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This paper takes a first step towards the design and normalization theory for XML documents.
We show that, like relational databases, XML documents may contain redundant information, and
may be prone to update anomalies. Furthermore, such problems are caused by certain functional
dependencies among paths in the document. Our goal is to find a way of converting an arbitrary
DTD into a well-designed one, that avoids these problems. We first introduce the concept of a
functional dependency for XML, and define its semantics via a relational representation of XML.
We then define an XML normal form, XNF, that avoids update anomalies and redundancies. We
study its properties and show that it generalizes BCNF and a normal form for nested relations
called NNF-FD when those are appropriately coded as XML documents. Finally, we present a
lossless algorithm for converting any DTD into one in XNF.

Categories and Subject Descriptors: H.2.1 [Database Management|: Logical Design—Data
models; Normal forms; Schema and subschema; H.2.3 [Database Management]: Languages—
Data description languages (DDL)

General Terms: Design, Management, Theory
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1. INTRODUCTION

The concepts of database design and normal forms are a key component of the
relational database technology. In this paper, we study design principles for XML
data. XML has recently emerged as a new basic format for data exchange. Although
many XML documents are views of relational data, the number of applications
using native XML documents is increasing rapidly. Such applications may use
native XML storage facilities [Kanne and Moerkotte 2000], and update XML data
[Tatarinov et al. 2001]. Updates, like in relational databases, may cause anomalies
if data is redundant. In the relational world, anomalies are avoided by using well-
designed database schema. XML has its version of schema too; most often it is
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DTDs (Document Type Definitions), and some other proposals exist or are under
development [W3C 2001; 1998]. What would it mean then for such a schema to be
well or poorly designed? Clearly, this question has arisen in practice: one can find
companies offering help in “good DTD design.” This help, however, comes in form
of consulting services rather than commercially available software, as there are no
clear guidelines for producing well designed XML.

Our goal is to find principles for good XML data design, and algorithms to
produce such designs. We believe that it is important to do this research now, as a
lot of data is being put on the web. Once massive web databases are created, it is
very hard to change their organization; thus, there is a risk of having large amounts
of widely accessible, but at the same time poorly organized legacy data.

Normalization is one of the most thoroughly researched subjects in database the-
ory (a survey [Beeri et al. 1978] produced many references more than 20 years ago),
and cannot be reconstructed in a single paper in its entirety. Here we follow the
standard treatment of one of the most common (if not the most common) nor-
mal forms, BCNF. It eliminates redundancies and avoids update anomalies which
they cause by decomposing into relational subschemas in which every nontrivial
functional dependency defines a key. Just to retrace this development in the XML
context, we need the following:

a) Understanding of what a redundancy and an update anomaly is.

b) A definition and basic properties of functional dependencies (so far, most pro-
posals for XML constraints concentrate on keys).

c) A definition of what “bad” functional dependencies are (those that cause redun-
dancies and update anomalies).

d) An algorithm for converting an arbitrary DTD into one that does not admit
such bad functional dependencies.

Starting with point a), how does one identify bad designs? We have looked at a
large number of DTDs and found two kinds of commonly present, design problems.
They are illustrated in two examples below.

Ezample 1.1. Consider the following DTD that describes a part of a university
database:

<!DOCTYPE courses [
<!ELEMENT courses (coursex)>
<!ELEMENT course (title, taken_by)>
<!ATTLIST course
cno CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT taken_by (studentx)>
<!ELEMENT student (name, grade)>
<!ATTLIST student
sno CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT grade (#PCDATA) >
1>
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A Normal Form for XML Documents . 3

For every course, we store its number (cno), its title and the list of students taking
the course. For each student taking a course, we store his/her number (sno), name,
and the grade in the course.

courses

course course
Qcno title taken_by Qcno title taken_by
"csc200" "Automata "mat100" "Calculus I"
Theory"/\ /\
student student student student

I T T T

@sno name grade @sno name grade @sno name grade @sno name grade
"Sti" I|Deerel| IIA+I| "St2" "Smith" IIB_H "Sti" I|Deerel| I|Al| "StS" "Smith" IIB+I|

Fig. 1. A document containing redundant information.

An example of an XML document that conforms to this DTD is shown in figure
1. This document satisfies the following constraint: any two student elements
with the same sno value must have the same name. This constraint (which looks
very much like a functional dependency), causes the document to store redundant
information: for example, the name Deere for student st1 is stored twice. And
just as in relational databases, such redundancies can lead to update anomalies: for
example, updating the name of st1 for only one course results in an inconsistent
document, and removing the student from a course may result in removing that
student from the document altogether.

In order to eliminate redundant information, we use a technique similar to the
relational one, and split the information about the name and the grade. Since we
deal with just one XML document, we must do it by creating an extra element
type, info, for student information, as shown below:

<!DOCTYPE courses [
<!ELEMENT courses (coursex, info*)>
<!ELEMENT course (title,taken_by)>
<!'ATTLIST course
cno CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT taken_by (studentx)>
<!ELEMENT student (grade)>
<!'ATTLIST student
sno CDATA #REQUIRED>
<!ELEMENT grade (#PCDATA)>
<!ELEMENT info (number*,name)>
<!ELEMENT number EMPTY>
<!'ATTLIST number
sno CDATA #REQUIRED>
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<!ELEMENT name (#PCDATA)>
1>

Each info element has as children one name and a sequence of number elements,
with sno as an attribute. Different students can have the same name, and we group
all student numbers sno for each name under the same info element. A restructured
document that conforms to this DTD is shown in figure 2. Note that st2 and st3
are put together because both students have the same name. O

courses

- T

course course info info
@cno title taken._by @cno title taken_by number name number number name
"csc200" "Automata "mat100"'Calculus I" "Deere" "Smith"
Theory"
student student student student @sno @sno @sno
/\ "Stl" "St2" Hstsll
@sno grade @sno grade @sno grade Q@sno grade
Ngg1M  MA4M  NMggoM  MB-n ngglM  MAM ngg3"  MB4N

Fig. 2. A well-designed document.

This example is reminiscent of the canonical example of bad relational design
caused by non-key functional dependencies, and so is the modification of the schema.
Some examples of redundancies are more closely related to the hierarchical structure
of XML documents.

Ezample 1.2. The DTD below is a part of the DBLP database [Ley 2003] for
storing data about conferences.

<!DOCTYPE db [
<!ELEMENT db (confx*)>
<!ELEMENT conf (title, issue+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT issue (inproceedings+)>
<!ELEMENT inproceedings (author+, title)>
<IATTLIST inproceedings
key ID #REQUIRED
pages CDATA #REQUIRED
year CDATA #REQUIRED>
<!ELEMENT author (#PCDATA)>
1>

Each conference has a title, and one or more issues (which correspond to years
when the conference was held). Papers are stored in inproceedings elements; the
year of publication is one of its attributes.

Such a document satisfies the following constraint: any two inproceedings chil-
dren of the same issue must have the same value of year. This too is similar
to relational functional dependencies, but now we refer to the values (the year
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A Normal Form for XML Documents . 5

attribute) as well as the structure (children of the same issue). Moreover, we
only talk about inproceedings nodes that are children of the same issue element.
Thus, this functional dependency can be considered relative to each issue.

The functional dependency here leads to redundancy: year is stored multiple
times for a conference. The natural solution to the problem in this case is not to
create a new element for storing the year, but rather restructure the document and
make year an attribute of issue. That is, we change attribute lists as:

<!ATTLIST issue

year CDATA #REQUIRED>
<IATTLIST inproceedings

key ID #REQUIRED

pages CDATA #REQUIRED>

O

Our goal is to show how to detect anomalies of those kinds, and to transform
documents in a lossless fashion into ones that do not suffer from those problems.

The first step towards that goal is to introduce functional dependencies (FDs)
for XML documents. So far, most proposals for XML constraints deal with keys
and foreign keys [Buneman et al. 2001a; 2001b; W3C 2001]. We introduce FDs for
XML by considering a relational representation of documents and defining FDs on
them. The relational representation is somewhat similar to the total unnesting of
a nested relation [Suciu 1997; Van den Bussche 2001]; however, we have to deal
with DTDs that may contain arbitrary regular expressions, and be recursive. Our
representation via tree tuples, introduced in Section 3, may contain null values. In
Section 4, XML FDs are introduced via FDs on incomplete relations [Atzeni and
Morfuni 1984; Levene and Loizou 1998].

The next step is the definition of a normal form that disallows redundancy-
causing FDs. We give it in Section 5, and show that our normal form, called XNF,
generalizes BCNF and a nested normal form NNF [Mok et al. 1996] when only
functional dependencies are considered (see Section 5.2 for a precise statement of
this claim).

The last step then is to find an algorithm that converts any DTD, given a set of
FDs, into one in XNF. We do this in Section 6. On both examples shown earlier,
the algorithm produces exactly the desired reconstruction of the DTD. The main
algorithm uses implication of functional dependencies (although there is a version
that does not use implication, but it may produce suboptimal results). In Section 7,
we show that for a large class of DTDs, covering most DTDs that occur in practice,
the implication problem is tractable (in fact, quadratic). Finally, in Section 8 we
describe related work and some topics of future research.

One of the reasons for the success of the normalization theory is its simplicity, at
least for the commonly used normal forms such as BCNF, 3NF and 4NF. Hence,
the normalization theory for XML should not be extremely complicated in order to
be applicable. In particular, this was the reason we chose to use DTDs instead of
more complex formalisms [W3C 2001]. This is in perfect analogy with the situation
in the relational world: although SQL DDL is a rather complicated language with
numerous features, BCNF decomposition uses a simple model of a set, of attributes
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6 . M. Arenas and L. Libkin

and a set of functional dependencies.

2. NOTATIONS

Assume that we have the following disjoint sets: FEl of element names, Att of
attribute names, Str of possible values of string-valued attributes, and Vert of
node identifiers. All attribute names start with the symbol @, and these are the
only ones starting with this symbol. We let S and L (null) be reserved symbols not
in any of those sets.

Definition 2.1. A DTD (Document Type Definition) is defined to be D =
(E, A, P, R, r), where:

—F C FEl is a finite set of element types.
—A C Att is a finite set of attributes.

—P is a mapping from E to element type definitions: Given 7 € E, P(t) = S or
P(1) is a regular expression a defined as follows:

ax=c¢|7|ala]aala*

where € is the empty sequence, 7' € E, and “|”, “” and “x” denote union,

concatenation, and the Kleene closure, respectively.

—R is a mapping from E to the powerset of A. If @l € R(7), we say that @l is
defined for .

—r € E and is called the element type of the root. Without loss of generality, we
assume that r does not occur in P(r) for any 7 € E.

The symbols € and S represent element type declarations EMPTY and #PCDATA, re-
spectively.

Given a DTD D = (E, A, P, R, r), a string w = w; ---w, is a path in D if
wy; = 7, w; is in the alphabet of P(w;_1), for each i € [2,n — 1], and w, is in the
alphabet of P(wy—1) or w, = @[ for some @ € R(w,—1). We define length(w)
as n and last(w) as w,. We let paths(D) stand for the set of all paths in D and
EPaths(D) for the set of all paths that ends with an element type (rather than an
attribute or S); that is, EPaths(D) = {p € paths(D) | last(p) € E}. A DTD is

called recursive if paths(D) is infinite.

Definition 2.2. An XML tree T is defined to be a tree (V, lab, ele, att, root),
where

—V C Vert is a finite set of vertices (nodes).
—lab:V — EI.

—ele:V = Stru V™.

—att is a partial function V' x Att — Str. For each v € V, the set {Q] € Att |
att(v,@l) is defined} is required to be finite.

—root € V is called the root of T
The parent-child edge relation on V', {(v1,v2) | va occurs in ele(vy)}, is required to
form a rooted tree.
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A Normal Form for XML Documents . 7

Notice that we do not allow mixed content in XML trees. The children of an
element node can be either zero or more element nodes or one string.

Given an XML tree T, a string wy - - - w,, with wy,...,w,_1 € El and w,, €
ElU Att U {S}, is a path in T if there are vertices vy - - -v,_1 in V such that:

—uv1 = root, vir1 is a child of v; (1 <i<n—2), lab(v;)) =w; (1 <i<n-—1).

—If w,, € El, then there is a child v,, of v,,_1 such that lab(v,) = w,. If w, = @I,
with @l € Att, then att(v,_1, Q) is defined. If w,, = S, then v,_; has a child in
Str.

We let paths(T) stand for the set of paths in 7. We next give a standard definition
of a tree conforming to a DTD (T |= D) as well as a weaker version of T being
compatible with D (T < D).

Definition 2.3. Given a DTD D = (E, A, P, R, r) and an XML tree T' = (V,
lab, ele, att, root), we say that T' conforms to D (T = D) if

—Ilab is a mapping from V to E.

—For each v € V, if P(lab(v)) = S, then ele(v) = [s], where s € Str. Otherwise,
ele(v) = [v1,...,v,], and the string lab(vy) - - -lab(v,) must be in the regular

)

language defined by P(lab(v)).

—att is a partial function from V' x A to Str such that for any v € V and QI € A,
att(v, Q1) is defined iff QI € R(lab(v)).

—lab(root) =r.
We say that T is compatible with D (written T' < D) iff paths(T') C paths(D).

Clearly, T' = D implies T is compatible with D.

3. TREE TUPLES

To extend the notions of functional dependencies to the XML setting, we represent
XML trees as sets of tuples. While various mappings from XML to the relational
model have been proposed [Florescu and Kossmann 1999; Shanmugasundaram et al.
1999], the mapping that we use is of a different nature, as our goal is not to find
a way of storing documents efficiently, but rather find a correspondence between
documents and relations that lends itself to a natural definition of functional de-
pendency.

Various languages proposed for expressing XML integrity constraints such as
keys, [Buneman et al. 2001a; 2001b; W3C 2001], treat XML trees as unordered (for
the purpose of defining the semantics of constraints): that is, the order of children
of any given node is irrelevant as far as satisfaction of constraints is concerned. In
XML trees, on the other hand, children of each node are ordered. Since the notion
of functional dependency we propose also does not use the ordering in the tree, we
first define a notion of subsumption that disregard this ordering.

Given two XML trees Ty = (Vi, laby, eley, atty, rooty) and Ty = (Va, labs, eles,
atts, roots), we say that T is subsumed by T, written as Ty < T5 if

—V; C V5.
—7root; = roots.
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8 . M. Arenas and L. Libkin

—labg er = labl.

