
[28] W. W. McCune and L. J. Henschen. Maintaining state constraints in relational databases: Aproof theoretic basis. Journal of the ACM 36 (1989), 46{68.[29] J.-M. Nicolas. Logic for improving integrity checking in relational data bases. Acta Informatica,18:227{253, 1982.[30] J. Nurmonen. On winning strategies with unary quanti�ers. J. Logic and Computation, 6 (1996),755{778.[31] X. Qian. An e�ective method for integrity constraint simpli�cation. In Fourth InternationalConference on Data Engineering, 1988.[32] X. Qian. An axiom system for database transactions. Information Processing Letters 36 (1990),183{189.[33] X. Qian. The expressive power of the bounded-iteration construct. Acta Informatica 28(7):631{656, October 1991.[34] J. G. Rosenstein. Linear Orderings. Academic Press, New York, 1982.[35] T. Sheard and D. Stemple. Automatic veri�cation of database transaction safety. ACM Trans.Database Systems 14 (1989), 322{368.[36] T. Schwentick. On winning Ehrenfeucht games and monadic NP. Annals of Pure and AppliedLogic 79 (1996), 61{92.[37] D. Stemple, S. Mazumdar and T. Sheard. On the modes and meaning of feedback to transactiondesigners. In Proceedings of ACM-SIGMOD 1987 International Conference on Management ofData, pages 374{386, 1987.
32



[11] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivations of programs. Comm.ACM 18 (1975), 453{457.[12] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976[13] K. Etessami. Counting quanti�ers, successor relations, and logarithmic space. Journal of Com-puter and System Sciences 54 (1997), 400{411.[14] R. Fagin. Finite model theory { a personal perspective. Theoretical Computer Science 116 (1993),3{31.[15] R. Fagin. Easier ways to win logical games. In DIMACS Series in Discrete Mathematics andTheoretical Computer Science, American Mathematical Society, vol. 31, 1997, pages 1{32.[16] R. Fagin. Comparing the power of games on graphs. Mathematical Logic Quarterly 43 (1997),431{455.[17] R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs. monadic co-NP. Information andComputation 120 (1995), 78{92.[18] H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium '81, pages105{135. North-Holland, 1982.[19] S. Grumbach and C. Tollu. On the expressive power of counting. Theoretical Computer Science,149 (1995), 67{99.[20] Y. Gurevich. Toward logic tailored for computational complexity. In Proceedings of Computationand Proof Theory, Springer Lecture Notes in Mathematics, vol. 1104, 1984, pages 175{216.[21] L. J. Henschen, W. W. McCune, and S. A. Naqvi. Compiling constraint-checking programs from�rst-order formulas. In H. Gallaire, J. Minker, and J. Nicolas, editors, Advances in DatabaseTheory, pages 145{170. Plenum Press, 1984.[22] A. Hsu and T. Imielinski. Integrity checking for multiple updates. In Proceedings of ACM-SIGMOD 1985 International Conference on Management of Data, pages 152{168, 1985.[23] N. Immerman. Languages that capture complexity classes. SIAM J. Comput. 16 (1987), 760{778.[24] N. Immerman and E. Lander. Describing graphs: a �rst-order approach to graph canonization.In A. Selman, ed., Complexity Theory Retrospective, Springer, Berling, 1990, pages 59{81.[25] N. Immerman, S. Patnaik and D. Stemple. The expressiveness of a family of �nite set languages.Theoretical Computer Science, 155(1) (1996), 111{140.[26] D. Karabeg and V. Vianu. Simpli�cation rules and complete axiomatization for relational updatetransactions. ACM Trans. Database Systems 16 (1991), 439{475.[27] L. Libkin and L. Wong. Query languages for bags and aggregate functions. Journal of Computerand System Sciences 55 (1997), 241{272. 31



try to test its safety.As mentioned in the introduction, we are interested in transforming a veri�able transaction T intoa safe transaction if wpc(T; �) then T else abort which will maintain � as an invariant. As pointedout in [31, 21, 22, 28, 29], assuming that � is always true, it may be possible to �nd a �, which ismuch simpler than wpc(T; �), such that � ! (�$ wpc(T; �)). Using this we can transform T toif � then T else abort which is more e�cient. We are interested in studying classes of transactionsfor which such a simpli�cation can be e�ciently carried out.Acknowledgements: We would like to thank Neil Immerman and Scott Weinstein for their helpfulcomments during earlier stages of this work. We are grateful to the reviewers for a number of valuablesuggestions; we especially thank the reviewer who found an error in an earlier version of the proof ofTheorem 3. Thanks to Ron Fagin for clarifying the use of the Ajtai-Fagin games and pointing out[16], and to Moshe Vardi for bringing the results of [30] to our attention.References[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, 1994.[2] S. Abiteboul and V. Vianu. A transaction-based approach to relational database speci�cation.Journal of the ACM 36 (1989), 758{789. Extended abstract in Proceedings of the 4th Symposiumon Principles of Database Systems, 1985, pages 193{204.[3] S. Abiteboul and V. Vianu. Procedural languages for database queries and updates. Journal ofComputer and System Sciences 41 (1990), 181{229.[4] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates. Journal ofComputer and System Sciences 43 (1991), 62{124.[5] M. Ajtai and R. Fagin. Connectivity is harder for directed than for undirected graphs. Journalof Symbolic Logic 55 (1990), 113{150.[6] R.J.R. Back. Proving total correctness of nondeterministic programs in in�nitary logic. ActaInformatica 15 (1981), 233{249.[7] M. Benedikt, G. Dong, L. Libkin and L. Wong. Relational expressive power of constraint querylanguages. Journal of the ACM, 45 (1998), to appear. Extended abstract in Proceedings of the15th Symposium on Principles of Database Systems, 1996, pages 5{16.[8] M. Benedikt, T. Gri�n and L. Libkin. Veri�able properties of database transactions. In Proceed-ings of the 15th Symposium on Principles of Database Systems, 1996, pages 117{127.[9] R. Berghammer, B. Elbl and U. Schmerl. Formalizing Dijkstra's predicate transformer wp inweak second-order logic. Theoretical Computer Science 146 (1995), 185{197.[10] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of programmingwith sets/bags/lists. In LNCS 510: Proc. of 18th ICALP, Madrid, Spain, July 1991, pages60{75. Springer Verlag, 1991. 30



where each Qkzk is a quanti�er binding variable zk , and each Bi is a conjunction of literals Aij suchthat any Aij with a variable x free is of the form x = �(~z) or x 6= �(~z), where x is not free in �(~z).Let � be all terms that appear in some Bi.Claim 2: For every graph G and any (x; y) in U � U , if G j= �(x; y) then x and y are in �(G).Proof of Claim 2. If this is not the case, �x G, x0 and y0, with (WLOG) y0 not in �(G). Let y1 beany other element of U � �(G). Then G j= �(x0; y1), since for each � 2 � and for any z1; : : :zk nodesof G, G j= y0 = �(z1; : : : ; zk) if and only if G j= y1 = �(z1; : : : ; zk). But this gives in�nitely manyedges satisfying �(x; y), contradicting the properties of �. This proves Claim 2.Claim 2 shows that � and �E = � satisfy the conclusion of Lemma 9. Now Lemma 9 along with Claim1 complete the proof of the theorem. 2Corollary 5 PR(FOc(
)) is the maximal robustly veri�able language over FOc(
). 26 Concluding remarksIn this paper we have looked at the problem of verifying transaction safety before transactions areexecuted. The main results can be summarized as follows. If integrity constraints are speci�ed in�rst-order logic, then for �rst-order transaction languages it is possible to compute both weakest pre-conditions and prerelations. However, if a transaction language has a mechanism for doing recursion,then such ability is generally lost. There are still some transactions that are not �rst-order de�nablebut have weakest preconditions. However, if we require that the ability to calculate weakest precon-ditions be independent of extensions to the language, then we can use only languages that admitprerelations.The last statement, which is a reformulation of corollary 5 can be interpreted as follows. If we areinterested in designing a \nice" transaction language that is veri�able over FOc, and the veri�cationalgorithm can be extended to encompass additions to the signature, then we cannot hope that thelanguage will be more expressive than the �rst-order transaction language de�ned in [32, 33].In this paper we only discussed whether it is possible to compute preconditions or prerelations, andwhat are the implications of our ability to compute them. The algorithmic aspects of computingpreconditions were left unexplored. In particular, we would like to address in our future work theproblem of e�ciently computing preconditions. We believe it is of practical importance to identifyfragments of transaction languages such as those in [3, 4, 32] for which computing preconditions canbe done e�ciently (say, in polynomial time).Computing preconditions may depend on a form in which transactions are speci�ed. For simplerelational transactions it is possible to reason about their equivalence [26]. Combining this reasoningtogether with the theorem proving approach of [35] is an interesting direction to pursue. That is, �rstwe may try to �nd a better analyzable transaction which is equivalent to the original one, and then29



To �nish the proof, it therefore will su�ce to prove thathT (G); p1[(dom(p)Of(x; y)g)i j= Hasmax, hT (G); p1[((dom(p)[f(x; y)g)Of(x; y)g)i j= HasmaxBut since (x; y) is not an edge of T (G), any pair (s; t) is p-maximal in either of the above modelsif and only if it is p-maximal in hT (G); p1i. Hence both the above statements are equivalent tohT (G); p1i j= Hasmax. So hG; x; yi fails the second disjunct in EDEF as well as the �rst, and the proofof claim 1 is complete. 2To complete the proof, we need the following lemma.Lemma 9 EDEF is de�nable by a formula �E(x; y) along with a set of terms �. That is, there is aformula �E(x) and a set of FOc(
)-terms � such thathG; x; yi 2 EDEF , x; y 2 �(G) and G j= �E(x; y)Proof of lemma. T 2 WPC(FOc(
)) allows us to write out the �rst disjunct of EDEF in L as_(a;b)2dom(p)wpc(T; 9x9y:(x= a ^ y = b))^ (x = a ^ y = b):The second disjunct in EDEF is composed of two conjuncts. The �rst conjunct is just the negation ofW(a;b)2dom(p)(x = a ^ y = b). To handle the second conjunct we �rst obtain a L-formula 
(x; y) suchthat hG; p1 [ (dom(p)Of(x; y)g)i j= � , G j= 
(x; y)by taking � and replacing every atomic formula of the form P(�1; �2; �3; �4) by (W(a;b;c;d)2p1(�1 =a)^ (�2 = b)^ (�3 = c) ^ (�4 = d))_ (W(e;f)2dom(p)(�1 = e) ^ (�2 = f)^ (�3 = x) ^ (�4 = y)).One can analogously get a L-formula �(x; y) such thathG; p1 [ ((dom(p)[ f(x; y)g)Of(x; y)g)i j= � , G j= �(x; y)Putting these two together we can express the second conjunct in L, which shows that EDEF isL-de�nable by some formula �(x; y).Notice that the above construction yields a �(x; y) with the following properties. First, every atomicsubformula containing one of the variables x or y is of the form x = �(~z) or y = �(~z) for some term� ,where ~z contains no variables free in �. Second, �(x; y) has only �nitely many (x; y) satisfying it forevery graph G. Now we will use these properties of � to construct the required set �.Assume EDEF is nonempty. We can write �(x; y) asQ1z1 : : :Qnzn: _i<mBi28



