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Traditional approach to databases

• A single large repository of data.

• Database administrator in charge of access to data.

• Users interact with the database through application programs.

• Programmers write those (embedded SQL, other ways of combining
general purpose programming languages and DBMSs)

• Queries dominate; updates less common.

• DMBS takes care of lots of things for you such as

query processing and optimisation

concurrency control

enforcing database integrity
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Traditional approach to databases cont’d

• This model works very within a single organisation that either

◦ does not interact much with the outside world, or

◦ the interaction is heavily controlled by the DB administrators

• What do we expect from such a system?

1. Data is relatively clean; little incompleteness

2. Data is consistent (enforced by the DMBS)

3. Data is there (resides on the disk)

4. Well-defined semantics of query answering (if you ask a query, you
know what you want to get)

5. Access to data is controlled
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The world is changing

• The traditional model still dominates, but the world is changing.

• Many huge repositories are publicly available

◦ In fact many are well-organised databases, e.g., imdb.com, the CIA
World Factbook, many genome databases, the DBLP server of CS
publications, etc etc etc)

• Many queries cannot be answered using a single source.

• Often data from various sources needs to be combined, e.g.

◦ company mergers

◦ restructuring databases within a single organisation

◦ combining data from several private and public sources
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What industry offers now: ETL tools

• ETL stands for Extract–Transform–Load

◦ Extract data from multiple sources

◦ Transform it so it is compatible with the schema

◦ Load it into a database

• Many self-built tools in the 80s and the 90s; through acquisition fewer
products exist now

• The big players – IBM, Microsoft, Oracle – all have their ETL products;
Microsoft and Oracle offer them with their database products.

• A few independent vendors, e.g. Informatica PowerCenter.

• Several open source products exist, e.g. Clover ETL.
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ETL tools

• Focus:

◦ Data profiling

◦ Data cleaning

◦ Simple transformations

◦ Bulk loading

◦ Latency requirements

• What they don’t do yet:

◦ nontrivial transformations

◦ query answering

• But techniques now exist for interesting data integration and for query
answering – and we shall learn them.

• They soon will be reflected in products (IBM and Microsoft are partic-
ularly active in this area)
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Data profiling/cleaning

• Data profiling: gives the user a view of data:

◦ Samples over large tables

◦ statistics (how many different values etc)

◦ Graphical tools for exploring the database

• Cleaning:

◦ Same properties may have different names

e.g. Last Name, L Name, LastName

◦ Same data may have different representations

• e.g. (0131)555-1111 vs 01315551111,

• George Str. vs George Street

◦ Some data may be just wrong
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Data transformation

• Most transformation rules tend to be simple:

◦ Copy attribute LName to Last Name

◦ Set age to be current year – DOB

• Heavy emphasis on industry specific formats

• For example, Informatica B2B Data Exchange product offers versions
for Healthcare and Financial services as well as specialised tools for
formats including:

◦ MS Word, Excel, PDF, UN/EDIFACT (Data Interchange For Ad-
ministration, Commerce, and Transport), RosettaNet for B2B, and
many specialised healthcare and financial form.

• These are format/industry specific and have little to do with the general
tasks of data integration.
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Data integration, scenario 1

DB1 DB2 DB3 DBn.......

GLOBAL SCHEMA QUERY: Q?
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Data integration
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GLOBAL SCHEMA QUERY: Q?
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Data integration

DB1 DB2 DB3 DBn.......

A B C D

.. .. .. ..

.. .. .. ..

A E B C F A C

.. ..

.. ..

.. .. ..

.. .. ..

.. ..

.. ..

Q1 Q2 Q3 Q
n

V2 V3 V
n

V1

GLOBAL SCHEMA QUERY: Q?

Answer to Q is obtained by querying the views V1 , ..., Vn
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Data integration, query answering

• We have our view of the world (the Global Schema)

• We can access (parts of) databases DB1, . . . , DBn to get relevant
data.

• It comes in the form of views, V1, . . . , Vn

• Our query against the global schema must be reformulated as a query
against the views V1, . . . , Vn

• The approach is completely virtual: we never create a database the
conforms to the global schema.
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Data integration, query answering, a toy example

• List courses taught by permanent teaching staff during Winter 2007

• We have two databases:

◦ D1(name, age, salary) of permanent staff

◦ D2(teacher, course, semester, enrollment) of courses

• D1 only publishes the value of the name attribute

• D2 does not reveal enrollments

• The views:
V1 = πname(D1)
V2 = πteacher,course,semester(D2)

• Next step: establish correspondence between attributes name of V1 and
teacher of V2

L. Libkin 13 ATFD



Data integration, query answering, a toy example
cont’d

• To answer query, we need to import the following data:

V1

W2 = σsemester=′Winter 2007′(V2)

• Answering query:

{course | ∃name, sem V1(name) ∧W2(name, course, sem)}

• Or, in relational algebra

πcourse(V1 ⋊⋉name=teacher W2)
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Toy example, lessons learned

• We don’t have access to all the data

• Some human intervention is essential (someone needs to tell us that
teacher and name refer to the same entity)

• We don’t run a query against a single database. Instead, we

◦ run queries against different databases based on restrictions they
impose

◦ get results to use them locally

◦ run another query against those results
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Toy example, things getting more complicated

• Find informatics permanent staff who taught during the Winter 2007
semester, and their phone numbers

• We have additional personnel databases:

◦ an informatics database D3(employee, phone, office), and

◦ a university-wide database D4(employee, school, phone)

◦ for simplicity, assume all this information is public

• Now we have a choice:

◦ use D3 to get information about phones

◦ use D4 to get information about phones

◦ use both D3 and D4 to get information about phones
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Toy example cont’d

• First, we need some human involvement to see that employee, name,
and teacher refer to the same category of objects

• If one uses D3, then the query is

{name, phone | ∃sem, course, office V1(name)∧
W2(name, course, sem) ∧D3(name, phone, office)}

• If one uses D4, then the query is

{name, phone | ∃sem, course, school V1(name)∧
W2(name, course, sem) ∧D4(name, school, phone)}

• But what if one uses both D3 and D4?
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Toy example cont’d

• We could insist on the phone number being:

◦ in either D3 or D4

◦ in both D3 and D4, but not necessarily the same

◦ in both D3 and D4, and the same in both databases

• One can write queries for all the cases, but which one should we use?

• New lessons:

◦ databases that are being integrated are often inconsistent

◦ query answering is by no means unique – there could be several ways
to answer a query

◦ different possibilities for answering queries are a result of inconsis-
tencies and incomplete information
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Toy example cont’d

• Suppose phone numbers in D3 and D4 are different.

• What is a sensible query answer then?

• A common approach is to use certain answers – these are guaranteed
to be true.

• Another question: what if there is no record at all for the phone number
in D3 and D4?

• Then we have an instance of incomplete information.
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A different scenario

• So far we looked at virtual integration: no database of the global
schema was created.

• Sometimes we need such a database to be created, for example, if many
queries are expected to be asked against it.

• In general, this is a common problem with data integration: materialize
vs federate.

• Materialize = create a new database based on integrating data from
different sources.

• Federate = the virtual approach: obtain data from various sources and
use them to answer queries.
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Virtual vs Materialization

• A common situation for the materialization approach: merger of differ-
ent organizations.

• A common situation for the federated approach: we don’t have full
access to the data, and the data changes often.
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Common tasks in data integration

• How do we represent information?

◦ Global schema, attributes, constraints

◦ data formats of attributes

◦ reconciling data from different sources

◦ abbreviations, terminology, ontologies

• How do we deal with imperfect information?

◦ resolve overlaps

◦ handling missing data

◦ handling inconsistencies
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Common tasks in data integration cont’d

• How do we answer queries?

◦ what information is available?

◦ Can we get the answer?

◦ if not, what is the semantics of query answering?

◦ Is query answering feasible?

◦ Is it possible to compute query answers at all?

◦ If now, how do we approximate?

• Materialize or federate?
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Common tasks in data integration cont’d

• Do it from scratch or use commercial tools?

◦ many are available (just google for “data integration”)

◦ but do we fully understand them?

◦ lots of them are very ad hoc, with poorly defined semantics

◦ this is why it is so important to understand what really happens in
data integration
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Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T
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Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

TARGET

DATABASE
?????
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Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

TARGET

DATABASE
?????

Query over the target schema: Q

How to answer Q so that the answer is consistent with the data in the
source database?
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Data exchange vs Data integration

Data exchange appears to be an easier problem:

• there is only one source database;

• and one has complete access to the source data.

But there could be many different target instances.

Problem: which one to use for query answering?
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When do we have the need for data exchange

• A typical scenario:

◦ Two organizations have their legacy databases, schemas cannot be
changed.

◦ Data from one organization 1 needs to be transfered to data from
organization 2.

◦ Queries need to be answered against the transferred data.
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Query answering using views

• General setting: database relations R1, . . . , Rn.

• Several views V1, . . . , Vk are defined as results of queries over the Ri’s.

• We have a query Q over R1, . . . , Rn.

• Question: Can Q be answered in terms of the views?

◦ In other words, can Q be reformulated so it only refers to the data
in V1, . . . , Vk?
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Query answering using views in data integration

• LAV:

◦ R1, . . . , Rn are global schema relations; Q is the global schema
query

◦ Vi’s are the sources defined over the global schema

◦ We must answer Q based on the sources (virtual integration)

• GAV:

◦ R1, . . . , Rn are the sources that are not fully available.

◦ Q is a query in terms of the source (or a query that was reformulated
in terms of the sources)

◦ Must see if it is answerable from the available views V1, . . . , Vk.

• We know the problem is impossible to solve for full relational algebra,
hence we concentrate on conjunctive queries.

L. Libkin 31 ATFD



Query answering using views: example

• Two relations in the database: Cites(A,B) (if A cites B), and
SameTopic(A,B) (if A, B work on the same topic)

• Query Q(x, y) :– SameTopic(x, y),Cites(x, y),Cites(y, x)

• Two views are given:

◦ V1(x, y) :– Cites(x, y),Cites(y, x)

◦ V2(x, y) :– SameTopic(x, y),Cites(x, x′),Cites(y, y′)

• Suggested rewriting: Q′(x, y) :– V1(x, y), V2(x, y)

• Why? Unfold using the definitions:

Q′(x, y) :– Cites(x, y),Cites(y, x), SameTopic(x, y),Cites(x, x′),Cites(y, y′)

• Equivalent to Q
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Query answering using views

• Need a formal technique (algorithm): cannot rely on the semantics.