*attg r = att1 .

Vi x Att
—For all v € Vi, eley (v) is a sublist of a permutation of eles(v).

This relation is a pre-order, which gives rise to an equivalence relation: T} = Ty iff
Ty < Ts and T, <X Ty. That is, T} = Ty iff T} and Ty are equal as unordered trees.
We define [T'] to be the =-equivalence class of T. We write [T] = D if T |= D for
some Ty € [T]. Tt is easy to see that for any Ty = T, paths(T1) = paths(T>); hence
Ty < D iff Ty <« D. We shall also write Ty} < Ty when Ty < Ty and Ty A T.

In the following definition we extend the notion of tuple for relational databases
to the case of XML. In a relational database, a tuple is a function that assigns to
each attribute a value from the corresponding domain. In our setting, a tree tuple ¢
in a DTD D is a function that assigns to each path in D a value in VertU StrU {1}
in such a way that ¢ represents a finite tree with paths from D containing at most
one occurrence of each path. In this section, we show that an XML tree can be
represented as a set of tree tuples.

Definition 3.1 (Tree tuples). Given a DTD D = (E, A, P, R, r), a tree tuple t
in D is a function from paths(D) to Vert U Str U {L} such that:

—For pe EPaths(D), t(p) € Vert U{L}, and t(r)# L.
—For p € paths(D) — EPaths(D), t(p) € Str U {L}.
—If t(p1) = t(p2) and t(p1) € Vert, then p; = po.
—If t(p1) =L and p; is a prefix of py, then t(p2)=_L.
—{p € paths(D) | t(p) # L} is finite.

T (D) is defined to be the set of all tree tuples in D. For a tree tuple ¢ and a path
p, we write t.p for ¢(p).

Ezample 3.2. Suppose that D is the DTD shown in example 1.1. Then a tree
tuple in D assigns values to each path in paths(D):

t(courses) = vg

t(courses.course) = vy

t(courses.course.@Qcno) = csc200
t(courses.course.title) = vy
(courses.course.title.S) = Automata Theory
(courses.course.taken_by) = v3
(courses.course.taken_by.student) = vy
(courses.course.taken_by.student.Qsno) = st1
t(courses.course.taken_by.student.name) = vy
(courses.course.taken_by.student.name.S) = Deere
(courses.course.taken_by.student.grade) = vg
(courses.course.taken_by.student.grade.S) = A+

O

We intend to consider tree tuples in XML trees conforming to a DTD. The ability to
map a path to null (L) allow one in principle to consider tuples with paths that do
not reach the leaves of a give tree, although our intention is to consider only paths
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that do reach the leaves. However, nulls are still needed in tree tuples because of
the disjunction in DTDs. For example, let D = (E, A, P, R, r), where E = {r,a, b},
A =10, P(r) = (a|b), P(a) = € and P(b) = €. Then paths(D) = {r,r.a,r.b} but no
tree tuple coming from an XML tree conforming to D can assign non-null values
to both r.a and r.b.

If D is a recursive DTD, then paths(D) is infinite; however, only a finite number
of values in a tree tuple are different from L. For each tree tuple ¢, its non-null
values give rise to an XML tree as follows.

Definition 3.3 (treep). Given a DTD D = (E, A, P, R, r) and a tree tuple ¢t €
T (D), treep(t) is defined to be an XML tree (V, lab, ele, att, root), where root = t.r
and

—V = {v € Vert | Ip € paths(D) such that v = t.p}.

—If v =t.p and v € V, then lab(v) = last(p).

—If v =t.pand v € V, then ele(v) is defined to be the list containing {t.p' | t.p’ #
1 and p' =p.7,7 € E, or p' = p.S}, ordered lexicographically.

—Ifv=1tp, Ql € A and ¢.p.@Q] # L, then att(v, Ql) = t.p.@.

We note that in this definition the lexicographic order is arbitrary, and it is chosen
simply because an XML tree must be ordered.

Ezample 3.4. Let D be the DTD from example 1.1 and ¢ the tree tuple from
example 3.2. Then, ¢ gives rise to the following XML tree:

Vo

U1
(p) U3

csc200
| |

Automata Theory w4

PN

stl Vs Vs

Deere A+

O

Notice that the tree in the example conforms to the DTD from exam-
ple 1.1.  In general, this need not be the -case. For instance, if the
rule <!'ELEMENT taken_by (student*)> in the DTD shown in example 1.1 is
changed by a rule saying that every course must have at least two students
<!ELEMENT taken_by (student, student+)>, then the tree shown in example 3.4
does not conform to the DTD. However, treep (t) would always be compatible with
D, as easily follows from the definition:

PROPOSITION 3.5. Ift € T(D), then treep(t) < D.

We would like to describe XML trees in terms of the tuples they contain. For this,
we need to select tuples containing the maximal amount of information. This is done
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via the usual notion of ordering on tuples (and relations) with nulls, [Buneman et al.
1991; Grahne 1991; Gunter 1992]. If we have two tree tuples t1,t2, we write t; C to
if whenever ¢;.p is defined, then sois t.p, and t;.p # L implies ¢;.p = t5.p. As usual,
t1 Tty means t; C t and t; # to. Given two sets of tree tuples, X and Y, we write
XC'YifVt € X3t €Y ¢4 C to.

Definition 3.6 (tuplesp,). Given a DTD D and an XML tree T such that T'< D,
tuples (T is defined to be the set of maximal, with respect to C, tree tuples ¢ such
that ¢reep(t) is subsumed by T'; that is:

mazc{t € T(D) | treep(t) < T'}.

Observe that Ty = T» implies tuplesp(T1) = tuplesp(T2). Hence, tuples applies
to equivalence classes: tuples([T]) = tuplesp(T). The following proposition lists
some simple properties of tuples(-).

PROPOSITION 3.7. If T' <1 D, then tuples(T') is a finite subset of T (D). Fur-
thermore, tuplesp(-) is monotone: Ty < Ty implies tuples ,(Ty) T° tuples p(T5).

PrROOF. We prove only monotonicity. Suppose that T3 < Ty and t; €
tuples p(T1). We have to prove that there exists t2 € tuplesp(T>) such that ¢ T .
If t1 € tuplesp(T>), this is obvious, so assume that t; ¢ tuplesp(T). Given
that t1 € tuplesp(Th), treep(t1) < Ti, and, therefore, treep(ty) < T>. Hence,
by definition of tuplesp(+), there exists ¢t € tuples n(T2) such that t; C t2, since
t1 & tuplesp(T2). O

Ezample 3.8. In example 1.1 we saw a DTD D and a tree T' conforming to D.
In example 3.2 we saw one tree tuple ¢ for that tree, with identifiers assigned to
some of the element nodes of T'. If we assign identifiers to the rest of the nodes, we

can compute the set tuples ,(T') (the attributes are sorted as in example 3.2):
{ (vo, v1, csc200,v9, Automata Theory, vs, v4, stl, vs, Deere, vg, A+)

Y

(vo, v1, csc200, vy, Automata Theory, vs, v7, st2, vs, Smith, vg, B-)

(
(

Vg, V10, mat100, vy1, Calculus I, vya, v13, stl, v14, Deere, vis, A),

Vo, V19, mat100, vyy, Calculus I, vy, v1g, st3, vi7, Smith, vig, B+) }
(I

Finally, we define the trees represented by a set of tuples X as the minimal, with
respect to <, trees containing all tuples in X.

Definition 3.9 (treesp). Given a DTD D and a set of tree tuples X C T (D),
treesp(X) is defined to be:

min<{T | T < D and Vt € X, treep(t) < T'}.

Notice that if T € treesp(X) and T' = T, then T" is in treesp(X). The following
shows that every XML document can be represented as a set of tree tuples, if we
consider it as an unordered tree. That is, a tree T can be reconstructed from
tuplesp(T'), up to equivalence =.

THEOREM 3.10. Given a DTD D and an XML tree T, if T < D, then
treesp (tuples ,([T])) = [T.
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Proor. Every XML tree is finite, and, therefore, tuples, ([T]) = {t1,...,tn}, for
some n. Suppose that T' & treesp({t1,...,tn}). Given that treep(t;) < T, for each

€ [1,n], there is an XML tree T" such that 7' < T and treep(t;) < T’, for each
i € [1,n]. HT' < T, there is at least one node, string or attribute value contained in
T which is not contained in 7". This value must be contained in some tree tuple ¢;
(4 € [1,n]), which contradicts treep(t;) < T". Therefore, T € treesp(tuples([T])).

Let T' € treesp(tuples([T])). For each i € [1,n], treep(t;) < T'. Thus, given
that tuples,(T) = {t1,..., t,}, we conclude that 7' < T, and, therefore, by defini-

3 )

tion of treesp, T'=T. O

Ezample 3.11. Tt could be the case that for some set of tree tuples X there is
no an XML tree T such that for every t € X, tree(t) < T. For example, let D be a
DTD D = (E, A, P, R, r), where E = {r,a,b}, A =0, P(r) = (a|b), P(a) = € and
P(b) = e. Let t1,t2 € T(D) be defined as

t1.7“ = Vo tQ.T = V2
ti.r.a = v to.ra = L
tl.T.b = 1 tQ.T.b = V3

Since t1.r # to.r, there is no an XML tree T such that treep(t1) < T and
treep(ta) < T. O

We say that X C T(D) is D-compatible if there is an XML tree T such that 7' D
and X C tuples(T). For a D-compatible set of tree tuples X there is always an
XML tree T such that for every t € X, treep(t) < T. Moreover,

ProrosITION 3.12. If X C T(D) is D-compatible, then (a) There is an XML
tree T such that T < D and treesp(X) = [T], and (b) X T tuples p(treesp(X)).

PrROOF. (a) Assume that D = (E, A, P, R, r). Since X is D-compatible, there
exists an XML tree T' = (V', lab', ele', att', root') such that 7' << D and X C
tuples p(T"). We use T" to define an XML tree T' = (V, lab, ele, att, root) such that
treesp(X) = [T).

For each v € V', if there is t € X and p € paths(D) such that t.p = v, then

v is included in V. Furthermore, for each v € V, lab(v) is defined as lab'(v),
ele(v) = [s1,...,8n], where each s; = t'.p.S or s; = t'.p.7 for some t' € X and
7 € E such that t'.p = v. For each @] € A such that ¢'.p.@Ql # 1 and t'.p = v for
some t' € X, att(v,Ql) is defined as ¢'.p.@[. Finally, root is defined as root’. It is
easy to see that treesp(X) = [T].
(b) Let t € X and T be an XML tree such that treesp(X) = [T]. If t € tuples,([T]),
then the property holds trivially. Suppose that ¢ & tuples,([T']). Then, given that
treep(t) < T, there is t' € tuples([T]) such that ¢ C ¢'. In either case, we conclude
that there is t' € tuplesp(treesp(X)) such that t C¢'. O

The example below shows that it could be the case that tuples,(treesp(X)) prop-
erly dominates X, that is, X C° tuples ,(treesp (X)) and tuples  (treesp (X)) Z° X.
In particular, this example shows that the inverse of Theorem 3.10 does not hold,
that is, tuplesp (treesp(X)) is not necessarily equal to X for every set of tree tuples
X, even if this set is D-compatible. Let D be as in example 3.11 and ¢1,t2 € T(D)
be defined as
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12 . M. Arenas and L. Libkin

t1.7“ = Vo tQ.T = Vo
ti.r.a = v to.r.a = L
tl.”‘.b = 1 tg.”‘.b = V2

Let t3 be a tree tuple defined as t3.r = vy, t3.r.a = vy and t3.r.b = vy. Then,
tuples (treesp ({t1,t2})) = {t3} since t; C t3 and ty T t3, and, therefore, {t;,t,} C°
tuples p, (treesp ({t1,t2})) and tuples,(treesp({ti,t2})) Z’ {t1,t2}.

From Theorem 3.10 and Proposition 3.12, it is straightforward to prove the fol-
lowing Corollary.

COROLLARY 3.13. For a  D-compatible set of tree tuples X,
treesp (tuples  (treesp(X))) = treesp(X).

Theorem 3.10 and Proposition 3.12 are summarized in the diagram presented in
the following figure. In this diagram, X is a D-compatible set of tree tuples. The
arrow ——— stands for the C” ordering.

X treesp . [ T]

tuplesp treesp
Xl

4. FUNCTIONAL DEPENDENCIES

We define functional dependencies for XML by using tree tuples. For a DTD D,
a functional dependency (FD) over D is an expression of the form S; — S2 where
S1,Ss are finite non-empty subsets of paths(D). The set of all FDs over D is
denoted by FD(D).

For S C paths(D), and ¢,t' € T(D), t.S = t'.S means t.p = t'.p for all p € S.
Furthermore, t.5 # L means t.p # L forallp € S. If S; — Sy € FD(D) and T
is an XML tree such that T'<1 D and S; U Sy C paths(T), we say that T satisfies
S; — Sy (written T = S; — S,) if for every t1,t2 € tuplesp(T), t1.51 = t2.5;
and #1.S7 # L imply t;.S5 = t5.S5. We observe that if tree tuples #1, ¢y satisfy
an FD S; — S5, then for every path p € Sy, t1.p and t,.p are either both null or
both non-null. Moreover, if for every pair of tree tuples t1, t5 in an XML tree T,
t1.S1 = t2.S; implies they have a null value on some p € Sy, then the FD is trivially
satisfied by T

The previous definition extends to equivalence classes, since for any FD ¢, and
T=T,TEpiff T'|=¢. Wewrite T |= X, for ¥ C FD(D), if T |= ¢ for each
p€eX, and we write T = (D, %), if TED and T | X.

Example 4.1. Referring back to example 1.1, we have the following FDs. cno is
a key of course:

courses.course.Qcno — courses.course. (FD1)

Another FD says that two distinct student subelements of the same course cannot
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have the same sno:

{courses.course, courses.course.taken_by.student.@sno} —

courses.course.taken_by.student. (FD2)

Finally, to say that two student elements with the same sno value must have the
same name, we use

courses.course.taken_by.student.Qsno —

courses.course.taken_by.student.name.S. (FD3)

O

We offer a few remarks on our definition of FDs. First, using the tree tuples rep-
resentation, it is easy to combine node and value equality: the former corresponds
to equality between vertices and the latter to equality between strings. Moreover,
keys naturally appear as a subclass of FDs, and relative constraints can also be
encoded. Note that by defining the semantics of FD(D) on T (D), we essentially
define satisfaction of FDs on relations with null values, and our semantics is the
standard semantics used in [Atzeni and Morfuni 1984; Levene and Loizou 1998].

