
Data Integration and Data Exchange

L. Libkin 1 ATFD

Traditional approach to databases

• A single large repository of data.

• Database administrator in charge of access to data.

• Users interact with the database through application programs.

• Programmers write those (embedded SQL, other ways of combining
general purpose programming languages and DBMSs)

• Queries dominate; updates less common.

• DMBS takes care of lots of things for you such as

query processing and optimisation

concurrency control

enforcing database integrity

L. Libkin 2 ATFD

Traditional approach to databases cont’d

• This model works very within a single organisation that either

◦ does not interact much with the outside world, or

◦ the interaction is heavily controlled by the DB administrators

• What do we expect from such a system?

1. Data is relatively clean; little incompleteness

2. Data is consistent (enforced by the DMBS)

3. Data is there (resides on the disk)

4. Well-defined semantics of query answering (if you ask a query, you
know what you want to get)

5. Access to data is controlled

L. Libkin 3 ATFD

The world is changing

• The traditional model still dominates, but the world is changing.

• Many huge repositories are publicly available

◦ In fact many are well-organised databases, e.g., imdb.com, the CIA
World Factbook, many genome databases, the DBLP server of CS
publications, etc etc etc)

• Many queries cannot be answered using a single source.

• Often data from various sources needs to be combined, e.g.

◦ company mergers

◦ restructuring databases within a single organisation

◦ combining data from several private and public sources

L. Libkin 4 ATFD

What industry offers now: ETL tools

• ETL stands for Extract–Transform–Load

◦ Extract data from multiple sources

◦ Transform it so it is compatible with the schema

◦ Load it into a database

• Many self-built tools in the 80s and the 90s; through acquisition fewer
products exist now

• The big players – IBM, Microsoft, Oracle – all have their ETL products;
Microsoft and Oracle offer them with their database products.

• A few independent vendors, e.g. Informatica PowerCenter.

• Several open source products exist, e.g. Clover ETL.

L. Libkin 5 ATFD

ETL tools

• Focus:

◦ Data profiling

◦ Data cleaning

◦ Simple transformations

◦ Bulk loading

◦ Latency requirements

• What they don’t do yet:

◦ nontrivial transformations

◦ query answering

• But techniques now exist for interesting data integration and for query
answering – and we shall learn them.

• They soon will be reflected in products (IBM and Microsoft are partic-
ularly active in this area)

L. Libkin 6 ATFD

Data profiling/cleaning

• Data profiling: gives the user a view of data:

◦ Samples over large tables

◦ statistics (how many different values etc)

◦ Graphical tools for exploring the database

• Cleaning:

◦ Same properties may have different names

e.g. Last Name, L Name, LastName

◦ Same data may have different representations

• e.g. (0131)555-1111 vs 01315551111,

• George Str. vs George Street

◦ Some data may be just wrong

L. Libkin 7 ATFD

Data transformation

• Most transformation rules tend to be simple:

◦ Copy attribute LName to Last Name

◦ Set age to be current year – DOB

• Heavy emphasis on industry specific formats

• For example, Informatica B2B Data Exchange product offers versions
for Healthcare and Financial services as well as specialised tools for
formats including:

◦ MS Word, Excel, PDF, UN/EDIFACT (Data Interchange For Ad-
ministration, Commerce, and Transport), RosettaNet for B2B, and
many specialised healthcare and financial form.

• These are format/industry specific and have little to do with the general
tasks of data integration.

L. Libkin 8 ATFD

Data integration, scenario 1

DB1 DB2 DB3 DBn.......

GLOBAL SCHEMA QUERY: Q?

L. Libkin 9 ATFD

Data integration

DB1 DB2 DB3 DBn.......

A B C D

..

..

A E B C F A C

.. ..

.. ..

..

..

.. ..

.. ..

Q1 Q2 Q3 Q
n

V2 V3 V
n

V1

GLOBAL SCHEMA QUERY: Q?

L. Libkin 10 ATFD

Data integration

DB1 DB2 DB3 DBn.......

A B C D

..

..

A E B C F A C

.. ..

.. ..

..

..

.. ..

.. ..

Q1 Q2 Q3 Q
n

V2 V3 V
n

V1

GLOBAL SCHEMA QUERY: Q?

Answer to Q is obtained by querying the views V1 , ..., Vn

L. Libkin 11 ATFD

Data integration, query answering

• We have our view of the world (the Global Schema)

• We can access (parts of) databases DB1, . . . , DBn to get relevant
data.

• It comes in the form of views, V1, . . . , Vn

• Our query against the global schema must be reformulated as a query
against the views V1, . . . , Vn

• The approach is completely virtual: we never create a database the
conforms to the global schema.

L. Libkin 12 ATFD

Data integration, query answering, a toy example

• List courses taught by permanent teaching staff during Winter 2007

• We have two databases:

◦ D1(name, age, salary) of permanent staff

◦ D2(teacher, course, semester, enrollment) of courses

• D1 only publishes the value of the name attribute

• D2 does not reveal enrollments

• The views:
V1 = πname(D1)
V2 = πteacher,course,semester(D2)

• Next step: establish correspondence between attributes name of V1 and
teacher of V2

L. Libkin 13 ATFD

Data integration, query answering, a toy example
cont’d

• To answer query, we need to import the following data:

V1

W2 = σsemester=′Winter 2007′(V2)

• Answering query:

{course | ∃name, sem V1(name) ∧W2(name, course, sem)}

• Or, in relational algebra

πcourse(V1 ⋊⋉name=teacher W2)

L. Libkin 14 ATFD

Toy example, lessons learned

• We don’t have access to all the data

• Some human intervention is essential (someone needs to tell us that
teacher and name refer to the same entity)

• We don’t run a query against a single database. Instead, we

◦ run queries against different databases based on restrictions they
impose

◦ get results to use them locally

◦ run another query against those results

L. Libkin 15 ATFD

Toy example, things getting more complicated

• Find informatics permanent staff who taught during the Winter 2007
semester, and their phone numbers

• We have additional personnel databases:

◦ an informatics database D3(employee, phone, office), and

◦ a university-wide database D4(employee, school, phone)

◦ for simplicity, assume all this information is public

• Now we have a choice:

◦ use D3 to get information about phones

◦ use D4 to get information about phones

◦ use both D3 and D4 to get information about phones

L. Libkin 16 ATFD

Toy example cont’d

• First, we need some human involvement to see that employee, name,
and teacher refer to the same category of objects

• If one uses D3, then the query is

{name, phone | ∃sem, course, office V1(name)∧
W2(name, course, sem) ∧D3(name, phone, office)}

• If one uses D4, then the query is

{name, phone | ∃sem, course, school V1(name)∧
W2(name, course, sem) ∧D4(name, school, phone)}

• But what if one uses both D3 and D4?

