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Graph DBs and applications

• Graph DBs are crucial when topology is as important as data itself.

• Renewed interest due to new applications:

◮ Semantic Web and RDF.

◮ Social networks.

◮ Security and crime detection.

◮ Knowledge representation.

◮ etc etc

◮ ...
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Querying graph DBs and relational technology

Why not to use relational technology?

◮ Translate graph DB G → relational database D(G), and query D(G).

Problems:

1. Languages for graph DBs are navigational and require recursion.

2. They can be translated into Datalog, but there are problems:
(a) Implementation:
• SQL’s recursion is hard to optimize, especially in complex queries,
on large databases.
(b) Complexity mismatch:
• Datalog evaluation is Ptime-complete, but in NLogspace for
many graph languages.
• Basic static analysis tasks undecidable for Datalog, but decidable
for several graph languages.
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Early graph query languages

Graph query languages flourished from the mid 80s to the late 90s:

◮ G, G+, and GraphLog for hypertext and semistructured data, late
1980s

◮ GOOD for graph-based models of object DBs, 1990

◮ Hyperlog for hypergraphs, 1994

◮ Languages for heterogeneous and unstructured data, Lorel, StruQL,
etc (late 1990s)
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Features of graph query languages

◮ Navigation: Recursively traverse the edges of the graph.

◮ Pattern matching: Check if a pattern appears in the graph DB.

And more sophisticated features:

◮ Path comparisons.

◮ Comparisons of the underlying data.
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Key problems theory studies:

Expressiveness: What can be said in a query language L?

Complexity of evaluation:

Problem: Eval(L)
Input: A graph DB G, a tuple t̄ of objects,

an L-query Q.
Question: Is t̄ ∈ Q(G)?

◮ Combined complexity: Both G and Q are part of the input.

◮ Data complexity: Only G is part of the input and Q is fixed.

Containment: We study the problem Cont(L):

◮ Given L-queries Q1,Q2, is Q1(G) ⊆ Q2(G) for every graph DB G?
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Graph data model

Different applications have given rise to a many (slightly) different graph
DB models. But the essence is the same:

Finite, directed, edge labeled graphs.

Despite the simplicity of the model:

◮ It is flexible enough to accommodate many other more complex
models and express interesting practical scenarios.

◮ The most fundamental theoretical issues related to querying graph
DBs appear in it already.
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Graph databases

Definition

A graph DB G over finite alphabet Σ is a pair:

(V , E )
set of edges of the form v1

a
−→ v2finite set of node ids

(v1, v2 ∈ V , a ∈ Σ)
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Graph databases

Definition

A graph DB G over finite alphabet Σ is a pair:

(V , E )
set of edges of the form v1

a
−→ v2finite set of node ids

(v1, v2 ∈ V , a ∈ Σ)

• A path in G is a sequence of the form:

ρ = v1
a1−→ v2

a2−→ v3 · · · vk
ak−→ vk+1.

• The label of ρ is λ(ρ) = a1a2 · · · ak−1 ∈ Σ∗.
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Graph DBs: Example

A graph DB representation of a fragment of DBLP:
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Graph DBs: Example

A path in this graph DB:

:Ronald FagininPods:83

:John E. HopcroftinFocs:FOCS8

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a

:Moshe Y. Vardi

series

series

journal

partOf

partOf

creator
creator

creator
creator

cr
ea
to
r

creator

Pods:FaginUV83
creator

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

inPods:89

se
ri
es

Pods:Ullman89
creatorpartOf

Pods:Vardi95

conf:pods

partOf

IPL:LibkinW95

inPods:95

Pods:Libkin95

journal:IPL

creator

series

10 / 83



Graph DBs: Example

The label of such path:
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Graph DBs vs NFAs

Important: Graph DBs can be naturally seen as NFAs.
Recall: NFA = Nondeterministic finite automaton.

◮ Nodes are states.

◮ Edges u
a
−→ v are transitions.

◮ There are no initial and final states.
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Regular path queries

Basic building block for graph queries: Regular path queries (RPQs).

◮ First studied in 1989.

◮ An RPQ is a Regular expressions over Σ.

◮ Evaluation L(G) of RPQ L on graph DB G = (V ,E ):

• Pairs of nodes (v , v ′) ∈ V linked by path labeled in L.
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RPQs with inverse

More often studied its extension with inverses, or 2RPQs.

◮ First studied in 2000.

◮ 2RPQs = RPQs over Σ±, where:

• Σ± = Σ extended with the inverse a− of each a ∈ Σ.
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RPQs with inverse

More often studied its extension with inverses, or 2RPQs.

◮ First studied in 2000.

◮ 2RPQs = RPQs over Σ±, where:

• Σ± = Σ extended with the inverse a− of each a ∈ Σ.

