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Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific Goals:

» Build a description language with standard semantics
» Make semantics machine-processable and understandable
» Incorporate logical infrastructure to reason about resources

» W3C Proposal: Resource Description Framework (RDF)



RDF in a nutshell

» RDF is the W3C proposal framework for representing
information in the Web

» Abstract syntax based on directed labeled graph

» Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties)

» Extensible URI-based vocabulary

» Formal semantics
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H B = set of Blank nodes
I T L = set of Literals
U B U B L

(s,p,0) € (UUB) x Ux (UUBUL) is called an RDF triple

A set of RDF triples is called an RDF graph



An example of an RDF graph: DBLP

: <http://dblp.
: <http://dblp.
: <http://dblp.
: <http://swrc
: <http://purl.
: <http://purl.

conf:pods

([ comtipoas |

swrc:series

inPods:2001

13s.de/d2r/resource/authors/>
13s.de/d2r/resource/conferences/>
13s.de/d2r/resource/publications/conf/pods/>

.ontoware.org/ontology#>

org/dc/elements/1.1/>
org/dc/terms/>

"Optimal Aggregation ..."

dct:Part0f

lIIIiHHHH!H%HEIII'
:Ronald _Fagin




An example of a URI

http://dblp.13s.de/d2r/resource/conferences/pods

i L ) PODS | D2R Server publishing the
|« | 3 | | =+ |83'hltp:Hdblp.Bs.de.derfpage;‘(onferences{pods
] <= Apple (136) v Amazon Yahoo! News (9 19)v

Resource URI: hitp:/i

Home | Example Conferences

rdfs:label PODS (xsd:string)

rdis:seehlso <http:/idblp.|3s.de/Venues/PODS>

is swrc:series of <http://dblp.l3s.de/d2riresource/publications/conf/pods/00>

is swrc:series of <http://dblp.l3s.de/d2rresource/publications/conf/pods/2001>
is swrc:series of <http://dblp.|3s.de/d2rfresource/publications/conf/pods/2002>
is swro:series of <http:/{dblp.|3s.de/d2r/resource/publications/conf/peds/2003>
is swre:series of <http://dblp.13s.de/d2r/resource/publications/conf/pods/2004=>
is swrc:series of <http://dblp.|3s.de/d2r/resource/publications/conf/pods/2005>



URI can be used for any abstract resource

http://dblp.13s.de/d2r/page/authors/Ronald Fagin

AMAPR

Ronald Fagin | D2R Server publishing the

| < | |+ |£8 http:/ /dblp.13s.de/d2r/page/authors/Ronald_Fagin

[ #8# <= Apple(l36) Amazon Yahoo! News (926)¥

Roi
Resource URI: http://dblp.13=

Home | Example Authors

is de:creator of
is do:creator of
is do:creator of
is do:creator of
is dc:creator of
is de:creator of
is do:creator of
is do:creator of

<http://dblp.|3s.de/d2riresource/publications/conf/aaai/FagiHVB6=
<http://dblp.|3s.de/d2r/resource/publications/conf/aaai/FaginHM V84>
<http://dblp.|3s.de/d2r/resource/publications/conf/aaal/HalpernF90=
<http://dblp.|3s.de/d2r/resource/publications/conffapcem/Fagin09=>
<http://dblp.|3s.de/d2rfresource/publications/conf/birthday/FaginHHMP V03>
<http://dblp.|3s.de/d2riresource/publications/conf/caap/FaginB3=>
<http://dblp.|3s.de/d2r/resource/publications/conf/coco/FaginSVa3=
<http://dblp.|3s.de/d2r/resource/publications/conficoncur/HalpernFB8>



RDF: Another example

rdf :dom rdf :range

rdf:sc
sportman rdf:sp rdf:sc
rdf:sc

soccer_team

soccer_player

1

rdf :dom rdf :range

rdf:type

) plays_in (
Messi Barcelona

lives_in

rdf:type

address

country



Some peculiarities of the RDF data model

» Existential variables as datavalues (null values)
» Built-in vocabulary with fixed semantics (RDFS)