L. Libkin 17 ATFD

Toy example cont’d

• We could insist on the phone number being:

◦ in either D3 or D4

◦ in both D3 and D4, but not necessarily the same

◦ in both D3 and D4, and the same in both databases

• One can write queries for all the cases, but which one should we use?

• New lessons:

◦ databases that are being integrated are often inconsistent

◦ query answering is by no means unique – there could be several ways
to answer a query

◦ different possibilities for answering queries are a result of inconsis-
tencies and incomplete information

L. Libkin 18 ATFD

Toy example cont’d

• Suppose phone numbers in D3 and D4 are different.

• What is a sensible query answer then?

• A common approach is to use certain answers – these are guaranteed
to be true.

• Another question: what if there is no record at all for the phone number
in D3 and D4?

• Then we have an instance of incomplete information.

L. Libkin 19 ATFD

A different scenario

• So far we looked at virtual integration: no database of the global
schema was created.

• Sometimes we need such a database to be created, for example, if many
queries are expected to be asked against it.

• In general, this is a common problem with data integration: materialize
vs federate.

• Materialize = create a new database based on integrating data from
different sources.

• Federate = the virtual approach: obtain data from various sources and
use them to answer queries.

L. Libkin 20 ATFD

Virtual vs Materialization

• A common situation for the materialization approach: merger of differ-
ent organizations.

• A common situation for the federated approach: we don’t have full
access to the data, and the data changes often.

L. Libkin 21 ATFD

Common tasks in data integration

• How do we represent information?

◦ Global schema, attributes, constraints

◦ data formats of attributes

◦ reconciling data from different sources

◦ abbreviations, terminology, ontologies

• How do we deal with imperfect information?

◦ resolve overlaps

◦ handling missing data

◦ handling inconsistencies

L. Libkin 22 ATFD

Common tasks in data integration cont’d

• How do we answer queries?

◦ what information is available?

◦ Can we get the answer?

◦ if not, what is the semantics of query answering?

◦ Is query answering feasible?

◦ Is it possible to compute query answers at all?

◦ If now, how do we approximate?

• Materialize or federate?

L. Libkin 23 ATFD

Common tasks in data integration cont’d

• Do it from scratch or use commercial tools?

◦ many are available (just google for “data integration”)

◦ but do we fully understand them?

◦ lots of them are very ad hoc, with poorly defined semantics

◦ this is why it is so important to understand what really happens in
data integration

L. Libkin 24 ATFD

Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

L. Libkin 25 ATFD

Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

TARGET

DATABASE
?????

L. Libkin 26 ATFD

Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

TARGET

DATABASE
?????

Query over the target schema: Q

How to answer Q so that the answer is consistent with the data in the
source database?

L. Libkin 27 ATFD

Data exchange vs Data integration

Data exchange appears to be an easier problem:

• there is only one source database;

• and one has complete access to the source data.

But there could be many different target instances.

Problem: which one to use for query answering?

L. Libkin 28 ATFD

When do we have the need for data exchange

• A typical scenario:

◦ Two organizations have their legacy databases, schemas cannot be
changed.

◦ Data from one organization 1 needs to be transfered to data from
organization 2.

◦ Queries need to be answered against the transferred data.

L. Libkin 29 ATFD

Query answering using views

• General setting: database relations R1, . . . , Rn.

• Several views V1, . . . , Vk are defined as results of queries over the Ri’s.

• We have a query Q over R1, . . . , Rn.

• Question: Can Q be answered in terms of the views?

◦ In other words, can Q be reformulated so it only refers to the data
in V1, . . . , Vk?

L. Libkin 30 ATFD

Query answering using views in data integration

• LAV:

◦ R1, . . . , Rn are global schema relations; Q is the global schema
query

◦ Vi’s are the sources defined over the global schema

◦ We must answer Q based on the sources (virtual integration)

• GAV:

◦ R1, . . . , Rn are the sources that are not fully available.

◦ Q is a query in terms of the source (or a query that was reformulated
in terms of the sources)

◦ Must see if it is answerable from the available views V1, . . . , Vk.

• We know the problem is impossible to solve for full relational algebra,
hence we concentrate on conjunctive queries.

L. Libkin 31 ATFD

Query answering using views: example

• Two relations in the database: Cites(A,B) (if A cites B), and
SameTopic(A,B) (if A, B work on the same topic)

• Query Q(x, y) :– SameTopic(x, y),Cites(x, y),Cites(y, x)

• Two views are given:

◦ V1(x, y) :– Cites(x, y),Cites(y, x)

◦ V2(x, y) :– SameTopic(x, y),Cites(x, x′),Cites(y, y′)

• Suggested rewriting: Q′(x, y) :– V1(x, y), V2(x, y)

• Why? Unfold using the definitions:

Q′(x, y) :– Cites(x, y),Cites(y, x), SameTopic(x, y),Cites(x, x′),Cites(y, y′)

• Equivalent to Q

L. Libkin 32 ATFD

Query answering using views

• Need a formal technique (algorithm): cannot rely on the semantics.

