
Incomplete Information

ATFD 2016 incomplete and inconsistent data 1/62

SQL’s handling of incompleteness is problematic

“. . . this topic cannot be described in a manner that is
simultaneously both comprehensive and comprehensible”
“Those SQL features are . . . fundamentally at odds with the
way the world behaves”

C. Date & H. Darwen, ‘A Guide to SQL Standard’

“If you have any nulls in your database, you’re getting wrong
answers to some of your queries. What’s more, you have no
way of knowing, in general, just which queries you’re getting
wrong answers to; all results become suspect. You can never
trust the answers you get from a database with nulls”

C. Date, ‘Database in Depth’

ATFD 2016 incomplete and inconsistent data 2/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments
Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 3/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Typical queries, as we teach students to write them:

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 4/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Typical queries, as we teach students to write them:

Unpaid orders:
select O.order_id
from Orders O
where not exists
 (select * from Pay P
 where P.order=O.order_id)

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 5/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Typical queries, as we teach students to write them:

Unpaid orders:
select O.order_id
from Orders O
where not exists
 (select * from Pay P
 where P.order=O.order_id)

Customers without an order:
select C.cust_id from Customer C
where not exists
 (select * from Orders O, Pay P
 where C.cust_id=P.cust_id
 and P.order=O.order_id)

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 6/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Typical queries, as we teach students to write them:

Unpaid orders:
select O.order_id
from Orders O
where not exists
 (select * from Pay P
 where P.order=O.order_id)

Customers without an order:
select C.cust_id from Customer C
where not exists
 (select * from Orders O, Pay P
 where C.cust_id=P.cust_id
 and P.order=O.order_id)

Answer: Ord3. Answer: none.

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 7/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Typical queries, as we teach students to write them:

Unpaid orders:
select O.order_id
from Orders O
where not exists
 (select * from Pay P
 where P.order=O.order_id)

Customers without an order:
select C.cust_id from Customer C
where not exists
 (select * from Orders O, Pay P
 where C.cust_id=P.cust_id
 and P.order=O.order_id)

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 8/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Unpaid orders:
select O.order_id
from Orders O
where not exists
 (select * from Pay P
 where P.order=O.order_id)

Customers without an order:
select C.cust_id from Customer C
where not exists
 (select * from Orders O, Pay P
 where C.cust_id=P.cust_id
 and P.order=O.order_id)

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 9/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID ORDER

c1 Ord1

c2 Ord2

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Unpaid orders:
select O.order_id
from Orders O
where not exists
 (select * from Pay P
 where P.order=O.order_id)

Customers without an order:
select C.cust_id from Customer C
where not exists
 (select * from Orders O, Pay P
 where C.cust_id=P.cust_id
 and P.order=O.order_id)

In the real world, information is often missing

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 10/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Unpaid orders:
select O.order_id
from Orders O
where not exists
 (select * from Pay P
 where P.order=O.order_id)

Customers without an order:
select C.cust_id from Customer C
where not exists
 (select * from Orders O, Pay P
 where C.cust_id=P.cust_id
 and P.order=O.order_id)

In the real world, information is often missing

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 11/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Unpaid orders:
select O.order_id
from Orders O
where not exists
 (select * from Pay P
 where P.order=O.order_id)

Customers without an order:
select C.cust_id from Customer C
where not exists
 (select * from Orders O, Pay P
 where C.cust_id=P.cust_id
 and P.order=O.order_id)

In the real world, information is often missing

CUST_ID ORDER

c1 Ord1

c2 --

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 12/62

ORDER_ID TITLE PRICE

Ord1 “Big Data” 30

Ord2 “SQL” 35

Ord3 “Logic” 50

CUST_ID NAME

c1 John

c2 Mary

A company database: orders, customers, payments

Unpaid orders:
select O.order_id
from Orders O
where not exists
 (select * from Pay P
 where P.order=O.order_id)

Customers without an order:
select C.cust_id from Customer C
where not exists
 (select * from Orders O, Pay P
 where C.cust_id=P.cust_id
 and P.order=O.order_id)

In the real world, information is often missing

CUST_ID ORDER

c1 Ord1

c2 --

Old Answer: Ord3 New: NONE! Old answer: none New: c2!

