequene 1 � i1 < : : : < ik � m.Relational AlgebraShema Relation If R : t is in SC , then R is an expression of type t.Permutation If e is an expression of type t and � is a permutation off1; : : : ; mg, then ��(e) is an expression of type �(t).Boolean Operations If e1; e2 are expressions of type t, then so are e1 [e2; e1 \ e2; e1 � e2.Cartesian Produt For e1 : t1, e2 : t2, e1 � e2 is an expression of typet1 � t2.Projetion If e is of type t, then �i1;:::;ik(e) is an expression of type t0 wheret0 is the string omposed of t:ijs, in their order.Seletion If e is an expression of type t, i; j � m, and t:i = t:j, then �i=j(e)is an expression of type t. ArithmetiNumerial Seletion If P � Numk is a k-ary numerial prediate from
,and i1; : : : ; ik are suh that t:ij = n, then �[P ℄i1;:::;ik(e) is an expression oftype t for any expression e of type t.Funtion Appliation If f : Numk ! Num is a funtion from
, i1; : : : ; ikare suh that t:ij = n, and e is an expression of type t, then Apply[f ℄i1;:::;ik(e)is an expression of type t � n.Constants If is a onstant (viewed as a funtion of arity k = 0), thenApply[℄� is an expression of type n. (Here � refers to taking no argument,as a funtion of arity 0.)Aggregation and GroupingAggregation Let F be an aggregate from �. For any expression e of typet and i suh that t:i = n, Aggr[i : F ℄(e) is an expression of type t � n.Grouping Assume e : t is an expression over SC [fS : sg. Let e0 be anexpression of type u � s over SC , where ju j= l. Then Groupl[�S:e℄(e0) is anexpression of type u � t.Semantis For the relational algebra operations, this is standard. The opera-tion �� is permutation: eah tuple (a1; : : : ; am) is replaed by (a�(1); : : : ; a�(m)).The ondition i = j in the seletion prediate means equality of the ith and9

the jth attribute: (a1; : : : ; am) is seleted if ai = aj. Note that using Booleanoperations we an model arbitrary ombinations of equalities and disequalitiesamong attributes.For numerial seletion, �[P ℄i1;:::;ik selets (a1; : : : ; am) i� P (ai1 ; : : : ; aik)holds. Funtion appliation replaes eah (a1; : : : ; am) with(a1; : : : ; am; f(ai1; : : : ; aik)). Apply[℄� produes the relation fg.The aggregate operation is SQL SELECT ~A;F(Ai) FROM e, where ~A =(A1; : : : ; Am) is the list of attributes. More preisely, if e evaluates to~a1; : : : ;~ap where ~aj = (a1j ; : : : ; amj), then Aggr[i : F ℄(e) replaes eah ~aj with(a1j ; : : : ; amj ; f) where f = F(fjai1; : : : ; aipjg).Finally, Groupl[�S:e℄(e0) groups the tuples by the values of their �rst l at-tributes and applies e to the sets formed by this grouping. For example:a1 b1a1 b2a2 1a2 2 ! a1 b1b2a2 12 �S:e�! a1 d1d2a2 g1 ! a1 d1a1 d2a2 g1assuming that e returns fd1; d2g when S = fb1; b2g, and e returns fg1g forS = f1; 2g.Formally, let e0 evaluate to f~a1; : : : ;~apg. We split eah tuple ~aj = (a1j ; : : : ; amj)into ~a0j = (a1j ; : : : ; alj) that ontains the �rst l attributes, and ~a00j =(al+1j ; : : : ; amj) that ontains the remaining ones. This de�nes, for eah ~aj, a setSj = f~a00r j ~a0r = ~a0jg. Let Tj = f~b1j ; : : : ;~bmjj g be the result of applying e with Sinterpreted as Sj. Then Groupl[�S:e℄(e0) returns the set of tuples of the form(~a0j;~bij), 1 � j � p, 1 � i � mj.Klug's algebra This algebra is one of the most popular theoretial languagesfor aggregate funtions. It does not split grouping and aggregation, and om-bines them in the same operation as follows:Grouping & Aggregation Let t be of lengthm. Let l < i1 < : : : < ik � mwith t:ij = n, and let F1; : : : ;Fk be aggregates from �. Then, for e anexpression of type t, Aggrl[i1 : F1; : : : ; ik : Fk℄ is an expression of typet � n : : : n (t with k ns added at the end).The semantis is best explained by SQL:10

SELECT #1; : : : ;#m;F1(#i1); : : : ;Fk(#ik)FROM EGROUPBY #1; : : : ;#lwhere E is the result of the expression e. (As presented in [20℄, the algebradoes not have arithmeti operations, and the aggregates are limited to thestandard �ve.)Note that there are no higher-order operators in Klug's algebra, and that itis expressible in our algebra with aggregates, as Aggrl[i1 : F1; : : : ; ik : Fk℄(e0)is equivalent to Groupl[�S:e℄(e0), where e isAggr[ik � l : Fk℄(Aggr[ik�1 � l : Fk�1℄(� � � (Aggr[i1 � l : F1℄(S)) � � �))Note also that relational algebra extended with a grouping operator similarto Group was studied in [21℄.Example The query (�) from Setion 2 is de�ned by the following expression(whih uses the operator ombining grouping with aggregation):�1;4(�[> 100000℄5((Aggr1[3 : A; 3 : �℄(�2;3;4(�1=3(S1 � S2))))))where A is the aggregate AVG, P is SUM, and > 100000 is a unary prediateon N whih holds of numbers n > 100000.Example The only aggregate that an be applied to non-numerial attributesin SQL is COUNT that returns the ardinality of a olumn. It an be easilyexpressed in Algaggr as long as the summation aggregate P and onstant 1are present. We show how to de�ne Countm(e):SELECT #1; : : : ;#m� 1,COUNT(#m)FROM EGROUPBY #1; : : : ;#m� 1First, we add a new olumn, whose elements are all 1s: e1 = e � Apply[1℄�.Then de�ne an expression e0 = Aggr[2 : �℄(S), and use it to produee2 = Groupm�1[�S:e0℄(e1):This is almost the answer: there are extra 2 attributes, the mth attribute of11

