
A Normal Form for XML Do
umentsMARCELO ARENASUniversity of TorontoandLEONID LIBKINUniversity of TorontoThis paper takes a �rst step towards the design and normalization theory for XML do
uments.We show that, like relational databases, XML do
uments may
ontain redundant information, andmay be prone to update anomalies. Furthermore, su
h problems are
aused by
ertain fun
tionaldependen
ies among paths in the do
ument. Our goal is to �nd a way of
onverting an arbitraryDTD into a well-designed one, that avoids these problems. We �rst introdu
e the
on
ept of afun
tional dependen
y for XML, and de�ne its semanti
s via a relational representation of XML.We then de�ne an XML normal form, XNF, that avoids update anomalies and redundan
ies. Westudy its properties and show that it generalizes BCNF and a normal form for nested relations
alled NNF-FD when those are appropriately
oded as XML do
uments. Finally, we present alossless algorithm for
onverting any DTD into one in XNF.Categories and Subje
t Des
riptors: H.2.1 [Database Management℄: Logi
al Design|Datamodels; Normal forms; S
hema and subs
hema; H.2.3 [Database Management℄: Languages|Data des
ription languages (DDL)General Terms: Design, Management, TheoryAdditional Key Words and Phrases: XML data, DTDs, design, normal form, fun
tional depen-den
ies1. INTRODUCTIONThe
on
epts of database design and normal forms are a key
omponent of therelational database te
hnology. In this paper, we study design prin
iples for XMLdata. XML has re
ently emerged as a new basi
 format for data ex
hange. Althoughmany XML do
uments are views of relational data, the number of appli
ationsusing native XML do
uments is in
reasing rapidly. Su
h appli
ations may usenative XML storage fa
ilities [Kanne and Moerkotte 2000℄, and update XML data[Tatarinov et al. 2001℄. Updates, like in relational databases, may
ause anomaliesif data is redundant. In the relational world, anomalies are avoided by using well-designed database s
hema. XML has its version of s
hema too; most often it isAuthors' address: M. Arenas, Department of Computer S
ien
e, University of Toronto, 10 King'sCollege Road, Toronto, Ontario, Canada M5S 3G4, e-mail: marenas�
s.toronto.edu; L. Libkin,Department of Computer S
ien
e, University of Toronto, 6 King's College Road, Toronto, Ontario,Canada M5S 3H5, e-mail: libkin�
s.toronto.edu.Permission to make digital/hard
opy of all or part of this material without fee for personalor
lassroom use provided that the
opies are not made or distributed for pro�t or
ommer
ialadvantage, the ACM
opyright/server noti
e, the title of the publi
ation, and its date appear, andnoti
e is given that
opying is by permission of the ACM, In
. To
opy otherwise, to republish,to post on servers, or to redistribute to lists requires prior spe
i�
 permission and/or a fee.

 20YY ACM 0362-5915/20YY/0300-0001 $5.00ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1{37.

2 � M. Arenas and L. LibkinDTDs (Do
ument Type De�nitions), and some other proposals exist or are underdevelopment [W3C 2001; 1998℄. What would it mean then for su
h a s
hema to bewell or poorly designed? Clearly, this question has arisen in pra
ti
e: one
an �nd
ompanies o�ering help in \good DTD design." This help, however,
omes in formof
onsulting servi
es rather than
ommer
ially available software, as there are no
lear guidelines for produ
ing well designed XML.Our goal is to �nd prin
iples for good XML data design, and algorithms toprodu
e su
h designs. We believe that it is important to do this resear
h now, as alot of data is being put on the web. On
e massive web databases are
reated, it isvery hard to
hange their organization; thus, there is a risk of having large amountsof widely a

essible, but at the same time poorly organized lega
y data.Normalization is one of the most thoroughly resear
hed subje
ts in database the-ory (a survey [Beeri et al. 1978℄ produ
ed many referen
es more than 20 years ago),and
annot be re
onstru
ted in a single paper in its entirety. Here we follow thestandard treatment of one of the most
ommon (if not the most
ommon) nor-mal forms, BCNF. It eliminates redundan
ies and avoids update anomalies whi
hthey
ause by de
omposing into relational subs
hemas in whi
h every nontrivialfun
tional dependen
y de�nes a key. Just to retra
e this development in the XML
ontext, we need the following:a) Understanding of what a redundan
y and an update anomaly is.b) A de�nition and basi
 properties of fun
tional dependen
ies (so far, most pro-posals for XML
onstraints
on
entrate on keys).
) A de�nition of what \bad" fun
tional dependen
ies are (those that
ause redun-dan
ies and update anomalies).d) An algorithm for
onverting an arbitrary DTD into one that does not admitsu
h bad fun
tional dependen
ies.Starting with point a), how does one identify bad designs? We have looked at alarge number of DTDs and found two kinds of
ommonly present design problems.They are illustrated in two examples below.Example 1.1. Consider the following DTD that des
ribes a part of a universitydatabase:<!DOCTYPE
ourses [<!ELEMENT
ourses (
ourse*)><!ELEMENT
ourse (title, taken_by)><!ATTLIST
ourse
no CDATA #REQUIRED><!ELEMENT title (#PCDATA)><!ELEMENT taken_by (student*)><!ELEMENT student (name, grade)><!ATTLIST studentsno CDATA #REQUIRED><!ELEMENT name (#PCDATA)><!ELEMENT grade (#PCDATA)>℄>ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 3For every
ourse, we store its number (
no), its title and the list of students takingthe
ourse. For ea
h student taking a
ourse, we store his/her number (sno), name,and the grade in the
ourse.
�sno"st1" name"Deere" grade"A+" �sno"st2" name"Smith" grade"B-" �sno"st1" name"Deere" "A"grade �sno name grade"st3" "Smith" "B+"

oursestitle"AutomataTheory" title"Cal
ulus I" taken bytaken by�
no"
s
200" �
no"mat100"student student studentstudent

ourse
ourse

Fig. 1. A do
ument
ontaining redundant information.An example of an XML do
ument that
onforms to this DTD is shown in �gure1. This do
ument satis�es the following
onstraint: any two student elementswith the same sno value must have the same name. This
onstraint (whi
h looksvery mu
h like a fun
tional dependen
y),
auses the do
ument to store redundantinformation: for example, the name Deere for student st1 is stored twi
e. Andjust as in relational databases, su
h redundan
ies
an lead to update anomalies: forexample, updating the name of st1 for only one
ourse results in an in
onsistentdo
ument, and removing the student from a
ourse may result in removing thatstudent from the do
ument altogether.In order to eliminate redundant information, we use a te
hnique similar to therelational one, and split the information about the name and the grade. Sin
e wedeal with just one XML do
ument, we must do it by
reating an extra elementtype, info, for student information, as shown below:<!DOCTYPE
ourses [<!ELEMENT
ourses (
ourse*, info*)><!ELEMENT
ourse (title,taken_by)><!ATTLIST
ourse
no CDATA #REQUIRED><!ELEMENT title (#PCDATA)><!ELEMENT taken_by (student*)><!ELEMENT student (grade)><!ATTLIST studentsno CDATA #REQUIRED><!ELEMENT grade (#PCDATA)><!ELEMENT info (number*,name)><!ELEMENT number EMPTY><!ATTLIST numbersno CDATA #REQUIRED>ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

4 � M. Arenas and L. Libkin<!ELEMENT name (#PCDATA)>℄>Ea
h info element has as
hildren one name and a sequen
e of number elements,with sno as an attribute. Di�erent students
an have the same name, and we groupall student numbers sno for ea
h name under the same info element. A restru
tureddo
ument that
onforms to this DTD is shown in �gure 2. Note that st2 and st3are put together be
ause both students have the same name. 2
�sno"st1" grade"A+" �sno"st1" grade"A" �sno"st3" grade"B+"�sno"st2" grade"B-"

info info�
no"
s
200" taken bytitle"AutomataTheory" "Smith"title"Cal
ulus I" taken by number number number name�
no"mat100" "Deere"namestudent student studentstudent �sno"st1" �sno"st2" �sno"st3"

ourses
ourse
ourse

Fig. 2. A well-designed do
ument.This example is reminis
ent of the
anoni
al example of bad relational design
aused by non-key fun
tional dependen
ies, and so is the modi�
ation of the s
hema.Some examples of redundan
ies are more
losely related to the hierar
hi
al stru
tureof XML do
uments.Example 1.2. The DTD below is a part of the DBLP database [Ley 2003℄ forstoring data about
onferen
es.<!DOCTYPE db [<!ELEMENT db (
onf*)><!ELEMENT
onf (title, issue+)><!ELEMENT title (#PCDATA)><!ELEMENT issue (inpro
eedings+)><!ELEMENT inpro
eedings (author+, title)><!ATTLIST inpro
eedingskey ID #REQUIREDpages CDATA #REQUIREDyear CDATA #REQUIRED><!ELEMENT author (#PCDATA)>℄>Ea
h
onferen
e has a title, and one or more issues (whi
h
orrespond to yearswhen the
onferen
e was held). Papers are stored in inpro
eedings elements; theyear of publi
ation is one of its attributes.Su
h a do
ument satis�es the following
onstraint: any two inpro
eedings
hil-dren of the same issue must have the same value of year. This too is similarto relational fun
tional dependen
ies, but now we refer to the values (the yearACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 5attribute) as well as the stru
ture (
hildren of the same issue). Moreover, weonly talk about inpro
eedings nodes that are
hildren of the same issue element.Thus, this fun
tional dependen
y
an be
onsidered relative to ea
h issue.The fun
tional dependen
y here leads to redundan
y: year is stored multipletimes for a
onferen
e. The natural solution to the problem in this
ase is not to
reate a new element for storing the year, but rather restru
ture the do
ument andmake year an attribute of issue. That is, we
hange attribute lists as:<!ATTLIST issueyear CDATA #REQUIRED><!ATTLIST inpro
eedingskey ID #REQUIREDpages CDATA #REQUIRED> 2Our goal is to show how to dete
t anomalies of those kinds, and to transformdo
uments in a lossless fashion into ones that do not su�er from those problems.The �rst step towards that goal is to introdu
e fun
tional dependen
ies (FDs)for XML do
uments. So far, most proposals for XML
onstraints deal with keysand foreign keys [Buneman et al. 2001a; 2001b; W3C 2001℄. We introdu
e FDs forXML by
onsidering a relational representation of do
uments and de�ning FDs onthem. The relational representation is somewhat similar to the total unnesting ofa nested relation [Su
iu 1997; Van den Buss
he 2001℄; however, we have to dealwith DTDs that may
ontain arbitrary regular expressions, and be re
ursive. Ourrepresentation via tree tuples, introdu
ed in Se
tion 3, may
ontain null values. InSe
tion 4, XML FDs are introdu
ed via FDs on in
omplete relations [Atzeni andMorfuni 1984; Levene and Loizou 1998℄.The next step is the de�nition of a normal form that disallows redundan
y-
ausing FDs. We give it in Se
tion 5, and show that our normal form,
alled XNF,generalizes BCNF and a nested normal form NNF [Mok et al. 1996℄ when onlyfun
tional dependen
ies are
onsidered (see Se
tion 5.2 for a pre
ise statement ofthis
laim).The last step then is to �nd an algorithm that
onverts any DTD, given a set ofFDs, into one in XNF. We do this in Se
tion 6. On both examples shown earlier,the algorithm produ
es exa
tly the desired re
onstru
tion of the DTD. The mainalgorithm uses impli
ation of fun
tional dependen
ies (although there is a versionthat does not use impli
ation, but it may produ
e suboptimal results). In Se
tion 7,we show that for a large
lass of DTDs,
overing most DTDs that o

ur in pra
ti
e,the impli
ation problem is tra
table (in fa
t, quadrati
). Finally, in Se
tion 8 wedes
ribe related work and some topi
s of future resear
h.One of the reasons for the su

ess of the normalization theory is its simpli
ity, atleast for the
ommonly used normal forms su
h as BCNF, 3NF and 4NF. Hen
e,the normalization theory for XML should not be extremely
ompli
ated in order tobe appli
able. In parti
ular, this was the reason we
hose to use DTDs instead ofmore
omplex formalisms [W3C 2001℄. This is in perfe
t analogy with the situationin the relational world: although SQL DDL is a rather
ompli
ated language withnumerous features, BCNF de
omposition uses a simple model of a set of attributesACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

6 � M. Arenas and L. Libkinand a set of fun
tional dependen
ies.2. NOTATIONSAssume that we have the following disjoint sets: El of element names, Att ofattribute names, Str of possible values of string-valued attributes, and Vert ofnode identi�ers. All attribute names start with the symbol �, and these are theonly ones starting with this symbol. We let S and ? (null) be reserved symbols notin any of those sets.De�nition 2.1. A DTD (Do
ument Type De�nition) is de�ned to be D =(E; A; P; R; r), where:|E � El is a �nite set of element types.|A � Att is a �nite set of attributes.|P is a mapping from E to element type de�nitions: Given � 2 E, P (�) = S orP (�) is a regular expression � de�ned as follows:� ::= � j � 0 j �j� j �; � j ��where � is the empty sequen
e, � 0 2 E, and \j", \;" and \�" denote union,
on
atenation, and the Kleene
losure, respe
tively.|R is a mapping from E to the powerset of A. If �l 2 R(�), we say that �l isde�ned for � .|r 2 E and is
alled the element type of the root. Without loss of generality, weassume that r does not o

ur in P (�) for any � 2 E.The symbols � and S represent element type de
larations EMPTY and #PCDATA, re-spe
tively.Given a DTD D = (E; A; P; R; r), a string w = w1 � � �wn is a path in D ifw1 = r, wi is in the alphabet of P (wi�1), for ea
h i 2 [2; n � 1℄, and wn is in thealphabet of P (wn�1) or wn = �l for some �l 2 R(wn�1). We de�ne length(w)as n and last(w) as wn. We let paths(D) stand for the set of all paths in D andEPaths(D) for the set of all paths that ends with an element type (rather than anattribute or S); that is, EPaths(D) = fp 2 paths(D) j last(p) 2 Eg. A DTD is
alled re
ursive if paths(D) is in�nite.De�nition 2.2. An XML tree T is de�ned to be a tree (V; lab; ele; att; root),where|V � Vert is a �nite set of verti
es (nodes).|lab : V ! El .|ele : V ! Str [V �.|att is a partial fun
tion V � Att ! Str . For ea
h v 2 V , the set f�l 2 Att jatt(v;�l) is de�nedg is required to be �nite.|root 2 V is
alled the root of T .The parent-
hild edge relation on V , f(v1; v2) j v2 o

urs in ele(v1)g, is required toform a rooted tree.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 7Noti
e that we do not allow mixed
ontent in XML trees. The
hildren of anelement node
an be either zero or more element nodes or one string.Given an XML tree T , a string w1 � � �wn, with w1; : : : ; wn�1 2 El and wn 2El [Att [fSg, is a path in T if there are verti
es v1 � � � vn�1 in V su
h that:|v1 = root, vi+1 is a
hild of vi (1 � i � n� 2), lab(vi) = wi (1 � i � n� 1).|If wn 2 El , then there is a
hild vn of vn�1 su
h that lab(vn) = wn. If wn = �l,with �l 2 Att , then att(vn�1; �l) is de�ned. If wn = S, then vn�1 has a
hild inStr .We let paths(T) stand for the set of paths in T . We next give a standard de�nitionof a tree
onforming to a DTD (T j= D) as well as a weaker version of T being
ompatible with D (T �D).De�nition 2.3. Given a DTD D = (E; A; P; R; r) and an XML tree T = (V;lab; ele; att; root), we say that T
onforms to D (T j= D) if|lab is a mapping from V to E.|For ea
h v 2 V , if P (lab(v)) = S, then ele(v) = [s℄, where s 2 Str . Otherwise,ele(v) = [v1; : : : ; vn℄, and the string lab(v1) � � � lab(vn) must be in the regularlanguage de�ned by P (lab(v)).|att is a partial fun
tion from V �A to Str su
h that for any v 2 V and �l 2 A,att(v; �l) is de�ned i� �l 2 R(lab(v)).|lab(root) = r.We say that T is
ompatible with D (written T �D) i� paths(T) � paths(D).Clearly, T j= D implies T is
ompatible with D.3. TREE TUPLESTo extend the notions of fun
tional dependen
ies to the XML setting, we representXML trees as sets of tuples. While various mappings from XML to the relationalmodel have been proposed [Flores
u and Kossmann 1999; Shanmugasundaram et al.1999℄, the mapping that we use is of a di�erent nature, as our goal is not to �nda way of storing do
uments eÆ
iently, but rather �nd a
orresponden
e betweendo
uments and relations that lends itself to a natural de�nition of fun
tional de-penden
y.Various languages proposed for expressing XML integrity
onstraints su
h askeys, [Buneman et al. 2001a; 2001b; W3C 2001℄, treat XML trees as unordered (forthe purpose of de�ning the semanti
s of
onstraints): that is, the order of
hildrenof any given node is irrelevant as far as satisfa
tion of
onstraints is
on
erned. InXML trees, on the other hand,
hildren of ea
h node are ordered. Sin
e the notionof fun
tional dependen
y we propose also does not use the ordering in the tree, we�rst de�ne a notion of subsumption that disregard this ordering.Given two XML trees T1 = (V1; lab1; ele1; att1; root1) and T2 = (V2; lab2; ele2;att2; root2), we say that T1 is subsumed by T2, written as T1 � T2 if|V1 � V2.|root1 = root2. ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