Orders Pay Customer

ATFD 2016 incomplete and inconsistent data 13/62

But it must be handled...

◮ Incomplete data is everywhere.

◮ Represented by nulls in relational databases.

◮ The more data we accumulate, the more incomplete data we
accumulate.

◮ Sources:
◮ Traditional (missing data, wrong entries, etc)
◮ The Web
◮ Integration/translation/exchange of data, etc

◮ The importance of it was recognized early
◮ Codd, “Understanding relations (installment #7)”, 1975.

◮ And yet the state is very poor.

ATFD 2016 incomplete and inconsistent data 14/62

What it’s blamed on: 3-valued logic

SQL used 3-valued logic, or 3VL, for databases with nulls.

Normally we have two truth values: true t, false f. But comparisons
involving nulls evaluate to unknown (u): for instance, 5 = null is u.

They are propagated using 3VL rules:

∧ t f u

t t f u

f f f f

u u f u

∨ t f u

t t t t

f t f u

u t u u

∨
t f

f t

u u

◮ Committee design from 30 years ago, leads to many problems,

◮ but is efficient and used everywhere

ATFD 2016 incomplete and inconsistent data 15/62

What does theory have to offer?

The notion of correctness — certain answers.

◮ Answers independent of the interpretation of missing information.

◮ Typically defined as

certain(Q,D) =
⋂

Q(D ′)

over all possible worlds D ′ described by D

◮ Standard approach, used in all applications: data integration and
exchange, inconsistent data, querying with ontologies, data cleaning,
etc.

◮ First need to define what an incomplete database can represent.

ATFD 2016 incomplete and inconsistent data 16/62

The model

Marked (aka labeled or naive) nulls. Idea: missing values, that can
repeat.

Semantics: closed world

A B C

1 2 ⊥1

⊥2 ⊥1 3

⊥3 5 1

2 ⊥3 3

ATFD 2016 incomplete and inconsistent data 17/62

The model

Marked (aka labeled or naive) nulls. Idea: missing values, that can
repeat.

Semantics: closed world

A B C

1 2 ⊥1

⊥2 ⊥1 3

⊥3 5 1

2 ⊥3 3

h(⊥1) = 4
h(⊥2) = 3
h(⊥3) = 5

=⇒

A B C

1 2 4

3 4 3

5 5 1

2 5 3

ATFD 2016 incomplete and inconsistent data 17/62

The model

Marked (aka labeled or naive) nulls. Idea: missing values, that can
repeat.

Semantics: closed world

A B C

1 2 ⊥1

⊥2 ⊥1 3

⊥3 5 1

2 ⊥3 3

h(⊥1) = 4
h(⊥2) = 3
h(⊥3) = 5

=⇒

A B C

1 2 4

3 4 3

5 5 1

2 5 3

SQL model: a special case when all nulls are distinct.

ATFD 2016 incomplete and inconsistent data 17/62

Open worlds semantics

A B C

1 2 ⊥1

⊥2 ⊥1 3

⊥3 5 1

2 ⊥3 3

h(⊥1) = 4
h(⊥2) = 3
h(⊥3) = 5

=⇒

A B C

1 2 4

3 4 3

5 5 1

2 5 3

7 9 12

11 8 10

ATFD 2016 incomplete and inconsistent data 18/62

Semantics via homomorphisms/valuations

Maps h are homomorphisms whose range does not include nulls. They
are called valuation. A normal homomorphism:

◮ h(c) = c for every constant value c

◮ h(⊥) could be a null or a constant value

In a valuation,

◮ h(c) = c for every constant value c

◮ h(⊥) must be a constant value

They define open world semantics [[D]]owa and closed world semantics
[[D]]cwa

◮ semantics under open world and closed world assumptions

ATFD 2016 incomplete and inconsistent data 19/62

Semantics via homomorphisms/valuations

[[D]]cwa = {h(D) | h is a valuation}

[[D]]owa = {complete D ′ | ∃ valuation h : D → D ′}

Alternatively:

[[D]]owa = {h(D) ∪ D0 | h is a valuation,D0 does not have nulls}

ATFD 2016 incomplete and inconsistent data 20/62

Certain answers

Tuples present in query answers in all possible world:

certainCWA(Q,D) =
⋂

{Q(D ′) | D ′ ∈ [[D]]cwa}

certainOWA(Q,D) =
⋂

{Q(D ′) | D ′ ∈ [[D]]owa}

Note that tuples in certain answers cannot have nulls, i.e. they only have
constant values.

