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tIt is a folk result in database theory that SQL 
annot express re
ursive queriessu
h as rea
hability; in fa
t, a new 
onstru
t was added to SQL3 to over
ome thislimitation. However, the eviden
e for this 
laim is usually given in the form of areferen
e to a proof that relational algebra 
annot express su
h queries. SQL, onthe other hand, in all its implementations has three features that fundamentallydistinguish it from relational algebra: namely, grouping, arithmeti
 operations, andaggregation.In the past few years, most questions about the additional power provided bythese features have been answered. This paper surveys those results, and presentsnew simple and self-
ontained proofs of the main results on the expressive power ofSQL. Somewhat surprisingly, tiny di�eren
es in the language de�nition a�e
t theresults in a dramati
 way: under some very natural assumptions, it 
an be provedthat SQL 
annot de�ne re
ursive queries, no matter what aggregate fun
tions andarithmeti
 operations are allowed. But relaxing these assumptions just a tiny bitmakes the problem of proving expressivity bounds for SQL as hard as some long-standing open problems in 
omplexity theory.
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This seems to be a rather basi
 question that database theoreti
ians shouldhave produ
ed an answer to by the beginning of the 3rd millennium. After all,we have been studying the expressive power of query languages for some 20years now (and in fa
t more than that, if you 
ount earlier papers by logi
ianson the expressiveness of �rst-order logi
), and SQL is the de-fa
to standard ofthe 
ommer
ial database world { so there surely must be an answer somewherein the literature.When one thinks of the limitations of SQL, its inability to express rea
habilityqueries 
omes to mind, as it is well do
umented in the literature (in fa
t, inmany database books written for very di�erent audien
es, e.g. [1,5,7,26℄). Letus 
onsider a simple example: suppose that R(Sr
,Dest) is a relation with
ight information: Sr
 stands for sour
e, and Dest for destination. To �ndpairs of 
ities (A;B) su
h that it is possible to 
y from A to B with one stop,one would use a self-join as follows.SELECT R1.Sr
, R2.DestFROM R AS R1, R AS R2WHERE R1.Dest=R2.Sr
What if we want pairs of 
ities su
h that one makes two stops on the way?Then we do a more 
ompli
ated self-join shown below.SELECT R1.Sr
, R3.DestFROM R AS R1, R AS R2, R AS R3WHERE R1.Dest=R2.Sr
 AND R2.Dest=R3.Sr
Taking the union of these two and the relation R itself we would get the pairs of
ities su
h that one 
an 
y from A to B with at most two stops. But often oneneeds a general rea
hability query in whi
h no a priori bound on the numberof stops is known; that is, whether it possible to get to B from A.Graph-theoreti
ally, this means 
omputing the transitive 
losure of R. It is wellknown that the transitive 
losure of a graph is not expressible in relationalalgebra or 
al
ulus; in parti
ular, expressions similar to those above (whi
hhappen to be unions of 
onjun
tive queries) 
annot possibly express it. Thisappears to be a folk result in the database 
ommunity; while many papers dorefer to [2℄ or some other sour
e on the expressive power of �rst-order logi
,many texts just state that relational algebra, 
al
ulus and SQL 
annot expressre
ursive queries su
h as rea
hability.2



With this limitation in mind, the SQL3 standard introdu
ed re
ursion ex-pli
itly into the language [7,12℄. One would write the rea
hability query asfollows.WITH RECURSIVE TrCl(Sr
,Dest) ASRUNIONSELECT TrCl.Sr
, R.DestFROM TrCl, RWHERE TrCl.Dest = R.Sr
SELECT * FROM TrClThis simply models the usual datalog rules for transitive 
losure:tr
l(x; y) :- r(x; y)tr
l(x; y) :- tr
l(x; z); r(z; y) :When a new 
onstru
t is added to a language, a good reason must exist forit, espe
ially if the language is a de
larative query language, with a smallnumber of 
onstru
ts, and with programmers relying heavily on its optimizer.The reason for introdu
ing re
ursion in the next SQL standard is pre
isely thisfolk result stating that it 
annot be expressed in the language. But when onelooks at what eviden
e is provided to support this 
laim, one noti
es that allthe referen
es point to papers in whi
h it is proved that relational algebra and
al
ulus 
annot express re
ursive queries. Why is this not suÆ
ient? Considerthe following querySELECT 1FROM R1WHERE (SELECT COUNT(*) FROM R1) >(SELECT COUNT(*) FROM R2)This query tests if jR1 j>jR2 j: in that 
ase, it returns 1, otherwise it returnsthe empty set. However, logi
ians proved it long time ago that �rst-order logi
,and thus relational 
al
ulus, 
annot 
ompare 
ardinalities of relations (
f. [1℄),and yet we have a very simple SQL query doing pre
isely that.The 
on
lusion, of 
ourse, is that SQL has more power than relational algebra,and the main sour
e of this additional power is its aggregation and grouping
onstru
ts, together with arithmeti
 operations on numeri
al attributes. Butthen one 
annot say that the transitive 
losure query is not expressible in SQLsimply be
ause it is inexpressible in relational algebra. Thus, it might appearthat the folk theorem about re
ursion and SQL is an unproven statement.3



Fortunately, this is not the 
ase: the statement was (partially) proved in thepast few years; in fa
t, a series of papers proved progressively stronger results,�nally establishing good bounds on the expressiveness of SQL.The main goal of the paper is twofold:(a) We give an overview of these re
ent results on the expressiveness of SQL.We shall see that some tiny di�eren
es in the language de�nition a�e
t theresults in a dramati
 way: under some assumptions, it 
an be shown thatrea
hability and many other re
ursive queries are not expressible in SQL.However, under a slightly di�erent set of assumptions, the problem of prov-ing expressivity bounds for SQL is as hard as separating some 
omplexity
lasses.(b) Due to a variety of reasons, even the simplest proofs of expressivity resultsfor SQL are not easy to follow; partly this is due to the fa
t that mostpapers used the setting of their prede
essors that had unne
essary 
ompli-
ations in the form of nested relations, somewhat unusual (for mainstreamdatabase people) languages and in�nitary logi
s. Here we get rid of those
ompli
ations, and present a simple and self-
ontained proof of expressivitybounds for SQL.Organization In the next se
tion, we dis
uss the main features that distin-guish SQL from relational algebra, in parti
ular, aggregate fun
tions. We thengive a brief overview of the literature on the expressive power of SQL.Starting with Se
tion 3, we present those results in more detail. We introdu
erelational algebra with grouping and aggregates, Algaggr, that essentially 
ap-tures basi
 SQL statements. Se
tion 4 states the main result on the expressivepower of SQL, namely that queries it 
an express are lo
al. If one thinks ofqueries on graphs, it means that the de
ision whether a tuple ~t belongs to theoutput is determined by a small neighborhood of ~t in the input graph; therea
hability query does not have this property.Se
tion 5 de�nes an aggregate logi
 Laggr and shows a simple translation of thealgebra with aggregates Algaggr into this logi
. Then, in Se
tion 6, we presenta self-
ontained proof of lo
ality of Laggr (and thus of Algaggr).In previous papers on the expressive power of SQL [24,25,22,18℄, we usedlanguages of a rather di�erent 
avor, based on stru
tural re
ursion [4℄ and
omprehensions [30℄. In Se
tion 7, we show that those languages are at mostas expressive as Algaggr.In Se
tion 8, we 
onsider an extension Alg<aggr of Algaggr in whi
h non-numeri
al order 
omparisons are allowed, and show that it is more powerfulthan the unordered version. Furthermore, no nontrivial bounds on the expres-siveness of this language 
an be proved without answering some deep open4



problems in 
omplexity theory.Se
tion 9 gives a summary and 
on
luding remarks.2 SQL vs. Relational AlgebraWhat exa
tly is SQL? There is, of 
ourse, a very long standard, that listsnumerous features, most of whi
h have very little to do with the expressive-ness of queries. As far as expressiveness is 
on
erned, the main features thatdistinguish SQL from relational algebra, are the following:� Aggregate fun
tions: one 
an 
ompute, for example, the average value in a
olumn. The standard aggregates in SQL are COUNT, SUM, AVG, MIN, MAX.� Grouping: not only 
an one 
ompute aggregates, one 
an also group themby values of di�erent attributes. For example, it is possible to 
ompute theaverage salary for ea
h department.� Arithmeti
: SQL allows one to apply arithmeti
 operations to numeri
alvalues.For example, for relations S1(Empl,Dept) and S2(Empl,Salary), the follow-ing query (assuming that Empl is a key for both relations) 
omputes the av-erage salary for ea
h department whi
h pays total salary at least 100,000:
(�) SELECT S1.Dept, AVG(S2.Salary)FROM S1, S2WHERE S1.Empl=S2.EmplGROUPBY S1.DeptHAVING SUM(S2.Salary) > 100000Next, we address the following question: what is an aggregate fun
tion? The�rst paper to look into this was probably [20℄: it de�ned aggregate fun
tionsas f : R ! Num, where R is the set of all relations, and Num is a numeri
aldomain. A problem with this approa
h is that it requires a di�erent aggregatefun
tion for ea
h relation and ea
h numeri
al attribute in it; that is, we do nothave just one aggregate AVG, but in�nitely many of those. This 
ompli
ationarises from dealing with dupli
ates in a 
olumn. However, dupli
ates 
an bein
orporated in a mu
h more elegant way, as suggested in [14℄, whi
h we shallfollow here. A