• Query Q:

SELECT R1.A

FROM R R1, R R2, S S1, S S2

WHERE R1.A=R2.A AND S1.A=S2.A AND R1.A=S1.A

AND R1.B=1 and S2.B=1

• Q(x) :– R(x, y), R(x, 1), S(x, z), S(x, 1)

• Equivalent to Q(x) :– R(x, 1), S(x, 1)

• So if we have a view

◦ V (x, y) :– R(x, y), S(x, y) (i.e. V = R ∩ S), then

◦ Q = πA(σB=1(V))

◦ Q can be rewritten (as a conjunctive query) in terms of V

L. Libkin 33 ATFD

Query rewriting

• Setting:

◦ Queries V1, . . . , Vk over the same schema σ (assume to be conjunc-
tive; they define the views)

◦ Each Qi is of arity ni

◦ A schema ω with relations of arities n1, . . . , nk

• Given:

◦ a query Q over σ

◦ a query Q′ over ω

• Q′ is a rewriting of Q if for every σ-database D,

Q(D) = Q′
(

V1(D), . . . , Vk(D)
)

L. Libkin 34 ATFD

Maximal rewriting

• Sometimes exact rewritings cannot be obtained

• Q′ is a maximally-contained rewriting if:

◦ it is contained in Q:

Q′
(

V1(D), . . . , Vk(D)
)

⊆ Q(D)

for all D

◦ it is maximal such: if

Q′′
(

V1(D), . . . , Vk(D)
)

⊆ Q(D)

for all D, then
Q′′ ⊆ Q′

L. Libkin 35 ATFD

Query rewriting: a naive algorithm

• Given:

◦ conjunctive queries V1, . . . , Vk over schema σ

◦ a query Q over σ

• Algorithm:

◦ guess a query Q′ over the views

◦ Unfold Q′ in terms of the views

◦ Check if the unfolding is contained in Q

• If one unfolding is equivalent to Q, then Q′ is a rewriting

• Otherwise take the union of all unfoldings contained in Q

– it is a maximally contained rewriting

L. Libkin 36 ATFD

Why is it not an algorithm yet?

• Problem: the guess stage.

◦ There are infinitely many conjunctive queries.

◦ We cannot check them all.

◦ Solution: we only need to check a few.

L. Libkin 37 ATFD

Guessing rewritings

• A basic fact:

◦ If there is a rewriting of Q using V1, . . . , Vk, then there is a rewriting
with no more conjuncts than in Q.

◦ E.g., if Q(x) :– R(x, y), R(x, 1), S(x, z), S(x, 1), we only need to
check conjunctive queries over V with at most 4 conjuncts.

• Moreover, maximally contained rewriting is obtained as the union of all
conjunctive rewritings of length of Q or less.

• Complexity: enumerate all candidates (exponentially many); for each
an NP (or exponential) algorithm. Hence exponential time is required.

• Cannot lower this due to NP-completeness.

L. Libkin 38 ATFD

Query rewriting

• Recall the algorithm, for a given Q and view definitions V1, . . . , Vk:

◦ Look at all rewritings that have as at most as many joins as Q

◦ check if they are contained in Q

◦ take the union of those that are

• This is the maximally contained rewriting

• There are algorithms that prune the search space and make looking for
rewritings contained in Q more efficient

◦ the bucket algorithm

◦ MiniCon

L. Libkin 39 ATFD

How hard is it to answer queries using views?

• Setting: we now have an actual content of the views.

• As before, a query is Q posed against D, but must be answered using
information in the views.

• Suppose I1, . . . , Ik are view instances. Two possibilities:

◦ Exact mappings: Ij = Vj(D)

◦ Sound mappings: Ij ⊆ Vj(D)

• We need certain answers for given I = (I1, . . . , Ik):

certainexact(Q,I) =
⋂

D: Ij=Vj(D) for all j

Q(D)

certainsound(Q,I) =
⋂

D: Ij⊆Vj(D) for all j

Q(D)

L. Libkin 40 ATFD

How hard is it to answer queries using views?

• If certainexact(Q,I) or certainsound(Q,I) are impossible to obtain, we
want maximally contained rewritings:

◦ Q′(I) ⊆ certainexact(Q,I), and

◦ if Q′′(I) ⊆ certainexact(Q,I) then Q′′(I) ⊆ Q′(I)

◦ (and likewise for sound)

• How hard is it to compute this from I?

L. Libkin 41 ATFD

Complexity of query answering

• We want the complexity of finding

certainexact(Q,I) or certainsound(Q,I)

in terms of the size of I

• If all view definitions are conjunctive queries andQ is a relational algebra
or a SQL query, then the complexity is coNP.

• This is too high!

• If all view definitions are conjunctive queries and Q is a conjunctive
query, then the complexity is PTIME.

◦ Because: the maximally contained rewriting computes certain an-
swers!

L. Libkin 42 ATFD

Complexity of query answering

query language

view language CQ CQ 6= relational calculus
CQ ptime coNP undecidable

CQ 6= ptime coNP undecidable
relational calculus undecidable undecidable undecidable

CQ – conjunctive queries

CQ 6= – conjunctive queries with inequalities
(for example, Q(x) :– R(x, y), S(y, z), x 6= z)

L. Libkin 43 ATFD

Data exchange

• Source schema, target schema; need to transfer data between them.

• A typical scenario:

◦ Two organizations have their legacy databases, schemas cannot be
changed.

◦ Data from one organization 1 needs to be transfered to data from
organization 2.

◦ Queries need to be answered against the transferred data.

L. Libkin 44 ATFD

Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

L. Libkin 45 ATFD

Data Exchange

SOURCE

DATABASE

Source Schema S Target Schema T

TARGET

DATABASE
?????

L. Libkin 46 ATFD

Data exchange: an example

• We want to create a target database with the schema

Flight(city1,city2,aircraft,departure,arrival)
Served(city,country,population,agency)

• We don’t start from scratch: there is a source database containing
relations

Route(source,destination,departure)
BG(country,city)

• We want to transfer data from the source to the target.

L. Libkin 47 ATFD

Data exchange – relationships between the source
and the target

How to specify the relationship?

SERVED

ROUTE Source Dest Departure FLIGHTcity1 city2 aircraft departure arrival

Country CityBG agencypopulationcountrycity

L. Libkin 48 ATFD

Relationships between the source and the target

• Formal specification: we have a relational calculus query over both the
source and the target schema.