ATFD 2016 incomplete and inconsistent data 21/62

Can SQL evaluation and certain answers be the same?

No!

Complexity argument:

◮ Finding certain answers for relational calculus queries in coNP-hard

◮ SQL is very efficient (DLOGSPACE; even AC0)

ATFD 2016 incomplete and inconsistent data 22/62

Complexity of certain answers

Query Q from relational calculus/algebra, i.e., first-order logic. Assume it
is a sentence (yes/no query).

Look at OWA first.

certainOWA(Q,D) = t ⇔ ∀D ′ ∈ [[D]]owa : D ′ |= Q

But: [[∅]]owa = all databases!

Therefore:
certainOWA(Q, ∅) = t ⇔ ∀D ′ : D ′ |= Q

or Q ′ is a valid sentence.

ATFD 2016 incomplete and inconsistent data 23/62

Validity and certain answers

What do we know about validity of first-order sentences? It is
undecidable!

This is a classical result in logic (INF1). But here we are in a different
world, all databases are finite. Does it help?

No! It is even worse, not even recursively enumerable (even infinite time
does not help!)

ATFD 2016 incomplete and inconsistent data 24/62

Does CWA help? Somewhat....

certainCWA(Q,D) = t ⇔ ∀ valuations h : h(D) |= Q

There are still infinitely many valuations, but actually only finitely many
suffice (blackboard).

This means checking whether certainCWA(Q,D) = f is in NP:

◮ guess a valuation h

◮ check if h(D) |= ¬Q (in PTIME in data complexity)

Thus checking whether certainCWA(Q,D) = t is in coNP.

ATFD 2016 incomplete and inconsistent data 25/62

CWA: can we do better? No...

Checking whether certainCWA(Q,D) = t is coNP-complete.

Reduction from 3-colorability.

Take a graph G = (V ,E) and create a database DG with nulls ⊥v for
each v ∈ V and edges (⊥v ,⊥v ′) whenever (v , v ′) ∈ E .

Q = 4 different vertices ∨ ∃xE (x , x)

where 4 different vertices is ∃x , y , z , u (x 6= y ∧ y 6= z ∧ . . .)

Then certainCWA(Q,DG) = t iff G is 3-colorable.

ATFD 2016 incomplete and inconsistent data 26/62

The bottom line

SQL is very efficient (for the relational calculus fragment, AC0)

Certain answers range from coNP-complete to undecidable for different
semantics.

Hence provably SQL cannot compute certain answers.

ATFD 2016 incomplete and inconsistent data 27/62

Wrong behaviors: false negatives and false positives

False negatives: missing some of the certain answers

False positives: giving answers which are not certain

Complexity tells us:

SQL query evaluation cannot avoid both!

False positives are worse: they tell you something blatantly false rather
than hide part of the truth

And we have seen SQL generates both.

ATFD 2016 incomplete and inconsistent data 28/62

What to do?

We now analyze evaluation procedures.

Goal: to see when we can effectively

◮ compute or

◮ approximate

certain answers.

So first we need to define evaluation procedures.