ording to [14℄, an aggregate fun
tion F is a 
olle
tionF = ff0; f1; f2; : : : ; f!g5



where fk is a fun
tion that takes a k-element multiset (bag) of elements ofNum and produ
es an element of Num. For te
hni
al reasons, we also adda 
onstant f! 2 Num whose intended meaning is the value of F on in�nitemultisets. For example, if Num is N , or Q , or R, we de�ne the aggregateP = fs0; s1; : : :g by sk(fjx1; : : : ; xkjg) = Pki=1 xi; furthermore, s0 = s! = 0(we use the fj jg bra
kets for multisets). This 
orresponds to SQL's SUM. ForCOUNT, one de�nes C = f
0; 
1; : : :g with 
k returning k (we may again assume
! = 0). The aggregate AVG is de�ned as A = fa0; a1; : : :g with ak(X) =sk(X)
k(X) , a0 = a! = 0. For MAX, we de�ne the aggregate fmax 0;max 1; : : :g withmaxk(fjx1; : : : ; xkjg) = maxi�k xi, max 0 = max! = 0, and likewise for MIN.Languages that model SQL and their expressive powerIt is very hard to prove formal statements about a language like SQL: to put itmildly, its syntax is not very easy to reason about. The resear
h 
ommunity has
ome up with several proposals of languages that 
apture the expressivenessof SQL. The earliest one is perhaps Klug's extension of relational algebra bygrouping and aggregation [20℄: if e is an expression produ
ing a relation withm attributes, ~A is a set of attributes, and f is an aggregate fun
tion, theneh ~A; fi is a new expression that produ
es a relation with m + 1 attributes.Assuming f applies to attribute A0, and ~B is the list of all attributes of theoutput of e, the semanti
s is best explained by SQL:SELECT ~B, f(A0)FROM eGROUPBY ~AKlug's paper did not analyze the expressive power of this algebra, nor did itshow how to in
orporate arithmeti
 operations. The main 
ontribution of [20℄is an equivalen
e result between the algebra and an extension of relational 
al-
ulus. However, the main fo
us of that extension is its safety, and the resultinglogi
 is extremely hard to deal with, due to many synta
ti
 restri
tions.To the best of my knowledge, the �rst paper that dire
tly addressed the prob-lem of the expressive power of SQL, was the paper by Consens and Mendel-zon in ICDT'90 [6℄. They have a datalog-like language, whose nonre
ursivefragment is exa
tly as expressive as Klug's algebra. Then they show thatthis language 
annot express the transitive 
losure query under the assump-tion that DLOGSPACE is properly in
luded in NLOGSPACE. The reasonis simple: Klug's algebra (with some simple aggregates) 
an be evaluated inDLOGSPACE, while transitive 
losure is 
omplete for NLOGSPACE.6



That result 
an be viewed as a strong eviden
e that SQL is indeed in
apableof expressing rea
hability queries. However, it is not 
ompletely satisfa
toryfor three reasons. First, nobody knows how to separate 
omplexity 
lasses.Se
ond, what if one adds more 
omplex aggregates that in
rease the 
om-plexity of query evaluation? And third, what if the input graph has a verysimple stru
ture (for example, no node has outdegree more than 1)? In this
ase rea
hability is in DLOGSPACE, and the argument of [6℄ does not work.In early 90s, many people were looking into languages for 
olle
tion types.Fun
tional stati
ally type
he
ked query languages be
ame quite fashionable,and they were produ
ed in all kinds of 
avors, depending on parti
ular 
olle
-tion types they had to support. It turned out that a set language 
apturingessentially the expressive power of a language for bags, 
ould also model all theessential features of SQL [24℄. The problem was that the language dealt withnested relations, or 
omplex obje
ts. But then [24℄, extending [28,31℄, proved a
onservativity result, stating that nested relations are not really needed if theinput and output do not have them. That made it possible to use a non-nestedfragment of languages inspired by stru
tural re
ursion [4℄ and 
omprehensions[30℄ as a \theoreti
al re
onstru
tion of SQL."Several papers dealt with this language, and proved a number of expressivitybounds. The �rst one, appearing in PODS'94 [24℄, showed that the language
ould not express rea
hability queries. The proof, however, was very far fromideal. It only proved inexpressibility of transitive 
losure in a way that wasvery unlikely to extend to other queries. It relied on a 
ompli
ated synta
ti
rewriting that would not work even for a slightly di�erent language. And theproof would not work if one added more aggregate fun
tions.The �rst limitation was addressed in [8℄ where a 
ertain general property ofqueries expressible in SQL was established. However, the other two problemsnot only remained, but were exa
erbated: the rewriting of queries be
ameparti
ularly unpleasant. In an attempt to remedy this, [22℄ gave an indire
ten
oding of a fragment of SQL into �rst-order logi
 with 
ounting, FO(C) (itwill be formally de�ned later). The restri
tion was to natural numbers, thusex
luding aggregates su
h as AVG. The en
oding is bound to be indire
t, sin
eSQL is 
apable of expressing queries that FO(C) 
annot express. The en
odingshowed that for any query Q in SQL, there exists an FO(C) query Q0 thatshares some ni
e properties with Q. Then [22℄ established some propertiesof FO(C) queries and transferred them to that fragment of SQL. The proofwas mu
h 
leaner than the proofs of [24,8℄, at the expense of a less expressivelanguage.After that, [25℄ showed that the 
oding te
hnique 
an be extended to SQLwith rational numbers and the usual arithmeti
 operations. The pri
e to paywas the readability of the proof { the en
oding part be
ame very unpleasant.7



That was a good time to pause and see what must be done di�erently. Howdo we prove expressivity bounds for relational algebra? We do it by provingbounds on the expressiveness of �rst-order logi
 (FO) over �nite stru
tures,sin
e relational algebra has the same power as FO. So perhaps if we 
ouldput aggregates and arithmeti
 dire
tly into logi
, we would be able to proveexpressivity bounds in a ni
e and simple way?That program was 
arried out in [18℄, and I shall survey the results below.One problem with [18℄ is that it inherited too mu
h unne
essary ma
hineryfrom its prede
essors [24,8,25,22,23℄: one had to deal with languages for 
om-plex obje
ts and apply 
onservativity results to get down to SQL; logi
s werein�nitary to start with, although in�nitary 
onne
tives were not ne
essaryto translate SQL; and expressivity proofs went via a spe
ial kind of gamesinvented elsewhere [16℄.Here we show that all these 
ompli
ations are 
ompletely unne
essary: thereis indeed a very simple proof that rea
hability is not expressible in SQL,and this proof will be presented below. Our language is a slight extension ofKlug's algebra (no nesting). We translate it into an aggregate logi
 (with noin�nitary 
onne
tives) and prove that it has ni
e lo
ality properties (withoutusing games).3 Relational algebra with aggregatesTo deal with aggregation, we must distinguish numeri
al 
olumns (to whi
haggregates 
an be applied) from non-numeri
al ones. We do it by typing: atype of a relation is simply a list of types of its attributes.We assume that there are two base types: a non-numeri
al type b with domainDom, and a numeri
al type n, whose domain is denoted by Num (it 
ould beN ;Z;Q ;R , for example).A type of a relation is a string over the alphabet fb; ng. A relation R of typea1 : : : am has m 
olumns, the ith one 
ontaining entries of type ai. In otherwords, su
h a relation is a �nite subset ofmYi=1 dom(ai)where dom(b) = Dom and dom(n) = Num. For example, the type ofS2(Empl,Salary) is bn. For a type t, t:i denotes the ith position in the string.The length of t is denoted by j t j.A database s
hema SC is a 
olle
tion of relation names Ri and their types ti;8