8 � M. Arenas and L. Libkin|lab2�V1 = lab1.|att2�V1�Att = att1.|For all v 2 V1, ele1(v) is a sublist of a permutation of ele2(v).This relation is a pre-order, whi
h gives rise to an equivalen
e relation: T1 � T2 i�T1 � T2 and T2 � T1. That is, T1 � T2 i� T1 and T2 are equal as unordered trees.We de�ne [T ℄ to be the �-equivalen
e
lass of T . We write [T ℄ j= D if T1 j= D forsome T1 2 [T ℄. It is easy to see that for any T1 � T2, paths(T1) = paths(T2); hen
eT1 �D i� T2 �D. We shall also write T1 � T2 when T1 � T2 and T2 6� T1.In the following de�nition we extend the notion of tuple for relational databasesto the
ase of XML. In a relational database, a tuple is a fun
tion that assigns toea
h attribute a value from the
orresponding domain. In our setting, a tree tuple tin a DTD D is a fun
tion that assigns to ea
h path in D a value in Vert [Str [f?gin su
h a way that t represents a �nite tree with paths from D
ontaining at mostone o

urren
e of ea
h path. In this se
tion, we show that an XML tree
an berepresented as a set of tree tuples.De�nition 3.1 (Tree tuples). Given a DTD D = (E; A; P; R; r), a tree tuple tin D is a fun
tion from paths(D) to Vert [Str [f?g su
h that:|For p2EPaths(D), t(p)2Vert [f?g, and t(r) 6=?.|For p 2 paths(D)� EPaths(D), t(p) 2 Str [f?g.|If t(p1) = t(p2) and t(p1) 2 Vert , then p1 = p2.|If t(p1)=? and p1 is a pre�x of p2, then t(p2)=?.|fp 2 paths(D) j t(p) 6= ?g is �nite.T (D) is de�ned to be the set of all tree tuples in D. For a tree tuple t and a pathp, we write t:p for t(p).Example 3.2. Suppose that D is the DTD shown in example 1.1. Then a treetuple in D assigns values to ea
h path in paths(D):t(
ourses) = v0t(
ourses :
ourse) = v1t(
ourses :
ourse:�
no) =
s
200t(
ourses :
ourse:title) = v2t(
ourses :
ourse:title:S) = Automata Theoryt(
ourses :
ourse:taken by) = v3t(
ourses :
ourse:taken by :student) = v4t(
ourses :
ourse:taken by :student :�sno) = st1t(
ourses :
ourse:taken by :student :name) = v5t(
ourses :
ourse:taken by :student :name:S) = Deeret(
ourses :
ourse:taken by :student :grade) = v6t(
ourses :
ourse:taken by :student :grade:S) = A+ 2We intend to
onsider tree tuples in XML trees
onforming to a DTD. The ability tomap a path to null (?) allow one in prin
iple to
onsider tuples with paths that donot rea
h the leaves of a give tree, although our intention is to
onsider only pathsACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 9that do rea
h the leaves. However, nulls are still needed in tree tuples be
ause ofthe disjun
tion in DTDs. For example, let D = (E; A; P; R; r), where E = fr; a; bg,A = ;, P (r) = (ajb), P (a) = � and P (b) = �. Then paths(D) = fr; r:a; r:bg but notree tuple
oming from an XML tree
onforming to D
an assign non-null valuesto both r:a and r:b.If D is a re
ursive DTD, then paths(D) is in�nite; however, only a �nite numberof values in a tree tuple are di�erent from ?. For ea
h tree tuple t, its non-nullvalues give rise to an XML tree as follows.De�nition 3.3 (treeD). Given a DTD D = (E; A; P; R; r) and a tree tuple t 2T (D), treeD(t) is de�ned to be an XML tree (V; lab; ele; att; root), where root = t:rand|V = fv 2 Vert j 9p 2 paths(D) su
h that v = t:pg.|If v = t:p and v 2 V , then lab(v) = last(p).|If v = t:p and v 2 V , then ele(v) is de�ned to be the list
ontaining ft:p0 j t:p0 6=? and p0 = p:�; � 2 E, or p0 = p:Sg, ordered lexi
ographi
ally.|If v = t:p, �l 2 A and t:p:�l 6= ?, then att(v; �l) = t:p:�l.We note that in this de�nition the lexi
ographi
 order is arbitrary, and it is
hosensimply be
ause an XML tree must be ordered.Example 3.4. Let D be the DTD from example 1.1 and t the tree tuple fromexample 3.2. Then, t gives rise to the following XML tree:v0 v3
s
200 v4Automata Theory v5 v6st1 Deere A+
v2v1

2Noti
e that the tree in the example
onforms to the DTD from exam-ple 1.1. In general, this need not be the
ase. For instan
e, if therule <!ELEMENT taken_by (student*)> in the DTD shown in example 1.1 is
hanged by a rule saying that every
ourse must have at least two students<!ELEMENT taken_by (student, student+)>, then the tree shown in example 3.4does not
onform to the DTD. However, treeD(t) would always be
ompatible withD, as easily follows from the de�nition:Proposition 3.5. If t 2 T (D), then treeD(t)�D.We would like to des
ribe XML trees in terms of the tuples they
ontain. For this,we need to sele
t tuples
ontaining the maximal amount of information. This is doneACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

10 � M. Arenas and L. Libkinvia the usual notion of ordering on tuples (and relations) with nulls, [Buneman et al.1991; Grahne 1991; Gunter 1992℄. If we have two tree tuples t1; t2, we write t1 v t2if whenever t1:p is de�ned, then so is t2:p, and t1:p 6= ? implies t1:p = t2:p. As usual,t1 � t2 means t1 v t2 and t1 6= t2. Given two sets of tree tuples, X and Y , we writeX v[Y if 8t1 2 X9t2 2 Y t1 v t2.De�nition 3.6 (tuplesD). Given a DTD D and an XML tree T su
h that T �D,tuplesD(T) is de�ned to be the set of maximal, with respe
t to v, tree tuples t su
hthat treeD(t) is subsumed by T ; that is:maxvft 2 T (D) j treeD(t) � Tg:Observe that T1 � T2 implies tuplesD(T1) = tuplesD(T2). Hen
e, tuplesD appliesto equivalen
e
lasses: tuplesD([T ℄) = tuplesD(T). The following proposition listssome simple properties of tuplesD(�).Proposition 3.7. If T �D, then tuplesD(T) is a �nite subset of T (D). Fur-thermore, tuplesD(�) is monotone: T1 � T2 implies tuplesD(T1) v[tuplesD(T2).Proof. We prove only monotoni
ity. Suppose that T1 � T2 and t1 2tuplesD(T1). We have to prove that there exists t2 2 tuplesD(T2) su
h that t1 v t2.If t1 2 tuplesD(T2), this is obvious, so assume that t1 62 tuplesD(T2). Giventhat t1 2 tuplesD(T1), treeD(t1) � T1, and, therefore, treeD(t1) � T2. Hen
e,by de�nition of tuplesD(�), there exists t2 2 tuplesD(T2) su
h that t1 � t2, sin
et1 62 tuplesD(T2).Example 3.8. In example 1.1 we saw a DTD D and a tree T
onforming to D.In example 3.2 we saw one tree tuple t for that tree, with identi�ers assigned tosome of the element nodes of T . If we assign identi�ers to the rest of the nodes, we
an
ompute the set tuplesD(T) (the attributes are sorted as in example 3.2):f (v0; v1;
s
200; v2; Automata Theory; v3; v4; st1; v5; Deere; v6; A+);(v0; v1;
s
200; v2; Automata Theory; v3; v7; st2; v8; Smith; v9; B-);(v0; v10; mat100; v11; Cal
ulus I; v12; v13; st1; v14; Deere; v15; A);(v0; v10; mat100; v11; Cal
ulus I; v12; v16; st3; v17; Smith; v18; B+) g 2Finally, we de�ne the trees represented by a set of tuples X as the minimal, withrespe
t to �, trees
ontaining all tuples in X .De�nition 3.9 (treesD). Given a DTD D and a set of tree tuples X � T (D),treesD(X) is de�ned to be:min�fT j T �D and 8t 2 X; treeD(t) � Tg:Noti
e that if T 2 treesD(X) and T 0 � T , then T 0 is in treesD(X). The followingshows that every XML do
ument
an be represented as a set of tree tuples, if we
onsider it as an unordered tree. That is, a tree T
an be re
onstru
ted fromtuplesD(T), up to equivalen
e �.Theorem 3.10. Given a DTD D and an XML tree T , if T � D, thentreesD(tuplesD([T ℄)) = [T ℄.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 11Proof. Every XML tree is �nite, and, therefore, tuplesD([T ℄) = ft1; : : : ; tng, forsome n. Suppose that T 62 treesD(ft1; : : : ; tng). Given that treeD(ti) � T , for ea
hi 2 [1; n℄, there is an XML tree T 0 su
h that T 0 � T and treeD(ti) � T 0, for ea
hi 2 [1; n℄. If T 0 � T , there is at least one node, string or attribute value
ontained inT whi
h is not
ontained in T 0. This value must be
ontained in some tree tuple tj(j 2 [1; n℄), whi
h
ontradi
ts treeD(tj) � T 0. Therefore, T 2 treesD(tuplesD([T ℄)).Let T 0 2 treesD(tuplesD([T ℄)). For ea
h i 2 [1; n℄, treeD(ti) � T 0. Thus, giventhat tuplesD(T) = ft1; : : : ; tng, we
on
lude that T � T 0, and, therefore, by de�ni-tion of treesD , T 0 � T .Example 3.11. It
ould be the
ase that for some set of tree tuples X there isno an XML tree T su
h that for every t 2 X , tree(t) � T . For example, let D be aDTD D = (E; A; P; R; r), where E = fr; a; bg, A = ;, P (r) = (ajb), P (a) = � andP (b) = �. Let t1; t2 2 T (D) be de�ned ast1:r = v0 t2:r = v2t1:r:a = v1 t2:r:a = ?t1:r:b = ? t2:r:b = v3Sin
e t1:r 6= t2:r, there is no an XML tree T su
h that treeD(t1) � T andtreeD(t2) � T . 2We say that X � T (D) is D-
ompatible if there is an XML tree T su
h that T �Dand X � tuplesD(T). For a D-
ompatible set of tree tuples X there is always anXML tree T su
h that for every t 2 X , treeD(t) � T . Moreover,Proposition 3.12. If X � T (D) is D-
ompatible, then (a) There is an XMLtree T su
h that T �D and treesD(X) = [T ℄, and (b) X v[tuplesD(treesD(X)).Proof. (a) Assume that D = (E; A; P; R; r). Sin
e X is D-
ompatible, thereexists an XML tree T 0 = (V 0; lab0; ele0; att0; root0) su
h that T 0 � D and X �tuplesD(T 0). We use T 0 to de�ne an XML tree T = (V; lab; ele; att; root) su
h thattreesD(X) = [T ℄.For ea
h v 2 V 0, if there is t 2 X and p 2 paths(D) su
h that t:p = v, thenv is in
luded in V . Furthermore, for ea
h v 2 V , lab(v) is de�ned as lab0(v),ele(v) = [s1; : : : ; sn℄, where ea
h si = t0:p:S or si = t0:p:� for some t0 2 X and� 2 E su
h that t0:p = v. For ea
h �l 2 A su
h that t0:p:�l 6= ? and t0:p = v forsome t0 2 X , att(v;�l) is de�ned as t0:p:�l. Finally, root is de�ned as root0. It iseasy to see that treesD(X) = [T ℄.(b) Let t 2 X and T be an XML tree su
h that treesD(X) = [T ℄. If t 2 tuplesD([T ℄),then the property holds trivially. Suppose that t 62 tuplesD([T ℄). Then, given thattreeD(t) � T , there is t0 2 tuplesD([T ℄) su
h that t � t0. In either
ase, we
on
ludethat there is t0 2 tuplesD(treesD(X)) su
h that t v t0.The example below shows that it
ould be the
ase that tuplesD(treesD(X)) prop-erly dominatesX , that is, X v[tuplesD(treesD(X)) and tuplesD(treesD(X)) 6v[X .In parti
ular, this example shows that the inverse of Theorem 3.10 does not hold,that is, tuplesD(treesD(X)) is not ne
essarily equal to X for every set of tree tuplesX , even if this set is D-
ompatible. Let D be as in example 3.11 and t1; t2 2 T (D)be de�ned as ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

12 � M. Arenas and L. Libkint1:r = v0 t2:r = v0t1:r:a = v1 t2:r:a = ?t1:r:b = ? t2:r:b = v2Let t3 be a tree tuple de�ned as t3:r = v0, t3:r:a = v1 and t3:r:b = v2. Then,tuplesD(treesD(ft1; t2g)) = ft3g sin
e t1 � t3 and t2 � t3, and, therefore, ft1; t2g v[tuplesD(treesD(ft1; t2g)) and tuplesD(treesD(ft1; t2g)) 6v[ft1; t2g.From Theorem 3.10 and Proposition 3.12, it is straightforward to prove the fol-lowing Corollary.Corollary 3.13. For a D-
ompatible set of tree tuples X,treesD(tuplesD(treesD(X))) = treesD(X).Theorem 3.10 and Proposition 3.12 are summarized in the diagram presented inthe following �gure. In this diagram, X is a D-
ompatible set of tree tuples. Thearrow � - stands for the v[ordering.X treesD - [T ℄X 0tuplesD ? treesD6� -4. FUNCTIONAL DEPENDENCIESWe de�ne fun
tional dependen
ies for XML by using tree tuples. For a DTD D,a fun
tional dependen
y (FD) over D is an expression of the form S1 ! S2 whereS1; S2 are �nite non-empty subsets of paths(D). The set of all FDs over D isdenoted by FD(D).For S � paths(D), and t; t0 2 T (D), t:S = t0:S means t:p = t0:p for all p 2 S.Furthermore, t:S 6= ? means t:p 6= ? for all p 2 S. If S1 ! S2 2 FD(D) and Tis an XML tree su
h that T �D and S1 [S2 � paths(T), we say that T satis�esS1 ! S2 (written T j= S1 ! S2) if for every t1; t2 2 tuplesD(T), t1:S1 = t2:S1and t1:S1 6= ? imply t1:S2 = t2:S2. We observe that if tree tuples t1; t2 satisfyan FD S1 ! S2, then for every path p 2 S2, t1:p and t2:p are either both null orboth non-null. Moreover, if for every pair of tree tuples t1, t2 in an XML tree T ,t1:S1 = t2:S1 implies they have a null value on some p 2 S1, then the FD is triviallysatis�ed by T .The previous de�nition extends to equivalen
e
lasses, sin
e for any FD ', andT � T 0, T j= ' i� T 0 j= '. We write T j= �, for � � FD(D), if T j= ' for ea
h' 2 �, and we write T j= (D;�), if T j= D and T j= �.Example 4.1. Referring ba
k to example 1.1, we have the following FDs.
no isa key of
ourse:
ourses :
ourse:�
no !
ourses :
ourse: (FD1)Another FD says that two distin
t student subelements of the same
ourse
annotACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 13have the same sno:f
ourses :
ourse;
ourses :
ourse:taken by :student :�snog !
ourses :
ourse:taken by :student : (FD2)Finally, to say that two student elements with the same sno value must have thesame name, we use
ourses :
ourse:taken by :student :�sno !
ourses :
ourse:taken by :student :name:S: (FD3)2We o�er a few remarks on our de�nition of FDs. First, using the tree tuples rep-resentation, it is easy to
ombine node and value equality: the former
orrespondsto equality between verti
es and the latter to equality between strings. Moreover,keys naturally appear as a sub
lass of FDs, and relative
onstraints
an also been
oded. Note that by de�ning the semanti
s of FD(D) on T (D), we essentiallyde�ne satisfa
tion of FDs on relations with null values, and our semanti
s is thestandard semanti
s used in [Atzeni and Morfuni 1984; Levene and Loizou 1998℄.Given a DTD D, a set � � FD(D) and ' 2 FD(D), we say that (D;�) implies', written (D;�) ` ', if for any tree T with T j= D and T j= �, it is the
asethat T j= '. The set of all FDs implied by (D;�) will be denoted by (D;�)+.Furthermore, an FD ' is trivial if (D; ;) ` '. In relational databases, the only trivialFDs are X ! Y , with Y � X . Here, DTD for
es some more interesting trivialFDs. For instan
e, for ea
h p 2 EPaths(D) and p0 a pre�x of p, (D; ;) ` p ! p0,and for every p; p:�l 2 paths(D), (D; ;) ` p ! p:�l. As a matter of fa
t, trivialfun
tional dependen
ies in XML do
uments
an be mu
h more
ompli
ated thanin the relational
ase, as we show in the following example.Example 4.2. Let D = (E; A; P; R; r) be a DTD. Assume that a, b and
 areelement types in D and P (r) = (ajbj
). Then, for every p 2 paths(D), fr:a; r:bg ! pis a trivial FD sin
e for every XML tree T
onforming to D and every tree tuple tin T , t:r:a = ? or t:r:b = ?. 25. XNF: AN XML NORMAL FORMWith the de�nitions of the previous se
tion, we are ready to present the normalform that generalizes BCNF for XML do
uments.De�nition 5.1. Given a DTD D and � � FD(D), (D;�) is in XML normalform (XNF) i� for every nontrivial FD ' 2 (D;�)+ of the form S ! p:�l orS ! p:S, it is the
ase that S ! p is in (D;�)+.The intuition is as follows. Suppose that S ! p:�l is in (D;�)+. If T is an XMLtree
onforming to D and satisfying �, then in T for every set of values of theelements in S, we
an �nd only one value of p:�l. Thus, for every set of values ofS we need to store the value of p:�l only on
e; in other words, S ! p must beimplied by (D;�). ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