• The query is of a restricted form, and can be thought of as a sequence
of rules:

Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

Served(city, country, ,) :– Route(city, ,), BG(country, city)

Served(city, country, ,) :– Route(, city,), BG(country, city)

L. Libkin 49 ATFD

Data exchange – targets

• Target instances should satisfy the rules.

• What does it mean to satisfy a rule?

• Formally, if we take:

Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

then it is satisfied by a source S and a target T if the constraint

∀c1, c2, d
(

Route(c1, c2, d) → ∃a1, a2

(

Flight(c1, c2, a1, d, a2)
)

)

• This constraint is a relational calculus query that evaluates to true or
false

L. Libkin 50 ATFD

Data exchange – targets

• What happens if there no values for some attributes, e.g. aircraft,
arrival?

• We put in null values or some real values.

• But then we may have multiple solutions!

L. Libkin 51 ATFD

Data exchange – targets

Source Database:

ROUTE:

Source Destination Departure
Edinburgh Amsterdam 0600
Edinburgh London 0615
Edinburgh Frankfurt 0700

BG:

Country City
UK London
UK Edinburgh
NL Amsterdam

GER Frankfurt

Look at the rule

Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

The right hand side is satisfied by

Route(Edinburgh, Amsterdam, 0600)

But what can we put in the target?

L. Libkin 52 ATFD

Data exchange – targets

Rule: Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

Satisfied by: Route(Edinburgh, Amsterdam, 0600)

Possible targets:

• Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

• Flight(Edinburgh, Amsterdam, B737, 0600, ⊥)

• Flight(Edinburgh, Amsterdam, ⊥, 0600, 0845)

• Flight(Edinburgh, Amsterdam, ⊥, 0600, ⊥)

• Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

They all satisfy the constraints!

L. Libkin 53 ATFD

Which target to choose

• One of them happens to be right:

– Flight(Edinburgh, Amsterdam, B737, 0600, 0845)

• But in general we do not know this; it looks just as good as

– Flight(Edinburgh, Amsterdam, ’The Spirit of St Louis’, 0600, 1300),
or

– Flight(Edinburgh, Amsterdam, F16, 0600, 0620).

• Goal: look for the “most general” solution.

• How to define “most general”: can be mapped into any other solution.

• It is not unique either, but the space of solution is greatly reduced.

• In our case Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2) is most gen-
eral as it makes no additional assumptions about the nulls.

L. Libkin 54 ATFD

Towards good solutions

A solution is a database with nulls.
Reminder: every such database T represents many possible complete databases,
without null values:

Example
Semantics via
valuations

A B C

1 2 ⊥1

⊥2 ⊥1 3
⊥3 5 1
2 ⊥3 3

v(⊥1) = 4
v(⊥2) = 3
v(⊥3) = 5

=⇒

A B C

1 2 4
3 4 3
5 5 1
2 5 3
3 7 8
4 2 1

[[T]]owa = {R | v(T) ⊆ R for some valuation v}

L. Libkin 55 ATFD

Good solutions

• An optimistic view – A good solution represents ALL other solutions:

[[T]]owa = {R | R is a solution without nulls}

• Shouldn’t settle for less than – A good solution is at least as general
as others:

[[T]]owa ⊇ [[T ′]]owa for every other solution T ′

• Good news: these two views are equivalent. Hence can take them as a
definition of a good solutions.

• In data exchange, such solutions are called universal solutions.

L. Libkin 56 ATFD

Universal solutions: another description

• A homomorphism is a mapping h : Nulls → Nulls ∪ Constants.

• For example, h(⊥1) = B737, h(⊥2) = 0845.

• If we have two solutions T1 and T2, then h is a homomorphism from
T1 into T2 if for each tuple t in T1, the tuple h(t) is in T2.

• For example, if we have a tuple

t = Flight(Edinburgh, Amsterdam,⊥1, 0600,⊥2)

then

h(t) = Flight(Edinburgh, Amsterdam, B737, 0600, 0845).

• A solution is universal if and only if there is a homomorphism from it
into every other solution.

L. Libkin 57 ATFD

Universal solutions: still too many of them

• Take any n > 0 and consider the solution with n tuples:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

• It is universal too: take a homomorphism

h′(⊥i) =

{

⊥1 if i is odd

⊥2 if i is even

• It sends this solution into

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

L. Libkin 58 ATFD

Universal solutions: cannot be distinguished by
conjunctive queries

• There are queries that distinguish large and small universal solutions
(e.g., does a relation have at least 2 tuples?)

• But these cannot be distinguished by conjunctive queries

• Because: if ⊥i1, . . . ,⊥ik witness a conjunctive query, so do h(⊥i1), . . . , h(⊥ik)
— hence, one tuple suffices

• In general, if we have

◦ a homomorphism h : T → T ′,

◦ a conjunctive query Q

◦ a tuple t without nulls such that t ∈ Q(T)

• then t ∈ Q(T ′)

L. Libkin 59 ATFD

Universal solutions and conjunctive queries

• If

◦ T and T ′ are two universal solutions

◦ Q is a conjunctive query, and

◦ t is a tuple without nulls,

then
t ∈ Q(T) ⇔ t ∈ Q(T ′)

because we have homomorphisms T → T ′ and T ′ → T .

• Furthermore, if

◦ T is a universal solution, and T ′′ is an arbitrary solution,

then
t ∈ Q(T) ⇒ t ∈ Q(T ′′)

L. Libkin 60 ATFD

Universal solutions and conjunctive queries cont’d

• Now recall what we learned about answering conjunctive queries over
databases with nulls:

◦ T is a naive table

◦ the set of tuples without nulls in Q(T) is precisely certain(Q,T) –
certain answers over T

• Hence if T is an arbitrary universal solution

certain(Q,T) =
⋂

{Q(T ′) | T ′ is a solution}

•
⋂

{Q(T ′) | T ′ is a solution} is the set of certain answers in data
exchange under mapping M : certainM(Q,S). Thus

certainM(Q,S) = certain(Q,T)

for every universal solution T for S under M .