we write Ri : ti if the type of Ri is ti.Next, we de�ne expressions of relational algebra with aggregates,Algaggr(
;�), parameterized by a 
olle
tion 
 of fun
tions and predi
ateson Num, and a 
olle
tion � of aggregates, over a given s
hema SC . Expres-sions are divided into three groups: the standard relational algebra, arithmeti
,and aggregation/grouping. In what follows, m stands for j t j, and i1; : : : ; ik fora sequen
e 1 � i1 < : : : < ik � m.Relational AlgebraS
hema Relation If R : t is in SC , then R is an expression of type t.Permutation If e is an expression of type t and � is a permutation off1; : : : ; mg, then ��(e) is an expression of type �(t).Boolean Operations If e1; e2 are expressions of type t, then so are e1 [e2; e1 \ e2; e1 � e2.Cartesian Produ
t For e1 : t1, e2 : t2, e1 � e2 is an expression of typet1 � t2.Proje
tion If e is of type t, then �i1;:::;ik(e) is an expression of type t0 wheret0 is the string 
omposed of t:ijs, in their order.Sele
tion If e is an expression of type t, i; j � m, and t:i = t:j, then �i=j(e)is an expression of type t. Arithmeti
Numeri
al Sele
tion If P � Numk is a k-ary numeri
al predi
ate from 
,and i1; : : : ; ik are su
h that t:ij = n, then �[P ℄i1;:::;ik(e) is an expression oftype t for any expression e of type t.Fun
tion Appli
ation If f : Numk ! Num is a fun
tion from 
, i1; : : : ; ikare su
h that t:ij = n, and e is an expression of type t, then Apply[f ℄i1;:::;ik(e)is an expression of type t � n.Constants If 
 is a 
onstant (viewed as a fun
tion of arity k = 0), thenApply[
℄� is an expression of type n. (Here � refers to 
 taking no argument,as a fun
tion of arity 0.)Aggregation and GroupingAggregation Let F be an aggregate from �. For any expression e of typet and i su
h that t:i = n, Aggr[i : F ℄(e) is an expression of type t � n.Grouping Assume e : t is an expression over SC [ fS : sg. Let e0 be anexpression of type u � s over SC , where ju j= l. Then Groupl[�S:e℄(e0) is anexpression of type u � t.Semanti
s For the relational algebra operations, this is standard. The opera-tion �� is permutation: ea
h tuple (a1; : : : ; am) is repla
ed by (a�(1); : : : ; a�(m)).The 
ondition i = j in the sele
tion predi
ate means equality of the ith and9



the jth attribute: (a1; : : : ; am) is sele
ted if ai = aj. Note that using Booleanoperations we 
an model arbitrary 
ombinations of equalities and disequalitiesamong attributes.For numeri
al sele
tion, �[P ℄i1;:::;ik sele
ts (a1; : : : ; am) i� P (ai1 ; : : : ; aik)holds. Fun
tion appli
ation repla
es ea
h (a1; : : : ; am) with(a1; : : : ; am; f(ai1; : : : ; aik)). Apply[
℄� produ
es the relation f
g.The aggregate operation is SQL SELECT ~A;F(Ai) FROM e, where ~A =(A1; : : : ; Am) is the list of attributes. More pre
isely, if e evaluates to~a1; : : : ;~ap where ~aj = (a1j ; : : : ; amj ), then Aggr[i : F ℄(e) repla
es ea
h ~aj with(a1j ; : : : ; amj ; f) where f = F(fjai1; : : : ; aipjg).Finally, Groupl[�S:e℄(e0) groups the tuples by the values of their �rst l at-tributes and applies e to the sets formed by this grouping. For example:a1 b1a1 b2a2 
1a2 
2 ! a1 b1b2a2 
1
2 �S:e�! a1 d1d2a2 g1 ! a1 d1a1 d2a2 g1assuming that e returns fd1; d2g when S = fb1; b2g, and e returns fg1g forS = f
1; 
2g.Formally, let e0 evaluate to f~a1; : : : ;~apg. We split ea
h tuple ~aj = (a1j ; : : : ; amj )into ~a0j = (a1j ; : : : ; alj) that 
ontains the �rst l attributes, and ~a00j =(al+1j ; : : : ; amj ) that 
ontains the remaining ones. This de�nes, for ea
h ~aj, a setSj = f~a00r j ~a0r = ~a0jg. Let Tj = f~b1j ; : : : ;~bmjj g be the result of applying e with Sinterpreted as Sj. Then Groupl[�S:e℄(e0) returns the set of tuples of the form(~a0j;~bij), 1 � j � p, 1 � i � mj.Klug's algebra This algebra is one of the most popular theoreti
al languagesfor aggregate fun
tions. It does not split grouping and aggregation, and 
om-bines them in the same operation as follows:Grouping & Aggregation Let t be of lengthm. Let l < i1 < : : : < ik � mwith t:ij = n, and let F1; : : : ;Fk be aggregates from �. Then, for e anexpression of type t, Aggrl[i1 : F1; : : : ; ik : Fk℄ is an expression of typet � n : : : n (t with k ns added at the end).The semanti
s is best explained by SQL:10



SELECT #1; : : : ;#m;F1(#i1); : : : ;Fk(#ik)FROM EGROUPBY #1; : : : ;#lwhere E is the result of the expression e. (As presented in [20℄, the algebradoes not have arithmeti
 operations, and the aggregates are limited to thestandard �ve.)Note that there are no higher-order operators in Klug's algebra, and that itis expressible in our algebra with aggregates, as Aggrl[i1 : F1; : : : ; ik : Fk℄(e0)is equivalent to Groupl[�S:e℄(e0), where e isAggr[ik � l : Fk℄(Aggr[ik�1 � l : Fk�1℄(� � � (Aggr[i1 � l : F1℄(S)) � � �))Note also that relational algebra extended with a grouping operator similarto Group was studied in [21℄.Example The query (�) from Se
tion 2 is de�ned by the following expression(whi
h uses the operator 
ombining grouping with aggregation):�1;4(�[> 100000℄5((Aggr1[3 : A; 3 : �℄(�2;3;4(�1=3(S1 � S2))))))where A is the aggregate AVG, P is SUM, and > 100000 is a unary predi
ateon N whi
h holds of numbers n > 100000.Example The only aggregate that 
an be applied to non-numeri
al attributesin SQL is COUNT that returns the 
ardinality of a 
olumn. It 
an be easilyexpressed in Algaggr as long as the summation aggregate P and 
onstant 1are present. We show how to de�ne Countm(e):SELECT #1; : : : ;#m� 1,COUNT(#m)FROM EGROUPBY #1; : : : ;#m� 1First, we add a new 
olumn, whose elements are all 1s: e1 = e � Apply[1℄�.Then de�ne an expression e0 = Aggr[2 : �℄(S), and use it to produ
ee2 = Groupm�1[�S:e0℄(e1):This is almost the answer: there are extra 2 attributes, the mth attribute of11



: : : b : : : : : :-�: : : rr : : :: : :: : : a �-- �
 	� �
 	� --- - - - -Fig. 1. A lo
al formula 
annot distinguish (a; b) from (b; a).e, and those extra 1s. So �nally we haveCountm(e) = �1;:::;m�1;m+2(Groupm�1[�S:Aggr[2 : �℄(S)℄(e� Apply[1℄�)) :4 Lo
ality of SQL queriesWhat kind of general statement 
an one provide that would give us strongeviden
e that SQL 
annot express re
ursive queries? For that purpose, weshall use the lo
ality of queries. Lo
ality was the basis of a number of tools forproving expressivity bounds of �rst-order logi
 [15,13,11℄, and it was re
entlystudied on its own and applied to more expressive logi
s [17,23℄.The general idea of this notion is that a query 
an only look at a small portionof its input. If the input is a graph, \small" means a neighborhood of a �xedradius. For example, Fig. 1 shows that rea
hability is not lo
al: just take agraph like the one shown in the pi
ture so that there would be two pointswhose distan
e from the endpoints and ea
h other is more than 2r, where ris the �xed radius. Then the lo
ality of query says that (a; b) and (b; a) areindistinguishable, as the query 
an only look at the r-neighborhoods of a andb. Transitive 
losure, on the other hand, does distinguish between (a; b) and(b; a), sin
e b is rea
hable from a but not vi
e versa.We now de�ne lo
ality formally. We say that a s
hema SC is purely relationalif there are no o

urren
es of the numeri
al type n in it. Let us �rst restri
tour attention to graph queries. Suppose we have a purely relational s
hemaR : bb; that is, the relation R 
ontains edges of a dire
ted graph. Suppose e isan expression of the same type bb; that is, it returns a dire
ted graph. Givena pair of nodes a; b in R, and a number r > 0, the r-neighborhood of a; b inR, NRr (a; b), is the subgraph on the set of nodes in R whose distan
e fromeither a or b is at most r. The distan
e is measured in the undire
ted graph
orresponding to R, that is, R [ R�1.We write (a; b) �Rr (
; d) when the two neighborhoods, NRr (a; b) and NRr (
; d),are isomorphi
; that is, when there exists a (graph) isomorphism h betweenthem su
h that h(a) = 
; h(b) = d. Finally, we say that e is lo
al if there is anumber r, depending on e only, su
h that(a; b) �Rr (
; d) ) (a; b) 2 e(R) i� (
; d) 2 e(R):12