Given a DTD D, aset ¥ C FD(D) and ¢ € FD(D), we say that (D, X) implies
p, written (D,X) F ¢, if for any tree T with 7' = D and T | X, it is the case
that T = . The set of all FDs implied by (D, ) will be denoted by (D,X)*.
Furthermore, an FD ¢ is trivial if (D, () F ¢. In relational databases, the only trivial
FDs are X — Y, with Y C X. Here, DTD forces some more interesting trivial
FDs. For instance, for each p € EPaths(D) and p’ a prefix of p, (D,0) - p — p',
and for every p, p.Ql € paths(D), (D,() - p = p.@Ql. As a matter of fact, trivial
functional dependencies in XML documents can be much more complicated than
in the relational case, as we show in the following example.

Ezample 4.2. Let D = (E, A, P, R, r) be a DTD. Assume that a, b and ¢ are
element types in D and P(r) = (a|blc). Then, for every p € paths(D), {r.a,r.b} = p
is a trivial FD since for every XML tree T' conforming to D and every tree tuple ¢
inT,tra=_1ortrb= 1. a

5. XNF: AN XML NORMAL FORM

With the definitions of the previous section, we are ready to present the normal
form that generalizes BCNF for XML documents.

Definition 5.1. Given a DTD D and ¥ C FD(D), (D,X) is in XML normal
form (XNF) iff for every nontrivial FD ¢ € (D,%)t of the form S — p.@l or
S — p.S, it is the case that S — pisin (D, X)".

The intuition is as follows. Suppose that S — p.@Ql is in (D,X)T. If T is an XML
tree conforming to D and satisfying ¥, then in T for every set of values of the
elements in S, we can find only one value of p.@[. Thus, for every set of values of
S we need to store the value of p.@Q[ only once; in other words, S — p must be
implied by (D, X).
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14 . M. Arenas and L. Libkin

In this definition, we impose the condition that ¢ is a nontrivial FD. Indeed, the
trivial FD p.@l — p.Ql is always in (D,X)™, but often p.@l — p & (D, X)), which
does not necessarily represent a bad design.

To show how XNF distinguishes good XML design from bad design, we revisit
the examples from the introduction, and prove that XNF generalizes BCNF and
NNF, a normal form for nested relations [Mok et al. 1996; Ozsoyoglu and Yuan
1987], when only functional dependencies are provided.

Ezample 5.2. Consider the DTD from example 1.1 whose FDs are (FD1), (FD2),
(FD3) shown in the previous section. (FD3) associates a unique name with each
student number, which is therefore redundant. The design is not in XNF, since it
contains (FD3) but does not imply the functional dependency

courses.course.taken_by.student.Qsno — courses.course.taken_by.student.name.

To remedy this, we gave a revised DTD in example 1.1. The idea was to create
a new element info for storing information about students. That design satisfies
FDs (FD1), (FD2) as well as

courses.info.number.Qsno — courses.info,
and can be easily verified to be in XNF. O

Example 5.3. Suppose that D is the DBLP DTD from example 1.2. Among the
set ¥ of FDs satisfied by the documents are:

db.conf .title.S — db.conf (FD4)

db.conf .issue — db.conf .issue.inproceedings.Qyear (FD5)
{db.conf .issue, db.conf .issue.inproceedings.title.S} —

db.conf .issue.inproceedings (FD6)

db.conf .issue.inproceedings.Qkey — db.conf .issue.inproceedings (FDT)

Constraint (FD4) enforces that two distinct conferences have distinct titles. Given
that an issue of a conference represents a particular year of the conference, con-
straint (FD5) enforces that two articles of the same issue must have the same value
in the attribute year. Constraint (FD6) enforces that for a given issue of a con-
ference, two distinct articles must have different titles. Finally, constraint (FD7)
enforces that key is an identifier for each article in the database.

By (FD5) for each issue of a conference, its year is stored in every article in that
issue and, thus, DBLP documents can store redundant information. (D, X) is not
in XNF, since

db.conf .issue — db.conf .issue.inproceedings

is not in (D,X)7T.

The solution we proposed in the introduction was to make year an attribute
of issue. (FD5) is not valid in the revised specification, which can be easily
verified to be in XNF. Note that we do not replace (FD5) by db.conf.issue —
db.conf.issue. @Qyear, since it is a trivial FD and thus is implied by the new DTD
alone. O

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



A Normal Form for XML Documents . 15

5.1 BCNF and XNF

Relational databases can be easily mapped into XML documents. Given a relation
G(Ay,...,Ay) and a set of FDs FD over G, we translate the schema (G, FD) into
an XML representation, that is, a DTD and a set of XML FDs (Dg,Xrp). The
DTD D¢ = (E, A, P, R, db) is defined as follows:

—FE = {db,G}.
—A={QA4,,...,QA,}.

—P(db) = G* and P(G) = .

—R(db) =0, R(G) = {QA,,...,QA,}.

Without loss of generality, assume that all FDs are of the form X — A, where A is
an attribute. Then X pp over D¢ is defined as follows.

— Foreach FD A;, -+ A; — A; € FD, {db.G.QA4,,, ..., db.G.QA; } — db.G.QA;
is in ZFD-
f{dbG@Al, Cay dbG@An} — db.G is in Xpp.

The latter is included to avoid duplicates.
Ezample 5.4. A schema G(A, B,C) can be coded by the following DTD:

<!ELEMENT db (Gx*)>
<!ELEMENT G EMPTY>
<IATTLIST G
A CDATA #REQUIRED
B CDATA #REQUIRED
C CDATA #REQUIRED>

In this schema, an FD A — B is translated into db.G.QA — db.G.QB. |

The following proposition shows that BCNF and XNF are equivalent when rela-
tional databases are appropriately coded as XML documents.

PROPOSITION 5.5. Given a relation schema G(A1,..., Ay) and a set of func-
tional dependencies FD over G, (G, FD) is in BCNF iff (Dg,Ypp) is in XNF.

ProoOF. This follows from Proposition 5.6 (to be proved in the next section)
since every relation schema is trivially consistent (see next section) and NNF-FD
coincides with BCNF when only functional dependencies are provided [Mok et al.
1996]. O

5.2 NNF and XNF

A nested relation schema is either a set of attributes X, or X (G1)* ...(Gy)*, where
GG;’s are nested relation schemas. An example of a nested relation for the schema
H, = Country(H,)*, Hy = State(Hs)*, H3 = City is shown in figure 3 (a).

Nested schemas are naturally mapped into DTDs, as they are defined by means
of regular expressions. For a nested schema G = X(G1)*...(Gy)*, we introduce
an element type G with P(G) = G%,...,G% and R(G) = {QA,,...,@QA,,}, where
X ={A,..., An}; at the top level we have a new element type db with P(db) = G*
and R(db) = (. In our example the DTD is:
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| Country |
United States State |
Toxas | Country State City
Houst United States  Texas Houston
B)ulsl on United States  Texas Dallas
atas United States ~ Ohio  Columbus
| State | United States Ohio Cleveland
Ohio
Columbus
Cleveland

(a) Nested relation Hi (b) Complete unnesting of H;

Fig. 3. Nested relation and its unnesting.

<!DOCTYPE db [
<!ELEMENT db (H1x*)>
<!ELEMENT H1 (H2x*)>
<IATTLIST H1 Country CDATA #REQUIRED>
<!ELEMENT H2 (H3x*)>
<!'ATTLIST H2 State CDATA #REQUIRED>
<!ELEMENT H3 EMPTY>
<IATTLIST H3 City CDATA #REQUIRED>
1>

The definition of FDs for nested relations uses the notion of complete unnesting.
The complete unnesting of a nested relation from our example is shown in figure 3
(b); in general, this notion is easily defined by induction. In our example, we have
a valid FD State — Country, while the FD State — City does not hold.

Normalization is usually considered for nested relations in the partition normal
form (PNF) [Abiteboul et al. 1995; Mok et al. 1996; Ozsoyoglu and Yuan 1987].
A nested relation r over X(G1)*...(Gy)* is in PNF if for any two tuples #;, t»
in 7: (1) if ¢;.X = t2.X, then the nested relation t;.G; and ¢,.G; are equal, for
every i € [1,n], and (2) each nested relation ¢;.G; is in PNF, for every i € [1,n].
Note that PNF can be enforced by using FDs on the XML representation. In our
example this is done as follows:

db.H,.QCountry — db.H,
{db.Hl, deng@State} — db.H,.Hy
{db.Hl.HQ, delHQHS@CZty} — de1H2H3
It turns out that one can define FDs over nested relations by using the XML
representation. Let U be a set of attributes, (G; a nested relation schema over
U and FD a set of functional dependencies over G;. Assume that G includes

nested relation schemas Gs, ..., G, and a set of attributes U’ C U. For each G;
(1 € [1,n]), path(G;) is inductively defined as follows. If G; = G, then path(G;) =
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db.G1. Otherwise, if G; is a nested attribute of G, then path(G;) = path(G;).G;.
Furthermore, if A € U' is an atomic attribute of G;, then path(A) = path(G;).QA.
For instance, for the schema of the nested relation in figure 3, path(H,) = db.H,.H,
and path(City) = db.H,.H>.H3.Q City.

We now define ¥ rp as follows:

—For each FD A;, --- A;,, — A; € FD, {path(A;,), ..., path(A;, )} — path(A;)
is in ZFD-

—For each i € [1,n],if Aj,,...,A;, is the set of atomic attributes of G; and G; is
a nested attribute of G, {path(G;), path(A;,), ..., path(A;, )} = path(G;) is
in EFD-

Furthermore, if Bj,,...,Bj is the set of atomic attributes of G, then
{path(Bj,), ..., path(Bj,)} = path(G1) is in Tpp.

Note that the last rule imposes the partition normal form. The set ¥ pyr contains
all the functional dependencies defined by this rule.

Normal forms for nested relations were proposed in [Mok et al. 1996; (jzsoyoglu
and Yuan 1987]. These normal forms were defined for nested schemas containing
functional and multivalued dependencies. Here we consider a normal form NNF-
FD, which is the nested normal form NNF introduced in [Mok et al. 1996] restricted
to FDs only. To define this normal form we need to introduce some terminology.

Title Country
Director Theater State
Snack City

(a) (b)
Fig. 4. Two schema trees.

Every nested relation schema G can be represented as a tree st(G), called the
schema tree of G. Formally, if GG is a flat schema containing a set of attributes X,
then st(G) is a single node tree whose root is the set of attributes X. Otherwise, G
is of the form X (G1)*...(G,)* and st(G) is a tree defined as follows. The root of
st(@) is X and the children of X are the roots of st(G1), ..., st(G,). For example,
the schema trees of nested relation schemas Gy = Title(G2)*(G3)*, G2 = Director,
G3 = Theater(G4)*, G4 = Snack and Hy = Country(Hs)*, Hy = State(Hs)*,
H; = City are shown in figures 4 (a) and 4 (b), respectively. Given a nested
relation schema G including a set of attributes U, for each node X of st(G) we define
ancestor(X) as the union of attributes in all ancestors of X in s¢(G), including X.
For instance, ancestor(State) = { Country, State} in the schema tree shown in figure
4 (b). Similarly, for every A € U, we define ancestor(A) as the set of attributes
ancestor (X 4), where X 4 is the one of st(G) containing the attribute A, and for
every node X of st(G) we define descendant(X) as the union of attributes in all
descendants of X in st(@), including X.
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Data dependencies for nested relations are defined by using the notion of complete
unnesting. Thus, every nested schema has some multivalued dependencies. For
example, the nested relation schema G; = Title(G2)*(G3)*, G2 = Director, G5 =
Theater(G4)*, G4 = Snack has the following set of multivalued dependencies:

{ Title = Director, Title = { Theater, Snack}, {Title, Theater} —— Snack},

since for every nested relation I of GGy, the complete unnesting of I satisfies these
dependencies. Formally, the set of multivalued dependencies embedded in a nested
relation schema G is defined to be:

MVD(G) = {ancestor(X) —— descendant(Y) | (X,Y) is an edge in st(G)}.

Given a nested relation schema G, the set MVD(G) is used to define NNF-FD.
More precisely, if FD is a set of FDs over G, then (G, FD) is in NNF-FD [Mok
et al. 1996] if (1) FD + MVD(G), that is, every multivalued dependency embedded
in G is implied by FD, and (2) for each nontrivial FD X — A € (G,FD)",
X — ancestor(A) is also in (G, FD)*. As before, (G, FD)" stands for the set of
all FDs implied by (G, FD).

To establish the relationship between NNF-FD and XNF, we have to introduce
the notion of consistent nested schemas. Given a nested relation schema G and a
set of FDs FD over G, (G, FD) is consistent [Mok et al. 1996] if FD - MVD(G).
It was shown in [Mok et al. 1996] that for consistent nested schemas, NNF pre-
cisely characterize redundancy in nested relations. The result below shows that for
consistent nested schemas, NNF-FD and XNF coincide.

PROPOSITION 5.6. Let G be a nested relation schema and FD a set of functional
dependencies over G such that (G, FD) is consistent. Then (G, FD) is in NNF-FD
Zﬁ (Dg, EFD) is in XNF.

ProOF. First we need to prove the following claim.

Cramm 5.7. A;, -+ A;, — A; € (G,FD)' if and only if {path(4:), ...,
path(4;,,)} — path(4;) € (Dg,Xrp)*.

The proof of this claim follows from the following fact. For each instance I of
G, there is an XML tree T; conforming to D¢ such that I = FD iff T) = Ypp.
Moreover, for each XML tree T' conforming to D¢ and satisfying ¥ pyr, there is
an instance It of G such that T |= Spp iff It | FD.

Now we prove the proposition.