: : : b : : : : : :-�: : : rr : : :: : :: : : a �-- �
 	� �
 	� --- - - - -Fig. 1. A loal formula annot distinguish (a; b) from (b; a).e, and those extra 1s. So �nally we haveCountm(e) = �1;:::;m�1;m+2(Groupm�1[�S:Aggr[2 : �℄(S)℄(e� Apply[1℄�)) :4 Loality of SQL queriesWhat kind of general statement an one provide that would give us strongevidene that SQL annot express reursive queries? For that purpose, weshall use the loality of queries. Loality was the basis of a number of tools forproving expressivity bounds of �rst-order logi [15,13,11℄, and it was reentlystudied on its own and applied to more expressive logis [17,23℄.The general idea of this notion is that a query an only look at a small portionof its input. If the input is a graph, \small" means a neighborhood of a �xedradius. For example, Fig. 1 shows that reahability is not loal: just take agraph like the one shown in the piture so that there would be two pointswhose distane from the endpoints and eah other is more than 2r, where ris the �xed radius. Then the loality of query says that (a; b) and (b; a) areindistinguishable, as the query an only look at the r-neighborhoods of a andb. Transitive losure, on the other hand, does distinguish between (a; b) and(b; a), sine b is reahable from a but not vie versa.We now de�ne loality formally. We say that a shema SC is purely relationalif there are no ourrenes of the numerial type n in it. Let us �rst restritour attention to graph queries. Suppose we have a purely relational shemaR : bb; that is, the relation R ontains edges of a direted graph. Suppose e isan expression of the same type bb; that is, it returns a direted graph. Givena pair of nodes a; b in R, and a number r > 0, the r-neighborhood of a; b inR, NRr (a; b), is the subgraph on the set of nodes in R whose distane fromeither a or b is at most r. The distane is measured in the undireted graphorresponding to R, that is, R [R�1.We write (a; b) �Rr (; d) when the two neighborhoods, NRr (a; b) and NRr (; d),are isomorphi; that is, when there exists a (graph) isomorphism h betweenthem suh that h(a) = ; h(b) = d. Finally, we say that e is loal if there is anumber r, depending on e only, suh that(a; b) �Rr (; d)) (a; b) 2 e(R) i� (; d) 2 e(R):12

We have seen that reahability is not loal. Another example of a non-loalquery is a typial example of reursive query alled same-generation:sg(x; x) :-sg(x; y) :- R(x0; x); R(y0; y); sg(x0; y0) :This query is not loal either: onsider, for example, a graph onsisting of twohains: (a; b1); (b1; b2); : : : ; (bm�1; bm) and (a; 1); (1; 2); : : : ; (m�1; m). As-sume that same-generation is loal, and r > 0 witnesses that. Take m > 2r+3,and note that the r-neighborhoods of (br+1; r+1) and (br+1; r+2) are iso-morphi. By loality, this would imply that these pairs agree on the same-generation query, but in fat we have (br+1; r+1) 2 sg(R) and (br+1; r+2) 62sg(R).We now state our main result on loality of queries, that applies to the lan-guage in whih no limit is plaed on the available arithmeti and aggregatefuntions { all are available. We denote this language by Algaggr(All;All).Theorem 1 (Loality of SQL) Let e be a purely relational graph query inAlgaggr(All;All), that is, an expression of type bb over the sheme of onesymbol R : bb. Then e is loal. �That is, neither reahability, nor same-generation, is expressible in SQL overthe base type b, no matter what aggregate funtions and arithmeti operationsare available. Inexpressibility of many other queries an be derived from this,for example, tests for graph onnetivity and ayliity.Our next goal is to give an elementary, self-ontained proof of this result. Therestrition to graph queries used in the theorem is not neessary; the resultan be stated in greater generality, but the restrition to graphs makes thede�nition of loality very easy to understand. The proof will onsist of threesteps:(1) We introdue an aggregate logi Laggr, as an extension of �rst-order logi,and show how Algaggr queries are translated into it. We do it beause itis easier to prove expressivity bounds for a logi than for an algebra.(2) We show that we an replae aggregate terms of Laggr by ounting quan-ti�ers, thereby translating Laggr into a simpler logi LC. The prie to payis that LC has in�nitary onnetives.(3) We note that any use of an in�nitary onnetive resulting from translationof Laggr into LC applies to a rather uniform family of formulae, and usethis fat to give a simple indutive proof of loality of LC formulae.13

5 Aggregate logi and relational algebraOur goal here is to introdue a logi Laggr into whih we translate Algaggrexpressions. The strutures for this logi are preisely relational databasesover two base types with domains Dom and Num; that is, voabularies arejust shemas. This makes the logi two-sorted; we shall also refer to Dom as�rst-sort and to Num as seond-sort.We now de�ne formulae and terms of Laggr(
;�); as before,
 is a set ofprediates and funtions on Num, and � is a set of aggregates. The logi isjust a slight extension of the two-sorted �rst-order logi.A SC -struture D is a tuple hA;RD1 ; : : : ; RDk i, where A is a �nite subset ofDom, and RDi of type ti is a �nite subset ofjtijYj=1domj(D)where domj(D) = A for ti:j = b, and domj(D) = Num for ti:j = n.� A variable of sort i is a term of sort i, i = 1; 2.� If �; � 0 are terms of the same sort, then � = � 0 is a formula.� If R : t is in SC , and ~u is a tuple of terms of type t, then R(~u) is a formula.� Formulae are losed under the Boolean onnetives _;^;: and quanti�-ation (respeting sorts). If x is a �rst-sort variable, 9x is interpreted as9x 2 A; if k is a seond-sort variable, then 9k is interpreted as 9k 2 Num.� If P is an n-ary prediate in
 and �1; : : : ; �n are seond-sort terms, thenP (�1; : : : ; �n) is a formula.� If f is an n-ary funtion in
 and �1; : : : ; �n are seond-sort terms, thenf(�1; : : : ; �n) is a seond-sort term.� If F is an aggregate in �, '(~x; ~y) is a formula and �(~x; ~y) a seond-sortterm, then � 0(~x) = AggrF~y: ('(~x; ~y); �(~x; ~y)) is a seond-sort term with freevariables ~x.The interpretation of all the onstruts exept the last one is ompletely stan-dard. The interpretation of the aggregate term-former is as follows: �x aninterpretation ~a for ~x, and let B = f~b j D j= '(~a;~b)g. If B is in�nite, then� 0(~a) is f!. If B is �nite, say f~b1; : : : ;~blg, then � 0(~a) is the result of applyingfl to the multiset whose elements are �(~a;~bi), i = 1; : : : ; l.It is now possible to translate Algaggr into Laggr:Theorem 2 Let e : t be an expression of Algaggr(
;�). Then there is aformula 'e(~x) of Laggr(
;�), with ~x of type t, suh that for any SC-database14