We have seen that rea
hability is not lo
al. Another example of a non-lo
alquery is a typi
al example of re
ursive query 
alled same-generation:sg(x; x) :-sg(x; y) :- R(x0; x); R(y0; y); sg(x0; y0) :This query is not lo
al either: 
onsider, for example, a graph 
onsisting of two
hains: (a; b1); (b1; b2); : : : ; (bm�1; bm) and (a; 
1); (
1; 
2); : : : ; (
m�1; 
m). As-sume that same-generation is lo
al, and r > 0 witnesses that. Take m > 2r+3,and note that the r-neighborhoods of (br+1; 
r+1) and (br+1; 
r+2) are iso-morphi
. By lo
ality, this would imply that these pairs agree on the same-generation query, but in fa
t we have (br+1; 
r+1) 2 sg(R) and (br+1; 
r+2) 62sg(R).We now state our main result on lo
ality of queries, that applies to the lan-guage in whi
h no limit is pla
ed on the available arithmeti
 and aggregatefun
tions { all are available. We denote this language by Algaggr(All;All).Theorem 1 (Lo
ality of SQL) Let e be a purely relational graph query inAlgaggr(All;All), that is, an expression of type bb over the s
heme of onesymbol R : bb. Then e is lo
al. �That is, neither rea
hability, nor same-generation, is expressible in SQL overthe base type b, no matter what aggregate fun
tions and arithmeti
 operationsare available. Inexpressibility of many other queries 
an be derived from this,for example, tests for graph 
onne
tivity and a
y
li
ity.Our next goal is to give an elementary, self-
ontained proof of this result. Therestri
tion to graph queries used in the theorem is not ne
essary; the result
an be stated in greater generality, but the restri
tion to graphs makes thede�nition of lo
ality very easy to understand. The proof will 
onsist of threesteps:(1) We introdu
e an aggregate logi
 Laggr, as an extension of �rst-order logi
,and show how Algaggr queries are translated into it. We do it be
ause itis easier to prove expressivity bounds for a logi
 than for an algebra.(2) We show that we 
an repla
e aggregate terms of Laggr by 
ounting quan-ti�ers, thereby translating Laggr into a simpler logi
 LC. The pri
e to payis that LC has in�nitary 
onne
tives.(3) We note that any use of an in�nitary 
onne
tive resulting from translationof Laggr into LC applies to a rather uniform family of formulae, and usethis fa
t to give a simple indu
tive proof of lo
ality of LC formulae.13



5 Aggregate logi
 and relational algebraOur goal here is to introdu
e a logi
 Laggr into whi
h we translate Algaggrexpressions. The stru
tures for this logi
 are pre
isely relational databasesover two base types with domains Dom and Num; that is, vo
abularies arejust s
hemas. This makes the logi
 two-sorted; we shall also refer to Dom as�rst-sort and to Num as se
ond-sort.We now de�ne formulae and terms of Laggr(
;�); as before, 
 is a set ofpredi
ates and fun
tions on Num, and � is a set of aggregates. The logi
 isjust a slight extension of the two-sorted �rst-order logi
.A SC -stru
ture D is a tuple hA;RD1 ; : : : ; RDk i, where A is a �nite subset ofDom, and RDi of type ti is a �nite subset ofjtijYj=1domj(D)where domj(D) = A for ti:j = b, and domj(D) = Num for ti:j = n.� A variable of sort i is a term of sort i, i = 1; 2.� If �; � 0 are terms of the same sort, then � = � 0 is a formula.� If R : t is in SC , and ~u is a tuple of terms of type t, then R(~u) is a formula.� Formulae are 
losed under the Boolean 
onne
tives _;^;: and quanti�-
ation (respe
ting sorts). If x is a �rst-sort variable, 9x is interpreted as9x 2 A; if k is a se
ond-sort variable, then 9k is interpreted as 9k 2 Num.� If P is an n-ary predi
ate in 
 and �1; : : : ; �n are se
ond-sort terms, thenP (�1; : : : ; �n) is a formula.� If f is an n-ary fun
tion in 
 and �1; : : : ; �n are se
ond-sort terms, thenf(�1; : : : ; �n) is a se
ond-sort term.� If F is an aggregate in �, '(~x; ~y) is a formula and �(~x; ~y) a se
ond-sortterm, then � 0(~x) = AggrF~y: ('(~x; ~y); �(~x; ~y)) is a se
ond-sort term with freevariables ~x.The interpretation of all the 
onstru
ts ex
ept the last one is 
ompletely stan-dard. The interpretation of the aggregate term-former is as follows: �x aninterpretation ~a for ~x, and let B = f~b j D j= '(~a;~b)g. If B is in�nite, then� 0(~a) is f!. If B is �nite, say f~b1; : : : ;~blg, then � 0(~a) is the result of applyingfl to the multiset whose elements are �(~a;~bi), i = 1; : : : ; l.It is now possible to translate Algaggr into Laggr:Theorem 2 Let e : t be an expression of Algaggr(
;�). Then there is aformula 'e(~x) of Laggr(
;�), with ~x of type t, su
h that for any SC-database14



D, e(D) = f~a j D j= 'e(~a)g :Proof. For the usual relational algebra operators, this is the same as the stan-dard textbook translation of algebra expressions into 
al
ulus expression. Sowe only show how to translate arithmeti
 operations, aggregation, and group-ing.� Numeri
al sele
tion: Let e0 = �[P ℄i1;:::;ik(e), where P is a k-ary predi
ate in
. Then 'e0(~x) is de�ned as 'e(~x) ^ P (xi1 ; : : : ; xik).� Fun
tion appli
ation: Let e0 = Apply[f ℄i1;:::;ik(e), where f : Numk ! Num isin 
. Then 'e0(~x; q) � 'e(~x) ^ (q = f(xi1 ; : : : ; xik)).� Aggregation: Let e0 = Aggr[i : F ℄(e). Then 'e0(~x; q) � 'e(~x) ^ (q =AggrF~y: ('e(~y); yi)).� Grouping: Let e0 = Groupm[�S:e1℄(e2), where e1 : u is an expression overSC [ fS : sg, and e2 over SC is of type t � s. Let ~x; ~y; ~z be of types t; s; u,respe
tively. Then'e0(~x; ~z) � 9~y 'e2(~x; ~y) ^ 'e1(~z)['e2(~x;~v)=S(~v)℄where the se
ond 
onjun
t is 'e1(~z) in whi
h every o

urren
e of S(~v) isrepla
ed by 'e2(~x;~v). �The 
onverse does not hold: formulae of Laggr need not de�ne safe queries,while all Algaggr queries are safe. It is possible, however, to prove a partial
onverse result; see [18℄ for more details.6 SQL is lo
al: the proofWe start by stating our main result in greater generality, without restri
tionto graph queries.Let SC be purely relational (no o

urren
es of type n), and D an instan
eof SC . The a
tive domain of D, adom(D), is the set of all elements of Domthat o

ur in relations of D. The Gaifman graph of D is the undire
ted graphG(D) on adom(D) with (a; b) 2 G(D) i� a; b belong to the same tuple of somerelation in D. The r-sphere of a 2 adom(D), SDr (a), is the set of all b su
hthat d(a; b) � r, where the distan
e d(�; �) is taken in G(D). The r-sphere of~a = (a1; : : : ; ak) is SDr (~a) = Si�k SDr (ai). The r-neighborhood of ~a, NDr (~a), isa new database, whose a
tive domain is SDr (~a), and whose SC -relations aresimply restri
tions of those relations in D. We write ~a �Dr ~b when there is anisomorphism of relational stru
tures h : NDr (~a)! NDr (~b) su
h that in additionh(~a) = ~b. Finally, we say that a query e of type b : : : b is lo
al if there exists15