ATFD 2016 incomplete and inconsistent data 29/62

Evaluation procedures for first-order queries

Given a database D, a query Q(x̄), a tuple ā

Eval(D,Q(ā)) ∈ set of truth values

◮ 2-valued logic: truth values are t (true) and f (false)

◮ 3-valued logic: t, f, and u (unknown)

Meaning: if Eval(D,Q(ā)) evaluates to

◮ t, we know ā ∈ Q(D)

◮ f, we know ā 6∈ Q(D)

◮ u, we don’t know whether ā ∈ Q(D) or ā 6∈ Q(D)

ATFD 2016 incomplete and inconsistent data 30/62

Evaluation procedures and queries results

A procedure defines the result of evaluation:

Eval(Q,D) = {ā | Eval(D,Q(ā)) = t}

Think of the WHERE clause in SQL: we only look at values that make it
true (and discard those that make it false or unknown).

ATFD 2016 incomplete and inconsistent data 31/62

Standard semantics for logical connectives

All evaluation procedures are completely standard for ∨,∧,¬,∀,∃:

Eval(D,Q ∨ Q ′) = Eval(D,Q) ∨ Eval(D,Q ′)

Eval(Q ∧ Q ′,D) = Eval(D,Q) ∧ Eval(D,Q ′)

Eval(D,¬Q) = ¬Eval(D,Q)

Eval(D,∃x Q(x , ā)) =
∨{Eval(D,Q(a′, ā)) | a′ ∈ adom(D)}

Eval(D,∀x Q(x , ā)) =
∧{Eval(D,Q(a′, ā)) | a′ ∈ adom(D)}

ATFD 2016 incomplete and inconsistent data 32/62

Standard semantics for logical connectives cont’d

Of course ∨,∧,¬ are given by truth tables for the logic: the usual
Boolean logic for relational calculus, or the 3-valued logic for SQL.

So we just need to define rules for atoms, R(x̄) and basic comparisons.

We assume comparisons are just equalities a = b.

ATFD 2016 incomplete and inconsistent data 33/62

FO evaluation procedure

EvalFO(D,R(ā)) =

{

t if ā ∈ R

f if ā 6∈ R

EvalFO(D, a = b) =

{

t if a = b

f if a 6= b

ATFD 2016 incomplete and inconsistent data 34/62

Correctness via EvalFO

Recall:
EvalFO(Q,D) = {ā | EvalFO(D,Q(ā)) = t}

We want at least simple correctness guarantees

constant tuples in EvalFO(Q,D) ⊆ certain(Q,D)

ATFD 2016 incomplete and inconsistent data 35/62

Correctness via EvalFO

Recall:
EvalFO(Q,D) = {ā | EvalFO(D,Q(ā)) = t}

We want at least simple correctness guarantees

constant tuples in EvalFO(Q,D) ⊆ certain(Q,D)

Ideally:

constant tuples in EvalFO(Q,D) = certain(Q,D)

ATFD 2016 incomplete and inconsistent data 35/62

Correctness for CQs

UCQ: unions of conjunctive queries, or positive relational algebra
π, σ, ⋊⋉,∪.

For UCQs,

constant tuples in EvalFO(Q,D) = certain(Q,D)

for both open and closed world semantics.

First, [[D]]cwa and [[D]]owa have a “copy” of D (replace all nulls by new
constants) so if certainOWA(D,Q) = t or certainCWA(D,Q) = t then
D |= Q.

ATFD 2016 incomplete and inconsistent data 36/62

Correctness for CQs cont’d

Now we need the converse: if D |= Q, then
certainOWA(D,Q) = certainCWA(D,Q) = t.

Idea: let’s look at a Boolean CQ Q with a tableau TQ . Then

D |= Q
⇒ TQ 7→ D
⇒ ∀D ′ : D 7→ D ′ implies TQ 7→ D ′

⇒ ∀D ′ : D 7→ D ′ implies D ′ |= Q
⇒ ∀D ′ ∈ [[D]]owa(or in [[D]]cwa) : D ′ |= Q
⇒ certainOWA(D,Q) = certainCWA(D,Q) = t

Same idea works for UCQs with free variables.

ATFD 2016 incomplete and inconsistent data 37/62

Correctness for CQs cont’d

Can the class of UCQs be extended? Answer:

◮ no under open world semantics, and

◮ yes under closed world semantics.

If Q is a relational calculus query, and

D |= Q ⇔ certainOWA(D,Q) = t

for all D, then Q is equivalent to a UCQ.