(<) Suppose that (Dg,Xpp) is in XNF. We prove that (G, FD) is in NNF-FD.
Given that (G, FD) is consistent, we only need to consider the second condition
in the definition of NNF-FD. Let A4; --- A;, — A; be a nontrivial functional
dependency in (G, FD)T. We have to prove that A; ,..., A;, — ancestor(A;)

is in (G,FD)*. By Claim 5.7, we know that {path(4;), ..., path(4; )} —
path(A;) is a nontrivial functional dependency in (Dg,Xpp)T. Since (Dg,pp)
is in XNF, {path(A;,), ..., path(A;,,)} = path(G;) is in (Dg,Xrp)", where G,

is a nested relation schema contained in G such that A4; is an atomic attribute of
G;. Thus, given that path(G;) — path(A) is a trivial functional dependency in
D¢, for each A € ancestor(4;), we conclude that {path(4;,), ..., path(4;,)} —
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path(A) is in (Dg,Xpp)™ for each A € ancestor(A;). By Claim 5.7, A;, -+ A;
— ancestor(4;) is in (G, FD)™".

m

(=) Suppose that (G,FD) is in NNF-FD. We will prove that (Dg,Xpp) is
in XNF. Let R be a nested relation schema contained in G and A an atomic
attribute of R. Suppose that there is S C paths(Dg) such that S — path(A)
is a nontrivial functional dependency in (Dg,Ypp)T. We have to prove that
S — path(R) € (Dg,Xpp)T. Let S and Sy be set of paths such that S = S; U Ss,
S1 C EPaths(Dg) and Sy N EPaths(Dg) = 0. Let S} = {path(A’) | there is
path(R') € S; such that A’ is an atomic attribute of some nested relation schema
mentioned in path(R')}. Given that Ypyr C Ypp, S| = S1 € (Dg,Xrp)".
Thus, S} U Sy — path(A) € (D, Epp)T. Assume that S| U Sy = {path(4;,),
.., path(A;,)}. By Claim 5.7, A;; --- A;, — A is a nontrivial functional
dependency in (G, FD)*. Thus, given that (G, FD) is in NNF-FD, we conclude
that A4;, -+ A;, — ancestor(A) is in (G, FD)*. Therefore, by Claim 5.7,
S{USy — path(B) is in (Dg,Yrp)", for each B € ancestor(A). But {path(B) | B
€ ancestor(A)} — path(R) is in (Dg,Ypp)", since Ypyr C Ypp. Thus,
S U Sy = path(R) € (Dg,Xrp)T, and given that S; — S] is a trivial functional
dependency in D¢, we conclude that S — path(R) is in (Dg,Spp)*. O

6. NORMALIZATION ALGORITHMS

The goal of this section is to show how to transform a DTD D and a set of FDs X
into a new specification (D', ¥’) that is in XNF and contains the same information.

Throughout the section, we assume that the DTDs are non-recursive. This can
be done without any loss of generality. Notice that in a recursive DTD D, the set
of all paths is infinite. However, a given set of FDs ¥ only mentions a finite number
of paths, which means that it suffices to restrict one’s attention to a finite number
of “unfoldings” of recursive rules.

We make an additional assumption that all the FDs are of the form:
{¢,p1.Qly,...,p,.@Ql,} — p. That is, they contain at most one element path on
the left-hand side. Note that all the FDs we have seen so far are of this form.
While constraints of the form {q,¢’, ...} are not forbidden, they appear to be quite
unnatural (in fact it is very hard to come up with a reasonable example where they
could be used). Furthermore, even if we have such constraints, they can be easily
eliminated. To do so, we create a new attribute @[, remove {¢,¢'} US — p and
replace it by ¢'.@Ql — ¢’ and {q,¢'.@QI}US — p.

We shall also assume that paths do not contain the symbol S (since p.S can always
be replaced by a path of the form p.Ql).

6.1 The Decomposition Algorithm

For presenting the algorithm and proving its losslessness, we make the following
assumption: if X — p.@l is an FD that causes a violation of XNF, then every time
that p.@I is not null, every path in X is not null. This will make our presentation
simpler, and then at the end of the section we will show how to eliminate this
assumption.

Given a DTD D and a set of FDs ¥, a nontrivial FD S — p.Q@Q[ is called
anomalous, over (D,Y), if it violates XNF; that is, S — p.@Ql € (D,X)" but

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



20 . M. Arenas and L. Libkin

S —pdg (D,X)". A path on the right-hand side of an anomalous FD is called an
anomalous path, and the set of all such paths is denoted by AP(D, X).

In this section we present an XNF decomposition algorithm that combines two
basic ideas presented in the introduction: creating a new element type, and moving
an attribute.

6.1.1 Moving attributes. Let D = (E, A, P, R, r) be a DTD and ¥ a set of
FDs over D. Assume that (D,Y) contains an anomalous FD ¢ — p.@Ql, where
q € EPaths(D). For example, the DBLP database shown in example 1.2 contains
an anomalous FD of this form:

db.conf .issue — db.conf .issue.inproceedings.Qyear. (1)

To eliminate the anomalous FD, we move the attribute @[ from the set of attributes
of the last element of p to the set of attributes of the last element of ¢, as shown in
the following figure.

For instance, to eliminate the anomalous functional dependency (1) we move the
attribute @year from the set of attributes of inproceedings to the set of attributes
of issue. Formally, the new DTD DIp.@Ql := ¢q.@m], where @m is an attribute, is
defined to be (E, A", P, R', r), where A’ = AU {@m}, R'(last(q)) = R(last(q)) U
{@m}, R'(last(p)) = R(last(p)) — {@Ql} and R'(7") = R(7') for each 7" € E —
{last(q), last(p)}.

After transforming D into a new DTD D[p.@Ql := ¢q.@m], a new set of func-
tional dependencies is generated. Formally, the set of FDs X[p.@Ql := ¢.@Qm)]
over D[p.@Ql := q.@Qm)] consists of all FDs S; — Sy € (D,X)" with S; U Sy C
paths(D[p.@Ql := ¢q.@m]). Observe that the new set of FDs does not include the
functional dependency ¢ — p.@I and, thus, it contains a smaller number of anoma-
lous paths, as we show in the following proposition.

ProrosiTION 6.1. Let D be a DTD, ¥ a set of FDs over D, q — p.Ql an
anomalous FD, with ¢ € EPaths(D), D' = D[p.Ql := ¢q.Qm], where Qm is not an
attribute of last(q), and ¥' = X[p.Ql := q.Qm]. Then AP(D',¥') ; AP(D,Y).

ProOOF. First, we prove (by contradiction) that ¢.@m ¢ AP(D',X'). Suppose
that S’ C paths(D') and S' — ¢q.@m € (D', ¥')T is a nontrivial functional depen-
dency. Assume that S’ — ¢ € (D', %')*. Then there is an XML tree T’ such that
T' |= (D',¥') and T' contains tree tuples t1,ts such that ¢1.5" = t2.5", t1.5" # L
and t1.q # ts.q. Given that there is no a constraint in ¥’ including the path ¢.Qm,
the XML tree T" constructed from T’ by giving two distinct values to ¢;.q.@m and
t2.q.Qm conforms to D', satisfies ¥/ and does not satisfy S’ — ¢.@Qm, a contradic-
tion. Hence, g.@m ¢ AP(D',¥').
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Second, we prove that for every S; USs C paths(D') —{q.@m}, (D,X) F S — S,
if and only if (D', %) £ S; — Ss, and, thus, by considering the previous paragraph
we conclude that AP(D',X') C AP(D,X). Let S; US> C paths(D') — {g.@m}. By
definition of X', we know that if (D,X) F S; — S, then (D', %¥') - S; — S, and,
therefore, we only need to prove the other direction. Assume that (D,X) I/ Sy — Ss.
Then there exists an XML tree T such that T = (D, X) and T £ S1 — Ss. Define
an XML tree T' from T by assigning arbitrary values to ¢.@Qm and removing the
attribute @/ from last(p). Then T' = (D', X') and T' [£# S; — Sa, since all the
paths mentioned in ' U {S; — S} are included in paths(D') — {q.@m}. Thus,
(D’, E’) |f S1 — Ss.

To conclude the proof we note that p.@Ql € AP(D,X) and p.Ql ¢ AP(D',Y'),
since p.@Ql ¢ paths(D'). Therefore, AP(D',¥") ; AP(D.%). O

6.1.2 Creating new element types. Let D = (E, A, P, R, r) be a DTD
and ¥ a set of FDs over D. Assume that (D,X) contains an anomalous FD
{g¢,p1.Qly,...,p,.Ql,} — p.Ql, where ¢ € EPaths(D) and n > 1. For example,
the university database shown in example 1.1 contains an anomalous FD of this
form (considering name.S as an attribute of student):

{courses, courses.course.taken_by.student.Qsno} —

courses.course.taken_by.student.name.S. (2)

To eliminate the anomalous FD, we create a new element type 7 as a child of the
last element of ¢, we make 71, ..., 7, its children, where 7, ..., 7, are new element
types, we remove @[ from the list of attributes of last(p) and we make it an attribute
of 7 and we make @Iy, ..., @[, attributes of 7, ..., 7,, respectively, but without
removing them from the sets of attributes of last(p1), ..., last(p,), as shown in the
following figure.

last(p)

last(pn)

last (p1) e

Ql,
‘ T
T1 Tn @l
4
Qly Ql,,

For instance, to eliminate the anomalous functional dependency (2), in example 1.1
we create a new element type info as a child of courses, we remove name.S from
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student and we make it an “attribute” of info, we create an element type number
as a child of info and we make @sno its attribute. We note that we do not remove
@sno as an attribute of student. Formally, if 7, 71, ..., 7, are element types which
are not in F, the new DTD, denoted by D[p.Ql := q.7[11.Qly,...,7,.Ql,, Ql]], is
(E', A, P', R, r), where E' = EU{1, 11, ..., 7} and

(1) if P(last(q)) is a regular expression s, then P’(last(q)) is defined as the con-
catenation of s and 7*, that is (s,7*). Furthermore, P'(7) is defined as the
concatenation of 77, ..., 7%, P'(1;) =, for each i € [1,n], and P'(r") = P(1'),
for each 7' € E — {last(q)}.

(2) R'(r) = {Ql}, R'(r;) = {Ql;}, for each i € [1,n], R'(last(p)) = R(last(p)) —
{@l} and R'(7") = R(7') for each 7' € E — {last(p)}.

After transforming D into a new DTD D' = D[p.Ql := q.7[r1.Ql4, ..., 7,.Ql,,, @Q[]],
a new set of functional dependencies is generated. Formally, X[p.Ql := ¢.7[r;.Ql;,
ooy T @I, @[] is a set of FDs over D' defined as the union of the sets of constraints
defined in 1., 2. and 3.:

(1) S — Sy € (D,Z)+ with S; U Sy - paths(D’).

(2) Each FD over q, p;, p;-@Ql; (i € [1,n]) and p.@[ is transferred to 7 and its
children. That is, if Sy US> C {q, p1, ---, Pn, P1.Qly, ..., p,.Ql,, p.@Ql} and
S1 — Sy € (D,X)T, then we include an FD obtained from S; — S3 by changing
pi to q.7.7;, p;.Ql; to q.7.7;.Ql;, and p.@Q[ to ¢q.7.Ql.

3) {¢, g7m.Ql, ..., ¢T.1.Ql,} = g¢.7, and {¢.7, ¢.7.7;.Ql;} — q.7.7; for
i€ll,n] !

We are not interested in applying this transformation to an arbitrary anomalous
FD, but rather to a minimal one. To understand the notion of minimality for XML
FDs, we first introduce this notion for relational databases. Let R be a relation
schema containing a set of attributes U and ¥ be a set of FDs over R. If (R,X)
is not in BCNF, then there exist pairwise disjoint sets of attributes X, Y and Z
such that U = X UYUZ, ¥F X > Y and ¥/ X — A, forevery A € Z. In
this case we say that X — Y is an anomalous FD. To eliminate this anomaly, a
decomposition algorithm splits relation R into two relations: S(X,Y) and T'(X, Z).
A desirable property of the new schema is that S or 7' is in BCNF. We say that
X — Y is a minimal anomalous FD if S(X,Y’) is in BCNF, that is, S(X,Y") does
not contain an anomalous FD. This condition can be defined as follows: X — Y is
minimal if there are no pairwise disjoint sets X', Y’ C U such that X'UY" ; XUy,
YSEFX' 5Y and ¥/ X' > XUY.

In the XML context, the definition of minimality is similar in the sense that
we expect the new element types 7, 71, ..., 7, form a structure not containing
anomalous elements. However, the definition of minimality is more complex to
account for paths used in FDs. We say that {q,p1.Qly,...,p,.@Ql,} — po.Qly is
(D, ¥)-minimal if there is no anomalous FD S’ — p;.@Ql; € (D,%)* such that

f 1 can be a value of p.@l in tuples (T, the definition must be modified slightly, by letting
P'(7) be 7f,...,7%,(7'|€), where 7' is fresh, making @l an attribute of 7/, and modifying the
definition of FDs accordingly.
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i € [0,n] and S’ is a subset of {q,p1,...,Pn,po-Qlo,...,p,.@l,} such that |S"|<n
and S’ contains at most one element path.

PROPOSITION 6.2. Let D be a DTD, ¥ a set of FDs over D and
{g,p1.Qly,...,p,.Ql,} — p@l a (D,X)-minimal anomalous FD, where q €
EPaths(D) and n > 1. If D' = D[p.Ql := q.7[1.Qly,...,7,.Ql,, Ql]], where T,
Ti, ..., Tn are new element types, and X' = X[p.Ql := q.7[1.Qly, ..., 7,.Ql,, Ql]],
then AP(D',5') G AP(D.¥).

PROOF. First, we prove that ¢.7.7;.Ql; ¢ AP(D',X'), for each i € [1,n]. Suppose
that there is S’ C paths(D') such that S’ — ¢.7.7;.Ql; is a nontrivial functional
dependency in (D', %')* for some i € [1,n]. Notice that ¢.7.7; € S’, since ¢.7.7; —
q.7.7;.@l; is a trivial functional dependency. Let S; U Sy = S’, where (1) S; N
({g,q.7.@Ql} U {¢q.T.1; | j € [1,n] and j # i} U {¢q.7.7;.QL; | j € [1,n]}) = 0 and (2)
Sy C{q,q.7.@l} U {q.7.1; | j € [I,n] and j #i} U {q.7.7;.Ql; | j € [1,n]}.