a number r > 0 su
h that, for any database D, ~a �Dr ~b implies that ~a 2 e(D)i� ~b 2 e(D). The minimum su
h r is 
alled the lo
ality rank of e and denotedby lr(e).Theorem 3 Let e be a purely relational query in Algaggr(All;All), that is, anexpression of type b : : : b over a purely relational s
hema. Then e is lo
al. �Sin
e Algaggr(All;All) 
an be translated into Laggr(All;All), it suÆ
es to provethat the latter is lo
al. The proof of this is in two steps: we �rst introdu
e asimpler 
ounting logi
, LC, and show how to translate Laggr into it. We thengive a simple proof of lo
ality of LC.The logi
 LC is simpler than Laggr in that it does not have aggregate terms.There is a pri
e to pay for this { LC has in�nitary 
onjun
tions and disjun
-tions. However, the translation ensures that for ea
h in�nite 
onjun
tion ordisjun
tion, there is a uniform bound on the rank of formulae in it (to bede�ned a bit later), and this property suÆ
es to establish lo
ality.6.1 Logi
 LCThe stru
tures for LC are the same as the stru
tures for Laggr. The only termsare variables (of either sort); in addition, every 
onstant 
 2 Num is a term ofthe se
ond sort.Atomi
 formulae are R(~x), where R 2 SC , and ~x is a tuple of terms (thatis, variables and perhaps 
onstants from Num) of the appropriate sort, andx = y, where x; y are terms of the same sort.Formulae are 
losed under the Boolean 
onne
tives, and in�nitary 
onne
tives:if 'i, i 2 I, is a 
olle
tion of formulae, then Wi2I 'i and Vi2I 'i are LC formulae.Furthermore, they are 
losed under both �rst and se
ond-sort quanti�
ation.Finally, for every i 2 N , there is a quanti�er 9i that binds one �rst-sortvariable: that is, if '(x; ~y) is a formula, then 9ix '(x; ~y) is a formula whosefree variables are ~y. The semanti
s is as follows: D j= 9ix'(x;~a) if there arei distin
t elements b1; : : : ; bi 2 A su
h that D j= '(bj;~a), 1 � j � i. Thatis, the existential quanti�er is witnessed by at least i elements. Note that the�rst-sort quanti�
ation is super
uous as 9x' is equivalent 91x '.We now introdu
e the notion of a rank of a formula, rk('), for both LC andLaggr. For LC, this is the quanti�er rank, but the se
ond-sort quanti�
ationdoes not 
ount:� For ea
h atomi
 ', rk(') = 0. 16



� For ' = Wi ', rk(') = supi rk('), and likewise for V.� rk(:') = rk(').� rk(9ix ') = rk(') + 1 for x �rst-sort; rk(9k') = rk(') for k se
ond-sort.For Laggr, the de�nition di�ers slightly.� For a variable or a 
onstant term, the rank is 0.� The rank of an atomi
 formula is the maximum rank of a term in it.� rk('1 � '2) = max(rk('1); rk('2)), for � 2 f_;^g; rk(:') = rk(').� rk(f(�1; : : : ; �n)) = max1�i�n rk(�i).� rk(9x') = rk(') + 1 if x is �rst-sort; rk(9k') = rk(') if k is se
ond-sort.� rk(AggrF~y: ('; �)) = max(rk('); rk(�))+m, where m is the number of �rst-sort variables in ~y.6.2 Translating Laggr into LCThis is the longest step in the proof, but although it is somewhat tedious,
on
eptually it is quite straightforward.Proposition 1 For every formula '(~x) of Laggr(All;All), there exists an equiv-alent formula 'Æ(~x) of LC su
h that rk('Æ) � rk(').Proof. We start by showing that one 
an de�ne a formula 9i~x' in LC, whosemeaning is that there exist at least i tuples ~x su
h that ' holds. Moreover, itsrank equals rk(') plus the number of �rst-sort variables in ~x. The proof is byindu
tion on the length of ~x. If ~x is a single �rst-sort variable, then the 
ountingquanti�er is already in LC. If k is a se
ond-sort variable, then 9ik'(k; �) isequivalent to WC V
2C '(
; �), where C ranges over i-element subsets of Num {this does not in
rease the rank. Suppose we 
an de�ne it for ~x being of lengthn. We now show how to de�ne 9i(y; ~x)' for y of the �rst sort, and 9i(k; ~x)'for k of the se
ond sort.(1) Let  (~z) � 9i(y; ~x)'(y; ~x; ~z). It is the 
ase that there are at least ituples (bj;~aj) satisfying '(y; ~x; �) i� one 
an �nd an l-tuple of pairs((n1; m1); : : : ; (nl; ml)) with all mjs distin
t, su
h that{ there are at least nj tuples ~a for whi
h the number of elements b satis-fying '(b;~a; �) is pre
isely mj, and{ Plj=1 nj �mj � i.Thus,  (~z) is equivalent to_ l̂j=19nj~x (9!mjy '(y; ~x; ~z))where the disjun
tion is taken over all the tuples satisfying nj; mj > 0,17



mjs distin
t, andPlj=1 nj �mj � i (it is easy to see that a �nite disjun
tionwould suÆ
e), and 9!nu' abbreviates 9nu' ^ :9(n + 1)u'.The rank of this formula equals rk(9!mjy') = rk(') + 1, plus thenumber of �rst-sort variables in ~x (by the indu
tion hypothesis) { thatis, rk(') plus the number of �rst-sort variables in (y; ~x).(2) Let  (~z) � 9i(k; ~x)'(k; ~x; ~z). The proof is identi
al to the proof above upto the point of writing down the quanti�er 9!mjk'(k; �) { it is repla
edby the formula WC(V
2C '(
; �) ^ V
62C :'(
; �)) where C ranges over mj-element subsets of Num. As the rank of this equals rk('), we 
on
ludethat the rank of the formula equivalent to  (~z) equals rk(') plus thenumber of �rst-sort variables in ~x.This 
on
ludes the proof that 
ounting over tuples is de�nable in LC. Withthis, we prove the proposition by indu
tion on the formulae and terms. Wealso produ
e, for ea
h se
ond-sort term �(~x) of Laggr, a formula  � (~x; z) ofLC, with z of the se
ond sort, su
h that D j=  � (~a; q) i� the value of �(~a) onD is q.We may assume, without loss of generality, that parameters of atomi
 Laggrformulae R(�) and P (�) are tuples of variables: indeed, if a se
ond-sort termo

urs in R(��i�), it 
an be repla
ed by 9k (k = �i)^R(�k�) without in
reasingthe rank. We now de�ne the translation as follows:� For a se
ond-sort term t whi
h is a variable q,  t(q; z) � (z = q). If t is a
onstant 
, then  t(z) � (z = 
).� For an atomi
 ' of the form x = y, where x; y are �rst-sort, 'Æ = '.� For an atomi
 ' of the form P (�1(~x); : : : ; �n(~x)), 'Æ(~x) isW(
1;:::;
n)2P Vni=1  �i(~x; 
i). Note that rk('Æ) = maxi rk( �i) � maxi rk(�i) =rk(').� ('1 _ '2)Æ = 'Æ1 _ 'Æ2, ('1 ^ '2)Æ = 'Æ1 ^ 'Æ2, (:')Æ = :'Æ, (9x')Æ = 9x'Æfor x of either sort. Clearly, this does not in
rease the rank.� For a term �(~x) = f(�1(~x); : : : ; �n(~x)), we have � (~x; z) = _(
;
1;:::;
n):
=f(~
) (z = 
) ^ n̂j=1 �j (~x; 
j)Again it is easy to see that rk( � ) � rk(�).� For a term � 0(~x) = AggrF~y: ('(~x; ~y); �(~x; ~y)),  � 0(~x; z) is de�ned as['Æ1(~x) ^ (z = f!)℄ _ [:'Æ1(~x) ^  0(~x; z)℄where 'Æ1(~x) tests if the number of ~y satisfying '(~x; ~y) is in�nite, and  0produ
es the value of the term in the 
ase the number of su
h ~y is �nite.18