D, e(D) = f~a j D j= 'e(~a)g :Proof. For the usual relational algebra operators, this is the same as the stan-dard textbook translation of algebra expressions into alulus expression. Sowe only show how to translate arithmeti operations, aggregation, and group-ing.� Numerial seletion: Let e0 = �[P ℄i1;:::;ik(e), where P is a k-ary prediate in
. Then 'e0(~x) is de�ned as 'e(~x) ^ P (xi1 ; : : : ; xik).� Funtion appliation: Let e0 = Apply[f ℄i1;:::;ik(e), where f : Numk ! Num isin
. Then 'e0(~x; q) � 'e(~x) ^ (q = f(xi1 ; : : : ; xik)).� Aggregation: Let e0 = Aggr[i : F ℄(e). Then 'e0(~x; q) � 'e(~x) ^ (q =AggrF~y: ('e(~y); yi)).� Grouping: Let e0 = Groupm[�S:e1℄(e2), where e1 : u is an expression overSC [fS : sg, and e2 over SC is of type t � s. Let ~x; ~y; ~z be of types t; s; u,respetively. Then'e0(~x; ~z) � 9~y 'e2(~x; ~y) ^ 'e1(~z)['e2(~x;~v)=S(~v)℄where the seond onjunt is 'e1(~z) in whih every ourrene of S(~v) isreplaed by 'e2(~x;~v). �The onverse does not hold: formulae of Laggr need not de�ne safe queries,while all Algaggr queries are safe. It is possible, however, to prove a partialonverse result; see [18℄ for more details.6 SQL is loal: the proofWe start by stating our main result in greater generality, without restritionto graph queries.Let SC be purely relational (no ourrenes of type n), and D an instaneof SC . The ative domain of D, adom(D), is the set of all elements of Domthat our in relations of D. The Gaifman graph of D is the undireted graphG(D) on adom(D) with (a; b) 2 G(D) i� a; b belong to the same tuple of somerelation in D. The r-sphere of a 2 adom(D), SDr (a), is the set of all b suhthat d(a; b) � r, where the distane d(�; �) is taken in G(D). The r-sphere of~a = (a1; : : : ; ak) is SDr (~a) = Si�k SDr (ai). The r-neighborhood of ~a, NDr (~a), isa new database, whose ative domain is SDr (~a), and whose SC -relations aresimply restritions of those relations in D. We write ~a �Dr ~b when there is anisomorphism of relational strutures h : NDr (~a)! NDr (~b) suh that in additionh(~a) = ~b. Finally, we say that a query e of type b : : : b is loal if there exists15

a number r > 0 suh that, for any database D, ~a �Dr ~b implies that ~a 2 e(D)i� ~b 2 e(D). The minimum suh r is alled the loality rank of e and denotedby lr(e).Theorem 3 Let e be a purely relational query in Algaggr(All;All), that is, anexpression of type b : : : b over a purely relational shema. Then e is loal. �Sine Algaggr(All;All) an be translated into Laggr(All;All), it suÆes to provethat the latter is loal. The proof of this is in two steps: we �rst introdue asimpler ounting logi, LC, and show how to translate Laggr into it. We thengive a simple proof of loality of LC.The logi LC is simpler than Laggr in that it does not have aggregate terms.There is a prie to pay for this { LC has in�nitary onjuntions and disjun-tions. However, the translation ensures that for eah in�nite onjuntion ordisjuntion, there is a uniform bound on the rank of formulae in it (to bede�ned a bit later), and this property suÆes to establish loality.6.1 Logi LCThe strutures for LC are the same as the strutures for Laggr. The only termsare variables (of either sort); in addition, every onstant 2 Num is a term ofthe seond sort.Atomi formulae are R(~x), where R 2 SC , and ~x is a tuple of terms (thatis, variables and perhaps onstants from Num) of the appropriate sort, andx = y, where x; y are terms of the same sort.Formulae are losed under the Boolean onnetives, and in�nitary onnetives:if 'i, i 2 I, is a olletion of formulae, then Wi2I 'i and Vi2I 'i are LC formulae.Furthermore, they are losed under both �rst and seond-sort quanti�ation.Finally, for every i 2 N , there is a quanti�er 9i that binds one �rst-sortvariable: that is, if '(x; ~y) is a formula, then 9ix '(x; ~y) is a formula whosefree variables are ~y. The semantis is as follows: D j= 9ix'(x;~a) if there arei distint elements b1; : : : ; bi 2 A suh that D j= '(bj;~a), 1 � j � i. Thatis, the existential quanti�er is witnessed by at least i elements. Note that the�rst-sort quanti�ation is superuous as 9x' is equivalent 91x '.We now introdue the notion of a rank of a formula, rk('), for both LC andLaggr. For LC, this is the quanti�er rank, but the seond-sort quanti�ationdoes not ount:� For eah atomi ', rk(') = 0. 16

� For ' = Wi ', rk(') = supi rk('), and likewise for V.� rk(:') = rk(').� rk(9ix ') = rk(') + 1 for x �rst-sort; rk(9k') = rk(') for k seond-sort.For Laggr, the de�nition di�ers slightly.� For a variable or a onstant term, the rank is 0.� The rank of an atomi formula is the maximum rank of a term in it.� rk('1 � '2) = max(rk('1); rk('2)), for � 2 f_;^g; rk(:') = rk(').� rk(f(�1; : : : ; �n)) = max1�i�n rk(�i).� rk(9x') = rk(') + 1 if x is �rst-sort; rk(9k') = rk(') if k is seond-sort.� rk(AggrF~y: ('; �)) = max(rk('); rk(�))+m, where m is the number of �rst-sort variables in ~y.6.2 Translating Laggr into LCThis is the longest step in the proof, but although it is somewhat tedious,oneptually it is quite straightforward.Proposition 1 For every formula '(~x) of Laggr(All;All), there exists an equiv-alent formula 'Æ(~x) of LC suh that rk('Æ) � rk(').Proof. We start by showing that one an de�ne a formula 9i~x' in LC, whosemeaning is that there exist at least i tuples ~x suh that ' holds. Moreover, itsrank equals rk(') plus the number of �rst-sort variables in ~x. The proof is byindution on the length of ~x. If ~x is a single �rst-sort variable, then the ountingquanti�er is already in LC. If k is a seond-sort variable, then 9ik'(k; �) isequivalent to WC V2C '(; �), where C ranges over i-element subsets of Num {this does not inrease the rank. Suppose we an de�ne it for ~x being of lengthn. We now show how to de�ne 9i(y; ~x)' for y of the �rst sort, and 9i(k; ~x)'for k of the seond sort.(1) Let (~z) � 9i(y; ~x)'(y; ~x; ~z). It is the ase that there are at least ituples (bj;~aj) satisfying '(y; ~x; �) i� one an �nd an l-tuple of pairs((n1; m1); : : : ; (nl; ml)) with all mjs distint, suh that{ there are at least nj tuples ~a for whih the number of elements b satis-fying '(b;~a; �) is preisely mj, and{ Plj=1 nj �mj � i.Thus, (~z) is equivalent to_ l̂j=19nj~x (9!mjy '(y; ~x; ~z))where the disjuntion is taken over all the tuples satisfying nj; mj > 0,17