L. Libkin 61 ATFD

Universal solutions cont’d

• To answer conjunctive queries, one needs an arbitrary universal solution.

• We saw some; intuitively, it is better to have:

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)

than

Flight(Edinburgh, Amsterdam, ⊥1, 0600, ⊥2)
Flight(Edinburgh, Amsterdam, ⊥3, 0600, ⊥4)
. . .
Flight(Edinburgh, Amsterdam, ⊥2n−1, 0600, ⊥2n)

• We now define a canonical universal solution.

L. Libkin 62 ATFD

Canonical universal solution

• Convert each rule into a rule of the form:

ψ(x1, . . . , xn, z1, . . . , zk) :– ϕ(x1, . . . , xn, y1, . . . , ym)

(for example,
Flight(c1, c2, , dept,) :– Route(c1, c2, dept)

becomes

Flight(x1, x2, z1, x3, z2) :– Route(x1, x2, x3))

• Evaluate ϕ(x1, . . . , xn, y1, . . . , ym) in S.

• For each tuple (a1, . . . , an, b1, . . . , bm) that belongs to the result (i.e.

ϕ(a1, . . . , an, b1, . . . , bm) holds in S,

do the following:

L. Libkin 63 ATFD

Canonical universal solution cont’d

• . . . do the following:

◦ Create new (not previously used) null values ⊥1, . . . ,⊥k

◦ Put tuples in target relations so that

ψ(a1, . . . , an, ⊥1, . . . ,⊥k)

holds.

• What is ψ?

• It is normally assumed that ψ is a conjunction of atomic formulae, i.e.

R1(x̄1, z̄1) ∧ . . . ∧Rl(x̄l, z̄l)

• Tuples are put in the target to satisfy these formulae

L. Libkin 64 ATFD

Canonical universal solution cont’d

• Example: no-direct-route airline:

Newroute(x1, z) ∧ Newroute(z, x2) :– Oldroute(x1, x2)

• If (a1, a2) ∈ Oldroute(a1, a2), then create a new null ⊥ and put:

Newroute(a1,⊥)
Newroute(⊥, a2)

into the target.

• Complexity of finding this solution: polynomial in the size of the source
S:

O(
∑

rules ψ :- ϕ
Evaluation of ϕ on S)

L. Libkin 65 ATFD

Canonical universal solution and conjunctive queries

• Canonical solution: CanSolM(S).

• We know that if Q is a conjunctive query, then certainM(Q,S) =
certain(Q, T) for every universal solution T for S under M .

• Hence
certainM(Q,S) = certain(Q,CanSolM(S))

• Algorithm for answering Q:

◦ Construct CanSolM(S)

◦ Apply naive evaluation to Q over CanSolM(S)

L. Libkin 66 ATFD

Beyond conjunctive queries

• Everything still works the same way for σ, π,⋊⋉,∪ queries of relational
algebra. Adding union is harmless.

• Adding difference (i.e. going to the full relational algebra) is not.

• Reason: same as before, can encode validity problem in logic.

• Single rule, saying “copy the source into the target”

T (x, y) :– S(x, y)

• If the source is empty, what can a target be? Anything!

• The meaning of T (x, y) :– S(x, y) is

∀x∀y
(

S(x, y) → T (x, y)
)

L. Libkin 67 ATFD

Beyond conjunctive queries cont’d

• Look at ϕ = ∀x∀y
(

S(x, y) → T (x, y)
)

• S(x, y) is always false (S is empty), hence S(x, y) → T (x, y) is true
(p→ q is ¬p ∨ q)

• Hence ϕ is true.

• Even if T is empty, ϕ is true: universal quantification over the empty
set evaluates to true:

◦ Remember SQL’s ALL:

SELECT * FROM R

WHERE R.A > ALL (SELECT S.B FROM S)

◦ The condition is true if SELECT S.B FROM S is empty.

L. Libkin 68 ATFD

Beyond conjunctive queries cont’d

• Thus if S is empty and we have a rule T (x, y) :– S(x, y), then all
T ’s are solutions.

• Let Q be a Boolean (yes/no) query. Then

certainM(Q,S) = true ⇔ Q is valid

• Valid = always true.

• Validity problem in logic: given a logical statement, is it:

◦ valid, or

◦ valid over finite databases

• Both are undecidable.

L. Libkin 69 ATFD

Beyond conjunctive queries cont’d

• If we want to answer queries by rewritings, i.e. find a query Q′ so that

certainM(Q,S) = Q′(CanSolM(S))

then there is no algorithm that can construct Q′ from Q!

• Hence a different approach is needed.

L. Libkin 70 ATFD

Key problem

• Our main problem:

Solutions are open to adding new facts

• How to close them?

• By applying the CWA (Closed World Assumption) instead of the OWA
(Open World Assumption)

L. Libkin 71 ATFD

More flexible query answering: dealing with
incomplete information

• Key issue in dealing with incomplete information:

- Closed vs Open World Assumption (CWA vs OWA)

• CWA: database is closed to adding new facts except those consistent
with one of the incomplete tuples in it.

• OWA opens databases to such facts.

• In data exchange:

- we move data from source to target;

- query answering should be based on that data and not on tuples
that might be added later.

• Hence in data exchange CWA seems more reasonable.

L. Libkin 72 ATFD

Solutions under CWA – informally

• Each null introduced in the target must be justified:

- there must be a constraint . . . T (. . . , z, . . .) . . . :– ϕ(. . .) with ϕ
satisfied in the source.

• The same justification shouldn’t generate multiple nulls:

- for T (. . . , z, . . .) :– ϕ(ā) only one new null ⊥ is generated in the
target.

• No unjustified facts about targets should be invented:

- assume we have T (x, z) :– ϕ(x), T (z′, x) :– ψ(x) and ϕ(a),
ψ(b) are true in the source.

- Then we put T (a,⊥) and T (⊥′, b) in the target but not
T (a,⊥), T (⊥, b) which would invent a new “fact”: a and b are
connected by a path of length 2.