14 � M. Arenas and L. LibkinIn this de�nition, we impose the
ondition that ' is a nontrivial FD. Indeed, thetrivial FD p:�l! p:�l is always in (D;�)+, but often p:�l ! p 62 (D;�)+, whi
hdoes not ne
essarily represent a bad design.To show how XNF distinguishes good XML design from bad design, we revisitthe examples from the introdu
tion, and prove that XNF generalizes BCNF andNNF, a normal form for nested relations [Mok et al. 1996; �Ozsoyoglu and Yuan1987℄, when only fun
tional dependen
ies are provided.Example 5.2. Consider the DTD from example 1.1 whose FDs are (FD1), (FD2),(FD3) shown in the previous se
tion. (FD3) asso
iates a unique name with ea
hstudent number, whi
h is therefore redundant. The design is not in XNF, sin
e it
ontains (FD3) but does not imply the fun
tional dependen
y
ourses :
ourse:taken by :student :�sno !
ourses :
ourse:taken by :student :name:To remedy this, we gave a revised DTD in example 1.1. The idea was to
reatea new element info for storing information about students. That design satis�esFDs (FD1), (FD2) as well as
ourses :info:number :�sno !
ourses :info;and
an be easily veri�ed to be in XNF. 2Example 5.3. Suppose that D is the DBLP DTD from example 1.2. Among theset � of FDs satis�ed by the do
uments are:db:
onf :title:S! db:
onf (FD4)db:
onf :issue ! db:
onf :issue:inpro
eedings :�year (FD5)fdb:
onf :issue ; db:
onf :issue:inpro
eedings :title:Sg !db:
onf :issue:inpro
eedings (FD6)db:
onf :issue:inpro
eedings :�key ! db:
onf :issue:inpro
eedings (FD7)Constraint (FD4) enfor
es that two distin
t
onferen
es have distin
t titles. Giventhat an issue of a
onferen
e represents a parti
ular year of the
onferen
e,
on-straint (FD5) enfor
es that two arti
les of the same issue must have the same valuein the attribute year. Constraint (FD6) enfor
es that for a given issue of a
on-feren
e, two distin
t arti
les must have di�erent titles. Finally,
onstraint (FD7)enfor
es that key is an identi�er for ea
h arti
le in the database.By (FD5) for ea
h issue of a
onferen
e, its year is stored in every arti
le in thatissue and, thus, DBLP do
uments
an store redundant information. (D;�) is notin XNF, sin
e db:
onf :issue ! db:
onf :issue:inpro
eedingsis not in (D;�)+.The solution we proposed in the introdu
tion was to make year an attributeof issue. (FD5) is not valid in the revised spe
i�
ation, whi
h
an be easilyveri�ed to be in XNF. Note that we do not repla
e (FD5) by db.
onf.issue !db.
onf.issue.�year, sin
e it is a trivial FD and thus is implied by the new DTDalone. 2ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 155.1 BCNF and XNFRelational databases
an be easily mapped into XML do
uments. Given a relationG(A1; : : : ; An) and a set of FDs FD over G, we translate the s
hema (G;FD) intoan XML representation, that is, a DTD and a set of XML FDs (DG;�FD). TheDTD DG = (E; A; P; R; db) is de�ned as follows:|E = fdb;Gg.|A = f�A1; : : : ;�Ang.|P (db) = G� and P (G) = �.|R(db) = ;, R(G) = f�A1; : : : ;�Ang.Without loss of generality, assume that all FDs are of the form X ! A, where A isan attribute. Then �FD over DG is de�ned as follows.|For ea
h FD Ai1 � � �Aim ! Ai 2 FD , fdb:G:�Ai1 ; : : : ; db:G:�Aimg ! db:G:�Aiis in �FD .|fdb:G:�A1; : : : ; db:G:�Ang ! db:G is in �FD .The latter is in
luded to avoid dupli
ates.Example 5.4. A s
hema G(A;B;C)
an be
oded by the following DTD:<!ELEMENT db (G*)><!ELEMENT G EMPTY><!ATTLIST GA CDATA #REQUIREDB CDATA #REQUIREDC CDATA #REQUIRED>In this s
hema, an FD A! B is translated into db:G:�A! db:G:�B. 2The following proposition shows that BCNF and XNF are equivalent when rela-tional databases are appropriately
oded as XML do
uments.Proposition 5.5. Given a relation s
hema G(A1; : : : ; An) and a set of fun
-tional dependen
ies FD over G, (G;FD) is in BCNF i� (DG;�FD) is in XNF.Proof. This follows from Proposition 5.6 (to be proved in the next se
tion)sin
e every relation s
hema is trivially
onsistent (see next se
tion) and NNF-FD
oin
ides with BCNF when only fun
tional dependen
ies are provided [Mok et al.1996℄.5.2 NNF and XNFA nested relation s
hema is either a set of attributes X , or X(G1)� : : : (Gn)�, whereGi's are nested relation s
hemas. An example of a nested relation for the s
hemaH1 = Country(H2)�, H2 = State(H3)�, H3 = City is shown in �gure 3 (a).Nested s
hemas are naturally mapped into DTDs, as they are de�ned by meansof regular expressions. For a nested s
hema G = X(G1)� : : : (Gn)�, we introdu
ean element type G with P (G) = G�1; : : : ; G�n and R(G) = f�A1; : : : ;�Amg, whereX = fA1; : : : ; Amg; at the top level we have a new element type db with P (db) = G�and R(db) = ;. In our example the DTD is:ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

16 � M. Arenas and L. LibkinCountryUnited States StateTexas CityHoustonDallasStateOhio CityColumbusCleveland(a) Nested relation H1
Country State CityUnited States Texas HoustonUnited States Texas DallasUnited States Ohio ColumbusUnited States Ohio Cleveland
(b) Complete unnesting of H1Fig. 3. Nested relation and its unnesting.<!DOCTYPE db [<!ELEMENT db (H1*)><!ELEMENT H1 (H2*)><!ATTLIST H1 Country CDATA #REQUIRED><!ELEMENT H2 (H3*)><!ATTLIST H2 State CDATA #REQUIRED><!ELEMENT H3 EMPTY><!ATTLIST H3 City CDATA #REQUIRED>℄>The de�nition of FDs for nested relations uses the notion of
omplete unnesting.The
omplete unnesting of a nested relation from our example is shown in �gure 3(b); in general, this notion is easily de�ned by indu
tion. In our example, we havea valid FD State ! Country , while the FD State ! City does not hold.Normalization is usually
onsidered for nested relations in the partition normalform (PNF) [Abiteboul et al. 1995; Mok et al. 1996; �Ozsoyoglu and Yuan 1987℄.A nested relation r over X(G1)� : : : (Gn)� is in PNF if for any two tuples t1, t2in r: (1) if t1:X = t2:X , then the nested relation t1:Gi and t2:Gi are equal, forevery i 2 [1; n℄, and (2) ea
h nested relation t1:Gi is in PNF, for every i 2 [1; n℄.Note that PNF
an be enfor
ed by using FDs on the XML representation. In ourexample this is done as follows: db:H1:�Country ! db:H1fdb:H1; db:H1:H2:�Stateg ! db:H1:H2fdb:H1:H2; db:H1:H2:H3:�Cityg ! db:H1:H2:H3It turns out that one
an de�ne FDs over nested relations by using the XMLrepresentation. Let U be a set of attributes, G1 a nested relation s
hema overU and FD a set of fun
tional dependen
ies over G1. Assume that G1 in
ludesnested relation s
hemas G2, : : :, Gn and a set of attributes U 0 � U . For ea
h Gi(i 2 [1; n℄), path(Gi) is indu
tively de�ned as follows. If Gi = G1, then path(Gi) =ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 17db:G1. Otherwise, if Gi is a nested attribute of Gj , then path(Gi) = path(Gj):Gi.Furthermore, if A 2 U 0 is an atomi
 attribute of Gi, then path(A) = path(Gi):�A.For instan
e, for the s
hema of the nested relation in �gure 3, path(H2) = db:H1:H2and path(City) = db:H1:H2:H3:�City .We now de�ne �FD as follows:|For ea
h FD Ai1 � � �Aim ! Ai 2 FD , fpath(Ai1); : : : ; path(Aim)g ! path(Ai)is in �FD .|For ea
h i 2 [1; n℄, if Aj1 ; : : : ; Ajm is the set of atomi
 attributes of Gi and Gi isa nested attribute of Gj , fpath(Gj); path(Aj1); : : : ; path(Ajm)g ! path(Gi) isin �FD .Furthermore, if Bj1 ; : : : ; Bjl is the set of atomi
 attributes of G1, thenfpath(Bj1); : : : ; path(Bjl)g ! path(G1) is in �FD .Note that the last rule imposes the partition normal form. The set �PNF
ontainsall the fun
tional dependen
ies de�ned by this rule.Normal forms for nested relations were proposed in [Mok et al. 1996; �Ozsoyogluand Yuan 1987℄. These normal forms were de�ned for nested s
hemas
ontainingfun
tional and multivalued dependen
ies. Here we
onsider a normal form NNF-FD, whi
h is the nested normal form NNF introdu
ed in [Mok et al. 1996℄ restri
tedto FDs only. To de�ne this normal form we need to introdu
e some terminology.CountryTitle StateDire
tor Theater CitySna
k(a) (b)Fig. 4. Two s
hema trees.Every nested relation s
hema G
an be represented as a tree st(G),
alled thes
hema tree of G. Formally, if G is a
at s
hema
ontaining a set of attributes X ,then st(G) is a single node tree whose root is the set of attributes X . Otherwise, Gis of the form X(G1)� : : : (Gn)� and st(G) is a tree de�ned as follows. The root ofst(G) is X and the
hildren of X are the roots of st(G1), : : :, st(Gn). For example,the s
hema trees of nested relation s
hemas G1 = Title(G2)�(G3)�, G2 = Dire
tor ,G3 = Theater (G4)�, G4 = Sna
k and H1 = Country(H2)�, H2 = State(H3)�,H3 = City are shown in �gures 4 (a) and 4 (b), respe
tively. Given a nestedrelation s
hemaG in
luding a set of attributes U , for ea
h nodeX of st(G) we de�nean
estor(X) as the union of attributes in all an
estors of X in st(G), in
luding X .For instan
e, an
estor(State) = fCountry ; Stateg in the s
hema tree shown in �gure4 (b). Similarly, for every A 2 U , we de�ne an
estor(A) as the set of attributesan
estor(XA), where XA is the one of st(G)
ontaining the attribute A, and forevery node X of st(G) we de�ne des
endant(X) as the union of attributes in alldes
endants of X in st(G), in
luding X .ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

18 � M. Arenas and L. LibkinData dependen
ies for nested relations are de�ned by using the notion of
ompleteunnesting. Thus, every nested s
hema has some multivalued dependen
ies. Forexample, the nested relation s
hema G1 = Title(G2)�(G3)�, G2 = Dire
tor , G3 =Theater (G4)�, G4 = Sna
k has the following set of multivalued dependen
ies:fTitle !! Dire
tor ; Title !! fTheater ;Sna
kg; fTitle;Theaterg !! Sna
kg;sin
e for every nested relation I of G1, the
omplete unnesting of I satis�es thesedependen
ies. Formally, the set of multivalued dependen
ies embedded in a nestedrelation s
hema G is de�ned to be:MVD(G) = fan
estor(X)!! des
endant(Y) j (X;Y) is an edge in st(G)g:Given a nested relation s
hema G, the set MVD(G) is used to de�ne NNF-FD.More pre
isely, if FD is a set of FDs over G, then (G;FD) is in NNF-FD [Moket al. 1996℄ if (1) FD ` MVD(G), that is, every multivalued dependen
y embeddedin G is implied by FD , and (2) for ea
h nontrivial FD X ! A 2 (G;FD)+,X ! an
estor(A) is also in (G;FD)+. As before, (G;FD)+ stands for the set ofall FDs implied by (G;FD).To establish the relationship between NNF-FD and XNF, we have to introdu
ethe notion of
onsistent nested s
hemas. Given a nested relation s
hema G and aset of FDs FD over G, (G;FD) is
onsistent [Mok et al. 1996℄ if FD ` MVD(G).It was shown in [Mok et al. 1996℄ that for
onsistent nested s
hemas, NNF pre-
isely
hara
terize redundan
y in nested relations. The result below shows that for
onsistent nested s
hemas, NNF-FD and XNF
oin
ide.Proposition 5.6. Let G be a nested relation s
hema and FD a set of fun
tionaldependen
ies over G su
h that (G;FD) is
onsistent. Then (G;FD) is in NNF-FDi� (DG;�FD) is in XNF.Proof. First we need to prove the following
laim.Claim 5.7. Ai1 � � � Aim ! Ai 2 (G;FD)+ if and only if fpath(Ai1); : : : ;path(Aim)g ! path(Ai) 2 (DG;�FD)+.The proof of this
laim follows from the following fa
t. For ea
h instan
e I ofG, there is an XML tree TI
onforming to DG su
h that I j= FD i� TI j= �FD .Moreover, for ea
h XML tree T
onforming to DG and satisfying �PNF , there isan instan
e IT of G su
h that T j= �FD i� IT j= FD .Now we prove the proposition.(() Suppose that (DG;�FD) is in XNF. We prove that (G;FD) is in NNF-FD.Given that (G;FD) is
onsistent, we only need to
onsider the se
ond
onditionin the de�nition of NNF-FD. Let Ai1 � � � Aim ! Ai be a nontrivial fun
tionaldependen
y in (G;FD)+. We have to prove that Ai1 ; : : : ; Aim ! an
estor(Ai)is in (G;FD)+. By Claim 5.7, we know that fpath(Ai1); : : : ; path(Aim)g !path(Ai) is a nontrivial fun
tional dependen
y in (DG;�FD)+. Sin
e (DG;�FD)is in XNF, fpath(Ai1); : : : ; path(Aim)g ! path(Gj) is in (DG;�FD)+, where Gjis a nested relation s
hema
ontained in G su
h that Ai is an atomi
 attribute ofGj . Thus, given that path(Gj) ! path(A) is a trivial fun
tional dependen
y inDG, for ea
h A 2 an
estor(Ai), we
on
lude that fpath(Ai1); : : : ; path(Aim)g !ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 19path(A) is in (DG;�FD)+ for ea
h A 2 an
estor(Ai). By Claim 5.7, Ai1 � � � Aim! an
estor(Ai) is in (G;FD)+.()) Suppose that (G;FD) is in NNF-FD. We will prove that (DG;�FD) isin XNF. Let R be a nested relation s
hema
ontained in G and A an atomi
attribute of R. Suppose that there is S � paths(DG) su
h that S ! path(A)is a nontrivial fun
tional dependen
y in (DG;�FD)+. We have to prove thatS ! path(R) 2 (DG;�FD)+. Let S1 and S2 be set of paths su
h that S = S1 [S2,S1 � EPaths(DG) and S2 \ EPaths(DG) = ;. Let S01 = fpath(A0) j there ispath(R0) 2 S1 su
h that A0 is an atomi
 attribute of some nested relation s
hemamentioned in path(R0)g. Given that �PNF � �FD , S01 ! S1 2 (DG;�FD)+.Thus, S01 [S2 ! path(A) 2 (DG;�FD)+. Assume that S01 [S2 = fpath(Ai1);: : : ; path(Aim)g. By Claim 5.7, Ai1 � � � Aim ! A is a nontrivial fun
tionaldependen
y in (G;FD)+. Thus, given that (G;FD) is in NNF-FD, we
on
ludethat Ai1 � � � Aim ! an
estor(A) is in (G;FD)+. Therefore, by Claim 5.7,S01 [S2 ! path(B) is in (DG;�FD)+, for ea
h B 2 an
estor(A). But fpath(B) j B2 an
estor(A)g ! path(R) is in (DG;�FD)+, sin
e �PNF � �FD . Thus,S01 [S2 ! path(R) 2 (DG;�FD)+, and given that S1 ! S01 is a trivial fun
tionaldependen
y in DG, we
on
lude that S ! path(R) is in (DG;�FD)+.6. NORMALIZATION ALGORITHMSThe goal of this se
tion is to show how to transform a DTD D and a set of FDs �into a new spe
i�
ation (D0;�0) that is in XNF and
ontains the same information.Throughout the se
tion, we assume that the DTDs are non-re
ursive. This
anbe done without any loss of generality. Noti
e that in a re
ursive DTD D, the setof all paths is in�nite. However, a given set of FDs � only mentions a �nite numberof paths, whi
h means that it suÆ
es to restri
t one's attention to a �nite numberof \unfoldings" of re
ursive rules.We make an additional assumption that all the FDs are of the form:fq; p1:�l1; : : : ; pn:�lng ! p. That is, they
ontain at most one element path onthe left-hand side. Note that all the FDs we have seen so far are of this form.While
onstraints of the form fq; q0; : : :g are not forbidden, they appear to be quiteunnatural (in fa
t it is very hard to
ome up with a reasonable example where they
ould be used). Furthermore, even if we have su
h
onstraints, they
an be easilyeliminated. To do so, we
reate a new attribute �l, remove fq; q0g [S ! p andrepla
e it by q0:�l! q0 and fq; q0:�lg [S ! p.We shall also assume that paths do not
ontain the symbol S (sin
e p:S
an alwaysbe repla
ed by a path of the form p:�l).6.1 The De
omposition AlgorithmFor presenting the algorithm and proving its losslessness, we make the followingassumption: if X ! p:�l is an FD that
auses a violation of XNF, then every timethat p:�l is not null, every path in X is not null. This will make our presentationsimpler, and then at the end of the se
tion we will show how to eliminate thisassumption.Given a DTD D and a set of FDs �, a nontrivial FD S ! p:�l is
alledanomalous, over (D;�), if it violates XNF; that is, S ! p:�l 2 (D;�)+ butACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