mjs distint, andPlj=1 nj �mj � i (it is easy to see that a �nite disjuntionwould suÆe), and 9!nu' abbreviates 9nu' ^ :9(n + 1)u'.The rank of this formula equals rk(9!mjy') = rk(') + 1, plus thenumber of �rst-sort variables in ~x (by the indution hypothesis) { thatis, rk(') plus the number of �rst-sort variables in (y; ~x).(2) Let (~z) � 9i(k; ~x)'(k; ~x; ~z). The proof is idential to the proof above upto the point of writing down the quanti�er 9!mjk'(k; �) { it is replaedby the formula WC(V2C '(; �) ^ V62C :'(; �)) where C ranges over mj-element subsets of Num. As the rank of this equals rk('), we onludethat the rank of the formula equivalent to (~z) equals rk(') plus thenumber of �rst-sort variables in ~x.This onludes the proof that ounting over tuples is de�nable in LC. Withthis, we prove the proposition by indution on the formulae and terms. Wealso produe, for eah seond-sort term �(~x) of Laggr, a formula � (~x; z) ofLC, with z of the seond sort, suh that D j= � (~a; q) i� the value of �(~a) onD is q.We may assume, without loss of generality, that parameters of atomi Laggrformulae R(�) and P (�) are tuples of variables: indeed, if a seond-sort termours in R(��i�), it an be replaed by 9k (k = �i)^R(�k�) without inreasingthe rank. We now de�ne the translation as follows:� For a seond-sort term t whih is a variable q, t(q; z) � (z = q). If t is aonstant , then t(z) � (z =).� For an atomi ' of the form x = y, where x; y are �rst-sort, 'Æ = '.� For an atomi ' of the form P (�1(~x); : : : ; �n(~x)), 'Æ(~x) isW(1;:::;n)2P Vni=1 �i(~x; i). Note that rk('Æ) = maxi rk(�i) � maxi rk(�i) =rk(').� ('1 _ '2)Æ = 'Æ1 _ 'Æ2, ('1 ^ '2)Æ = 'Æ1 ^ 'Æ2, (:')Æ = :'Æ, (9x')Æ = 9x'Æfor x of either sort. Clearly, this does not inrease the rank.� For a term �(~x) = f(�1(~x); : : : ; �n(~x)), we have � (~x; z) = _(;1;:::;n):=f(~) (z =) ^ n̂j=1 �j (~x; j)Again it is easy to see that rk(�) � rk(�).� For a term � 0(~x) = AggrF~y: ('(~x; ~y); �(~x; ~y)), � 0(~x; z) is de�ned as['Æ1(~x) ^ (z = f!)℄ _ [:'Æ1(~x) ^ 0(~x; z)℄where 'Æ1(~x) tests if the number of ~y satisfying '(~x; ~y) is in�nite, and 0produes the value of the term in the ase the number of suh ~y is �nite.18

The formula 'Æ1(~x) an be de�ned as_i:yi of 2nd sort _C�Num;jCj=1 ̂2C 'Æi (~x;)where 'Æi (~x; yi) � 9(y1; : : : ; yi�1; yi+1; : : : ; ym)'Æ(~x; ~y).The formula 0(~x; z) is de�ned as the disjuntion of :9~y'Æ(~x; ~y)^ z = f0and _;(1;n1);:::;(l;nl)
0BBBBBBBBBBBB�

z = ^ 9!n1~y ('Æ(~x; ~y) ^ � (~x; ~y; 1))^ � � �^ 9!nl~y ('Æ(~x; ~y) ^ � (~x; ~y; l))^ 8~yVa2Num('Æ(~x; ~y) ^ � (~x; ~y; a)! Wli=1(a = i))
1CCCCCCCCCCCCAwhere the disjuntion is taken over all tuples (1; n1); : : : ; (l; nl), l > 0; ni >0 and values 2 Num suh thatF(fj1; : : : ; 1| {z }n1 times ; : : : ; l; : : : ; l| {z }nl times jg) = Indeed, this formula asserts that either '(~x; �) does not hold and thenz = f0, or that 1; : : : ; l are exatly the values of the term �(~x; ~y) when'(~x; ~y) holds, and that nis are the multipliities of the is.A straightforward analysis of the produed formulae shows that rk(� 0) �max(rk('Æ); rk(�)) plus the number of �rst-sort variables in ~y; that is,rk(� 0) � rk(� 0). This ompletes the proof of the proposition. �6.3 LC is loalFormulae of Laggr have �nite rank; hene they are translated into LC formulaeof �nite rank. We now show by a simple indution argument that those for-mulae are loal. More preisely, we show that for every �nite-rank LC formula'(~x;~{) (~x of �rst-sort, ~{ of seond-sort) over purely relational SC , there existsa number r � 0 suh that ~a �Dr ~b implies D j= '(~a;~{0) $ '(~b;~{0) for any ~{0.The smallest suh r will be denoted by lr('). The proof is based on:Lemma 1 (Permutation Lemma) Let D be purely relational, with A =adom(D), and r > 0. If ~a �D3r+1 ~b, then there exists a permutation � : A! Asuh that ~a �Dr ~b�() for every 2 A.Proof. Fix an isomorphism h : ND3r+1(~a) ! ND3r+1(~b) with h(~a) = ~b. For19