L. Libkin 73 ATFD

Solutions under the CWA: summary

• There are homomorphisms

h : CanSol(S) → T h′ : T → CanSol(S)

◦ so that T = h(CanSol(S))

• T contains the core of CanSol(S)

• Core: the smallest C ⊆ CanSol(S) such that there is a homomor-
phism from CanSol(S) to C.

• Often saves space, but takes time to compute.

• Data exchange systems try to move from CanSol(S) to the core but
usually stop half-way due to the complexity of computation.

L. Libkin 74 ATFD

Query answering under the CWA

• Given

◦ a source S,

◦ a set of rules M ,

◦ a target query Q,

a tuple t is in
certainCWA

M (Q,S)

if it is in Q(R) for every

◦ solution T under the CWA, and

◦ R ∈ [[T]]owa

• (i.e. no matter which solution we choose and how we interpret the
nulls)

L. Libkin 75 ATFD

Query answering under the CWA – characterization

• Given a source S, a set of rules M , and a target query Q:

certainCWA
M (Q,S) = certain(Q,CanSol(S))

• That is, to compute the answer to query one needs to:

◦ Compute the canonical solution CanSol(S) – which has nulls in
it

◦ Find certain answers to Q over CanSol(S)

• If Q is a conjunctive query, this is exactly what we had before

• Under the CWA, the same evaluation strategy applies to all queries!

L. Libkin 76 ATFD

Data exchange and integrity constraints

• Integrity constraints are often specified over target schemas

• In SQL’s data definition language one uses keys and foreign keys most
often, but other constraints can be specified too.

• Adding integrity constraints in data exchange is often problematic, as
some natural solutions – e.g., the canonical solution – may fail them.

L. Libkin 77 ATFD

Target constraints cause problems

• The simplest example:

◦ Copy source to target

◦ Impose a constraint on target not satisfied in the source

• Data exchange setting:

◦ T (x, y) :– S(x, y) and

◦ Constraint: the first attribute is a key

• Instance S:
1 2
1 3

• Every target T must include these tuples and hence violates the key.

L. Libkin 78 ATFD

Target constraints: more problems

• A common problem: an attempt to repair violations of constraints leads
to an sequence of adding tuples.

• Example:

◦ Source DeptEmpl(dept id,manager name,empl id)

◦ Target

- Dept(dept id,manager id,manager name),

- Empl(empl id,dept id)

◦ Rule Dept(d, z, n), Empl(e, d) :– DeptEmpl(d, n, e)

◦ Target constraints:

- Dept[manager id] ⊆ Empl[empl id]

- Empl[dept id] ⊆ Dept[dept id]

L. Libkin 79 ATFD

Target constraints: more problems cont’d

• Start with (CS, John, 001) in DeptEmpl.

• Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

• Use the first constraint and add a tuple Empl(⊥1, ⊥2) in the target

• Use the second constraint and put Dept(⊥2, ⊥3, ⊥3’) into the target

• Use the first constraint and add a tuple Empl(⊥3, ⊥4) in the target

• Use the second constraint and put Dept(⊥4, ⊥5, ⊥5’) into the target

• this never stops....

L. Libkin 80 ATFD

Target constraints: avoiding this problem

• Change the target constraints slightly:

◦ Target constraints:

- Dept[dept id,manager id] ⊆ Empl[empl id, dept id]

- Empl[dept id] ⊆ Dept[dept id]

• Again start with (CS, John, 001) in DeptEmpl.

• Put Dept(CS, ⊥1, John) and Empl(001, CS) in the target

• Use the first constraint and add a tuple Empl(⊥1, CS)

• Now constraints are satisfied – we have a target instance!

• What’s the difference? In our first example constraints are very cyclic
causing an infinite loop. There is less cyclicity in the second example.

• Bottom line: avoid cyclic constraints.

L. Libkin 81 ATFD

Schema mappings

• Rules used in data exchange specify mappings between schemas.

• To understand the evolution of data one needs to study operations on
schema mappings.

• Most commonly we need to deal with two operations:

◦ composition

◦ inverse

L. Libkin 82 ATFD

Composition and inverse

S1 S2 S3

Σ ∆

L. Libkin 83 ATFD

Composition and inverse

S1 S2 S3

Σ ∆

Σ ◦ ∆

L. Libkin 84 ATFD

Composition and inverse

S1 S2 S3

S1’

Σ ∆

Γ

Σ ◦ ∆

L. Libkin 85 ATFD

Composition and inverse

Γ−1 ◦ (Σ ◦ ∆)

S1 S2 S3

S1’

Σ ∆

Γ

Σ ◦ ∆

L. Libkin 86 ATFD

Mappings

• Schema mappings are typically given by rules

ψ(x̄, z̄) :– ∃ū ϕ(x̄, ȳ, ū)

where

◦ ψ is a conjunction of atoms over the target:

T1(x̄1, z̄1) ∧ . . . ∧ Tm(x̄m, z̄m)

◦ ϕ is a conjunction of atoms over the source:

S1(x̄
′
1, ȳ1, ū1) ∧ . . . ∧ Sk(x̄

′
k, ȳk, ūk)

• Example: Served(x1, x2, z1, z2) :– ∃u1, u2 Route(x1, u1, u2)∧BG(x1, x2)

L. Libkin 87 ATFD

The closure problem

• Are mappings closed under

◦ composition?

◦ inverse?

• If not, what needs to be added?

• It turns out that mappings are not closed under inverses and composi-
tion.

• We next see what might need to be added to them.

L. Libkin 88 ATFD

Skolem functions

• Source: EP(empl name,dept,project);
Target: EDPH(empl id,dept,phone), DP(dept,project)

• A natural mapping is:

EDPH(z1, x2, z3) ∧ DP(x2, x3) :– EP(x1, x2, x3)

• This is problematic: if we have tuples

(John, CS, P1) (John, CS, P2)

in EP, the canonical solution would have

EDPH
⊥1 CS ⊥′

1

⊥2 CS ⊥′
2

corresponding to two projects P1 and P2.

• So empl id is hardly an id!