In the above, ANB = f(x; y; w; z) 2 U � U � U � U j (x; y) 2 A ^ (w; z) 2 Bg, p1 = p�1(1) and DBstands for the set of �nite graphs whose nodes are from U .We will show that EDEF is de�nable by a formula �E(x; y) and set of terms � and that EDEF isexactly the prerelation for T of of G. That is, we prove the following.Claim 1: hG; x; yi 2 EDEF, (x; y) 2 T (G)Proof of Claim 1. First suppose (x; y) 2 T (G). We will show that hG; x; yi 2 EDEF.If (x; y) 2 dom(p), then by the �rst disjunct in EDEF, hG; x; yi 2 EDEF, so assume (x; y) 62 dom(p).Since (x; y) 62 dom(p), the characteristic function of p1 [ ((dom(p) [ f(x; y)g)Nf(x; y)g) gives anextension of p. Since p is �-good, this means thathG; p1[((dom(p)[f(x; y)g)Of(x; y)g)i j= � , hT (G); p1[((dom(p)[f(x; y)g)Of(x; y)g)i j= Hasmaxand hG; p1 [ (dom(p)Of(x; y)g)i j= � , hT (G); p1 [ (dom(p)Of(x; y)g)i j= HasmaxNote that since (x; y) 2 T (G), we have for each (s; t) 2 dom(p),hT (G); p1 [ ((dom(p)[ f(x; y)g)Of(x; y)g)i j= :P-maximal(s; t)and hT (G); p1 [ (dom(p)Of(x; y)g)i j= :P-maximal(s; t)Also note that since (x; y) 62 dom(p), and dom(p) 6= ;, (x; y) is P -maximal in the model hT (G); p1 [(dom(p)Nf(x; y)g)i. Furthermore, (x; y) will not be P -maximal in the model hT (G); p1 [ ((dom(p)[f(x; y)g)Nf(x; y)g)i, since here we have P(x; y; x; y) holding.Using the above we can verify thathT (G); p1 [ (dom(p)Of(x; y)g)i j= Hasmaxand hT (G); p1 [ ((dom(p)[ f(x; y)g)Of(x; y)g)i j= :Hasmaxsince (x; y) is the only P -maximal element in the �rst model, and there are no P -maximal elementsin the second model. This shows that the second disjunct in EDEF holds. Hence, hG; x; yi 2 EDEF.Now suppose (x; y) 62 T (G). We will show hG; x; yi 62 EDEF. Clearly hG; x; yi does not satisfy the�rst disjunct in EDEF. If (x; y) 2 dom(p), then it fails the second disjunct as well, and we are done.So suppose (x; y) 62 dom(p). Once again we havehG; p1 [ (dom(p)Of(x; y)g)i j= � , hT (G); p1 [ (dom(p)Of(x; y)g)i j= HasmaxandhG; p1[((dom(p)[f(x; y)g)Of(x; y)g)i j= � , hT (G); p1[((dom(p)[f(x; y)g)Of(x; y)g)i j= Hasmax27



Let p0 be a �nite partial function such that p0 � p and(2) (�1(~s1); : : : ; �4(~s4)) 2 P ! p0(�1(~s1); : : : ; �4(~s4)) = 1(�1(~s1); : : : ; �4(~s4)) 62 P ! p0(�1(~s1); : : : ; �4(~s4)) = 0Here each �i(~x); for i 2 f1; 2; 3; 4g, ranges over terms contained in an atomic subformulae of � oratomic subformulae of Hasmax, and ~si range over the vectors from U such that the length of ~si equalsthe arity of �i, and each element of ~si is a vertex of G or a vertex of T (G).Then p0 will be �-terrible. Condition (2) guarantees that for every P 0 with �P 0 � p0, we havehT (G); P 0i j= Hasmax , hT (G); P i j= Hasmaxand also hT (G); P 0i j= � , hT (G); P i j= �This �nishes the proof of the proposition. 2To �nish Case 1, we inductively construct a function p de�ning a characteristic function which is�-terrible for every �. That is, let h�ii be an enumeration of all the sentences in L+, and let p0 beempty, and pn+1 be any �nite p0 � pn such that p0 is �n-terrible. The construction of this sequencecan be carried out e�ectively by Proposition 6. We can also ensure that Sn pn de�nes a total functionby throwing the nth element of U into the domain of pn if it is not there already.Let P be the unique set such that �P � pn for all n. Clearly, P is recursive, since the construction ofpn is recursive. If we unwind the de�nition of what it means to be terrible, we see that for P as above,there can be no sentence of L+ that holds in a graph G exactly when hT (G); P i j= Hasmax. HenceT does not admit weakest preconditions over L+, and this contradicts the fact that T is robustlyveri�able, completing the proof in Case 1.Getting a prerelation if the diagonalization is stalled. This corresponds to the negation ofCase 1. That is:Case 2: There is a � and a p that is �-good.Fix such a p and �. Without loss of generality, we can assume that p is not empty. Let dom(p) be theset of pairs (s; t) such that there exists ~t in the domain of p that contains both s and t.Our goal will be to show that there is a formula �E(x; y) and a set of terms � which de�nes the edgesof T (G). Consider the set:EDEF def= fhG; x; yi 2 DB � U � U j( (x; y) 2 dom(p) ^ (x; y) 2 T (G) ) _(:( (x; y) 2 dom(p) ) ^:(hG; p1 [ ((dom(p) [ f(x; y)g) )Nf(x; y)g)i j= �$ hG; p1 [ (dom(p)Nf(x; y)g)i j= �) )g26



Let P-maximal(s; t) be the L+ formula (9x9y:E(x; y)^P(x; y; s; t))^(8x8y: (E(x; y)! :P(s; t; x; y))).Let Hasmax � 9s9t:E(s; t) ^ P-maximal(s; t)That is, Hasmax is the L+-sentence asserting that there is a P -maximal pair.If p and q are partial functions, then q � p means that q extends p as a function. For any set A, let�A be its characteristic function. We use this notation in the following de�nitions.Suppose p is a �nite partial function from U4 into f0; 1g. If � is an L+ sentence, say that:[1] p is �-good if for all �nite P with �P � p, and for all graphs G,hG;P i j= � , hT (G); P i j= Hasmax[2] say p is �-poor if p is not �-good.[3] p is �-terrible if there is a graph G such that for all �nite P with �P � p,(�) :(hG;P i j= �, hT (G); P i j= Hasmax)Intuitively, a �nite partial function p used in the de�nitions above is to be interpreted as an approxi-mation to a predicate P . The idea of the construction that will follow is that we want our �nal P notto satisfy (hG;P i j= �, hT (G); P i j= Hasmax) for any L+ sentence �. Then Hasmax will not have ade�nable weakest precondition in L+, contradicting the assumption that T is robustly veri�able. Weconstruct our solution by inductively constructing a sequence of approximations pn that guarantee (�)for each � in turn. We can show that we can continue this construction successfully provided that thep we have constructed thus far is not �-good. We show that if we are \stuck" with a �-good p thenT has a h�; �E(x; y)i as required.The proof of the theorem now falls into two cases.Deriving a contradiction if the diagonalization succeeds. The diagonalization succeedingcorresponds to the following being true:Case 1: Every �nite partial function p is �-poor for each �.We will now show that this leads to a contradiction of robust veri�ability.Proposition 6 For every L+ sentence � and every �-poor p, there exists a partial function p0 with a�nite domain such that p0 � p and p0 is �-terrible. Furthermore, p0 can be found e�ectively given p.Proof. Since p is poor for �, there is �nite P with �P � p, and a graph G such that (�) holds. Sincewe can test property (�), we can �nd such G and P e�ectively by listing out all pairs hG;P i until we�nd one such that (�) holds. 25



The induction steps for boolean connectives go through routinely:T (G) j= 
1 ^ 
2, T (G) j= 
1 and T (G) j= 
2, G j= WPC[
1] and G j= WPC[
2] by induction hypothesis, G j= WPC[
1] ^WPC(
2), G j= WPC[
1 ^ 
2]0For the quanti�er case 
 � 9x:�(x; ~z), let �0(x; ~z) = WPC(�). For each G and for each ~t � �(G), weget T (G) j= 9x:�(x;~t), 9v 2 �(G):T (G) j= �(v;~t), 9v 2 �(G):G j= �0(v;~t) by induction, 9v 2 �(G); 9v0 2 �(G) such that G j= �0(v;~t) and ((v; v0) 2 T (G) or (v0; v) 2 T (G)), G j= 9~v:(W�2��0(�(~v);~t) ^ 9~v0:W�2�(�E(�(~v); �(~v0))_ �E(�(~v0); �(~v)))), G j= WPC[
](~t)which completes the proof of correctness of the WPC algorithm.For the other direction, assume that T is a robustly veri�able transaction. We will prove that T admitsa formula �E(x; y) and a set of terms � de�ning the prerelation as in the de�nition of PR(FOc(
)).That is, we will show that there are � and �E(x; y) such that T (G) has edge set f(x; y) j x; y 2�(G); G j= �E(x; y)g.Let P be an additional 4-place predicate symbol. Let L+ be the set of all �rst-order formulae in thelanguage with symbols for all constants in the universe, all elements of 
, and the symbol P. Let Lbe FOc(
).Our proof will proceed by attempting to inductively construct a recursive interpretation P of P suchthat T does not admit de�nable weakest preconditions over the extension of L by P . Our attemptto construct such a `bad' P will be a straightforward diagonalization: we will pick a certain sentenceHasmax below, and for each possible sentence � we will pick an initial segment of P designed toprevent � from being the precondition of Hasmax. Since we know that T is in WPC(FOc(
)), thisdiagonalization cannot succeed; that is, at some point we have constructed a �nite initial segment ofP that cannot be extended further to prevent a particular sentence � from being the precondition ofHasmax. The heart of the argument shows that we can use this initial segment and the sentence � toget a �rst-order de�nition of T , thus showing that T is in PR(FOc(
)).The proof is now organized as follows: �rst, we de�ne the framework for our inductive diagonalizationargument. We then show that if this diagonalization were to succeed, we would have a contradictionof robust veri�ability for T . Finally, we show that from a partial function at which the diagonalizationfails we can construct a prerelation for T .First, we introduce some new notation. For �(t) an L+ formula, P a subset of U � U � U � U , G agraph (that is, a graph on a �nite subset of U), and t 2 U , we write hG;P i j= �(t) if G j= �(t), whenP is interpreted as P . 24