• Query Q:

SELECT R1.A

FROM R R1, R R2, S S1, S S2

WHERE R1.A=R2.A AND S1.A=S2.A AND R1.A=S1.A

AND R1.B=1 and S2.B=1

• Q(x) :– R(x, y), R(x, 1), S(x, z), S(x, 1)

• Equivalent to Q(x) :– R(x, 1), S(x, 1)

• So if we have a view

◦ V (x, y) :– R(x, y), S(x, y) (i.e. V = R ∩ S), then

◦ Q = πA(σB=1(V ))

◦ Q can be rewritten (as a conjunctive query) in terms of V
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Query rewriting

• Setting:

◦ Queries V1, . . . , Vk over the same schema σ (assume to be conjunc-
tive; they define the views)

◦ Each Qi is of arity ni

◦ A schema ω with relations of arities n1, . . . , nk

• Given:

◦ a query Q over σ

◦ a query Q′ over ω

• Q′ is a rewriting of Q if for every σ-database D,

Q(D) = Q′
(

V1(D), . . . , Vk(D)
)
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Maximal rewriting

• Sometimes exact rewritings cannot be obtained

• Q′ is a maximally-contained rewriting if:

◦ it is contained in Q:

Q′
(

V1(D), . . . , Vk(D)
)

⊆ Q(D)

for all D

◦ it is maximal such: if

Q′′
(

V1(D), . . . , Vk(D)
)

⊆ Q(D)

for all D, then
Q′′ ⊆ Q′
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Query rewriting: a naive algorithm

• Given:

◦ conjunctive queries V1, . . . , Vk over schema σ

◦ a query Q over σ

• Algorithm:

◦ guess a query Q′ over the views

◦ Unfold Q′ in terms of the views

◦ Check if the unfolding is contained in Q

• If one unfolding is equivalent to Q, then Q′ is a rewriting

• Otherwise take the union of all unfoldings contained in Q

– it is a maximally contained rewriting
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Why is it not an algorithm yet?

• Problem: the guess stage.

◦ There are infinitely many conjunctive queries.

◦ We cannot check them all.

◦ Solution: we only need to check a few.
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Guessing rewritings

• A basic fact:

◦ If there is a rewriting of Q using V1, . . . , Vk, then there is a rewriting
with no more conjuncts than in Q.

◦ E.g., if Q(x) :– R(x, y), R(x, 1), S(x, z), S(x, 1), we only need to
check conjunctive queries over V with at most 4 conjuncts.

• Moreover, maximally contained rewriting is obtained as the union of all
conjunctive rewritings of length of Q or less.

• Complexity: enumerate all candidates (exponentially many); for each
an NP (or exponential) algorithm. Hence exponential time is required.

• Cannot lower this due to NP-completeness.
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Query rewriting

• Recall the algorithm, for a given Q and view definitions V1, . . . , Vk:

◦ Look at all rewritings that have as at most as many joins as Q

◦ check if they are contained in Q

◦ take the union of those that are

• This is the maximally contained rewriting

• There are algorithms that prune the search space and make looking for
rewritings contained in Q more efficient

◦ the bucket algorithm

◦ MiniCon
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How hard is it to answer queries using views?

• Setting: we now have an actual content of the views.

• As before, a query is Q posed against D, but must be answered using
information in the views.

• Suppose I1, . . . , Ik are view instances. Two possibilities:

◦ Exact mappings: Ij = Vj(D)

◦ Sound mappings: Ij ⊆ Vj(D)

• We need certain answers for given I = (I1, . . . , Ik):

certainexact(Q,I) =
⋂

D: Ij=Vj(D) for all j

Q(D)

certainsound(Q,I) =
⋂

D: Ij⊆Vj(D) for all j

Q(D)
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How hard is it to answer queries using views?

• If certainexact(Q,I) or certainsound(Q,I) are impossible to obtain, we
want maximally contained rewritings:

◦ Q′(I) ⊆ certainexact(Q,I), and

◦ if Q′′(I) ⊆ certainexact(Q,I) then Q′′(I) ⊆ Q′(I)

◦ (and likewise for sound)

• How hard is it to compute this from I?
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Complexity of query answering

• We want the complexity of finding

certainexact(Q,I) or certainsound(Q,I)

in terms of the size of I

• If all view definitions are conjunctive queries andQ is a relational algebra
or a SQL query, then the complexity is coNP.

• This is too high!

• If all view definitions are conjunctive queries and Q is a conjunctive
query, then the complexity is PTIME.

◦ Because: the maximally contained rewriting computes certain an-
swers!
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Complexity of query answering

query language

view language CQ CQ 6= relational calculus
CQ ptime coNP undecidable

CQ 6= ptime coNP undecidable
relational calculus undecidable undecidable undecidable

CQ – conjunctive queries

CQ 6= – conjunctive queries with inequalities
(for example, Q(x) :– R(x, y), S(y, z), x 6= z )
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Data exchange

• Source schema, target schema; need to transfer data between them.

• A typical scenario:

◦ Two organizations have their legacy databases, schemas cannot be
changed.

◦ Data from one organization 1 needs to be transfered to data from
organization 2.

◦ Queries need to be answered against the transferred data.
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Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T
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Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

TARGET

DATABASE
?????
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Data exchange: an example

• We want to create a target database with the schema

Flight(city1,city2,aircraft,departure,arrival)
Served(city,country,population,agency)

• We don’t start from scratch: there is a source database containing
relations

Route(source,destination,departure)
BG(country,city)

• We want to transfer data from the source to the target.

L. Libkin 47 ATFD



Data exchange – relationships between the source
and the target

How to specify the relationship?

SERVED

ROUTE Source Dest Departure FLIGHTcity1 city2 aircraft departure arrival

Country CityBG agencypopulationcountrycity
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Relationships between the source and the target

• Formal specification: we have a relational calculus query over both the
source and the target schema.