» Graph model where nodes may also be edge labels

10



Previous example: A better representation

person

rdf:sc

sportman

rdf:sc

rdf :dom i
works_in

rdf:sp

e @

rdf :range

company

rdf:sc

soccer_player playﬁ——@_tea m
rdf :dom -

rdf:type

Messi

address

b

person

rdf:sc

E—

country

rdf :dom

works_in

e

rdf :range

—~

rdf :range

rdf:type

EE—

Barcelona

company

11



RDF + RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf :type).

plus semantics for this vocabulary

12



RDFS: Messi is a Person

rdf :dom rdf :range
person works_in company

rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
soccer_player plays_in soccer_team
rdf :dom rdf :range
rdf:type rdf :type

Barcelona

lives_in

13



Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G
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Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

> As for the case of first-order logic

This notion can also be characterized by a set of inference rules.
The closure of an RDFS graph G (cl(G)) is the graph obtained by
adding to G all the triples that are implied by G.

A basic property of the closure:
» G implies t iff t € cl(G)

14



Example: (Messi, rdf:type, person) over the closure

rdf:sc |
\

/
/

rdf:type \:
\

rdf :dom rdf :range
person works_in company

rdf:sc
sportman
rdf:sc
{ soccer_player
\ rdf:type

[
r‘}:f :dom rdf :range

/

\

\

\
\
| rdf:type
|

/
/

/

lives_in

rdf:sp

rdf:sc

rdf :type

Barcelona

15



Does the blank node add some information?

rdf :dom
person

rdf:sc

sportman

rdf:sc

works_in

rdf:sp

rdf :range
company

rdf:sc

soccer_player plays_in soccer_team
rdf :dom rdf:range

T

rdf:type

Messi

address

country

lives_in

rdf :type

Barcelona

i

16



What about now?

rdf :dom rdf :range
person works_in company

rdf:sc

sportman

rdf:sc

lives_in

rdf:sp

rdf:sc

soccer_player plays_in soccer_team
rdf :dom rdf :range

rdf :type

Barcelona

17
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Querying RDF: SPARQL

» SPARQL is the W3C recommendation query language for
RDF (January 2008).

» SPARQL is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language

» SPARQL is a graph-matching query language.

» A SPARQL query consists of three parts:

» Pattern matching: optional, union, filtering, ...
» Solution modifiers: projection, distinct, order, limit, offset, ...
» Output part: construction of new triples, .. ..

10



SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS
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SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT ?7Author

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:part0f ?Conf .
?Conf swrc:series conf :pods .

}

A SPARQL query consists of a:
Head: Processing of the variables
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SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS

SELECT 7Author

WHERE

{
?Paper dc:creator 7Author .
7Paper dct:partOf ?Conf .
?Conf swrc:series conf :pods .

X

A SPARQL query consists of a:
Head: Processing of the variables

Body: Pattern matching expression

21



SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS, and their Web
pages if this information is available:

SELECT 7Author 7WebPage

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:partOf ?Conf .
?Conf swrc:series conf :pods .
OPTIONAL {

?Author foaf:homePage 7?WebPage . }

22



SPARQL: A Simple RDF Query Language

Example: Authors that have published in PODS, and their Web
pages if this information is available:

SELECT 7Author 7WebPage

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:partOf ?Conf .
?Conf swrc:series conf :pods .
OPTIONAL {

7Author foaf:homePage 7WebPage . }

22



But things can become more complex...

Interesting features of pattern
matching on graphs

SELECT ?7X1 ?X2 ...
{P1.
P2 }

25
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complex...
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But things can become more

Interesting features of pattern
matching on graphs

> Grouping
> Optional parts

» Nesting

complex...

SELECT ?7X1 ?X2 ...
{{ P1 .

P2

OPTIONAL { P5 } 1}
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But things can become more complex...

Interesting features of pattern
matching on graphs

> Grouping
> Optional parts
> Nesting

» Union of patterns

SELECT ?7X1 ?X2 ...
{{{ P1.
P2
OPTIONAL { P5 } 1}

{pP3 .
P4
OPTIONAL { P7
OPTIONAL { P8 } } }
}
UNION
{ P9 }}

25



But things can become more

Interesting features of pattern
matching on graphs

> Grouping

v

Optional parts

v

Nesting

v

Union of patterns

v

Filtering

complex...

SELECT ?7X1 ?X2 ...
{{{ P1.
P2
OPTIONAL { P5 } 1}

{P3.

