

Relational Semantic Web

Tables

SQL

Relational Semantic Web

Tables RDF Graphs

SQL

Relational Semantic Web

Tables RDF Graphs

SQL SPARQL

Relational Semantic Web

Tables RDF Graphs
SQL SPARQL
Closed Data

(inside an organization)

Relational Semantic Web
Tables RDF Graphs
SQL SPARQL
Closed Data Open Data

(inside an organization)

(available on the Web)

Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific Goals:

» Build a description language with standard semantics
» Make semantics machine-processable and understandable
» Incorporate logical infrastructure to reason about resources

» W3C Proposal: Resource Description Framework (RDF)

RDF in a nutshell

» RDF is the W3C proposal framework for representing
information in the Web

» Abstract syntax based on directed labeled graph

» Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties)

» Extensible URI-based vocabulary

» Formal semantics

RDF formal model

U
4
o e
t t
H B = set of Blank nodes
I R L = set of Literals

» o
U B Uu B L

RDF formal model

U
4
o e
ect ect
H B = set of Blank nodes
I T L = set of Literals
U B U B L

(s,p,0) € (UUB) x Ux (UUBUL) is called an RDF triple

RDF formal model

U
4
o e
ect ect
H B = set of Blank nodes
I T L = set of Literals
U B U B L

(s,p,0) € (UUB) x Ux (UUBUL) is called an RDF triple

A set of RDF triples is called an RDF graph

An example of an RDF graph: DBLP

: <http://dblp.
: <http://dblp.
: <http://dblp.
: <http://swrc
: <http://purl.
: <http://purl.

conf:pods

([comtipoas |

swrc:series

inPods:2001

13s.de/d2r/resource/authors/>
13s.de/d2r/resource/conferences/>
13s.de/d2r/resource/publications/conf/pods/>

.ontoware.org/ontology#>

org/dc/elements/1.1/>
org/dc/terms/>

"Optimal Aggregation ..."

dct:Part0f

lIIIiHHHH!H%HEIII'
:Ronald _Fagin

An example of a URI

http://dblp.13s.de/d2r/resource/conferences/pods

i L) PODS | D2R Server publishing the
|« | 3 | | =+ |83'hltp:Hdblp.Bs.de.derfpage;‘(onferences{pods
] <= Apple (136) v Amazon Yahoo! News (9 19)v

Resource URI: hitp:/i

Home | Example Conferences

rdfs:label PODS (xsd:string)

rdis:seehlso <http:/idblp.|3s.de/Venues/PODS>

is swrc:series of <http://dblp.l3s.de/d2riresource/publications/conf/pods/00>

is swrc:series of <http://dblp.l3s.de/d2rresource/publications/conf/pods/2001>
is swrc:series of <http://dblp.|3s.de/d2rfresource/publications/conf/pods/2002>
is swro:series of <http:/{dblp.|3s.de/d2r/resource/publications/conf/peds/2003>
is swre:series of <http://dblp.13s.de/d2r/resource/publications/conf/pods/2004=>
is swrc:series of <http://dblp.|3s.de/d2r/resource/publications/conf/pods/2005>

URI can be used for any abstract resource

http://dblp.13s.de/d2r/page/authors/Ronald Fagin

AMAPR

Ronald Fagin | D2R Server publishing the

| < | |+ |£8 http:/ /dblp.13s.de/d2r/page/authors/Ronald_Fagin

[#8# <= Apple(l36) Amazon Yahoo! News (926)¥

Roi
Resource URI: http://dblp.13=

Home | Example Authors

is de:creator of
is do:creator of
is do:creator of
is do:creator of
is dc:creator of
is de:creator of
is do:creator of
is do:creator of

<http://dblp.|3s.de/d2riresource/publications/conf/aaai/FagiHVB6=
<http://dblp.|3s.de/d2r/resource/publications/conf/aaai/FaginHM V84>
<http://dblp.|3s.de/d2r/resource/publications/conf/aaal/HalpernF90=
<http://dblp.|3s.de/d2r/resource/publications/conffapcem/Fagin09=>
<http://dblp.|3s.de/d2rfresource/publications/conf/birthday/FaginHHMP V03>
<http://dblp.|3s.de/d2riresource/publications/conf/caap/FaginB3=>
<http://dblp.|3s.de/d2r/resource/publications/conf/coco/FaginSVa3=
<http://dblp.|3s.de/d2r/resource/publications/conficoncur/HalpernFB8>