ATFD 2016 incomplete and inconsistent data 38/62

Correctness for CQs under closed world

Recall: UCQ is the fragment of relational calculus without ∀ and ¬.
That is, ∧,∨,∃.

RelCalccertain — UCQs extended with the formation rule:

if ϕ(x̄ , ȳ)) is a query in RelCalccertain, then so is:

∀ȳ (atom(ȳ) → ϕ(x̄ , ȳ))

Here atom is R(ȳ) or y1 = y2.

ATFD 2016 incomplete and inconsistent data 39/62

Correctness for CQs under closed world cont’d

Also recall: UCQs are positive relational algebra, π, σ, ⋊⋉,∪.

RelCalccertain is its extension with the division operator ÷
◮ but only Q ÷ R queries

◮ meaning: find tuples ā that occur in Q(D) together with every tuple
b̄ in R

For RelCalccertain queries,

constant tuples in EvalFO(Q,D) = certainCWA(Q,D)

ATFD 2016 incomplete and inconsistent data 40/62

SQL evaluation procedure

All that changes is the rule for comparisons.

SQL’s rule: if one attribute of a comparison is null, the result is unknown.

EvalSQL(D, a = b) =











t if a = b and NotNull(a, b)

f if a 6= b and NotNull(a, b)

u if Null(a) or Null(b)

We write Null(a) if a is a null and NotNull(a) if it is not.

ATFD 2016 incomplete and inconsistent data 41/62

When does it work?

For UCQs,

constant tuples in EvalSQL(Q,D) ⊆ certain(Q,D)

Questions:

◮ can we extend this, say to all of relational calculus? That is, get an
evaluation without false positives, and

◮ do we really need 3 truth values in SQL?

ATFD 2016 incomplete and inconsistent data 42/62

Is there a Boolean solution?

Perhaps the committee design missed something and we don’t need
3-valued logic? Actually, we do....

Every query evaluation that uses the Boolean semantics for ∧,∨,¬
generates false positives on databases with nulls.

Every evaluation means: complete freedom for

◮ Eval(R(x̄))

◮ Eval(x = y)

◮ Eval(∀x ϕ)

◮ Eval(∃x ϕ);

the only restriction is that ∧,∨,¬ come from the usual Boolean logic.

ATFD 2016 incomplete and inconsistent data 43/62

No Boolean solution: by contradiction

Take a Boolean evaluation Eval with Eval(Q,D) ⊆ certain(ϕ,D).

Take D = {R(1),S(⊥)}.

If Eval
(

R(1),D
)

= f, then Eval
(

¬R(1),D
)

= t, but
1 6∈ certain

(

¬R(x),D
)

=⇒ Eval
(

R(1),D, a
)

= t.

If Eval
(

¬S(1),D
)

= f, then Eval
(

S(1),D
)

= t. But
1 6∈ certain

(

S(x),D
)

=⇒ Eval
(

¬S(1),D
)

= t.

Now take Q(x) = R(x) ∧ ¬S(x); we have Eval(Q(1),D
)

= t, but
1 6∈ certain(Q,D):

◮ just take a complete database where ⊥ becomes 1; in it Q(1) is
false.

ATFD 2016 incomplete and inconsistent data 44/62

What’s wrong with SQL’s 3VL?

It gives us both false positives and false negatives. Can we eliminate false
positives?

SQL is too eager to say no.

If we say no to a result that ought to be unknown, when negation
applies, no becomes yes! And that’s how false positives creep in.

Consider R =
A B

1 null

What about (null, null) ∈ R?

SQL says no but correct answer is unknown: what if null is really 1?

ATFD 2016 incomplete and inconsistent data 45/62

Towards a good evaluation: unifying tuples

Two tuples t̄1 and t̄2 unify if there is a mapping h of nulls to constants
such that h(t̄1) = h(t̄2).

(1 ⊥ 1 3)
(⊥′ 2 ⊥′ 3)

=⇒ (1 2 1 3)

but
(1 ⊥ 2 3)
(⊥′ 2 ⊥′ 3)

do not unify.