Evaluation L(G) of 2RPQ L over graph DB G = (V ,E ):

◮ Pairs of nodes in G that satisfy RPQ L(G±), where:

• G± obtained from G by adding u
a−
−→ v for each v

a
−→ u ∈ E .
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Example of 2RPQ

The 2RPQ

(

creator− ·
(
(partOf · series) ∪ journal

)
)

computes (a, v) s.t. author a published in conference or journal v .
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Example of 2RPQ

Example: The 2RPQ
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2RPQ evaluation

Problem: Eval(2RPQ)
Input: A graph DB G, nodes v , v ′ in G,

a 2RPQ L.
Question: Is (v , v ′) ∈ L(G )?
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2RPQ evaluation

Problem: Eval(2RPQ)
Input: A graph DB G, nodes v , v ′ in G,

a 2RPQ L.
Question: Is (v , v ′) ∈ L(G )?

It boils down to:

Problem: RegularPath

Input: A graph DB G, nodes v , v ′ in G,
a regular expression L over Σ±.

Question: Is there a path ρ from v to v ′ in G±

such that λ(ρ) ∈ L?
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Complexity of finding regular paths

Theorem

RegularPath can be solved in time O(|G| · |L|).

Proof idea:

◮ Compute in linear time from L an equivalent NFA A.

◮ Compute in linear time (G±, v , v ′) : NFA obtained from G± by
setting v and v ′ as initial and final states, respectively.

◮ Then (v , v ′) ∈ L(G) iff L(G±, v , v ′) ∩ L(A) 6= ∅.

◮ For this need to solve the nonemptiness problem for the NFA
(G±, v , v ′)×A.

◮ This can be done time O(|G±| · |A|) = O(|G| · |L|).

19 / 83



Complexity of 2RPQ evaluation

2RPQs can be evaluated in linear time:

Corollary

Eval(2RPQ) can be solved in linear time O(|G| · |L|).
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Data complexity of 2RPQ evaluation

Data complexity of 2RPQs belongs to a parallelizable class:

Proposition

Let L be a fixed 2RPQ.
There is NLogspace procedure that computes L(G) for each G.

Proof idea:

◮ Construct (G±, v , v ′) from G in NLogspace.

◮ Check nonemptiness of (G±, v , v ′)×A in NLogspace.
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Conjunctive regular path queries (CRPQs)

RPQs still do not express arbitrary patterns over graph DBs.

◮ To do this we need to close RPQs under joins and projection.
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Conjunctive regular path queries (CRPQs)

RPQs still do not express arbitrary patterns over graph DBs.

◮ To do this we need to close RPQs under joins and projection.

This is the class of conjunctive regular path queries (CRPQs).

◮ Extended with inverses they are known as C2RPQs.
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Example of C2RPQ

The C2RPQ

Ans(x , u) ← (x , creator
−

, y), (y , partOf · series, z), (y , creator, u)

computes pairs (a1, a2) that are coauthors of a conference paper.
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The C2RPQ

Ans(x , u) ← (x , creator
−

, y), (y , partOf · series, z), (y , creator, u)

computes pairs (a1, a2) that are coauthors of a conference paper.

cr
ea
to
r

inPods:83

:John E. HopcroftinFocs:FOCS8

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a
partOf

creator
creator

creator
creator

Pods:FaginUV83

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

creator

partOfseries creator
conf:pods :Ronald Fagin

z
y

u

x

:Moshe Y. Vardi

series

journal

se
ri
es

partOf
Pods:Ullman89

creator
inPods:89

Pods:Vardi95inPods:95
partOf

IPL:LibkinW95

Pods:Libkin95

series

journal:IPL

creator

24 / 83



Example of C2RPQ

The C2RPQ
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C2RPQ: Formal definition

C2RPQ over Σ: Rule of the form:

Ans(z̄) ← (x1,L1, y1), . . . , (xm,Lm, ym),

such that

◮ the xi , yi are variables,

◮ each Li is a 2RPQ over Σ,

◮ the output z̄ has some variables among the xi , yi .
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C2RPQ: Formal definition

C2RPQ over Σ: Rule of the form:

Ans(z̄) ← (x1,L1, y1), . . . , (xm,Lm, ym),

such that

◮ the xi , yi are variables,

◮ each Li is a 2RPQ over Σ,

◮ the output z̄ has some variables among the xi , yi .

CRPQ: C2RPQ without inverse.

26 / 83



Evaluation of C2RPQs

To evaluate C2RPQ ϕ(z̄) of the form

Ans(z̄) ← (x1,L1, y1), . . . , (xm,Lm, ym),

simply evaluate the conjunctive query

Ans(z̄) ← L1(x1, y1), . . . ,Lm(xm, ym),

where each Li (xi , yi ) is the result of evaluating the 2RPQ Li .