• The query is of a restricted form, and can be thought of as a sequence
of rules:

Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

Served(city, country, , ) :– Route(city, , ), BG(country, city)

Served(city, country, , ) :– Route( , city, ), BG(country, city)
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Data exchange – targets

• Target instances should satisfy the rules.

• What does it mean to satisfy a rule?

• Formally, if we take:

Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

then it is satisfied by a source S and a target T if the constraint

∀c1, c2, d
(

Route(c1, c2, d) → ∃a1, a2

(

Flight(c1, c2, a1, d, a2)
)

)

• This constraint is a relational calculus query that evaluates to true or
false
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Data exchange – targets

• What happens if there no values for some attributes, e.g. aircraft,
arrival?

• We put in null values or some real values.

• But then we may have multiple solutions!
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Data exchange – targets

Source Database:

ROUTE:

Source Destination Departure
Edinburgh Amsterdam 0600
Edinburgh London 0615
Edinburgh Frankfurt 0700

BG:

Country City
UK London
UK Edinburgh
NL Amsterdam

GER Frankfurt

Look at the rule

Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

The right hand side is satisfied by

Route(Edinburgh, Amsterdam, 0600)

But what can we put in the target?
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Data exchange – targets

Rule: Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

Satisfied by: Route(Edinburgh, Amsterdam, 0600)

Possible targets:

• Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

• Flight(Edinburgh, Amsterdam, B737, 0600, ⊥)

• Flight(Edinburgh, Amsterdam, ⊥, 0600, 0845)

• Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

• Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

They all satisfy the constraints!
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Which target to choose

• One of them happens to be right:

– Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

• But in general we do not know this; it looks just as good as

– Flight(Edinburgh, Amsterdam, ’The Spirit of St Louis’, 0600, 1300),
or

– Flight(Edinburgh, Amsterdam, F16, 0600, 0620).

• Goal: look for the “most general” solution.

• How to define “most general”: can be mapped into any other solution.

• It is not unique either, but the space of solution is greatly reduced.

• In our case Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2) is most gen-
eral as it makes no additional assumptions about the nulls.
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Towards good solutions

A solution is a database with nulls.
Reminder: every such database T represents many possible complete databases,
without null values:

Example
Semantics via
valuations

A B C

1 2 ⊥1

⊥2 ⊥1 3
⊥3 5 1
2 ⊥3 3

v(⊥1) = 4
v(⊥2) = 3
v(⊥3) = 5

=⇒

A B C

1 2 4
3 4 3
5 5 1
2 5 3
3 7 8
4 2 1

[[T ]]owa = {R | v(T ) ⊆ R for some valuation v}
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Good solutions

• An optimistic view – A good solution represents ALL other solutions:

[[T ]]owa = {R | R is a solution without nulls}

• Shouldn’t settle for less than – A good solution is at least as general
as others:

[[T ]]owa ⊇ [[T ′]]owa for every other solution T ′

• Good news: these two views are equivalent. Hence can take them as a
definition of a good solutions.

• In data exchange, such solutions are called universal solutions.
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Universal solutions: another description

• A homomorphism is a mapping h : Nulls → Nulls ∪ Constants.

• For example, h(⊥1) = B737, h(⊥2) = 0845.

• If we have two solutions T1 and T2, then h is a homomorphism from
T1 into T2 if for each tuple t in T1, the tuple h(t) is in T2.

• For example, if we have a tuple

t = Flight(Edinburgh, Amsterdam,⊥1, 0600,⊥2)

then

h(t) = Flight(Edinburgh, Amsterdam, B737, 0600, 0845).

• A solution is universal if and only if there is a homomorphism from it
into every other solution.
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Universal solutions: still too many of them

• Take any n > 0 and consider the solution with n tuples:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

• It is universal too: take a homomorphism

h′(⊥i) =

{

⊥1 if i is odd

⊥2 if i is even

• It sends this solution into

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
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Universal solutions: cannot be distinguished by
conjunctive queries

• There are queries that distinguish large and small universal solutions
(e.g., does a relation have at least 2 tuples?)

• But these cannot be distinguished by conjunctive queries

• Because: if ⊥i1, . . . ,⊥ik witness a conjunctive query, so do h(⊥i1), . . . , h(⊥ik)
— hence, one tuple suffices

• In general, if we have

◦ a homomorphism h : T → T ′,

◦ a conjunctive query Q

◦ a tuple t without nulls such that t ∈ Q(T )

• then t ∈ Q(T ′)
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Universal solutions and conjunctive queries

• If

◦ T and T ′ are two universal solutions

◦ Q is a conjunctive query, and

◦ t is a tuple without nulls,

then
t ∈ Q(T ) ⇔ t ∈ Q(T ′)

because we have homomorphisms T → T ′ and T ′ → T .

• Furthermore, if

◦ T is a universal solution, and T ′′ is an arbitrary solution,

then
t ∈ Q(T ) ⇒ t ∈ Q(T ′′)
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Universal solutions and conjunctive queries cont’d

• Now recall what we learned about answering conjunctive queries over
databases with nulls:

◦ T is a naive table

◦ the set of tuples without nulls in Q(T ) is precisely certain(Q,T ) –
certain answers over T

• Hence if T is an arbitrary universal solution

certain(Q,T ) =
⋂

{Q(T ′) | T ′ is a solution}

•
⋂

{Q(T ′) | T ′ is a solution} is the set of certain answers in data
exchange under mapping M : certainM(Q,S). Thus

certainM(Q,S) = certain(Q,T )

for every universal solution T for S under M .
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Universal solutions cont’d

• To answer conjunctive queries, one needs an arbitrary universal solution.