This can be checked in linear time.

ATFD 2016 incomplete and inconsistent data 46/62

Proper 3-valued procedure

Eval3v(D,R(ā)) =











t if ā ∈ R

f if ā does not unify with any tuple in R

u otherwise

Eval3v(D, a = b) =











t if a = b

f if a 6= b and NotNull(a, b)

u otherwise

ATFD 2016 incomplete and inconsistent data 47/62

Simple correctness guarantees: no false positives

If ā is a tuple without nulls, and Eval3v(D,Q(ā)) = 1 then
ā ∈ certain(Q,D).

Simple correctness guarantees:

constant tuples in Eval3v(Q,D) ⊆ certainCWA(Q,D)

Thus:

◮ Fast evaluation (checking Eval3v(D,Q(ā)) = 1 in AC0)

◮ Correctness guarantees: no false positives

ATFD 2016 incomplete and inconsistent data 48/62

Strong correctness guarantees: involving nulls

How can we give correctness guarantees for tuples with nulls? By a
natural extension of the standard definition (proposed in 1984 but
quickly forgotten).

A tuple without nulls ā is a certain answer if

ā ∈ Q(h(D)) for every valuation h of nulls.

ATFD 2016 incomplete and inconsistent data 49/62

Strong correctness guarantees: involving nulls

How can we give correctness guarantees for tuples with nulls? By a
natural extension of the standard definition (proposed in 1984 but
quickly forgotten).

A tuple without nulls ā is a certain answer if

ā ∈ Q(h(D)) for every valuation h of nulls.

An arbitrary tuple ā is a certain answers with nulls if

h(ā) ∈ Q(h(D)) for every valuation h of nulls.

Notation: certain⊥(Q,D)

ATFD 2016 incomplete and inconsistent data 49/62

Certain answers with nulls: properties

certain(Q,D) ⊆ certain⊥(Q,D) ⊆ EvalFO(Q,D)

Moreover:

◮ certain(Q,D) is the set of null free tuples in certain⊥(Q,D)

◮ certain⊥(Q,D) = EvalFO(Q,D) for RelCalccertain queries

ATFD 2016 incomplete and inconsistent data 50/62

Correctness with nulls: strong guarantees

◮ D – a database,

◮ Q(x̄) – a first-order query

◮ ā – a tuple of elements from D.

Then:

◮ Eval3v(D,Q(ā)) = t =⇒ ā ∈ certain⊥(Q,D)

◮ Eval3v(D,Q(ā)) = f =⇒ ā ∈ certain⊥(¬Q,D)

3-valuedness extended to answers: certainly true, certainly false, don’t
know.

ATFD 2016 incomplete and inconsistent data 51/62

Summary: incomplete information

◮ Often disregarded and leads to huge problems

◮ If you write SQL queries, think in 3-valued logic

◮ Cannot avoid errors, so need to choose which errors to tolerate

◮ Some types of errors can be eliminated

ATFD 2016 incomplete and inconsistent data 52/62

Inconsistent databases

◮ Often arise in data integration.

◮ Suppose have a functional dependency name → salary and two
tuples (John, 10K) in source 1, and (John, 20K) in source 2.

◮ One may want to clean data before doing integration.

◮ This is not always possible.

◮ Another solution: keep inconsistent records, and try to address the
issue later.

◮ Issue = query answering.

ATFD 2016 incomplete and inconsistent data 53/62

Inconsistent databases cont’d

◮ Setting:
◮ a database D;
◮ a set of integrity constraints IC , e.g. keys, foreign keys, functional

dependencies etc
◮ a query Q

◮ D violates IC

◮ What is a proper way of answering Q?

◮ Certain Answers :

certainIC (Q,D) =
⋂

Dr is a repair of D

Q(Dr)

ATFD 2016 incomplete and inconsistent data 54/62

Repairs

◮ How can we repair an instance to make it satisfy constraints?

◮ If constraints are functional dependencies: say A → B and we have

A B C

a1 b1 c1

a1 b2 c2

we have to delete one of the tuples.