Can also see it as
πz̄(L1 ⋊⋉ . . . ⋊⋉ Lm)

Will write ϕ(G).

27 / 83



C2RPQs vs 2RPQs

Proposition

The C2RPQ

Ans(x , u) ← (x , creator
−

, y), (y , partOf · series, z), (y , creator, u)

is not expressible as a 2RPQ L over the graph database:
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Conclusion: Binary C2RPQs are strictly more expressive than 2RPQs.
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Complexity of evaluation of C2RPQS

Increase in expressiveness has a cost in evaluation.

Proposition

Eval(C2RPQ) is NP-complete, even if restricted to CRPQs.

◮ Upper bound by translation to evaluation of CQs.

◮ Lower bound holds since CRPQs contain CQs over graphs.
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Data complexity of evaluation of (U)C2RPQS

But adding conjunctions is free in data complexity.

Proposition

Eval(C2RPQ) can be solved in NLogspace in data complexity.
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Summary of basic query languages for graph DBs

◮ 2RPQs can be evaluated in linear time.

◮ 2RPQ evaluation is in NLogspace in data complexity.

◮ For C2RPQs:
• Retain good data complexity of 2RPQs.
• Combined complexity is intractable.

◮ C2RPQs do not exhaust the NLogspace properties.
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Complexity of C2RPQs revisited

C2RPQs can be evaluated in polynomial time in data complexity, but is
this a good measure for massive datasets?

CRPQ evaluation is of the order |G|O(|Q|), which is impractical if G is
very big even for small Q.

Idea: Look for languages that are tractable in combined complexity or, at
least, fixed-parameter tractable (fpt).

◮ L is fpt if there is computable function f : N→ N and constant
c ≥ 0 such that L-queries can be evaluated in time O(|G|c · f (|ϕ|)).

The landscape so far:

◮ 2RPQs are tractable in combined complexity (O(|G| · |L|)).

◮ CRPQs are intractable in combined complexity.
CRPQs are not fpt (even CQs are not).
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Structural restrictions of C2RPQs

Recall:

◮ Relational CQs are neither tractable in combined complexity nor fpt.

◮ Tractable cases of CQ evaluation can be obtained by restricting the
syntactic shape of CQs.

◮ The most common such restriction is acyclicity.
◮ An acyclic CQ Q can be evaluated in linear time O(|D| · |Q|) over

relational DB D (Yannakakis (1981)).

◮ Other restrictions include bounded (hyper-)treewidth.
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Acyclic C2RPQs

A UC2RPQ is acyclic if its underlying CQ is acyclic.

A different way of stating this:

A C2RPQ Q is acyclic iff its underlying simple and undirected graph
U(Q) is acyclic, where U(Q) = (V ,E ) for:

◮ V = {x1, y1, . . . , xm, ym};

◮ E = {{xi , yi} | 1 ≤ i ≤ m and xi 6= yi}.

Remark: Acyclicity allows cycles of length ≤ 2 in C2RPQs.

◮ The C2RPQ Ans()← (x , a, x), (x , b, y), (y , c , x) is acyclic.
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Acyclic C2RPQs: Examples

◮ The following C2RPQ is acyclic:

Ans(x , u) ← (x , creator
−

, y), (y , partOf · series, z), (y , creator, u).

◮ The following C2RPQ is not acyclic:

Ans() ← (x ,L1, y), (y ,L2, z), (z ,L3, x).
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Evaluation of acyclic C2RPQs

Evaluation of acyclic C2RPQs is tractable in combined complexity:

Proposition

Evaluation of an acyclic C2RPQ Q over a graph DB G takes time
O(|G |2 · |Q|2).
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The simple path semantics

Simple paths: No node is repeated.

Simple paths semantics:

◮ Motivated by applications for which simple paths are more natural.

◮ Studied back in the late 1980s already.

◮ Revival due to application in early versions of SPARQL, a language
for RDF.
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RPQs under simple paths semantics

• RPQ evaluation in this context = Finding regular simple paths:

Problem: RegularSimplePath

Input: A graph database G, nodes v , v ′ in G,
a regular expression L.

Question: Is there a simple path ρ from
v to v ′ in G such that λ(ρ) ∈ L?

38 / 83



RPQs under simple paths semantics

• RPQ evaluation in this context = Finding regular simple paths:

Problem: RegularSimplePath

Input: A graph database G, nodes v , v ′ in G,
a regular expression L.

Question: Is there a simple path ρ from
v to v ′ in G such that λ(ρ) ∈ L?

• RegularSimplePath(L): For fixed L.
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Complexity of finding regular simple paths

Theorem

The problem RegularSimplePath is in NP, and for some L the
problem RegularSimplePath(L) can be NP-complete.

◮ RegularSimplePath((00)∗):

◮ Is there simple directed path of even length? It is NP-complete.