RDF: Another example

rdf :dom rdf :range

rdf:sc
sportman rdf:sp rdf:sc
rdf:sc

soccer_team

soccer_player

1

rdf :dom rdf :range

rdf:type

) plays_in (
Messi Barcelona

lives_in

rdf:type

address

country

Some peculiarities of the RDF data model

» Existential variables as datavalues (null values)
» Built-in vocabulary with fixed semantics (RDFS)

» Graph model where nodes may also be edge labels

10

Previous example: A better representation

person

rdf:sc

sportman

rdf:sc

rdf :dom i
works_in

rdf:sp

e @

rdf :range

company

rdf:sc

soccer_player playﬁ——@_tea m
rdf :dom -

rdf:type

Messi

address

b

person

rdf:sc

E—

country

rdf :dom

works_in

e

rdf :range

—~

rdf :range

rdf:type

EE—

Barcelona

company

11

RDF + RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf :type).

plus semantics for this vocabulary

12

RDFS: Messi is a Person

rdf :dom rdf :range
person works_in company

rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
soccer_player plays_in soccer_team
rdf :dom rdf :range
rdf:type rdf :type

Barcelona

lives_in

13

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G

14

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

> As for the case of first-order logic

14

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

> As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

14

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

> As for the case of first-order logic

This notion can also be characterized by a set of inference rules.
The closure of an RDFS graph G (cl(G)) is the graph obtained by
adding to G all the triples that are implied by G.

A basic property of the closure:
» G implies t iff t € cl(G)

14

Example: (Messi, rdf:type, person) over the closure

rdf:sc |
\

/
/

rdf:type \:
\

rdf :dom rdf :range
person works_in company

rdf:sc
sportman
rdf:sc
{ soccer_player
\ rdf:type

[
r‘}:f :dom rdf :range

/

\

\

\
\
| rdf:type
|

/
/

/

lives_in

rdf:sp

rdf:sc

rdf :type

Barcelona

15

Does the blank node add some information?

rdf :dom
person

rdf:sc

sportman

rdf:sc

works_in

rdf:sp

rdf :range
company

rdf:sc

soccer_player plays_in soccer_team
rdf :dom rdf:range

T

rdf:type

Messi

address

country

lives_in

rdf :type

Barcelona

i

16

What about now?

rdf :dom rdf :range
person works_in company

rdf:sc

sportman

rdf:sc

lives_in

rdf:sp

rdf:sc

soccer_player plays_in soccer_team
rdf :dom rdf :range

rdf :type

Barcelona

17

SPARQL

Querying RDF: SPARQL

» SPARQL is the W3C recommendation query language for
RDF (January 2008).

» SPARQL is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language

» SPARQL is a graph-matching query language.

» A SPARQL query consists of three parts:

» Pattern matching: optional, union, filtering, ...
» Solution modifiers: projection, distinct, order, limit, offset, ...
» Output part: construction of new triples,

10

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT 7Author

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT 7Author
WHERE
{

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT 7Author
WHERE
{

?Paper dc:creator ?Author .

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT 7Author

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:part0f ?Conf .

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT 7Author

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:part0f ?Conf .
?Conf swrc:series conf :pods .

}

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT 7Author

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:part0f ?Conf .
?Conf swrc:series conf :pods .

}

A SPARQL query consists of a:

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?7Author

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:part0f ?Conf .
?Conf swrc:series conf :pods .

}

A SPARQL query consists of a:
Head: Processing of the variables

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT 7Author

WHERE

{
?Paper dc:creator 7Author .
7Paper dct:partOf ?Conf .
?Conf swrc:series conf :pods .

X

A SPARQL query consists of a:
Head: Processing of the variables

Body: Pattern matching expression

21

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS, and their Web
pages if this information is available:

SELECT 7Author 7WebPage

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:partOf ?Conf .
?Conf swrc:series conf :pods .
OPTIONAL {

?Author foaf:homePage 7?WebPage . }

22

SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS, and their Web
pages if this information is available:

SELECT 7Author 7WebPage

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:partOf ?Conf .
?Conf swrc:series conf :pods .
OPTIONAL {

7Author foaf:homePage 7WebPage . }

22

But things can become more complex...

Interesting features of pattern
matching on graphs

SELECT ?7X1 ?X2 ...
{P1.
P2 }

25

But things can become more complex...

Interesting features of pattern
matching on graphs

»> Grouping

SELECT ?7X1 ?X2 ...
{{P1.
P2 }

{pP3 .
P4 }

25

But things can become more

Interesting features of pattern
matching on graphs

> Grouping

» Optional parts

complex...