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}
UNION
{ P9
FILTER ( R ) }}




But things can become more

Interesting features of pattern
matching on graphs

> Grouping

> Optional parts

> Nesting

» Union of patterns

» Filtering

+ several new features in the
new version (March 2013):
navigation, entailment regimes,
federation, ...

complex...

SELECT ?7X1 ?X2 ...
{{{ P1.
P2
OPTIONAL { P5 } 1}

{P3.
P4
OPTIONAL { P7
OPTIONAL { P8 } } }
}
UNION
{ P9
FILTER ( R ) }}




But things can become more

Interesting features of pattern
matching on graphs

> Grouping

> Optional parts

> Nesting

» Union of patterns

» Filtering

» + several new features in the
new version (March 2013):
navigation, entailment regimes,
federation, ...

complex...

SELECT ?7X1 ?X2 ...
{{{ P1.
P2
OPTIONAL { P5 } 1}

{P3.
P4
OPTIONAL { P7
OPTIONAL { P8 } } }
}
UNION
{ P9
FILTER ( R ) }}

What is the (formal) meaning of a general SPARQL query?

25



SPARQL: An algebraic syntax

V' set of variables

Each variable is assumed to start with ?
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SPARQL: An algebraic syntax

V' set of variables

Each variable is assumed to start with ?

Triple pattern: t € (UU V) x (VU V) x (UULU V)

Examples: (?X, name, john), (?X,name,?Y)

Basic graph pattern (bgp): Finite set of triple patterns
Examples: {(?X, knows,?Y),(?Y,name,john)}

26



SPARQL: An algebraic syntax (cont'd)

Recursive definition of SPARQL graph patterns:
» Every basic graph pattern is a graph pattern

> If Py, P, are graph patterns, then (Py AND P,), (P1 OPT P,),
(P1 UNION P5) are graph pattern

> If P is a graph pattern and R is a built-in condition, then
(P FILTER R) is a graph pattern

SPARQL query:

» If P is a graph pattern and W is a finite set of variables, then
(SELECT W P) is a SPARQL query

27



Standard versus algebraic notation

?X :name "john"

(?X, name, john)
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Standard versus algebraic notation

?X :name "john"
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{ P1 } UNION { P2 }
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Standard versus algebraic notation

?X :name "john"

{ P1 OPTIONAL { P2 }}
{ P1 } UNION { P2 }

{ P1 FILTER (R ) }

(?X, name, john)

(P1 AND P;)

(P OPT P»)

(P, UNION P;)

(P, FILTER R)

20



Standard versus algebraic notation

?X :name "john"

{ P1 OPTIONAL { P2 }}

{ P1 } UNION { P2 }

{ P1 FILTER (R ) }

SELECT W WHERE { P }

(?X, name, john)

(P1 AND P;)

(P OPT P»)

(P, UNION P;)

(P, FILTER R)

(SELECT W P)

20



Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)
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Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)
Given a mapping p and a triple pattern t:
» u(t): triple obtained from t replacing variables according to

Example
pw=1{?X—Ry,?Y — Ry,7Z — john}

20



Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)
Given a mapping p and a triple pattern t:
» u(t): triple obtained from t replacing variables according to

Example
pw=1{?X—Ry,?Y — Ry,7Z — john}

t = (?X, name, 72)
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Mappings: building block for the semantics

Definition
A mapping is a partial function:

pw V. — (UULUB)
Given a mapping p and a triple pattern t:
» u(t): triple obtained from t replacing variables according to

Example
pw=1{?X—Ry,?Y — Ry,7Z — john}

t = (?X, name, 72)

wu(t) = (R, name, john)

20



The semantics of triple patterns

Definition
The evaluation of triple pattern t over a graph G, denoted by
[t] ¢, is the set of all mappings i such that:

21
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Definition
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[t] ¢, is the set of all mappings i such that:

» dom(p) is exactly the set of variables occurring in t
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The semantics of triple patterns

Definition
The evaluation of triple pattern t over a graph G, denoted by
[t] ¢, is the set of all mappings i such that:

» dom(p) is exactly the set of variables occurring in t

» u(t) e G

21



Example

(R1, name, john)
(R1, email, JQed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢
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Example

(R1, name, john)
(R1, email, JQed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢

w1 = {?X — Ry,?N — john}
po = {?X — Rp,?N — paul}
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Example