• We saw some; intuitively, it is better to have:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

than

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

• We now define a canonical universal solution.
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Canonical universal solution

• Convert each rule into a rule of the form:

ψ(x1, . . . , xn, z1, . . . , zk) :– ϕ(x1, . . . , xn, y1, . . . , ym)

(for example,
Flight(c1, c2, , dept, ) :– Route(c1, c2, dept)

becomes

Flight(x1, x2, z1, x3, z2) :– Route(x1, x2, x3) )

• Evaluate ϕ(x1, . . . , xn, y1, . . . , ym) in S.

• For each tuple (a1, . . . , an, b1, . . . , bm) that belongs to the result (i.e.

ϕ(a1, . . . , an, b1, . . . , bm) holds in S,

do the following:
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Canonical universal solution cont’d

• . . . do the following:

◦ Create new (not previously used) null values ⊥1, . . . ,⊥k

◦ Put tuples in target relations so that

ψ(a1, . . . , an, ⊥1, . . . ,⊥k)

holds.

• What is ψ?

• It is normally assumed that ψ is a conjunction of atomic formulae, i.e.

R1(x̄1, z̄1) ∧ . . . ∧Rl(x̄l, z̄l)

• Tuples are put in the target to satisfy these formulae
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Canonical universal solution cont’d

• Example: no-direct-route airline:

Newroute(x1, z) ∧ Newroute(z, x2) :– Oldroute(x1, x2)

• If (a1, a2) ∈ Oldroute(a1, a2), then create a new null ⊥ and put:

Newroute(a1,⊥)
Newroute(⊥, a2)

into the target.

• Complexity of finding this solution: polynomial in the size of the source
S:

O(
∑

rules ψ :- ϕ
Evaluation of ϕ on S)

L. Libkin 65 ATFD



Canonical universal solution and conjunctive queries

• Canonical solution: CanSolM(S).

• We know that if Q is a conjunctive query, then certainM(Q,S) =
certain(Q, T ) for every universal solution T for S under M .

• Hence
certainM(Q,S) = certain(Q,CanSolM(S))

• Algorithm for answering Q:

◦ Construct CanSolM(S)

◦ Apply naive evaluation to Q over CanSolM(S)
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Beyond conjunctive queries

• Everything still works the same way for σ, π,⋊⋉,∪ queries of relational
algebra. Adding union is harmless.

• Adding difference (i.e. going to the full relational algebra) is not.

• Reason: same as before, can encode validity problem in logic.

• Single rule, saying “copy the source into the target”

T (x, y) :– S(x, y)

• If the source is empty, what can a target be? Anything!

• The meaning of T (x, y) :– S(x, y) is

∀x∀y
(

S(x, y) → T (x, y)
)
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Beyond conjunctive queries cont’d

• Look at ϕ = ∀x∀y
(

S(x, y) → T (x, y)
)

• S(x, y) is always false (S is empty), hence S(x, y) → T (x, y) is true
(p→ q is ¬p ∨ q)

• Hence ϕ is true.

• Even if T is empty, ϕ is true: universal quantification over the empty
set evaluates to true:

◦ Remember SQL’s ALL:

SELECT * FROM R

WHERE R.A > ALL (SELECT S.B FROM S)

◦ The condition is true if SELECT S.B FROM S is empty.
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Beyond conjunctive queries cont’d

• Thus if S is empty and we have a rule T (x, y) :– S(x, y), then all
T ’s are solutions.

• Let Q be a Boolean (yes/no) query. Then

certainM(Q,S) = true ⇔ Q is valid

• Valid = always true.

• Validity problem in logic: given a logical statement, is it:

◦ valid, or

◦ valid over finite databases

• Both are undecidable.
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Beyond conjunctive queries cont’d

• If we want to answer queries by rewritings, i.e. find a query Q′ so that

certainM(Q,S) = Q′(CanSolM(S))

then there is no algorithm that can construct Q′ from Q!

• Hence a different approach is needed.
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Key problem

• Our main problem:

Solutions are open to adding new facts

• How to close them?

• By applying the CWA (Closed World Assumption) instead of the OWA
(Open World Assumption)
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More flexible query answering: dealing with
incomplete information

• Key issue in dealing with incomplete information:

- Closed vs Open World Assumption (CWA vs OWA)

• CWA: database is closed to adding new facts except those consistent
with one of the incomplete tuples in it.

• OWA opens databases to such facts.

• In data exchange:

- we move data from source to target;

- query answering should be based on that data and not on tuples
that might be added later.

• Hence in data exchange CWA seems more reasonable.
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Solutions under CWA – informally

• Each null introduced in the target must be justified:

- there must be a constraint . . . T (. . . , z, . . .) . . . :– ϕ(. . .) with ϕ
satisfied in the source.

• The same justification shouldn’t generate multiple nulls:

- for T (. . . , z, . . .) :– ϕ(ā) only one new null ⊥ is generated in the
target.

• No unjustified facts about targets should be invented:

- assume we have T (x, z) :– ϕ(x), T (z′, x) :– ψ(x) and ϕ(a),
ψ(b) are true in the source.

- Then we put T (a,⊥) and T (⊥′, b) in the target but not
T (a,⊥), T (⊥, b) which would invent a new “fact”: a and b are
connected by a path of length 2.
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Solutions under the CWA: summary

• There are homomorphisms

h : CanSol(S) → T h′ : T → CanSol(S)

◦ so that T = h(CanSol(S))

• T contains the core of CanSol(S)

• Core: the smallest C ⊆ CanSol(S) such that there is a homomor-
phism from CanSol(S) to C.