20 � M. Arenas and L. LibkinS ! p 62 (D;�)+. A path on the right-hand side of an anomalous FD is
alled ananomalous path, and the set of all su
h paths is denoted by AP(D;�).In this se
tion we present an XNF de
omposition algorithm that
ombines twobasi
 ideas presented in the introdu
tion:
reating a new element type, and movingan attribute.6.1.1 Moving attributes. Let D = (E; A; P; R; r) be a DTD and � a set ofFDs over D. Assume that (D;�)
ontains an anomalous FD q ! p:�l, whereq 2 EPaths(D). For example, the DBLP database shown in example 1.2
ontainsan anomalous FD of this form:db:
onf :issue ! db:
onf :issue:inpro
eedings :�year : (1)To eliminate the anomalous FD, we move the attribute �l from the set of attributesof the last element of p to the set of attributes of the last element of q, as shown inthe following �gure. r�llast(p) �mlast(q)p q
For instan
e, to eliminate the anomalous fun
tional dependen
y (1) we move theattribute �year from the set of attributes of inpro
eedings to the set of attributesof issue. Formally, the new DTD D[p:�l := q:�m℄, where �m is an attribute, isde�ned to be (E; A0; P; R0; r), where A0 = A [f�mg, R0(last(q)) = R(last(q)) [f�mg, R0(last(p)) = R(last(p)) � f�lg and R0(� 0) = R(� 0) for ea
h � 0 2 E �flast(q); last(p)g.After transforming D into a new DTD D[p:�l := q:�m℄, a new set of fun
-tional dependen
ies is generated. Formally, the set of FDs �[p:�l := q:�m℄over D[p:�l := q:�m℄
onsists of all FDs S1 ! S2 2 (D;�)+ with S1 [S2 �paths(D[p:�l := q:�m℄). Observe that the new set of FDs does not in
lude thefun
tional dependen
y q ! p:�l and, thus, it
ontains a smaller number of anoma-lous paths, as we show in the following proposition.Proposition 6.1. Let D be a DTD, � a set of FDs over D, q ! p:�l ananomalous FD, with q 2 EPaths(D), D0 = D[p:�l := q:�m℄, where �m is not anattribute of last(q), and �0 = �[p:�l := q:�m℄. Then AP(D0;�0) $ AP(D;�).Proof. First, we prove (by
ontradi
tion) that q:�m 62 AP(D0;�0). Supposethat S0 � paths(D0) and S0 ! q:�m 2 (D0;�0)+ is a nontrivial fun
tional depen-den
y. Assume that S0 ! q 62 (D0;�0)+. Then there is an XML tree T 0 su
h thatT 0 j= (D0;�0) and T 0
ontains tree tuples t1; t2 su
h that t1:S0 = t2:S0, t1:S0 6= ?and t1:q 6= t2:q. Given that there is no a
onstraint in �0 in
luding the path q:�m,the XML tree T 00
onstru
ted from T 0 by giving two distin
t values to t1:q:�m andt2:q:�m
onforms to D0, satis�es �0 and does not satisfy S0 ! q:�m, a
ontradi
-tion. Hen
e, q:�m 62 AP(D0;�0).ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 21Se
ond, we prove that for every S1[S2 � paths(D0)�fq:�mg, (D;�) ` S1 ! S2if and only if (D0;�0) ` S1 ! S2, and, thus, by
onsidering the previous paragraphwe
on
lude that AP(D0;�0) � AP(D;�). Let S1 [S2 � paths(D0)�fq:�mg. Byde�nition of �0, we know that if (D;�) ` S1 ! S2, then (D0;�0) ` S1 ! S2 and,therefore, we only need to prove the other dire
tion. Assume that (D;�) 6` S1 ! S2.Then there exists an XML tree T su
h that T j= (D;�) and T 6j= S1 ! S2. De�nean XML tree T 0 from T by assigning arbitrary values to q:�m and removing theattribute �l from last(p). Then T 0 j= (D0;�0) and T 0 6j= S1 ! S2, sin
e all thepaths mentioned in �0 [fS1 ! S2g are in
luded in paths(D0) � fq:�mg. Thus,(D0;�0) 6` S1 ! S2.To
on
lude the proof we note that p:�l 2 AP(D;�) and p:�l 62 AP(D0;�0),sin
e p:�l 62 paths(D0). Therefore, AP(D0;�0) $ AP(D;�).6.1.2 Creating new element types. Let D = (E; A; P; R; r) be a DTDand � a set of FDs over D. Assume that (D;�)
ontains an anomalous FDfq; p1:�l1; : : : ; pn:�lng ! p:�l, where q 2 EPaths(D) and n � 1. For example,the university database shown in example 1.1
ontains an anomalous FD of thisform (
onsidering name.S as an attribute of student):f
ourses;
ourses :
ourse:taken by :student :�snog !
ourses :
ourse:taken by :student :name:S: (2)To eliminate the anomalous FD, we
reate a new element type � as a
hild of thelast element of q, we make �1, : : :, �n its
hildren, where �1, : : :, �n are new elementtypes, we remove �l from the list of attributes of last(p) and we make it an attributeof � and we make �l1, : : :, �ln attributes of �1, : : :, �n, respe
tively, but withoutremoving them from the sets of attributes of last(p1), : : :, last(pn), as shown in thefollowing �gure.
. . .

. . .

r p
�

�ln�l1�1 �n
p1last(p1)last(pn)

�l�ln �l1 �lpn q last(q) last(p)

For instan
e, to eliminate the anomalous fun
tional dependen
y (2), in example 1.1we
reate a new element type info as a
hild of
ourses, we remove name.S fromACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

22 � M. Arenas and L. Libkinstudent and we make it an \attribute" of info, we
reate an element type numberas a
hild of info and we make �sno its attribute. We note that we do not remove�sno as an attribute of student. Formally, if �; �1; : : : ; �n are element types whi
hare not in E, the new DTD, denoted by D[p:�l := q:� [�1:�l1; : : : ; �n:�ln;�l℄℄, is(E0; A; P 0; R0; r), where E0 = E [f�; �1; : : : ; �ng and(1) if P (last(q)) is a regular expression s, then P 0(last(q)) is de�ned as the
on-
atenation of s and ��, that is (s; ��). Furthermore, P 0(�) is de�ned as the
on
atenation of ��1 , : : :, ��n , P 0(�i) = �, for ea
h i 2 [1; n℄, and P 0(� 0) = P (� 0),for ea
h � 0 2 E � flast(q)g.(2) R0(�) = f�lg, R0(�i) = f�lig, for ea
h i 2 [1; n℄, R0(last(p)) = R(last(p)) �f�lg and R0(� 0) = R(� 0) for ea
h � 0 2 E � flast(p)g.After transforming D into a new DTD D0 = D[p:�l := q:� [�1:�l1; : : : ; �n:�ln; �l℄℄,a new set of fun
tional dependen
ies is generated. Formally, �[p:�l := q:� [�1:�l1;: : : ; �n:�ln;�l℄℄ is a set of FDs overD0 de�ned as the union of the sets of
onstraintsde�ned in 1., 2. and 3.:(1) S1 ! S2 2 (D;�)+ with S1 [S2 � paths(D0).(2) Ea
h FD over q, pi, pi:�li (i 2 [1; n℄) and p:�l is transferred to � and its
hildren. That is, if S1 [S2 � fq; p1; : : : ; pn; p1:�l1; : : : ; pn:�ln; p:�lg andS1 ! S2 2 (D;�)+, then we in
lude an FD obtained from S1 ! S2 by
hangingpi to q:�:�i, pi:�li to q:�:�i:�li, and p:�l to q:�:�l.(3) fq; q:�:�1:�l1; : : : ; q:�:�n:�lng ! q:� , and fq:�; q:�:�i:�lig ! q:�:�i fori 2 [1; n℄ 1.We are not interested in applying this transformation to an arbitrary anomalousFD, but rather to a minimal one. To understand the notion of minimality for XMLFDs, we �rst introdu
e this notion for relational databases. Let R be a relations
hema
ontaining a set of attributes U and � be a set of FDs over R. If (R;�)is not in BCNF, then there exist pairwise disjoint sets of attributes X , Y and Zsu
h that U = X [Y [Z, � ` X ! Y and � 6` X ! A, for every A 2 Z. Inthis
ase we say that X ! Y is an anomalous FD. To eliminate this anomaly, ade
omposition algorithm splits relation R into two relations: S(X;Y) and T (X;Z).A desirable property of the new s
hema is that S or T is in BCNF. We say thatX ! Y is a minimal anomalous FD if S(X;Y) is in BCNF, that is, S(X;Y) doesnot
ontain an anomalous FD. This
ondition
an be de�ned as follows: X ! Y isminimal if there are no pairwise disjoint sets X 0; Y 0 � U su
h that X 0[Y 0 $ X[Y ,� ` X 0 ! Y 0 and � 6` X 0 ! X [Y .In the XML
ontext, the de�nition of minimality is similar in the sense thatwe expe
t the new element types � , �1, : : :, �n form a stru
ture not
ontaininganomalous elements. However, the de�nition of minimality is more
omplex toa

ount for paths used in FDs. We say that fq; p1:�l1; : : : ; pn:�lng ! p0:�l0 is(D;�)-minimal if there is no anomalous FD S0 ! pi:�li 2 (D;�)+ su
h that1If ?
an be a value of p:�l in tuplesD(T), the de�nition must be modi�ed slightly, by lettingP 0(�) be ��1 ; : : : ; ��n ; (� 0j�), where � 0 is fresh, making �l an attribute of � 0, and modifying thede�nition of FDs a

ordingly.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 23i 2 [0; n℄ and S0 is a subset of fq; p1; : : : ; pn; p0:�l0; : : : ; pn:�lng su
h that jS0 j� nand S0
ontains at most one element path.Proposition 6.2. Let D be a DTD, � a set of FDs over D andfq; p1:�l1; : : : ; pn:�lng ! p:�l a (D;�)-minimal anomalous FD, where q 2EPaths(D) and n � 1. If D0 = D[p:�l := q:� [�1:�l1; : : : ; �n:�ln;�l℄℄, where � ,�1, : : :, �n are new element types, and �0 = �[p:�l := q:� [�1:�l1; : : : ; �n:�ln;�l℄℄,then AP(D0;�0) $ AP(D;�).Proof. First, we prove that q:�:�i:�li 62 AP(D0;�0), for ea
h i 2 [1; n℄. Supposethat there is S0 � paths(D0) su
h that S0 ! q:�:�i:�li is a nontrivial fun
tionaldependen
y in (D0;�0)+ for some i 2 [1; n℄. Noti
e that q:�:�i 62 S0, sin
e q:�:�i !q:�:�i:�li is a trivial fun
tional dependen
y. Let S1 [S2 = S0, where (1) S1 \(fq; q:�:�lg [fq:�:�j j j 2 [1; n℄ and j 6= ig [fq:�:�j :�lj j j 2 [1; n℄g) = ; and (2)S2 � fq; q:�:�lg [fq:�:�j j j 2 [1; n℄ and j 6= ig [fq:�:�j :�lj j j 2 [1; n℄g.If there is no an XML tree T 0
onforming to D0, satisfying �0 and
ontaining atuple t su
h that t:S1 [S2 6= ?, then S1 [S2 ! q:�:�i must be in (D0;�0)+. In this
ase q:�:�i:�li 62 AP(D0;�0). Suppose that there is an XML tree T 0
onforming toD0, satisfying �0 and
ontaining a tuple t su
h that t:S1 [S2 6= ?. In this
ase, byde�nition of �0 it is straightforward to prove that S2 ! q:�:�i:�li is in (D0;�0)+.By de�nition of �0 and (D;�)-minimality of fq; p1:�l1; : : : ; pn:�lng ! p:�l,one of the following is true: (1) S2 ! q:�:�i:�li is not an anomalous FD, (2)fq; q:�:�1:�l1; : : : ; q:�:�n:�ln; q:�:�lg = S2 [fq:�:�i:�lig or (3) fq:�:�j ; q:�:�1:�l1;: : : ; q:�:�n:�ln; q:�:�lg = S2 [fq:�:�i:�lig for some j 6= i (j 2 [1; n℄). In the�rst
ase, q:�:�i:�li 62 AP(D0;�0), so we assume that either (2) or (3) holds. Weprove that S2 ! q:�:�i must be in (D0;�0)+. If either (2) or (3) holds, thenS2[fq:�:�i:�lig ! q:� is in (D0;�0)+ sin
e fq; q:�:�1:�l1; : : : ; q:�:�n:�lng ! q:� isin �0 and q:�:�k ! q is a trivial FD inD0, for every k 2 [1; n℄. Let T 0 be an XML tree
onforming to D0 and satisfying �0 and t1; t2 2 tuplesD0(T 0) su
h that t1:S2 = t2:S2and t1:S2 6= ?. Given that S2 ! q:�:�i:�li 2 (D0;�0)+, t1:q:�:�i:�li = t2:q:�:�i:�li.If t1:q:�:�i:�li = ?, then t1:q:�:�i = t2:q:�:�i = ?. If t1:q:�:�i:�li 6= ?, thent1:q:� = t2:q:� and t1:q:� 6= ?, be
ause S2[fq:�:�i:�lig ! q:� 2 (D0;�0)+. But, byde�nition of �0, fq:�; q:�:�i:�lig ! q:�:�i 2 �0, and, therefore, t1:q:�:�i = t2:q:�:�i.In any
ase, we
on
lude that t1:q:�:�i = t2:q:�:�i and, therefore, S2 ! q:�:�i 2(D0;�0)+. Thus, q:�:�i:�li 62 AP(D0;�0).In a similar way, we
on
lude that q:�:�l 62 AP(D0;�0).Se
ond, we prove that for every S3 [S4 � paths(D)� fp:�lg, (D;�) ` S3 ! S4if and only if (D0;�0) ` S3 ! S4, and, thus, by
onsidering the previous paragraphwe
on
lude that AP(D0;�0) � AP(D;�). Let S3 [S4 � paths(D) � fp:�lg. Byde�nition of �0, we know that if (D;�) ` S3 ! S4, then (D0;�0) ` S3 ! S4 and,therefore, we only need to prove the other dire
tion. Assume that (D;�) 6` S3 ! S4.Then there exists an XML tree T su
h that T j= (D;�) and T 6j= S3 ! S4. De�nean XML tree T 0 from T by assigning ? to q:� and removing the attribute �l fromlast(p). Then T 0 j= (D0;�0) and T 0 6j= S3 ! S4, sin
e all the paths mentioned in�0 [fS3 ! S4g are in
luded in paths(D)� fp:�lg. Thus, (D0;�0) 6` S3 ! S4.To
on
lude the proof we note that p:�l 2 AP(D;�) and p:�l 62 AP(D0;�0),sin
e p:�l 62 paths(D0). Therefore, AP(D0;�0) $ AP(D;�).ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