The formula 'Æ1(~x) 
an be de�ned as_i:yi of 2nd sort _C�Num;jCj=1 
̂2C 'Æi (~x; 
)where 'Æi (~x; yi) � 9(y1; : : : ; yi�1; yi+1; : : : ; ym)'Æ(~x; ~y).The formula  0(~x; z) is de�ned as the disjun
tion of :9~y'Æ(~x; ~y)^ z = f0and _
;(
1;n1);:::;(
l;nl)
0BBBBBBBBBBBB�

z = 
^ 9!n1~y ('Æ(~x; ~y) ^  � (~x; ~y; 
1))^ � � �^ 9!nl~y ('Æ(~x; ~y) ^  � (~x; ~y; 
l))^ 8~yVa2Num('Æ(~x; ~y) ^  � (~x; ~y; a)! Wli=1(a = 
i))
1CCCCCCCCCCCCAwhere the disjun
tion is taken over all tuples (
1; n1); : : : ; (
l; nl), l > 0; ni >0 and values 
 2 Num su
h thatF(fj
1; : : : ; 
1| {z }n1 times ; : : : ; 
l; : : : ; 
l| {z }nl times jg) = 
Indeed, this formula asserts that either '(~x; �) does not hold and thenz = f0, or that 
1; : : : ; 
l are exa
tly the values of the term �(~x; ~y) when'(~x; ~y) holds, and that nis are the multipli
ities of the 
is.A straightforward analysis of the produ
ed formulae shows that rk( � 0) �max(rk('Æ); rk( � )) plus the number of �rst-sort variables in ~y; that is,rk( � 0) � rk(� 0). This 
ompletes the proof of the proposition. �6.3 LC is lo
alFormulae of Laggr have �nite rank; hen
e they are translated into LC formulaeof �nite rank. We now show by a simple indu
tion argument that those for-mulae are lo
al. More pre
isely, we show that for every �nite-rank LC formula'(~x;~{) (~x of �rst-sort, ~{ of se
ond-sort) over purely relational SC , there existsa number r � 0 su
h that ~a �Dr ~b implies D j= '(~a;~{0) $ '(~b;~{0) for any ~{0.The smallest su
h r will be denoted by lr('). The proof is based on:Lemma 1 (Permutation Lemma) Let D be purely relational, with A =adom(D), and r > 0. If ~a �D3r+1 ~b, then there exists a permutation � : A! Asu
h that ~a
 �Dr ~b�(
) for every 
 2 A.Proof. Fix an isomorphism h : ND3r+1(~a) ! ND3r+1(~b) with h(~a) = ~b. For19



any 
 2 SD2r+1(~a), h(
) 2 SD2r+1(~b) has the same isomorphism type of its r-neighborhood. Thus, for any isomorphism type T of an r-neighborhood ofa single element, there are equally many elements in A � SD2r+1(~a) and inA � SD2r+1(~b) that realize T . Thus, we have a bije
tion g : A � SD2r+1(~a) !A�SD2r+1(~b) su
h that 
 �Dr g(
). Then � 
an be de�ned as h on SD2r+1(~a), andas g on A� SD2r+1(~a). �Based on the lemma, we show that every LC formula ' of �nite rank is lo
al,with lr(') � (3rk(') � 1)=2. Note that for the sequen
e r0 = 0; : : : ; ri+1 =3ri + 1; : : :, we have rk = (3k � 1)=2; we show lr(') � rrk(').The proof of this is by indu
tion on the formulae, and it is absolutelystraightforward for all 
ases ex
ept 
ounting quanti�ers. For example, if'(~x;~{) = Wj 'j(~x;~{), and m = rk('), then by the hypothesis, lr('j) � rm,as rk('j) � rk('). So �x ~{0, and let ~a �Drm ~b. Then D j= 'j(~a;~{0) $ 'j(~b;~{0)for all j by the indu
tion hypothesis, and thus D j= '(~a;~{0)$ '(~b;~{0).Now 
onsider the 
ase of the 
ounting quanti�er  (~x;~{) � 9iz'(~x; z;~{). Letrk(') = m, then rk( ) = m+1 and rm+1 = 3rm+1. Fix ~{0, and let ~a �Drm+1 ~b.By the Permutation Lemma, we get a permutation � : A! A su
h that ~a
 �Drm~b�(
). By the hypothesis, lr(') � rm, and thus D j= '(~a; 
;~{0)$ '(~b; �(
);~{0).Hen
e, the number of elements of A satisfying '(~a; �;~{0) is exa
tly the sameas the number of elements satisfying '(~b; �;~{0), whi
h implies D j=  (~a;~{0)$ (~b;~{0). This 
on
ludes the proof of lo
ality of LC.Putting everything together, let e be a purely relational expression ofAlgaggr(All;All). By Theorem 2, it is expressible in Laggr(All;All), and byProposition 1, by a LC formula of �nite rank. Hen
e, it is lo
al.7 On the 
hoi
e of languageAs was mentioned already, previous papers on the expressive power of SQLdealt with a theoreti
al language of distin
tly di�erent 
avor: that is, a fun
-tional, typed language obtained as a restri
tion of a nested relational algebrawith aggregates. In this se
tion we brie
y review that language, and presenta translation from it to Algaggr(All;All), thereby showing that the results ofthis paper are at least as strong as those in [18℄.Following [18℄, we assume that the numeri
al domain is Q . We de�ne a rela-tional query language RLaggr(
;�), parameterized by a 
olle
tion of allowedarithmeti
 fun
tions and predi
ates 
 and a 
olle
tion of allowed aggregates�. We assume that the usual arithmeti
 operations (+, �, �, �) and the order20



0; 1 : Q R 2 SCR : type(R) e : Q e1 : t e2 : tif e then e1 else e2 : te : Q � : : :� Q (n times)f(e) : Q P (e) : Q for f : Qn ! Q and P � Qn from 
e1 : b1; : : : en : bn(e1; : : : ; en) : b1 � : : :� bni � n e : b1 � : : :� bn�i;n e : bi e1 : b e2 : b= (e1; e2) : Q
xrt : rt e : rtfeg : frtg e1 : frtg e2 : frtge1 [ e2 : frtg ;rt : frtge1 : frt1g e2 : frt2gSfe1 j xrt2 2 e2g : frt1g e1 : Q e2 : frtgPfe1 j xrt 2 e2g : QF 2 � e1 : Q e2 : frtgAggrFfe1 j xrt 2 e2g : QFig. 2. Expressions of RLaggr(
;�) over SC< on Q are always in 
 and the summation aggregate (P) is always in �.There are three 
ategories of types in RLaggr:(1) Base types, whi
h are b and Q ; we denote them by b, possibly subs
ripted;(2) Re
ord types of the form b1 � : : : � bn, where b1; : : : ; bn are base types;we denote them by rt ;(3) Relational types frtg. 21



Expressions of the language (over a �xed s
hema �) are shown in Figure 2.We adopt the 
onvention of omitting the expli
it type supers
ripts in theseexpressions whenever they 
an be inferred from the 
ontext.The set of free variables of an expression e is de�ned by indu
tion on thestru
ture of e and we often write e(x1; : : : ; xn) to expli
itly indi
ate that x1,..., xn are free variables of e. 0, 1, R, and ;t have no free variables. The freevariables of (e1; : : : ; en) are those of e1, ..., en. The free variables of if e thene1 else e2 are those of e, e1, and e2. The free variables of f(e), P (e), �i;n e andfeg are those of e. The free variables of = (e1; e2) and e1 [ e2 are those ofe1 and e2. The free variable of x is the variable x itself. The free variables ofSfe1 j x 2 e2g, Pfe1 j x 2 e2g, and AggrFfe1 j x 2 e2g are the free variablesof e1, ex
luding x, and those of e2. In these three 
onstru
ts, x is not allowedto be a free variable of e2. Note that the type of a free variable is always are
ord type.
Semanti
s For ea
h �xed s
hema SC and an expression e(x1; : : : ; xn), thevalue of e(x1; : : : ; xn) is de�ned by indu
tion on the stru
ture of e andwith respe
t to a database D and a substitution [x1:= a1; : : : ; xn:= an℄ thatassigns to ea
h variable xi a value ai of the appropriate type. We writee[x1:= a1; : : : ; xn:= an℄(D) to denote this value. The values of 0 and 1 are0; 1 2 Q . We use them to 
ode Booleans, letting 1 
ode \true" and 0 
ode\false" (any other pair of rationals 
an be used for that purpose). The valueof f(e) is the rational number obtained by applying the fun
tion f 2 
 to thevalue of e. The value of P (e) is 1 if the predi
ate in 
 denoted by P holds onthe tuple denoted by e; otherwise, it is 0. The value of R is the 
orrespondingrelation in D. The value of if e then e1 else e2 is that of e1 if the value of e is1; if the value of e is 0, then it is the value of e2. The value of (e1; : : : ; en) isthe n-ary tuple having the values of e1, ..., en at positions 1, ..., n respe
tively.The value of �i;n e is the value at the i-th position of the n-ary tuple denotedby e. The value of = (e1; e2) is 1 if e1 and e2 have the same value; otherwise,it is 0. The value of the variable x is the 
orresponding a assigned to x in thegiven substitution. The value of feg is the singleton set 
ontaining the valueof e. The value of e1 [ e2 is the union of the two sets denoted by e1 and e2.The value of ; is the empty set.To de�ne the semanti
s of S, P and AggrF , assume that the value of e2 is theset fb1; : : : ; bmg. Then the value of Sfe1 j x 2 e2g[x1:=a1; : : : ; xn:=an℄(D) isde�ned to be m[i=1 e1[x1:=a1; : : : ; xn:=an; x:=bi℄(D):22