language that captures this class. The existence of such a language was proved in proposition 3.Theorem 8 For every 
, the transaction language PR(FOc(
)) is robustly veri�able over FOc(
),and every transaction robustly veri�able over FOc(
) is equivalent to a transaction in PR(FOc(
)).Proof. As in the previous results, without loss of generality we will assume that the signature consistsof a single binary relation. We �rst show that transactions in PR(FOc(
)) are robustly veri�able. LetT be given by a set of terms � and formula �E(x; y) giving the prerelation of E(x; y) with respectto T . Without loss of generality, we can assume all terms in � have the same arity n. We give analgorithm WPC transforming every formula 
(~z) in FOc(
0) for any extension 
0 � 
 into a FOc(
0)formula WPC[
](~z) such that G j= WPC[
](~z) i� T (G) j= 
(~z).The algorithm is recursive in the logical complexity of 
. If 
 is quanti�er-free, WPC proceeds byreplacing every occurrence of E(�1; �2) where each �i is a term, by the formula(9~y1:W�2� �(~y1) = �1(~z))^ (9~y2:W�2� �(~y2) = �2(~z))^ �E(�1(~z); �2(~z))Then de�ne WPC[:
] = :WPC[
]WPC[
1 _ 
2] = WPC[
1] _WPC[
2];WPC[
1 ^ 
2] = WPC[
1] ^WPC[
2];If 
 � 9x:�(x; ~z), de�ne WPC[
] to be9~y1:(W�2� �0(�(~y1); ~z) ^9~y2:( W�2� �E(�(~y2); �(~y1))_ �E(�(~y2); �(~y1))));where �0(x; ~z) = WPC[�]. First, we must show that the algorithm WPC is correct. We will show thatfor each T in PR(FOc(
)), given by �; �E, and for each formula 
(~z) in FOc(
0), and for each graphG = hX;Ei, and a vector ~t of elements from �(G), the following holds:G j= WPC[
](~t) , T (G) j= 
(~t)Taking 
 to be a sentence, we get as a corollary to this lemma that WPC witnesses the e�ectiveveri�ability of PR(FOc(
)). The proof proceeds by induction on the complexity of 
.If 
(~t) is atomic, then 
(~t) is either of the form E(t1; t2), with each ti an element of �(G) or containsno occurrences of E. In the �rst case we get the required equivalence immediately from the de�nitionof PR: T (G) j= E(t1; t2) , t1; t2 2 �(G) and G j= �E(t1; t2) , G j= WPC[E(t1; t2)]In the second case, WPC[
] = 
, so the equivalence is trivial.23



any constants), G j= �(a; b) i� �(G) j= �(�(a); �(b)). Since �(X)\ C = ;, �(G) j= �(�(a); �(b)) i�(�(a); �(b)) 2 T (�(G)) which, by genericity, is equivalent to (a; b) 2 T (G). Thus, G j= �(a; b) i�(a; b) 2 T (G), proving that T admits prerelations. 2Since the formula � constructed in the proof above does not mention any constant, we can alsoconclude that there are no generic transactions in WPC(FOc)� PR(FO).5 Robustly veri�able transactionsSummarizing the results of the previous sections, we can say that many non-�rst-order transactions donot have weakest preconditions. Nevertheless, it is possible to �nd some non-�rst-order transactionsthat do have them. However, there is a gap between FO and FOc. While we can �nd \nice" transac-tions that are not �rst-order de�nable and have weakest preconditions over FO, no such transactionsexist when FO is replaced by FOc. In particular, the Datalog:-de�nable transaction that provided theseparation for WPC(FO) and PR(FO) no longer has preconditions if the language is FOc. While thisfollows from proposition 4, we give a direct proof that illustrates the problems caused by the presenceof constants.Proposition 5 The transaction T 2 WPC(FO) � PR(FO) from the proof of theorem 7 is not inWPC(FOc).Proof. Let c be a constant symbol for some element of the universe. Assume that T 2 WPC(FOc).Let � be a formula in the language that consists of E and c de�ned as (9x9y:E(x; y)^ (x 6= y)) ^(8x::E(x; c)^ :E(c; x)); this formula says that the graph has at least one edge which is not a loop,and c is not one of its nodes. Let � = wpc(T; �) and 
 � � ^ (9x:E(x; c)_ E(c; x)). Then G j= 
 i�G j= 	c&c (since T (G) has an edge which is not a loop), c is one of its nodes but c is not a node inT (G). That is, G is a C&C-graph but not a chain. In other words, for the graphs in which one nodeis the interpretation of c, testing for chains would be FOc-de�nable. However, this is impossible, andhence T 62 WPC(FOc). 2Proposition 5 shows that a transaction veri�able over a language is not necessarily veri�able over evena simple extension of the language. This motivates the following de�nition. We call a transactionrobustly veri�able if it is veri�able in every extension of the language. Below, we show that for FOcas a speci�cation language (in fact, even for FOc(
)), a precise characterization of robust transactionsis possible { these are exactly the FOc(
) de�nable ones.Formally, a transaction T is robustly veri�able over FOc(
) if for every extension of 
 to 
0 with arecursive collection of recursive predicates and functions, it is the case that T 2 WPC(FOc(
0)). Atransaction language TL is robustly veri�able if all its transactions are.The following result, together with proposition 3, gives the proof of Theorem E. In what follows, weuse PR(FOc(
)) to mean both the class of transactions that admit prerelations and the transaction22



Sequential languages that de�ne the same classes of transactions can be found in the literature, seefor example [32, 33].From proposition 3 and theorem 5 we obtainCorollary 4 For any 
, there are transactions in WPC(FOc(
))�PR(FOc(
)). 2However, in contrast to pure �rst-order logic, there are no generic separating transactions if constantsare present in the language.Proposition 4 There are no generic transactions in WPC(FOc)�PR(FOc).Proof. As before, we assume without loss of generality that we are dealing with the language ofgraphs. Let T be a generic transaction in WPC(FOc). Our goal is to show that T admits prerelations.First notice that for any graph G with the set of nodes X , the set of nodes of T (G), Y , is a subsetof X . Indeed, assuming the existence of a 2 Y � X , pick any b 2 U � X , b 6= a, and consider apermutation � that permutes a and b and leaves everything else �xed. Since G = �(G), by genericitywe obtain that b is also a node of T (G). Since U is in�nite, this means that Y is in�nite, which isimpossible. Thus, Y � X . Consequently, de�ning prerelations for T , we can take � to contain a singlevariable. In other words, it is enough to �nd a formula �(x; y) such that G j= �(a; b), (a; b) 2 T (G)for every a; b 2 X .Let c and d be arbitrary distinct elements of the universe, and let 	 be a FOc-sentence expressingwpc(T;E(c; d)). Let � be a sentence expressing wpc(T;E(c; c)). Now we consider formulae  (x; y)and �(x) in two and one free variables respectively that are obtained from 	 and � by replacing eachoccurrence of c by x and each occurrence of d by y. De�ne
(x; y) � (x = y ^ �(x))_ (:(x = y) ^  (x; y)):Let C be the set of all constants that occur in 
. Note that c; d 62 C.We now claim that for any graph G whose set of nodes X is disjoint from C, the formula 
 de�nesprerelations. That is, G j= 
(a; b) i� (a; b) 2 T (G) for every a; b 2 X . Consider the case a 6= b; thecase of a = b is similar. Let � be a permutation of the universe that permutes a and c, b and d, andleaves everything else �xed. Then by genericity (a; b) 2 T (G) i� (c; d) 2 T (�(G)). Since 	 =  (c; d) isa weakest precondition, (c; d) 2 T (�(G)) i� �(G) j=  (c; d), which is equivalent to G j=  (a; b), since� leaves everything outside of fa; b; c; dg �xed and  does not use any of these constants. This provesour claim.Now consider a new formula �(x; y) obtained from 
(x; y) as follows: any atomic subformula involvinga constant k from C (which is of the form z = k or E(k; z) or E(z; k) where z is either x, or y, or abound variable) is replaced by false. Note that � is now a FO-formula. Then for any graph G withthe node set X such that X \ C = ;, we have G j= 
(a; b) i� G j= �(a; b) for any a; b 2 X .Let G now be an arbitrary graph on X . Consider a; b 2 X and any permutation � of U such that�(X)\C = ; (it exists because U is in�nite). Since � is a FO-formula (in particular, does not mention21