◮ Query evaluation is NP-complete in data complexity – hence
impractical.
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Static analysis: Containment for 2RPQs

Cont(L): Given L-queries Q1 and Q2,

◮ is Q1(G) ⊆ Q2(G) for each graph DB G?
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Static analysis: Containment for 2RPQs

Cont(L): Given L-queries Q1 and Q2,

◮ is Q1(G) ⊆ Q2(G) for each graph DB G?

Containment for 2RPQs is decidable:

Theorem

Cont(2RPQ) is Pspace-complete. It is Pspace-hard even for RPQs.

◮ For RPQs easy to prove:
• L1(G) ⊆ L2(G) for each G ⇐⇒

regular expression L1 contained in regular expression L2.
• Containment of regular expressions:

Pspace-complete (Stock+1)Meyer (1971)).

◮ For 2RPQs more work is required: Reason with two-way automata.
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Containment for C2RPQs

Containment of C2RPQs still decidable with exponential blow-up:

Theorem

Cont(C2RPQ) is Expspace-complete, even for CRPQs.

◮ Notice contrast with complexity of containment for CQs:
• NP-complete (Chandra,Merlin (1977)).
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Summary of containment

◮ Containment of C2RPQs is decidable in double exponential time.

◮ For 2RPQs containment can be checked in single exponential time.

◮ High lower bounds are due to the presence of regular expressions.
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Path queries and comparisons

CRPQs fall short of expressive power for applications that need:

◮ to include paths in the output of a query, and

◮ to define complex relationships among labels of paths.
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Path queries and comparisons

CRPQs fall short of expressive power for applications that need:

◮ to include paths in the output of a query, and

◮ to define complex relationships among labels of paths.

Examples:

◮ Semantic Web queries:
• establish semantic associations among paths.

◮ Biological applications:
• compare paths based on similarity.

◮ Route-finding applications:
• compare paths based on length or number of occurrences of labels.

◮ Data provenance and semantic search over the Web:
• require returning paths to the user.
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Path comparisons

We use a set S of relations on words.

◮ Example: S may contain
• Unary relations: Regular, context-free languages, etc.
• Binary relations: prefix, equal length, subsequence, etc.

◮ Comparisons among labels of paths
• Example: w1 is a substring of w2.

◮ We assume S contains all regular languages.

44 / 83



Extended CRPQs

The S-extended CRPQs (ECRPQ(S)) are rules obtained from a CRPQ:

Ans(z̄ , ) ← (x1,L1, y1), . . . , (xm,Lm, ym),

◮ by annotating each pair (xi , yi ) with a path variable πi ,

◮ comparing labels of paths in π̄j wrt Sj ∈ S
• for π̄j a tuple of path variables among the πi ’s,

◮ projecting some of πi ’s as a tuple χ̄ in the output.
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Extended CRPQs

The S-extended CRPQs (ECRPQ(S)) are rules obtained from a CRPQ:

Ans(z̄, ) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

1≤j≤t Sj(π̄j )

◮ by annotating each pair (xi , yi ) with a path variable πi ,

◮ comparing labels of paths in π̄j wrt Sj ∈ S
• for π̄j a tuple of path variables among the πi ’s,

◮ projecting some of πi ’s as a tuple χ̄ in the output.
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Extended CRPQs

The S-extended CRPQs (ECRPQ(S)) are rules obtained from a CRPQ:

Ans(z̄, χ̄) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

1≤j≤t Sj(π̄j )

◮ by annotating each pair (xi , yi ) with a path variable πi ,

◮ comparing labels of paths in π̄j wrt Sj ∈ S
• for π̄j a tuple of path variables among the πi ’s,

◮ projecting some of πi ’s as a tuple χ̄ in the output.
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Extended CRPQs and our requirements

ECRPQs meet our requirements:

Ans(z̄, χ̄) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

1≤j≤t Sj(π̄j)
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◮ They allow paths in the output.

◮ They allow to compare labels of paths with relations Sj ∈ S.
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Evaluation of ECRPQs

Evaluation of the ECRPQ(S)

θ(z̄, χ̄) : Ans(z̄ , χ̄) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

j Sj(π̄j )

Same than for CRPQs but:

◮ Each πi is mapped to a path ρi in the graph DB.

◮ For each j , if π̄j = (πj1 , . . . , πjk ) then: (λ(ρj1), . . . , λ(ρjk ))
︸ ︷︷ ︸

the labels of (ρj1 , . . . , ρjk
)

∈ Sj .
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Evaluation of ECRPQs

Evaluation of the ECRPQ(S)

θ(z̄, χ̄) : Ans(z̄ , χ̄) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

j Sj(π̄j )

Same than for CRPQs but:

◮ Each πi is mapped to a path ρi in the graph DB.