• Often saves space, but takes time to compute.

• Data exchange systems try to move from CanSol(S) to the core but
usually stop half-way due to the complexity of computation.
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Query answering under the CWA

• Given

◦ a source S,

◦ a set of rules M ,

◦ a target query Q,

a tuple t is in
certainCWA

M (Q,S)

if it is in Q(R) for every

◦ solution T under the CWA, and

◦ R ∈ [[T ]]owa

• (i.e. no matter which solution we choose and how we interpret the
nulls)
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Query answering under the CWA – characterization

• Given a source S, a set of rules M , and a target query Q:

certainCWA
M (Q,S) = certain(Q,CanSol(S))

• That is, to compute the answer to query one needs to:

◦ Compute the canonical solution CanSol(S) – which has nulls in
it

◦ Find certain answers to Q over CanSol(S)

• If Q is a conjunctive query, this is exactly what we had before

• Under the CWA, the same evaluation strategy applies to all queries!
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Data exchange and integrity constraints

• Integrity constraints are often specified over target schemas

• In SQL’s data definition language one uses keys and foreign keys most
often, but other constraints can be specified too.

• Adding integrity constraints in data exchange is often problematic, as
some natural solutions – e.g., the canonical solution – may fail them.
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Target constraints cause problems

• The simplest example:

◦ Copy source to target

◦ Impose a constraint on target not satisfied in the source

• Data exchange setting:

◦ T (x, y) :– S(x, y) and

◦ Constraint: the first attribute is a key

• Instance S:
1 2
1 3

• Every target T must include these tuples and hence violates the key.
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Target constraints: more problems

• A common problem: an attempt to repair violations of constraints leads
to an sequence of adding tuples.

• Example:

◦ Source DeptEmpl(dept id,manager name,empl id)

◦ Target

- Dept(dept id,manager id,manager name),

- Empl(empl id,dept id)

◦ Rule Dept(d, z, n), Empl(e, d) :– DeptEmpl(d, n, e)

◦ Target constraints:

- Dept[manager id] ⊆ Empl[empl id]

- Empl[dept id] ⊆ Dept[dept id]
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Target constraints: more problems cont’d

• Start with (CS, John, 001) in DeptEmpl.

• Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

• Use the first constraint and add a tuple Empl(⊥1, ⊥2) in the target

• Use the second constraint and put Dept(⊥2, ⊥3, ⊥3’) into the target

• Use the first constraint and add a tuple Empl(⊥3, ⊥4) in the target

• Use the second constraint and put Dept(⊥4, ⊥5, ⊥5’) into the target

• this never stops....
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Target constraints: avoiding this problem

• Change the target constraints slightly:

◦ Target constraints:

- Dept[dept id,manager id] ⊆ Empl[empl id, dept id]

- Empl[dept id] ⊆ Dept[dept id]

• Again start with (CS, John, 001) in DeptEmpl.

• Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

• Use the first constraint and add a tuple Empl(⊥1, CS)

• Now constraints are satisfied – we have a target instance!

• What’s the difference? In our first example constraints are very cyclic
causing an infinite loop. There is less cyclicity in the second example.

• Bottom line: avoid cyclic constraints.
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Schema mappings

• Rules used in data exchange specify mappings between schemas.

• To understand the evolution of data one needs to study operations on
schema mappings.

• Most commonly we need to deal with two operations:

◦ composition

◦ inverse
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Composition and inverse

S1 S2 S3

Σ ∆
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Composition and inverse

S1 S2 S3

Σ ∆

Σ ◦ ∆
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Composition and inverse

S1 S2 S3

S1’

Σ ∆

Γ

Σ ◦ ∆
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Composition and inverse

Γ−1 ◦ (Σ ◦ ∆)

S1 S2 S3

S1’

Σ ∆

Γ

Σ ◦ ∆
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Mappings

• Schema mappings are typically given by rules

ψ(x̄, z̄) :– ∃ū ϕ(x̄, ȳ, ū)

where

◦ ψ is a conjunction of atoms over the target:

T1(x̄1, z̄1) ∧ . . . ∧ Tm(x̄m, z̄m)

◦ ϕ is a conjunction of atoms over the source:

S1(x̄
′
1, ȳ1, ū1) ∧ . . . ∧ Sk(x̄

′
k, ȳk, ūk)

• Example: Served(x1, x2, z1, z2) :– ∃u1, u2 Route(x1, u1, u2)∧BG(x1, x2)
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The closure problem

• Are mappings closed under

◦ composition?

◦ inverse?

• If not, what needs to be added?

• It turns out that mappings are not closed under inverses and composi-
tion.

• We next see what might need to be added to them.
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Skolem functions

• Source: EP(empl name,dept,project);
Target: EDPH(empl id,dept,phone), DP(dept,project)

• A natural mapping is:

EDPH(z1, x2, z3) ∧ DP(x2, x3) :– EP(x1, x2, x3)

• This is problematic: if we have tuples

(John, CS, P1) (John, CS, P2)

in EP, the canonical solution would have

EDPH
⊥1 CS ⊥′

1

⊥2 CS ⊥′
2

corresponding to two projects P1 and P2.

• So empl id is hardly an id!
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Skolem functions cont’d

• Solution: make empl id a function of empl name.

• Such “invented” functions are called Skolem functions (see Logic 001
for a proper definition)

• Source: EP(empl name,dept,project);
Target: EDPH(empl id,dept,phone), DP(dept,project)

• A new mapping is:

EDPH(f(x1), x2, z3) ∧ DP(x2, x3) :– EP(x1, x2, x3)

• f assigns a unique id to every name.