24 � M. Arenas and L. Libkin(1) If (D;�) is in XNF then return (D;�), otherwise go to step (2).(2) If there is an anomalous FD X ! p:�l and q 2 EPaths(D) su
h that q 2 X andq ! X 2 (D;�)+, then:(2.1) Choose a fresh attribute �m(2.2) D := D[p:�l := q:�m℄(2.3) � := �[p:�l := q:�m℄(2.4) Go to step (1)(3) Choose a (D;�)-minimal anomalous FD X ! p:�l, where X = fq; p1:�l1; : : : ; pn:�lng(3.1) Create fresh element types � , �1, : : :, �n(3.2) D := D[p:�l := q:� [�1:�l1; : : : ; �n:�ln; �l℄℄(3.3) � := �[p:�l := q:� [�1:�l1; : : : ; �n:�ln; �l℄℄(3.4) Go to step (1) Fig. 5. XNF de
omposition algorithm.6.1.3 The algorithm. The algorithm applies the two transformations presentedin the previous se
tions until the s
hema is in XNF, as shown in �gure 5. Step (2) ofthe algorithm
orresponds to the \moving attributes" rule applied to an anomalousFD q ! p:�l and step (3)
orresponds to the \
reating new element types" ruleapplied to an anomalous FD fq; p1:�l1; : : : ; pn:�lng ! p:�l. We
hoose to apply�rst the \moving attributes" rule sin
e the other one involves minimality testing .The algorithm shows in �gure 5 involves FD impli
ation, that is, testing mem-bership in (D;�)+ (and
onsequently testing XNF and (D;�)-minimality), whi
hwill be des
ribed in Se
tion 7. Sin
e ea
h step redu
es the number of anomalouspaths (Propositions 6.1 and 6.2), we obtain:Theorem 6.3. The XNF de
omposition algorithm terminates, and outputs aspe
i�
ation (D;�) in XNF.Even if testing FD impli
ation is infeasible, one
an still de
ompose into XNF,although the �nal result may not be as good as with using the impli
ation. A slightmodi�
ation of the proof of Propositions 6.1 and 6.2 yields:Proposition 6.4. Consider a simpli�
ation of the XNF de
omposition algo-rithm whi
h only
onsists of step (3) applied to FDs S ! p:�l 2 �, and in whi
hthe de�nition of �[p:�l := q:� [�1:�l1; : : : ; �n:�ln; �l℄℄ is modi�ed by using � in-stead of (D;�)+. Then su
h an algorithm always terminates and its result is inXNF.6.2 Lossless De
ompositionTo prove that our transformations do not lose any information from the do
uments,we de�ne the
on
ept of lossless de
ompositions similarly to the relational notionof \
al
ulously dominan
e" from [Hull 1986℄. That notion requires the existen
e oftwo relational algebra queries that translate ba
k and forth between two relationals
hemas. Adapting the de�nition of [Hull 1986℄ is problemati
 in our setting, as noXML query language yet has the same \yardsti
k" status as relational algebra forrelational databases.Instead, we de�ne (D0;�0) as a lossless de
omposition of (D;�) if there is amapping f from paths in the DTD D0 to paths in the DTD D su
h that for everyACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 25tree T j= (D;�), there is a tree T 0 j= (D0;�0) su
h that T and T 0 agree on all thepaths with respe
t to this mapping f .This
an be done formally using the relational representation of XML trees via thetuplesD(�) operator. Given DTDs D and D0, a fun
tion f : paths(D0) ! paths(D)is a mapping from D0 to D if f is onto and a path p is an element path in D0 if andonly if f(p) is an element path in D. Given tree tuples t 2 T (D) and t0 2 T (D0), wewrite t �f t0 if for all p 2 paths(D0) � EPaths(D0), t0:p = t:f(p). Given nonemptysets of tree tuples X � T (D) and X 0 � T (D0), we let X �f X 0 if for every t 2 X ,there exists t0 2 X 0 su
h that t �f t0, and for every t0 2 X 0, there exist t 2 X su
hthat t �f t0. Finally, if T and T 0 are XML trees su
h that T �D and T 0 �D0, wewrite T �f T 0 if tuplesD(T) �f tuplesD0(T 0).De�nition 6.5. Given XML spe
i�
ations (D;�) and (D0;�0), (D0;�0) is a loss-less de
omposition of (D;�), written (D;�) �lossless (D0;�0), if there exists a map-ping f from D0 to D su
h that for every T j= (D;�) there is T 0 j= (D0;�0) su
hthat T �f T 0.In other words, all information about a do
ument
onforming to (D;�)
an bere
overed from some do
ument that
onforms to (D0;�0).It follows immediately from the de�nition that�lossless is transitive. Furthermore,we show that every step of the normalization algorithm is lossless.Proposition 6.6. If (D0;�0) is obtained from (D;�) by using one of the trans-formations from the normalization algorithm, then (D;�) �lossless (D0;�0).Proof. We
onsider the two steps of the normalization algorithm, and for ea
hstep generate a mapping f . The proofs that those mappings satisfy the
onditionsof De�nition 6.5 are straightforward.(1) Assume that the \moving attribute" transformation was used to generate(D0;�0). Then D0 = D[p:�l := q:�m℄, �0 = �[p:�l := q:�m℄ and q ! p:�lis an anomalous FD in (D;�)+. In this
ase, the mapping f from D0 to Dis de�ned as follows. For every p0 2 paths(D0) � fq:�mg, f(p0) = p0, andf(q:�m) = p:�l.(2) Assume that the \
reating new element types" transformation was used to gen-erate (D0;�0). Then (D0;�0) was generated by
onsidering a (D;�)-minimalanomalous FD fq; p1:�l1; : : : ; pn:�lng ! p:�l. Thus, D0 = D[p:�l :=q:� [�1:�l1; : : : ; �n:�ln;�l℄℄ and �0 = �[p:�l := q:� [�1:�l1; : : : ; �n:�ln;�l℄℄. Inthis
ase, the mapping f from D0 to D is de�ned as follows: f(q:�) = p,f(q:�:�l) = p:�l, f(q:�:�i) = pi, f(q:�:�i:�li) = pi:�li and f(p0) = p0 for theremaining paths p0 2 paths(D0).Thus, if (D0;�0) is the output of the normalization algorithm on (D;�), then(D;�) �lossless (D0;�0).In relational databases, the de�nition of lossless de
omposition indi
ates how totransform instan
es
ontaining redundant information into databases without re-dundan
y. This transformation uses the proje
tion operator. Noti
e that De�nition6.5 also indi
ates a way of transforming XML do
uments to generate well-designedACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

26 � M. Arenas and L. Libkindo
uments: If (D;�) �lossless (D0;�0), then for every T j= (D;�) there existsT 0 j= (D0;�0) su
h that T and T 0
ontain the same data values. The mappingsT 7! T 0
orresponding to the two transformations of the normalization algorithm
an be implemented in an XML query language, more pre
isely, using XQueryFLWOR2 expressions. We use transformations of do
uments shown in Se
tion 1for illustration; the reader will easily generalize them to produ
e the general queries
orresponding to the transformations of the normalization algorithm.Example 6.7. Assume that the DBLP database is stored in a �le dblp.xml. Asshown in example 1.2, this do
ument
an
ontain redundant information sin
e yearis stored multiple times for a given
onferen
e. We
an solve this problem byapplying the \moving attribute" transformation and making year an attribute ofissue. This transformation
an be implementing by using the following FLWORexpression:let $root := do
ument("dblp.xml")/db<db>{ for $
o in $root/
onf<
onf><title> { $
o/title/text() } </title>,{ for $is in $
o/issuelet $value := $is/inpro
eedings[position() = 1℄/�year<issue year="{ $value }">{ for $in in $is/inpro
eedings<inpro
eedings key="{ $in/�key }" pages="{ $in/�pages }">{ for $au in $in/author<author> { $au/text() } </author>,<title> { $in/title/text() } </title>}</inpro
eedings>}</issue>}</
onf>}</db>The XPath expression $is/inpro
eedings[position() = 1℄/�year is used toretrieve for every issue the value of the attribute year in the �rst paper in thatissue. For every issue this number is stored in a variable $value and it be
omesthe value of its attribute year: <issue year="{ $value }">. 2Example 6.8. Assume that the XML do
ument shown in �gure 1 is stored in a �leuniversity.xml. This do
ument stores information about
ourses in a universityand it
ontains redundant information sin
e for every student taking a
ourse westore his/her name. To solve this problem, we split the information about namesand grades by
reating an extra element type, info, for student information. Thistransformation
an be implemented as follows.2FLWOR stands for for, let, where, order by, and return.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 27let $root := do
ument("university.xml")/
ourses<
ourses>{ for $
o in $root/
ourse<
ourse> {-- Query that removes name as a
hild of student --} </
ourse>,for $na in distin
t-values($root/
ourse/taken_by/student/name/text())<info>{ for $nu in distin
t-values($root/
ourse/taken_by/student[name/text() =$na℄/�sno)<number sno="{ $nu }">,<name> { $na } </name>}</info>}</
ourses>We omitted the query that removes name as a
hild of student sin
e it
an be doneas in the previous example. 26.3 Eliminating additional assumptionsFinally, we have to show how to get rid of the additional assumption that for everyanomalous FD X ! p:�l, every time that p:�l is not null, every path in X is notnull. We illustrate this by a simple example.Assume that D is the DTD shown in �gure 6 (a). Every XML tree
onformingto this DTD has as root an element of type r whi
h has a
hild of type either Aor B and an arbitrary number of elements of type C, ea
h of them
ontaining anattribute �l. Let � be the set of FDs fr:A! r:C:�lg. Then, (D;�) is not in XNFsin
e (D;�) 6` r:A! r:C.r �l(a)
rr1 j r2�l1 �l2(b)

A jB C� A1 C�1 B2 C�2
Fig. 6. Splitting a DTD.If we want to eliminate the anomalous FD r:A ! r:C:�l, we
annot dire
tlyapply the algorithm presented in Se
tion 6.1, sin
e this FD does not satisfy the basi
assumption made in that se
tion; it
ould be the
ase that r:C:�l is not null andr:A is null. To solve this problem we transform (D;�) into a new XML spe
i�
ation(D0;�0) that is essentially equivalent to (D;�) and satis�es the assumption made inSe
tion 6.1. The new XML spe
i�
ation is
onstru
ted by splitting the disjun
tion.More pre
isely, DTD D0 is de�ned as the DTD shown in �gure 6 (b). This DTD
ontains two
opies of the DTD D, one of then
ontaining element type A, denotedACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

28 � M. Arenas and L. Libkinby A1, and the other one
ontaining element type B, denoted by B2. The set offun
tional dependen
ies �0 is
onstru
ted by in
luding the FD r:A ! r:C:�l inboth DTDs, that is, �0 = fr:A1 ! r:C1:�l1; r:A2 ! r:C2:�l2g.In the new spe
i�
ation (D0;�0), the user
hooses between having either A or Bby
hoosing between either r1 or r2. We note that the new FD r:A2 ! r:C2:�l2 istrivial and, therefore, to normalize the new spe
i�
ation we only have to take intoa

ount FD r:A1 ! r:C1:�l1. This fun
tional dependen
y satis�es the assumptionmade in Se
tion 6.1, so we
an use the de
omposition algorithm presented in thatse
tion.It is straightforward to generalize the methodology presented in the previousexample for any DTD. In parti
ular, if we have an arbitrary regular expression sin a DTD D = (E; A; P; R; r) and we have to split it into one regular expression
ontaining an element type � 2 E and another one not
ontaining this symbol, we
onsider regular expressions s \ (E��E�) and s� (E��E�).7. REASONING ABOUT FUNCTIONAL DEPENDENCIESIn the previous se
tion we saw that it is possible to losslessly
onvert a DTD into onein XNF. The algorithm used XML fun
tional dependen
y impli
ation. AlthoughXML FDs and relational FDs are de�ned similarly, the impli
ation problem forthe former
lass is far more intri
ate. In this se
tion we study the impli
ationproblem for XML fun
tional dependen
ies. In se
tions 7.1 and 7.2 we introdu
etwo
lasses of DTDs for whi
h the impli
ation problem
an be solved eÆ
iently.These
lasses in
lude most of real-world DTDs. In se
tion 7.3 we introdu
e two
lasses of DTDs for whi
h the impli
ation problem is
oNP-
omplete. In se
tion7.4 we show that, unlike relational FDs, XML FDs are not �nitely axiomatizable.Finally, in se
tion 7.5 we study the
omplexity of the XNF satisfa
tion problem. Inall these se
tions we assume, without loss of generality, that all FDs have a singlepath on the right-hand side.7.1 Simple regular expressionsTypi
ally, regular expressions used in DTDs are rather simple. We now formulatea
riterion for simpli
ity that
orresponds to a
ommon pra
ti
e of writing regularexpressions in DTDs. Given an alphabet A, a regular expression over A is
alledtrivial if it of the form s1; : : : ; sn, where for ea
h si there is a letter ai 2 A su
hthat si is either ai or ai? (whi
h abbreviates aij�), or a+i or a�i , and for i 6= j,ai 6= aj . We
all a regular expression s simple if there is a trivial regular expressions0 su
h that any word w in the language denoted by s is a permutation of a wordin the language denoted by s0, and vi
e versa. Simple regular expressions were also
onsidered in [Abiteboul et al. 2001℄ under the name of multipli
ity atoms.For example, (ajbj
)� is simple: a�; b�;
� is trivial, and every word in (ajbj
)�is a permutation of a word in a�; b�;
� and vi
e versa. A DTD is
alled simple ifall produ
tions in it use simple regular expressions over E [fSg. Simple regularexpressions are prevalent in DTDs. For instan
e, the Business Pro
ess Spe
i�
ationS
hema of ebXML [ebXML 2001℄, a set of spe
i�
ations to
ondu
t business overthe Internet, is a simple DTD. Part of this s
hema is showed in �gure 7.Theorem 7.1. The impli
ation problem for FDs over simple DTDs is solvableACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 29<!ELEMENT Pro
essSpe
ifi
ation (Do
umentation*, SubstitutionSet*, (In
lude |BusinessDo
ument | Pro
essSpe
ifi
ation | Pa
kage | BinaryCollaboration |BusinessTransa
tion | MultiPartyCollaboration)*)><!ELEMENT In
lude (Do
umentation*)><!ELEMENT BusinessDo
ument (ConditionExpression?, Do
umentation*)><!ELEMENT SubstitutionSet (Do
umentSubstitution | AttributeSubstitution |Do
umentation)*><!ELEMENT BinaryCollaboration (Do
umentation*, InitiatingRole,RespondingRole, (Do
umentation | Start | Transition | Su

ess | Failure |BusinessTransa
tionA
tivity | CollaborationA
tivity | Fork | Join)*)><!ELEMENT Transition (ConditionExpression?, Do
umentation*)>Fig. 7. Part of the Business Pro
ess Spe
i�
ation S
hema of ebXML.in quadrati
 time.Proof sket
h: Here we present the sket
h of the proof. The
omplete proof
an be found in ele
troni
 appendix A.1.In the �rst part of the proof we show that given a simple DTD D and a set of FDs�[fS ! pg over D, the problem of verifying whether � 6` S ! p
an be redu
ed tothe problem of �nding a
ounterexample to a
ertain impli
ation problem. That is,we need to �nd an XML tree T su
h that T j= (D;�), T 6j= S ! p, T
ontains twotree tuples and T satis�es some additional
onditions that depend on the simpli
ityof D. Essentially, if an element type is allowed to o

ur zero times (a? or a�), thenin
onstru
ting the
ounterexample su
h elements not need to be
onsidered if theyare irrelevant to the fun
tional dependen
ies under
onsideration. Furthermore, allthe element types in a regular expression in D
an be
onsidered independently.Observe that this
ondition is not longer valid if a regular expression in D
ontainsa disjun
tion (D is not simple). For instan
e, if (ajb) is a regular expression in D,then a and b are not independent; if a does not appear in an XML tree
onformingto D, then b appears in this tree.In the se
ond part of the proof we show that the problem of �nding this
oun-terexample
an be redu
ed to the problem of verifying if a
ertain propositionalformula ',
onstru
ted from D and � [fS ! pg, is satis�able. This formula is ofthe form '1 _ � � � _ 'n, where n is at most the length of the path p and ea
h 'i(i 2 [1; n℄) is a
onjun
tion of Horn
lauses and is of linear size in the size of D and� [fS ! pg. Given that the
onsisten
y problem for Horn
lauses is solvable inlinear time [Dowling and Gallier 1984℄, we
on
lude that the
ounterexample
anbe found in quadrati
 time and, therefore, our original problem
an be solved inquadrati
 time. 27.2 Small number of disjun
tionsIn a simple DTD, disjun
tion
an appear in expressions of the form (aj�) or (ajb)�,but a general disjun
tion (ajb) is not allowed. For example, the following DTD
annot be represented as a simple DTD:<!DOCTYPE university [<!ELEMENT university (
ourse*)><!ELEMENT
ourse (number, student*)>ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