any 2 SD2r+1(~a), h() 2 SD2r+1(~b) has the same isomorphism type of its r-neighborhood. Thus, for any isomorphism type T of an r-neighborhood ofa single element, there are equally many elements in A � SD2r+1(~a) and inA � SD2r+1(~b) that realize T . Thus, we have a bijetion g : A � SD2r+1(~a) !A�SD2r+1(~b) suh that �Dr g(). Then � an be de�ned as h on SD2r+1(~a), andas g on A� SD2r+1(~a). �Based on the lemma, we show that every LC formula ' of �nite rank is loal,with lr(') � (3rk(') � 1)=2. Note that for the sequene r0 = 0; : : : ; ri+1 =3ri + 1; : : :, we have rk = (3k � 1)=2; we show lr(') � rrk(').The proof of this is by indution on the formulae, and it is absolutelystraightforward for all ases exept ounting quanti�ers. For example, if'(~x;~{) = Wj 'j(~x;~{), and m = rk('), then by the hypothesis, lr('j) � rm,as rk('j) � rk('). So �x ~{0, and let ~a �Drm ~b. Then D j= 'j(~a;~{0) $ 'j(~b;~{0)for all j by the indution hypothesis, and thus D j= '(~a;~{0)$ '(~b;~{0).Now onsider the ase of the ounting quanti�er (~x;~{) � 9iz'(~x; z;~{). Letrk(') = m, then rk() = m+1 and rm+1 = 3rm+1. Fix ~{0, and let ~a �Drm+1 ~b.By the Permutation Lemma, we get a permutation � : A! A suh that ~a �Drm~b�(). By the hypothesis, lr(') � rm, and thus D j= '(~a; ;~{0)$ '(~b; �();~{0).Hene, the number of elements of A satisfying '(~a; �;~{0) is exatly the sameas the number of elements satisfying '(~b; �;~{0), whih implies D j= (~a;~{0)$ (~b;~{0). This onludes the proof of loality of LC.Putting everything together, let e be a purely relational expression ofAlgaggr(All;All). By Theorem 2, it is expressible in Laggr(All;All), and byProposition 1, by a LC formula of �nite rank. Hene, it is loal.7 On the hoie of languageAs was mentioned already, previous papers on the expressive power of SQLdealt with a theoretial language of distintly di�erent avor: that is, a fun-tional, typed language obtained as a restrition of a nested relational algebrawith aggregates. In this setion we briey review that language, and presenta translation from it to Algaggr(All;All), thereby showing that the results ofthis paper are at least as strong as those in [18℄.Following [18℄, we assume that the numerial domain is Q . We de�ne a rela-tional query language RLaggr(
;�), parameterized by a olletion of allowedarithmeti funtions and prediates
 and a olletion of allowed aggregates�. We assume that the usual arithmeti operations (+, �, �, �) and the order20

0; 1 : Q R 2 SCR : type(R) e : Q e1 : t e2 : tif e then e1 else e2 : te : Q � : : :� Q (n times)f(e) : Q P (e) : Q for f : Qn ! Q and P � Qn from
e1 : b1; : : : en : bn(e1; : : : ; en) : b1 � : : :� bni � n e : b1 � : : :� bn�i;n e : bi e1 : b e2 : b= (e1; e2) : Q
xrt : rt e : rtfeg : frtg e1 : frtg e2 : frtge1 [e2 : frtg ;rt : frtge1 : frt1g e2 : frt2gSfe1 j xrt2 2 e2g : frt1g e1 : Q e2 : frtgPfe1 j xrt 2 e2g : QF 2 � e1 : Q e2 : frtgAggrFfe1 j xrt 2 e2g : QFig. 2. Expressions of RLaggr(
;�) over SC< on Q are always in
 and the summation aggregate (P) is always in �.There are three ategories of types in RLaggr:(1) Base types, whih are b and Q ; we denote them by b, possibly subsripted;(2) Reord types of the form b1 � : : : � bn, where b1; : : : ; bn are base types;we denote them by rt ;(3) Relational types frtg. 21

Expressions of the language (over a �xed shema �) are shown in Figure 2.We adopt the onvention of omitting the expliit type supersripts in theseexpressions whenever they an be inferred from the ontext.The set of free variables of an expression e is de�ned by indution on thestruture of e and we often write e(x1; : : : ; xn) to expliitly indiate that x1,..., xn are free variables of e. 0, 1, R, and ;t have no free variables. The freevariables of (e1; : : : ; en) are those of e1, ..., en. The free variables of if e thene1 else e2 are those of e, e1, and e2. The free variables of f(e), P (e), �i;n e andfeg are those of e. The free variables of = (e1; e2) and e1 [e2 are those ofe1 and e2. The free variable of x is the variable x itself. The free variables ofSfe1 j x 2 e2g, Pfe1 j x 2 e2g, and AggrFfe1 j x 2 e2g are the free variablesof e1, exluding x, and those of e2. In these three onstruts, x is not allowedto be a free variable of e2. Note that the type of a free variable is always areord type.
Semantis For eah �xed shema SC and an expression e(x1; : : : ; xn), thevalue of e(x1; : : : ; xn) is de�ned by indution on the struture of e andwith respet to a database D and a substitution [x1:= a1; : : : ; xn:= an℄ thatassigns to eah variable xi a value ai of the appropriate type. We writee[x1:= a1; : : : ; xn:= an℄(D) to denote this value. The values of 0 and 1 are0; 1 2 Q . We use them to ode Booleans, letting 1 ode \true" and 0 ode\false" (any other pair of rationals an be used for that purpose). The valueof f(e) is the rational number obtained by applying the funtion f 2
 to thevalue of e. The value of P (e) is 1 if the prediate in
 denoted by P holds onthe tuple denoted by e; otherwise, it is 0. The value of R is the orrespondingrelation in D. The value of if e then e1 else e2 is that of e1 if the value of e is1; if the value of e is 0, then it is the value of e2. The value of (e1; : : : ; en) isthe n-ary tuple having the values of e1, ..., en at positions 1, ..., n respetively.The value of �i;n e is the value at the i-th position of the n-ary tuple denotedby e. The value of = (e1; e2) is 1 if e1 and e2 have the same value; otherwise,it is 0. The value of the variable x is the orresponding a assigned to x in thegiven substitution. The value of feg is the singleton set ontaining the valueof e. The value of e1 [e2 is the union of the two sets denoted by e1 and e2.The value of ; is the empty set.To de�ne the semantis of S, P and AggrF , assume that the value of e2 is theset fb1; : : : ; bmg. Then the value of Sfe1 j x 2 e2g[x1:=a1; : : : ; xn:=an℄(D) isde�ned to be m[i=1 e1[x1:=a1; : : : ; xn:=an; x:=bi℄(D):22