SELECT ?7X1 ?X2 ...
{{ P1 .
P2
OPTIONAL { P5 } }

{P3.
P4
OPTIONAL { P7 } }

25

But things can become more

Interesting features of pattern
matching on graphs

> Grouping
> Optional parts

» Nesting

complex...

SELECT ?7X1 ?X2 ...
{{ P1 .

P2

OPTIONAL { P5 } 1}

{pP3 .
P4
OPTIONAL { P7
OPTIONAL { P8 } } }

25

But things can become more complex...

Interesting features of pattern
matching on graphs

> Grouping
> Optional parts
> Nesting

» Union of patterns

SELECT ?7X1 ?X2 ...
{{{ P1.
P2
OPTIONAL { P5 } 1}

{pP3 .
P4
OPTIONAL { P7
OPTIONAL { P8 } } }
}
UNION
{ P9 }}

25

But things can become more

Interesting features of pattern
matching on graphs

> Grouping

v

Optional parts

v

Nesting

v

Union of patterns

v

Filtering

complex...

SELECT ?7X1 ?X2 ...
{{{ P1.
P2
OPTIONAL { P5 } 1}

{P3.

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}
UNION
{ P9
FILTER (R) }}

But things can become more

Interesting features of pattern
matching on graphs

> Grouping

> Optional parts

> Nesting

» Union of patterns

» Filtering

+ several new features in the
new version (March 2013):
navigation, entailment regimes,
federation, ...

complex...

SELECT ?7X1 ?X2 ...
{{{ P1.
P2
OPTIONAL { P5 } 1}

{P3.
P4
OPTIONAL { P7
OPTIONAL { P8 } } }
}
UNION
{ P9
FILTER (R) }}

But things can become more

Interesting features of pattern
matching on graphs

> Grouping

> Optional parts

> Nesting

» Union of patterns

» Filtering

» + several new features in the
new version (March 2013):
navigation, entailment regimes,
federation, ...

complex...

SELECT ?7X1 ?X2 ...
{{{ P1.
P2
OPTIONAL { P5 } 1}

{P3.
P4
OPTIONAL { P7
OPTIONAL { P8 } } }
}
UNION
{ P9
FILTER (R) }}

What is the (formal) meaning of a general SPARQL query?

25

SPARQL: An algebraic syntax

V' set of variables

Each variable is assumed to start with ?

26

SPARQL: An algebraic syntax

V' set of variables

Each variable is assumed to start with ?

Triple pattern: t € (UU V) x (VU V) x (UULU V)

Examples: (?X, name, john), (?X,name,?Y)

26

SPARQL: An algebraic syntax

V' set of variables

Each variable is assumed to start with ?

Triple pattern: t € (UU V) x (VU V) x (UULU V)

Examples: (?X, name, john), (?X,name,?Y)

Basic graph pattern (bgp): Finite set of triple patterns
Examples: {(?X, knows,?Y),(?Y,name,john)}

26

SPARQL: An algebraic syntax (cont'd)

Recursive definition of SPARQL graph patterns:
» Every basic graph pattern is a graph pattern

> If Py, P, are graph patterns, then (Py AND P,), (P1 OPT P,),
(P1 UNION P5) are graph pattern

> If P is a graph pattern and R is a built-in condition, then
(P FILTER R) is a graph pattern

SPARQL query:

» If P is a graph pattern and W is a finite set of variables, then
(SELECT W P) is a SPARQL query

27

Standard versus algebraic notation

?X :name "john"

(?X, name, john)

20

Standard versus algebraic notation

?X :name "john"

(?X, name, john)

(P1 AND P;)

20

Standard versus algebraic notation

?X :name "john"

{ P1 OPTIONAL { P2 }} |

(?X, name, john)

(P1 AND P;)

(P OPT P»)

20

Standard versus algebraic notation

?X :name "john"

{ P1 OPTIONAL { P2 }}

{ P1 } UNION { P2 }

(?X, name, john)

(P1 AND P;)

(P OPT P»)

(P, UNION P;)

20

Standard versus algebraic notation

?X :name "john"

{ P1 OPTIONAL { P2 }}
{ P1 } UNION { P2 }

{ P1 FILTER (R) }

(?X, name, john)

(P1 AND P;)

(P OPT P»)

(P, UNION P;)

(P, FILTER R)

20

Standard versus algebraic notation

?X :name "john"