◮ For each j , if π̄j = (πj1 , . . . , πjk )
then: (λ(ρj1), . . . , λ(ρjk ))

︸ ︷︷ ︸

the labels of (ρj1 , . . . , ρjk
)

∈ Sj .(λ(ρj1), . . . , λ(ρjk )) ∈ Sj .
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Considerations about ECRPQ(S)

• ECRPQ(S) extends the class of CRPQs.

◮ Ans(z̄)←
∧

i(xi ,Li , yi ) same as Ans(z̄) ←
∧

i (xi , πi , yi ),Li (πi ).

• Expressiveness and complexity of ECRPQ(S):

◮ Depends on the class S.

• We study two such classes with roots in formal language theory:

◮ Regular relations (Elgot, Mezei (1965)).

◮ Rational relations (Nivat (1968)).
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Comparing paths with regular relations

• Regular relations: Regular languages for relations of any arity.

◮ REG: Class of regular relations.

• Bottomline:

ECRPQ(REG): Reasonable expressiveness and complexity.
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Regular relations

n-ary regular relation:

Set of n-tuples (w1, . . . ,wn) of strings
accepted by synchronous automaton over Σn.
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Regular relations

n-ary regular relation:

Set of n-tuples (w1, . . . ,wn) of strings
accepted by synchronous automaton over Σn.

◮ The input strings are written in the n-tapes.

◮ Shorter strings are padded with symbol ⊥.

◮ At each step:
The automaton simultaneously reads next symbol on each tape.
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Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a
w3 = b b · · ·

...
...

wn = a b b · · · a c
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Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥

...
...

wn = a b b · · · a c ⊥
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Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥

...
...

wn = a b b · · · a c ⊥
⇑
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Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥

...
...

wn = a b b · · · a c ⊥
⇑
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Examples of regular relations

• All regular languages.

• The prefix relation defined by:

( ⋃

a∈Σ

(a, a)
)∗
·
( ⋃

a∈Σ

(a,⊥)
)∗

.

• The equal length relation defined by:

( ⋃

a,b∈Σ

(a, b)
)∗

.

• Pairs of strings at edit distance at most k, for fixed k ≥ 0.
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Examples of regular relations

• All regular languages.

• The prefix relation defined by:

( ⋃

a∈Σ

(a, a)
)∗
·
( ⋃

a∈Σ

(a,⊥)
)∗

.

• The equal length relation defined by:

( ⋃

a,b∈Σ

(a, b)
)∗

.

• Pairs of strings at edit distance at most k, for fixed k ≥ 0.

Proposition

The subsequence, subword and suffix relations are not regular.
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ECRPQ(REG)

ECRPQ(REG): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi ),
∧

j Sj(π̄j),

where each Sj is a regular relation
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ECRPQ(REG): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi ),
∧

j Sj(π̄j),

where each Sj is a regular relation

Example: The ECRPQ(REG) query

Ans(x , y) ← (x , π1, z), (z , π2, y), a∗(π1), b
∗(π2), equal length(π1, π2)

computes pairs of nodes linked by a path labeled in {anbn | n ≥ 0}.
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ECRPQ(REG)

ECRPQ(REG): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi ),
∧

j Sj(π̄j),

where each Sj is a regular relation

Example: The ECRPQ(REG) query

Ans(x , y) ← (x , π1, z), (z , π2, y), a∗(π1), b
∗(π2), equal length(π1, π2)

computes pairs of nodes linked by a path labeled in {anbn | n ≥ 0}.

Corollary

ECRPQ(REG) properly extends the class of CRPQs.
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Complexity of evaluation of ECRPQ(REG)

• Extending CRPQs with regular relations is free for data complexity.
• Combined complexity is that of relational calculus over relational
databases.

Theorem

◮ Eval(ECPRQ(REG)) is Pspace-complete.

◮ Eval(ECPRQ(REG)) is in NLogspace in data complexity.
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Containment for ECRPQ(REG)

Theorem

Cont(ECRPQ(REG)) is undecidable.

◮ Notice contrast with CRPQs for which containment is decidable.

◮ But this is like for full relational algebra/calculus.
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Comparing with rational relations

ECRPQ(REG) queries are still short of expressive power:

◮ RDF or biological networks:
• Compare strings based on subsequence and subword relations.

◮ These relations are rational: Accepted by asynchronous automata.
• RAT: Class of rational relations.

Bottomline:

◮ ECRPQ(RAT) evaluation:
• Undecidable or very high complexity.

◮ Restricting the syntactic shape of queries yields tractability.
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Rational relations

n-ary rational relation:
Set of n-tuples (w1, . . . ,wn) of strings
accepted by asynchronous automaton with n heads.
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n-ary rational relation:
Set of n-tuples (w1, . . . ,wn) of strings
accepted by asynchronous automaton with n heads.