The value of Pfe1 j x 2 e2g[x1:=a1; : : : ; xn:=an℄(D) ismXi=1 e1[x1:=a1; : : : ; xn:=an; x:=bi℄(D):Finally, the value of AggrFfe1 j x 2 e2g[x1:=a1; : : : ; xn:=an℄(D) isfm(fj1; : : : ; mjg), where fm is the mth funtion in F 2 �, and eah i isthe value of e1[x1:=a1; : : : ; xn:=an; x:=bi℄(D), i = 1; : : : ; m.7.1 RLaggr vs. AlgaggrPrevious bounds on the expressive power of aggregation were obtained in theontext ofRLaggr or similar (and weaker) languages. We now show that nothingis lost by going to a more natural (at least for a database person) languageAlgaggr. A type of the form fb � : : : � bg is alled relational. A relationalquery in RLaggr then, just as a relational query in Algaggr, is an expressionof a relational type over a database in whih every relation is of a relationaltype. In other words, numbers are not allowed in the input and output.Theorem 4 Every relational query of RLaggr(All;All) is expressible inAlgaggr(All;All).Proof. To be able to give an indutive proof, we have to aount for non-settypes, numerial types, and free variables in RLaggr expressions.De�ne the transformation (�)set on RLaggr types and values as follows. If t is abase type or a reord type, then tset = ftg; otherwise tset = t. We extend thisto tuples of reord types as follows: if rt i = bi1 � : : :� bini , then(rt1; : : : ; rtm)set = fb11 � : : :� b1n1 � : : :� bm1 � : : :� bmnmgNote that there is a natural orrespondene between types of the form (�)setand Algaggr types, and we shall use this orrespondene (impliitly) in theproof.For values, we de�ne xset = fxg for any x of base or reord type, and xset = xotherwise. The extension to tuples of values of reord types is (x1; : : : ; xm)set =xset1 � : : : � xsetm . Note that if xi is of type rt i, then (x1; : : : ; xm)set is of type(rt1; : : : ; rtm)set.We now show the following by indution on the expressions of RLaggr(All;All).Claim 1 Let e(x1; : : : ; xm) be an RLaggr(All;All) expression over shema SC ,where eah xi is of type rt i. Then there exists an Algaggr(All;All) expression23

eÆ over SC extended with one relation X of type (rt1; : : : ; rtm)set suh that,for any database D and any tuple a1; : : : ; am of values of types rt1; : : : ; rtm,(e[x1:=a1; : : : ; xm:=am℄(D))set = eÆ(D; (a1; : : : ; am)set):The theorem is a speial ase of this laim for expressions of relational typeswithout free variables.We now present the main ases of the translation. If e is a onstant , the trans-lation is Apply[℄�. Prediates and funtions are straightforwardly translatedinto numerial seletions and funtion appliation.Consider if e1 then e2 else e3. Sine e1 produes 0 or 1, eÆ1 produes f0g orf1g. Thus, (eÆ2 � (eÆ1 � Apply[0℄�)) [(eÆ3 � (eÆ1 � Apply[1℄�))produes the same result as e2 with an all-one olumn added if e1 is true(1), or the same result as e3 with an all-zero olumn added if e1 is false (0).Hene, eliminating the last olumn (by projetion), gives the translation ofif e1 then e2 else e3.The translations of produt and projetion beome artesian produt andrelational projetions, by the (�)set translation. For equality of e1; e2 of basetypes, note that Count1[�1=2(eÆ1 � eÆ2)℄produes f1g if e1 = e2 and f0g otherwise.A free variable is translated into a orresponding projetion on the extrarelationX. The empty set is �16=1(Apply[0℄�); (e1[e2)Æ = eÆ1[eÆ2 and fegÆ = eÆ.Next, onsider e = Sfe1 j yrt 2 e2g. The idea of the translation is as follows:ompute e2, whih is a set, say fv1; : : : ; vkg. Then grouping them gives usffv1g; : : : ; fvkgg; �nally, applying e2 over those groups yields the result ofSfe1 j y 2 e2g. To express this in Algaggr, we do the following. Let X bea relation orresponding to the free variables of e, and let Y be an extrarelation of type frtg. Clearly, eÆ1 an be rewritten as an expression E1 over SCextended with X and Y (indeed, by the hypothesis, eÆ2 is an expression overSC extended with some relation for the free variables, say Z; it then suÆesto replae Z with X � Y). Then eÆ is Group0[�Y:E1℄(eÆ2).Finally, we translate aggregate funtions. Let e = AggrFfe1 j yrt 2 e2g, withrt of length m. Let E1 be de�ned as in the previous paragraph. The trans-lation is as follows: if e2 evaluates to fv1; : : : ; vkg, we �rst produe the setf(v1; v1); : : : ; (vk; vk)g. Clearly, this an be done by an Algaggr expression,24

say E. Then E 0 = Groupm[�Y:E1℄(E) produes f(v1; e1(v1)); : : : ; (vk; e(vk))g.Finally, eÆ = �m+1(Aggr[m + 1 : F ℄(E 0)). This ompletes the proof. �It is lear from the proof that the theorem an be strengthened: with somemodest assumption on the set of arithmeti operations
, we an show thatfor any � ontaining summation, every relational query from RLaggr(
;�)is expressible in Algaggr(
;�). Furthermore, the other ontainment holds aswell. This, however, is not of partiular interest to us. Our goal here was toshow that the best previous result on loality of aggregate queries, statingthat every relational query in RLaggr(All;All) is loal, is subsumed by the maintheorem of this paper, whose simple proof was given in the previous setion.This was ahieved by proving Theorem 4.8 SQL over ordered domainsSo far the only nonnumerial seletion we have seen was of the form �i=j,testing equality of two attributes. We now extend the language to Alg<aggr byallowing seletions of the form �i<j(e), where both i and j are of the type b,and < is some �xed linear ordering on the domain Dom.This small addition hanges the situation dramatially, and furthermore inthis ase we annot make blanket statements like \queries are loal" { a lotwill depend on the numerial domain Num and available arithmeti operations.Note that even in the ase of relational alulus without aggregates, it is knownthat the addition of order makes it more powerful, even with respet to queriesthat do mention the order at all (f. [1℄).8.1 Natural numbersLet Num = N . We onsider a version of Algaggr that has the most usualset of arithmeti and aggregate operators: namely, +; �; < and onstants forarithmeti, and the aggregate P. This suÆes to express aggregates MIN, MAX,COUNT, SUM, but ertainly not AVG, whih produes rational numbers.We shall use the notations:� sqlN for Algaggr(f+; �; <; 0; 1g; f�g), and� sql<N for Alg<aggr(f+; �; <; 0; 1g; f�g).It is suÆient to have onstants just for 0 and 1, as all other numbers arede�nable with +. 25