{ P1 OPTIONAL { P2 }}

{ P1 } UNION { P2 }

{ P1 FILTER (R) }

SELECT W WHERE { P }

(?X, name, john)

(P1 AND P;)

(P OPT P»)

(P, UNION P;)

(P, FILTER R)

(SELECT W P)

20

Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)

20

Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)

Given a mapping p and a triple pattern t:

20

Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)

Given a mapping p and a triple pattern t:

» u(t): triple obtained from t replacing variables according to

20

Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)

Given a mapping p and a triple pattern t:

» u(t): triple obtained from t replacing variables according to

Example

20

Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)
Given a mapping p and a triple pattern t:
» u(t): triple obtained from t replacing variables according to

Example
pw=1{?X—Ry,?Y — Ry,7Z — john}

20

Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)
Given a mapping p and a triple pattern t:
» u(t): triple obtained from t replacing variables according to

Example
pw=1{?X—Ry,?Y — Ry,7Z — john}

t = (?X, name, 72)

20

Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)
Given a mapping p and a triple pattern t:
» u(t): triple obtained from t replacing variables according to

Example
pw=1{?X—Ry,?Y — Ry,7Z — john}

t = (?X, name, 72)

wu(t) = (R, name, john)

20

The semantics of triple patterns

Definition
The evaluation of triple pattern t over a graph G, denoted by
[t] ¢, is the set of all mappings i such that:

21

The semantics of triple patterns

Definition
The evaluation of triple pattern t over a graph G, denoted by
[t] ¢, is the set of all mappings i such that:

» dom(p) is exactly the set of variables occurring in t

21

The semantics of triple patterns

Definition
The evaluation of triple pattern t over a graph G, denoted by
[t] ¢, is the set of all mappings i such that:

» dom(p) is exactly the set of variables occurring in t

» u(t) e G

21

Example

(R1, name, john)
(R1, email, JQed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢

9

Example

(R1, name, john)
(R1, email, JQed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢

w1 = {?X — Ry,?N — john}
po = {?X — Rp,?N — paul}

9

Example

(R1, name, john)
(R1, email, JQed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢
{ p1 = {?X — Ry,?N — john} }

p2 = {?X — Ry, ?N — paul}

[(?X, email, ?E)]¢

9

Example

(R1, name, john)
(R1, email, JQed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢

w1 = {?X — Ry,?N — john}
po = {?X — Rp,?N — paul}

[(?X, email, ?E)]¢
{ w={"X - R,7E — J@ed.ex} }

9

Example

| Ry | JOed.ex

(Ry, name, john)
(R1, email, J@ed.ex)
(R>, name, paul)

[(?X, name, ?N)]¢

X | PN
u1 | Ry | john
p2 | R> | paul

[(?X, email, ?E)] ¢
X ?E

9

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

[(Ry,webPage, ?W)]¢

[(R2,name, paul)] ¢

[(Rs, name, ringo)] ¢

23

Example
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

[(Ry,webPage, ?W)]¢

{}

[(R2,name, paul)] ¢

[(Rs, name, ringo)] ¢

23

Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

[(Ry, webPage, ?W)] ¢
{ } [(Rs, name, ringo)] ¢
[(R2,name, paul)] ¢ { }

23

Example
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

[(Ry,webPage, ?W)]¢

{} [(Rs, name, ringo)] ¢
[(R2,name, paul)] ¢ {3}
{mo={}1}

23

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

» var(P): set of variables mentioned in P

4

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

» var(P): set of variables mentioned in P

Given a mapping p such that var(P) C dom(u):
w(P) = A{u(t)|te P}

4

Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

» var(P): set of variables mentioned in P

Given a mapping p such that var(P) C dom(u):
w(P) = A{u(t)|te P}

Definition
The evaluation of P over an RDF graph G, denoted by [P]¢, is
the set of mappings p:

» dom(u) = var(P)

» u(P)C G

4

Semantics of basic graph patterns: An example

graph bgp evaluation

(R1, name, john)) ,
(R, email, J@ed.ex) {(%X' name, ?.Y).
(R2, name, paul) (7X, email, 72)}

25

Semantics of basic graph patterns: An example

graph bgp evaluation

(R1, name, john) . ,
(Ri, email, J@ed.ex) L name. 7)),
(R2, name, paul) (?X, email, 72)}

25

Semantics of basic graph patterns: An example

graph bgp evaluation

(R1, name, john)) ,
(Ri, email, Jeed.ex) (1% name, V),
(R2, name, paul) (7X, email, 72)}