L. Libkin 90 ATFD



Other possible additions

• One can look at more general queries used in mappings.

• Most generally, relational algebra queries, but to be more modest, one
can start with just adding inequalities.

• One may also disjunctions: for example, if we want to invert

T (x) :– S1(x)
T (x) :– S2(x)

it seems natural to introduce a rule

S1(x) ∨ S2(x) :– T (x)
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Composition: definition

• Recall the definition of composition of binary relations R and R′:

(x, z) ∈ R ◦R′ ⇔ ∃y : (x, y) ∈ R and (y, z) ∈ R′

• A schema mapping Σ for two schemas σ and τ is viewed as a binary
relation

Σ =

{

(S, T )

∣

∣

∣

∣

S is a σ-instance
T is a τ -instance
T is a solution for S

}

• The composition of mappings Σ from σ to τ and ∆ from τ to ω is now

Σ ◦ ∆

• Question (closure): is there a mapping Γ between σ and ω so that

Γ = Σ ◦ ∆

L. Libkin 92 ATFD



Composition: when it works

• If Σ

◦ does not generate any nulls, and

◦ no variables ū for source formulas

• Example:

Σ : T (x1, x2) ∧ T (x2, x3) :– S(x1, x2, x3)
∆ : W (x1, x2, z) :– T (x1, x2)

• First modify into:

Σ : T (x1, x2) :– S(x1, x2, x3)
Σ : T (x2, x3) :– S(x1, x2, x3)
∆ : W (x1, x2, z) :– T (x1, x2)

• Then substitute in the definition of W :
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Composition: when it cont’d

W (x1, x2, z) :– S(x1, x2, y)
W (x1, x2, z) :– S(y, x1, x2)

to get Σ ◦ ∆.

Explaining the second rule:

W (x1, x2, z)
→ T (x1, x2) using T (var1, var2) :– S(var3, var1, var2)
→ S(y, x1, x2)
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Composition: when it doesn’t work

• Schema σ: Takes(st name, course)

• Schema τ : Takes’(st name, course), NameId(st name, st id)

• Schema ω: Enroll(st id, course)

• Mapping Σ from σ to τ :

Takes′(s, c) :– Takes(s, c)
NameId(s, i) :– ∃c Takes(s, c)

• Mapping ∆ from τ to ω:

Enroll(i, c) :– NameId(s, i) ∧ Takes′(s, c)

• A first attempt at the composition: Enroll(i, c) :– Takes(s, c)
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Composition: when it doesn’t work cont’d

• What’s wrong with Γ: Enroll(i, c) :– Takes(s, c)?

• Student id i depends on both name and course!

Takes:
John CS1
John CS2

Σ
⇒

Takes’:
John CS1
John CS2

NameId: John ⊥

∆
⇒ Enroll:

⊥ CS1
⊥ CS2

But:

Takes:
John CS1
John CS2

Γ
⇒ Enroll:

⊥1 CS1
⊥2 CS2

L. Libkin 96 ATFD



Composition: when it doesn’t work cont’d

• Solution: Skolem functions.

• Γ′: Enroll(f(s), c) :– Takes(s, c)

• Then:

Takes:
John CS1
John CS2

Γ
⇒ Enroll:

⊥ CS1
⊥ CS2

• where ⊥ = f(John)
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Composition: another example

• Schema σ: Empl(eid)

• Schema τ : Mngr(eid,mngid)

• Schema ω: Mngr’(eid,mngid), SelfMng(id)

• Mapping Σ from σ to τ :

Mngr(e,m) :– Empl(e)

• Mapping ∆ from τ to ω:

Mngr’(e,m) :– Mngr(e,m)
SelfMng(e) :– Mngr(e, e)

• Composition:

Mngr’(e, f(e)) :– Empl(e)
SelfMng(e) :– Empl(e) ∧ e = f(e)
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Composition and Skolem functions

• Schema mappings with Skolem functions compose!

• Algorithm:

◦ replace all nulls by Skolem functions

- Mngr(e, f(e)) :– Empl(e)

- ∆ stays as before

◦ Use substitution:

- Mngr’(e,m) :– Mngr(e,m) becomes

Mngr’(e, f(e)) :– Empl(e)

- SelfMng(e) :– Mngr(e, e) becomes

SelfMng(e) :– Empl(e) ∧ e = f(e)
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Inverting mappings

• Harder than composition.

• Intuition: Σ ◦ Σ
−1 = ID.

• But even what ID should be is not entirely clear.

• Some intuitive examples will follow.
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Examples of inversion

• The inverse of projection is null invention:

◦ T (x) :– S(x, y)

◦ S(x, y) :– T (x)

• Inverse of union requires disjunction:

◦ T (x) :– S(x) T (x) :– S ′(x)

◦ S(x) ∨ S ′(x) :– T (x)

• So reversing the rules doesn’t always work.
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Examples of inversion cont’d

• Inverse of decomposition is join:

◦ T (x1, x2) ∧ T
′(x2, x3) :– S(x1, x2, x3)

◦ S(x1, x2, x3) :– T (x1, x2) ∧ T
′(x2, x3)

• But this is also an inverse of T (x1, x2)∧ T
′(x2, x3) :– S(x1, x2, x3):

◦ S(x1, x2, z) :– T (x1, x2)

◦ S(z, x2, x3) :– T ′(x2, x3)
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Examples of inversion cont’d

• One may need to distinguish nulls from values in inverses.