L. Libkin 89 ATFD

Skolem functions cont’d

• Solution: make empl id a function of empl name.

• Such “invented” functions are called Skolem functions (see Logic 001
for a proper definition)

• Source: EP(empl name,dept,project);
Target: EDPH(empl id,dept,phone), DP(dept,project)

• A new mapping is:

EDPH(f(x1), x2, z3) ∧ DP(x2, x3) :– EP(x1, x2, x3)

• f assigns a unique id to every name.

L. Libkin 90 ATFD

Other possible additions

• One can look at more general queries used in mappings.

• Most generally, relational algebra queries, but to be more modest, one
can start with just adding inequalities.

• One may also disjunctions: for example, if we want to invert

T (x) :– S1(x)
T (x) :– S2(x)

it seems natural to introduce a rule

S1(x) ∨ S2(x) :– T (x)

L. Libkin 91 ATFD

Composition: definition

• Recall the definition of composition of binary relations R and R′:

(x, z) ∈ R ◦R′ ⇔ ∃y : (x, y) ∈ R and (y, z) ∈ R′

• A schema mapping Σ for two schemas σ and τ is viewed as a binary
relation

Σ =

{

(S, T)

∣

∣

∣

∣

S is a σ-instance
T is a τ -instance
T is a solution for S

}

• The composition of mappings Σ from σ to τ and ∆ from τ to ω is now

Σ ◦ ∆

• Question (closure): is there a mapping Γ between σ and ω so that

Γ = Σ ◦ ∆

L. Libkin 92 ATFD

Composition: when it works

• If Σ

◦ does not generate any nulls, and

◦ no variables ū for source formulas

• Example:

Σ : T (x1, x2) ∧ T (x2, x3) :– S(x1, x2, x3)
∆ : W (x1, x2, z) :– T (x1, x2)

• First modify into:

Σ : T (x1, x2) :– S(x1, x2, x3)
Σ : T (x2, x3) :– S(x1, x2, x3)
∆ : W (x1, x2, z) :– T (x1, x2)

• Then substitute in the definition of W :

L. Libkin 93 ATFD

Composition: when it cont’d

W (x1, x2, z) :– S(x1, x2, y)
W (x1, x2, z) :– S(y, x1, x2)

to get Σ ◦ ∆.

Explaining the second rule:

W (x1, x2, z)
→ T (x1, x2) using T (var1, var2) :– S(var3, var1, var2)
→ S(y, x1, x2)

L. Libkin 94 ATFD

Composition: when it doesn’t work

• Schema σ: Takes(st name, course)

• Schema τ : Takes’(st name, course), NameId(st name, st id)

• Schema ω: Enroll(st id, course)

• Mapping Σ from σ to τ :

Takes′(s, c) :– Takes(s, c)
NameId(s, i) :– ∃c Takes(s, c)

• Mapping ∆ from τ to ω:

Enroll(i, c) :– NameId(s, i) ∧ Takes′(s, c)

• A first attempt at the composition: Enroll(i, c) :– Takes(s, c)

L. Libkin 95 ATFD

Composition: when it doesn’t work cont’d

• What’s wrong with Γ: Enroll(i, c) :– Takes(s, c)?

• Student id i depends on both name and course!

Takes:
John CS1
John CS2

Σ
⇒

Takes’:
John CS1
John CS2

NameId: John ⊥

∆
⇒ Enroll:

⊥ CS1
⊥ CS2

But:

Takes:
John CS1
John CS2

Γ
⇒ Enroll:

⊥1 CS1
⊥2 CS2

L. Libkin 96 ATFD

Composition: when it doesn’t work cont’d

• Solution: Skolem functions.

• Γ′: Enroll(f(s), c) :– Takes(s, c)

• Then:

Takes:
John CS1
John CS2

Γ
⇒ Enroll:

⊥ CS1
⊥ CS2

• where ⊥ = f(John)

L. Libkin 97 ATFD

Composition: another example

• Schema σ: Empl(eid)

• Schema τ : Mngr(eid,mngid)

• Schema ω: Mngr’(eid,mngid), SelfMng(id)

• Mapping Σ from σ to τ :

Mngr(e,m) :– Empl(e)

• Mapping ∆ from τ to ω:

Mngr’(e,m) :– Mngr(e,m)
SelfMng(e) :– Mngr(e, e)

• Composition:

Mngr’(e, f(e)) :– Empl(e)
SelfMng(e) :– Empl(e) ∧ e = f(e)

L. Libkin 98 ATFD

Composition and Skolem functions

• Schema mappings with Skolem functions compose!

• Algorithm:

◦ replace all nulls by Skolem functions

- Mngr(e, f(e)) :– Empl(e)

- ∆ stays as before

◦ Use substitution:

- Mngr’(e,m) :– Mngr(e,m) becomes

Mngr’(e, f(e)) :– Empl(e)

- SelfMng(e) :– Mngr(e, e) becomes

SelfMng(e) :– Empl(e) ∧ e = f(e)

L. Libkin 99 ATFD

Inverting mappings

• Harder than composition.

• Intuition: Σ ◦ Σ
−1 = ID.

• But even what ID should be is not entirely clear.

• Some intuitive examples will follow.

L. Libkin 100 ATFD

Examples of inversion

• The inverse of projection is null invention:

◦ T (x) :– S(x, y)

◦ S(x, y) :– T (x)

• Inverse of union requires disjunction:

◦ T (x) :– S(x) T (x) :– S ′(x)

◦ S(x) ∨ S ′(x) :– T (x)

• So reversing the rules doesn’t always work.

L. Libkin 101 ATFD

Examples of inversion cont’d

• Inverse of decomposition is join:

◦ T (x1, x2) ∧ T
′(x2, x3) :– S(x1, x2, x3)

◦ S(x1, x2, x3) :– T (x1, x2) ∧ T
′(x2, x3)

• But this is also an inverse of T (x1, x2)∧ T
′(x2, x3) :– S(x1, x2, x3):

◦ S(x1, x2, z) :– T (x1, x2)

◦ S(z, x2, x3) :– T ′(x2, x3)

L. Libkin 102 ATFD

Examples of inversion cont’d

• One may need to distinguish nulls from values in inverses.