Let N1 [N2 be the partition of f0; 1; : : : ; n� 1g such that for all i 2 N1: Li j= �0 and for all j 2 N2:Lj j= :�0. Let p0i be the sentence saying that the chain part of the input has precisely i elements; itcan be de�ned as pi ^ :pi+1. Then � is found as follows:� � ( _i2N1 p0i ^ ^j2N2:p0j ) _ pnif for all m � n: Lm j= �0, and � � ( _i2N1 p0i ^ ^j2N2:p0j ) ^ :pnif for all m � n: Lm j= :�0.Finally, we observe that the weakest precondition � given above is computable from �. Indeed, it ispossible to verify if  (r)(x) holds in one-node diagonal graphs, and for case 3 it is known [20] that ncan be taken to be 2k, where k is the quanti�er rank of �0. Hence, all that is needed for constructingthe precondition in case 3 is verifying if �0 holds for Lj , where j = 0; : : : ; 2k + 1. The theorem isproved. 2The next result shows that the preconditions constructed by the algorithm in the proof of theorem 7are rather complex.Corollary 3 Let T be the transaction from theorem 7. Then, for any n > 1, there exists a sentence� of quanti�er rank n, such that if m is the quanti�er rank of wpc(T; �) computed by the algorithm oftheorem 7, then m � 2n.Proof. We may take � to be already a Gaifman sentence. Then, according to the algorithm oftheorem 7, one of the Boolean components of wpc(T; �) is p2n which means that the quanti�er rankof wpc(T; �) is at least 2n. 2We do not know if a better algorithm is possible. In fact, it remains open whether polynomial timeweakest precondition algorithms exist for any transaction inWPC(FO) that is not �rst-order de�nable.The separation result continues to hold for more powerful logics, although it is impossible to �nd aseparating transaction that will have such a nice description as above. First we observe the following.Proposition 3 For any 
, PR(FOc(
)) can be captured by a transaction language.Proof. Since all functions and predicates in 
 are recursive, the set �(D) is computable. Thetransactions in the language capturing PR(FOc(
)) are given by tuples (�; �1; : : : ; �k) where � is a�nite set of terms, and each �i has ni free variables. The generated transaction is de�ned to be suchthat the tuple (�; �1; : : : ; �k) constitutes a prerelation. This fully determines the transaction, and thede�nition of prerelation implies that such a language captures PR(FOc(
)). 220



d(x; y)� i denote that the distance between x and y is bigger than i. For every constant i, d(x; y) > ican be expressed in �rst order logic. It is known that every �rst order sentence is equivalent to aBoolean combination of Gaifman sentences of the following form [18]:(1) � � 9x1 : : :9xs:( (r)(x1) ^ : : :^  (r)(xs) ^ ^i;j=1;:::;s;i6=j d(xi; xj) > 2r)Hence, it is enough to show that with respect to T , every � of form (1) has a weakest precondition.Without loss of generality, assume s � 1 (otherwise � is constant and the proof is trivial).Now observe that T (G) has the following property. It is either a diagonal graph (having loops on allits nodes and nothing else), in which case Nr(x) = fxg for any x, or it is a �nite nonre
exive linearorder (transitive closure of a chain) in which case N1(x) contains all nodes for any x.It is enough to �nd a sentence � such that G j= � i� T (G) j= � provided that G is a graph thatsatis�es 	c&c. Since all neighborhoods in diagonal graphs consist of one point, we have two cases. If (r)(x) holds in the neighborhood consisting of x only, where the corresponding graph has a loop onx, then � on the diagonal graph reduces to the statement that there exist at least s distinct nodes.Hence, in this case a precondition for � is (	c&c ^ �)_ (:	c&c ^�s) where �s is a �rst order sentencesaying that there are at least s distinct nodes. If  (r)(x) fails in the one-point neighborhoods, then	c&c ^ � is a precondition.Now, assuming that G satis�es 	c&c, we construct a precondition for � by considering the followingcases.Case 1: s > 1 and r � 1. Then � cannot be satis�ed on a �nite linear order because this would implythe existence of two nodes such that the distance between them is at least 2. Hence, for case 1 wetake � to be false.Case 2: s � 1, r = 0. Here we consider two subcases. First, suppose that  (r)(x) fails in one-pointneighborhoods where the only edge is the loop on that point. Then � becomes false and hence � istaken to be false. Second, assume that  (r)(x) is satis�ed in such one-point neighborhoods. Then �becomes equivalent to 9x1 : : :9xs:(Vi;j=1;:::;s;i6=j d(xi; xj) > 0). Thus, it will hold in T (G) i� the chainpart of G has at least s points. The sentence ps verifying this property is given below; then � is takento be ps. ps � 9y1 : : :9ys:((8z::E(z; y1)) ^E(y1; y2) ^ : : :E(ys�1; ys))Case 3: s = 1, r � 1. Then � becomes 9x: (r)(x). Since we only consider � on graphs of the formLn, a linear order on n nodes, an r-neighborhood of any x 2 Ln is the whole of Ln, which meansthat there exists a (non-local) sentence �0 that is equivalent to � on all Ln (it is obtained from � byremoving range restriction from local quanti�ers). Now we need the following claim, proved in [20, 34]by using Ehrenfeucht-Fraiss�e games.Claim. For every �rst order sentence �0, it is possible to �nd n 2 N such that either for all m � n:Lm j= �0, or for all m � n: Lm j= :�0.Using this claim, we can �nd the precondition � as follows. Look at �0 and �nd the n as stated above.19



4 Preconditions vs. prerelationsThe goal of this section is to examine the relationship between WPC(FO) and PR(FO). In particular,we �nd a transaction that separates them. However, we are not interested in just any transaction.Usually transformations expressed by database languages are required to satisfy certain properties. Inparticular, one is most often interested in transactions and queries computable in polynomial time. Inaddition, queries and transformations are sometimes required to be generic, that is, invariant underany permutation of the universe.There is a large body of research dealing with languages capable of expressing polynomial-time genericdatabase queries or transformations. Languages in which such transformations can be expressed in-clude datalog with negation [1], languages based on structural recursion [10], loops [27], nondetermin-istic reduce operators [25], while queries [1] etc.Hence, our �rst goal is to produce a generic polynomial time computable transaction that separatesWPC(FO) from PR(FO). The transaction exhibited below can be expressed in all languages mentionedin the previous paragraph. The result below provides the proof of Theorem D from the introduction.After proving theorem 7 we proceed to show that PR(FOc(
)) can be captured by a transactionlanguage, which gives us a separation result forWPC(FOc(
)) and PR(FOc(
)). We close the sectionby showing that WPC(FOc) and PR(FOc) coincide on generic transactions.Theorem 7 There exists a polynomial-time computable generic transaction T such thatT 2 WPC(FO) � PR(FO):Proof. Given a C&C-graph G, let chain(G) be the connected component of G which is a chain. Weconsider the following transaction T on graphs G = hX;Ei:T (G) = ( tc(chain(G)) if G j= 	c&chX; f(x; x) j x 2 Xgi if G j= :	c&cIt is not hard to see that T is generic and PTIME-computable. Now assume that T is in PR(FO).Since 
 is empty, there exists a �rst-order formula �(x; y) in free variables x and y such that (x; y)belongs to the output of T (G) if G j= �(x; y) when x and y are interpreted as elements of X . Inparticular, T (G) can be calculated as the result of a �rst order query. Notice that if G is a chain, thenT (G) is its transitive closure. However, according to the bounded degree property of �rst order logic[27], there is no �rst order de�nable query on graphs which computes transitive closure if its inputhappens to be a chain. Hence, T 62 PR(FO).The proof of T 2 WPC(FO) is more involved. Recall the following de�nitions and results from [18]. Ina graph, an r-neighborhood of a node x, denoted by Nr(x), is the set of nodes of that graph that canbe reached from x by a non-oriented path of length � r. By  (r)(x) we denote a formula in which xis the only free variable and all quanti�ers are of form 8y 2 Nk(x) or 9y 2 Nk(x) where k � r. Let18



Let I be the range of the enumeration hCmin2!. For any graph G, let [G] denote the (unique) graphCn that is isomorphic to G. Given any mapping T from I to I , T expands to a mapping [T ] fromgraphs to graphs by letting [T ](G) = T ([G]).Note that every �nite collection of isomorphism classes can be expressed by a sentence of FO. Leth�ii, as before, enumerate the FO sentences. We can now de�ne a transaction T from I to I exactlyas we de�ned T before, but using Ci in place of Gi.Now we claim that [T ] is in WPC(FO), but is unequal to any Tn. The proof that [T ] is recursiveand diagonalizes the Tn's is exactly as before, using the fact that for each n there is an =n class thatcontains in�nitely many nonisomorphic graphs.To see that that [T ] is in WPC(FO), show that for each positive integer n and for each i > P (n),T (Ci) =n Ci: this follows exactly as before. A weakest precondition algorithm for [T ] is constructedas follows. Given a sentence �, �nd an n such that � = �n. Then �nd an m such that T (Ci) =n Ci foreach i > m. Determine by testing which elements of fCi : i � mg have the property that T (Ci) j= �,and generate a sentence � of FO that de�nes the union of the �nite set of isomorphism classes of thisset. Let  be a sentence of FO that describes the set of isomorphism classes of all Ci with i � m.Then exactly the same proof as above shows that � _ (: ^ �) is a weakest precondition for �. Thiscompletes the proof of Theorem 5. 2As the last result of this section, we show that one cannot �nd a condition on degrees of nodes ingraphs that describes the transactions with weakest preconditions. We are motivated by the followingproperty of �rst-order queries, established in [27]. For a graph G, its degree count dc(G) is the numberof di�erent in- and out-degrees of nodes of G. Then, for any �rst-order query q, dc(q(G)) is boundedby a number that depends only on q and the maximal possible in- or out-degree in G. For example,if G is an arbitrary binary tree, then an upper bound on dc(q(G)) is fully determined by q.One may ask whether the classWPC(FO), which includes all �rst-order de�nable transactions, satis�esthis property. We can show that this is not the case. In fact, a degree-based characterization isimpossible for WPC(FO). Given any function f : N! N such that f(n) > 0, let Qf be the family ofgraph queries q such that dc(q(G))� f(dc(G)) for every G.Corollary 2 For any f , both Qf �WPC(FO) and WPC(FO)�Qf are nonempty.Proof. Let q return the diagonal if its input graph is connected, and the complete graph on theinput's nodes if it is not. Since connectivity is not �rst-order, q 62 WPC(FO). On the other hand,q 2 Q�x:1. Conversely, T 2 WPC(FO) that will be described later in the proof of theorem 7 is suchthat when its input is a chain, it constructs its transitive closure. Hence, T is not in Qf for any f . 217