• Σ given by
T1(x) :– S(x, x)

T2(x, z) :– S(x, y) ∧ S(y, x)
T3(x1, x2, z) :– S(x1, x2)

• Its inverse Σ
−1 requires:

◦ a predicate NotNull and

◦ inequalities:

S(x, x) :– T1(x) ∧ T2(x, y1) ∧ T3(x, x, y2) ∧ NotNull(x)

S(x1, x2) :– T3(x1, x2, y) ∧ (x1 6= x2) ∧ NotNull(x1) ∧ NotNull(x2)
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Integrating preferences/rankings

Problem statement

• Each object has m grades, one for each of m criteria.

• The grade of an object for field i is xi.

• Normally assume 0 ≤ xi ≤ 1.

◦ Typically evaluations based on different criteria

◦ The higher the value of xi, the better the object is according to the
ith criterion

• The objects are given in m sorted lists

◦ the ith list is sorted by xi value

◦ These lists correspond to different sources or to different criteria.

• Goal: find the top k objects.
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Example

Grade 1
(17, 0.9936)
(1352,0.9916)
(702,0.9826)
. . .
(12, 0.3256)
. . .

Grade 2
(235, 0.9996)
(12, 0.9966)
(8201, 0.9926)
. . .
(17, 0.406)
. . .
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Aggregation Functions

• Have an aggregation function F .

• Let x1, . . . , xm be the grades of object R under the m criteria.

• Then F (x1, . . . , xm) is the overall grade of object R.

• Common choices for F :

◦ min

◦ average or sum

• An aggregation function F is monotone if

F (x1, . . . , xm) ≤ F (x′1, . . . , x
′
m)

whenever xi ≤ x′i for all i.
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Other Applications

• Information retrieval

• Objects R are documents.

• The m criteria are search terms s1, . . . , sm.

• The grade xi: how relevant document R is for search term si.

• Common to take the aggregation function F to be the sum

F (x1, . . . , xm) = x1 + · · · + xm.
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Modes of Access

• Sorted access

◦ Can obtain the next object with its grade in list Li

◦ cost cS.

• Random access

◦ Can obtain the grade of object R in list Li

◦ cost cR.

• Middleware cost:

cS · (# of sorted accesses) + cR · (# of random accesses).
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Algorithms

• Want an algorithm for finding the top k objects.

• Naive algorithm:

◦ compute the overall grade of every object;

◦ return the top k answers.

• Too expensive.
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Fagin’s Algorithm (FA)

1. Do sorted access in parallel to each of the m sorted lists Li.

• Stop when there are at least k objects, each of which have been
seen in all the lists.

2. For each object R that has been seen:

• Retrieve all of its fields x1, . . . , xm by random access.

• Compute F (R) = F (x1, . . . , xm).

3. Return the top k answers.
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Fagin’s algorithm is correct

• Assume object R was not seen

◦ its grades are x1, . . . , xm.

• Assume object S is one of the answers returned by FA

◦ its grades are y1, . . . , ym.

• Then xi ≤ yi for each i

• Hence

F (R) = F (x1, . . . , xm) ≤ F (y1, . . . , ym) = F (S).
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Fagin’s algorithm: performance guarantees

• Typically probabilistic guarantees

• Orderings are independent

• Then with high probability the middleware cost is

O
(

N ·
m

√

k

N

)

• i.e., sublinear

• But may perform poorly

◦ e.g., if F is constant:

◦ still takes O
(

N · m
√

k/N
)

instead of a constant time algorithm
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Optimal algorithm: The Threshold Algorithm

1. Do sorted access in parallel to each of the m sorted lists Li. As each
object R is seen under sorted access:

• Retrieve all of its fields x1, . . . , xm by random access.

• Compute F (R) = F (x1, . . . , xm).

• If this is one of the top k answers so far, remember it.

• Note: buffer of bounded size.

2. For each list Li, let x̂i be the grade of the last object seen under sorted
access.

3. Define the threshold value t to be F (x̂1, . . . , x̂m).

4. When k objects have been seen whose grade is at least t, then stop.

5. Return the top k answers.
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Threshold Algorithm: correctness and optimality

• The Threshold Algorithm is correct for every monotone aggregate func-
tion F .

• Optimal in a very strong sense:

◦ it is as good as any other algorithm on every instance

◦ any other algorithm means: except pathological algorithms

◦ as good means: within a constant factor

◦ pathological means: making wild guesses.

L. Libkin 114 ATFD



Wild guesses can help

• An algorithm “makes a wild guess” if it performs random access on an
object not previously encountered by sorted access.

• Neither FA nor TA make wild guesses, nor does any “natural” algorithm.

• Example: The aggregation function is min; k = 1.

LIST L1

(1, 1)
(2, 1)
(3, 1)
. . .
(n+1, 1)
(n+2, 0)
(n+3, 0)
. . .
(2n+1, 0)

LIST L2

(2n+1, 1)
(2n, 1)
(2n-1, 1)
. . .
(n+1, 1)
(n, 0)
(n-1, 0)
. . .
(1, 0)
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Threshold Algorithm as an approximation algorithm

• Approximately finding top k answers.

• For ε > 0, an ε-approximation of top k answers is a collection of k
objects R1, . . . , Rk so that

◦ for each R not among them,

(1 + ε) · F (Ri) ≥ F (R)

• Turning TA into an approximation algorithm:

• Simply change the stopping rule into:

◦ When k objects have been seen whose grade is at least
t

1 + ε
,

then stop.
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