◮ The input strings are written in the n-tapes.

◮ At each step:
The automaton enters a new state and move some tape heads.
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Rational relations

n-ary rational relation:
Set of n-tuples (w1, . . . ,wn) of strings
accepted by asynchronous automaton with n heads.

◮ The input strings are written in the n-tapes.

◮ At each step:
The automaton enters a new state and move some tape heads.

n-ary rational relation:
Described by regular expression over alphabet (Σ ∪ {ǫ})n.

64 / 83



Examples of rational relations

• All regular relations.

• The subsequence relation �ss defined by:

(
( ⋃

a∈Σ

(a, ǫ)
)∗

⋃

b∈Σ

(b, b)

)∗

·
( ⋃

a∈Σ

(a, ǫ)
)∗

.

• The subword relation �sw defined by:

( ⋃

a∈Σ

(a, ǫ)
)∗
·
( ⋃

b∈Σ

(b, b)
)∗
·
( ⋃

a∈Σ

(a, ǫ)
)∗

.
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Examples of rational relations

• All regular relations.

• The subsequence relation �ss defined by:

(
( ⋃

a∈Σ

(a, ǫ)
)∗

⋃

b∈Σ

(b, b)

)∗

·
( ⋃

a∈Σ

(a, ǫ)
)∗

.

• The subword relation �sw defined by:

( ⋃

a∈Σ

(a, ǫ)
)∗
·
( ⋃

b∈Σ

(b, b)
)∗
·
( ⋃

a∈Σ

(a, ǫ)
)∗

.

Proposition

The set of pairs (w1,w2) such that w1 is the reversal of w2 is not rational.
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ECRPQ(RAT)

ECRPQ(RAT): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi ),
∧

j Sj(π̄j),

where each Sj is a rational relation

Example: The ECRPQ(RAT) query

Ans(x , y) ← (x , π1, z), (y , π2,w), π1 �ss π2

computes x , y that are origins of paths ρ1 and ρ2 such that:

◮ λ(ρ1) is a subsequence of λ(ρ2).
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Evaluation of ECRPQ(RAT) queries

Evaluation of queries in ECRPQ(RAT) is undecidable, but:
◮ True if we allow only practically motivated rational relations?
• For example, �ss and �sw.
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Evaluation of queries in ECRPQ(RAT) is undecidable, but:
◮ True if we allow only practically motivated rational relations?
• For example, �ss and �sw.

Adding subword relation to ECRPQ(REG) leads to undecidability:

Theorem

Evaluation of (ECRPQ(REG ∪{�sw})) queries is undecidable. The same
is true for suffix in place of subword.
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Evaluation of ECRPQ(RAT) queries

Evaluation of queries in ECRPQ(RAT) is undecidable, but:
◮ True if we allow only practically motivated rational relations?
• For example, �ss and �sw.

Adding subword relation to ECRPQ(REG) leads to undecidability:

Theorem

Evaluation of (ECRPQ(REG ∪{�sw})) queries is undecidable. The same
is true for suffix in place of subword.

Adding subsequence preserves decidability, but at a very high cost:

Theorem

Evaluation of (ECRPQ(REG ∪{�ss})) queries is decidable, but
non-primitive-recursive.

Primitive-recursive, informally: any function you can think of!
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Acyclic ECRPQ(RAT) queries

Acyclic ECRPQ(RAT) queries yield tractable data complexity.

◮ Queries of the form:

Ans(z̄)←
∧

i≤k

(xi , πi , yi ),Li (πi ),
∧

j

Sj(πj1 , πj2),

where the graph on {1, . . . , k} defined by edges (πj1 , πj2) is acyclic.
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Acyclic ECRPQ(RAT) queries

Acyclic ECRPQ(RAT) queries yield tractable data complexity.

◮ Queries of the form:

Ans(z̄)←
∧

i≤k

(xi , πi , yi ),Li (πi ),
∧

j

Sj(πj1 , πj2),

where the graph on {1, . . . , k} defined by edges (πj1 , πj2) is acyclic.

Acyclic ECRPQ(RAT) is not more expensive than ECRPQ(REG):

Theorem

◮ Evaluation of acyclic ECRPQ(RAT) queries is Pspace-complete.

◮ It is in NLogspace in data complexity.
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Summary of path queries

◮ Usual query languages do not allow:
• to export paths and compare labels of paths.

◮ This has led to the introduction of ECRPQ(S) queries:
• They output paths and compare labels of paths with relations in S.

◮ Comparing paths with regular relations:
• Preserves tractable data complexity of evaluation.
• Leads to undecidability of containment.

◮ Comparing paths with practically motivated rational relations:
• Leads to undecidability or high complexity of evaluation.
• Tractable cases found restricting the syntactic shape of queries.
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Querying graphs with data

So far queries only talk about the topology of the data.