(R1, name, john)
(R1, email, JQed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢
{ p1 = {?X — Ry,?N — john} }

p2 = {?X — Ry, ?N — paul}

[(?X, email, ?E)]¢

9



Example

(R1, name, john)
(R1, email, JQed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢

w1 = {?X — Ry,?N — john}
po = {?X — Rp,?N — paul}

[(?X, email, ?E)]¢
{ w={"X - R,7E — J@ed.ex} }

9



Example

| Ry | JOed.ex

(Ry, name, john)
(R1, email, J@ed.ex)
(R>, name, paul)

[(?X, name, ?N)]¢

X | PN
u1 | Ry | john
p2 | R> | paul

[(?X, email, ?E)] ¢
X ?E

9



Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

[(Ry,webPage, ?W)]¢

[(R2,name, paul)] ¢

[(Rs, name, ringo)] ¢

23



Example
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

[(Ry,webPage, ?W)]¢

{}

[(R2,name, paul)] ¢

[(Rs, name, ringo)] ¢

23



Example

(R1, name, john)
(R1, email, J@ed.ex)
(R2, name, paul)

[(Ry, webPage, ?W)] ¢
{ } [(Rs, name, ringo)] ¢
[(R2,name, paul)] ¢ { }

23



Example
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

[(Ry,webPage, ?W)]¢

{} [(Rs, name, ringo)] ¢
[(R2,name, paul)] ¢ {3}
{mo={}1}

23



Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

» var(P): set of variables mentioned in P
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Semantics of SPARQL: Basic graph patterns

Let P be a basic graph pattern

» var(P): set of variables mentioned in P

Given a mapping p such that var(P) C dom(u):
w(P) = A{u(t)|te P}

Definition
The evaluation of P over an RDF graph G, denoted by [P]¢, is
the set of mappings p:

» dom(u) = var(P)

» u(P)C G

4



Semantics of basic graph patterns: An example

graph bgp evaluation

(R1, name, john) ) ,
(R, email, J@ed.ex) {(%X' name, ?.Y).
(R2, name, paul) (7X, email, 72)}

25
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Semantics of basic graph patterns: An example

graph bgp evaluation

(R1, name, john) ) ,
(Ri, email, Jeed.ex) (1% name, V),
(R2, name, paul) (7X, email, 72)}
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Semantics of basic graph patterns: An example

graph bgp evaluation

(R, name, john) {(2X, name, 7Y), X7V | 72

(Ry, email, J@ed.ex) oy o ail 22)} e [ Ry [ john | J@ed.ex

(R2, name, paul)



Semantics of basic graph patterns: An example

graph bgp evaluation

(R, name, john) {(2X, name, 7Y), X7V | 72

(i, e, Jezzhsg (?X, email, ?2Z)}  p: [ Ry | john | J@ed.ex

(R2, name, paul)

Notation

t is used to represent {t}



Compatible mappings: mappings that can be merged

Definition
Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)
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Compatible mappings: mappings that can be merged

Definition
Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)

Example
X | Y (V4 7V
w1 | Ry | john
w2 | Ry JOedu.ex
13 PQedu.ex | R»
prUpo: | Ry | john | J@edu.ex
p1Ups: | Ry | john | P@edu.ex | R»

26



Compatible mappings: mappings that can be merged

Definition
Mappings 111 and pp are compatible if they agree in their common
variables:

If 27X € dom(u1) Ndom(pz), then w1 (?X) = pa(?X)

Example
X | Y (V4 7V
M1 - Rl john
w2 | Ry JOedu.ex
u3 PQedu.ex | R,
prUpo: | Ry | john | J@edu.ex
p1Ups: | Ry | john | P@edu.ex | R»

» 1o and p3 are not compatible

26



Sets of mappings and operations

Let ©; and €, be sets of mappings:

Definition

Join: Q1 X Q)
> {paUpo | g € Qi, po € Qp, and pq, pp are compatibles}
> extending mappings in €; with compatible mappings in

will be used to define AND

7



Sets of mappings and operations

Let ©; and €, be sets of mappings:

Definition

Join: Q1 X Q)
> {paUpo | g € Qi, po € Qp, and pq, pp are compatibles}
> extending mappings in €; with compatible mappings in

will be used to define AND

Definition
Union: Q7 U
> {p|p€Qorpe D}

» mappings in Q; plus mappings in €, (the usual union of sets)

will be used to define UNION

7



Sets of mappings and operations

Definition
Difference: Q1 \ Q5
> {pe Q| forall ' € Qy, pand i are not compatibles}