If there is no an XML tree T' conforming to D', satisfying ¥’ and containing a
tuple ¢ such that .57 U Sy # L, then S;USs — ¢.7.7; must be in (D', ¥")*. In this
case q.7.7;.Ql; ¢ AP(D',X'). Suppose that there is an XML tree T" conforming to
D', satistying ¥/ and containing a tuple ¢ such that ¢.S; U Sy # L. In this case, by
definition of ¥' it is straightforward to prove that Sy — ¢.7.7;.@Ql; is in (D', ¥')T.

By definition of ¥/ and (D, X)-minimality of {q,p;.@ly,...,p,.@Ql,} — p.Ql,
one of the following is true: (1) Sy — ¢.7.7;.@Ql; is not an anomalous FD, (2)
{¢, g7.11.Qly, ..., q.7.7,.Ql,, q.7.Ql} = Sy U {q.7.7;.Ql;} or (3) {q.7.7j,q.7.71.Qly,

.y .T.Tn.Qly,, q.7.Ql} = Sy U {q.7.7;.Ql;} for some j # i (j € [1,n]). In the
first case, ¢.7.7;.Ql; ¢ AP(D',X'), so we assume that either (2) or (3) holds. We
prove that Sy — ¢.7.7; must be in (D', X")*. If either (2) or (3) holds, then
Sy U{q.7.7;.Ql;} — ¢.7isin (D', ¥')T since {q, ¢.7.71.Qly, ..., ¢.7.7,.Ql, } = q.7 is
in X' and ¢.7.7; — ¢isatrivial FD in D', for every k € [1,n]. Let T’ be an XML tree
conforming to D' and satisfying ¥’ and t1,t2 € tuplesp, (T") such that ¢1.S2 = t2.5
and t;.S> # 1. Given that Sy — ¢.7.7;.@Ql; € (D', %", t1.q.7.7;.Ql; = t5.q.7.7;.Ql;.
If ty.q.7.7;.@Ql; = L1, then ty.q.7.1; = ty.qr1; = L. If t1.q.7.7;,.Ql; # L, then
t1.q.7 = t3.q.7 and t1.q.7 # L, because Sy U{q.7.7;.QL;} — q.7 € (D', ¥")*. But, by
definition of X', {q.7, ¢.7.7;.Ql;} — q.7.7; € ¥/, and, therefore, t1.q.7.7; = t2.q.7.7;.
In any case, we conclude that t,.q.7.7; = ty.q.7.7; and, therefore, So — q.7.7; €
(D', 2"t Thus, q.7.7:.Ql; ¢ AP(D',%).

In a similar way, we conclude that ¢.7.Ql ¢ AP(D', ¥").

Second, we prove that for every S3 U Sy C paths(D) — {p.Ql}, (D,X) F S3 — Sy
if and only if (D', ¥') - S3 — Sy, and, thus, by considering the previous paragraph
we conclude that AP(D',¥") C AP(D,X). Let S3 USy C paths(D) — {p.@Ql}. By
definition of ¥/, we know that if (D,X) F S3 — Sy, then (D', ¥') - S3 — S, and,
therefore, we only need to prove the other direction. Assume that (D,X) I/ S3 — S4.
Then there exists an XML tree T such that T' = (D, X) and T [£ S5 — S4. Define
an XML tree 7" from T by assigning | to ¢.7 and removing the attribute @/ from
last(p). Then T' = (D', L") and T" £ S3 — Sy, since all the paths mentioned in
YU {S; — S4} are included in paths(D) — {p.@l}. Thus, (D', X') t/ S5 — S4.

To conclude the proof we note that p.@Ql € AP(D,X) and p.Ql ¢ AP(D',Y'),
since p.Ql ¢ paths(D'). Therefore, AP(D',X") G AP(D,X). O
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(1) If (D, %) is in XNF then return (D, ), otherwise go to step (2).
(2) If there is an anomalous FD X — p.@[ and g € EPaths(D) such that ¢ € X and
q— X € (D,%)t, then:
(2.1) Choose a fresh attribute @m
(2.2) D := D[p.Ql := q.Qm]
(2.3) ¥ :=X[p.Ql := gq.Qm]
(2.4) Go to step (1)
(3) Choose a (D, X)-minimal anomalous FD X — p.@[, where X = {q, p1.Ql1, ..., pn.Ql,}
(3.1) Create fresh element types 7, 71, ..., Tn
(3.2) D := D[p.Ql := q.7[11.Ql1, ..., Tn.Ql,, Ql]]
(3.3) ¥ :=%[p.Ql := q.7[r1.Ql1, ..., 7.Qly, Q]
(3.4) Go to step (1)

Fig. 5. XNF decomposition algorithm.

6.1.3 The algorithm. The algorithm applies the two transformations presented
in the previous sections until the schema is in XNF, as shown in figure 5. Step (2) of
the algorithm corresponds to the “moving attributes” rule applied to an anomalous
FD ¢ — p.@l and step (3) corresponds to the “creating new element types” rule
applied to an anomalous FD {q, p;.Qly, ..., p,.@Ql,,} — p.@l. We choose to apply
first the “moving attributes” rule since the other one involves minimality testing .

The algorithm shows in figure 5 involves FD implication, that is, testing mem-
bership in (D, ¥)* (and consequently testing XNF and (D, ¥)-minimality), which
will be described in Section 7. Since each step reduces the number of anomalous
paths (Propositions 6.1 and 6.2), we obtain:

THEOREM 6.3. The XNF decomposition algorithm terminates, and outputs a
specification (D,Y) in XNF.

Even if testing FD implication is infeasible, one can still decompose into XNF,
although the final result may not be as good as with using the implication. A slight
modification of the proof of Propositions 6.1 and 6.2 yields:

PROPOSITION 6.4. Consider a simplification of the XNF decomposition algo-
rithm which only consists of step (3) applied to FDs S — p.Ql € X, and in which
the definition of ¥[p.Ql := q.7[11.Qly, ..., 7,.Ql,, Ql]] is modified by using ¥ in-
stead of (D,%)%. Then such an algorithm always terminates and its result is in
XNF.

6.2 Lossless Decomposition

To prove that our transformations do not lose any information from the documents,
we define the concept of lossless decompositions similarly to the relational notion
of “calculously dominance” from [Hull 1986]. That notion requires the existence of
two relational algebra queries that translate back and forth between two relational
schemas. Adapting the definition of [Hull 1986] is problematic in our setting, as no
XML query language yet has the same “yardstick” status as relational algebra for
relational databases.

Instead, we define (D', %') as a lossless decomposition of (D,¥X) if there is a
mapping f from paths in the DTD D’ to paths in the DTD D such that for every
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tree T |= (D, X), there is a tree T' |= (D', %¥') such that T and T" agree on all the
paths with respect to this mapping f.

This can be done formally using the relational representation of XML trees via the
tuples ,(+) operator. Given DTDs D and D', a function f : paths(D') — paths(D)
is a mapping from D' to D if f is onto and a path p is an element path in D' if and
only if f(p) is an element path in D. Given tree tuples ¢t € T(D) and t' € T(D'), we
write t = t' if for all p € paths(D') — EPaths(D'), t'.p = t.f(p). Given nonempty
sets of tree tuples X C 7(D) and X' C T(D'), we let X =y X' if for every t € X,
there exists ¢’ € X' such that ¢t =; ¢/, and for every ¢ € X', there exist ¢t € X such
that ¢t =; t'. Finally, if 7" and 7" are XML trees such that 7'<1 D and 7" < D', we
write T =7 T" if tuplesp(T) =5 tuplesp (T").

Definition 6.5. Given XML specifications (D, X) and (D', X'), (D', Y') is a loss-
less decomposition of (D, X)), written (D, X) <jogsiess (D', '), if there exists a map-
ping f from D' to D such that for every T |= (D, X) there is T" = (D', %') such

that T =, T".

In other words, all information about a document conforming to (D,Y) can be
recovered from some document that conforms to (D', ¥').

It follows immediately from the definition that <jygsess is transitive. Furthermore,
we show that every step of the normalization algorithm is lossless.

PRrROPOSITION 6.6. If (D', X') is obtained from (D,X) by using one of the trans-
formations from the normalization algorithm, then (D,X) <jgssiess (D', X').

PRrROOF. We consider the two steps of the normalization algorithm, and for each
step generate a mapping f. The proofs that those mappings satisfy the conditions
of Definition 6.5 are straightforward.

(1) Assume that the “moving attribute” transformation was used to generate
(D',¥"). Then D' = DI[p.Ql := ¢q.@m], ¥’ = X[p.Q] := ¢.@m] and ¢ — p.Q]
is an anomalous FD in (D,X)". In this case, the mapping f from D’ to D
is defined as follows. For every p' € paths(D') — {q.@m}, f(p') = p', and
f(g.@m) = p.Ql.

(2) Assume that the “creating new element types” transformation was used to gen-
erate (D',;¥'). Then (D’,Y') was generated by considering a (D, X)-minimal
anomalous FD {q, p1.@Qly, ..., p,.@Ql,} — p.@l. Thus, D' = D[p.Ql :=
q.7[1.Qly, ..., 7,.Ql,, Ql]] and X' = X[p.@Ql := ¢.7[r,.Ql4,...,7,.@Ql,, Q[]]. In
this case, the mapping f from D’ to D is defined as follows: f(q.7) = p,
flg.r.@l) = p.Ql, f(q.7.7;) = pi, f(q.7.7:.Ql;) = p;.Ql; and f(p') = p' for the
remaining paths p’ € paths(D’).

O

Thus, if (D',%') is the output of the normalization algorithm on (D,X), then
(Da E) Slossless (Dla El)

In relational databases, the definition of lossless decomposition indicates how to
transform instances containing redundant information into databases without re-
dundancy. This transformation uses the projection operator. Notice that Definition
6.5 also indicates a way of transforming XML documents to generate well-designed
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documents: If (D,X) <jogstess (D', X'), then for every T |= (D,X) there exists
T' = (D',¥") such that T and T' contain the same data values. The mappings
T +— T' corresponding to the two transformations of the normalization algorithm
can be implemented in an XML query language, more precisely, using XQuery
FLWOR? expressions. We use transformations of documents shown in Section 1
for illustration; the reader will easily generalize them to produce the general queries
corresponding to the transformations of the normalization algorithm.

Example 6.7. Assume that the DBLP database is stored in a file dblp.xml. As
shown in example 1.2, this document can contain redundant information since year
is stored multiple times for a given conference. We can solve this problem by
applying the “moving attribute” transformation and making year an attribute of
issue. This transformation can be implementing by using the following FLWOR
expression:

let $root := document("dblp.xml")/db
<db>
{ for $co in $root/conf
<conf>
<title> { $co/title/text() } </title>,
{ for $is in $co/issue
let $value := $is/inproceedings[position() = 1]/@year
<issue year="{ $value }">
{ for $in in $is/inproceedings
<inproceedings key="{ $in/Q@key }" pages="{ $in/@pages }">
{ for $au in $in/author
<author> { $au/text() } </author>,
<title> { $in/title/text() } </title>
}
</inproceedings>
}
</issue>
}
</conf>
}
</db>

The XPath expression $is/inproceedings[position() = 1]/@year is used to
retrieve for every issue the value of the attribute year in the first paper in that
issue. For every issue this number is stored in a variable $value and it becomes
the value of its attribute year: <issue year="{ $value }">. O

Example 6.8. Assume that the XML document shown in figure 1 is stored in a file
university.xml. This document stores information about courses in a university
and it contains redundant information since for every student taking a course we
store his/her name. To solve this problem, we split the information about names
and grades by creating an extra element type, info, for student information. This
transformation can be implemented as follows.

2FLWOR stands for for, let, where, order by, and return.
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let $root := document("university.xml")/courses
<courses>
{ for $co in $root/course
<course> {-- Query that removes name as a child of student --} </course>,
for $na in distinct-values($root/course/taken_by/student/name/text())
<info>
{ for $nu in distinct-values($root/course/taken_by/student [name/text() =
$nal/@sno)
<number sno="{ $nu }">,
<name> { $na } </name>
}
</info>
}

</courses>

We omitted the query that removes name as a child of student since it can be done
as in the previous example. a

6.3 Eliminating additional assumptions

Finally, we have to show how to get rid of the additional assumption that for every
anomalous FD X — p.@[, every time that p.@l is not null, every path in X is not
null. We illustrate this by a simple example.

Assume that D is the DTD shown in figure 6 (a). Every XML tree conforming
to this DTD has as root an element of type r which has a child of type either A
or B and an arbitrary number of elements of type C, each of them containing an
attribute @[. Let ¥ be the set of FDs {r.A — r.C.@Q[}. Then, (D, X) is not in XNF
since (D, %) i/ r.A — r.C.

T r

N |

A|B (oM r1|re

7 X
‘ Ay Ct B> C3

Ql,y Ql,
(a) (b)

Fig. 6. Splitting a DTD.

If we want to eliminate the anomalous FD r.A — r.C.Ql, we cannot directly
apply the algorithm presented in Section 6.1, since this FD does not satisfy the basic
assumption made in that section; it could be the case that r.C.Ql is not null and
r.A is null. To solve this problem we transform (D, ¥) into a new XML specification
(D', X') that is essentially equivalent to (D, X)) and satisfies the assumption made in
Section 6.1. The new XML specification is constructed by splitting the disjunction.
More precisely, DTD D' is defined as the DTD shown in figure 6 (b). This DTD
contains two copies of the DTD D, one of then containing element type A, denoted
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by Aj, and the other one containing element type B, denoted by Bs. The set of
functional dependencies ¥’ is constructed by including the FD r.A — r.C.Q[ in
both DTDs, that is, ¥/ = {r.4; — r.C;.Qly, r. Ay — r.Cy.Qly}.

In the new specification (D', ¥'), the user chooses between having either A or B
by choosing between either r; or r5. We note that the new FD r. Ay — r.Cy.Ql5 is
trivial and, therefore, to normalize the new specification we only have to take into
account FD r.A; — r.C;.@[;. This functional dependency satisfies the assumption
made in Section 6.1, so we can use the decomposition algorithm presented in that
section.

It is straightforward to generalize the methodology presented in the previous
example for any DTD. In particular, if we have an arbitrary regular expression s
ina DTD D = (E, A, P, R, r) and we have to split it into one regular expression
containing an element type 7 € E and another one not containing this symbol, we
consider regular expressions s N (E*TE*) and s — (E*TE*).