Queries that combine topology and data are important in practice:

◮ Example:
People of the same age connected by professional links.

We present a language that expresses topological properties of the data:

◮ It requires an extension of the data model (data graphs).

◮ It talks about data paths:
Summarize the topology and the underlying data of a path.
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Data graphs and data paths

We work with data graphs and paths over set of data values D.

Definition

A data graph G over Σ is a tuple (V ,E , δ), where:

◮ (V ,E ) is a graph database over Σ, and

◮ δ is a mapping that assigns a value in D to each node v ∈ V .
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Data graphs and data paths

We work with data graphs and paths over set of data values D.

Definition

A data graph G over Σ is a tuple (V ,E , δ), where:

◮ (V ,E ) is a graph database over Σ, and

◮ δ is a mapping that assigns a value in D to each node v ∈ V .

With each path ρ = v1
a1−→ v2 · · · vk

ak−→ vk+1 in (V ,E ):
We associate a data path in G of the form

ρD = δ(v1)
a1−→ δ(v2) · · · δ(vk)

ak−→ δ(vk+1),

that is obtained from ρ by replacing each node by its data value.
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Data paths and data words

Data paths are very close to data words:

◮ Object studied in XML and verification (Bojanczyk et al. (2006)).

◮ Data words are strings over Σ×D.

Mechanisms that query data words can be used for data paths:

◮ FO, MSO, and some versions of XPath (Bojanczyk et al. (2006)).

◮ Pebble automata (Neven, Schwentick, Vianu (2004)).

◮ Register automata (Kaminski, Francez (1994)).
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The choice of a formalism

Formalism for querying data paths has to be chosen with care:

Theorem

The problem DistinctValues is NP-complete:

◮ DistinctValues:
Is there a path ρ from v to v ′ s.t. no data value in ρD is repeated?
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The choice of a formalism

Formalism for querying data paths has to be chosen with care:

Theorem

The problem DistinctValues is NP-complete:

◮ DistinctValues:
Is there a path ρ from v to v ′ s.t. no data value in ρD is repeated?

Conclusion:

◮ If a language expresses DistinctValues:
• It is NP-hard in data complexity ⇒ Impractical.

◮ Rules out all formalisms except for one:
• Register automata.

73 / 83



Regular expressions for register automata

Regular expressions with memory (REMs):
Same as register automata
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Regular expressions for register automata

Regular expressions with memory (REMs):
Same as register automata

◮ REMs permit to specify when data values are remembered and used.

◮ Data values are remembered in k registers {x1, . . . , xk}.

◮ At any point we can compare a data value with one in the registers.

74 / 83



REM: Example

Consider the REM ↓x .a+[x=].

Intuition:

◮ Store the current data value d in register x .

◮ After reading a word in a+ check that d is seen again.

Semantics: Pairs (v , v ′) of nodes:

◮ Linked by a path labeled in a+.

◮ v and v ′ contain the same data value.
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REM: Conditions

• Conditions: Compare a data value with the ones in the registers.

• Conditions over {x1, . . . , xk} are given by the grammar:

c := x=
i | ¬c | c ∧ c (1 ≤ i ≤ k)

• We define (d , τ) |= c for d ∈ D and τ = (d1, . . . , dk) ∈ Dk :

◮ (d , τ) |= x=
i iff d = di .

◮ Boolean combinations are standard.
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REMs: Syntax and semantics (Intuition)

REMs over Σ and {x1, . . . , xk} are defined by grammar:

e := ε | a | e ∪ e | e · e | e+ | e[c] | ↓ x̄ .e

where a ∈ Σ, c condition, and x̄ tuple in {x1, . . . , xk}.
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Intuition: Evaluation of REM e on data graph G is:
• pairs (v , v ′) of nodes linked by path ρ such that ρD |= e, where:
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REMs: Syntax and semantics (Intuition)

REMs over Σ and {x1, . . . , xk} are defined by grammar:

e := ε | a | e ∪ e | e · e | e+ | e[c] | ↓ x̄ .e

where a ∈ Σ, c condition, and x̄ tuple in {x1, . . . , xk}.

Intuition: Evaluation of REM e on data graph G is:
• pairs (v , v ′) of nodes linked by path ρ such that ρD |= e, where:

◮ ρD |= e[c] if and only if

τ ∈ Dk st (κ(vk+1), τ) |= c

κ(v1)
a1−→ κ(v2) · · · κ(vk)

ak−→ κ(vk+1)
︸ ︷︷ ︸

can be parsed wrt e
starting from empty registers

ρD

finishing in register value
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REMs: Syntax and semantics (Intuition)

REMs over Σ and {x1, . . . , xk} are defined by grammar:

e := ε | a | e ∪ e | e · e | e+ | e[c] | ↓ x̄ .e

where a ∈ Σ, c condition, and x̄ tuple in {x1, . . . , xk}.