> mappings in ©; that cannot be extended with mappings in Q5

28



Sets of mappings and operations

Definition
Difference: Q1 \ Q5
> {pe Q| forall ' € Qy, pand i are not compatibles}

> mappings in ©; that cannot be extended with mappings in Q5

Definition
Left outer join: Q3 X Qp = (21 X Q) U (21 N Q,)
> extension of mappings in £; with compatible mappings in

» plus the mappings in ©; that cannot be extended.

will be used to define OPT

28



Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition
[(P1 AND Py)]¢ =
[(P1 UNION Pp)]¢ =
[(PL OPT Py)]¢ =
[(SELECT W P)]¢ =

20



Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition
[(P1 AND P,)] = [Pl X [P]e
[(P1 UNION P)]¢ = [PlcU[Pale
[(P1 OPT P2)]c = [Ple X [Ple
[(SELECT W P)]¢ = {,u‘w | we€[P]c}




Semantics of SPARQL: AND, UNION, OPT and SELECT

Given an RDF graph G

Definition
[(P1 AND P2)]¢ = [Pe ™ [P]c
[(P1 UNION Po)]¢ = [PiJcU[P:]c
[(P1 OPT Po)]c = [Pi]le¢ ™ [P2]c
[(SELECT W P)le = {u, | 4 € [Plc}
dom(y,, ) = dom(u) N W and
Ky (7X) = p(?X) for every 72X € dom(yy,,)




Example (AND)

(R1, name, john) (R2, name, paul)  (Rs, name, ringo)
G : (R, email, JOed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
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Example (AND)

(R1, name, john) (R2, name, paul)  (R3, name, ringo)
G . (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢c X [(?X, email, ?E)] ¢

40



Example (AND)
(R2, name, paul)  (Rs3, name, ringo)

(R1, name, john)
G . (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢c X [(?X, email, ?E)] ¢

X | N
u1 | Ry | john
p2 | R | paul
w3 | Rs | ringo

40



Example (AND)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)

(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢c X [(?X, email, ?E)] ¢

M1
M2

M3

X | N

Ry | john
R> | paul
Rs3 | ringo

Ha
s

X ?E
R; | J@ed.ex
R3 | R@ed.ex

40



Example (AND)

(R1, name, john) (R2, name, paul)
G : (R, email, JOed.ex)

(R3, name, ringo)
(Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢c X [(?X, email, ?E)] ¢

X | N
? ?
p1 | Ry | john X '
v | 5 | el X ta | Ry | JOed.ex
i [T [T s | R3 | ROed.ex

40



Example (AND)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)

(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
N)]¢ X [(?X, email, ?E)]¢

[(?X, name,

?RX .?hN ?X ?E
Zl i J;au’} M pia | Ry | JQed.ex
2 2
v | T e s | R3 | ROed.ex

XN ?’E
1 Upg | Ry | john | JOed.ex
u3Ups | Rs | ringo | R@ed.ex

40



Example (OPT)

(R1, name, john) (R2, name, paul)  (R3, name, ringo)
G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢

41



Example (OPT)

(R1, name, john) (R2, name, paul)  (R3, name, ringo)
G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)]¢

41



Example (OPT)

(R1, name, john) (R2, name, paul)  (R3, name, ringo)

G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
M1 Rl john
p2 | Ro | paul
w3 | Rs | ringo

41



Example (OPT)

(R1, name, john) (R2, name, paul)  (R3, name, ringo)

G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
7 ?
p1 | Ri | john X 'E
2 | Rz | paul pa | Ry | JOed.ex
w3 | Rs | ringo ps | R3 | R@ed.ex

41



Example (OPT)

(R1, name, john) (R2, name, paul)  (R3, name, ringo)

G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
? ?
p1 | Ri | john X 'E
2 | Rz | paul N pa | Ry | JOed.ex
w3 | Rs | ringo is | R3 | R@ed.ex

41



Example (OPT)

(R1, name, john) (R2, name, paul)  (R3, name, ringo)
G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
? ?
p1 | Ri | john X 'E
2 | Rz | paul N pa | Ry | JOed.ex
w3 | Rs | ringo is | R3 | R@ed.ex