7. REASONING ABOUT FUNCTIONAL DEPENDENCIES

In the previous section we saw that it is possible to losslessly convert a DTD into one
in XNF. The algorithm used XML functional dependency implication. Although
XML FDs and relational FDs are defined similarly, the implication problem for
the former class is far more intricate. In this section we study the implication
problem for XML functional dependencies. In sections 7.1 and 7.2 we introduce
two classes of DTDs for which the implication problem can be solved efficiently.
These classes include most of real-world DTDs. In section 7.3 we introduce two
classes of DTDs for which the implication problem is coNP-complete. In section
7.4 we show that, unlike relational FDs, XML FDs are not finitely axiomatizable.
Finally, in section 7.5 we study the complexity of the XNF satisfaction problem. In
all these sections we assume, without loss of generality, that all FDs have a single
path on the right-hand side.

7.1 Simple regular expressions

Typically, regular expressions used in DTDs are rather simple. We now formulate
a criterion for simplicity that corresponds to a common practice of writing regular
expressions in DTDs. Given an alphabet A, a regular expression over A is called
trivial if it of the form sq,...,s,, where for each s; there is a letter a; € A such
that s; is either a; or a;? (which abbreviates a;|¢), or aj or a}, and for i # j,
a; # a;. We call a regular expression s simple if there is a trivial regular expression
s' such that any word w in the language denoted by s is a permutation of a word
in the language denoted by s’, and vice versa. Simple regular expressions were also
considered in [Abiteboul et al. 2001] under the name of multiplicity atoms.

For example, (alblc)* is simple: a*,b*,¢* is trivial, and every word in (alb|c)*
is a permutation of a word in a*,b*, ¢* and vice versa. A DTD is called simple if
all productions in it use simple regular expressions over E U {S}. Simple regular
expressions are prevalent in DTDs. For instance, the Business Process Specification
Schema of ebXML [ebXML 2001], a set of specifications to conduct business over
the Internet, is a simple DTD. Part of this schema is showed in figure 7.

THEOREM 7.1. The implication problem for FDs over simple DTDs is solvable
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<!ELEMENT ProcessSpecification (Documentation#*, SubstitutionSet*, (Include |
BusinessDocument | ProcessSpecification | Package | BinaryCollaboration |
BusinessTransaction | MultiPartyCollaboration)*)>

<!ELEMENT Include (Documentation*)>

<!ELEMENT BusinessDocument (ConditionExpression?, Documentation#)>

<!ELEMENT SubstitutionSet (DocumentSubstitution | AttributeSubstitution
Documentation)*>

<!ELEMENT BinaryCollaboration (Documentation*, InitiatingRole,
RespondingRole, (Documentation | Start | Transition | Success | Failure |
BusinessTransactionActivity | CollaborationActivity | Fork | Join)*)>

<!ELEMENT Transition (ConditionExpression?, Documentationx*)>

Fig. 7. Part of the Business Process Specification Schema of ebXML.

in quadratic time.

PROOF SKETCH: Here we present the sketch of the proof. The complete proof
can be found in electronic appendix A.1.

In the first part of the proof we show that given a simple DTD D and a set of FDs
Y U{S — p} over D, the problem of verifying whether £ I/ S — p can be reduced to
the problem of finding a counterexample to a certain implication problem. That is,
we need to find an XML tree T such that T |= (D, %), T £ S — p, T contains two
tree tuples and T satisfies some additional conditions that depend on the simplicity
of D. Essentially, if an element type is allowed to occur zero times (a? or a*), then
in constructing the counterexample such elements not need to be considered if they
are irrelevant to the functional dependencies under consideration. Furthermore, all
the element types in a regular expression in D can be considered independently.
Observe that this condition is not longer valid if a regular expression in D contains
a disjunction (D is not simple). For instance, if (a|b) is a regular expression in D,
then a and b are not independent; if a does not appear in an XML tree conforming
to D, then b appears in this tree.

In the second part of the proof we show that the problem of finding this coun-
terexample can be reduced to the problem of verifying if a certain propositional
formula ¢, constructed from D and ¥ U {S — p}, is satisfiable. This formula is of
the form ¢1 V -+ V ,, where n is at most the length of the path p and each ¢;
(1 € [1,n]) is a conjunction of Horn clauses and is of linear size in the size of D and
Y U {S — p}. Given that the consistency problem for Horn clauses is solvable in
linear time [Dowling and Gallier 1984], we conclude that the counterexample can
be found in quadratic time and, therefore, our original problem can be solved in
quadratic time. O

7.2  Small number of disjunctions

In a simple DTD, disjunction can appear in expressions of the form (ale) or (alb)*,
but a general disjunction (a|b) is not allowed. For example, the following DTD
cannot be represented as a simple DTD:

<!DOCTYPE university [
<!ELEMENT university (coursex*)>
<!ELEMENT course (number, studentx*)>
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<!ELEMENT number (#PCDATA)>
<!ELEMENT student ((name | FLname), grade)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT FLname (first_name, last_name)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT grade (#PCDATA)>
1>

In this example, every student must have a name. This name can be an string or it
can be a composition of a first and a last name. It is desirable to express constraints
on this kind of DTDs. For instance,

student.name.S — student,

{student.FLname.first_name.S, student.FLname.last_name.S} — student,

are functional dependencies in this domain. It is also desirable to reason about
these constraints efficiently. Often, a DTD is not simple because a small number of
regular expressions in it are not simple. In this section we will show that there is a
polynomial time algorithm for reasoning about constraints over DTDs containing
a small number of disjunctions.

A regular expression s over an alphabet A is a simple disjunction if s = ¢, s = a,
where a € A, or s = s1|sa, where sy, so are simple disjunctions over alphabets Aj,
Ay and A;NA, =0. ADTD D = (E, A, P, R, r) is called disjunctive if for every
7€ E, P(1) = s1,...,Sm, where each s; is either a simple regular expression or a
simple disjunction over an alphabet A; (i € [1,m]), and 4, NA; =0 (i,j € [1,m]
and i # j). This generalizes the concept of a simple DTD.

With each disjunctive DTD D, we associate a number Np that measures the
complexity of unrestricted disjunctions in D. Formally, for a simple regular expres-
sion s, Ny = 1. If s is a simple disjunction, then Nj is the number of symbols |

in s plus 1. If P(7) = s1,...,8yn, then N, is 1, if s1,...,s, is a simple regular ex-
pression, N, = |{p € paths(D) | last(p) = 7}| x Ng, X --- x N, otherwise. Finally,
ND = HTGE NT'

THEOREM 7.2. For any fized ¢ > 0, the FD implication problem for disjunctive
DTDs D with Np < ||D||¢ is solvable in polynomial time>.

PROOF SKETCH: Here we present the sketch of the proof. The complete proof
can be found in electronic appendix A.2.

The main idea of this proof is that the implication problem for disjunctive DTDs
can be reduced to a number of implication problems for simple DTDs by splitting
the disjunctions. More precisely, given a disjunctive DTD D and a set of functional
dependencies ¥ U {S — p} over D, there exist (D1,%1), ..., (Dn, ;) such that
each D; (i € [1,n]) is a simple DTD, £, is a set of functional dependencies over D;
(1 € [1,n]) and (D, %) - S — pif and only if (D;,%;) F S — p for every i € [1,n].
The number n of implication problems for simple DTDs is at most Np. Thus,

3|| +]| is the size of the description of an object. For instance, ||p|| is the length of the path p and
[|S]| is the sum of the lengths of the paths in S.
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since the implication problem for simple DTDs can be solved in quadratic time (see
Theorem 7.1), the implication problem for disjunctive DTDs D with Np < || D]|°,
for some constant ¢, can be solved in polynomial time. O

7.3 Relational DTDs

There are some classes of DTDs for which the implication problem is not tractable.
One such class consists of arbitrary disjunctive DTDs. Another class is that of
relational DTDs. We say that D is a relational DTD if for each XML tree T |= D,
if X is a non-empty subset of tuples,(T'), then treesp(X) |= D. This class contains
regular expressions like the one below, from a DTD for Frequently Asked Questions
[Higgins and Jelliffe 1999]:

<!ELEMENT section (logo*, title,
(gqna+ | g+ | ( p | div | section)+))>

There exist non-relational DTDs (for example, <!ELEMENT a (b,b)>). However:
ProproSITION 7.3. Every disjunctive DTD 1is relational.

ProOF. Let D = (E, A, P, R, r) be a disjunctive DTD, T' an XML tree conform-
ing to D and X a non-empty subset of tuplesp(T). Assume that treesp(X) = D,
that is, there is an XML tree 7" = (V, lab, ele, att, root) in treesp(X) such that
T' £ D. Then, there is a vertex v € V reachable from the root by following a path
p such that lab(v) = 7 and ele(v) does not conform to the regular expression P(7).

If P(r) = s, where s is a simple disjunction over an alphabet A, then there is
t' € X such that t'.p = v and ¢'.p.a = L, for each a € A. Thus, given that T |= D,
we conclude that there is a tuple ¢ € tuples,(T') such that ¢.p.b # L, for some b € A,
and t'.w = t.w for each w € paths(D) such that p.b is not a prefix of w. Hence,
t' C t. But, this contradicts the definition of tuples(-), since t',t € tuples(T).
The proof for P(7) = s1,..., Sn, where each s; (i € [1,n]) is either a simple regular

) 3

expression or a simple disjunction, is similar. [

THEOREM 7.4. The FD implication problem over relational DTDs and over dis-
junctive DTDs is coNP-complete.

PROOF. Here we prove the intractability of the implication problem for disjunc-
tive DTDs. The coNP membership proof can be found in electronic appendix A.3.

In order to prove the coNP-hardness, we will reduce SAT-CNF to the complement
of the implication problem for disjunctive DTDs. Let 6 be a propositional formula
of the form Cy A--- A Cy,, where each C; (i € [1,n]) is a clause. Assume that 6 uses
propositional variables x1, ..., Z;,.

We need to construct a disjunctive DTD D and a set of functional dependencies
Y U {¢} such that (D,X) I/ ¢ if and only if # is satisfiable. We define the DTD
D= (E, A, P, R, r) as follows.

E = {r,B,C}U{C;; | C; mentions literal z;} U {C; ; | C; mentions literal —z;},
A = {a1).

In order to define P, first we define a function for translating clauses into reg-
ular expressions. If the set of literal mentioned in the clause C; (i € [1,n]) is
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T

T
C1.1]C1,2 C2,1|Ca3 B c*
. I
@l Qi @l Qi @l @l

Fig. 8. DTD generated from a formula (21 V z2) A (z1 V —23).

{mjl,...,mjp,fkl,...,fkq},then
tr(Ci) = Cijl--1Cij,|Cin |-~ Cig,.

We define the function P on the root as P(r) = tr(Cy),...,tr(Cy), B,C*. For the
remaining elements of E, we define P as e. Finally, R(r) = 0 and R(r) = {Ql}
for every 7 € E — {r}. For example, figure 8 shows the DTD generated from a
propositional formula (z1 V z2) A (21 V —23).

For each pair of elements Ci’j,ék’j € E, the set of functional dependencies X
includes the constraint {r.C; ;.Ql, r.Cy ;.@l} — r.C.Ql. Functional dependency ¢
is defined as r.B.Ql — r.C.QI.

We now prove that (D, X) I/ ¢ if and only if 8 is satisfiable.

(=) Suppose that (D,X) I . Then, there is an XML tree T such that
T |= (D,X) and T # ¢. We define a truth assignment ¢ from T as follows. For
each j € [1,m], if there is ¢ € [1,n] such that r has a child of type C;; in T, then
o(z;) =1, otherwise o(x;) = 0. We now prove that ¢ |= Cj, for each i € [1,n]. By
definition of D, there is j € [1,m] such that r has a child in T of type either C; ;
or C; ;. In the first case, C; contains the literal z; and o(z;) = 1, by definition of
0. Therefore, o = C;. In the second case, C; contains a literal —z;. If o(z;) = 1,
then there is k € [1,n] such that r has a child of type Cy,; in T, by definition of
o. Since {r.Cy ;.@Ql, r.C;;.@Ql} — r.C.Ql is a constraint in ¥, all the nodes in T' of
type C have the same value in the attribute @/. Thus, T = r.B.Ql — r.C.Ql, a
contradiction. Hence, o(z;) = 0 and o |= C;.

(<) Suppose that 6 is satisfiable. Then, there exists a truth assignment o
such that o = 6. We define an XML tree T conforming to D as follows. For
each i € [1,n], choose a literal /; in C; such that o = ;. If [; = z;, then r has
a child of type C;; in T, otherwise r has a child of type C;; in T. Moreover, r
has one child of type B and two children of type C. We assign two distinct values
to the attribute @[ of the nodes of type C, and the same value to the rest of the
attributes in T'. Thus, T' # ¢, and it is easy to verify that 7' |= X. This completes

the proof. O

7.4 Nonaxiomatizability of XML functional dependencies

In this section we present a simple proof that XML FDs cannot be finitely ax-
iomatized. This proof shows that, unlike relational databases, there is a nontrivial
interaction between DTDs and functional dependencies. To present this proof we
need to introduce some terminology.
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Given a DTD D and a set of functional dependencies ¥ over D, we say that
(D, X) is closed under implication if for every FD ¢ over D such that (D,X) F ¢,
it is the case that ¢ € ¥. Furthermore, we say that (D,X) is closed under k-ary
implication, k > 0, if for every FD ¢ over D, if there exists ¥’ C ¥ such that
|~ < k and (D,Y') F ¢, then ¢ € ¥. For example, if (D, ) is closed under 0-ary
implication, then ¥ contains all the trivial FDs.

Since the implication problem for relational FDs is finitely axiomatizable, there
exists k > 0 such that each relation schema R(Ay, ..., A,) admits a k-ary ground
axiomatization for the implication problem, that is, an axiomatization containing
rules of the form if I" then v, where I'U {~} is a set of FDs over R(44,...,A4,) and
IT| < k. For instance, R(A, B,C) admits a 2-ary ground axiomatization including,
among others, the following rules: if § then AB — A, if A — B then AC —
BC and if {A - B,B — C} then A — C. Similarly, if there exists a finite
axiomatization for the implication problem of XML FDs, then there exists & > 0
such that each DTD D admits a (possible infinite) k-ary ground axiomatization for
the implication problem. The contrapositive of the following proposition gives us
a sufficient condition for showing that the XML FD implication problem does not
admit a k-ary ground axiomatization for every k£ > 0 and, therefore, it does not
admit a finite axiomatization.