30 � M. Arenas and L. Libkin<!ELEMENT number (#PCDATA)><!ELEMENT student ((name | FLname), grade)><!ELEMENT name (#PCDATA)><!ELEMENT FLname (first_name, last_name)><!ELEMENT first_name (#PCDATA)><!ELEMENT last_name (#PCDATA)><!ELEMENT grade (#PCDATA)>℄>In this example, every student must have a name. This name
an be an string or it
an be a
omposition of a �rst and a last name. It is desirable to express
onstraintson this kind of DTDs. For instan
e,student :name:S! student ;fstudent :FLname:�rst name :S; student:FLname :last name:Sg ! student ;are fun
tional dependen
ies in this domain. It is also desirable to reason aboutthese
onstraints eÆ
iently. Often, a DTD is not simple be
ause a small number ofregular expressions in it are not simple. In this se
tion we will show that there is apolynomial time algorithm for reasoning about
onstraints over DTDs
ontaininga small number of disjun
tions.A regular expression s over an alphabet A is a simple disjun
tion if s = �, s = a,where a 2 A, or s = s1js2, where s1, s2 are simple disjun
tions over alphabets A1,A2 and A1 \A2 = ;. A DTD D = (E; A; P; R; r) is
alled disjun
tive if for every� 2 E, P (�) = s1; : : : ; sm, where ea
h si is either a simple regular expression or asimple disjun
tion over an alphabet Ai (i 2 [1;m℄), and Ai \ Aj = ; (i; j 2 [1;m℄and i 6= j). This generalizes the
on
ept of a simple DTD.With ea
h disjun
tive DTD D, we asso
iate a number ND that measures the
omplexity of unrestri
ted disjun
tions in D. Formally, for a simple regular expres-sion s, Ns = 1. If s is a simple disjun
tion, then Ns is the number of symbols jin s plus 1. If P (�) = s1; : : : ; sn, then N� is 1, if s1; : : : ; sn is a simple regular ex-pression, N� = jfp 2 paths(D) j last(p) = �gj �Ns1 � � � � �Nsn otherwise. Finally,ND =Q�2EN� .Theorem 7.2. For any �xed
 > 0, the FD impli
ation problem for disjun
tiveDTDs D with ND � kDk
 is solvable in polynomial time3.Proof sket
h: Here we present the sket
h of the proof. The
omplete proof
an be found in ele
troni
 appendix A.2.The main idea of this proof is that the impli
ation problem for disjun
tive DTDs
an be redu
ed to a number of impli
ation problems for simple DTDs by splittingthe disjun
tions. More pre
isely, given a disjun
tive DTD D and a set of fun
tionaldependen
ies � [fS ! pg over D, there exist (D1;�1), : : :, (Dn;�n) su
h thatea
h Di (i 2 [1; n℄) is a simple DTD, �i is a set of fun
tional dependen
ies over Di(i 2 [1; n℄) and (D;�) ` S ! p if and only if (Di;�i) ` S ! p for every i 2 [1; n℄.The number n of impli
ation problems for simple DTDs is at most ND. Thus,3k � k is the size of the des
ription of an obje
t. For instan
e, kpk is the length of the path p andkSk is the sum of the lengths of the paths in S.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 31sin
e the impli
ation problem for simple DTDs
an be solved in quadrati
 time (seeTheorem 7.1), the impli
ation problem for disjun
tive DTDs D with ND � kDk
,for some
onstant
,
an be solved in polynomial time. 27.3 Relational DTDsThere are some
lasses of DTDs for whi
h the impli
ation problem is not tra
table.One su
h
lass
onsists of arbitrary disjun
tive DTDs. Another
lass is that ofrelational DTDs. We say that D is a relational DTD if for ea
h XML tree T j= D,if X is a non-empty subset of tuplesD(T), then treesD(X) j= D. This
lass
ontainsregular expressions like the one below, from a DTD for Frequently Asked Questions[Higgins and Jelli�e 1999℄:<!ELEMENT se
tion (logo*, title,(qna+ | q+ | (p | div | se
tion)+))>There exist non-relational DTDs (for example, <!ELEMENT a (b,b)>). However:Proposition 7.3. Every disjun
tive DTD is relational.Proof. LetD = (E; A; P; R; r) be a disjun
tive DTD, T an XML tree
onform-ing to D and X a non-empty subset of tuplesD(T). Assume that treesD(X) 6j= D,that is, there is an XML tree T 0 = (V; lab; ele; att; root) in treesD(X) su
h thatT 0 6j= D. Then, there is a vertex v 2 V rea
hable from the root by following a pathp su
h that lab(v) = � and ele(v) does not
onform to the regular expression P (�).If P (�) = s, where s is a simple disjun
tion over an alphabet A, then there ist0 2 X su
h that t0:p = v and t0:p:a = ?, for ea
h a 2 A. Thus, given that T j= D,we
on
lude that there is a tuple t 2 tuplesD(T) su
h that t:p:b 6= ?, for some b 2 A,and t0:w = t:w for ea
h w 2 paths(D) su
h that p:b is not a pre�x of w. Hen
e,t0 � t. But, this
ontradi
ts the de�nition of tuplesD(�), sin
e t0; t 2 tuplesD(T).The proof for P (�) = s1; : : : ; sn, where ea
h si (i 2 [1; n℄) is either a simple regularexpression or a simple disjun
tion, is similar.Theorem 7.4. The FD impli
ation problem over relational DTDs and over dis-jun
tive DTDs is
oNP-
omplete.Proof. Here we prove the intra
tability of the impli
ation problem for disjun
-tive DTDs. The
oNP membership proof
an be found in ele
troni
 appendix A.3.In order to prove the
oNP-hardness, we will redu
e SAT-CNF to the
omplementof the impli
ation problem for disjun
tive DTDs. Let � be a propositional formulaof the form C1 ^ � � � ^Cn, where ea
h Ci (i 2 [1; n℄) is a
lause. Assume that � usespropositional variables x1, : : :, xm.We need to
onstru
t a disjun
tive DTD D and a set of fun
tional dependen
ies� [f'g su
h that (D;�) 6` ' if and only if � is satis�able. We de�ne the DTDD = (E; A; P; R; r) as follows.E = fr; B;Cg [fCi;j j Ci mentions literal xjg [f �Ci;j j Ci mentions literal :xjg;A = f�lg:In order to de�ne P , �rst we de�ne a fun
tion for translating
lauses into reg-ular expressions. If the set of literal mentioned in the
lause Ci (i 2 [1; n℄) isACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

32 � M. Arenas and L. Libkin
�l �l�l�l�l�l

rC2;1j �C2;3C1;1jC1;2 B C�
Fig. 8. DTD generated from a formula (x1 _ x2) ^ (x1 _ :x3).fxj1 ; : : : ; xjp ; �xk1 ; : : : ; �xkqg, thentr(Ci) = Ci;j1 j � � � jCi;jp j �Ci;k1 j � � � j �Ci;kq :We de�ne the fun
tion P on the root as P (r) = tr(C1); : : : ; tr(Cn); B; C�. For theremaining elements of E, we de�ne P as �. Finally, R(r) = ; and R(�) = f�lgfor every � 2 E � frg. For example, �gure 8 shows the DTD generated from apropositional formula (x1 _ x2) ^ (x1 _ :x3).For ea
h pair of elements Ci;j ; �Ck;j 2 E, the set of fun
tional dependen
ies �in
ludes the
onstraint fr:Ci;j :�l; r: �Ck;j :�lg ! r:C:�l. Fun
tional dependen
y 'is de�ned as r:B:�l ! r:C:�l.We now prove that (D;�) 6` ' if and only if � is satis�able.()) Suppose that (D;�) 6` '. Then, there is an XML tree T su
h thatT j= (D;�) and T 6j= '. We de�ne a truth assignment � from T as follows. Forea
h j 2 [1;m℄, if there is i 2 [1; n℄ su
h that r has a
hild of type Ci;j in T , then�(xj) = 1, otherwise �(xj) = 0. We now prove that � j= Ci, for ea
h i 2 [1; n℄. Byde�nition of D, there is j 2 [1;m℄ su
h that r has a
hild in T of type either Ci;jor �Ci;j . In the �rst
ase, Ci
ontains the literal xj and �(xj) = 1, by de�nition of�. Therefore, � j= Ci. In the se
ond
ase, Ci
ontains a literal :xj . If �(xj) = 1,then there is k 2 [1; n℄ su
h that r has a
hild of type Ck;j in T , by de�nition of�. Sin
e fr:Ck;j :�l; r: �Ci;j :�lg ! r:C:�l is a
onstraint in �, all the nodes in T oftype C have the same value in the attribute �l. Thus, T j= r:B:�l ! r:C:�l, a
ontradi
tion. Hen
e, �(xj) = 0 and � j= Ci.(() Suppose that � is satis�able. Then, there exists a truth assignment �su
h that � j= �. We de�ne an XML tree T
onforming to D as follows. Forea
h i 2 [1; n℄,
hoose a literal lj in Ci su
h that � j= lj . If lj = xj , then r hasa
hild of type Ci;j in T , otherwise r has a
hild of type �Ci;j in T . Moreover, rhas one
hild of type B and two
hildren of type C. We assign two distin
t valuesto the attribute �l of the nodes of type C, and the same value to the rest of theattributes in T . Thus, T 6j= ', and it is easy to verify that T j= �. This
ompletesthe proof.7.4 Nonaxiomatizability of XML fun
tional dependen
iesIn this se
tion we present a simple proof that XML FDs
annot be �nitely ax-iomatized. This proof shows that, unlike relational databases, there is a nontrivialintera
tion between DTDs and fun
tional dependen
ies. To present this proof weneed to introdu
e some terminology.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 33Given a DTD D and a set of fun
tional dependen
ies � over D, we say that(D;�) is
losed under impli
ation if for every FD ' over D su
h that (D;�) ` ',it is the
ase that ' 2 �. Furthermore, we say that (D;�) is
losed under k-aryimpli
ation, k � 0, if for every FD ' over D, if there exists �0 � � su
h thatj�0j � k and (D;�0) ` ', then ' 2 �. For example, if (D;�) is
losed under 0-aryimpli
ation, then �
ontains all the trivial FDs.Sin
e the impli
ation problem for relational FDs is �nitely axiomatizable, thereexists k � 0 su
h that ea
h relation s
hema R(A1; : : : ; An) admits a k-ary groundaxiomatization for the impli
ation problem, that is, an axiomatization
ontainingrules of the form if � then
, where �[f
g is a set of FDs over R(A1; : : : ; An) andj�j � k. For instan
e, R(A;B;C) admits a 2-ary ground axiomatization in
luding,among others, the following rules: if ; then AB ! A, if A ! B then AC !BC and if fA ! B;B ! Cg then A ! C. Similarly, if there exists a �niteaxiomatization for the impli
ation problem of XML FDs, then there exists k � 0su
h that ea
h DTD D admits a (possible in�nite) k-ary ground axiomatization forthe impli
ation problem. The
ontrapositive of the following proposition gives usa suÆ
ient
ondition for showing that the XML FD impli
ation problem does notadmit a k-ary ground axiomatization for every k � 0 and, therefore, it does notadmit a �nite axiomatization.Proposition 7.5. For every k � 0, if there is a k-ary ground axiomatizationfor the impli
ation problem of XML FDs, then for every DTD D and set of FDs� over D, if (D;�) is
losed under k-ary impli
ation then (D;�) is
losed underimpli
ation.Proof. This proposition was proved in [Abiteboul et al. 1995℄ for the
ase ofrelational databases. The proof for XML FDs is similar.Theorem 7.6. The impli
ation problem for XML fun
tional dependen
ies is not�nitely axiomatizable.Proof. By Proposition 7.5, for every k � 0 we need to exhibit a DTD Dkand a set of fun
tional dependen
ies �k su
h that (Dk;�k) is
losed under k-aryimpli
ation and (Dk;�k) is not
losed under impli
ation.The DTD Dk = (E; A; P; R; r) is de�ned as follows: E = fA1; : : : ; Ak; Ak+1; Bg,A = ;, P (r) = (A1j � � � jAk jAk+1); B� and P (�) = � for every � 2 E �frg. The setof FDs �k is de�ned as the union of the following sets:|fr:Ai ! r:B j i 2 [1; k + 1℄g [ffr; r:Aig ! r:B j i 2 [1; k + 1℄g,|fS ! p j S ! p is a trivial FD in Dkg.It is easy to see that if ' is not a trivial fun
tional dependen
y in Dk and ' 62 �k,then ' = r ! r:B. Thus, in order to prove that (Dk;�k) is
losed under k-aryimpli
ation and is not
losed under impli
ation, we have to show that:(1) For every �0 � �k su
h that j�0j � k, (Dk;�0) 6` r ! r:B. Sin
e j�0j � k,there exists i 2 [1; k + 1℄ su
h that r:Ai ! r:B 62 �0 and fr; r:Aig ! r:B 62 �0.Thus, an XML tree T de�ned asACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

34 � M. Arenas and L. Libkin Ai B Br
onforms to Dk, satis�es �0 and does not satisfy r ! r:B. We
on
lude that(Dk;�0) 6` r ! r:B.(2) (Dk;�k) ` r ! r:B. This proof is straightforward.This
ompletes the proof of the theorem.7.5 The
omplexity of testing XNFRelational DTDs have the following useful property that lets us establish the
om-plexity of testing XNF.Proposition 7.7. Given a relational DTD D and a set � of FDs over D, (D;�)is in XNF i� for ea
h nontrivial FD of the form S ! p:�l or S ! p:S in �,S ! p 2 (D;�)+.Proof. The proof is given in ele
troni
 appendix A.4.From this, we immediately derive:Corollary 7.8. Testing if (D;�) is in XNF
an be done in
ubi
 time forsimple DTDs, and is
oNP-
omplete for relational DTDs.8. RELATED WORK AND FUTURE RESEARCHIt was introdu
ed in [Embley and Mok 2001℄ an XML normal form de�ned in termsof fun
tional dependen
ies, multi-valued dependen
ies and in
lusion
onstraints.Although that normal form was also
alled XNF the approa
h of [Embley and Mok2001℄ was very di�erent from ours. The normal form of [Embley and Mok 2001℄ wasde�ned in terms of two
onditions: XML spe
i�
ations must not
ontain redundantinformation with respe
t to a set of
onstraints, and the number of s
hema trees(see Se
tion 5.2) must be minimal. The normalization pro
ess is similar to the ERapproa
h in relational databases. A
on
eptual-model hypergraph is
onstru
ted tomodel the real world and an algorithm produ
es an XML spe
i�
ation in XNF. Itwas proved in [Arenas and Libkin 2003℄ that an XML spe
i�
ation given by a DTDD and a set � of XML fun
tional dependen
ies is in XNF if and only if no XMLtree
onforming to D and satisfying �
ontains redundant information. Thus, forthe
lass of fun
tional dependen
ies de�ned in this paper, the XML normal formintrodu
ed in [Embley and Mok 2001℄ is more restri
tive than our XML normalform.Normal forms for extended
ontext-free grammars, similar to the Greiba
h nor-mal form for CFGs, were
onsidered in [Albert et al. 2001℄. These, however, do notne
essarily guarantee good XML design.The fun
tional dependen
y language used in [Embley and Mok 2001℄ is basedon a language for nested relations and it does not
onsider relative
onstraints.In a very re
ent paper [Lee et al. 2002℄ was introdu
ed a language for expressingfun
tional dependen
ies for XML. In that language, a fun
tional dependen
y isan expression of the form (p; [q1; : : : ; qn ! qn+1℄), where p is a path and every qiACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 35(i 2 [1; n + 1℄) is of the form �:�l, where � is an element type. An XML tree Tsatis�es this
onstraint if for any two subtrees T1, T2 of T whose roots are nodesrea
hable from the root of T by following path p, if T1 and T2 agree on the valueof qi, for every i 2 [1; n℄, then they agree on the value of qn+1. This languagedoes not
onsider relative
onstraints and its semanti
s only works properly if somesynta
ti
 restri
tions are imposed on the fun
tional dependen
ies [Lee et al. 2002℄.The normalization problem is not
onsidered in [Lee et al. 2002℄.Other proposals for XML
onstraints (mostly keys) have been studied in [Bune-man et al. 2001a; 2001b; Fan and Sim�eon 2000℄; these
onstraints do not use DTDs.XML
onstraints that takes DTDs into a

ount are studied in [Fan and Libkin 2001℄.Numerous surveys of relational normalization
an be found in the literature [Beeriet al. 1978; Kanellakis 1990; Abiteboul et al. 1995℄. Normalization for nested rela-tions and obje
t-oriented databases is studied in [�Ozsoyoglu and Yuan 1987; Moket al. 1996; Tari et al. 1997℄. Coding nested relations into
at ones, similar toour tree tuples, is done in [Su
iu 1997; Van den Buss
he 2001℄. We use fun
tionaldependen
ies over in
omplete relations using the te
hniques from [Atzeni and Mor-funi 1984; Buneman et al. 1991; Grahne 1991; Imielinski and Jr. 1984; Levene andLoizou 1998℄.8.1 Future Resear
hThe de
omposition algorithm
an be improved in various ways, and we plan to workon making it more eÆ
ient. We also would like to �nd a
omplete
lassi�
ation ofthe
omplexity of the FD impli
ation problem for various
lasses of DTDs.As prevalent as BCNF is, it does not solve all the problems of relational s
hemadesign, and one
annot expe
t XNF to address all short
omings of DTD design.We plan to work on extending XNF to more powerful normal forms, in parti
ularby taking into a

ount multi-valued dependen
ies whi
h are naturally indu
ed bythe tree stru
ture.ELECTRONIC APPENDIXThe ele
troni
 appendix for this arti
le
an be a

essed in the ACM Digital Li-brary by visiting the following URL: http://www.a
m.org/pubs/
itations/journals/tods/20YY-V-N/p1-URLend.ACKNOWLEDGMENTSDis
ussions with Mi
hael Benedikt and Wenfei Fan were extremely helpful. Theauthors were supported in part by grants from the Natural S
ien
es and EngineeringResear
h Coun
il of Canada and from Bell University Laboratories.REFERENCESAbiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.Abiteboul, S., Segoufin, L., and Vianu, V. 2001. Representing and Querying XML withIn
omplete Information. In Pro
eedings of the Twentieth ACM Symposium on Prin
iples ofDatabase Systems. 150 { 161.Albert, J., Giammarresi, D., and Wood, D. 2001. Normal Form Algorithms for ExtendedContext-free Grammars. Theoreti
al Computer S
ien
e 267, 1-2, 35 { 47.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