25

Semantics of basic graph patterns: An example

graph bgp evaluation

(R, name, john) {(2X, name, 7Y), X7V | 72

(Ry, email, J@ed.ex) oy o ail 22)} e [Ry [john | J@ed.ex

(R2, name, paul)

Semantics of basic graph patterns: An example

graph bgp evaluation

(R, name, john) {(2X, name, 7Y), X7V | 72

(i, e, Jezzhsg (?X, email, ?2Z)} p: [Ry | john | J@ed.ex

(R2, name, paul)

Notation

t is used to represent {t}

Compatible mappings: mappings that can be merged

Definition
Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)

26

Compatible mappings: mappings that can be merged

Definition

Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)

Example
X | Y (4 v
M1 - Rl john
w2 | Ry JOedu.ex
u3 PQedu.ex | R,

26

Compatible mappings: mappings that can be merged

Definition

Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)

Example
X | Y (4 v
w1 | Ry | john
uo | Ry JQedu.ex
u3 PQedu.ex | R,

26

Compatible mappings: mappings that can be merged

Definition
Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)

Example
X | Y (V4 7V
w1 | Ry | john
uo | Ry JQedu.ex
u3 PQedu.ex | R,
prUpo: | Ry | john | J@edu.ex

26

Compatible mappings: mappings that can be merged

Definition

Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)

Example
X | Y (V4 7V
w1 | Ry | john
w2 | Ry JOedu.ex
13 PQ@edu.ex | R»
prUpo: | Ry | john | J@edu.ex

26

Compatible mappings: mappings that can be merged

Definition
Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)

Example
X | Y (V4 7V
w1 | Ry | john
w2 | Ry JOedu.ex
13 PQedu.ex | R»
prUpo: | Ry | john | J@edu.ex
p1Ups: | Ry | john | P@edu.ex | R»

26

Compatible mappings: mappings that can be merged

Definition
Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)

Example
X | Y (V4 7V
M1 - Rl john
w2 | Ry JOedu.ex
u3 PQedu.ex | R,
prUpo: | Ry | john | J@edu.ex
p1Ups: | Ry | john | P@edu.ex | R»

» 1o and p3 are not compatible

26

Sets of mappings and operations

Let ©; and €, be sets of mappings:

Definition

Join: Q1 X Q)
> {paUpo | g € Qi, po € Qp, and pq, pp are compatibles}
> extending mappings in €; with compatible mappings in

will be used to define AND

7

Sets of mappings and operations

Let ©; and €, be sets of mappings:

Definition

Join: Q1 X Q)
> {paUpo | g € Qi, po € Qp, and pq, pp are compatibles}
> extending mappings in €; with compatible mappings in

will be used to define AND

Definition
Union: Q7 U
> {p|p€Qorpe D}

» mappings in Q; plus mappings in €, (the usual union of sets)

will be used to define UNION

7

Sets of mappings and operations

Definition
Difference: Q1 \ Q5
> {pe Q| forall ' € Qy, pand i are not compatibles}

> mappings in ©; that cannot be extended with mappings in Q5

28

Sets of mappings and operations

Definition
Difference: Q1 \ Q5
> {pe Q| forall ' € Qy, pand i are not compatibles}

> mappings in ©; that cannot be extended with mappings in Q5

Definition
Left outer join: Q3 X Qp = (21 X Q) U (21 N Q,)
> extension of mappings in £; with compatible mappings in

» plus the mappings in ©; that cannot be extended.

will be used to define OPT

28

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition
[(P1 AND Py)]¢ =
[(P1 UNION Pp)]¢ =
[(PL OPT Py)]¢ =
[(SELECT W P)]¢ =

20

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition
[(P1 AND P,)] = [Pl X [P]e
[(P1 UNION P)]¢ = [PlcU[Pale
[(P1 OPT P2)]c = [Ple X [Ple
[(SELECT W P)]¢ = {,u‘w | we€[P]c}

Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition
[(P1 AND P2)]¢ = [Pe ™ [P]c
[(P1 UNION Po)]¢ = [PiJcU[P:]c
[(P1 OPT Po)]c = [Pi]le¢ ™ [P2]c
[(SELECT W P)le = {u, | 4 € [Plc}
dom(y,,) = dom(u) N W and
Ky (7X) = p(?X) for every 72X € dom(yy,,)

Example (AND)

(R1, name, john) (R2, name, paul) (Rs, name, ringo)
G : (R, email, JOed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢

40

Example (AND)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G . (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢c X [(?X, email, ?E)] ¢

40

Example (AND)
(R2, name, paul) (Rs3, name, ringo)

(R1, name, john)
G . (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢c X [(?X, email, ?E)] ¢

X | N
u1 | Ry | john
p2 | R | paul
w3 | Rs | ringo

40

Example (AND)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)

(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢c X [(?X, email, ?E)] ¢

M1
M2

M3

X | N

Ry | john
R> | paul
Rs3 | ringo

Ha
s

X ?E
R; | J@ed.ex
R3 | R@ed.ex

40

Example (AND)

(R1, name, john) (R2, name, paul)
G : (R, email, JOed.ex)

(R3, name, ringo)
(Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢c X [(?X, email, ?E)] ¢

X | N
? ?
p1 | Ry | john X '
v | 5 | el X ta | Ry | JOed.ex
i [T [T s | R3 | ROed.ex

40

Example (AND)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)

(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
N)]¢ X [(?X, email, ?E)]¢

[(?X, name,

?RX .?hN ?X ?E
Zl i J;au’} M pia | Ry | JQed.ex
2 2
v | T e s | R3 | ROed.ex

XN ?’E
1 Upg | Ry | john | JOed.ex
u3Ups | Rs | ringo | R@ed.ex

40

Example (OPT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢

41

Example (OPT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)]¢

41

Example (OPT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)

G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
M1 Rl john
p2 | Ro | paul
w3 | Rs | ringo

41

Example (OPT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)

G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
7 ?
p1 | Ri | john X 'E
2 | Rz | paul pa | Ry | JOed.ex
w3 | Rs | ringo ps | R3 | R@ed.ex

41

Example (OPT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)

G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
? ?
p1 | Ri | john X 'E
2 | Rz | paul N pa | Ry | JOed.ex
w3 | Rs | ringo is | R3 | R@ed.ex

41

Example (OPT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
? ?
p1 | Ri | john X 'E
2 | Rz | paul N pa | Ry | JOed.ex
w3 | Rs | ringo is | R3 | R@ed.ex

XN ?’E

1 Upg | Ry | john | JOed.ex

13U ps | R | ringo | R@ed.ex
2 R> | paul

41

Example (OPT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
? ?
p1 | Ri | john X 'E
2 | Rz | paul N pa | Ry | JOed.ex
w3 | Rs | ringo is | R3 | R@ed.ex

X | N ’E

1 Upg | Ry | john | JOed.ex

13U ps | R | ringo | R@ed.ex
H2 R2 paul

41

Example (UNION)

(R1, name, john) (R2, name, paul) (Rs, name, ringo)
G : (R, email, JOed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢

49

Example (UNION)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G . (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

49

Example (UNION)
(R1, name, john) (R2, name, paul) (Rs3, name, ringo)

G . (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

X ?Info
M1 Rl JQed.ex
2 R3 R@ed.ex

49

Example (UNION)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)
(Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

M1
H2

X ?Info
R: | J@ed.ex
R3 | R@ed.ex

13

X

?Info

Rs

WWW.ringo.com

49

Example (UNION)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)
(Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

M1
H2

X ?Info
R: | J@ed.ex
R3 | R@ed.ex

13

X

?Info

Rs

WWW.ringo.com

49

Example (UNION)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

=
IX | ‘info 7X 7Info
M1 Rl JOed.ex U 5
11> [Ry | ROed.ex 13 | Rs | www.ringo.com
X ?Info

M1 Rl JOed.ex

2 R3 R@ed.ex

13 | Rs | www.ringo.com

49

Example (SELECT)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ri, email, JOed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[(SELECT {?N,?E} ((?X, name, ?N) AND (?X, email, ?E)))]c

43

Example (SELECT)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(SELECT {?N,?E} ((?X, name, ?N) AND (?X, email, ?E)))]c

X | N E
SELECT{?N,?E} 1 | Ri | john | J@ed.ex
w2 | R3 | ringo | R@ed.ex

Example (SELECT)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(SELECT {?N,?E} ((?X, name, ?N) AND (?X, email, ?E)))]c

X | N E
SELECT{?N,?E} 1 | Ri | john | J@ed.ex
w2 | R3 | ringo | R@ed.ex

N ’E
1| (o ey john | J@ed.ex
12 oy 2y ringo | R@ed.ex

Filter expressions (value constraints)