PROPOSITION 7.5. For every k > 0, if there is a k-ary ground aziomatization
for the implication problem of XML FDs, then for every DTD D and set of FDs
Y over D, if (D,Y) is closed under k-ary implication then (D,X) is closed under
implication.

Proor. This proposition was proved in [Abiteboul et al. 1995] for the case of
relational databases. The proof for XML FDs is similar. [

THEOREM 7.6. The implication problem for XML functional dependencies is not
finitely aziomatizable.

PROOF. By Proposition 7.5, for every k& > 0 we need to exhibit a DTD Dy
and a set of functional dependencies ¥y such that (Dy, X) is closed under k-ary
implication and (Dy, ¥}) is not closed under implication.

The DTD Dy, = (E, A, P, R, r) is defined as follows: E = {Ay,..., A, Apy1, B},
A=0,P(r)=(A1] - |Ar|Ags1), B* and P(7) = € for every 7 € E — {r}. The set
of FDs X, is defined as the union of the following sets:

—{r.A; »rBlie[LE+1}U{{r,r.A;} > r.Bliec[l,k+1]}
—{S = p|S — pisatrivial FD in Dy}.

Y

It is easy to see that if ¢ is not a trivial functional dependency in Dy and ¢ & ¥y,
then ¢ = r — r.B. Thus, in order to prove that (Dy,Xy) is closed under k-ary
implication and is not closed under implication, we have to show that:

(1) For every X' C Xy such that |¥'| < k, (D, X)) / r — r.B. Since |¥'| < k,
there exists i € [1,k + 1] such that . 4; - r.B ¢ ¥ and {r, r.A;} > r.B ¢ ¥
Thus, an XML tree T' defined as
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,
SN
A, B B

conforms to Dy, satisfies ¥’ and does not satisfy r — r.B. We conclude that
(D, X)W r — r.B.
(2) (Dg,Xg) Fr — r.B. This proof is straightforward.

This completes the proof of the theorem. [

7.5 The complexity of testing XNF

Relational DTDs have the following useful property that lets us establish the com-
plexity of testing XNF.

PROPOSITION 7.7. Given a relational DTD D and a set ¥ of FDs over D, (D,X)
is in XNF iff for each nontrivial FD of the form S — p.Ql or S — p.S in 3,
S—pe(D,X)".

PRrROOF. The proof is given in electronic appendix A.4. [
From this, we immediately derive:

COROLLARY 7.8. Testing if (D,X) is in XNF can be done in cubic time for
simple DTDs, and is coNP-complete for relational DTDs.

8. RELATED WORK AND FUTURE RESEARCH

It was introduced in [Embley and Mok 2001] an XML normal form defined in terms
of functional dependencies, multi-valued dependencies and inclusion constraints.
Although that normal form was also called XNF the approach of [Embley and Mok
2001] was very different from ours. The normal form of [Embley and Mok 2001] was
defined in terms of two conditions: XML specifications must not contain redundant
information with respect to a set of constraints, and the number of schema trees
(see Section 5.2) must be minimal. The normalization process is similar to the ER
approach in relational databases. A conceptual-model hypergraph is constructed to
model the real world and an algorithm produces an XML specification in XNF. It
was proved in [Arenas and Libkin 2003] that an XML specification given by a DTD
D and a set ¥ of XML functional dependencies is in XNF if and only if no XML
tree conforming to D and satisfying ¥ contains redundant information. Thus, for
the class of functional dependencies defined in this paper, the XML normal form
introduced in [Embley and Mok 2001] is more restrictive than our XML normal
form.

Normal forms for extended context-free grammars, similar to the Greibach nor-
mal form for CFGs, were considered in [Albert et al. 2001]. These, however, do not
necessarily guarantee good XML design.

The functional dependency language used in [Embley and Mok 2001] is based
on a language for nested relations and it does not consider relative constraints.
In a very recent paper [Lee et al. 2002] was introduced a language for expressing
functional dependencies for XML. In that language, a functional dependency is
an expression of the form (p,[q1,...,¢n — @n+1]), where p is a path and every g;
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(1 € [1,n + 1)) is of the form 7.@Ql, where 7 is an element type. An XML tree T
satisfies this constraint if for any two subtrees T7, Ts of T whose roots are nodes
reachable from the root of T by following path p, if T} and T agree on the value
of ¢;, for every i € [1,n], then they agree on the value of g,;. This language
does not consider relative constraints and its semantics only works properly if some
syntactic restrictions are imposed on the functional dependencies [Lee et al. 2002].
The normalization problem is not considered in [Lee et al. 2002].

Other proposals for XML constraints (mostly keys) have been studied in [Bune-
man et al. 2001a; 2001b; Fan and Siméon 2000]; these constraints do not use DTDs.
XML constraints that takes DTDs into account are studied in [Fan and Libkin 2001].

Numerous surveys of relational normalization can be found in the literature [Beeri
et al. 1978; Kanellakis 1990; Abiteboul et al. 1995]. Normalization for nested rela-
tions and object-oriented databases is studied in [OZsoyoglu and Yuan 1987; Mok
et al. 1996; Tari et al. 1997]. Coding nested relations into flat ones, similar to
our tree tuples, is done in [Suciu 1997; Van den Bussche 2001]. We use functional
dependencies over incomplete relations using the techniques from [Atzeni and Mor-
funi 1984; Buneman et al. 1991; Grahne 1991; Imielinski and Jr. 1984; Levene and
Loizou 1998].

8.1 Future Research

The decomposition algorithm can be improved in various ways, and we plan to work
on making it more efficient. We also would like to find a complete classification of
the complexity of the FD implication problem for various classes of DTDs.

As prevalent as BCNF is, it does not solve all the problems of relational schema
design, and one cannot expect XNF to address all shortcomings of DTD design.
We plan to work on extending XNF to more powerful normal forms, in particular
by taking into account multi-valued dependencies which are naturally induced by
the tree structure.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/
journals/tods/20YY-V-N/p1-URLend.
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A. PROOF OF SECTION 7

A DTD D can be inconsistent in the sense that there is no XML tree T' such that
T |= D. For example, a recursive DTD containing a rule P(a) = a is not consistent;
there is no a finite XML tree satisfying this rule. In this section we only consider
consistent DTDs, since the implication problem for inconsistent DTDs is trivial
and it can be checked in linear time whether a DTD is consistent [Fan and Libkin
2001].

A.1 Proof of Theorem 7.1

To prove this theorem we start by introducing some terminology. Given a simple
DTD D = (E, A, P, R, r) and p, p' € paths(D) such that p is a proper prefix of
p', we say that p' can be nullified from p if p' is of the form p.w;.- - .w,, where
w; € EUAU{S} (i € [1,n]) and either (1) P(last(p)) contains wy? or wi; or (2)
there is i € [1,n — 1] such that P(w;) contains w;y1? or wj, . Intuitively, p' can be
nullified from p if there exists and XML tree T' conforming to D and a tree tuple
t in T such that t.p # 1 and t.p' = L. For example, if P(r) = a, P(a) = b* and
P(b) = ¢, then r.a.b.c can be nullified from r and r.a, but it cannot be nullified
from r.a.b. Given S C paths(D), we say that p’ can be nullified from S if p' can be
nullified from p, where p is the longest common prefix of p’ and a path from S.

The following is proved by the same argument as Lemma A.6 shown in electronic
appendix A.3.

LEMMA A.1. Given a simple DTD D, a set . of functional dependencies over
D and SU {p} C paths(D), (D,X) t/ S = p if and only if there is an XML tree T
and a path q prefix of p such that T = (D, X), tuplesp(T) = {t1,t2}, t1.5 = t2.5,
t1.S#E L, t1pFtap, tip# L, tap# L, t1.q # ts.q and

—For each s € paths(D), if s can be nullified from S U {p}, then t1.s = ta.s = L.
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—For each s € paths(D), if q is not a prefiz of s and s cannot be nullified from
S U {p}, then t;.s =ty.5s and t1.s # L.

To prove that the implication problem for simple DTDs can be solved in polyno-
mial time, we use the technique of [Sagiv et al. 1981] and code constraints with
propositional formulas. That is, for each simple DTD D and set of functional de-
pendencies ¥ U{S — p} over D, we will define a propositional formula ¢ such that
(D, %) ¥ S — pif and only if ¢ is satisfiable. This formula will be of the form
w1 V-V, where each ¢; (i € [1,n]) is a conjunction of Horn clauses. Given that
the consistency problem for Horn clauses is solvable in linear time, we will conclude
that our problem is solvable in quadratic time.

Let D be a DTD, ¥ a set of functional dependencies over D and S U {p} C
paths(D). Recall that we assumed that each constraints in ¥ is of the form S' — p’,
where S' U {p'} C paths(D). We define paths(X) as {s | there is S’ = p’ € ¥ such
that s € S"U{p'}}. To define the propositional formula ¢ we view each path
s € paths(X) U S U {p} as a propositional variable. Furthermore, for each path ¢
which is a prefix of p we define a propositional formula ¢, as

pAC N\ DACN AN

seP,US SEN, Per

where P, N, and I' are set of propositional variables and formulas defined as
follows.

—For each s € paths(X) such that s cannot be nullified from S U {p} and ¢ is not
a prefix of s, s is included in P,.

—For each s € paths(X) such that s € EPaths(D), s cannot be nullified from S U
{p} and ¢ is a prefix of s, s is included in N,.

—For each S' — p’ € ¥, if there is no ¢’ € S" U {p'} such that ¢’ can be nullified
from S'U {p}, then (A,cq s) — p' is included in T

We note that ¢, is a conjunction of Horn clauses.

The propositional formula ¢ is defined as the disjunction of some of the formula
¢g8. The following lemma shows that in this disjunction we only need to consider
gs such that ¢ = ¢'.7, for some 7 € E, and P(last(q')) contains 7* or 7.

LEMMA A.2. Let D = (E, A, P, R, r) be a simple DTD, ¥ a set of functional
dependencies over D and S U {p,q} C paths(D) such that q is a prefiz of p. If

there is 7 € E such that ¢ = ¢'.7 and P(last(q')) contains 7" or 7+, then ¢, is
satisfiable iff there is an XML tree T such that T = (D, X), tuples(T) = {t1,t2},

tl.S = tQ.S, tl.S ;é J_, tl.p ;é tQ.p, tl.p ;é J_, tg.p 75 J_, tl.q ;é t2.q and
—For each s € paths(D), if s can be nullified from S U {p}, then t1.s = ta.s = L.

—For each s € paths(D), if q is not a prefiz of s and s cannot be nullified from
SU{p}, then t;.s =ts.5s and t;.s # L.

PROOF. (=) Let o be a truth assignment satisfying ¢,. We define tuples #;
and t» as follows. For each s € paths(D), if s can be nullified from S U {p}, then
t1.s = ta.s = L. If s cannot be nullified from S U {p} we consider two cases. If ¢
is not a prefix of s, then t1.s = t2.s and t1.s # L. Otherwise, if o(s) = 1, then
t1.s = tg.5 and t1.s # L, else t1.5 # to.5, t1.5 # L and to.s # L.
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It is straightforward to prove that there is an XML tree T € treesp({t1,t2})
such that T' = D and tuplesp(T) = {ti,t2}. Given that o = —p A A g5,
t1.S = t3.5, 1.5 # L, t1.p # ta.p, t1.p # L and ty.p # L. Besides, t;.q # t2.q,
since ¢ € Ny and o |= A\, —s. Thus, to finish the proof we have to show that
TEX. Let " — p' € ¥. If there is ¢’ € S"U {p'} such that ¢’ can be nullified
from S U {p}, then T trivially satisfies S’ — p’ since t;.¢' = t2.¢' = L. Otherwise,
suppose that ¢;.5" = ¢,.5" and ¢;.S" # L. Then, by considering that o = /\squ S
and the definition of #; and #,, we conclude that o = A .g s. Thus, given that
o = (Ases 8) = p's we conclude that o(p') = 1, and, therefore, t;.p" = t5.p'.

(<) Suppose that there is an XML tree T satisfying the conditions of the
lemma. Define a truth assignment o as follows. For each s € paths(X)U S U {p}, if
t1.s # ta.s then o(s) = 0. Otherwise, o(s) = 1.

Given that t;.p # t2.p and #;.S = 1.5, o(-p) =1l and 0 = \,.g5. Let s € P,.
By definition, s cannot be nullified from S U {p} and ¢ is not a prefix of s, and,
therefore, t1.s = ta.s. Thus, o(s) = 1. We conclude that o |= /\squ s. Let
s € Ny. By definition, s cannot be nullified from S U {p}, ¢ is a prefix of s and
s € EPaths(D). Hence, t;.s # t2.s and o(s) = 0. We conclude that o |= /\seNq —s.
Finally, let (A . ) = p' € 4. If 0 = A g s, then by definition of o and %, we
conclude that ¢;.5" = t5.S" and ¢;.S" # L. Thus, given that T |= X, we conclude
that ¢;.p" = t2.p" and, therefore, o(p’) = 1. O

Combining Lemmas A.1 and A.2 we obtain:

LEmMMA A.3. Let D = (E, A, P, R, r) be a simple DTD, ¥ a set of functional
dependencies over D and S U{p} C paths(D). Assume that X = {q € paths(D) |
q is a prefiz of p and there is T € E such that ¢ = ¢'.7 and P(last(q")) contains T*
or 77}, Then, (D, X)W/ S = piff o = quX g 18 satisfiable.

Finally, we are ready to show that for a simple DTD D and a set of FDs YU{S — p}
over D, checking whether (D, X) F S — p can be done in quadratic time. The size
of each formula ¢, in the previous Lemma is O(||X||4|S||+]|pl|). Thus, it is possible
to verify whether ¢, is satisfiable in time O(||Z|| + ||S]| + ||p||), since satisfiability
of propositional Horn formulas can be checked in linear time [Dowling and Gallier
1984]. Hence, given that there are at most ||p|| of these formulas, checking whether
formula \/  x ¢, in Lemma A.3 is satisfiable requires time O(|[p||- (| Z[[+[|S[|+]|pl]))-
To construct this formula, first we execute two steps:

(1) For every s € paths(X), find the longest common prefix of s and a path from
S U {p}, which requires time O(]|s|| - (||S]| + ||pl|)). By using this prefix verify
whether s can be nullified from S U {p}, which requires time O(]|s|| - || D||).