function, it is in WPC(FOc(
)), and it is di�erent from each Ti in TL.To prove the �rst claim, notice that =n is an equivalence relation with only �nitely many equivalenceclasses. We now show that H(m;n) is a total function. That is, for every m and n there are hi; ji suchthat m < i < j and Gj =n Gi and Gj 6= Gi. If the above were not the case, then �x a counterexamplem and n. Then all Gis with i > m are pairwise nonequivalent with respect to =n. But this gives usin�nitely many =n classes. From this, we see that H(m;n) is recursive, since we can check each pairhi; ji in turn to see if i � j and Gj =n Gi and Gj 6= Gi until we �nd a pair for which this is true.From this we see easily, that P and Q are total recursive. Next we note that since both componentsof H(m;n) are above m, the functions P (m) and Q(m) are (strictly) monotonically increasing. Fromthis it follows that we can test recursively whether an i is in the range of P or not, that P�1(n) iswell-de�ned for every n in the range, and that the range of P is in�nite.Note also that GP (n+1) =n GQ(n+1) and P (n + 1) 6= Q(n+ 1), using the de�nition of H(m;n).Since P (n) and Q(n) are distinct for every n, we get that for each m and i and each n it is true thatone of GP (n); GQ(n) must be unequal to Tm(Gi). Since P is monotonic, we can calculate the uniquem such that P (m) = i whenever i happens to be in the range of P . Together the last two sentencesshow that T is total and recursive.We now turn to showing the second claim: that T admits a weakest precondition algorithm. We dothis by verifying that for each positive integer n and for each i > P (n), T (Gi) =n Gi, and then citingLemma 6 above.Consider T (Gi) for i > P (n). If i is not in the range of P or i = 1, then T (Gi) = Gi and so clearlyT (Gi) =n Gi. If i is in the range of P , then let j = P�1(i). Then T (Gi) is one of either GQ(j) or GP (j),so in either case, T (Gi) =j GP (j), since, as commented above GQ(j) =j GP (j). But then T (Gi) =j Gi,since P (j) = i. Since P is monotonic and i > P (n), we have P�1(i) > n. This says that j > n, andhence T (Gi) =n Gi, which completes the proof of the second hypothesis of Lemma 6, and hence theproof that T is in WPC(FOc(
))Finally we show that for each m > 0, T 6= Tm. Let i = P (m) (so m = P�1(i)). Clearly, i is inthe range of P (and the strict monotonicity of P guarantees i > 1), so by de�nition, T (Gi) has theproperty that T (Gi) 6= TP�1(i)(Gi). But this means T (Gi) 6= Tm(Gi), and this completes the proofthat no transaction language captures WPC(FOc(
)).To prove that no transaction language captures WPC(FO) we need a slight modi�cation of the proofabove: we need to also ensure that T is generic in order for T to have a chance to be de�nable in pure�rst-order logic, while the above construction did not do anything to ensure genericity.We again make use of an enumeration hCni of graphs such that no two graphs in the enumerationare isomorphic, and every graph is isomorphic to one of the Cn's. That is, the enumeration containsrepresentatives for every isomorphism class of graphs. We can get such a recursive enumeration byenumerating the �rst graph G1, then enumerating graphs until we come upon one nonisomorphic toany previously enumerated graph, etc. 16



enumerate the set of all graphs. All sentences of FOc(
) will be enumerated as �0; �1; : : :, and wede�ne the equivalence relation =n on graphs by G =n G0 i� G j= �i , G0 j= �i for all i � n.The idea of the proof is a diagonal argument. We will be building a transaction T , and for each mwe will �nd a graph G such T (G) 6= Tm(G). In order to ensure that the transaction T we build is inWPC(FOc(
)), we will ensure that for each positive integer n, there is an integer P (n) such that forall i > P (n), T (Gi) =n Gi. That is, for each n and G, eventually T does not change the =n class. Tosee that this last su�ces, we note the following.Lemma 6 Suppose T is a computable transaction and there is a recursive function P on the integerssuch that for each positive integer n and for all i > P (n), T (Gi) =n Gi. Then T is in WPC(FOc(
))Proof of the lemma: We construct a weakest precondition algorithm for T as follows. Given a sentence�, �nd an n such that � = �n. Then apply the hypothesis to �nd anm (= P (n)) such that T (Gi) =n Gifor each i > m. Determine by testing which elements of fGi : i � mg have the property thatT (Gi) j= �, and generate a sentence � of FOc(
) that de�nes this �nite set. Let  be a sentence thatdescribes the set of all Gi with i � m. Now output the sentence � = � _ (: ^ �).We claim that � is a weakest precondition for �. If we have Gi with i � m, then Gi satis�es � if andonly if it satis�es �, and by the de�nition of � this is true if and only if T (Gi) j= �. If we have Giwith i � m, then Gi satis�es � if and only if it satis�es �. Since T (Gi) =n Gi for i � m and � = �n,we get that for each i � m, T (Gi) j= �, Gi j= �. Combining the previous two sentences we get thatfor i � m, T (Gi) j= � , Gi j= �, which completes the proof that � is a weakest precondition for �.Lemma is proved. 2The construction, then, is intuitively as follows: start enumerating graphs until arriving at a graph Gjwhose =1 class has many elements in it. Let T be the identity on G1 : : :Gj�1, and then let T (Gj) bean element =1 equivalent to Gj but not equal to T1(Gj). Then enumerate all graphs above Gj untilarriving at a Gk whose =2 class has many elements in it. Let T be the identity on Gj+1 : : :Gk�1, andthen let T (Gk) be an element =2 equivalent to Gk but not equal to T2(Gk). Continue this process soas to diagonalize each Ti, while preserving the =n class for progressively larger n.We now start the formal construction of T . We de�ne a function H(m;n) by letting H(m;n) belexicographically least pair hi; ji such that m < i < j and Gj =n Gi and Gj 6= Gi.Then let P (n) and Q(n) be de�ned inductively by P (0) = Q(0) = 1, and by letting P (n + 1) be the�rst component of H(P (n); n), and Q(n+ 1) be the second component of H(P (n); n).Finally, de�ne the following transaction T . If i = 1 or i is not in the range of P , then T (Gi) = Gi. Ifi > 1 is in the range of P , consider the graph G0 = TP�1(i)(Gi). Since GP (k) 6= GQ(k) for every k > 0,we know that for j = Q(P�1(i)) it is the case that Gi 6= Gj . Now we de�ne T (Gi) in this case to bethe one of Gi; Gj that is not equal to G0, and if both are unequal to G0, then we de�ne T (Gi) to beGmin(i;j).The theorem now follows from the following three claims: the transaction T is a total recursive15



Gn;n, we obtain that there exist two internal nodes a; b in the same branch, such that a and b haveisomorphic d-neighborhoods, b is at a distance j from a, and for every node on a path from a to b, theisomorphism type of its d-neighborhood occurs at least j +m times among the internal nodes of thisbranch.Then in step 3, the duplicator selects the graph G0 obtained from Gn;n by collapsing b to a, that is,by removing all the nodes starting from the successor of a up to b. Note that G0 2 Tree� G. ThenG0 is colored by the duplicator, and the coloring in inherited from G1. We call the resulting coloredgraph G2.It remains to show that G1 �d;m G2, since this will imply that the duplicator can win the k-roundEhrenfeucht-Fra��ss�e game on G1 and G2 by Claim 1. First notice that there is no d-neighborhoodthat is present in one graph but is absent in the other. Furthermore, the only neighborhoods thathave di�erent number of realizers in G1 and G2 are those of the nodes removed in order to constructG2 from G1. For each of those neighborhood types, the number of nodes that realized them and thatwere removed, does not exceed j, and at the same time we know that each of those neighborhoodtypes was realized at least j +m times in G1. Thus, each of of those neighborhood types is realizedat least m times in both G1 and G2, which proves G1 �d;m G2.This concludes proving that no q 2 SGtree is veri�able over monadic �11, and completes the proof ofthe theorem. 2Since the sentences not having weakest preconditions in the proof of theorem 3 are all in FO, we obtainCorollary 1 Let L be either FOcount, or FOc(
) for an arbitrary 
, or monadic �11. Then neithertransitive closure, nor deterministic transitive closure, nor any query from SGtree is in WPC(L;FO).23.3 The structure of transactions with weakest preconditionsHere we prove the result showing that the class of veri�able transactions cannot be captured by atransaction language. (By capturing we mean that a language expresses exactly the transactions froma given set.)Theorem 5 There is no transaction language that captures WPC(FO). Furthermore, for an arbitraryrecursive signature 
, there is no transaction language that captures WPC(FOc(
)).Proof. We �rst prove that no transaction language captures WPC(FOc(
)). We assume withoutloss of generality that the schema consists of a binary relational symbol E(�; �). The proof below willautomatically apply to any nonempty relational schema. Given a transaction language TL, we showthat it cannot capture WPC(FOc(
)). We will assume that the transactions in TL are enumeratedas hTiii>0. This is possible because the syntax of any language is a recursive set. We let hGiii>014



realize this type, or both have at least m nodes that realize this type. Note that in a graph coloredwith c colors, a neighborhood of a point is structure in the vocabulary hE;U1; : : : ; Uc; ai, where E isthe binary edge relation, Uis are unary relations that are interpreted as sets of nodes colored with theith color, and a is a constant interpreted as a point around which the neighborhood is taken.Claim 1 Let k be a positive integer. Then there exist positive integers d and m such that, wheneverG1 and G2 are two colored trees of outdegree at most 2, and G1 �d;m G2, then the duplicator has awinning strategy in the k-round Ehrehfeucht-Fra��ss�e game on G1 and G2.Claim 1 is just a special case of Theorem 4.3 of [17], when the structures are trees, and the maximumdegree is 2.Before we prove that the duplicator has a winning strategy in the (c; k) Ajtai-Fagin game, we needthe following combinatorial lemma.Lemma 4 For every positive integers p and l, there exists a positive integer N [p; l] such that, for anyN > N [p; l] and any partition of the set f1; : : : ; Ng into l sets, there exist two numbers i1; i2 thatbelong to the same class, such that for any i1 � i � i2, it is the case that i belongs to a partition classthat has at least p+ i2 � i1 elements.Proof of the lemma. If l = 1, the statement is trivial, so we assume l > 1. Let f = maxfp; lg. We claimthatN [p; l] can be taken to be 4f4+f(f+1)+1. There exists a numberN0 2 [4f4+1; 4f4+f(f+1)+1]such that N0 is divisible by l and l+1. Let k = N0l and s = N0l+1 . Consider partitioning of f1; : : : ; N0ginto l classes. Then at least one class, say X , contains k elements, x1; : : : ; xk. Let di = xi+1 � xi,i = 1; : : : ; k�1. Then at most s of dis are greater than or equal to l+1. Hence, at leastm0 = N0l(l+1)�1of dis are less than l + 1. Let I = fi j xi+1 � xi � lg; we know that jI j� m0.If at least one di = 1, then we are done, since k � p+ 1. So assume that di > 1 for all i 2 I . Assumethat the conclusion of the lemma is false. Then, for every i 2 I , there exists yi such that xi < yi < xi+1and yi belongs to a partition class that has fewer than p+ di elements. In particular, such a class hasfewer than p+ l elements. Since there are l classes, we obtain that the number of such yis is at mostl(p+ l), which implies that the cardinality of I is at most l(p+1), that is, m0 � l(p+ l). This impliesN0 � l2(l + 1)(p+ l) + 1, which is easily seen to contradict the assumption that N0 � 4f4 + 1. Thiscontradiction proves the lemma.Using Lemma 4, we conclude the proof as follows. Given c and k, let d andm be given by Claim 1. Letl = (2d+1)c, and let N = N [m; l]. Then in step 1 the duplicator selects Gn;n where n > N +2(d+1).Let us call a node internal if it is at the distance at least d + 1 from the root and the leaves. A d-neighborhood of such a node is a 2d+1-element chain. The choice of n guarantees that both branchesof Gn;n have at least N + 1 internal nodes.Now the spoiler colors the graph with Gn;n with c colors. Let G1 be this colored graph. Note thatthere are at most l = (2d + 1)c of isomorphism types of d-neighborhoods of internal nodes in G1.Thus, coloring corresponds to partitioning the internal nodes into l classes, given by the isomorphismtypes of their d-neighborhoods. Applying Lemma 4 to N + 1 internal nodes in one of the branches of13