◮ If constraints are referential constraints, e.g. R [A] ⊆ S [B] and we
have

R:

A C

a1 c1

a2 c2

S:

B D

a1 d1

a3 d2

then we have to add a tuple to S .

ATFD 2016 incomplete and inconsistent data 55/62

Repairs cont’d

◮ Thus to repair a database to make it satisfy IC we may need to add
or delete tuples.

◮ Given D and D ′, how far are they from each other?

◮ A natural measure: the minimum number of deletions/insertions of
tuples it takes to get to D ′ from D.

◮ In other words,

δ(D,D ′) = (D − D ′) ∪ (D ′ − D)

◮ A repair is a database D ′ so that
◮ it satisfies constraints IC , and
◮ there is no D ′′ satisfying constraints IC with δ(D, D ′′) ⊂ δ(D, D ′)

ATFD 2016 incomplete and inconsistent data 56/62

How many repairs are there?

Can easily be exponential even for keys: i.e.
√

2
N
.

A B

1 0

1 1

2 0

2 1

... ...

... ...

n 0

n 1

plus key A → B
REPAIR⇒

A B

1 ·
2 ·
... ...

n ·

I.e. for N = 2n tuples we have 2n =
√

2
N

repairs.
(A side remark: this construction gives us c

√
c

n
repairs for any number c .

What is the maximum of c
√

c?)

ATFD 2016 incomplete and inconsistent data 57/62

Query answering

◮ Recall certainIC (Q,D) =
⋂

Dr is a repair of D

Q(Dr).

◮ Computing all repairs is impractical.

◮ Hence one tries to obtain a rewriting Q ′:

Q ′(D) = certainIC (Q,D).

◮ Is this always possible?

ATFD 2016 incomplete and inconsistent data 58/62

Query rewriting: a good case

◮ One relation R(A,B ,C)

◮ Functional dependency A → B

◮ Query Q: just return R

◮ If an instance may violate A → B , then we can rewrite Q to
R(x , y , z) ∧ ∀u∀v

(

R(x , u, v) → u = y
)

or
SELECT * FROM R
WHERE NOT EXISTS (SELECT * FROM R R1

WHERE R.A=R1.A AND R.B 6= R1.B)

◮ This technique applies to a small class of queries: conjunctive
queries without projections, i.e.
SELECT * FROM R1, R2 ...

WHERE
∧

Ri .Aj = Rl .Ak

ATFD 2016 incomplete and inconsistent data 59/62

Query rewriting: a mildly bad case

◮ One relation R(A,B); attribute A is a key

◮ Query Q = ∃x , y , z
(

R(x , z) ∧ R(y , z) ∧ (x 6= y)
)

◮ When are certain answers false ?

◮ If there is a repair in which the negation of Q is true.

◮ What is the negation of Q?
◮ ¬Q = ∀x , y , z

(

(R(x , z) ∧ R(y , z)) → x = y
)

◮ This happens precisely when R contains a perfect matching

◮ But checking for a perfect matching cannot be expressed in SQL.

◮ Hence, no SQL rewriting for certainIC (Q).

ATFD 2016 incomplete and inconsistent data 60/62

Query rewriting: the worst

◮ One can find an example of a rather simple relational algebra query
Q and a set of constraints IC so that the problem of finding

certainIC (Q,D)

is coNP -complete.

◮ In general for most types of constraints one can limit the number of
repairs but they give rather high complexity bounds

◮ typically classes “above” PTIME and contained in PSPACE – hence
almost certainly requiring exponential time.

ATFD 2016 incomplete and inconsistent data 61/62

Other approaches

◮ Repair attribute values.
◮ A common example: census data. Don’t get rid of tuples but change

the values.
◮ Distance: sum of absolute values of squares of differences

new value – old value
◮ Typically one considers aggregate queries and looks for

approximations or ranges of their values

◮ A different notion of repair.
◮ Most commonly: the cardinality of (D − D ′) ∪ (D ′ − D) must be

minimum.
◮ This is a reasonable measure but the complexity of query answering is

high.

ATFD 2016 incomplete and inconsistent data 62/62