(2) For each s € paths(X) and for each prefix g of p, verify whether ¢ is a prefix of
s, which requires time O(]|q||)-

The total time required by these steps is O(||X]| - (|| D]| + [|S]| + |Ipl])). Let & be
the number of paths in ¥ and [ be the number of prefixes of p. The information
generated by the first step is stored in a array with k entries, one for each path in
¥, indicating whether each of these paths can be nullified from S U {p}. Similarly,
the information generated by the second step is stored in [ arrays with &k entries
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each. By using these data structures, the formula \/le ¢q in Lemma A.3 can be
constructed in time O(||p||-(||X]|+|S||+|p||)). Thus, the total time of the algorithm
is O([pll - (1 + 111+ lpll) + IZII- (1D ]| + I S1| + IIpll)). This completes the proof
of Theorem 7.1.

A.2 Proof of Theorem 7.2

To prove this theorem first we prove two lemmas. Let D = (E, A, P, R, r) be
a disjunctive DTD and 7 € E such that P(7) = s1,...,S,. Assume that for a
fixed k € [1,n], s = s}|s), where s}, s} are simple disjunctions over alphabets
A, A, and A} N A} = (). Assume that there is only one p, € paths(D) such that
last(p;) = 7. We define paths;(D) (for i = 1,2) as the set of all paths ¢ in D such
that one of the following statement holds: (1) p, is not a proper prefix of ¢ or (2)
there is 7/ € E such that p,.7" is a prefix of ¢ and 7' is in the alphabet of any
of the regular expressions si, ..., Sg—1, S}, Sk+1, -.., Sp. Then we define DTDs
D; = (E;, A;, P;, R;, r) (for i = 1,2) as follows. E; = {7’ € E | 7' is mentioned
in some ¢ € paths;(D)}, A; = {Ql | there is 7' € E; such that QI € R(7)},
Pi(1) = S1,...,Sk—1, 85, Skt1y .., 5n, Pi(7") = P(1'), for each 7" € E; — {7}, and
R; = R|g,. Moreover, given a set of functional dependencies ¥ over D, we define
a set of functional dependencies ¥; over D; (for i = 1,2) as follows. For each
S —=peX, if SU{p} C paths;(D), then S — p is included in ¥;.

LEMMA A.4. Let D, X, 7, p;, D; and %;, for i = 1,2 be as above and let S — p
be a functional dependency over D. Then

(a) If SU{p} & paths,(D) for every i € [1,2], then (D,X) - S — p.

(b) If SU {p} C paths,(D) and S U {p} € paths,(D), then (D,X) S — p iff
(Dl,Zl) S — D.

(c) If S U {p} C paths;(D) for every i € [1,2], then (D,X) b S — p iff for every

PROOF. (a) Let p; € paths;(D) (i € [1,2]) such that p; € S U {p}, for every
i € [1,2], pr € pathsy(D) and ps ¢ paths, (D). Let T be an XML tree such that
T = (D,Y), and t1,ty € tuplesp(T). Without loss of generality, assume that
p1 € S. If tl-pl = tg.pl and tl-pl ;é J_, then tl.pg = tg.pg = J_, and, therefore,
T = S — p. Thus, we conclude that (D,X) F S — p.

(b) If (D,X) F S — p, we have to prove that (D1,%X;) F S — p. Let T}
be an XML such that 77 E (Dq,X;). This tree conforms to D and satisfies X,
since each constraint ¢ € ¥ — ¥y contains at least one path ¢ such that for every
t € tuples,(T1), t.g = L. Hence, Ty = S — p.

Suppose that (Dy,%1) F S — p. We have to prove that (D,X) - S — p.
Let T' be an XML tree such that T = (D,X), and t1,t2 € tuplesp(T). Let
p1 € paths, (D) such that p; € S U {p} and p; & paths,(D). By contradiction,
suppose that t1.5 = 2.5, t1.5 # L and t1.p # ta.p. If p; € S, then there is
T, € treesp({t1,t2}) such that Ty |= Dy, since t1.p1 # L and t2.p1 # L. Since
T =X, T E ¥, and, therefore (D1,%;) I/ S — p, a contradiction. If p; = p,
without loss of generality, we can assume that ¢;.p; # L. If £5.p; # L, then there
is Th € treesp({t1,t2}) such that Ty = D;. But, Ty = X4, since T = X, and,
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therefore (D1,%;) I/ S — p, a contradiction. Assume that to.py = L. Define
th € T(Dy) as follows. For each w € paths, (D) N paths,(D), thaw = ty.w, and
for each w € paths, (D) — paths,(D), if t;.w = L, then th.w = L, otherwise
thaw # ty.w. Given that t;.p, # ta.p,, since t1.p1 # L and t5.py = L, we conclude
that there is an XML tree Ty € treesp({t1,t5}) such that Ty conforms to Dj.
But T} | ¥4, since treesp({ti,t2}) E ¥. Thus, (D1,%;) ¥ S — p, again a
contradiction.

(¢) We will only prove the “if” direction. The “only if” direction is analo-
gous to the proof of this direction in (b). Assume that (D,X) I/ S — p. We will
show that (D1,%1) /S — por (D3, %) /¥ S — p.

Given that every disjunctive DTD is a relational DTD (see Proposition 7.3), by
Lemma A.6 we conclude that (D,X) I/ S — p if and only if there is an XML tree T'
and a path ¢ prefix of p such that T = (D, X), tuples,(T) = {t1,t2}, t1.5 = t2.5,
t1.S # L, t1.p # ta.p, t1.q # t2.q and for each s € paths(D), if g is not a prefix of
s, then t1.s = to.s. We consider three cases.

(1) If ¢ is not a prefix of p,. Then, there is T' € treesp({t1,t2}) such that T"
conforms to either Dy or Dy. Without loss of generality, assume that T’ |= D.
In this case, T' |= ¥, since T = X. Hence, (D1,%1) i/ S — p.

(2) If ¢ is a prefix of p, and there exists a} € A} and a, € A}, such that ¢1.p,.a] # L
and t2.p,.a}y # L. In this case, we define t), € T(D;) as follows. For each w €
paths, (D) N paths, (D), th.w = ts.w, and for each w € paths, (D) — paths, (D),
if t7.w = 1, then th.w = L, otherwise th.w # t;.w. Then, there exists T' €
treesp, ({t1,t5}) such that 7" = Dy, T" =¥ and T £ S — p, since T = %
and T' = S — p. We conclude that (D1, %) I/ S — p.

(3) If ¢ is a prefix of p; and there are no af € A} and a) € A} such that either
t1.pr.a) # L and to.pr.aly # L or to.pr.a) # L and t1.pr.al, # L. This case is
analogous to the first one.

O

Given a disjunctive DTD D = (E, A, P, R, r), to apply the previous lemma we
need to find an element type 7 such that there is exactly one path in D whose
last element is 7 and P(7) = s1,...,8k,...,8n, where s = s||s}, s| and s}, are
simple disjunctions over alphabets A}, A, and A} N A, = 0. If there is no such
an element type and D is not a simple DTD, it is possible to create it by using
the following transformation. Pick 7 satisfying the previous conditions except for
there is more than one path whose last element is 7. Pick p € paths(D) such that
last(p) = 7. Define a DTD D, = (E,, A, P,, R,, ) as follows. r, = [r] and
E,=(E—{r})U{[q] | ¢ € paths(D) and q is a prefix of p} (we use square brackets
to distinguish between paths and element types). The functions P, and R, are
defined as follows.

—For each ¢ € paths(D) and 7' € E such that ¢.7' is a prefix of p, P,([g]) =
f(P(last(q))), where f is a homomorphism defined as f(7') = [¢.7'] and f(r") =
7" for each 7" # 1'. Moreover, P,([p]) = P(last(p)) and P,(7") = P(7'), for each
e BE—{r}.
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—For each [¢] € E,, R,([q]) = R(last(q)). Moreover, R,(7") = R(r'), for each
e BE—{r}.

Let XU {S — ¢} be a set of functional dependencies over D. We define a set
of functional dependencies ¥, U {S, — ¢,} over D, as follows. For each path ¢
mentioned in ¥ U {S = ¢}, if ¢ = ¢1.¢2, where ¢; is the longest common prefix of
¢' and p, then ¢’ is replaced by ¢(q1).¢q2, where g is an homomorphism defined as
g([r]) = [r] and g(Jw.7']) = g([w]).[w.T'], for each w.7" prefix of p. The following is
straightforward.

LeEMMA A.5. Let D, ¥ U {S — ¢}, D, and £, U {S, = ¢,} be as above. Then,
(D,2) =S = qiff (Dp,Ep) FSp = qp-

Theorem 7.2 now follows from Lemmas A.4 and A.5.

A.3  The Implication Problem for Relational DTDs is in coNP

To prove this theorem we start with the following lemma.

LEMMA A.6. Given a relational DTD D, a set Y of functional dependencies over
D and SU{p} C paths(D), (D,X) t/ S — p if and only if there is an XML tree T and
a path q prefix of p such that T conforms to D, T satisfies ¥, tuples,(T) = {t1,t2},
t1.S =t2.5, t1.5 # L, t1.p # to.p, t1.q # ta.q and for each s € paths(D), if q is
not a prefix of s, then t1.s = ts.s.

ProoF. We will prove only the “only if” direction, since the “if” direction is
trivial.

Suppose that (D,X) I/ S — p. There is an XML tree T conforming to D and
satisfying ¥ such that 7' = S — p. Then, there are tuples t|,t, € tuples,(T) such
that #{.S = t5.S, t1.S # L and ¢{.p # th.p. Let ¢ be the shortest prefix of p such
that t}.q # ty.q. We define tree tuples ¢; and ¢y as follows. For each s € paths(D),
if ¢ is not a prefix of s, then ¢;.s = t{.s and t5.s = t|.s. Otherwise, t;.s = t{.s and
ty.s = th.s. Notice that t1,ts € tuples,(T").

Given that D is a relational DTD, it is possible to find T' € treesp({t1,t2}) such
that T = D. We need to prove that T satisfies the conditions of the lemma. By
definition of ¢, and to, tuples(T) = {t1,t2} and for each s € paths(D), if q is not
a prefix of s, then t;.s = t5.5. Besides, t1.5 = 5.5, 1.5 # L and t;.p # to.p, since
t7.S =t,.5, 1.5 # L, t.p # th.p and ¢ is a prefix of p. Finally, ¢,.q # t2.q, since
ti.q#thq, and T |E X, since T' = ¥ and t1,t2 € tuples,(T"). O

Now we are ready to prove that the implication problem for relational DTDs is in
coNP. Let D be a relational DTD, ¥ a set of functional dependencies over D and
SU{p} C paths(D). Let prefiz(XU{S — p}) be the set of all p’ € paths(D) such that
p' is a prefix of a path mentioned in U{S — p}. Notice that ||prefiz(SU{S — p})||
is O(|Z U{S — p}|2).

To check whether (D,X) I/ S — p, we use a nondeterministic algorithm that
guesses the tuples ¢; and ¢, mentioned in Lemma A.6. This algorithm does not
construct all the values in ¢; and ¢y, it guesses only the values of these tuples
that are necessary to verify whether treesp({ti,t2}) = X. The algorithm works as
follows. For each s € prefiz(X U {S — p}), guess the values of t1.s and t5.s. Verify
whether it is possible to construct an XML tree conforming to D and containing
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t; and ty. If this does not hold, then return “no”. Otherwise, guess a prefix ¢
of p. Verify whether ¢;.5 = ¢5.5, t1.5 # L, t1.p # to.p, t1.q # t2.q and for each
s € paths(X U {S — p}), if q is not a prefix of s, then ¢;.s = to.s. If this does not
hold, then return “no”. Otherwise, check whether the values in ¢; and to satisfy X.
If this is the case, then return “yes”, otherwise return “no”.

The previous algorithm works in nondeterministic polynomial time, since
lprefiz(Z U {S — p})|| is O(||Z U {S — p}||*). Therefore, we conclude that the
implication problem for relational DTDs is in coNP.

A.4  Proof of Proposition 7.7

We only need to prove the “if” direction. Suppose that for each nontrivial FD of
the form S - p.@lor S - pSin¥, S —pe (D, ).

Assume that (D, ) is not in XNF. Without loss of generality, assume that there
exists a nontrivial functional dependency S’ — p’.@Ql' such that S’ — p'.Ql' €
(D,¥)" and S' — p' ¢ (D,X)". By Lemma A.6, there is an XML tree T' and a
path ¢ prefix of p’ such that T conforms to D, T satisfies X, tuples ,(T') = {t1,t2},
t1.8" = 12.5', t1.5" # L, t1.p" # t2.p', t1.q # t2.q and for each s € paths(D), if ¢ is
not a prefix of s, then t1.s = to.s5. If t;.p'.@Ql" # t5.p".Ql', then (D, X) t/ S' — p'.@l’,
a contradiction. Thus, we can assume that #,.p'.@Ql'" = t,.p".@QI'". We can also
assume t1.p'.@Q1" # 1, since if t1.p'.@Ql' = to,.p'. @' = 1, then t;.p' = ta.p) = L
and, therefore, T' |= S’ — p'. Define a new tree tuple ¢} as follows: t}.w = t;.w,
for each w # p'.@Ql', ¢{.p'.Ql" # t,.p'.@Ql" and #}.p'.@l" # L. Then, there is an
XML tree T" € treesp({t},t2}) such that 7" = D and T" # S'" — p'.Ql', since
p.a@l’ ¢ §' (8" — p'.@l' is a nontrivial functional dependency). If 7' = X, then
(D,X) ¥ S" — p'.@Ql', a contradiction. Hence T' £ ¥ and, therefore, there is
S — p'" € ¥ such that 7" = S — p'’. But p” must be equal to p'.@Ql', since
t1,ty € tuplesp(T) and T' |= X. Therefore, T £ S — p', because t1.S = t1.S = 5.5,
t1.S # L and t1.p' # to.p’. We conclude that (D,X) I/ S — p', which contradicts
our initial assumption since S — p’.@I’ is a nontrivial FD in ¥.
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