• Σ given by
T1(x) :– S(x, x)

T2(x, z) :– S(x, y) ∧ S(y, x)
T3(x1, x2, z) :– S(x1, x2)

• Its inverse Σ
−1 requires:

◦ a predicate NotNull and

◦ inequalities:

S(x, x) :– T1(x) ∧ T2(x, y1) ∧ T3(x, x, y2) ∧ NotNull(x)

S(x1, x2) :– T3(x1, x2, y) ∧ (x1 6= x2) ∧ NotNull(x1) ∧ NotNull(x2)

L. Libkin 103 ATFD

Integrating preferences/rankings

Problem statement

• Each object has m grades, one for each of m criteria.

• The grade of an object for field i is xi.

• Normally assume 0 ≤ xi ≤ 1.

◦ Typically evaluations based on different criteria

◦ The higher the value of xi, the better the object is according to the
ith criterion

• The objects are given in m sorted lists

◦ the ith list is sorted by xi value

◦ These lists correspond to different sources or to different criteria.

• Goal: find the top k objects.

L. Libkin 104 ATFD

Example

Grade 1
(17, 0.9936)
(1352,0.9916)
(702,0.9826)
. . .
(12, 0.3256)
. . .

Grade 2
(235, 0.9996)
(12, 0.9966)
(8201, 0.9926)
. . .
(17, 0.406)
. . .

L. Libkin 105 ATFD

Aggregation Functions

• Have an aggregation function F .

• Let x1, . . . , xm be the grades of object R under the m criteria.

• Then F (x1, . . . , xm) is the overall grade of object R.

• Common choices for F :

◦ min

◦ average or sum

• An aggregation function F is monotone if

F (x1, . . . , xm) ≤ F (x′1, . . . , x
′
m)

whenever xi ≤ x′i for all i.

L. Libkin 106 ATFD

Other Applications

• Information retrieval

• Objects R are documents.

• The m criteria are search terms s1, . . . , sm.

• The grade xi: how relevant document R is for search term si.

• Common to take the aggregation function F to be the sum

F (x1, . . . , xm) = x1 + · · · + xm.

L. Libkin 107 ATFD

Modes of Access

• Sorted access

◦ Can obtain the next object with its grade in list Li

◦ cost cS.

• Random access

◦ Can obtain the grade of object R in list Li

◦ cost cR.

• Middleware cost:

cS · (# of sorted accesses) + cR · (# of random accesses).

L. Libkin 108 ATFD

Algorithms

• Want an algorithm for finding the top k objects.

• Naive algorithm:

◦ compute the overall grade of every object;

◦ return the top k answers.

• Too expensive.

L. Libkin 109 ATFD

Fagin’s Algorithm (FA)

1. Do sorted access in parallel to each of the m sorted lists Li.

• Stop when there are at least k objects, each of which have been
seen in all the lists.

2. For each object R that has been seen:

• Retrieve all of its fields x1, . . . , xm by random access.

• Compute F (R) = F (x1, . . . , xm).

3. Return the top k answers.

L. Libkin 110 ATFD

Fagin’s algorithm is correct

• Assume object R was not seen

◦ its grades are x1, . . . , xm.

• Assume object S is one of the answers returned by FA

◦ its grades are y1, . . . , ym.

• Then xi ≤ yi for each i

• Hence

F (R) = F (x1, . . . , xm) ≤ F (y1, . . . , ym) = F (S).

L. Libkin 111 ATFD

Fagin’s algorithm: performance guarantees

• Typically probabilistic guarantees

• Orderings are independent

• Then with high probability the middleware cost is

O
(

N ·
m

√

k

N

)

• i.e., sublinear

• But may perform poorly

◦ e.g., if F is constant:

◦ still takes O
(

N · m
√

k/N
)

instead of a constant time algorithm

L. Libkin 112 ATFD

Optimal algorithm: The Threshold Algorithm

1. Do sorted access in parallel to each of the m sorted lists Li. As each
object R is seen under sorted access:

• Retrieve all of its fields x1, . . . , xm by random access.

• Compute F (R) = F (x1, . . . , xm).

• If this is one of the top k answers so far, remember it.

• Note: buffer of bounded size.

2. For each list Li, let x̂i be the grade of the last object seen under sorted
access.

3. Define the threshold value t to be F (x̂1, . . . , x̂m).

4. When k objects have been seen whose grade is at least t, then stop.

5. Return the top k answers.

L. Libkin 113 ATFD

Threshold Algorithm: correctness and optimality

• The Threshold Algorithm is correct for every monotone aggregate func-
tion F .

• Optimal in a very strong sense:

◦ it is as good as any other algorithm on every instance

◦ any other algorithm means: except pathological algorithms

◦ as good means: within a constant factor

◦ pathological means: making wild guesses.

L. Libkin 114 ATFD

Wild guesses can help

• An algorithm “makes a wild guess” if it performs random access on an
object not previously encountered by sorted access.

• Neither FA nor TA make wild guesses, nor does any “natural” algorithm.

• Example: The aggregation function is min; k = 1.

LIST L1

(1, 1)
(2, 1)
(3, 1)
. . .
(n+1, 1)
(n+2, 0)
(n+3, 0)
. . .
(2n+1, 0)

LIST L2

(2n+1, 1)
(2n, 1)
(2n-1, 1)
. . .
(n+1, 1)
(n, 0)
(n-1, 0)
. . .
(1, 0)

L. Libkin 115 ATFD

Threshold Algorithm as an approximation algorithm

• Approximately finding top k answers.

• For ε > 0, an ε-approximation of top k answers is a collection of k
objects R1, . . . , Rk so that

◦ for each R not among them,

(1 + ε) · F (Ri) ≥ F (R)

• Turning TA into an approximation algorithm:

• Simply change the stopping rule into:

◦ When k objects have been seen whose grade is at least
t

1 + ε
,

then stop.

L. Libkin 116 ATFD