Filter expression: (P FILTER R)
» P is a graph pattern

» R is a built-in condition

We consider in R:
» equality = among variables and RDF terms
» unary predicate bound

» boolean combinations (A, V,)

a4

Satisfaction of value constraints

A mapping satisfies a condition R (i = R) if:

45

Satisfaction of value constraints

A mapping satisfies a condition R (i = R) if:
» Ris?X =c¢, ?X € dom(u) and p(?X) =c¢
> Ris 72X =7Y, 72X,?Y € dom(n) and u(?X) = u(?Y)
» R is bound(?X) and ?X € dom(y)

45

Satisfaction of value constraints

A mapping satisfies a condition R (i = R) if:
» Ris?X =c¢, ?X € dom(u) and p(?X) =c¢
> Ris 72X =7Y, 72X,?Y € dom(n) and u(?X) = u(?Y)
» R is bound(?X) and ?X € dom(y)

» usual rules for Boolean connectives

45

Satisfaction of value constraints

A mapping satisfies a condition R (i = R) if:
» Ris?X =c¢, ?X € dom(u) and p(?X) =c¢
> Ris 72X =7Y, 72X,?Y € dom(n) and u(?X) = u(?Y)
» R is bound(?X) and ?X € dom(y)

» usual rules for Boolean connectives

Definition
FILTER : selects mappings that satisfy a condition

[(PFILTER R)lc = {nelPlc|nrkE R}

45

Example (FILTER)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ry, email, J@ed.ex) (Rs3, email, RQ@ed.ex)
(Rs3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V ?N = paul))]¢

46

Example (FILTER)

(R1, name, john)
G : (Ry, email, J@ed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V ?N = paul))]¢

7N

john

paul

X
| R
2 | Re
p3 | Rs

ringo

46

Example (FILTER)

(R1, name, john)
G : (Ry, email, J@ed.ex)

(R2, name, paul) (Rs3, name, ringo)
(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V ?N = paul))]¢

X | N
w1 | Ri | john o N
w | | e ?N = ringo V ?N = paul
us | Rs | ringo

46

Example (FILTER)

(R1, name, john)
G : (Ry, email, J@ed.ex)

(R2, name, paul) (Rs3, name, ringo)
(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V ?N = paul))]¢

X | N
1251 Rl john N — i 2N —
w | | e ?N = ringo V ?N = paul
us | Rs | ringo
X | N
p2 | Ro | paul
us | Rs | ringo

46

Example (FILTER)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ri, email, JOed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER —bound(?E))] ¢

47

Example (FILTER)

(R1, name, john)

G : (Ri, email, JOed.ex)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER —bound(?E))] ¢

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

X | ?N ’E
1 Upg | Ry | john | J@ed.ex
13U ps | Rs | ringo | R@ed.ex
2 R | paul

A7

Example (FILTER)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)

G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER —bound(?E))] ¢

X | N 7E

1 Upg | Ry | john | J@ed.ex .
13U ps | Rs | ringo | R@ed.ex baund|(VE)

2 R | paul

Example (FILTER)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)

G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER —bound(?E))] ¢

X | N 7E

1 Upg | Ry | john | J@ed.ex .
13U ps | Rs | ringo | R@ed.ex baund|(VE)

2 R | paul

X | ?N
p2 | Ro | paul

SPARQL 1.1

A new version of SPARQL was recently released (March 2013):
SPARQL 1.1

Some new features in SPARQL 1.1:
» Entailment regimes for RDFS and OWL
» Navigational capabilities: Property paths

48

SPARQL provides limited navigational capabilities

paul@puc.cl phone

friendOf

446928388

john@utexas.edu

friendOf

friendOf

(0}

446928888

friendOf john@utexas.edu

friendOf

50

SPARQL provides limited navigational capabilities

name

446928888

friendOf

friendOf

friendOf

john@utexas.edu

— ~ .
(SELECT ?X ((?X, friendOf, ?Y) AND (?Y, name, George))) ‘
URI email Jonn
friendOf
friend0f

e -

50

A possible solution: Property paths

name
paul@puc.cl

email

URI,
_

friendOf

friendOf

friendOf

=

john@utexas.edu

52

A possible solution: Property paths

446928388

X —= URI,
friend0f john@utexas.edu

name

URI; email
_—J

friendOf

friendOf

(0}

(SELECT 72X ((?X, (friendOf)", 2Y) AND (?Y, name, George))) ‘

52

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:
exp = a | exp/exp | explexp | exp”

where a € U

53

Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:
exp = a | exp/exp | explexp | exp”

where a € U
Other expressions are allowed:

“exp : inverse path
!(ai|...]an) : a URI which is not one of a; (1 <i < n)

53

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

54

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

[ale = {(xy)|(xay)€ G}

54

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

[ale =

[expi/expa]c =

(
(

)| (x;a,y) € G}
) | 3z (x,z) € [exp1] ¢ and

(z,y) € [expa]G}

[t Wanten)

X,y
X,y

54

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

[ale =

[expi/expa]c =

(
(

X,y
X,y

[t Wanten)

)| (x,a,y) € G}

) | 3z (x,z) € [exp1] ¢ and
(z,y) € [expal6}

[expilexpo]c = [expi]c U [expalc

54

Evaluating property paths

The evaluation of a property path over an RDF graph G is defined

as follows:
[ale = {(xy)|(xa,y)€G}
[expi/expalc = {(x,y) [3z (x,z) € [exps] ¢ and
(z,y) € [expo] 6}
[expilexpalc = [expi]c U [expale
[exp*]lc = {(a,a)|aisa URlin G} U [exp]c U

[exp/exp]c U [exp/exp/exp]c U - - -

54

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)
> exp is a property path
» x (resp. y) is either an element from U or a variable

5R

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)
> exp is a property path
» x (resp. y) is either an element from U or a variable

Example

> (?X, (friendOf)*, ?7Y): Checks whether there exists a path of
friends of arbitrary length from 7X to 7Y

5R

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)
> exp is a property path
» x (resp. y) is either an element from U or a variable

Example

> (?X, (friendOf)*, ?7Y): Checks whether there exists a path of
friends of arbitrary length from 7X to 7Y

> (?X, (rdf:sc)*, person): Checks whether the value stored in ?.X is
a subclass of person

5R

Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)
> exp is a property path
» x (resp. y) is either an element from U or a variable

Example

> (?X, (friendOf)*, ?7Y): Checks whether there exists a path of
friends of arbitrary length from 7X to 7Y

> (?X, (rdf:sc)*, person): Checks whether the value stored in ?.X is
a subclass of person

> (?X, (rdf:sp)*, ?Y): Checks whether the value stored in ?X is a
subproperty of the value stored in 7Y

5R

Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:

56

Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:

» dom(p) = {?X,?Y}

56

Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:

» dom(p) = {?X,?Y}
> (u(?X),1(?Y)) € [exple

56

Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:

» dom(p) = {?X,?Y}

> (u(?X), 1(?Y)) € [explc
Other cases are defined analogously.

56

Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:

» dom(p) = {?X,?Y}

> (u(?X), 1(?Y)) € [explc
Other cases are defined analogously.

Example

> ((?X, KLM/(KLM)*, ?Y) FILTER —=(?X =?Y)): It is possible to go from
?X to 7Y by using the airline KLM, where ?X, ?Y are different cities

56

Comments on papers

> Jorge Perez, Marcelo Arenas, Claudio Gutierrez: Semantics and complexity of SPARQL. ACM Trans.
Database Syst. 34(3) (2009)

M. Arenas, J. Perez: Querying semantic web data with SPARQL. PODS 2011: 305-316
In these two papers, your essays ought to concentrate on complexity, as semantics was already covered.
P Marcelo Arenas, Georg Gottlob, Andreas Pieris: Expressive languages for querying the semantic web.
PODS 2014: 14-26
Extend SPARQL with more expressive ontologies and recursion, and translation into datalog.
P> Leonid Libkin, Juan L. Reutter, Domagoj Vrgoc: Trial for RDF: adapting graph query languages for RDF
data. PODS 2013: 201-212
Are graph data and RDF the same? Not really. This shows how to bridge them.
| Jorge Perez, Marcelo Arenas, Claudio Gutierrez: nSPARQL: A navigational language for RDF. J. Web
Sem. 8(4): 255-270 (2010)
Extending navigational capabilities, using some XPath ideas.
> Marcelo Arenas, Sebastian Conca, Jorge Perez: Counting beyond a Yottabyte, or how SPARQL 1.1
property paths will prevent adoption of the standard. WWW 2012: 629-638
> Katja Losemann, Wim Martens: The complexity of regular expressions and property paths in SPARQL.
ACM Trans. Database Syst. 38(4): 24 (2013)
Two papers showing that bad things happen if one queries RDF accoring to SPARQL 1.1 standard, and
different solutions for fixing the problem.

57