36 � M. Arenas and L. LibkinArenas, M. and Libkin, L. 2003. An Information-Theoreti
 Approa
h to Normal Forms forRelational and XML Data. In Pro
eedings of the Twenty-se
ond ACM SIGACT-SIGMOD-SIGART Symposium on Prin
iples of Database Systems. 15 { 26.Atzeni, P. and Morfuni, N. 1984. Fun
tional Dependen
ies in Relations with Null Values.Information Por
essing Letters 18, 4, 233{238.Beeri, C., Bernstein, P., and Goodman, N. 1978. A Sophisti
ate's Introdu
tion to DatabaseNormalization Theory. In Fourth International Conferen
e on Very Large Data Bases. 113{124.Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W. C. 2001a. Keys for XML. InPro
eedings of the Tenth International World Wide Web Conferen
e. 201{210.Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W. C. 2001b. Reasoning about Keysfor XML. In Pro
eedings of the Eighth International Workshop on Database ProgrammingLanguages.Buneman, P., Jung, A., and Ohori, A. 1991. Using Powerdomains to Generalize RelationalDatabases. Theoreti
al Computer S
ien
e 91, 1, 23{55.Dowling, W. and Gallier, J. 1984. Linear-Time Algorithms for Testing the Satis�ability ofPropositional Horn Formulae. Journal of Logi
 Programming 1, 3, 267{284.ebXML. 2001. Business Pro
ess Spe
i�
ation S
hema v1.01. http://www.ebxml.org/spe
s/.Embley, D. and Mok, W. Y. 2001. Developing XML Do
uments with Guaranteed \Good"Properties. In Pro
eedings of the Twentieth International Conferen
e on Con
eptual Modeling.426{441.Fan, W. and Libkin, L. 2001. On XML Integrity Constraints in the Presen
e of DTDs. InPro
eedings of the Twentieth ACM Symposium on Prin
iples of Database Systems. 114 { 125.Fan, W. and Sim�eon, J. 2000. Integrity Constraints for XML. In Pro
eedings of the NineteenthACM Symposium on Prin
iples of Database Systems. 23{34.Flores
u, D. and Kossmann, D. 1999. Storing and Querying XML Data using an RDMBS.IEEE Data Engineering Bulletin 22, 3, 27{34.Grahne, G. 1991. The Problem of In
omplete Information in Relational Databases. Springer.Gunter, C. 1992. Semanti
s of Programming Languages: Stru
tures and Te
hniques. MIT Press.Higgins, J. and Jelliffe, R. 1999. QAML Version 2.4.http://xml.as

.net/resour
e/qaml-xml.dtd.Hull, R. 1986. Relative Information Capa
ity of Simple Relational Database S
hemata. SIAMJournal on Computing 15, 3, 856{886.Imielinski, T. and Jr., W. L. 1984. In
omplete Information in Relational Databases. Journalof the ACM 31, 4, 761{791.Kanellakis, P. 1990. Elements of Relational Database Theory. In Handbook of Theoreti
alComputer S
ien
e, Volume B, pages 1075-1144, MIT Press.Kanne, C.-C. and Moerkotte, G. 2000. EÆ
ient Storage of XML Data. In Pro
eedings of the16th International Conferen
e on Data Engineering. 198.Lee, M.-L., Ling, T. W., and Low, W. L. 2002. Designing Fun
tional Dependen
ies for XML. InPro
eedings of the Eighth International Conferen
e on Extending Database Te
hnology. 124{141.Levene, M. and Loizou, G. 1998. Axiomatisation of Fun
tional Dependen
ies in In
ompleteRelations. Theoreti
al Computer S
ien
e 206, 1-2, 283{300.Ley, M. 2003. DBLP. http://www.informatik.uni-trier.de/~ley/db/index.html.Mok, W. Y., Ng, Y.-K., and Embley, D. 1996. A Normal Form for Pre
isely Chara
terizingRedundan
y in Nested Relations. ACM Transa
tions on Database Systems 21, 1, 77{106.�Ozsoyoglu, M. and Yuan, L.-Y. 1987. A New Normal Form for Nested Relations. ACMTransa
tions on Database Systems 12, 1, 111{136.Sagiv, Y., Delobel, C., Parker, D. S., and Fagin, R. 1981. An Equivalen
e Between RelationalDatabase Dependen
ies and a Fragment of Propositional Logi
. Jornal of the ACM 28, 3, 435{453.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � 37Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D., and Naughton, J. 1999.Relational Databases for Querying XML Do
uments: Limitations and Opportunities. In Pro-
eedings of 25th International Conferen
e on Very Large Data Bases. 302{314.Su
iu, D. 1997. Bounded Fixpoints for Complex Obje
ts. Theoreti
al Computer S
ien
e 176, 1-2,283{328.Tari, Z., Stokes, J., and Spa

apietra, S. 1997. Obje
t Normal Forms and Dependen
y Con-straints for Obje
t-Oriented S
hemata. ACM Transa
tions on Database Systems 22, 4, 513{569.Tatarinov, I., Ives, Z., Halevy, A., and Weld, D. 2001. Updating XML. In Pro
eedings ofthe 2001 ACM SIGMOD International Conferen
e on Management of Data. 413{424.Van den Buss
he, J. 2001. Simulation of the nested relational algebra by the
at relationalalgebra, with an appli
ation to the
omplexity of evaluating powerset algebra expressions.Theoreti
al Computer S
ien
e 254, 1-2, 363{377.W3C. 1998. XML-Data, W3C Note. http://www.mi
rosoft.
om/standards/xml/xmldata-f.htm.W3C. 2001. XML S
hema, W3C Working Draft. http://www.w3.org/XML/S
hema.Re
eived Month Year; revised Month Year; a

epted Month Year

ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � App{1This do
ument is the online-only appendix to:A Normal Form for XML Do
umentsMARCELO ARENASUniversity of TorontoandLEONID LIBKINUniversity of TorontoACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1{37.A. PROOF OF SECTION 7A DTD D
an be in
onsistent in the sense that there is no XML tree T su
h thatT j= D. For example, a re
ursive DTD
ontaining a rule P (a) = a is not
onsistent;there is no a �nite XML tree satisfying this rule. In this se
tion we only
onsider
onsistent DTDs, sin
e the impli
ation problem for in
onsistent DTDs is trivialand it
an be
he
ked in linear time whether a DTD is
onsistent [Fan and Libkin2001℄.A.1 Proof of Theorem 7.1To prove this theorem we start by introdu
ing some terminology. Given a simpleDTD D = (E; A; P; R; r) and p, p0 2 paths(D) su
h that p is a proper pre�x ofp0, we say that p0
an be nulli�ed from p if p0 is of the form p:w1: � � � :wn, wherewi 2 E [A [fSg (i 2 [1; n℄) and either (1) P (last(p))
ontains w1? or w�1 ; or (2)there is i 2 [1; n� 1℄ su
h that P (wi)
ontains wi+1? or w�i+1. Intuitively, p0
an benulli�ed from p if there exists and XML tree T
onforming to D and a tree tuplet in T su
h that t:p 6= ? and t:p0 = ?. For example, if P (r) = a, P (a) = b� andP (b) =
, then r:a:b:

an be nulli�ed from r and r:a, but it
annot be nulli�edfrom r:a:b. Given S � paths(D), we say that p0
an be nulli�ed from S if p0
an benulli�ed from p, where p is the longest
ommon pre�x of p0 and a path from S.The following is proved by the same argument as Lemma A.6 shown in ele
troni
appendix A.3.Lemma A.1. Given a simple DTD D, a set � of fun
tional dependen
ies overD and S [fpg � paths(D), (D;�) 6` S ! p if and only if there is an XML tree Tand a path q pre�x of p su
h that T j= (D;�), tuplesD(T) = ft1; t2g, t1:S = t2:S,t1:S 6= ?, t1:p 6= t2:p, t1:p 6= ?, t2:p 6= ?, t1:q 6= t2:q and|For ea
h s 2 paths(D), if s
an be nulli�ed from S [fpg, then t1:s = t2:s = ?.Permission to make digital/hard
opy of all or part of this material without fee for personalor
lassroom use provided that the
opies are not made or distributed for pro�t or
ommer
ialadvantage, the ACM
opyright/server noti
e, the title of the publi
ation, and its date appear, andnoti
e is given that
opying is by permission of the ACM, In
. To
opy otherwise, to republish,to post on servers, or to redistribute to lists requires prior spe
i�
 permission and/or a fee.

 20YY ACM 0362-5915/20YY/0300-0001 $5.00ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

App{2 � M. Arenas and L. Libkin|For ea
h s 2 paths(D), if q is not a pre�x of s and s
annot be nulli�ed fromS [fpg, then t1:s = t2:s and t1:s 6= ?.To prove that the impli
ation problem for simple DTDs
an be solved in polyno-mial time, we use the te
hnique of [Sagiv et al. 1981℄ and
ode
onstraints withpropositional formulas. That is, for ea
h simple DTD D and set of fun
tional de-penden
ies �[fS ! pg over D, we will de�ne a propositional formula ' su
h that(D;�) 6` S ! p if and only if ' is satis�able. This formula will be of the form'1_� � �_'n, where ea
h 'i (i 2 [1; n℄) is a
onjun
tion of Horn
lauses. Given thatthe
onsisten
y problem for Horn
lauses is solvable in linear time, we will
on
ludethat our problem is solvable in quadrati
 time.Let D be a DTD, � a set of fun
tional dependen
ies over D and S [fpg �paths(D). Re
all that we assumed that ea
h
onstraints in � is of the form S0 ! p0,where S0 [fp0g � paths(D). We de�ne paths(�) as fs j there is S0 ! p0 2 � su
hthat s 2 S0 [fp0gg. To de�ne the propositional formula ' we view ea
h paths 2 paths(�) [S [fpg as a propositional variable. Furthermore, for ea
h path qwhi
h is a pre�x of p we de�ne a propositional formula 'q as:p ^ (^s2Pq[S s) ^ (^s2Nq :s) ^ ̂2� ;where Pq , Nq and � are set of propositional variables and formulas de�ned asfollows.|For ea
h s 2 paths(�) su
h that s
annot be nulli�ed from S [fpg and q is nota pre�x of s, s is in
luded in Pq .|For ea
h s 2 paths(�) su
h that s 2 EPaths(D), s
annot be nulli�ed from S [fpg and q is a pre�x of s, s is in
luded in Nq.|For ea
h S0 ! p0 2 �, if there is no q0 2 S0 [fp0g su
h that q0
an be nulli�edfrom S [fpg, then (Vs2S0 s) ! p0 is in
luded in �We note that 'q is a
onjun
tion of Horn
lauses.The propositional formula ' is de�ned as the disjun
tion of some of the formula'qs. The following lemma shows that in this disjun
tion we only need to
onsiderqs su
h that q = q0:� , for some � 2 E, and P (last(q0))
ontains �� or �+.Lemma A.2. Let D = (E; A; P; R; r) be a simple DTD, � a set of fun
tionaldependen
ies over D and S [fp; qg � paths(D) su
h that q is a pre�x of p. Ifthere is � 2 E su
h that q = q0:� and P (last(q0))
ontains �� or �+, then 'q issatis�able i� there is an XML tree T su
h that T j= (D;�), tuplesD(T) = ft1; t2g,t1:S = t2:S, t1:S 6= ?, t1:p 6= t2:p, t1:p 6= ?, t2:p 6= ?, t1:q 6= t2:q and|For ea
h s 2 paths(D), if s
an be nulli�ed from S [fpg, then t1:s = t2:s = ?.|For ea
h s 2 paths(D), if q is not a pre�x of s and s
annot be nulli�ed fromS [fpg, then t1:s = t2:s and t1:s 6= ?.Proof. ()) Let � be a truth assignment satisfying 'q . We de�ne tuples t1and t2 as follows. For ea
h s 2 paths(D), if s
an be nulli�ed from S [fpg, thent1:s = t2:s = ?. If s
annot be nulli�ed from S [fpg we
onsider two
ases. If qis not a pre�x of s, then t1:s = t2:s and t1:s 6= ?. Otherwise, if �(s) = 1, thent1:s = t2:s and t1:s 6= ?, else t1:s 6= t2:s, t1:s 6= ? and t2:s 6= ?.ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � App{3It is straightforward to prove that there is an XML tree T 2 treesD(ft1; t2g)su
h that T j= D and tuplesD(T) = ft1; t2g. Given that � j= :p ^ Vs2S s,t1:S = t2:S, t1:S 6= ?, t1:p 6= t2:p, t1:p 6= ? and t2:p 6= ?. Besides, t1:q 6= t2:q,sin
e q 2 Nq and � j= Vs2Nq :s. Thus, to �nish the proof we have to show thatT j= �. Let S0 ! p0 2 �. If there is q0 2 S0 [fp0g su
h that q0
an be nulli�edfrom S [fpg, then T trivially satis�es S0 ! p0 sin
e t1:q0 = t2:q0 = ?. Otherwise,suppose that t1:S0 = t2:S0 and t1:S0 6= ?. Then, by
onsidering that � j= Vs2Pq sand the de�nition of t1 and t2, we
on
lude that � j= Vs2S0 s. Thus, given that� j= (Vs2S0 s)! p0, we
on
lude that �(p0) = 1, and, therefore, t1:p0 = t2:p0.(() Suppose that there is an XML tree T satisfying the
onditions of thelemma. De�ne a truth assignment � as follows. For ea
h s 2 paths(�)[S [fpg, ift1:s 6= t2:s then �(s) = 0. Otherwise, �(s) = 1.Given that t1:p 6= t2:p and t1:S = t2:S, �(:p) = 1 and � j= Vs2S s. Let s 2 Pq .By de�nition, s
annot be nulli�ed from S [fpg and q is not a pre�x of s, and,therefore, t1:s = t2:s. Thus, �(s) = 1. We
on
lude that � j= Vs2Pq s. Lets 2 Nq . By de�nition, s
annot be nulli�ed from S [fpg, q is a pre�x of s ands 2 EPaths(D). Hen
e, t1:s 6= t2:s and �(s) = 0. We
on
lude that � j= Vs2Nq :s.Finally, let (Vs2S0 s)! p0 2 �q . If � j= Vs2S0 s, then by de�nition of � and �q, we
on
lude that t1:S0 = t2:S0 and t1:S0 6= ?. Thus, given that T j= �, we
on
ludethat t1:p0 = t2:p0 and, therefore, �(p0) = 1.Combining Lemmas A.1 and A.2 we obtain:Lemma A.3. Let D = (E; A; P; R; r) be a simple DTD, � a set of fun
tionaldependen
ies over D and S [fpg � paths(D). Assume that X = fq 2 paths(D) jq is a pre�x of p and there is � 2 E su
h that q = q0:� and P (last(q0))
ontains ��or �+g. Then, (D;�) 6` S ! p i� ' = Wq2X 'q is satis�able.Finally, we are ready to show that for a simple DTD D and a set of FDs �[fS ! pgover D,
he
king whether (D;�) ` S ! p
an be done in quadrati
 time. The sizeof ea
h formula 'q in the previous Lemma is O(k�k+kSk+kpk). Thus, it is possibleto verify whether 'q is satis�able in time O(k�k + kSk+ kpk), sin
e satis�abilityof propositional Horn formulas
an be
he
ked in linear time [Dowling and Gallier1984℄. Hen
e, given that there are at most kpk of these formulas,
he
king whetherformulaWq2X 'q in Lemma A.3 is satis�able requires time O(kpk�(k�k+kSk+kpk)).To
onstru
t this formula, �rst we exe
ute two steps:(1) For every s 2 paths(�), �nd the longest
ommon pre�x of s and a path fromS [fpg, whi
h requires time O(ksk � (kSk+ kpk)). By using this pre�x verifywhether s
an be nulli�ed from S [fpg, whi
h requires time O(ksk � kDk).(2) For ea
h s 2 paths(�) and for ea
h pre�x q of p, verify whether q is a pre�x ofs, whi
h requires time O(kqk).The total time required by these steps is O(k�k � (kDk + kSk + kpk)). Let k bethe number of paths in � and l be the number of pre�xes of p. The informationgenerated by the �rst step is stored in a array with k entries, one for ea
h path in�, indi
ating whether ea
h of these paths
an be nulli�ed from S [fpg. Similarly,the information generated by the se
ond step is stored in l arrays with k entriesACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