The value of Pfe1 j x 2 e2g[x1:=a1; : : : ; xn:=an℄(D) ismXi=1 e1[x1:=a1; : : : ; xn:=an; x:=bi℄(D):Finally, the value of AggrFfe1 j x 2 e2g[x1:=a1; : : : ; xn:=an℄(D) isfm(fj
1; : : : ; 
mjg), where fm is the mth fun
tion in F 2 �, and ea
h 
i isthe value of e1[x1:=a1; : : : ; xn:=an; x:=bi℄(D), i = 1; : : : ; m.7.1 RLaggr vs. AlgaggrPrevious bounds on the expressive power of aggregation were obtained in the
ontext ofRLaggr or similar (and weaker) languages. We now show that nothingis lost by going to a more natural (at least for a database person) languageAlgaggr. A type of the form fb � : : : � bg is 
alled relational. A relationalquery in RLaggr then, just as a relational query in Algaggr, is an expressionof a relational type over a database in whi
h every relation is of a relationaltype. In other words, numbers are not allowed in the input and output.Theorem 4 Every relational query of RLaggr(All;All) is expressible inAlgaggr(All;All).Proof. To be able to give an indu
tive proof, we have to a

ount for non-settypes, numeri
al types, and free variables in RLaggr expressions.De�ne the transformation (�)set on RLaggr types and values as follows. If t is abase type or a re
ord type, then tset = ftg; otherwise tset = t. We extend thisto tuples of re
ord types as follows: if rt i = bi1 � : : :� bini , then(rt1; : : : ; rtm)set = fb11 � : : :� b1n1 � : : :� bm1 � : : :� bmnmgNote that there is a natural 
orresponden
e between types of the form (�)setand Algaggr types, and we shall use this 
orresponden
e (impli
itly) in theproof.For values, we de�ne xset = fxg for any x of base or re
ord type, and xset = xotherwise. The extension to tuples of values of re
ord types is (x1; : : : ; xm)set =xset1 � : : : � xsetm . Note that if xi is of type rt i, then (x1; : : : ; xm)set is of type(rt1; : : : ; rtm)set.We now show the following by indu
tion on the expressions of RLaggr(All;All).Claim 1 Let e(x1; : : : ; xm) be an RLaggr(All;All) expression over s
hema SC ,where ea
h xi is of type rt i. Then there exists an Algaggr(All;All) expression23



eÆ over SC extended with one relation X of type (rt1; : : : ; rtm)set su
h that,for any database D and any tuple a1; : : : ; am of values of types rt1; : : : ; rtm,(e[x1:=a1; : : : ; xm:=am℄(D))set = eÆ(D; (a1; : : : ; am)set):The theorem is a spe
ial 
ase of this 
laim for expressions of relational typeswithout free variables.We now present the main 
ases of the translation. If e is a 
onstant 
, the trans-lation is Apply[
℄�. Predi
ates and fun
tions are straightforwardly translatedinto numeri
al sele
tions and fun
tion appli
ation.Consider if e1 then e2 else e3. Sin
e e1 produ
es 0 or 1, eÆ1 produ
es f0g orf1g. Thus, (eÆ2 � (eÆ1 � Apply[0℄�)) [ (eÆ3 � (eÆ1 � Apply[1℄�))produ
es the same result as e2 with an all-one 
olumn added if e1 is true(1), or the same result as e3 with an all-zero 
olumn added if e1 is false (0).Hen
e, eliminating the last 
olumn (by proje
tion), gives the translation ofif e1 then e2 else e3.The translations of produ
t and proje
tion be
ome 
artesian produ
t andrelational proje
tions, by the (�)set translation. For equality of e1; e2 of basetypes, note that Count1[�1=2(eÆ1 � eÆ2)℄produ
es f1g if e1 = e2 and f0g otherwise.A free variable is translated into a 
orresponding proje
tion on the extrarelationX. The empty set is �16=1(Apply[0℄�); (e1[e2)Æ = eÆ1[eÆ2 and fegÆ = eÆ.Next, 
onsider e = Sfe1 j yrt 2 e2g. The idea of the translation is as follows:
ompute e2, whi
h is a set, say fv1; : : : ; vkg. Then grouping them gives usffv1g; : : : ; fvkgg; �nally, applying e2 over those groups yields the result ofSfe1 j y 2 e2g. To express this in Algaggr, we do the following. Let X bea relation 
orresponding to the free variables of e, and let Y be an extrarelation of type frtg. Clearly, eÆ1 
an be rewritten as an expression E1 over SCextended with X and Y (indeed, by the hypothesis, eÆ2 is an expression overSC extended with some relation for the free variables, say Z; it then suÆ
esto repla
e Z with X � Y ). Then eÆ is Group0[�Y:E1℄(eÆ2).Finally, we translate aggregate fun
tions. Let e = AggrFfe1 j yrt 2 e2g, withrt of length m. Let E1 be de�ned as in the previous paragraph. The trans-lation is as follows: if e2 evaluates to fv1; : : : ; vkg, we �rst produ
e the setf(v1; v1); : : : ; (vk; vk)g. Clearly, this 
an be done by an Algaggr expression,24



say E. Then E 0 = Groupm[�Y:E1℄(E) produ
es f(v1; e1(v1)); : : : ; (vk; e(vk))g.Finally, eÆ = �m+1(Aggr[m + 1 : F ℄(E 0)). This 
ompletes the proof. �It is 
lear from the proof that the theorem 
an be strengthened: with somemodest assumption on the set of arithmeti
 operations 
, we 
an show thatfor any � 
ontaining summation, every relational query from RLaggr(
;�)is expressible in Algaggr(
;�). Furthermore, the other 
ontainment holds aswell. This, however, is not of parti
ular interest to us. Our goal here was toshow that the best previous result on lo
ality of aggregate queries, statingthat every relational query in RLaggr(All;All) is lo
al, is subsumed by the maintheorem of this paper, whose simple proof was given in the previous se
tion.This was a
hieved by proving Theorem 4.8 SQL over ordered domainsSo far the only nonnumeri
al sele
tion we have seen was of the form �i=j,testing equality of two attributes. We now extend the language to Alg<aggr byallowing sele
tions of the form �i<j(e), where both i and j are of the type b,and < is some �xed linear ordering on the domain Dom.This small addition 
hanges the situation dramati
ally, and furthermore inthis 
ase we 
annot make blanket statements like \queries are lo
al" { a lotwill depend on the numeri
al domain Num and available arithmeti
 operations.Note that even in the 
ase of relational 
al
ulus without aggregates, it is knownthat the addition of order makes it more powerful, even with respe
t to queriesthat do mention the order at all (
f. [1℄).8.1 Natural numbersLet Num = N . We 
onsider a version of Algaggr that has the most usualset of arithmeti
 and aggregate operators: namely, +; �; < and 
onstants forarithmeti
, and the aggregate P. This suÆ
es to express aggregates MIN, MAX,COUNT, SUM, but 
ertainly not AVG, whi
h produ
es rational numbers.We shall use the notations:� sqlN for Algaggr(f+; �; <; 0; 1g; f�g), and� sql<N for Alg<aggr(f+; �; <; 0; 1g; f�g).It is suÆ
ient to have 
onstants just for 0 and 1, as all other numbers arede�nable with +. 25