We show how a well-known ounting logi FO(C) [3℄ an be embedded intosql<N . The importane of this lies in the fat that FO(C) over ordered stru-tures aptures a omplexity lass, alled TC0 [3,27℄, for whih no nontriv-ial general lower bounds are known. In fat, although TC0 is ontained inDLOGSPACE, the ontainment is not known to be proper, and to this daywe don't even know if TC0 6= NP. Moreover, there are indiations that provingsuh a separation result, at least by traditional methods, is either impossible,or would have some very unexpeted ryptographi onsequenes [29℄.8.1.0.1 De�nition of FO(C) (see [3,10,19℄) FO(C) is a two-sorted logi,with seond sort being the sort of natural numbers. That is, a struture D isof the form hfa1; : : : ; ang; f1; : : : ; ng; <;+; �; 1; n; R1; : : : ; Rli;where the relations Ri are de�ned on the domain fa1; : : : ; ang, while on thenumerial domain f1; : : : ; ng one has 1; n; < and +; � interpreted as ternaryprediates (e.g., +(x; y; z) holds i� x+y = z). This logi extends �rst-order byounting quanti�ers 9ix '(x), meaning that at least i elements satisfy '; herei refers to the numerial domain f1; : : : ; ng and x to the domain fa1; : : : ; ang.These quanti�ers bind x but not i.Theorem 5 Over ordered strutures, FO(C) � sql<N . In partiular,uniform TC0 � sql<N :Proof. With order and aggregate SUM, one an de�ne the set I = f1; : : : ; mgwhere m = jadom(D) j (by ounting the number of elements not greater thaneah element in the ative domain). Using Apply, one de�nes the operations+ and � (as ternary relations) and the linear ordering < on I. Then thetranslation of FO(C) into sql<N proeeds exatly as the standard translationof relational alulus into relational algebra (with extra relations for + and�). The only exeption is the ounting quanti�er ase: (i; ~y) � 9ix'(i; ~y; x),where ~y is of length p. Assume that ' is translated into an expression e thatreturns a relation with p+2 attributes. To translate , we use P to ount x's,and ompare their number with i's, that is,�1;:::;p+1(�1�p+3(Aggrp+1[p + 3 :X℄(e� Apply[1℄�))):(Note that we ount the number of x's, and thus we �rst take produt withthe onstant relation f1g). �Corollary 1 Assume that reahability is not expressible in sql<N . Then uni-form TC0 is properly ontained in NLOGSPACE. �26

As separation of omplexity lasses is urrently beyond reah, so is provingexpressivity bounds for sql<N .One an also show a losely-related upper bound on the lass of deisionproblems expressible in sql<N :Proposition 2 Every Boolean query in sql<N is ontained in P-uniform TC0.Proof. By a straightforward indution on expressions of sql<N , we an showthat for any expression e, there is a polynomial pe suh that, for an inputwith the ative domain of size n, the largest integer that is ontained in theresult of any subexpression of e, does not exeed pe(n). Given D whose ativedomain is of size n, let D0 be D expanded with the relation f1; : : : ; pe(n)g.We an then translate sql<N expressions into iruits just as FO(C) formulaeare translated into them, sine no subexpression of e produes an integer thatis not ontained in the ative domain of D0. Clearly, the funtion that takesf1; : : : ; ng and produes f1; : : : ; pe(n)g is PTIME, and thus the iruit forevaluating an expression e on inputs of size n an be produed in PTIME.Hene, sql<N is ontained in P-uniform TC0. �Notie that the reahability query, even over ordered domains of nodes, isorder-independent; that is, the result does not depend on a partiular orderingon the nodes, just on the graph struture. Could it be that order-independentqueries in sqlN and sql<N are the same? Of ourse, suh a result would implythat TC0 is properly ontained in DLOGSPACE, and several papers suggestedthis approah towards separating omplexity lasses. Unfortunately, it doesnot work, as shown in [17℄:Proposition 3 There exist order-independent non-loal queries expressible insql<N . Thus, there are order-independent sql<N queries not expressible in sqlN.Proof. It was shown in [17℄ that, on the graph of an n-element suessor relationwith an extra prediate P interpreted as the �rst blog2 n elements, one ande�ne the reahability query restrited to the elements of P in FO(C). Heneit an be done sql<N . �Counting abilities of sqlN are essential for this result, as its analog for rela-tional alulus does not hold [9℄.8.2 Rational NumbersThe language sql<N falls short of the lass of queries real SQL an de�ne, asit only uses natural numbers. To deal with rational arithmeti (and thus topermit aggregates suh as AVG), we extend the numerial domain Num to that27

of rational numbers Q , and introdue the languagesql<Q as Alg<aggr(f+;�; �;�; <; 0; 1g; f�g).This is a stronger language than sql<N (and thus than FO(C)) { to see this,note that it an de�ne rational numbers, and if one represents those by pairsof natural numbers, in some queries these numbers may grow exponentiallywith the size of the database: something that annot happen in the ontextof sql<N .The most interesting feature of sql<Q is perhaps that it is apable of odinginputs with numbers:Theorem 6 Let SC be a purely relational shema. Then there is an sql<Qexpression eSC of type n suh that for every SC-database D, eSC (D) is asingle rational number, andD1 6= D2) eSC (D1) 6= eSC (D2)Proof. We present the proof for graphs; it is absolutely straightforward toextend it to other shemas. As before, for a given input graphG with the ativedomain fa1; : : : ; ang, a1 < : : : < an, ompute, in sql<Q , the set I = f1; : : : ; ng,where n is the size of the ative domain. Using this, we an ompute a relationG0 of type bbn, whih ontains triples (ai; aj; f(i; j)) where (ai; aj) 2 G andf(i; j) is the standard pairing funtion (i+j)(i+j+1)2 + j. To omplete the proof,we show the following.(a) Using G0 and I, we an further ompute a relation G00 of type bbn, whihontains triples (ai; aj; pij) where (ai; aj) 2 G and pij is the f(i; j)th prime.Indeed, from number theory we know that there is a onstant C suh thatthe kth prime, pk � C � k2. Sine f(n; n) = 2n(n+ 1), the maximum primethat ours in G00 is p2n(n+1) � C � (2n(n+ 1))2. Using I, we an onstrut,in sql<Q , the set f1; : : : ; C � (2n(n + 1))2g. Using arithmeti operations, foreah element of that set we an test primality, and thus we an onstrutthe set f(k; pk) j pk � C � (2n(n+ 1))2g. Using that set and G0, we omputeG00.(b) Let inv be the funtion x 7! 1x . Let G0 = �4(Apply[inv℄3(G00)). That is,G0 = f1p j (ai; aj; p) 2 G00g. We laim that Aggr[1 : P℄(G0), that is,X(ai;aj ;p)2G00 1pis the required oding.This will follow from the following: if P1 and P2 are two distint nonemptysets of prime numbers, then Pp2P1 1p 6= Pp2P2 1p . This follows from the fat28