XN ?’E

1 Upg | Ry | john | JOed.ex

13U ps | R | ringo | R@ed.ex
2 R> | paul

41



Example (OPT)

(R1, name, john) (R2, name, paul)  (R3, name, ringo)
G : (R, email, JQed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, ?E))]¢
[(?X, name, ?N)]c K [(?X, email, ?E)] ¢

X | N
? ?
p1 | Ri | john X 'E
2 | Rz | paul N pa | Ry | JOed.ex
w3 | Rs | ringo is | R3 | R@ed.ex

X | N ’E

1 Upg | Ry | john | JOed.ex

13U ps | R | ringo | R@ed.ex
H2 R2 paul

41



Example (UNION)

(R1, name, john) (R2, name, paul)  (Rs, name, ringo)
G : (R, email, JOed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢

49



Example (UNION)

(R1, name, john) (R2, name, paul)  (R3, name, ringo)
G . (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

49



Example (UNION)
(R1, name, john) (R2, name, paul)  (Rs3, name, ringo)

G . (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

X ?Info
M1 Rl JQed.ex
2 R3 R@ed.ex

49



Example (UNION)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)
(Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

M1
H2

X ?Info
R: | J@ed.ex
R3 | R@ed.ex

13

X

?Info

Rs

WWW.ringo.com

49



Example (UNION)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)
(Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

M1
H2

X ?Info
R: | J@ed.ex
R3 | R@ed.ex

13

X

?Info

Rs

WWW.ringo.com

49



Example (UNION)

(R1, name, john)
G : (R, email, JOed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[((?X, email, ?Info) UNION (?X, webPage, ?/nfo))] ¢
[(?X, email, ?Info)] ¢ U [(?X, webPage, ?Info)] ¢

=
IX | ‘info 7X 7Info
M1 Rl JOed.ex U 5
11> [ Ry | ROed.ex 13 | Rs | www.ringo.com
X ?Info

M1 Rl JOed.ex

2 R3 R@ed.ex

13 | Rs | www.ringo.com

49



Example (SELECT)

(R1, name, john) (R2, name, paul)  (Rs3, name, ringo)
G :  (Ri, email, JOed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[(SELECT {?N,?E} ((?X, name, ?N) AND (?X, email, ?E)))]c

43



Example (SELECT)

(R1, name, john) (R2, name, paul)  (Rs3, name, ringo)
G :  (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(SELECT {?N,?E} ((?X, name, ?N) AND (?X, email, ?E)))]c

X | N E
SELECT{?N,?E} 1 | Ri | john | J@ed.ex
w2 | R3 | ringo | R@ed.ex




Example (SELECT)

(R1, name, john) (R2, name, paul)  (Rs3, name, ringo)
G :  (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(SELECT {?N,?E} ((?X, name, ?N) AND (?X, email, ?E)))]c

X | N E
SELECT{?N,?E} 1 | Ri | john | J@ed.ex
w2 | R3 | ringo | R@ed.ex

N ’E
1| (o ey john | J@ed.ex
12 oy 2y ringo | R@ed.ex




Filter expressions (value constraints)

Filter expression: (P FILTER R)
» P is a graph pattern

» R is a built-in condition

We consider in R:
» equality = among variables and RDF terms
» unary predicate bound

» boolean combinations (A, V, )

a4



Satisfaction of value constraints

A mapping  satisfies a condition R (i = R) if:

45



Satisfaction of value constraints

A mapping  satisfies a condition R (i = R) if:
» Ris?X =c¢, ?X € dom(u) and p(?X) =c¢
> Ris 72X =7Y, 72X,?Y € dom(n) and u(?X) = u(?Y)
» R is bound(?X) and ?X € dom(y)

45



Satisfaction of value constraints

A mapping  satisfies a condition R (i = R) if:
» Ris?X =c¢, ?X € dom(u) and p(?X) =c¢
> Ris 72X =7Y, 72X,?Y € dom(n) and u(?X) = u(?Y)
» R is bound(?X) and ?X € dom(y)

» usual rules for Boolean connectives
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Satisfaction of value constraints