of the form Gn;m with the set of nodes A. Let f : A! X be a monotone injective map from A to X ,and let f(G) be the image of G under this map. Then, since 
2 is a FO(�) sentence, we get G j= 
2i� f(G) j= 
2 i� jn�m j= 1. Thus, the assumption that q 2 WPC(FOc(
)) implies that in �rst-orderlogic with built-in order relation, we can test if Gn;m satis�es jn�m j= 1.Now we are going to show that such a test is impossible. Assume that the �rst-order language containsonly the symbol � to be interpreted as a linear order. For each x, de�neEx(u; v) � [(v � u) ^ ((u � x) _ (u = x))^ (8z::(v � z)_ :(z � u))]_ [(u � v) ^ ((x � u) _ (u = x))^ (8z::(u � z) _ :(z � v))]That is, Ex de�nes a relation that is \successor backwards" for elements under x and the successorrelation (associated with the ordering) for elements above x. Such a relation is isomorphic to Gn;mwhere n is the number of elements under x and m is the number of elements above x. Let 
 02(x) bea �rst-order formula in the language of � obtained from 
2 by replacing each occurrence of E(u; v)with Ex(u; v). Then a �nite linear ordering (L;<) satis�es 9x:
 02(x) i� there a \middle" element suchthat the number of elements above it is n and the number of elements below it is n� 1 (or vice versa).This happens i� the size of the �nite universe is even. However, since a FO(�) sentence of quanti�errank k cannot distinguish two linear orderings of size > 2k [34], we have a contradiction that showsthat q is not veri�able over FOc(
).Finally, we must show that q is not veri�able over monadic �11. Assume such a q is veri�able. LetG = fGn;n j n � 1g. Then there exists a monadic �11 sentence � such that, if G is a tree, then G j= � i�G 2 G. To see this, note that the �rst-order sentence �0 saying that a graph has one root of outdegree2, two leaves on indegree 1, and that every other node has both in- and outdegree 1, de�nes a graphone of whose connected components is Gn;m for some n;m, and all other connected components arecycles. Let �1 be the �rst-order sentence 9!x:E(x; x)^ (8y:E(x; y)_ E(y; x) ! x = y); that is, �1states that there exists a unique isolated point. Then, if G is a tree, then G j= �0 ^ wpc(q; �1) i�G 2 G, since for any tree of the form Gn;m, where n 6= m, there exist at least two isolated points inq(Gn;m).To complete the proof, we must show that there is no monadic �11 sentence � such that, if G is a tree,then G j= � i� G 2 G. Let Tree be the class of all trees. According to [16, Theorem 5.5], it su�ces toshow that for any positive integers c and k, the duplicator can win the (c; k) Ajtai-Fagin game for Gand Tree� G. The game is played as follows.Step 1. The duplicator selects a graph G 2 G.Step 2. The spoiler colors the nodes of G with c colors.Step 3. The duplicator selects a graph G0 2 Tree� G and colors its nodes with c colors.Step 4. The spoiler and the duplicator play k rounds of the Ehrehfeucht-Fra��ss�e game on colored Gand G0.The winner is determined as the winner in Step 4. For more details on games, see [15, 16]. To determinea winner in Step 4, we shall use the criterion below, that follows immediately from Theorem 4.3 of [17].We shall use the notation G1 �d;m G2 if G1 and G2 are two colored graphs, and for every isomorphismtype of a d-neighborhood of a node, either both graphs have the same number n � m of nodes that12



Consequently, no �rst-order sentence distinguishes the families fGn;n j n > 1g and fGn�1;n+1 j n > 1g.This �nishes the proof of Claim 3 and the theorem. 23.2 Weakest preconditions for more powerful logicsHere we extend the result of the previous subsection for more powerful logics de�ned in section 2. Bydoing so, we complete the proof of Theorem B from the introduction.Theorem 3 Let L be either FOcount, or FOc(
) for an arbitrary 
, or monadic �11. Then neithertransitive closure, nor deterministic transitive closure, nor any query in SGtree is veri�able over L.Proof. We start by showing that the transitive closure and deterministic transitive closure are notveri�able over L. The proof for FOcount and FOc(
) is essentially the same as the proof of theorem 2,if we can show that connectivity and testing for chain are not de�nable in those logics. For FOcountthis follows immediately from [27] (or [13]), and for FOc(
) this follows from the result of [7] thatgeneric Boolean queries de�nable in FOc(
) are de�nable in relational calculus with the order relation,since directed connectivity is not de�nable in the latter [36]. That testing for chain is not de�nablein �rst-order logic with built-in order relation follows from [13], which shows that this problem is�rst-order complete for deterministic logspace.In the case of monadic �11, the proof for tc is the same as before, since connectivity is not expressiblein monadic �11 [5]. For dtc, we have to show that testing whether a graph is a chain is not monadic�11-de�nable. It was shown in [17] that for any monadic �11 sentence  there exists a number n suchthat  can not distinguish C1n, one cycle of length 2n, from C2n, two cycles of length n. However,C1n can be distinguished from C2n for any n > 2 if testing for chain is available. Indeed, consider thesentence 
 � 8x8y:E(x; y) ! chain[E 0xy=E]. Here chain is the sentence that tests whether a graphis a chain, and everywhere in this sentence we replace the basic predicate E(z; v) with E 0xy(z; v) �E(z; v) ^ (:(x = z) _ :(y = v)). Then 
 holds i� for every edge (x; y), the graph resulting fromremoving this edge is a chain. Such a sentence 
 clearly distinguishes C1n from C2n. This �nishes theproof for the case of (deterministic) transitive closure.Now let q 2 SGtree ; we show that q is not veri�able over L. When L = FOcount, we can apply theproof of claim 3 in theorem 2, since, by the result of [30] (see also [15]), for each k it is possible to �nda number r such that any two structures that realize the same number of all r-neighborhoods cannotbe distinguished by a FOcount sentence of quanti�er rank k.For FOc(
), �rst de�ne an order relation � on U that is isomorphic to ! (that is, the usual order onN). Now we show that q is not veri�able over FOc(
[f�g). Assume it is veri�able. Consider �2 fromthe proof of theorem 2 (asserting that there are two isolated points) and let �2 = wpc(q; �2). Notethat Gn;m j= �2 i� n�m = 1 or m� n = 1.According to [7, Proposition 3], there exists an in�nite set X � U and a FO(�) sentence 
2 such thatfor all graphs G whose sets of nodes are in X , we have G j= 
2 i� G j= �2. In particular, for any graphof the form Gn;m with nodes from X , Gn;m j= 
2 i� jn �m j= 1. Now consider an arbitrary graph G11



Claim 2: dtc 62 WPC(FO).Proof of Claim 2. Assume dtc 2 WPC(FO). Let � � 8x8y:(x 6= y ! E(x; y) _ E(y; x)), and let� = wpc(dtc; �). De�ne 
 � 	c&c ^ �. Then G j= 
 i� G j= 	c&c and in dtc(G) there are no twounconnected nodes. For any graph G satisfying 	c&c we have tc(G) = dtc(G), soG j= 
 i� G is a chain.However, it is known (see [13, 27]) that testing for chain is not FO-de�nable. Thus, dtc 62 WPC(FO).Claim 3: If q 2 SGtree , then q 62 WPC(FO).Proof of Claim 3. We de�ne a family of graphs, fGn;m j n;m � 1g that will be used in this proof aswell as in the proof of theorem 3. A graph Gn;m is shown on the picture below. It is a tree, with twobranches, each being a chain. The subtree rooted at one of the root's children is an n-node chain, andthe other is an m-node chain. ���	? ?? ?@@@R
Gn;m? ?n nodes m nodesNow assume that q 2 WPC(FO). If G is a tree, then q(G) consists of a number of connected compo-nents, each of them being a complete graph. In particular, if for some node x there is no other nodein the same generation as x, then x is an isolated node in q(G). Let �i, where i � 1, be a �rst-ordersentence saying that there exist exactly i isolated nodes (i.e. those with a loop and no other incomingor outgoing edge). Let �i = wpc(q; �i). Then it is easy to see that Gn;m j= �i i� j n �m j= i � 1.Thus, for any n � 1, Gn�1;n+1 j= �3 and Gn;n j= :�3.To prove claim 3, we now have to show that for any �rst-order sentence 
 there exists a number Nsuch that for all n > N , Gn�1;n+1 j= 
 i� Gn;n j= 
. To prove this statement, we use Hanf's techniquemodi�ed for the �nite case by [17]. Given a graph G, an r-neighborhood of a node a, Nr(a), is thesubgraph of G on the set of all nodes reachable from a by unordered paths of length at most r. Anr-type of a is the isomorphism type of Nr(a), with a as a distinguished node. It can be seen from thestructure of the graphs Gn;m that for every r, and every n > 2r + 1, the graphs Gn;n and Gn�1;n+1have the same number of neighborhoods of every given r-type.Now if 
 of quanti�er rank k is given, take r to be 3k. Then for any n > 2r + 1, Gn;n and Gn�1;n+1have the same number of r-neighborhoods that realize each r-type. That is, using the terminologyfrom [17], these two graphs are r-equivalent. According to [17], 3k-equivalent structures cannot bedistinguished by sentences of quanti�er rank k; hence Gn;n and Gn�1;n+1 cannot be distinguished by 
.10