We show how a well-known 
ounting logi
 FO(C) [3℄ 
an be embedded intosql<N . The importan
e of this lies in the fa
t that FO(C) over ordered stru
-tures 
aptures a 
omplexity 
lass, 
alled TC0 [3,27℄, for whi
h no nontriv-ial general lower bounds are known. In fa
t, although TC0 is 
ontained inDLOGSPACE, the 
ontainment is not known to be proper, and to this daywe don't even know if TC0 6= NP. Moreover, there are indi
ations that provingsu
h a separation result, at least by traditional methods, is either impossible,or would have some very unexpe
ted 
ryptographi
 
onsequen
es [29℄.8.1.0.1 De�nition of FO(C) (see [3,10,19℄) FO(C) is a two-sorted logi
,with se
ond sort being the sort of natural numbers. That is, a stru
ture D isof the form hfa1; : : : ; ang; f1; : : : ; ng; <;+; �; 1; n; R1; : : : ; Rli;where the relations Ri are de�ned on the domain fa1; : : : ; ang, while on thenumeri
al domain f1; : : : ; ng one has 1; n; < and +; � interpreted as ternarypredi
ates (e.g., +(x; y; z) holds i� x+y = z). This logi
 extends �rst-order by
ounting quanti�ers 9ix '(x), meaning that at least i elements satisfy '; herei refers to the numeri
al domain f1; : : : ; ng and x to the domain fa1; : : : ; ang.These quanti�ers bind x but not i.Theorem 5 Over ordered stru
tures, FO(C) � sql<N . In parti
ular,uniform TC0 � sql<N :Proof. With order and aggregate SUM, one 
an de�ne the set I = f1; : : : ; mgwhere m = jadom(D) j (by 
ounting the number of elements not greater thanea
h element in the a
tive domain). Using Apply, one de�nes the operations+ and � (as ternary relations) and the linear ordering < on I. Then thetranslation of FO(C) into sql<N pro
eeds exa
tly as the standard translationof relational 
al
ulus into relational algebra (with extra relations for + and�). The only ex
eption is the 
ounting quanti�er 
ase:  (i; ~y) � 9ix'(i; ~y; x),where ~y is of length p. Assume that ' is translated into an expression e thatreturns a relation with p+2 attributes. To translate  , we use P to 
ount x's,and 
ompare their number with i's, that is,�1;:::;p+1(�1�p+3(Aggrp+1[p + 3 :X℄(e� Apply[1℄�))):(Note that we 
ount the number of x's, and thus we �rst take produ
t withthe 
onstant relation f1g). �Corollary 1 Assume that rea
hability is not expressible in sql<N . Then uni-form TC0 is properly 
ontained in NLOGSPACE. �26



As separation of 
omplexity 
lasses is 
urrently beyond rea
h, so is provingexpressivity bounds for sql<N .One 
an also show a 
losely-related upper bound on the 
lass of de
isionproblems expressible in sql<N :Proposition 2 Every Boolean query in sql<N is 
ontained in P-uniform TC0.Proof. By a straightforward indu
tion on expressions of sql<N , we 
an showthat for any expression e, there is a polynomial pe su
h that, for an inputwith the a
tive domain of size n, the largest integer that is 
ontained in theresult of any subexpression of e, does not ex
eed pe(n). Given D whose a
tivedomain is of size n, let D0 be D expanded with the relation f1; : : : ; pe(n)g.We 
an then translate sql<N expressions into 
ir
uits just as FO(C) formulaeare translated into them, sin
e no subexpression of e produ
es an integer thatis not 
ontained in the a
tive domain of D0. Clearly, the fun
tion that takesf1; : : : ; ng and produ
es f1; : : : ; pe(n)g is PTIME, and thus the 
ir
uit forevaluating an expression e on inputs of size n 
an be produ
ed in PTIME.Hen
e, sql<N is 
ontained in P-uniform TC0. �Noti
e that the rea
hability query, even over ordered domains of nodes, isorder-independent; that is, the result does not depend on a parti
ular orderingon the nodes, just on the graph stru
ture. Could it be that order-independentqueries in sqlN and sql<N are the same? Of 
ourse, su
h a result would implythat TC0 is properly 
ontained in DLOGSPACE, and several papers suggestedthis approa
h towards separating 
omplexity 
lasses. Unfortunately, it doesnot work, as shown in [17℄:Proposition 3 There exist order-independent non-lo
al queries expressible insql<N . Thus, there are order-independent sql<N queries not expressible in sqlN.Proof. It was shown in [17℄ that, on the graph of an n-element su

essor relationwith an extra predi
ate P interpreted as the �rst blog2 n
 elements, one 
ande�ne the rea
hability query restri
ted to the elements of P in FO(C). Hen
eit 
an be done sql<N . �Counting abilities of sqlN are essential for this result, as its analog for rela-tional 
al
ulus does not hold [9℄.8.2 Rational NumbersThe language sql<N falls short of the 
lass of queries real SQL 
an de�ne, asit only uses natural numbers. To deal with rational arithmeti
 (and thus topermit aggregates su
h as AVG), we extend the numeri
al domain Num to that27



of rational numbers Q , and introdu
e the languagesql<Q as Alg<aggr(f+;�; �;�; <; 0; 1g; f�g).This is a stronger language than sql<N (and thus than FO(C)) { to see this,note that it 
an de�ne rational numbers, and if one represents those by pairsof natural numbers, in some queries these numbers may grow exponentiallywith the size of the database: something that 
annot happen in the 
ontextof sql<N .The most interesting feature of sql<Q is perhaps that it is 
apable of 
odinginputs with numbers:Theorem 6 Let SC be a purely relational s
hema. Then there is an sql<Qexpression eSC of type n su
h that for every SC-database D, eSC (D) is asingle rational number, andD1 6= D2 ) eSC (D1) 6= eSC (D2)Proof. We present the proof for graphs; it is absolutely straightforward toextend it to other s
hemas. As before, for a given input graphG with the a
tivedomain fa1; : : : ; ang, a1 < : : : < an, 
ompute, in sql<Q , the set I = f1; : : : ; ng,where n is the size of the a
tive domain. Using this, we 
an 
ompute a relationG0 of type bbn, whi
h 
ontains triples (ai; aj; f(i; j)) where (ai; aj) 2 G andf(i; j) is the standard pairing fun
tion (i+j)(i+j+1)2 + j. To 
omplete the proof,we show the following.(a) Using G0 and I, we 
an further 
ompute a relation G00 of type bbn, whi
h
ontains triples (ai; aj; pij) where (ai; aj) 2 G and pij is the f(i; j)th prime.Indeed, from number theory we know that there is a 
onstant C su
h thatthe kth prime, pk � C � k2. Sin
e f(n; n) = 2n(n+ 1), the maximum primethat o

urs in G00 is p2n(n+1) � C � (2n(n+ 1))2. Using I, we 
an 
onstru
t,in sql<Q , the set f1; : : : ; C � (2n(n + 1))2g. Using arithmeti
 operations, forea
h element of that set we 
an test primality, and thus we 
an 
onstru
tthe set f(k; pk) j pk � C � (2n(n+ 1))2g. Using that set and G0, we 
omputeG00.(b) Let inv be the fun
tion x 7! 1x . Let G0 = �4(Apply[inv℄3(G00)). That is,G0 = f1p j (ai; aj; p) 2 G00g. We 
laim that Aggr[1 : P℄(G0), that is,X(ai;aj ;p)2G00 1pis the required 
oding.This will follow from the following: if P1 and P2 are two distin
t nonemptysets of prime numbers, then Pp2P1 1p 6= Pp2P2 1p . This follows from the fa
t28



that for a nonempty set P of primes, Pp2P Qp02P;p0 6=p p0 and Qp2P p arerelatively prime (whi
h 
an be shown by a straightforward indu
tion onjP j). This 
ompletes the proof. �Thus, with the addition of some arithmeti
 operations, sql<Q 
an express manyqueries; in parti
ular, sql<Q extended with all 
omputable numeri
al fun
tionsexpresses all 
omputable queries over purely relational s
hemas! In fa
t, toexpress all 
omputable Boolean queries over su
h s
hemas, it suÆ
es to addall 
omputable fun
tions from Q to f0; 1g. In 
ontrast, one 
an show thatadding all 
omputable fun
tions from N to f0; 1g to sql<N does not give usthe same power, as the resulting queries 
an be 
oded by non-uniform TC0
ir
uits. Still, the 
oding is just of theoreti
al interest; even for graphs with20 nodes it 
an produ
es 
odes of the form pq with p; q relatively prime, andq > 101000; for q > 1010000 one needs only 60 nodes.9 Con
lusionDid SQL3 designers really have to introdu
e re
ursion, or is it expressible withwhat's already there? Our results show that they 
learly had a good reasonfor adding a new 
onstru
t, be
ause:(1) Over unordered types, rea
hability queries 
annot be expressed by thebasi
 SQL SELECT-FROM-WHERE-GROUPBY-HAVING statements; in fa
t, allqueries expressible by su
h statements are lo
al.(2) Over ordered domains, with limited arithmeti
, rea
hability queries aremost likely inexpressible, but proving this is hard as separating some
omplexity 
lasses (and perhaps as hard as refuting some 
ryptographi
assumptions). Adding more arithmeti
 operations might help, but onlyat the expense of en
odings whi
h are several thousand digits long { sothe new 
onstru
t is 
learly justi�ed.A
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