A mapping  satisfies a condition R (i = R) if:
» Ris?X =c¢, ?X € dom(u) and p(?X) =c¢
> Ris 72X =7Y, 72X,?Y € dom(n) and u(?X) = u(?Y)
» R is bound(?X) and ?X € dom(y)

» usual rules for Boolean connectives

Definition
FILTER : selects mappings that satisfy a condition

[(PFILTER R)lc = {nelPlc|nrkE R}

45



Example (FILTER)

(R1, name, john) (R2, name, paul)  (Rs3, name, ringo)
G :  (Ry, email, J@ed.ex) (Rs3, email, RQ@ed.ex)
(Rs3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V ?N = paul))]¢

46



Example (FILTER)

(R1, name, john)
G :  (Ry, email, J@ed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V ?N = paul))]¢

7N

john

paul

X
| R
2 | Re
p3 | Rs

ringo

46



Example (FILTER)

(R1, name, john)
G :  (Ry, email, J@ed.ex)

(R2, name, paul)  (Rs3, name, ringo)
(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V ?N = paul))]¢

X | N
w1 | Ri | john o N
w | | e ?N = ringo V ?N = paul
us | Rs | ringo

46



Example (FILTER)

(R1, name, john)
G :  (Ry, email, J@ed.ex)

(R2, name, paul)  (Rs3, name, ringo)
(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V ?N = paul))]¢

X | N
1251 Rl john N — i 2N —
w | | e ?N = ringo V ?N = paul
us | Rs | ringo
X | N
p2 | Ro | paul
us | Rs | ringo

46



Example (FILTER)

(R1, name, john) (R2, name, paul)  (Rs3, name, ringo)
G :  (Ri, email, JOed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER —bound(?E))] ¢

47



Example (FILTER)

(R1, name, john)

G :  (Ri, email, JOed.ex)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER —bound(?E))] ¢

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

X | ?N ’E
1 Upg | Ry | john | J@ed.ex
13U ps | Rs | ringo | R@ed.ex
2 R | paul

A7



Example (FILTER)

(R1, name, john) (R2, name, paul)  (Rs3, name, ringo)

G :  (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER —bound(?E))] ¢

X | N 7E

1 Upg | Ry | john | J@ed.ex .
13U ps | Rs | ringo | R@ed.ex baund|(VE)

2 R | paul




Example (FILTER)

(R1, name, john) (R2, name, paul)  (Rs3, name, ringo)

G :  (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER —bound(?E))] ¢

X | N 7E

1 Upg | Ry | john | J@ed.ex .
13U ps | Rs | ringo | R@ed.ex baund|(VE)

2 R | paul

X | ?N
p2 | Ro | paul




SPARQL 1.1

A new version of SPARQL was recently released (March 2013):
SPARQL 1.1

Some new features in SPARQL 1.1:
» Entailment regimes for RDFS and OWL
» Navigational capabilities: Property paths

48



SPARQL provides limited navigational capabilities

paul@puc.cl phone

friendOf

446928388

john@utexas.edu

friendOf

friendOf

(0}

446928888

friendOf john@utexas.edu

friendOf

50



SPARQL provides limited navigational capabilities

name

446928888

friendOf

friendOf

friendOf

john@utexas.edu

— ~ .
(SELECT ?X ((?X, friendOf, ?Y) AND (?Y, name, George))) ‘
URI email Jonn
friendOf
friend0f

e -

50



A possible solution: Property paths

name
paul@puc.cl

email

URI,
_

friendOf

friendOf

friendOf

=

john@utexas.edu

52



A possible solution: Property paths

446928388

X —= URI,
friend0f john@utexas.edu

name

URI; email
_—J

friendOf

friendOf

(0}

(SELECT 72X ((?X, (friendOf)", 2Y) AND (?Y, name, George))) ‘

52



Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:
exp = a | exp/exp | explexp | exp”

where a € U

53



Navigational capabilities in SPARQL 1.1: Property paths

Syntax of property paths:
exp = a | exp/exp | explexp | exp”

where a € U
Other expressions are allowed:

“exp : inverse path
!(ai|...]an) : a URI which is not one of a; (1 <i < n)

53



Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

54



Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

[ale = {(xy)|(xay)€ G}
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Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

[ale =

[expi/expa]c =

(
(

)| (x;a,y) € G}
) | 3z (x,z) € [exp1] ¢ and

(z,y) € [expa]G}

[t Wanten)