��	 @@I6�����	??@@I6��� ... ...� � �-- -: : : -Lemma 1 The class of C&C-graphs is �rst-order de�nable. Neither chains nor cycles are �rst-orderde�nable.Proof. A graph is a C&C-graph i� it has exactly one root (node with in-degree zero), exactly oneendpoint (node with out-degree zero), the root has out-degree 1, the endpoint has in-degree one, andall other nodes have both in- and out-degrees 1. That is:8x8y8z:E(x; y)^ E(x; z)! z = y outdegrees are at most 1^ 8x8y8z:E(y; x)^ E(z; x)! z = y indegrees are at most 1^ 9!x8y::E(y; x) unique root^ 9!x8y::E(x; y) unique endpointde�nes the C&C-graphs.That chains and cycles are not �rst-order de�nable can be proved straightforwardly using standardtechniques (cf. [18, 27]). 2For the rest of the paper, 	c&c denotes the �rst-order sentence in the language of E(�; �) above thatde�nes C&C-graphs.3.1 Languages not veri�able over FOIn this subsection we prove part of Theorem B from the introduction. That is,Theorem 2 Assume that TL can express one of the following:� transitive closure;� deterministic transitive closure;� any query from SGtree .Then TL is not veri�able over FO.Proof follows from the following three claims.Claim 1: tc 62 WPC(FO).Proof of Claim 1. Assume tc 2 WPC(FO) and let � � 8x8y:E(x; y). Then a graph satis�es wpc(tc; �)i� it is connected, which means connectivity is FO-de�nable. This contradiction proves tc 62 WPC(FO).9



whether a given tuple will be in the database afterwards. We need the set � of terms to be able tode�ne transactions that extend the active domain of a database (for example, insertion of a new tuplemay extend the domain). The set �(D) is a superset of the active domain of T (D), and the formulaepreTi are used to determine when a tuple from �(D) belongs to the ith relation of T (D).Prerelations can be viewed as providing the ability to verify local properties of databases as well asglobal properties. Prerelations have been used extensively in [32]. If L is pure �rst-order logic (inparticular, 
 is empty and the only terms are variables), then the notion of having prerelations reducesto the familiar notion of a �rst-order de�nable transaction.For all the languages we shall consider in this paper it is the case that PR(L) � WPC(L). Indeed, toconstruct wpc(T; �) for any T 2 PR(L) we can use � and preTi to simulate the new database stateafter the transaction, and then substitute all symbols for Ri in � by the formulae de�ning the newstate. It is easy to see that the power of �rst-order logic is su�cient for doing this. Later in the paperwe examine this inclusion and show that for most languages of interest it is strict.3 Weakest preconditionsThe goal of this section is to study weakest preconditions for �rst-order logic and its extensions. We�rst prove that a language that can express (deterministic) transitive closure or the same-generationquery cannot have weakest preconditions over FO. We then extend this result to more powerful spec-i�cation languages, and �nally prove that no transaction language captures the class of transactionshaving weakest preconditions over �rst-order logic.We need a few technical de�nitions. Given a graph G = hV;Ei, its deterministic transitive closure(cf. [23]), dtc(G), is the graph hV;E 0i where (x; y) 2 E 0 i� (x; y) 2 E or there is a sequence of nodesx = x1; x2; : : : ; xn = y such that each (xi; xi+1) 2 E, and furthermore, each xi has out-degree 1,i = 1; : : : ; n� 1. The transitive closure of a graph is denoted by tc(G).Given a graph G = hV;Ei, the same-generation query returns the graph sg(G) = hV;E 0i where(x; y) 2 E 0 i� there is a node v 2 V and two walks in G from v to x and from v to y that have thesame length. Usually the same-generation query is asked for trees. So we de�ne the class of queriesSGtree = fq j if G is a tree, then q(G) = sg(G)gIn particular, sg 2 SGtree .A chain is a graph of the form f(x1; x2); : : : ; (xn�1; xn)g where all xis are distinct. A simple cycle isa graph of the form f(x1; x2); : : : ; (xn�1; xn); (xn; x1)g where all xis are distinct. A chain-and-cyclegraph, or a C&C-graph consists of n � 1 connected components, of which exactly one is a chain, andothers (perhaps zero) are simple cycles. An example of a C&C-graph is shown below.8



2) We say that a transaction language TL is L1-veri�able over L2 if every TL transaction T is inWPC(L1;L2). If L = L1 = L2, we speak of a language veri�able over L.The proposition below shows that while WPC(�; �) is monotone in the �rst argument and antimonotonein the second, WPC(�) need not be (anti)monotone in its one argument. We use the notation L 4 L0to mean that L is a sublanguage of L0.Proposition 2 (a) Let L01 4 L1 and L2 4 L02. Then WPC(L01;L02) � WPC(L1;L2).(b) It is possible to �nd languages L 4 L0 and a transaction T such that T 2 WPC(L)�WPC(L0).(c) It is possible to �nd languages L 4 L0 and a transaction T such that T 2 WPC(L0)�WPC(L).Proof. (a) follows immediately from the de�nitions. For (b) and (c), take T to be the transitiveclosure of a graph. For (b), take L0 to be �rst-order logic augmented with constants for each elementu 2 U . Take L to be the family of Boolean combinations of formulae  u � 9x:(E(x; u)_ E(u; x))meaning that u is a node with either incoming or outcoming edge in the graph given by the predicateE. Then D j=  u i� T (D) j=  u, and hence T 2 WPC(L). On the other hand, T 62 WPC(L0) (seetheorem 3). For (c), we take L to be �rst-order logic, and L0 to be �rst-order logic with �xpoint. SinceT is de�nable in the latter, T 2 WPC(L0), but T 62 WPC(L), see theorem 2. 2Similar notions have been studied in a more general programming language context. For example,weakest preconditions over �rst-order logic for a simple while loop language can be expressed inin�nitary logic [6] or in weak second-order logic [9]. However, proposition 2 shows that it is notalways possible to extend results of this kind to less expressive speci�cation languages. In particular,according to Theorem A, weakest preconditions for transitive closure (which is de�nable with whileloops) are not �rst-order expressible.We will also use prerelations which allow for testing of local conditions. We are now ready to formalizethe de�nition we presented informally in the introduction. Let 
 be a signature. By Term(
) wedenote the set of all 
-terms which are built up from variables by using the symbols from 
. (Wetreat constants as functions of arity zero.) Given a database D, its (active) domain dom(D) is theset of all elements of U that occur in the database. For a set � � Term(
) and a database D wede�ne �(D) to be the set of all x 2 U such that x = �(y1; : : : ; yn) for some n-ary term � 2 � and somey1; : : : ; yn 2 dom(D).De�nition Let T be a transaction. We say that T admits prerelations over L if there exists a �nitecollection of terms � and a collection of L-formulae preT1 ; : : : ; preTk , preTi having ni free variables, suchthat for any Ri in the schema and any d1; : : : ; dni 2 U , it is the case the for every database D:D j= preTi (d1; : : : ; dni) and d1; : : : ; dni 2 �(D), T (D) j= Ri(d1; : : : ; dni)The collection of all transactions that admit prerelations over L is denoted by PR(L).The intuition behind the de�nition above is this. Since T (D) j= Ri(d1; : : : ; dni) says that the tuple(d1; : : : ; dni) belongs to Ri after T is applied, using prerelations we can test, before T is committed,7



database, and returns either another database encoding or \error", provided s 2 S. Examples includerelational algebra and calculus, SQL, �rst-order transaction language of [32], a variety of languagesfrom [3, 4] and so on. We shall always use the same symbol for both syntactic and semantic objects.For example, for the language given by hS;Mi, T 2 S and a database D, we will write T (D) to denotethe result of M on T and the encoding of D.We are interested in maintaining database integrity. To formalize this problem, let L be a speci�cationlanguage and TL a transaction language. We de�ne the following problem:Preserve(TL;L): Given T 2 TL and � in L, is it the case that D j= � implies T (D) j= � forevery database D?According to Fact A, this problem is undecidable even for transactions speci�ed by the simplest formof SQL statements and for �rst-order constraints. This can be derived from a result of [2]. Since thetransaction model of [2] di�ers from the one that we consider, we present a simple proof below for thesake of completeness.Proposition 1 Let L be FO, and let TL contain the transactions given by the select-project-joinexpressions of the relational algebra. Then Preserve(TL;L) is undecidable.Proof. Assume thatPreserve is decidable, and consider two transactions on graphs: T1 takes a graphon a �nite set of nodes V and produces its diagonal (f(x; x) j x 2 V g) and T2 produces the completegraph without loops (f(x; y) j x; y 2 V; x 6= yg). T1(E) can be implemented as �1;3(�1=3(E�E)) andT2 as �1;3(�16=3(E�E)) (we assume that V is the union of the �rst and the second projections of E).It su�ces to restrict our attention only to nonempty graphs. Observe that if a �rst-order sentence �is not satis�ed in any T (D), then Preserve(T; �) i� :� is valid. Now let  � 9x:E(x; x), and let �be an arbitrary �rst-order sentence in the language of E(�; �). Then � is valid in every �nite graph ifand only if both : _ � and  _ � are valid in every �nite graph. Using the observation above, wederive that � _  is valid i� Preserve(T1;:� ^ : ), because :� ^ : fails in all nonempty outputsof T1. Similarly, � _ : is valid i� Preserve(T2;:� ^  ). Thus, if Preserve is decidable, then itis decidable whether an arbitrary sentence � is valid in all �nite graphs. Since undecidability of thelatter is known (cf. [14]), we have a contradiction. 2As we explained in the introduction, a way around this is to introduce weakest preconditions. Belowis the main de�nition.De�nition 1) Let L1 and L2 be two speci�cation languages. We say that a transaction T in atransaction language TL has L1-weakest preconditions over L2 if for every L2-sentence � there existsan L1 sentence wpc(T; �), computable from T and �, such that for every database D on which T isde�ned, D j= wpc(T; �) if and only if T (D) j= �:The class of transactions having L1-weakest preconditions over L2 is denoted by WPC(L1;L2). Wealso write WPC(L) for WPC(L;L). 6



2 Formal settingWe �x the domain to be a countably in�nite set U . A relational schema is a nonempty set SC =hR1; : : : ; Rki of predicates, with a �nite arity ni > 0 associated with each Ri. A database over SC is aninterpretation of each Ri as a �nite subset of Uni . Most often we will use the schema that consists ofa single binary predicate E. Then databases are interpreted as �nite graphs whose nodes are elementsof U .We shall use two notions { speci�cation language, in which constraints are speci�ed, and transactionlanguage. A speci�cation language L is a recursive subset of a set of strings with an associate subsetsent(L) of sentences, which is also recursive. As stated in the introduction, we wish to focus on thespeci�cation languages that are relevant to the integrity constraints. In particular, we will study� FO { (pure) �rst-order logic (that is, �rst-order logic over the relational schema SC).� FOc | �rst-order logic over the signature that consists of SC supplemented with constantsymbols for all elements of U .� FOc(
) | �rst-order logic over the signature that consists of SC supplemented with constantsymbols as above and a recursive collection 
 of recursive functions and predicates over U .We shall also consider the following two logics, which are more powerful than the �rst-order logic, andplay an important role in �nite model theory and descriptive complexity.� FOcount | �rst-order logic with counting. For precise de�nition, see [13, 19, 24]. This is atwo-sorted logic, with the second sort of natural numbers whose universe is f1; : : : ; ng, where nis the size of the universe of the �rst sort. First-order logic is extended with counting quanti�ers,9ix: (x) meaning that here are at least i elements of the �rst-sort universe satisfying  . Thisquanti�er binds x but not i. The order, the constants for 1 and the maximal element, and thebit predicate are available on natural numbers, where bit(i; j) is true i� the jth bit in the binaryrepresentation of i is one. For example, 9i9ix: (x) ^ bit(i; 1) ^ (8j(9jx: (x)) ! j � i) saysthat there are odd number of elements satisfying  . Another example of non-�rst-order propertyde�nable in FOcount is equal cardinality.� Monadic �11, whose formulae are of the form 9A1 : : :9Ak :	 where Ai's are monadic (unary)predicates and 	 is a �rst-order formula over SC [ hA1; : : : ; Aki.For all speci�cation languages it will be the case that we shall have a binary relation j= for validitybetween databases and sentences of the languages. For all the languages above, validity is de�ned inthe usual way.A transaction language consists of 1) Syntax: a recursive subset of the set S of strings over a �nitealphabet, and 2) Semantics: a total recursive function M that takes a string s, and an encoding of a5