App{4 � M. Arenas and L. Libkinea
h. By using these data stru
tures, the formula Wq2X 'q in Lemma A.3
an be
onstru
ted in time O(kpk�(k�k+kSk+kpk)). Thus, the total time of the algorithmis O(kpk � (k�k+ kSk+ kpk) + k�k � (kDk+ kSk+ kpk)). This
ompletes the proofof Theorem 7.1.A.2 Proof of Theorem 7.2To prove this theorem �rst we prove two lemmas. Let D = (E; A; P; R; r) bea disjun
tive DTD and � 2 E su
h that P (�) = s1; : : : ; sn. Assume that for a�xed k 2 [1; n℄, sk = s01js02, where s01, s02 are simple disjun
tions over alphabetsA01, A02 and A01 \ A02 = ;. Assume that there is only one p� 2 paths(D) su
h thatlast(p�) = � . We de�ne paths i(D) (for i = 1; 2) as the set of all paths q in D su
hthat one of the following statement holds: (1) p� is not a proper pre�x of q or (2)there is � 0 2 E su
h that p� :� 0 is a pre�x of q and � 0 is in the alphabet of anyof the regular expressions s1, : : :, sk�1, s0i, sk+1, : : :, sn. Then we de�ne DTDsDi = (Ei; Ai; Pi; Ri; r) (for i = 1; 2) as follows. Ei = f� 0 2 E j � 0 is mentionedin some q 2 paths i(D)g, Ai = f�l j there is � 0 2 Ei su
h that �l 2 R(� 0)g,Pi(�) = s1; : : : ; sk�1; s0i; sk+1; : : : ; sn, Pi(� 0) = P (� 0), for ea
h � 0 2 Ei � f�g, andRi = RjEi . Moreover, given a set of fun
tional dependen
ies � over D, we de�nea set of fun
tional dependen
ies �i over Di (for i = 1; 2) as follows. For ea
hS ! p 2 �, if S [fpg � paths i(D), then S ! p is in
luded in �i.Lemma A.4. Let D, �, � , p� , Di and �i, for i = 1; 2 be as above and let S ! pbe a fun
tional dependen
y over D. Then(a) If S [fpg 6� paths i(D) for every i 2 [1; 2℄, then (D;�) ` S ! p.(b) If S [fpg � paths1(D) and S [fpg 6� paths2(D), then (D;�) ` S ! p i�(D1;�1) ` S ! p.(
) If S [fpg � paths i(D) for every i 2 [1; 2℄, then (D;�) ` S ! p i� for everyi 2 [1; 2℄, (Di;�i) ` S ! p.Proof. (a) Let pi 2 paths i(D) (i 2 [1; 2℄) su
h that pi 2 S [fpg, for everyi 2 [1; 2℄, p1 62 paths2(D) and p2 62 paths1(D). Let T be an XML tree su
h thatT j= (D;�), and t1; t2 2 tuplesD(T). Without loss of generality, assume thatp1 2 S. If t1:p1 = t2:p1 and t1:p1 6= ?, then t1:p2 = t2:p2 = ?, and, therefore,T j= S ! p. Thus, we
on
lude that (D;�) ` S ! p.(b) If (D;�) ` S ! p, we have to prove that (D1;�1) ` S ! p. Let T1be an XML su
h that T1 j= (D1;�1). This tree
onforms to D and satis�es �,sin
e ea
h
onstraint ' 2 � � �1
ontains at least one path q su
h that for everyt 2 tuplesD(T1), t:q = ?. Hen
e, T1 j= S ! p.Suppose that (D1;�1) ` S ! p. We have to prove that (D;�) ` S ! p.Let T be an XML tree su
h that T j= (D;�), and t1; t2 2 tuplesD(T). Letp1 2 paths1(D) su
h that p1 2 S [fpg and p1 62 paths2(D). By
ontradi
tion,suppose that t1:S = t2:S, t1:S 6= ? and t1:p 6= t2:p. If p1 2 S, then there isT1 2 treesD(ft1; t2g) su
h that T1 j= D1, sin
e t1:p1 6= ? and t2:p1 6= ?. Sin
eT j= �, T1 j= �1, and, therefore (D1;�1) 6` S ! p, a
ontradi
tion. If p1 = p,without loss of generality, we
an assume that t1:p1 6= ?. If t2:p1 6= ?, then thereis T1 2 treesD(ft1; t2g) su
h that T1 j= D1. But, T1 j= �1, sin
e T j= �, and,ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � App{5therefore (D1;�1) 6` S ! p, a
ontradi
tion. Assume that t2:p1 = ?. De�net02 2 T (D1) as follows. For ea
h w 2 paths1(D) \ paths2(D), t02:w = t2:w, andfor ea
h w 2 paths1(D) � paths2(D), if t1:w = ?, then t02:w = ?, otherwiset02:w 6= t1:w. Given that t1:p� 6= t2:p� , sin
e t1:p1 6= ? and t2:p1 = ?, we
on
ludethat there is an XML tree T1 2 treesD(ft1; t02g) su
h that T1
onforms to D1.But T1 j= �1, sin
e treesD(ft1; t2g) j= �. Thus, (D1;�1) 6` S ! p, again a
ontradi
tion.(
) We will only prove the \if" dire
tion. The \only if" dire
tion is analo-gous to the proof of this dire
tion in (b). Assume that (D;�) 6` S ! p. We willshow that (D1;�1) 6` S ! p or (D2;�2) 6` S ! p.Given that every disjun
tive DTD is a relational DTD (see Proposition 7.3), byLemma A.6 we
on
lude that (D;�) 6` S ! p if and only if there is an XML tree Tand a path q pre�x of p su
h that T j= (D;�), tuplesD(T) = ft1; t2g, t1:S = t2:S,t1:S 6= ?, t1:p 6= t2:p, t1:q 6= t2:q and for ea
h s 2 paths(D), if q is not a pre�x ofs, then t1:s = t2:s. We
onsider three
ases.(1) If q is not a pre�x of p� . Then, there is T 0 2 treesD(ft1; t2g) su
h that T 0
onforms to either D1 or D2. Without loss of generality, assume that T 0 j= D1.In this
ase, T 0 j= �1, sin
e T j= �. Hen
e, (D1;�1) 6` S ! p.(2) If q is a pre�x of p� and there exists a01 2 A01 and a02 2 A02 su
h that t1:p� :a01 6= ?and t2:p� :a02 6= ?. In this
ase, we de�ne t02 2 T (D1) as follows. For ea
h w 2paths1(D) \ paths2(D), t02:w = t2:w, and for ea
h w 2 paths1(D) � paths2(D),if t1:w = ?, then t02:w = ?, otherwise t02:w 6= t1:w. Then, there exists T 0 2treesD1(ft1; t02g) su
h that T 0 j= D1, T 0 j= �1 and T 0 6j= S ! p, sin
e T j= �and T 6j= S ! p. We
on
lude that (D1;�1) 6` S ! p.(3) If q is a pre�x of p� and there are no a01 2 A01 and a02 2 A02 su
h that eithert1:p� :a01 6= ? and t2:p� :a02 6= ? or t2:p� :a01 6= ? and t1:p� :a02 6= ?. This
ase isanalogous to the �rst one.Given a disjun
tive DTD D = (E; A; P; R; r), to apply the previous lemma weneed to �nd an element type � su
h that there is exa
tly one path in D whoselast element is � and P (�) = s1; : : : ; sk; : : : ; sn, where sk = s01js02, s01 and s02 aresimple disjun
tions over alphabets A01, A02 and A01 \ A02 = ;. If there is no su
han element type and D is not a simple DTD, it is possible to
reate it by usingthe following transformation. Pi
k � satisfying the previous
onditions ex
ept forthere is more than one path whose last element is � . Pi
k p 2 paths(D) su
h thatlast(p) = � . De�ne a DTD Dp = (Ep; A; Pp; Rp; rp) as follows. rp = [r℄ andEp = (E �frg)[f[q℄ j q 2 paths(D) and q is a pre�x of pg (we use square bra
ketsto distinguish between paths and element types). The fun
tions Pp and Rp arede�ned as follows.|For ea
h q 2 paths(D) and � 0 2 E su
h that q:� 0 is a pre�x of p, Pp([q℄) =f(P (last(q))), where f is a homomorphism de�ned as f(� 0) = [q:� 0℄ and f(� 00) =� 00 for ea
h � 00 6= � 0. Moreover, Pp([p℄) = P (last(p)) and Pp(� 0) = P (� 0), for ea
h� 0 2 E � frg. ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

App{6 � M. Arenas and L. Libkin|For ea
h [q℄ 2 Ep, Rp([q℄) = R(last(q)). Moreover, Rp(� 0) = R(� 0), for ea
h� 0 2 E � frg.Let � [fS ! qg be a set of fun
tional dependen
ies over D. We de�ne a setof fun
tional dependen
ies �p [fSp ! qpg over Dp as follows. For ea
h path q0mentioned in � [fS ! qg, if q0 = q1:q2, where q1 is the longest
ommon pre�x ofq0 and p, then q0 is repla
ed by g(q1):q2, where g is an homomorphism de�ned asg([r℄) = [r℄ and g([w:� 0℄) = g([w℄):[w:� 0 ℄, for ea
h w:� 0 pre�x of p. The following isstraightforward.Lemma A.5. Let D, � [fS ! qg, Dp and �p [fSp ! qpg be as above. Then,(D;�) ` S ! q i� (Dp;�p) ` Sp ! qp.Theorem 7.2 now follows from Lemmas A.4 and A.5.A.3 The Impli
ation Problem for Relational DTDs is in
oNPTo prove this theorem we start with the following lemma.Lemma A.6. Given a relational DTD D, a set � of fun
tional dependen
ies overD and S[fpg � paths(D), (D;�) 6` S ! p if and only if there is an XML tree T anda path q pre�x of p su
h that T
onforms to D, T satis�es �, tuplesD(T) = ft1; t2g,t1:S = t2:S, t1:S 6= ?, t1:p 6= t2:p, t1:q 6= t2:q and for ea
h s 2 paths(D), if q isnot a pre�x of s, then t1:s = t2:s.Proof. We will prove only the \only if" dire
tion, sin
e the \if" dire
tion istrivial.Suppose that (D;�) 6` S ! p. There is an XML tree T 0
onforming to D andsatisfying � su
h that T 0 6j= S ! p. Then, there are tuples t01; t02 2 tuplesD(T) su
hthat t01:S = t02:S, t01:S 6= ? and t01:p 6= t02:p. Let q be the shortest pre�x of p su
hthat t01:q 6= t02:q. We de�ne tree tuples t1 and t2 as follows. For ea
h s 2 paths(D),if q is not a pre�x of s, then t1:s = t01:s and t2:s = t01:s. Otherwise, t1:s = t01:s andt2:s = t02:s. Noti
e that t1; t2 2 tuplesD(T 0).Given that D is a relational DTD, it is possible to �nd T 2 treesD(ft1; t2g) su
hthat T j= D. We need to prove that T satis�es the
onditions of the lemma. Byde�nition of t1 and t2, tuplesD(T) = ft1; t2g and for ea
h s 2 paths(D), if q is nota pre�x of s, then t1:s = t2:s. Besides, t1:S = t2:S, t1:S 6= ? and t1:p 6= t2:p, sin
et01:S = t02:S, t01:S 6= ?, t01:p 6= t02:p and q is a pre�x of p. Finally, t1:q 6= t2:q, sin
et01:q 6= t02:q, and T j= �, sin
e T 0 j= � and t1; t2 2 tuplesD(T 0).Now we are ready to prove that the impli
ation problem for relational DTDs is in
oNP. Let D be a relational DTD, � a set of fun
tional dependen
ies over D andS[fpg � paths(D). Let pre�x(�[fS ! pg) be the set of all p0 2 paths(D) su
h thatp0 is a pre�x of a path mentioned in �[fS ! pg. Noti
e that kpre�x(�[fS ! pg)kis O(k� [fS ! pgk2).To
he
k whether (D;�) 6` S ! p, we use a nondeterministi
 algorithm thatguesses the tuples t1 and t2 mentioned in Lemma A.6. This algorithm does not
onstru
t all the values in t1 and t2, it guesses only the values of these tuplesthat are ne
essary to verify whether treesD(ft1; t2g) j= �. The algorithm works asfollows. For ea
h s 2 pre�x(� [fS ! pg), guess the values of t1:s and t2:s. Verifywhether it is possible to
onstru
t an XML tree
onforming to D and
ontainingACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

A Normal Form for XML Do
uments � App{7t1 and t2. If this does not hold, then return \no". Otherwise, guess a pre�x qof p. Verify whether t1:S = t2:S, t1:S 6= ?, t1:p 6= t2:p, t1:q 6= t2:q and for ea
hs 2 paths(� [fS ! pg), if q is not a pre�x of s, then t1:s = t2:s. If this does nothold, then return \no". Otherwise,
he
k whether the values in t1 and t2 satisfy �.If this is the
ase, then return \yes", otherwise return \no".The previous algorithm works in nondeterministi
 polynomial time, sin
ekpre�x(� [fS ! pg)k is O(k� [fS ! pgk2). Therefore, we
on
lude that theimpli
ation problem for relational DTDs is in
oNP.A.4 Proof of Proposition 7.7We only need to prove the \if" dire
tion. Suppose that for ea
h nontrivial FD ofthe form S ! p:�l or S ! p:S in �, S ! p 2 (D;�)+.Assume that (D;�) is not in XNF. Without loss of generality, assume that thereexists a nontrivial fun
tional dependen
y S0 ! p0:�l0 su
h that S0 ! p0:�l0 2(D;�)+ and S0 ! p0 62 (D;�)+. By Lemma A.6, there is an XML tree T and apath q pre�x of p0 su
h that T
onforms to D, T satis�es �, tuplesD(T) = ft1; t2g,t1:S0 = t2:S0, t1:S0 6= ?, t1:p0 6= t2:p0, t1:q 6= t2:q and for ea
h s 2 paths(D), if q isnot a pre�x of s, then t1:s = t2:s. If t1:p0:�l0 6= t2:p0:�l0, then (D;�) 6` S0 ! p0:�l0,a
ontradi
tion. Thus, we
an assume that t1:p0:�l0 = t2:p0:�l0. We
an alsoassume t1:p0:�l0 6= ?, sin
e if t1:p0:�l0 = t2:p0:�l0 = ?, then t1:p0 = t2:p0 = ?and, therefore, T j= S0 ! p0. De�ne a new tree tuple t01 as follows: t01:w = t1:w,for ea
h w 6= p0:�l0, t01:p0:�l0 6= t1:p0:�l0 and t01:p0:�l0 6= ?. Then, there is anXML tree T 0 2 treesD(ft01; t2g) su
h that T 0 j= D and T 0 6j= S0 ! p0:�l0, sin
ep0:�l0 62 S0 (S0 ! p0:�l0 is a nontrivial fun
tional dependen
y). If T 0 j= �, then(D;�) 6` S0 ! p0:�l0, a
ontradi
tion. Hen
e T 0 6j= � and, therefore, there isS ! p00 2 � su
h that T 0 6j= S ! p00. But p00 must be equal to p0:�l0, sin
et1; t2 2 tuplesD(T) and T j= �. Therefore, T 6j= S ! p0, be
ause t1:S = t01:S = t2:S,t01:S 6= ? and t1:p0 6= t2:p0. We
on
lude that (D;�) 6` S ! p0, whi
h
ontradi
tsour initial assumption sin
e S ! p0:�l0 is a nontrivial FD in �.

ACM Transa
tions on Database Systems, Vol. V, No. N, Month 20YY.