that for a nonempty set P of primes, Pp2P Qp02P;p0 6=p p0 and Qp2P p arerelatively prime (whih an be shown by a straightforward indution onjP j). This ompletes the proof. �Thus, with the addition of some arithmeti operations, sql<Q an express manyqueries; in partiular, sql<Q extended with all omputable numerial funtionsexpresses all omputable queries over purely relational shemas! In fat, toexpress all omputable Boolean queries over suh shemas, it suÆes to addall omputable funtions from Q to f0; 1g. In ontrast, one an show thatadding all omputable funtions from N to f0; 1g to sql<N does not give usthe same power, as the resulting queries an be oded by non-uniform TC0iruits. Still, the oding is just of theoretial interest; even for graphs with20 nodes it an produes odes of the form pq with p; q relatively prime, andq > 101000; for q > 1010000 one needs only 60 nodes.9 ConlusionDid SQL3 designers really have to introdue reursion, or is it expressible withwhat's already there? Our results show that they learly had a good reasonfor adding a new onstrut, beause:(1) Over unordered types, reahability queries annot be expressed by thebasi SQL SELECT-FROM-WHERE-GROUPBY-HAVING statements; in fat, allqueries expressible by suh statements are loal.(2) Over ordered domains, with limited arithmeti, reahability queries aremost likely inexpressible, but proving this is hard as separating someomplexity lasses (and perhaps as hard as refuting some ryptographiassumptions). Adding more arithmeti operations might help, but onlyat the expense of enodings whih are several thousand digits long { sothe new onstrut is learly justi�ed.Aknowledgements Although the presentation here is new, it is based en-tirely on previous results obtained jointly with other people. Speial thanks toLimsoon Wong, with whom many of those papers were oauthored, and whoin fat suggested bak in 1993 that we look at the expressiveness of aggre-gation. The aggregate logi was developed jointly with Limsoon, Lauri Hella,and Juha Nurmonen, who also ollaborated with me on various aspets ofloality of logis. Simple proofs of loality of logis were disovered in an at-tempt to answer some questions posed by Moshe Vardi. For their omments onthe paper I thank Limsoon, Lauri, Juha, Martin Grohe, Thomas Shwentik,Lu Segou�n, and anonymous referees. Part of this work was done while I wasvisiting the Verso group at INRIA-Roquenourt.29

Referenes[1℄ S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases, Addison Wesley,1995.[2℄ A. V. Aho and J. D. Ullman. Universality of data retrieval languages. InPriniples of Programming Languages 1979, ACM Press, pages 110{120.[3℄ D.M. Barrington, N. Immerman, H. Straubing. On uniformity within NC1.Journal of Computer and System Sienes, 41:274{306, 1990.[4℄ P. Buneman, S. Naqvi, V. Tannen, L. Wong. Priniples of programming withomplex objets and olletion types. TCS, 149 (1995), 3{48.[5℄ J. Celko. SQL for Smarties: Advaned SQL Programming. Morgan Kaufmann,2000.[6℄ M. Consens and A. Mendelzon. Low omplexity aggregation in GraphLog andDatalog, TCS 116 (1993), 95{116.[7℄ C. J. Date and H. Darwen. A Guide to the SQL Standard. Addison Wesley,1997.[8℄ G. Dong, L. Libkin and L. Wong. Loal properties of query languages. TCS239 (2000), 277{308.[9℄ M. Grohe and T. Shwentik. Loality of order-invariant �rst-order formulas.ACM Trans. on Computational Logi, 1 (2000), 112{130.[10℄ K. Etessami. Counting quanti�ers, suessor relations, and logarithmi spae,Journal of Computer and System Sienes, 54 (1997), 400{411.[11℄ R. Fagin, L. Stokmeyer and M. Vardi, On monadi NP vs monadi o-NP,Information and Computation, 120 (1995), 78{92.[12℄ S. Finkelstein, N. Mattos, I.S. Mumik, and H. Pirahesh. Expressing reursivequeries in SQL. ANSI Doument X3H2-96-075r1, 1996.[13℄ H. Gaifman. On loal and non-loal properties, Proeedings of the HerbrandSymposium, Logi Colloquium '81, North Holland, 1982.[14℄ E. Gr�adel and Y. Gurevih. Meta�nite model theory. Information andComputation 140 (1998), 26{81.[15℄ W. Hanf. Model-theoreti methods in the study of elementary logi. InJ.W. Addison et al, eds, The Theory of Models, North Holland, 1965, pages132{145.[16℄ L. Hella. Logial hierarhies in PTIME. Information and Computation, 129(1996), 1{19.[17℄ L. Hella, L. Libkin and J. Nurmonen. Notions of loality and their logialharaterizations over �nite models. Journal of Symboli Logi, 64 (1999), 1751-1773. 30

[18℄ L. Hella, L. Libkin, J. Nurmonen and L. Wong. Logis with aggregate operators.Journal of the ACM, 48 (2001), 880{907.[19℄ N. Immerman. Desriptive Complexity. Springer Verlag, 1998.[20℄ A. Klug. Equivalene of relational algebra and relational alulus querylanguages having aggregate funtions. Journal of the ACM 29 (1982), 699{717.[21℄ Kim S. Larsen. On grouping in relational algebra. International Journal ofFoundations of Computer Siene 10 (1999), 301{311.[22℄ L. Libkin. On the forms of loality over �nite models. In IEEE Symp. on Logiin Computer Siene, IEEE Press, 1997, pages 204{215.[23℄ L. Libkin. Logis with ounting and loal properties. ACM Trans. onComputational Logi, 1 (2000), 33{59.[24℄ L. Libkin, L. Wong. Query languages for bags and aggregate funtions. Journalof Computer and System Sienes 55 (1997), 241{272.[25℄ L. Libkin and L. Wong. On the power of aggregation in relational querylanguages. In Proeedings of Database Programming Languages 1997, Springer-Verlag LNCS vol. 1369, pages 260{280.[26℄ P. O'Neil. Database: Priniples, Programming, Performane. MorganKaufmann, 1994.[27℄ I. Parberry and G. Shnitger. Parallel omputation and threshold funtions.Journal of Computer and System Sienes 36 (1988), 278{302.[28℄ J. Paredaens, D. Van Guht. Converting nested algebra expressions into atalgebra expressions. ACM Trans. on Database Systems 17 (1992), 65{93.[29℄ A. Razborov and S. Rudih. Natural proofs. Journal of Computer and SystemSienes 55 (1997), 24{35.[30℄ P. Wadler. Comprehending monads. Mathematial Strutures in ComputerSiene 2 (1992), 461{493.[31℄ L. Wong. Normal forms and onservative extension properties for querylanguages over olletion types. Journal of Computer and System Sienes,52 (1996), 495{505.

31