D j= preTR(d1; : : : ; dn) and d1; : : : ; dn 2 �(D), T (D) j= R(d1; : : : ; dn)Here �(D) is a �nite set that extends the active domain of the database. The precise de�nition willbe given in the next section.The condition T (D) j= R(d1; : : : ; dn) means that t belongs to the relation R after the transaction Tis applied to the database D. Thus, prerelations allow us to test membership before transactions arecommitted.In papers like [32] prerelations are used in place of weakest preconditions. The question of the relation-ship of these two notions, however, has not been addressed. We shall see that for most speci�cationlanguages of interest, it is the case that any transaction that admits prerelations also admits weakestpreconditions. The converse, however, is not true even in very simple settings.Theorem D There exists a transaction T in WPC(FO) that does not admit prerelations. Moreover,T can be chosen to be Datalog:-de�nable.However, this result is not robust: if FO is extended by adding a constant for each element of thedomain, then the transaction from Theorem D no longer provides a separation example. Motivatedby this, we say that a transaction language TL is robustly veri�able over a �rst-order signature 
 if,for any extension of 
 to a signature 
0 via a set of recursive predicates and functions, all transactionsin TL remain veri�able over the corresponding extension of �rst-order logic. We then prove a positiveresult that characterizes maximal robustly veri�able languages when integrity constraints can referto the individual elements of the domain. Let FOc be �rst-order logic over the relational schemasupplemented with symbols for all constants.Theorem E There exists a transaction language that captures the class of transactions admittingprerelations over FOc. Moreover, this language is the maximal robustly veri�able language over FOc.In particular, every transaction robustly veri�able over FOc is equivalent to a transaction that admitsprerelations.This has implications for transaction language design. If we are interested in a \nice" transactionlanguage that is veri�able in an extensible way over all �rst-order languages, then we cannot hopethat the language will be more expressive than the �rst-order transaction language de�ned in [32, 33].Organization We rigorously de�ne our formal setting in the next section. In section 3 we study thelimitations of weakest preconditions. Section 4 studies the relationship between weakest preconditionsand prerelations. Robustly veri�able transaction languages are the subject of section 5. Concludingremarks are given in section 6.The extended abstract of this paper appeared in [8].4



The main goal of this paper is to study the properties of weakest preconditions for a variety oftransaction and speci�cation languages. In particular, we concentrate on speci�cation languages thatare relevant to integrity constraints, such as �rst-order logic over the database schema. Below we givea brief overview of the main results of the paper.Assume that we have two languages L1 and L2 in which constraints may be speci�ed. Also assumethat we have a transaction language TL. We say that TL is L1-veri�able over L2 i� for every T 2 TLand every � 2 L2, it is the case that a weakest precondition for � with respect to T is in L1. IfL = L1 = L2, we speak of L-veri�able transaction languages. Similar concepts have been studied inthe more general programming language context, see [6, 9].Veri�able transaction languages are exactly those for which the weakest-precondition approach tointegrity maintenance is possible. An example of a language veri�able over �rst-order logic is the �rst-order transaction language of [32]. However, no results exist for transaction languages that possessmore power than �rst-order logic (for example, for languages that allow some forms of recursion). The�rst result of this paper is negative: it shows that adding recursion destroys �rst-order veri�ability.Theorem B Let TL be a transaction language that expresses at least one of the following:� transitive closure;� deterministic transitive closure;� same-generation (even restricted to trees).Then TL is not veri�able over any of the following languages: �rst-order logic, �rst-order logic withcounting, �rst-order logic supplemented with a recursive collection of recursive functions and predi-cates, monadic �11.We next �x our speci�cation language to be �rst-order logic, and look at the setWPC(FO) of transac-tions (that is, total maps from databases to databases) that have weakest preconditions for �rst-ordersentences. We show that this collection cannot be captured by any transaction language.Theorem C There is no transaction language that expresses exactly all the transactions fromWPC(FO). This remains true if FO is replaced by �rst-order logic over a signature containing arecursive collection of interpreted recursive functions and predicates.The ability to statically check global conditions | that is, conditions that must be satis�ed by thedatabase as a whole | is, as noted above, extremely helpful. One might also demand a stronger\local" version of this, in which one can statically check properties of individual tuples in the resultingdatabase. That is, one often would like to �nd a condition that must be satis�ed by a database Dand an object t (typically, a record) in order for t to belong to T (D). It is natural to compare theclass WPC(L) with the class of transactions for which this local checking can be carried out. For aspeci�cation language L, the natural de�nition of such a class is the set of transactions admittingprerelations. Informally, a transaction T admits prerelations over L if it is de�nable by L-formulae ona set that extends the active domain of the database. That is, for every relation R of arity n thereexists a L-formula preTR(x1; : : : ; xn) such that, for every n-tuple t = (d1; : : : ; dn) and every databaseD: 3



sometimes fail to maintain some of the constraints, then modi�cations can be made until correctnessis achieved.If T is a transaction and � is a constraint, we say that T preserves � if for every database D:D j= � implies T (D) j= �:We use the notation D j= � to mean that � is true for the database D.According to the approach described above, we would like to be able to check transactions to see ifthey will always preserve �. But, as the following result tells us, one cannot hope to have an algorithmfor checking this, even for simple transactions and simple constraint speci�cation languages.Fact A (cf. [2]) For transactions speci�ed as select-project-join expressions of the relational alge-bra, and integrity constraints speci�ed as �rst-order sentences, it is undecidable to check if a giventransaction preserves a given integrity constraint.Similar results hold for transactions that consist of simple updates and deletions. Therefore, anyapproach to automatic veri�cation of transaction safety (such as the approach of [35, 37] that usestheorem-provers) is inherently limited. Instead, we adopt an approach based on modifying transactionsto ensure safety.Given a transaction T and a constraint �, we would like to �nd another constraint � that is satis�edby a database D before T is committed if and only if � is satis�ed afterwards. In other words, forevery database D: D j= � if and only if T (D) j= �:We shall call such a � a weakest precondition for �, with respect to T , and denote it by wpc(T; �).We will require that wpc(T; �) be computable for given T and �. Since we consider only transactionsthat do not diverge, this notion of weakest precondition is equivalent to the classical one of Dijkstra[11, 12].The existence of weakest preconditions would not contradict Fact A, as we would not be able todetermine the validity of the implication wpc(T; �)! �. At the same time it would solve the problemof statically verifying database integrity since any transaction T could be transformed toif wpc(T; �) then T else abortwhich will maintain consistency while avoiding any roll-back operations. Furthermore, we could thenmodify the resulting transaction by applying simpli�cation algorithms to wpc(T; �), thus recapturingmany of the bene�ts of approaches based on validity-checking. This is the fundamental idea underlyingmany algorithms for the automatic maintenance of integrity constraints [29, 21, 22, 31, 28].Given the attractiveness of this approach to integrity maintenance, it is important to understandthe tradeo�s involved in designing transaction and speci�cation languages with respect to our abilityto express weakest preconditions. In this paper, we will concentrate on the basic principles behinddeveloping safe transactions via preconditions, rather than speci�c algorithms that attempt to detectviolations of integrity. 2



Veri�able Properties of Database TransactionsMichael BenediktBell Laboratories1000 E. Warrenville RdNaperville IL 60566, USAbenedikt@research.bell-labs.com Timothy Gri�nBell Laboratories600 Mountain AvenueMurray Hill NJ 07974, USAgri�n@research.bell-labs.com Leonid Libkin�Bell Laboratories600 Mountain AvenueMurray Hill NJ 07974, USAlibkin@research.bell-labs.comAbstractIt is often necessary to ensure that database transactions preserve integrity constraints thatspecify valid database states. While it is possible to monitor for violations of constraints at run-time, rolling back transactions when violations are detected, it is preferable to verify correctnessstatically, before transactions are executed. This can be accomplished if we can verify transactionsafety with respect to a set of constraints by means of calculating weakest preconditions. We studyproperties of weakest preconditions for a number of transaction and speci�cation languages. Weshow that some simple transactions do not admit weakest preconditions over �rst-order logic andsome of its extensions such as �rst-order logic with counting and monadic �11. We also show thatthe class of transactions that admit weakest preconditions over �rst-order logic cannot be capturedby any transaction language. We consider a strong local form of veri�ability, and show that it isdi�erent from the general form. We de�ne robustly veri�able transactions as those that can bestatically analyzed regardless of extensions to the signature of the speci�cation language, and weshow that the class of robustly veri�able transactions over �rst order logic is exactly the class oftransactions that admit the local form of veri�ability. We discuss the implications of these resultsfor the design of veri�able transaction languages.1 IntroductionDatabases are typically required to satisfy a collection of integrity constraints| sentences that specifythe valid states of the database. Database transactions that update the database must preserve theseconstraints. One approach to the integrity maintenance problem is to defer the detection of potentialviolations of integrity constraints until run-time, thus preventing the violation of integrity that may becaused by transactions. However, this approach results in potentially expensive roll-back operations.In order to avoid this, one can attempt to verify statically, before a transaction is executed, that it willnecessarily maintain all constraints. If the result of this veri�cation shows that the transaction may�Contact author. Address: Bell Laboratories, Room 2C-407, 600 Mountain Avenue, Murray Hill NJ 07974, USA.E-mail: libkin@research.bell-labs.com. Phone: (908)582-7647. Fax: (908)582-5857.1