Intuition: Evaluation of REM e on data graph G is:
• pairs (v , v ′) of nodes linked by path ρ such that ρD |= e, where:

◮ ρD |=↓ x̄ .e if and only if
ρD

κ(v1)
a1−→ κ(v2) · · · κ(vk)

ak−→ κ(vk+1)
︸ ︷︷ ︸

can be parsed wrt estarting from the register value
that assigns κ(v1) to each x ∈ x̄
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REM: Example

Consider the REM Σ∗ · (↓x .Σ+[x=]) · Σ∗:

◮ Defines pairs of nodes linked by path ρ such that:
• ρD contains the same data value twice.

◮ The complement of this language is DistinctValues.
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REM: Example

Consider the REM Σ∗ · (↓x .Σ+[x=]) · Σ∗:

◮ Defines pairs of nodes linked by path ρ such that:
• ρD contains the same data value twice.

◮ The complement of this language is DistinctValues.

Corollary

REMs are not closed under complement.
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Complexity of REM evaluation

• Data complexity of REM evaluation coincides with that of CRPQs.
• Combined complexity same than for FO over relational databases.

Theorem

◮ Eval(REM) is Pspace-complete.

◮ It is in NLogspace in data complexity.

• Both bounds extend to the class of conjunctive REMs.
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Summary of queries on graphs with data

◮ Most query languages for graph DBs:
• talk about topology, but not about underlying data.

◮ Query languages that combine topology and data:
• talk about data paths in data graphs.

◮ Choosing a formalism to query data paths must be done with care:
• intractability can be reached easily.

◮ To query data paths:
• Can use REMs, which are based on register automata.
• REMs can be evaluated efficiently in data complexity.
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Comments on papers

◮ Isabel F. Cruz, Alberto O. Mendelzon, Peter T. Wood: A Graphical Query
Language Supporting Recursion. SIGMOD Conference 1987: 323-330

◮ Mariano P. Consens, Alberto O. Mendelzon: Low Complexity Aggregation in
GraphLog and Datalog. Theor. Comput. Sci. 116(1): 95-116 (1993)

Original papers introducing (C)RPQs

◮ Pablo Barcelo: Querying graph databases. PODS 2013: 175-188

◮ Renzo Angles, Claudio Gutiérrez: Survey of graph database models. ACM
Comput. Surv. 40(1) (2008)

◮ Peter T. Wood: Query languages for graph databases. SIGMOD Record 41(1):
50-60 (2012)

Three suveys of graph languages, two are more theoretical, one more practical.

◮ Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:
Rewriting of Regular Expressions and Regular Path Queries. J. Comput. Syst.
Sci. 64(3): 443-465 (2002)

Introducing two-way queries.
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Comments on papers

◮ Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:
Reasoning on regular path queries. SIGMOD Record 32(4): 83-92 (2003)

◮ Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Moshe Y. Vardi:
Containment of Conjunctive Regular Path Queries with Inverse. KR 2000:
176-185

Static analysis of regular path queries.

◮ Leonid Libkin, Wim Martens, Domagoj Vrgoc: Querying graph databases with
XPath. ICDT 2013: 129-140

Adding data values to (C)RPQs

◮ Pablo Barcelo, Leonid Libkin, Anthony Widjaja Lin, Peter T. Wood: Expressive
Languages for Path Queries over Graph-Structured Data. ACM Trans. Database
Syst. 37(4): 31 (2012)

Extending RPQs with regular relations; topics to concentrate on are those not
covered in class.

◮ Pablo Barcelo, Diego Figueira, Leonid Libkin: Graph Logics with Rational
Relations .Logical Methods in Computer Science 9(3) (2013)

Likewise for rational relations.
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Comments on papers

◮ Dominik D. Freydenberger, Nicole Schweikardt: Expressiveness and Static
Analysis of Extended Conjunctive Regular Path Queries. AMW 2011

Resolving some of the questions on the containment of path queries.

◮ Jelle Hellings, Bart Kuijpers, Jan Van den Bussche, Xiaowang Zhang: Walk logic
as a framework for path query languages on graph databases. ICDT 2013:
117-128

A different approach to expanding the power of path languages.

◮ Pablo Barcelo, Leonid Libkin, Juan L. Reutter: Querying Regular Graph
Patterns. Journal of the ACM 61(1): 8:1-8:54 (2014)

Incomplete information in graph databases and querying it.

◮ Wenfei Fan, Xin Wang, Yinghui Wu: Querying big graphs within bounded
resources. SIGMOD Conference 2014: 301-312

◮ Wenfei Fan: Graph pattern matching revised for social network analysis. ICDT
2012: 8-21

Two papers on making graph queries scalable.
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