X,y
X,y
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Evaluating property paths

The evaluation of a property path over an RDF graph G is defined
as follows:

[ale =

[expi/expa]c =

(
(

X,y
X,y

[t Wanten)

)| (x,a,y) € G}

) | 3z (x,z) € [exp1] ¢ and
(z,y) € [expal6}

[expilexpo]c = [expi]c U [expalc

54



Evaluating property paths

The evaluation of a property path over an RDF graph G is defined

as follows:
[ale = {(xy)|(xa,y)€G}
[expi/expalc = {(x,y) [ 3z (x,z) € [exps] ¢ and
(z,y) € [expo] 6}
[expilexpalc = [expi]c U [expale
[exp*]lc = {(a,a)|aisa URlin G} U [exp]c U

[exp/exp]c U [exp/exp/exp]c U - - -

54



Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)
> exp is a property path
» x (resp. y) is either an element from U or a variable

5R



Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)
> exp is a property path
» x (resp. y) is either an element from U or a variable

Example

> (?X, (friendOf)*, ?7Y): Checks whether there exists a path of
friends of arbitrary length from 7X to 7Y
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Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)
> exp is a property path
» x (resp. y) is either an element from U or a variable

Example

> (?X, (friendOf)*, ?7Y): Checks whether there exists a path of
friends of arbitrary length from 7X to 7Y

> (?X, (rdf:sc)*, person): Checks whether the value stored in ?.X is
a subclass of person
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Property paths in SPARQL 1.1

New element in SPARQL 1.1: A triple of the form (x, exp, y)
> exp is a property path
» x (resp. y) is either an element from U or a variable

Example

> (?X, (friendOf)*, ?7Y): Checks whether there exists a path of
friends of arbitrary length from 7X to 7Y

> (?X, (rdf:sc)*, person): Checks whether the value stored in ?.X is
a subclass of person

> (?X, (rdf:sp)*, ?Y): Checks whether the value stored in ?X is a
subproperty of the value stored in 7Y

5R



Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:
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Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:

» dom(p) = {?X,?Y}
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Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:

» dom(p) = {?X,?Y}
> (u(?X),1(?Y)) € [exple
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Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:

» dom(p) = {?X,?Y}

> (u(?X), 1(?Y)) € [explc
Other cases are defined analogously.
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Semantics of property paths

Evaluation of t = (?X, exp, ?Y) over an RDF graph G is the set of
mappings p such that:

» dom(p) = {?X,?Y}

> (u(?X), 1(?Y)) € [explc
Other cases are defined analogously.

Example

> ((?X, KLM/(KLM)*, ?Y) FILTER —=(?X =?Y)): It is possible to go from
?X to 7Y by using the airline KLM, where ?X, ?Y are different cities
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Comments on papers

> Jorge Perez, Marcelo Arenas, Claudio Gutierrez: Semantics and complexity of SPARQL. ACM Trans.
Database Syst. 34(3) (2009)

M. Arenas, J. Perez: Querying semantic web data with SPARQL. PODS 2011: 305-316
In these two papers, your essays ought to concentrate on complexity, as semantics was already covered.
P Marcelo Arenas, Georg Gottlob, Andreas Pieris: Expressive languages for querying the semantic web.
PODS 2014: 14-26
Extend SPARQL with more expressive ontologies and recursion, and translation into datalog.
P> Leonid Libkin, Juan L. Reutter, Domagoj Vrgoc: Trial for RDF: adapting graph query languages for RDF
data. PODS 2013: 201-212
Are graph data and RDF the same? Not really. This shows how to bridge them.
| Jorge Perez, Marcelo Arenas, Claudio Gutierrez: nSPARQL: A navigational language for RDF. J. Web
Sem. 8(4): 255-270 (2010)
Extending navigational capabilities, using some XPath ideas.
> Marcelo Arenas, Sebastian Conca, Jorge Perez: Counting beyond a Yottabyte, or how SPARQL 1.1
property paths will prevent adoption of the standard. WWW 2012: 629-638
> Katja Losemann, Wim Martens: The complexity of regular expressions and property paths in SPARQL.
ACM Trans. Database Syst. 38(4): 24 (2013)
Two papers showing that bad things happen if one queries RDF accoring to SPARQL 1.1 standard, and
different solutions for fixing the problem.
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